1// SPDX-License-Identifier: GPL-2.0
2/*
3 * NVMe over Fabrics RDMA host code.
4 * Copyright (c) 2015-2016 HGST, a Western Digital Company.
5 */
6#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7#include <linux/module.h>
8#include <linux/init.h>
9#include <linux/slab.h>
10#include <rdma/mr_pool.h>
11#include <linux/err.h>
12#include <linux/string.h>
13#include <linux/atomic.h>
14#include <linux/blk-mq.h>
15#include <linux/blk-integrity.h>
16#include <linux/types.h>
17#include <linux/list.h>
18#include <linux/mutex.h>
19#include <linux/scatterlist.h>
20#include <linux/nvme.h>
21#include <asm/unaligned.h>
22
23#include <rdma/ib_verbs.h>
24#include <rdma/rdma_cm.h>
25#include <linux/nvme-rdma.h>
26
27#include "nvme.h"
28#include "fabrics.h"
29
30
31#define NVME_RDMA_CM_TIMEOUT_MS		3000		/* 3 second */
32
33#define NVME_RDMA_MAX_SEGMENTS		256
34
35#define NVME_RDMA_MAX_INLINE_SEGMENTS	4
36
37#define NVME_RDMA_DATA_SGL_SIZE \
38	(sizeof(struct scatterlist) * NVME_INLINE_SG_CNT)
39#define NVME_RDMA_METADATA_SGL_SIZE \
40	(sizeof(struct scatterlist) * NVME_INLINE_METADATA_SG_CNT)
41
42struct nvme_rdma_device {
43	struct ib_device	*dev;
44	struct ib_pd		*pd;
45	struct kref		ref;
46	struct list_head	entry;
47	unsigned int		num_inline_segments;
48};
49
50struct nvme_rdma_qe {
51	struct ib_cqe		cqe;
52	void			*data;
53	u64			dma;
54};
55
56struct nvme_rdma_sgl {
57	int			nents;
58	struct sg_table		sg_table;
59};
60
61struct nvme_rdma_queue;
62struct nvme_rdma_request {
63	struct nvme_request	req;
64	struct ib_mr		*mr;
65	struct nvme_rdma_qe	sqe;
66	union nvme_result	result;
67	__le16			status;
68	refcount_t		ref;
69	struct ib_sge		sge[1 + NVME_RDMA_MAX_INLINE_SEGMENTS];
70	u32			num_sge;
71	struct ib_reg_wr	reg_wr;
72	struct ib_cqe		reg_cqe;
73	struct nvme_rdma_queue  *queue;
74	struct nvme_rdma_sgl	data_sgl;
75	struct nvme_rdma_sgl	*metadata_sgl;
76	bool			use_sig_mr;
77};
78
79enum nvme_rdma_queue_flags {
80	NVME_RDMA_Q_ALLOCATED		= 0,
81	NVME_RDMA_Q_LIVE		= 1,
82	NVME_RDMA_Q_TR_READY		= 2,
83};
84
85struct nvme_rdma_queue {
86	struct nvme_rdma_qe	*rsp_ring;
87	int			queue_size;
88	size_t			cmnd_capsule_len;
89	struct nvme_rdma_ctrl	*ctrl;
90	struct nvme_rdma_device	*device;
91	struct ib_cq		*ib_cq;
92	struct ib_qp		*qp;
93
94	unsigned long		flags;
95	struct rdma_cm_id	*cm_id;
96	int			cm_error;
97	struct completion	cm_done;
98	bool			pi_support;
99	int			cq_size;
100	struct mutex		queue_lock;
101};
102
103struct nvme_rdma_ctrl {
104	/* read only in the hot path */
105	struct nvme_rdma_queue	*queues;
106
107	/* other member variables */
108	struct blk_mq_tag_set	tag_set;
109	struct work_struct	err_work;
110
111	struct nvme_rdma_qe	async_event_sqe;
112
113	struct delayed_work	reconnect_work;
114
115	struct list_head	list;
116
117	struct blk_mq_tag_set	admin_tag_set;
118	struct nvme_rdma_device	*device;
119
120	u32			max_fr_pages;
121
122	struct sockaddr_storage addr;
123	struct sockaddr_storage src_addr;
124
125	struct nvme_ctrl	ctrl;
126	bool			use_inline_data;
127	u32			io_queues[HCTX_MAX_TYPES];
128};
129
130static inline struct nvme_rdma_ctrl *to_rdma_ctrl(struct nvme_ctrl *ctrl)
131{
132	return container_of(ctrl, struct nvme_rdma_ctrl, ctrl);
133}
134
135static LIST_HEAD(device_list);
136static DEFINE_MUTEX(device_list_mutex);
137
138static LIST_HEAD(nvme_rdma_ctrl_list);
139static DEFINE_MUTEX(nvme_rdma_ctrl_mutex);
140
141/*
142 * Disabling this option makes small I/O goes faster, but is fundamentally
143 * unsafe.  With it turned off we will have to register a global rkey that
144 * allows read and write access to all physical memory.
145 */
146static bool register_always = true;
147module_param(register_always, bool, 0444);
148MODULE_PARM_DESC(register_always,
149	 "Use memory registration even for contiguous memory regions");
150
151static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
152		struct rdma_cm_event *event);
153static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc);
154static void nvme_rdma_complete_rq(struct request *rq);
155
156static const struct blk_mq_ops nvme_rdma_mq_ops;
157static const struct blk_mq_ops nvme_rdma_admin_mq_ops;
158
159static inline int nvme_rdma_queue_idx(struct nvme_rdma_queue *queue)
160{
161	return queue - queue->ctrl->queues;
162}
163
164static bool nvme_rdma_poll_queue(struct nvme_rdma_queue *queue)
165{
166	return nvme_rdma_queue_idx(queue) >
167		queue->ctrl->io_queues[HCTX_TYPE_DEFAULT] +
168		queue->ctrl->io_queues[HCTX_TYPE_READ];
169}
170
171static inline size_t nvme_rdma_inline_data_size(struct nvme_rdma_queue *queue)
172{
173	return queue->cmnd_capsule_len - sizeof(struct nvme_command);
174}
175
176static void nvme_rdma_free_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
177		size_t capsule_size, enum dma_data_direction dir)
178{
179	ib_dma_unmap_single(ibdev, qe->dma, capsule_size, dir);
180	kfree(qe->data);
181}
182
183static int nvme_rdma_alloc_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
184		size_t capsule_size, enum dma_data_direction dir)
185{
186	qe->data = kzalloc(capsule_size, GFP_KERNEL);
187	if (!qe->data)
188		return -ENOMEM;
189
190	qe->dma = ib_dma_map_single(ibdev, qe->data, capsule_size, dir);
191	if (ib_dma_mapping_error(ibdev, qe->dma)) {
192		kfree(qe->data);
193		qe->data = NULL;
194		return -ENOMEM;
195	}
196
197	return 0;
198}
199
200static void nvme_rdma_free_ring(struct ib_device *ibdev,
201		struct nvme_rdma_qe *ring, size_t ib_queue_size,
202		size_t capsule_size, enum dma_data_direction dir)
203{
204	int i;
205
206	for (i = 0; i < ib_queue_size; i++)
207		nvme_rdma_free_qe(ibdev, &ring[i], capsule_size, dir);
208	kfree(ring);
209}
210
211static struct nvme_rdma_qe *nvme_rdma_alloc_ring(struct ib_device *ibdev,
212		size_t ib_queue_size, size_t capsule_size,
213		enum dma_data_direction dir)
214{
215	struct nvme_rdma_qe *ring;
216	int i;
217
218	ring = kcalloc(ib_queue_size, sizeof(struct nvme_rdma_qe), GFP_KERNEL);
219	if (!ring)
220		return NULL;
221
222	/*
223	 * Bind the CQEs (post recv buffers) DMA mapping to the RDMA queue
224	 * lifetime. It's safe, since any chage in the underlying RDMA device
225	 * will issue error recovery and queue re-creation.
226	 */
227	for (i = 0; i < ib_queue_size; i++) {
228		if (nvme_rdma_alloc_qe(ibdev, &ring[i], capsule_size, dir))
229			goto out_free_ring;
230	}
231
232	return ring;
233
234out_free_ring:
235	nvme_rdma_free_ring(ibdev, ring, i, capsule_size, dir);
236	return NULL;
237}
238
239static void nvme_rdma_qp_event(struct ib_event *event, void *context)
240{
241	pr_debug("QP event %s (%d)\n",
242		 ib_event_msg(event->event), event->event);
243
244}
245
246static int nvme_rdma_wait_for_cm(struct nvme_rdma_queue *queue)
247{
248	int ret;
249
250	ret = wait_for_completion_interruptible(&queue->cm_done);
251	if (ret)
252		return ret;
253	WARN_ON_ONCE(queue->cm_error > 0);
254	return queue->cm_error;
255}
256
257static int nvme_rdma_create_qp(struct nvme_rdma_queue *queue, const int factor)
258{
259	struct nvme_rdma_device *dev = queue->device;
260	struct ib_qp_init_attr init_attr;
261	int ret;
262
263	memset(&init_attr, 0, sizeof(init_attr));
264	init_attr.event_handler = nvme_rdma_qp_event;
265	/* +1 for drain */
266	init_attr.cap.max_send_wr = factor * queue->queue_size + 1;
267	/* +1 for drain */
268	init_attr.cap.max_recv_wr = queue->queue_size + 1;
269	init_attr.cap.max_recv_sge = 1;
270	init_attr.cap.max_send_sge = 1 + dev->num_inline_segments;
271	init_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
272	init_attr.qp_type = IB_QPT_RC;
273	init_attr.send_cq = queue->ib_cq;
274	init_attr.recv_cq = queue->ib_cq;
275	if (queue->pi_support)
276		init_attr.create_flags |= IB_QP_CREATE_INTEGRITY_EN;
277	init_attr.qp_context = queue;
278
279	ret = rdma_create_qp(queue->cm_id, dev->pd, &init_attr);
280
281	queue->qp = queue->cm_id->qp;
282	return ret;
283}
284
285static void nvme_rdma_exit_request(struct blk_mq_tag_set *set,
286		struct request *rq, unsigned int hctx_idx)
287{
288	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
289
290	kfree(req->sqe.data);
291}
292
293static int nvme_rdma_init_request(struct blk_mq_tag_set *set,
294		struct request *rq, unsigned int hctx_idx,
295		unsigned int numa_node)
296{
297	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(set->driver_data);
298	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
299	int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
300	struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
301
302	nvme_req(rq)->ctrl = &ctrl->ctrl;
303	req->sqe.data = kzalloc(sizeof(struct nvme_command), GFP_KERNEL);
304	if (!req->sqe.data)
305		return -ENOMEM;
306
307	/* metadata nvme_rdma_sgl struct is located after command's data SGL */
308	if (queue->pi_support)
309		req->metadata_sgl = (void *)nvme_req(rq) +
310			sizeof(struct nvme_rdma_request) +
311			NVME_RDMA_DATA_SGL_SIZE;
312
313	req->queue = queue;
314	nvme_req(rq)->cmd = req->sqe.data;
315
316	return 0;
317}
318
319static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
320		unsigned int hctx_idx)
321{
322	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(data);
323	struct nvme_rdma_queue *queue = &ctrl->queues[hctx_idx + 1];
324
325	BUG_ON(hctx_idx >= ctrl->ctrl.queue_count);
326
327	hctx->driver_data = queue;
328	return 0;
329}
330
331static int nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
332		unsigned int hctx_idx)
333{
334	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(data);
335	struct nvme_rdma_queue *queue = &ctrl->queues[0];
336
337	BUG_ON(hctx_idx != 0);
338
339	hctx->driver_data = queue;
340	return 0;
341}
342
343static void nvme_rdma_free_dev(struct kref *ref)
344{
345	struct nvme_rdma_device *ndev =
346		container_of(ref, struct nvme_rdma_device, ref);
347
348	mutex_lock(&device_list_mutex);
349	list_del(&ndev->entry);
350	mutex_unlock(&device_list_mutex);
351
352	ib_dealloc_pd(ndev->pd);
353	kfree(ndev);
354}
355
356static void nvme_rdma_dev_put(struct nvme_rdma_device *dev)
357{
358	kref_put(&dev->ref, nvme_rdma_free_dev);
359}
360
361static int nvme_rdma_dev_get(struct nvme_rdma_device *dev)
362{
363	return kref_get_unless_zero(&dev->ref);
364}
365
366static struct nvme_rdma_device *
367nvme_rdma_find_get_device(struct rdma_cm_id *cm_id)
368{
369	struct nvme_rdma_device *ndev;
370
371	mutex_lock(&device_list_mutex);
372	list_for_each_entry(ndev, &device_list, entry) {
373		if (ndev->dev->node_guid == cm_id->device->node_guid &&
374		    nvme_rdma_dev_get(ndev))
375			goto out_unlock;
376	}
377
378	ndev = kzalloc(sizeof(*ndev), GFP_KERNEL);
379	if (!ndev)
380		goto out_err;
381
382	ndev->dev = cm_id->device;
383	kref_init(&ndev->ref);
384
385	ndev->pd = ib_alloc_pd(ndev->dev,
386		register_always ? 0 : IB_PD_UNSAFE_GLOBAL_RKEY);
387	if (IS_ERR(ndev->pd))
388		goto out_free_dev;
389
390	if (!(ndev->dev->attrs.device_cap_flags &
391	      IB_DEVICE_MEM_MGT_EXTENSIONS)) {
392		dev_err(&ndev->dev->dev,
393			"Memory registrations not supported.\n");
394		goto out_free_pd;
395	}
396
397	ndev->num_inline_segments = min(NVME_RDMA_MAX_INLINE_SEGMENTS,
398					ndev->dev->attrs.max_send_sge - 1);
399	list_add(&ndev->entry, &device_list);
400out_unlock:
401	mutex_unlock(&device_list_mutex);
402	return ndev;
403
404out_free_pd:
405	ib_dealloc_pd(ndev->pd);
406out_free_dev:
407	kfree(ndev);
408out_err:
409	mutex_unlock(&device_list_mutex);
410	return NULL;
411}
412
413static void nvme_rdma_free_cq(struct nvme_rdma_queue *queue)
414{
415	if (nvme_rdma_poll_queue(queue))
416		ib_free_cq(queue->ib_cq);
417	else
418		ib_cq_pool_put(queue->ib_cq, queue->cq_size);
419}
420
421static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue)
422{
423	struct nvme_rdma_device *dev;
424	struct ib_device *ibdev;
425
426	if (!test_and_clear_bit(NVME_RDMA_Q_TR_READY, &queue->flags))
427		return;
428
429	dev = queue->device;
430	ibdev = dev->dev;
431
432	if (queue->pi_support)
433		ib_mr_pool_destroy(queue->qp, &queue->qp->sig_mrs);
434	ib_mr_pool_destroy(queue->qp, &queue->qp->rdma_mrs);
435
436	/*
437	 * The cm_id object might have been destroyed during RDMA connection
438	 * establishment error flow to avoid getting other cma events, thus
439	 * the destruction of the QP shouldn't use rdma_cm API.
440	 */
441	ib_destroy_qp(queue->qp);
442	nvme_rdma_free_cq(queue);
443
444	nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
445			sizeof(struct nvme_completion), DMA_FROM_DEVICE);
446
447	nvme_rdma_dev_put(dev);
448}
449
450static int nvme_rdma_get_max_fr_pages(struct ib_device *ibdev, bool pi_support)
451{
452	u32 max_page_list_len;
453
454	if (pi_support)
455		max_page_list_len = ibdev->attrs.max_pi_fast_reg_page_list_len;
456	else
457		max_page_list_len = ibdev->attrs.max_fast_reg_page_list_len;
458
459	return min_t(u32, NVME_RDMA_MAX_SEGMENTS, max_page_list_len - 1);
460}
461
462static int nvme_rdma_create_cq(struct ib_device *ibdev,
463		struct nvme_rdma_queue *queue)
464{
465	int ret, comp_vector, idx = nvme_rdma_queue_idx(queue);
466
467	/*
468	 * Spread I/O queues completion vectors according their queue index.
469	 * Admin queues can always go on completion vector 0.
470	 */
471	comp_vector = (idx == 0 ? idx : idx - 1) % ibdev->num_comp_vectors;
472
473	/* Polling queues need direct cq polling context */
474	if (nvme_rdma_poll_queue(queue))
475		queue->ib_cq = ib_alloc_cq(ibdev, queue, queue->cq_size,
476					   comp_vector, IB_POLL_DIRECT);
477	else
478		queue->ib_cq = ib_cq_pool_get(ibdev, queue->cq_size,
479					      comp_vector, IB_POLL_SOFTIRQ);
480
481	if (IS_ERR(queue->ib_cq)) {
482		ret = PTR_ERR(queue->ib_cq);
483		return ret;
484	}
485
486	return 0;
487}
488
489static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue)
490{
491	struct ib_device *ibdev;
492	const int send_wr_factor = 3;			/* MR, SEND, INV */
493	const int cq_factor = send_wr_factor + 1;	/* + RECV */
494	int ret, pages_per_mr;
495
496	queue->device = nvme_rdma_find_get_device(queue->cm_id);
497	if (!queue->device) {
498		dev_err(queue->cm_id->device->dev.parent,
499			"no client data found!\n");
500		return -ECONNREFUSED;
501	}
502	ibdev = queue->device->dev;
503
504	/* +1 for ib_drain_qp */
505	queue->cq_size = cq_factor * queue->queue_size + 1;
506
507	ret = nvme_rdma_create_cq(ibdev, queue);
508	if (ret)
509		goto out_put_dev;
510
511	ret = nvme_rdma_create_qp(queue, send_wr_factor);
512	if (ret)
513		goto out_destroy_ib_cq;
514
515	queue->rsp_ring = nvme_rdma_alloc_ring(ibdev, queue->queue_size,
516			sizeof(struct nvme_completion), DMA_FROM_DEVICE);
517	if (!queue->rsp_ring) {
518		ret = -ENOMEM;
519		goto out_destroy_qp;
520	}
521
522	/*
523	 * Currently we don't use SG_GAPS MR's so if the first entry is
524	 * misaligned we'll end up using two entries for a single data page,
525	 * so one additional entry is required.
526	 */
527	pages_per_mr = nvme_rdma_get_max_fr_pages(ibdev, queue->pi_support) + 1;
528	ret = ib_mr_pool_init(queue->qp, &queue->qp->rdma_mrs,
529			      queue->queue_size,
530			      IB_MR_TYPE_MEM_REG,
531			      pages_per_mr, 0);
532	if (ret) {
533		dev_err(queue->ctrl->ctrl.device,
534			"failed to initialize MR pool sized %d for QID %d\n",
535			queue->queue_size, nvme_rdma_queue_idx(queue));
536		goto out_destroy_ring;
537	}
538
539	if (queue->pi_support) {
540		ret = ib_mr_pool_init(queue->qp, &queue->qp->sig_mrs,
541				      queue->queue_size, IB_MR_TYPE_INTEGRITY,
542				      pages_per_mr, pages_per_mr);
543		if (ret) {
544			dev_err(queue->ctrl->ctrl.device,
545				"failed to initialize PI MR pool sized %d for QID %d\n",
546				queue->queue_size, nvme_rdma_queue_idx(queue));
547			goto out_destroy_mr_pool;
548		}
549	}
550
551	set_bit(NVME_RDMA_Q_TR_READY, &queue->flags);
552
553	return 0;
554
555out_destroy_mr_pool:
556	ib_mr_pool_destroy(queue->qp, &queue->qp->rdma_mrs);
557out_destroy_ring:
558	nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
559			    sizeof(struct nvme_completion), DMA_FROM_DEVICE);
560out_destroy_qp:
561	rdma_destroy_qp(queue->cm_id);
562out_destroy_ib_cq:
563	nvme_rdma_free_cq(queue);
564out_put_dev:
565	nvme_rdma_dev_put(queue->device);
566	return ret;
567}
568
569static int nvme_rdma_alloc_queue(struct nvme_rdma_ctrl *ctrl,
570		int idx, size_t queue_size)
571{
572	struct nvme_rdma_queue *queue;
573	struct sockaddr *src_addr = NULL;
574	int ret;
575
576	queue = &ctrl->queues[idx];
577	mutex_init(&queue->queue_lock);
578	queue->ctrl = ctrl;
579	if (idx && ctrl->ctrl.max_integrity_segments)
580		queue->pi_support = true;
581	else
582		queue->pi_support = false;
583	init_completion(&queue->cm_done);
584
585	if (idx > 0)
586		queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
587	else
588		queue->cmnd_capsule_len = sizeof(struct nvme_command);
589
590	queue->queue_size = queue_size;
591
592	queue->cm_id = rdma_create_id(&init_net, nvme_rdma_cm_handler, queue,
593			RDMA_PS_TCP, IB_QPT_RC);
594	if (IS_ERR(queue->cm_id)) {
595		dev_info(ctrl->ctrl.device,
596			"failed to create CM ID: %ld\n", PTR_ERR(queue->cm_id));
597		ret = PTR_ERR(queue->cm_id);
598		goto out_destroy_mutex;
599	}
600
601	if (ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR)
602		src_addr = (struct sockaddr *)&ctrl->src_addr;
603
604	queue->cm_error = -ETIMEDOUT;
605	ret = rdma_resolve_addr(queue->cm_id, src_addr,
606			(struct sockaddr *)&ctrl->addr,
607			NVME_RDMA_CM_TIMEOUT_MS);
608	if (ret) {
609		dev_info(ctrl->ctrl.device,
610			"rdma_resolve_addr failed (%d).\n", ret);
611		goto out_destroy_cm_id;
612	}
613
614	ret = nvme_rdma_wait_for_cm(queue);
615	if (ret) {
616		dev_info(ctrl->ctrl.device,
617			"rdma connection establishment failed (%d)\n", ret);
618		goto out_destroy_cm_id;
619	}
620
621	set_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags);
622
623	return 0;
624
625out_destroy_cm_id:
626	rdma_destroy_id(queue->cm_id);
627	nvme_rdma_destroy_queue_ib(queue);
628out_destroy_mutex:
629	mutex_destroy(&queue->queue_lock);
630	return ret;
631}
632
633static void __nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)
634{
635	rdma_disconnect(queue->cm_id);
636	ib_drain_qp(queue->qp);
637}
638
639static void nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)
640{
641	if (!test_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags))
642		return;
643
644	mutex_lock(&queue->queue_lock);
645	if (test_and_clear_bit(NVME_RDMA_Q_LIVE, &queue->flags))
646		__nvme_rdma_stop_queue(queue);
647	mutex_unlock(&queue->queue_lock);
648}
649
650static void nvme_rdma_free_queue(struct nvme_rdma_queue *queue)
651{
652	if (!test_and_clear_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags))
653		return;
654
655	rdma_destroy_id(queue->cm_id);
656	nvme_rdma_destroy_queue_ib(queue);
657	mutex_destroy(&queue->queue_lock);
658}
659
660static void nvme_rdma_free_io_queues(struct nvme_rdma_ctrl *ctrl)
661{
662	int i;
663
664	for (i = 1; i < ctrl->ctrl.queue_count; i++)
665		nvme_rdma_free_queue(&ctrl->queues[i]);
666}
667
668static void nvme_rdma_stop_io_queues(struct nvme_rdma_ctrl *ctrl)
669{
670	int i;
671
672	for (i = 1; i < ctrl->ctrl.queue_count; i++)
673		nvme_rdma_stop_queue(&ctrl->queues[i]);
674}
675
676static int nvme_rdma_start_queue(struct nvme_rdma_ctrl *ctrl, int idx)
677{
678	struct nvme_rdma_queue *queue = &ctrl->queues[idx];
679	int ret;
680
681	if (idx)
682		ret = nvmf_connect_io_queue(&ctrl->ctrl, idx);
683	else
684		ret = nvmf_connect_admin_queue(&ctrl->ctrl);
685
686	if (!ret) {
687		set_bit(NVME_RDMA_Q_LIVE, &queue->flags);
688	} else {
689		if (test_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags))
690			__nvme_rdma_stop_queue(queue);
691		dev_info(ctrl->ctrl.device,
692			"failed to connect queue: %d ret=%d\n", idx, ret);
693	}
694	return ret;
695}
696
697static int nvme_rdma_start_io_queues(struct nvme_rdma_ctrl *ctrl,
698				     int first, int last)
699{
700	int i, ret = 0;
701
702	for (i = first; i < last; i++) {
703		ret = nvme_rdma_start_queue(ctrl, i);
704		if (ret)
705			goto out_stop_queues;
706	}
707
708	return 0;
709
710out_stop_queues:
711	for (i--; i >= first; i--)
712		nvme_rdma_stop_queue(&ctrl->queues[i]);
713	return ret;
714}
715
716static int nvme_rdma_alloc_io_queues(struct nvme_rdma_ctrl *ctrl)
717{
718	struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
719	unsigned int nr_io_queues;
720	int i, ret;
721
722	nr_io_queues = nvmf_nr_io_queues(opts);
723	ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
724	if (ret)
725		return ret;
726
727	if (nr_io_queues == 0) {
728		dev_err(ctrl->ctrl.device,
729			"unable to set any I/O queues\n");
730		return -ENOMEM;
731	}
732
733	ctrl->ctrl.queue_count = nr_io_queues + 1;
734	dev_info(ctrl->ctrl.device,
735		"creating %d I/O queues.\n", nr_io_queues);
736
737	nvmf_set_io_queues(opts, nr_io_queues, ctrl->io_queues);
738	for (i = 1; i < ctrl->ctrl.queue_count; i++) {
739		ret = nvme_rdma_alloc_queue(ctrl, i,
740				ctrl->ctrl.sqsize + 1);
741		if (ret)
742			goto out_free_queues;
743	}
744
745	return 0;
746
747out_free_queues:
748	for (i--; i >= 1; i--)
749		nvme_rdma_free_queue(&ctrl->queues[i]);
750
751	return ret;
752}
753
754static int nvme_rdma_alloc_tag_set(struct nvme_ctrl *ctrl)
755{
756	unsigned int cmd_size = sizeof(struct nvme_rdma_request) +
757				NVME_RDMA_DATA_SGL_SIZE;
758
759	if (ctrl->max_integrity_segments)
760		cmd_size += sizeof(struct nvme_rdma_sgl) +
761			    NVME_RDMA_METADATA_SGL_SIZE;
762
763	return nvme_alloc_io_tag_set(ctrl, &to_rdma_ctrl(ctrl)->tag_set,
764			&nvme_rdma_mq_ops,
765			ctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2,
766			cmd_size);
767}
768
769static void nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl *ctrl)
770{
771	if (ctrl->async_event_sqe.data) {
772		cancel_work_sync(&ctrl->ctrl.async_event_work);
773		nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe,
774				sizeof(struct nvme_command), DMA_TO_DEVICE);
775		ctrl->async_event_sqe.data = NULL;
776	}
777	nvme_rdma_free_queue(&ctrl->queues[0]);
778}
779
780static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl *ctrl,
781		bool new)
782{
783	bool pi_capable = false;
784	int error;
785
786	error = nvme_rdma_alloc_queue(ctrl, 0, NVME_AQ_DEPTH);
787	if (error)
788		return error;
789
790	ctrl->device = ctrl->queues[0].device;
791	ctrl->ctrl.numa_node = ibdev_to_node(ctrl->device->dev);
792
793	/* T10-PI support */
794	if (ctrl->device->dev->attrs.kernel_cap_flags &
795	    IBK_INTEGRITY_HANDOVER)
796		pi_capable = true;
797
798	ctrl->max_fr_pages = nvme_rdma_get_max_fr_pages(ctrl->device->dev,
799							pi_capable);
800
801	/*
802	 * Bind the async event SQE DMA mapping to the admin queue lifetime.
803	 * It's safe, since any chage in the underlying RDMA device will issue
804	 * error recovery and queue re-creation.
805	 */
806	error = nvme_rdma_alloc_qe(ctrl->device->dev, &ctrl->async_event_sqe,
807			sizeof(struct nvme_command), DMA_TO_DEVICE);
808	if (error)
809		goto out_free_queue;
810
811	if (new) {
812		error = nvme_alloc_admin_tag_set(&ctrl->ctrl,
813				&ctrl->admin_tag_set, &nvme_rdma_admin_mq_ops,
814				sizeof(struct nvme_rdma_request) +
815				NVME_RDMA_DATA_SGL_SIZE);
816		if (error)
817			goto out_free_async_qe;
818
819	}
820
821	error = nvme_rdma_start_queue(ctrl, 0);
822	if (error)
823		goto out_remove_admin_tag_set;
824
825	error = nvme_enable_ctrl(&ctrl->ctrl);
826	if (error)
827		goto out_stop_queue;
828
829	ctrl->ctrl.max_segments = ctrl->max_fr_pages;
830	ctrl->ctrl.max_hw_sectors = ctrl->max_fr_pages << (ilog2(SZ_4K) - 9);
831	if (pi_capable)
832		ctrl->ctrl.max_integrity_segments = ctrl->max_fr_pages;
833	else
834		ctrl->ctrl.max_integrity_segments = 0;
835
836	nvme_unquiesce_admin_queue(&ctrl->ctrl);
837
838	error = nvme_init_ctrl_finish(&ctrl->ctrl, false);
839	if (error)
840		goto out_quiesce_queue;
841
842	return 0;
843
844out_quiesce_queue:
845	nvme_quiesce_admin_queue(&ctrl->ctrl);
846	blk_sync_queue(ctrl->ctrl.admin_q);
847out_stop_queue:
848	nvme_rdma_stop_queue(&ctrl->queues[0]);
849	nvme_cancel_admin_tagset(&ctrl->ctrl);
850out_remove_admin_tag_set:
851	if (new)
852		nvme_remove_admin_tag_set(&ctrl->ctrl);
853out_free_async_qe:
854	if (ctrl->async_event_sqe.data) {
855		nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe,
856			sizeof(struct nvme_command), DMA_TO_DEVICE);
857		ctrl->async_event_sqe.data = NULL;
858	}
859out_free_queue:
860	nvme_rdma_free_queue(&ctrl->queues[0]);
861	return error;
862}
863
864static int nvme_rdma_configure_io_queues(struct nvme_rdma_ctrl *ctrl, bool new)
865{
866	int ret, nr_queues;
867
868	ret = nvme_rdma_alloc_io_queues(ctrl);
869	if (ret)
870		return ret;
871
872	if (new) {
873		ret = nvme_rdma_alloc_tag_set(&ctrl->ctrl);
874		if (ret)
875			goto out_free_io_queues;
876	}
877
878	/*
879	 * Only start IO queues for which we have allocated the tagset
880	 * and limitted it to the available queues. On reconnects, the
881	 * queue number might have changed.
882	 */
883	nr_queues = min(ctrl->tag_set.nr_hw_queues + 1, ctrl->ctrl.queue_count);
884	ret = nvme_rdma_start_io_queues(ctrl, 1, nr_queues);
885	if (ret)
886		goto out_cleanup_tagset;
887
888	if (!new) {
889		nvme_start_freeze(&ctrl->ctrl);
890		nvme_unquiesce_io_queues(&ctrl->ctrl);
891		if (!nvme_wait_freeze_timeout(&ctrl->ctrl, NVME_IO_TIMEOUT)) {
892			/*
893			 * If we timed out waiting for freeze we are likely to
894			 * be stuck.  Fail the controller initialization just
895			 * to be safe.
896			 */
897			ret = -ENODEV;
898			nvme_unfreeze(&ctrl->ctrl);
899			goto out_wait_freeze_timed_out;
900		}
901		blk_mq_update_nr_hw_queues(ctrl->ctrl.tagset,
902			ctrl->ctrl.queue_count - 1);
903		nvme_unfreeze(&ctrl->ctrl);
904	}
905
906	/*
907	 * If the number of queues has increased (reconnect case)
908	 * start all new queues now.
909	 */
910	ret = nvme_rdma_start_io_queues(ctrl, nr_queues,
911					ctrl->tag_set.nr_hw_queues + 1);
912	if (ret)
913		goto out_wait_freeze_timed_out;
914
915	return 0;
916
917out_wait_freeze_timed_out:
918	nvme_quiesce_io_queues(&ctrl->ctrl);
919	nvme_sync_io_queues(&ctrl->ctrl);
920	nvme_rdma_stop_io_queues(ctrl);
921out_cleanup_tagset:
922	nvme_cancel_tagset(&ctrl->ctrl);
923	if (new)
924		nvme_remove_io_tag_set(&ctrl->ctrl);
925out_free_io_queues:
926	nvme_rdma_free_io_queues(ctrl);
927	return ret;
928}
929
930static void nvme_rdma_teardown_admin_queue(struct nvme_rdma_ctrl *ctrl,
931		bool remove)
932{
933	nvme_quiesce_admin_queue(&ctrl->ctrl);
934	blk_sync_queue(ctrl->ctrl.admin_q);
935	nvme_rdma_stop_queue(&ctrl->queues[0]);
936	nvme_cancel_admin_tagset(&ctrl->ctrl);
937	if (remove) {
938		nvme_unquiesce_admin_queue(&ctrl->ctrl);
939		nvme_remove_admin_tag_set(&ctrl->ctrl);
940	}
941	nvme_rdma_destroy_admin_queue(ctrl);
942}
943
944static void nvme_rdma_teardown_io_queues(struct nvme_rdma_ctrl *ctrl,
945		bool remove)
946{
947	if (ctrl->ctrl.queue_count > 1) {
948		nvme_quiesce_io_queues(&ctrl->ctrl);
949		nvme_sync_io_queues(&ctrl->ctrl);
950		nvme_rdma_stop_io_queues(ctrl);
951		nvme_cancel_tagset(&ctrl->ctrl);
952		if (remove) {
953			nvme_unquiesce_io_queues(&ctrl->ctrl);
954			nvme_remove_io_tag_set(&ctrl->ctrl);
955		}
956		nvme_rdma_free_io_queues(ctrl);
957	}
958}
959
960static void nvme_rdma_stop_ctrl(struct nvme_ctrl *nctrl)
961{
962	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
963
964	flush_work(&ctrl->err_work);
965	cancel_delayed_work_sync(&ctrl->reconnect_work);
966}
967
968static void nvme_rdma_free_ctrl(struct nvme_ctrl *nctrl)
969{
970	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
971
972	if (list_empty(&ctrl->list))
973		goto free_ctrl;
974
975	mutex_lock(&nvme_rdma_ctrl_mutex);
976	list_del(&ctrl->list);
977	mutex_unlock(&nvme_rdma_ctrl_mutex);
978
979	nvmf_free_options(nctrl->opts);
980free_ctrl:
981	kfree(ctrl->queues);
982	kfree(ctrl);
983}
984
985static void nvme_rdma_reconnect_or_remove(struct nvme_rdma_ctrl *ctrl)
986{
987	enum nvme_ctrl_state state = nvme_ctrl_state(&ctrl->ctrl);
988
989	/* If we are resetting/deleting then do nothing */
990	if (state != NVME_CTRL_CONNECTING) {
991		WARN_ON_ONCE(state == NVME_CTRL_NEW || state == NVME_CTRL_LIVE);
992		return;
993	}
994
995	if (nvmf_should_reconnect(&ctrl->ctrl)) {
996		dev_info(ctrl->ctrl.device, "Reconnecting in %d seconds...\n",
997			ctrl->ctrl.opts->reconnect_delay);
998		queue_delayed_work(nvme_wq, &ctrl->reconnect_work,
999				ctrl->ctrl.opts->reconnect_delay * HZ);
1000	} else {
1001		nvme_delete_ctrl(&ctrl->ctrl);
1002	}
1003}
1004
1005static int nvme_rdma_setup_ctrl(struct nvme_rdma_ctrl *ctrl, bool new)
1006{
1007	int ret;
1008	bool changed;
1009	u16 max_queue_size;
1010
1011	ret = nvme_rdma_configure_admin_queue(ctrl, new);
1012	if (ret)
1013		return ret;
1014
1015	if (ctrl->ctrl.icdoff) {
1016		ret = -EOPNOTSUPP;
1017		dev_err(ctrl->ctrl.device, "icdoff is not supported!\n");
1018		goto destroy_admin;
1019	}
1020
1021	if (!(ctrl->ctrl.sgls & (1 << 2))) {
1022		ret = -EOPNOTSUPP;
1023		dev_err(ctrl->ctrl.device,
1024			"Mandatory keyed sgls are not supported!\n");
1025		goto destroy_admin;
1026	}
1027
1028	if (ctrl->ctrl.opts->queue_size > ctrl->ctrl.sqsize + 1) {
1029		dev_warn(ctrl->ctrl.device,
1030			"queue_size %zu > ctrl sqsize %u, clamping down\n",
1031			ctrl->ctrl.opts->queue_size, ctrl->ctrl.sqsize + 1);
1032	}
1033
1034	if (ctrl->ctrl.max_integrity_segments)
1035		max_queue_size = NVME_RDMA_MAX_METADATA_QUEUE_SIZE;
1036	else
1037		max_queue_size = NVME_RDMA_MAX_QUEUE_SIZE;
1038
1039	if (ctrl->ctrl.sqsize + 1 > max_queue_size) {
1040		dev_warn(ctrl->ctrl.device,
1041			 "ctrl sqsize %u > max queue size %u, clamping down\n",
1042			 ctrl->ctrl.sqsize + 1, max_queue_size);
1043		ctrl->ctrl.sqsize = max_queue_size - 1;
1044	}
1045
1046	if (ctrl->ctrl.sqsize + 1 > ctrl->ctrl.maxcmd) {
1047		dev_warn(ctrl->ctrl.device,
1048			"sqsize %u > ctrl maxcmd %u, clamping down\n",
1049			ctrl->ctrl.sqsize + 1, ctrl->ctrl.maxcmd);
1050		ctrl->ctrl.sqsize = ctrl->ctrl.maxcmd - 1;
1051	}
1052
1053	if (ctrl->ctrl.sgls & (1 << 20))
1054		ctrl->use_inline_data = true;
1055
1056	if (ctrl->ctrl.queue_count > 1) {
1057		ret = nvme_rdma_configure_io_queues(ctrl, new);
1058		if (ret)
1059			goto destroy_admin;
1060	}
1061
1062	changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
1063	if (!changed) {
1064		/*
1065		 * state change failure is ok if we started ctrl delete,
1066		 * unless we're during creation of a new controller to
1067		 * avoid races with teardown flow.
1068		 */
1069		enum nvme_ctrl_state state = nvme_ctrl_state(&ctrl->ctrl);
1070
1071		WARN_ON_ONCE(state != NVME_CTRL_DELETING &&
1072			     state != NVME_CTRL_DELETING_NOIO);
1073		WARN_ON_ONCE(new);
1074		ret = -EINVAL;
1075		goto destroy_io;
1076	}
1077
1078	nvme_start_ctrl(&ctrl->ctrl);
1079	return 0;
1080
1081destroy_io:
1082	if (ctrl->ctrl.queue_count > 1) {
1083		nvme_quiesce_io_queues(&ctrl->ctrl);
1084		nvme_sync_io_queues(&ctrl->ctrl);
1085		nvme_rdma_stop_io_queues(ctrl);
1086		nvme_cancel_tagset(&ctrl->ctrl);
1087		if (new)
1088			nvme_remove_io_tag_set(&ctrl->ctrl);
1089		nvme_rdma_free_io_queues(ctrl);
1090	}
1091destroy_admin:
1092	nvme_stop_keep_alive(&ctrl->ctrl);
1093	nvme_quiesce_admin_queue(&ctrl->ctrl);
1094	blk_sync_queue(ctrl->ctrl.admin_q);
1095	nvme_rdma_stop_queue(&ctrl->queues[0]);
1096	nvme_cancel_admin_tagset(&ctrl->ctrl);
1097	if (new)
1098		nvme_remove_admin_tag_set(&ctrl->ctrl);
1099	nvme_rdma_destroy_admin_queue(ctrl);
1100	return ret;
1101}
1102
1103static void nvme_rdma_reconnect_ctrl_work(struct work_struct *work)
1104{
1105	struct nvme_rdma_ctrl *ctrl = container_of(to_delayed_work(work),
1106			struct nvme_rdma_ctrl, reconnect_work);
1107
1108	++ctrl->ctrl.nr_reconnects;
1109
1110	if (nvme_rdma_setup_ctrl(ctrl, false))
1111		goto requeue;
1112
1113	dev_info(ctrl->ctrl.device, "Successfully reconnected (%d attempts)\n",
1114			ctrl->ctrl.nr_reconnects);
1115
1116	ctrl->ctrl.nr_reconnects = 0;
1117
1118	return;
1119
1120requeue:
1121	dev_info(ctrl->ctrl.device, "Failed reconnect attempt %d\n",
1122			ctrl->ctrl.nr_reconnects);
1123	nvme_rdma_reconnect_or_remove(ctrl);
1124}
1125
1126static void nvme_rdma_error_recovery_work(struct work_struct *work)
1127{
1128	struct nvme_rdma_ctrl *ctrl = container_of(work,
1129			struct nvme_rdma_ctrl, err_work);
1130
1131	nvme_stop_keep_alive(&ctrl->ctrl);
1132	flush_work(&ctrl->ctrl.async_event_work);
1133	nvme_rdma_teardown_io_queues(ctrl, false);
1134	nvme_unquiesce_io_queues(&ctrl->ctrl);
1135	nvme_rdma_teardown_admin_queue(ctrl, false);
1136	nvme_unquiesce_admin_queue(&ctrl->ctrl);
1137	nvme_auth_stop(&ctrl->ctrl);
1138
1139	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
1140		/* state change failure is ok if we started ctrl delete */
1141		enum nvme_ctrl_state state = nvme_ctrl_state(&ctrl->ctrl);
1142
1143		WARN_ON_ONCE(state != NVME_CTRL_DELETING &&
1144			     state != NVME_CTRL_DELETING_NOIO);
1145		return;
1146	}
1147
1148	nvme_rdma_reconnect_or_remove(ctrl);
1149}
1150
1151static void nvme_rdma_error_recovery(struct nvme_rdma_ctrl *ctrl)
1152{
1153	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING))
1154		return;
1155
1156	dev_warn(ctrl->ctrl.device, "starting error recovery\n");
1157	queue_work(nvme_reset_wq, &ctrl->err_work);
1158}
1159
1160static void nvme_rdma_end_request(struct nvme_rdma_request *req)
1161{
1162	struct request *rq = blk_mq_rq_from_pdu(req);
1163
1164	if (!refcount_dec_and_test(&req->ref))
1165		return;
1166	if (!nvme_try_complete_req(rq, req->status, req->result))
1167		nvme_rdma_complete_rq(rq);
1168}
1169
1170static void nvme_rdma_wr_error(struct ib_cq *cq, struct ib_wc *wc,
1171		const char *op)
1172{
1173	struct nvme_rdma_queue *queue = wc->qp->qp_context;
1174	struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1175
1176	if (nvme_ctrl_state(&ctrl->ctrl) == NVME_CTRL_LIVE)
1177		dev_info(ctrl->ctrl.device,
1178			     "%s for CQE 0x%p failed with status %s (%d)\n",
1179			     op, wc->wr_cqe,
1180			     ib_wc_status_msg(wc->status), wc->status);
1181	nvme_rdma_error_recovery(ctrl);
1182}
1183
1184static void nvme_rdma_memreg_done(struct ib_cq *cq, struct ib_wc *wc)
1185{
1186	if (unlikely(wc->status != IB_WC_SUCCESS))
1187		nvme_rdma_wr_error(cq, wc, "MEMREG");
1188}
1189
1190static void nvme_rdma_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc)
1191{
1192	struct nvme_rdma_request *req =
1193		container_of(wc->wr_cqe, struct nvme_rdma_request, reg_cqe);
1194
1195	if (unlikely(wc->status != IB_WC_SUCCESS))
1196		nvme_rdma_wr_error(cq, wc, "LOCAL_INV");
1197	else
1198		nvme_rdma_end_request(req);
1199}
1200
1201static int nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue,
1202		struct nvme_rdma_request *req)
1203{
1204	struct ib_send_wr wr = {
1205		.opcode		    = IB_WR_LOCAL_INV,
1206		.next		    = NULL,
1207		.num_sge	    = 0,
1208		.send_flags	    = IB_SEND_SIGNALED,
1209		.ex.invalidate_rkey = req->mr->rkey,
1210	};
1211
1212	req->reg_cqe.done = nvme_rdma_inv_rkey_done;
1213	wr.wr_cqe = &req->reg_cqe;
1214
1215	return ib_post_send(queue->qp, &wr, NULL);
1216}
1217
1218static void nvme_rdma_dma_unmap_req(struct ib_device *ibdev, struct request *rq)
1219{
1220	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1221
1222	if (blk_integrity_rq(rq)) {
1223		ib_dma_unmap_sg(ibdev, req->metadata_sgl->sg_table.sgl,
1224				req->metadata_sgl->nents, rq_dma_dir(rq));
1225		sg_free_table_chained(&req->metadata_sgl->sg_table,
1226				      NVME_INLINE_METADATA_SG_CNT);
1227	}
1228
1229	ib_dma_unmap_sg(ibdev, req->data_sgl.sg_table.sgl, req->data_sgl.nents,
1230			rq_dma_dir(rq));
1231	sg_free_table_chained(&req->data_sgl.sg_table, NVME_INLINE_SG_CNT);
1232}
1233
1234static void nvme_rdma_unmap_data(struct nvme_rdma_queue *queue,
1235		struct request *rq)
1236{
1237	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1238	struct nvme_rdma_device *dev = queue->device;
1239	struct ib_device *ibdev = dev->dev;
1240	struct list_head *pool = &queue->qp->rdma_mrs;
1241
1242	if (!blk_rq_nr_phys_segments(rq))
1243		return;
1244
1245	if (req->use_sig_mr)
1246		pool = &queue->qp->sig_mrs;
1247
1248	if (req->mr) {
1249		ib_mr_pool_put(queue->qp, pool, req->mr);
1250		req->mr = NULL;
1251	}
1252
1253	nvme_rdma_dma_unmap_req(ibdev, rq);
1254}
1255
1256static int nvme_rdma_set_sg_null(struct nvme_command *c)
1257{
1258	struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1259
1260	sg->addr = 0;
1261	put_unaligned_le24(0, sg->length);
1262	put_unaligned_le32(0, sg->key);
1263	sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1264	return 0;
1265}
1266
1267static int nvme_rdma_map_sg_inline(struct nvme_rdma_queue *queue,
1268		struct nvme_rdma_request *req, struct nvme_command *c,
1269		int count)
1270{
1271	struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
1272	struct ib_sge *sge = &req->sge[1];
1273	struct scatterlist *sgl;
1274	u32 len = 0;
1275	int i;
1276
1277	for_each_sg(req->data_sgl.sg_table.sgl, sgl, count, i) {
1278		sge->addr = sg_dma_address(sgl);
1279		sge->length = sg_dma_len(sgl);
1280		sge->lkey = queue->device->pd->local_dma_lkey;
1281		len += sge->length;
1282		sge++;
1283	}
1284
1285	sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
1286	sg->length = cpu_to_le32(len);
1287	sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
1288
1289	req->num_sge += count;
1290	return 0;
1291}
1292
1293static int nvme_rdma_map_sg_single(struct nvme_rdma_queue *queue,
1294		struct nvme_rdma_request *req, struct nvme_command *c)
1295{
1296	struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1297
1298	sg->addr = cpu_to_le64(sg_dma_address(req->data_sgl.sg_table.sgl));
1299	put_unaligned_le24(sg_dma_len(req->data_sgl.sg_table.sgl), sg->length);
1300	put_unaligned_le32(queue->device->pd->unsafe_global_rkey, sg->key);
1301	sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1302	return 0;
1303}
1304
1305static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue *queue,
1306		struct nvme_rdma_request *req, struct nvme_command *c,
1307		int count)
1308{
1309	struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1310	int nr;
1311
1312	req->mr = ib_mr_pool_get(queue->qp, &queue->qp->rdma_mrs);
1313	if (WARN_ON_ONCE(!req->mr))
1314		return -EAGAIN;
1315
1316	/*
1317	 * Align the MR to a 4K page size to match the ctrl page size and
1318	 * the block virtual boundary.
1319	 */
1320	nr = ib_map_mr_sg(req->mr, req->data_sgl.sg_table.sgl, count, NULL,
1321			  SZ_4K);
1322	if (unlikely(nr < count)) {
1323		ib_mr_pool_put(queue->qp, &queue->qp->rdma_mrs, req->mr);
1324		req->mr = NULL;
1325		if (nr < 0)
1326			return nr;
1327		return -EINVAL;
1328	}
1329
1330	ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));
1331
1332	req->reg_cqe.done = nvme_rdma_memreg_done;
1333	memset(&req->reg_wr, 0, sizeof(req->reg_wr));
1334	req->reg_wr.wr.opcode = IB_WR_REG_MR;
1335	req->reg_wr.wr.wr_cqe = &req->reg_cqe;
1336	req->reg_wr.wr.num_sge = 0;
1337	req->reg_wr.mr = req->mr;
1338	req->reg_wr.key = req->mr->rkey;
1339	req->reg_wr.access = IB_ACCESS_LOCAL_WRITE |
1340			     IB_ACCESS_REMOTE_READ |
1341			     IB_ACCESS_REMOTE_WRITE;
1342
1343	sg->addr = cpu_to_le64(req->mr->iova);
1344	put_unaligned_le24(req->mr->length, sg->length);
1345	put_unaligned_le32(req->mr->rkey, sg->key);
1346	sg->type = (NVME_KEY_SGL_FMT_DATA_DESC << 4) |
1347			NVME_SGL_FMT_INVALIDATE;
1348
1349	return 0;
1350}
1351
1352static void nvme_rdma_set_sig_domain(struct blk_integrity *bi,
1353		struct nvme_command *cmd, struct ib_sig_domain *domain,
1354		u16 control, u8 pi_type)
1355{
1356	domain->sig_type = IB_SIG_TYPE_T10_DIF;
1357	domain->sig.dif.bg_type = IB_T10DIF_CRC;
1358	domain->sig.dif.pi_interval = 1 << bi->interval_exp;
1359	domain->sig.dif.ref_tag = le32_to_cpu(cmd->rw.reftag);
1360	if (control & NVME_RW_PRINFO_PRCHK_REF)
1361		domain->sig.dif.ref_remap = true;
1362
1363	domain->sig.dif.app_tag = le16_to_cpu(cmd->rw.apptag);
1364	domain->sig.dif.apptag_check_mask = le16_to_cpu(cmd->rw.appmask);
1365	domain->sig.dif.app_escape = true;
1366	if (pi_type == NVME_NS_DPS_PI_TYPE3)
1367		domain->sig.dif.ref_escape = true;
1368}
1369
1370static void nvme_rdma_set_sig_attrs(struct blk_integrity *bi,
1371		struct nvme_command *cmd, struct ib_sig_attrs *sig_attrs,
1372		u8 pi_type)
1373{
1374	u16 control = le16_to_cpu(cmd->rw.control);
1375
1376	memset(sig_attrs, 0, sizeof(*sig_attrs));
1377	if (control & NVME_RW_PRINFO_PRACT) {
1378		/* for WRITE_INSERT/READ_STRIP no memory domain */
1379		sig_attrs->mem.sig_type = IB_SIG_TYPE_NONE;
1380		nvme_rdma_set_sig_domain(bi, cmd, &sig_attrs->wire, control,
1381					 pi_type);
1382		/* Clear the PRACT bit since HCA will generate/verify the PI */
1383		control &= ~NVME_RW_PRINFO_PRACT;
1384		cmd->rw.control = cpu_to_le16(control);
1385	} else {
1386		/* for WRITE_PASS/READ_PASS both wire/memory domains exist */
1387		nvme_rdma_set_sig_domain(bi, cmd, &sig_attrs->wire, control,
1388					 pi_type);
1389		nvme_rdma_set_sig_domain(bi, cmd, &sig_attrs->mem, control,
1390					 pi_type);
1391	}
1392}
1393
1394static void nvme_rdma_set_prot_checks(struct nvme_command *cmd, u8 *mask)
1395{
1396	*mask = 0;
1397	if (le16_to_cpu(cmd->rw.control) & NVME_RW_PRINFO_PRCHK_REF)
1398		*mask |= IB_SIG_CHECK_REFTAG;
1399	if (le16_to_cpu(cmd->rw.control) & NVME_RW_PRINFO_PRCHK_GUARD)
1400		*mask |= IB_SIG_CHECK_GUARD;
1401}
1402
1403static void nvme_rdma_sig_done(struct ib_cq *cq, struct ib_wc *wc)
1404{
1405	if (unlikely(wc->status != IB_WC_SUCCESS))
1406		nvme_rdma_wr_error(cq, wc, "SIG");
1407}
1408
1409static int nvme_rdma_map_sg_pi(struct nvme_rdma_queue *queue,
1410		struct nvme_rdma_request *req, struct nvme_command *c,
1411		int count, int pi_count)
1412{
1413	struct nvme_rdma_sgl *sgl = &req->data_sgl;
1414	struct ib_reg_wr *wr = &req->reg_wr;
1415	struct request *rq = blk_mq_rq_from_pdu(req);
1416	struct nvme_ns *ns = rq->q->queuedata;
1417	struct bio *bio = rq->bio;
1418	struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1419	struct blk_integrity *bi = blk_get_integrity(bio->bi_bdev->bd_disk);
1420	u32 xfer_len;
1421	int nr;
1422
1423	req->mr = ib_mr_pool_get(queue->qp, &queue->qp->sig_mrs);
1424	if (WARN_ON_ONCE(!req->mr))
1425		return -EAGAIN;
1426
1427	nr = ib_map_mr_sg_pi(req->mr, sgl->sg_table.sgl, count, NULL,
1428			     req->metadata_sgl->sg_table.sgl, pi_count, NULL,
1429			     SZ_4K);
1430	if (unlikely(nr))
1431		goto mr_put;
1432
1433	nvme_rdma_set_sig_attrs(bi, c, req->mr->sig_attrs, ns->head->pi_type);
1434	nvme_rdma_set_prot_checks(c, &req->mr->sig_attrs->check_mask);
1435
1436	ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));
1437
1438	req->reg_cqe.done = nvme_rdma_sig_done;
1439	memset(wr, 0, sizeof(*wr));
1440	wr->wr.opcode = IB_WR_REG_MR_INTEGRITY;
1441	wr->wr.wr_cqe = &req->reg_cqe;
1442	wr->wr.num_sge = 0;
1443	wr->wr.send_flags = 0;
1444	wr->mr = req->mr;
1445	wr->key = req->mr->rkey;
1446	wr->access = IB_ACCESS_LOCAL_WRITE |
1447		     IB_ACCESS_REMOTE_READ |
1448		     IB_ACCESS_REMOTE_WRITE;
1449
1450	sg->addr = cpu_to_le64(req->mr->iova);
1451	xfer_len = req->mr->length;
1452	/* Check if PI is added by the HW */
1453	if (!pi_count)
1454		xfer_len += (xfer_len >> bi->interval_exp) * ns->head->pi_size;
1455	put_unaligned_le24(xfer_len, sg->length);
1456	put_unaligned_le32(req->mr->rkey, sg->key);
1457	sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1458
1459	return 0;
1460
1461mr_put:
1462	ib_mr_pool_put(queue->qp, &queue->qp->sig_mrs, req->mr);
1463	req->mr = NULL;
1464	if (nr < 0)
1465		return nr;
1466	return -EINVAL;
1467}
1468
1469static int nvme_rdma_dma_map_req(struct ib_device *ibdev, struct request *rq,
1470		int *count, int *pi_count)
1471{
1472	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1473	int ret;
1474
1475	req->data_sgl.sg_table.sgl = (struct scatterlist *)(req + 1);
1476	ret = sg_alloc_table_chained(&req->data_sgl.sg_table,
1477			blk_rq_nr_phys_segments(rq), req->data_sgl.sg_table.sgl,
1478			NVME_INLINE_SG_CNT);
1479	if (ret)
1480		return -ENOMEM;
1481
1482	req->data_sgl.nents = blk_rq_map_sg(rq->q, rq,
1483					    req->data_sgl.sg_table.sgl);
1484
1485	*count = ib_dma_map_sg(ibdev, req->data_sgl.sg_table.sgl,
1486			       req->data_sgl.nents, rq_dma_dir(rq));
1487	if (unlikely(*count <= 0)) {
1488		ret = -EIO;
1489		goto out_free_table;
1490	}
1491
1492	if (blk_integrity_rq(rq)) {
1493		req->metadata_sgl->sg_table.sgl =
1494			(struct scatterlist *)(req->metadata_sgl + 1);
1495		ret = sg_alloc_table_chained(&req->metadata_sgl->sg_table,
1496				blk_rq_count_integrity_sg(rq->q, rq->bio),
1497				req->metadata_sgl->sg_table.sgl,
1498				NVME_INLINE_METADATA_SG_CNT);
1499		if (unlikely(ret)) {
1500			ret = -ENOMEM;
1501			goto out_unmap_sg;
1502		}
1503
1504		req->metadata_sgl->nents = blk_rq_map_integrity_sg(rq->q,
1505				rq->bio, req->metadata_sgl->sg_table.sgl);
1506		*pi_count = ib_dma_map_sg(ibdev,
1507					  req->metadata_sgl->sg_table.sgl,
1508					  req->metadata_sgl->nents,
1509					  rq_dma_dir(rq));
1510		if (unlikely(*pi_count <= 0)) {
1511			ret = -EIO;
1512			goto out_free_pi_table;
1513		}
1514	}
1515
1516	return 0;
1517
1518out_free_pi_table:
1519	sg_free_table_chained(&req->metadata_sgl->sg_table,
1520			      NVME_INLINE_METADATA_SG_CNT);
1521out_unmap_sg:
1522	ib_dma_unmap_sg(ibdev, req->data_sgl.sg_table.sgl, req->data_sgl.nents,
1523			rq_dma_dir(rq));
1524out_free_table:
1525	sg_free_table_chained(&req->data_sgl.sg_table, NVME_INLINE_SG_CNT);
1526	return ret;
1527}
1528
1529static int nvme_rdma_map_data(struct nvme_rdma_queue *queue,
1530		struct request *rq, struct nvme_command *c)
1531{
1532	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1533	struct nvme_rdma_device *dev = queue->device;
1534	struct ib_device *ibdev = dev->dev;
1535	int pi_count = 0;
1536	int count, ret;
1537
1538	req->num_sge = 1;
1539	refcount_set(&req->ref, 2); /* send and recv completions */
1540
1541	c->common.flags |= NVME_CMD_SGL_METABUF;
1542
1543	if (!blk_rq_nr_phys_segments(rq))
1544		return nvme_rdma_set_sg_null(c);
1545
1546	ret = nvme_rdma_dma_map_req(ibdev, rq, &count, &pi_count);
1547	if (unlikely(ret))
1548		return ret;
1549
1550	if (req->use_sig_mr) {
1551		ret = nvme_rdma_map_sg_pi(queue, req, c, count, pi_count);
1552		goto out;
1553	}
1554
1555	if (count <= dev->num_inline_segments) {
1556		if (rq_data_dir(rq) == WRITE && nvme_rdma_queue_idx(queue) &&
1557		    queue->ctrl->use_inline_data &&
1558		    blk_rq_payload_bytes(rq) <=
1559				nvme_rdma_inline_data_size(queue)) {
1560			ret = nvme_rdma_map_sg_inline(queue, req, c, count);
1561			goto out;
1562		}
1563
1564		if (count == 1 && dev->pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY) {
1565			ret = nvme_rdma_map_sg_single(queue, req, c);
1566			goto out;
1567		}
1568	}
1569
1570	ret = nvme_rdma_map_sg_fr(queue, req, c, count);
1571out:
1572	if (unlikely(ret))
1573		goto out_dma_unmap_req;
1574
1575	return 0;
1576
1577out_dma_unmap_req:
1578	nvme_rdma_dma_unmap_req(ibdev, rq);
1579	return ret;
1580}
1581
1582static void nvme_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc)
1583{
1584	struct nvme_rdma_qe *qe =
1585		container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1586	struct nvme_rdma_request *req =
1587		container_of(qe, struct nvme_rdma_request, sqe);
1588
1589	if (unlikely(wc->status != IB_WC_SUCCESS))
1590		nvme_rdma_wr_error(cq, wc, "SEND");
1591	else
1592		nvme_rdma_end_request(req);
1593}
1594
1595static int nvme_rdma_post_send(struct nvme_rdma_queue *queue,
1596		struct nvme_rdma_qe *qe, struct ib_sge *sge, u32 num_sge,
1597		struct ib_send_wr *first)
1598{
1599	struct ib_send_wr wr;
1600	int ret;
1601
1602	sge->addr   = qe->dma;
1603	sge->length = sizeof(struct nvme_command);
1604	sge->lkey   = queue->device->pd->local_dma_lkey;
1605
1606	wr.next       = NULL;
1607	wr.wr_cqe     = &qe->cqe;
1608	wr.sg_list    = sge;
1609	wr.num_sge    = num_sge;
1610	wr.opcode     = IB_WR_SEND;
1611	wr.send_flags = IB_SEND_SIGNALED;
1612
1613	if (first)
1614		first->next = &wr;
1615	else
1616		first = &wr;
1617
1618	ret = ib_post_send(queue->qp, first, NULL);
1619	if (unlikely(ret)) {
1620		dev_err(queue->ctrl->ctrl.device,
1621			     "%s failed with error code %d\n", __func__, ret);
1622	}
1623	return ret;
1624}
1625
1626static int nvme_rdma_post_recv(struct nvme_rdma_queue *queue,
1627		struct nvme_rdma_qe *qe)
1628{
1629	struct ib_recv_wr wr;
1630	struct ib_sge list;
1631	int ret;
1632
1633	list.addr   = qe->dma;
1634	list.length = sizeof(struct nvme_completion);
1635	list.lkey   = queue->device->pd->local_dma_lkey;
1636
1637	qe->cqe.done = nvme_rdma_recv_done;
1638
1639	wr.next     = NULL;
1640	wr.wr_cqe   = &qe->cqe;
1641	wr.sg_list  = &list;
1642	wr.num_sge  = 1;
1643
1644	ret = ib_post_recv(queue->qp, &wr, NULL);
1645	if (unlikely(ret)) {
1646		dev_err(queue->ctrl->ctrl.device,
1647			"%s failed with error code %d\n", __func__, ret);
1648	}
1649	return ret;
1650}
1651
1652static struct blk_mq_tags *nvme_rdma_tagset(struct nvme_rdma_queue *queue)
1653{
1654	u32 queue_idx = nvme_rdma_queue_idx(queue);
1655
1656	if (queue_idx == 0)
1657		return queue->ctrl->admin_tag_set.tags[queue_idx];
1658	return queue->ctrl->tag_set.tags[queue_idx - 1];
1659}
1660
1661static void nvme_rdma_async_done(struct ib_cq *cq, struct ib_wc *wc)
1662{
1663	if (unlikely(wc->status != IB_WC_SUCCESS))
1664		nvme_rdma_wr_error(cq, wc, "ASYNC");
1665}
1666
1667static void nvme_rdma_submit_async_event(struct nvme_ctrl *arg)
1668{
1669	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(arg);
1670	struct nvme_rdma_queue *queue = &ctrl->queues[0];
1671	struct ib_device *dev = queue->device->dev;
1672	struct nvme_rdma_qe *sqe = &ctrl->async_event_sqe;
1673	struct nvme_command *cmd = sqe->data;
1674	struct ib_sge sge;
1675	int ret;
1676
1677	ib_dma_sync_single_for_cpu(dev, sqe->dma, sizeof(*cmd), DMA_TO_DEVICE);
1678
1679	memset(cmd, 0, sizeof(*cmd));
1680	cmd->common.opcode = nvme_admin_async_event;
1681	cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1682	cmd->common.flags |= NVME_CMD_SGL_METABUF;
1683	nvme_rdma_set_sg_null(cmd);
1684
1685	sqe->cqe.done = nvme_rdma_async_done;
1686
1687	ib_dma_sync_single_for_device(dev, sqe->dma, sizeof(*cmd),
1688			DMA_TO_DEVICE);
1689
1690	ret = nvme_rdma_post_send(queue, sqe, &sge, 1, NULL);
1691	WARN_ON_ONCE(ret);
1692}
1693
1694static void nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue *queue,
1695		struct nvme_completion *cqe, struct ib_wc *wc)
1696{
1697	struct request *rq;
1698	struct nvme_rdma_request *req;
1699
1700	rq = nvme_find_rq(nvme_rdma_tagset(queue), cqe->command_id);
1701	if (!rq) {
1702		dev_err(queue->ctrl->ctrl.device,
1703			"got bad command_id %#x on QP %#x\n",
1704			cqe->command_id, queue->qp->qp_num);
1705		nvme_rdma_error_recovery(queue->ctrl);
1706		return;
1707	}
1708	req = blk_mq_rq_to_pdu(rq);
1709
1710	req->status = cqe->status;
1711	req->result = cqe->result;
1712
1713	if (wc->wc_flags & IB_WC_WITH_INVALIDATE) {
1714		if (unlikely(!req->mr ||
1715			     wc->ex.invalidate_rkey != req->mr->rkey)) {
1716			dev_err(queue->ctrl->ctrl.device,
1717				"Bogus remote invalidation for rkey %#x\n",
1718				req->mr ? req->mr->rkey : 0);
1719			nvme_rdma_error_recovery(queue->ctrl);
1720		}
1721	} else if (req->mr) {
1722		int ret;
1723
1724		ret = nvme_rdma_inv_rkey(queue, req);
1725		if (unlikely(ret < 0)) {
1726			dev_err(queue->ctrl->ctrl.device,
1727				"Queueing INV WR for rkey %#x failed (%d)\n",
1728				req->mr->rkey, ret);
1729			nvme_rdma_error_recovery(queue->ctrl);
1730		}
1731		/* the local invalidation completion will end the request */
1732		return;
1733	}
1734
1735	nvme_rdma_end_request(req);
1736}
1737
1738static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc)
1739{
1740	struct nvme_rdma_qe *qe =
1741		container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1742	struct nvme_rdma_queue *queue = wc->qp->qp_context;
1743	struct ib_device *ibdev = queue->device->dev;
1744	struct nvme_completion *cqe = qe->data;
1745	const size_t len = sizeof(struct nvme_completion);
1746
1747	if (unlikely(wc->status != IB_WC_SUCCESS)) {
1748		nvme_rdma_wr_error(cq, wc, "RECV");
1749		return;
1750	}
1751
1752	/* sanity checking for received data length */
1753	if (unlikely(wc->byte_len < len)) {
1754		dev_err(queue->ctrl->ctrl.device,
1755			"Unexpected nvme completion length(%d)\n", wc->byte_len);
1756		nvme_rdma_error_recovery(queue->ctrl);
1757		return;
1758	}
1759
1760	ib_dma_sync_single_for_cpu(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1761	/*
1762	 * AEN requests are special as they don't time out and can
1763	 * survive any kind of queue freeze and often don't respond to
1764	 * aborts.  We don't even bother to allocate a struct request
1765	 * for them but rather special case them here.
1766	 */
1767	if (unlikely(nvme_is_aen_req(nvme_rdma_queue_idx(queue),
1768				     cqe->command_id)))
1769		nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
1770				&cqe->result);
1771	else
1772		nvme_rdma_process_nvme_rsp(queue, cqe, wc);
1773	ib_dma_sync_single_for_device(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1774
1775	nvme_rdma_post_recv(queue, qe);
1776}
1777
1778static int nvme_rdma_conn_established(struct nvme_rdma_queue *queue)
1779{
1780	int ret, i;
1781
1782	for (i = 0; i < queue->queue_size; i++) {
1783		ret = nvme_rdma_post_recv(queue, &queue->rsp_ring[i]);
1784		if (ret)
1785			return ret;
1786	}
1787
1788	return 0;
1789}
1790
1791static int nvme_rdma_conn_rejected(struct nvme_rdma_queue *queue,
1792		struct rdma_cm_event *ev)
1793{
1794	struct rdma_cm_id *cm_id = queue->cm_id;
1795	int status = ev->status;
1796	const char *rej_msg;
1797	const struct nvme_rdma_cm_rej *rej_data;
1798	u8 rej_data_len;
1799
1800	rej_msg = rdma_reject_msg(cm_id, status);
1801	rej_data = rdma_consumer_reject_data(cm_id, ev, &rej_data_len);
1802
1803	if (rej_data && rej_data_len >= sizeof(u16)) {
1804		u16 sts = le16_to_cpu(rej_data->sts);
1805
1806		dev_err(queue->ctrl->ctrl.device,
1807		      "Connect rejected: status %d (%s) nvme status %d (%s).\n",
1808		      status, rej_msg, sts, nvme_rdma_cm_msg(sts));
1809	} else {
1810		dev_err(queue->ctrl->ctrl.device,
1811			"Connect rejected: status %d (%s).\n", status, rej_msg);
1812	}
1813
1814	return -ECONNRESET;
1815}
1816
1817static int nvme_rdma_addr_resolved(struct nvme_rdma_queue *queue)
1818{
1819	struct nvme_ctrl *ctrl = &queue->ctrl->ctrl;
1820	int ret;
1821
1822	ret = nvme_rdma_create_queue_ib(queue);
1823	if (ret)
1824		return ret;
1825
1826	if (ctrl->opts->tos >= 0)
1827		rdma_set_service_type(queue->cm_id, ctrl->opts->tos);
1828	ret = rdma_resolve_route(queue->cm_id, NVME_RDMA_CM_TIMEOUT_MS);
1829	if (ret) {
1830		dev_err(ctrl->device, "rdma_resolve_route failed (%d).\n",
1831			queue->cm_error);
1832		goto out_destroy_queue;
1833	}
1834
1835	return 0;
1836
1837out_destroy_queue:
1838	nvme_rdma_destroy_queue_ib(queue);
1839	return ret;
1840}
1841
1842static int nvme_rdma_route_resolved(struct nvme_rdma_queue *queue)
1843{
1844	struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1845	struct rdma_conn_param param = { };
1846	struct nvme_rdma_cm_req priv = { };
1847	int ret;
1848
1849	param.qp_num = queue->qp->qp_num;
1850	param.flow_control = 1;
1851
1852	param.responder_resources = queue->device->dev->attrs.max_qp_rd_atom;
1853	/* maximum retry count */
1854	param.retry_count = 7;
1855	param.rnr_retry_count = 7;
1856	param.private_data = &priv;
1857	param.private_data_len = sizeof(priv);
1858
1859	priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1860	priv.qid = cpu_to_le16(nvme_rdma_queue_idx(queue));
1861	/*
1862	 * set the admin queue depth to the minimum size
1863	 * specified by the Fabrics standard.
1864	 */
1865	if (priv.qid == 0) {
1866		priv.hrqsize = cpu_to_le16(NVME_AQ_DEPTH);
1867		priv.hsqsize = cpu_to_le16(NVME_AQ_DEPTH - 1);
1868	} else {
1869		/*
1870		 * current interpretation of the fabrics spec
1871		 * is at minimum you make hrqsize sqsize+1, or a
1872		 * 1's based representation of sqsize.
1873		 */
1874		priv.hrqsize = cpu_to_le16(queue->queue_size);
1875		priv.hsqsize = cpu_to_le16(queue->ctrl->ctrl.sqsize);
1876	}
1877
1878	ret = rdma_connect_locked(queue->cm_id, &param);
1879	if (ret) {
1880		dev_err(ctrl->ctrl.device,
1881			"rdma_connect_locked failed (%d).\n", ret);
1882		return ret;
1883	}
1884
1885	return 0;
1886}
1887
1888static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
1889		struct rdma_cm_event *ev)
1890{
1891	struct nvme_rdma_queue *queue = cm_id->context;
1892	int cm_error = 0;
1893
1894	dev_dbg(queue->ctrl->ctrl.device, "%s (%d): status %d id %p\n",
1895		rdma_event_msg(ev->event), ev->event,
1896		ev->status, cm_id);
1897
1898	switch (ev->event) {
1899	case RDMA_CM_EVENT_ADDR_RESOLVED:
1900		cm_error = nvme_rdma_addr_resolved(queue);
1901		break;
1902	case RDMA_CM_EVENT_ROUTE_RESOLVED:
1903		cm_error = nvme_rdma_route_resolved(queue);
1904		break;
1905	case RDMA_CM_EVENT_ESTABLISHED:
1906		queue->cm_error = nvme_rdma_conn_established(queue);
1907		/* complete cm_done regardless of success/failure */
1908		complete(&queue->cm_done);
1909		return 0;
1910	case RDMA_CM_EVENT_REJECTED:
1911		cm_error = nvme_rdma_conn_rejected(queue, ev);
1912		break;
1913	case RDMA_CM_EVENT_ROUTE_ERROR:
1914	case RDMA_CM_EVENT_CONNECT_ERROR:
1915	case RDMA_CM_EVENT_UNREACHABLE:
1916	case RDMA_CM_EVENT_ADDR_ERROR:
1917		dev_dbg(queue->ctrl->ctrl.device,
1918			"CM error event %d\n", ev->event);
1919		cm_error = -ECONNRESET;
1920		break;
1921	case RDMA_CM_EVENT_DISCONNECTED:
1922	case RDMA_CM_EVENT_ADDR_CHANGE:
1923	case RDMA_CM_EVENT_TIMEWAIT_EXIT:
1924		dev_dbg(queue->ctrl->ctrl.device,
1925			"disconnect received - connection closed\n");
1926		nvme_rdma_error_recovery(queue->ctrl);
1927		break;
1928	case RDMA_CM_EVENT_DEVICE_REMOVAL:
1929		/* device removal is handled via the ib_client API */
1930		break;
1931	default:
1932		dev_err(queue->ctrl->ctrl.device,
1933			"Unexpected RDMA CM event (%d)\n", ev->event);
1934		nvme_rdma_error_recovery(queue->ctrl);
1935		break;
1936	}
1937
1938	if (cm_error) {
1939		queue->cm_error = cm_error;
1940		complete(&queue->cm_done);
1941	}
1942
1943	return 0;
1944}
1945
1946static void nvme_rdma_complete_timed_out(struct request *rq)
1947{
1948	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1949	struct nvme_rdma_queue *queue = req->queue;
1950
1951	nvme_rdma_stop_queue(queue);
1952	nvmf_complete_timed_out_request(rq);
1953}
1954
1955static enum blk_eh_timer_return nvme_rdma_timeout(struct request *rq)
1956{
1957	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1958	struct nvme_rdma_queue *queue = req->queue;
1959	struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1960	struct nvme_command *cmd = req->req.cmd;
1961	int qid = nvme_rdma_queue_idx(queue);
1962
1963	dev_warn(ctrl->ctrl.device,
1964		 "I/O tag %d (%04x) opcode %#x (%s) QID %d timeout\n",
1965		 rq->tag, nvme_cid(rq), cmd->common.opcode,
1966		 nvme_fabrics_opcode_str(qid, cmd), qid);
1967
1968	if (nvme_ctrl_state(&ctrl->ctrl) != NVME_CTRL_LIVE) {
1969		/*
1970		 * If we are resetting, connecting or deleting we should
1971		 * complete immediately because we may block controller
1972		 * teardown or setup sequence
1973		 * - ctrl disable/shutdown fabrics requests
1974		 * - connect requests
1975		 * - initialization admin requests
1976		 * - I/O requests that entered after unquiescing and
1977		 *   the controller stopped responding
1978		 *
1979		 * All other requests should be cancelled by the error
1980		 * recovery work, so it's fine that we fail it here.
1981		 */
1982		nvme_rdma_complete_timed_out(rq);
1983		return BLK_EH_DONE;
1984	}
1985
1986	/*
1987	 * LIVE state should trigger the normal error recovery which will
1988	 * handle completing this request.
1989	 */
1990	nvme_rdma_error_recovery(ctrl);
1991	return BLK_EH_RESET_TIMER;
1992}
1993
1994static blk_status_t nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx,
1995		const struct blk_mq_queue_data *bd)
1996{
1997	struct nvme_ns *ns = hctx->queue->queuedata;
1998	struct nvme_rdma_queue *queue = hctx->driver_data;
1999	struct request *rq = bd->rq;
2000	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
2001	struct nvme_rdma_qe *sqe = &req->sqe;
2002	struct nvme_command *c = nvme_req(rq)->cmd;
2003	struct ib_device *dev;
2004	bool queue_ready = test_bit(NVME_RDMA_Q_LIVE, &queue->flags);
2005	blk_status_t ret;
2006	int err;
2007
2008	WARN_ON_ONCE(rq->tag < 0);
2009
2010	if (!nvme_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
2011		return nvme_fail_nonready_command(&queue->ctrl->ctrl, rq);
2012
2013	dev = queue->device->dev;
2014
2015	req->sqe.dma = ib_dma_map_single(dev, req->sqe.data,
2016					 sizeof(struct nvme_command),
2017					 DMA_TO_DEVICE);
2018	err = ib_dma_mapping_error(dev, req->sqe.dma);
2019	if (unlikely(err))
2020		return BLK_STS_RESOURCE;
2021
2022	ib_dma_sync_single_for_cpu(dev, sqe->dma,
2023			sizeof(struct nvme_command), DMA_TO_DEVICE);
2024
2025	ret = nvme_setup_cmd(ns, rq);
2026	if (ret)
2027		goto unmap_qe;
2028
2029	nvme_start_request(rq);
2030
2031	if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) &&
2032	    queue->pi_support &&
2033	    (c->common.opcode == nvme_cmd_write ||
2034	     c->common.opcode == nvme_cmd_read) &&
2035	    nvme_ns_has_pi(ns->head))
2036		req->use_sig_mr = true;
2037	else
2038		req->use_sig_mr = false;
2039
2040	err = nvme_rdma_map_data(queue, rq, c);
2041	if (unlikely(err < 0)) {
2042		dev_err(queue->ctrl->ctrl.device,
2043			     "Failed to map data (%d)\n", err);
2044		goto err;
2045	}
2046
2047	sqe->cqe.done = nvme_rdma_send_done;
2048
2049	ib_dma_sync_single_for_device(dev, sqe->dma,
2050			sizeof(struct nvme_command), DMA_TO_DEVICE);
2051
2052	err = nvme_rdma_post_send(queue, sqe, req->sge, req->num_sge,
2053			req->mr ? &req->reg_wr.wr : NULL);
2054	if (unlikely(err))
2055		goto err_unmap;
2056
2057	return BLK_STS_OK;
2058
2059err_unmap:
2060	nvme_rdma_unmap_data(queue, rq);
2061err:
2062	if (err == -EIO)
2063		ret = nvme_host_path_error(rq);
2064	else if (err == -ENOMEM || err == -EAGAIN)
2065		ret = BLK_STS_RESOURCE;
2066	else
2067		ret = BLK_STS_IOERR;
2068	nvme_cleanup_cmd(rq);
2069unmap_qe:
2070	ib_dma_unmap_single(dev, req->sqe.dma, sizeof(struct nvme_command),
2071			    DMA_TO_DEVICE);
2072	return ret;
2073}
2074
2075static int nvme_rdma_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
2076{
2077	struct nvme_rdma_queue *queue = hctx->driver_data;
2078
2079	return ib_process_cq_direct(queue->ib_cq, -1);
2080}
2081
2082static void nvme_rdma_check_pi_status(struct nvme_rdma_request *req)
2083{
2084	struct request *rq = blk_mq_rq_from_pdu(req);
2085	struct ib_mr_status mr_status;
2086	int ret;
2087
2088	ret = ib_check_mr_status(req->mr, IB_MR_CHECK_SIG_STATUS, &mr_status);
2089	if (ret) {
2090		pr_err("ib_check_mr_status failed, ret %d\n", ret);
2091		nvme_req(rq)->status = NVME_SC_INVALID_PI;
2092		return;
2093	}
2094
2095	if (mr_status.fail_status & IB_MR_CHECK_SIG_STATUS) {
2096		switch (mr_status.sig_err.err_type) {
2097		case IB_SIG_BAD_GUARD:
2098			nvme_req(rq)->status = NVME_SC_GUARD_CHECK;
2099			break;
2100		case IB_SIG_BAD_REFTAG:
2101			nvme_req(rq)->status = NVME_SC_REFTAG_CHECK;
2102			break;
2103		case IB_SIG_BAD_APPTAG:
2104			nvme_req(rq)->status = NVME_SC_APPTAG_CHECK;
2105			break;
2106		}
2107		pr_err("PI error found type %d expected 0x%x vs actual 0x%x\n",
2108		       mr_status.sig_err.err_type, mr_status.sig_err.expected,
2109		       mr_status.sig_err.actual);
2110	}
2111}
2112
2113static void nvme_rdma_complete_rq(struct request *rq)
2114{
2115	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
2116	struct nvme_rdma_queue *queue = req->queue;
2117	struct ib_device *ibdev = queue->device->dev;
2118
2119	if (req->use_sig_mr)
2120		nvme_rdma_check_pi_status(req);
2121
2122	nvme_rdma_unmap_data(queue, rq);
2123	ib_dma_unmap_single(ibdev, req->sqe.dma, sizeof(struct nvme_command),
2124			    DMA_TO_DEVICE);
2125	nvme_complete_rq(rq);
2126}
2127
2128static void nvme_rdma_map_queues(struct blk_mq_tag_set *set)
2129{
2130	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(set->driver_data);
2131
2132	nvmf_map_queues(set, &ctrl->ctrl, ctrl->io_queues);
2133}
2134
2135static const struct blk_mq_ops nvme_rdma_mq_ops = {
2136	.queue_rq	= nvme_rdma_queue_rq,
2137	.complete	= nvme_rdma_complete_rq,
2138	.init_request	= nvme_rdma_init_request,
2139	.exit_request	= nvme_rdma_exit_request,
2140	.init_hctx	= nvme_rdma_init_hctx,
2141	.timeout	= nvme_rdma_timeout,
2142	.map_queues	= nvme_rdma_map_queues,
2143	.poll		= nvme_rdma_poll,
2144};
2145
2146static const struct blk_mq_ops nvme_rdma_admin_mq_ops = {
2147	.queue_rq	= nvme_rdma_queue_rq,
2148	.complete	= nvme_rdma_complete_rq,
2149	.init_request	= nvme_rdma_init_request,
2150	.exit_request	= nvme_rdma_exit_request,
2151	.init_hctx	= nvme_rdma_init_admin_hctx,
2152	.timeout	= nvme_rdma_timeout,
2153};
2154
2155static void nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl *ctrl, bool shutdown)
2156{
2157	nvme_rdma_teardown_io_queues(ctrl, shutdown);
2158	nvme_quiesce_admin_queue(&ctrl->ctrl);
2159	nvme_disable_ctrl(&ctrl->ctrl, shutdown);
2160	nvme_rdma_teardown_admin_queue(ctrl, shutdown);
2161}
2162
2163static void nvme_rdma_delete_ctrl(struct nvme_ctrl *ctrl)
2164{
2165	nvme_rdma_shutdown_ctrl(to_rdma_ctrl(ctrl), true);
2166}
2167
2168static void nvme_rdma_reset_ctrl_work(struct work_struct *work)
2169{
2170	struct nvme_rdma_ctrl *ctrl =
2171		container_of(work, struct nvme_rdma_ctrl, ctrl.reset_work);
2172
2173	nvme_stop_ctrl(&ctrl->ctrl);
2174	nvme_rdma_shutdown_ctrl(ctrl, false);
2175
2176	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
2177		/* state change failure should never happen */
2178		WARN_ON_ONCE(1);
2179		return;
2180	}
2181
2182	if (nvme_rdma_setup_ctrl(ctrl, false))
2183		goto out_fail;
2184
2185	return;
2186
2187out_fail:
2188	++ctrl->ctrl.nr_reconnects;
2189	nvme_rdma_reconnect_or_remove(ctrl);
2190}
2191
2192static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops = {
2193	.name			= "rdma",
2194	.module			= THIS_MODULE,
2195	.flags			= NVME_F_FABRICS | NVME_F_METADATA_SUPPORTED,
2196	.reg_read32		= nvmf_reg_read32,
2197	.reg_read64		= nvmf_reg_read64,
2198	.reg_write32		= nvmf_reg_write32,
2199	.free_ctrl		= nvme_rdma_free_ctrl,
2200	.submit_async_event	= nvme_rdma_submit_async_event,
2201	.delete_ctrl		= nvme_rdma_delete_ctrl,
2202	.get_address		= nvmf_get_address,
2203	.stop_ctrl		= nvme_rdma_stop_ctrl,
2204};
2205
2206/*
2207 * Fails a connection request if it matches an existing controller
2208 * (association) with the same tuple:
2209 * <Host NQN, Host ID, local address, remote address, remote port, SUBSYS NQN>
2210 *
2211 * if local address is not specified in the request, it will match an
2212 * existing controller with all the other parameters the same and no
2213 * local port address specified as well.
2214 *
2215 * The ports don't need to be compared as they are intrinsically
2216 * already matched by the port pointers supplied.
2217 */
2218static bool
2219nvme_rdma_existing_controller(struct nvmf_ctrl_options *opts)
2220{
2221	struct nvme_rdma_ctrl *ctrl;
2222	bool found = false;
2223
2224	mutex_lock(&nvme_rdma_ctrl_mutex);
2225	list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
2226		found = nvmf_ip_options_match(&ctrl->ctrl, opts);
2227		if (found)
2228			break;
2229	}
2230	mutex_unlock(&nvme_rdma_ctrl_mutex);
2231
2232	return found;
2233}
2234
2235static struct nvme_ctrl *nvme_rdma_create_ctrl(struct device *dev,
2236		struct nvmf_ctrl_options *opts)
2237{
2238	struct nvme_rdma_ctrl *ctrl;
2239	int ret;
2240	bool changed;
2241
2242	ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
2243	if (!ctrl)
2244		return ERR_PTR(-ENOMEM);
2245	ctrl->ctrl.opts = opts;
2246	INIT_LIST_HEAD(&ctrl->list);
2247
2248	if (!(opts->mask & NVMF_OPT_TRSVCID)) {
2249		opts->trsvcid =
2250			kstrdup(__stringify(NVME_RDMA_IP_PORT), GFP_KERNEL);
2251		if (!opts->trsvcid) {
2252			ret = -ENOMEM;
2253			goto out_free_ctrl;
2254		}
2255		opts->mask |= NVMF_OPT_TRSVCID;
2256	}
2257
2258	ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2259			opts->traddr, opts->trsvcid, &ctrl->addr);
2260	if (ret) {
2261		pr_err("malformed address passed: %s:%s\n",
2262			opts->traddr, opts->trsvcid);
2263		goto out_free_ctrl;
2264	}
2265
2266	if (opts->mask & NVMF_OPT_HOST_TRADDR) {
2267		ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2268			opts->host_traddr, NULL, &ctrl->src_addr);
2269		if (ret) {
2270			pr_err("malformed src address passed: %s\n",
2271			       opts->host_traddr);
2272			goto out_free_ctrl;
2273		}
2274	}
2275
2276	if (!opts->duplicate_connect && nvme_rdma_existing_controller(opts)) {
2277		ret = -EALREADY;
2278		goto out_free_ctrl;
2279	}
2280
2281	INIT_DELAYED_WORK(&ctrl->reconnect_work,
2282			nvme_rdma_reconnect_ctrl_work);
2283	INIT_WORK(&ctrl->err_work, nvme_rdma_error_recovery_work);
2284	INIT_WORK(&ctrl->ctrl.reset_work, nvme_rdma_reset_ctrl_work);
2285
2286	ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues +
2287				opts->nr_poll_queues + 1;
2288	ctrl->ctrl.sqsize = opts->queue_size - 1;
2289	ctrl->ctrl.kato = opts->kato;
2290
2291	ret = -ENOMEM;
2292	ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues),
2293				GFP_KERNEL);
2294	if (!ctrl->queues)
2295		goto out_free_ctrl;
2296
2297	ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_rdma_ctrl_ops,
2298				0 /* no quirks, we're perfect! */);
2299	if (ret)
2300		goto out_kfree_queues;
2301
2302	changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING);
2303	WARN_ON_ONCE(!changed);
2304
2305	ret = nvme_rdma_setup_ctrl(ctrl, true);
2306	if (ret)
2307		goto out_uninit_ctrl;
2308
2309	dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISpcs, hostnqn: %s\n",
2310		nvmf_ctrl_subsysnqn(&ctrl->ctrl), &ctrl->addr, opts->host->nqn);
2311
2312	mutex_lock(&nvme_rdma_ctrl_mutex);
2313	list_add_tail(&ctrl->list, &nvme_rdma_ctrl_list);
2314	mutex_unlock(&nvme_rdma_ctrl_mutex);
2315
2316	return &ctrl->ctrl;
2317
2318out_uninit_ctrl:
2319	nvme_uninit_ctrl(&ctrl->ctrl);
2320	nvme_put_ctrl(&ctrl->ctrl);
2321	if (ret > 0)
2322		ret = -EIO;
2323	return ERR_PTR(ret);
2324out_kfree_queues:
2325	kfree(ctrl->queues);
2326out_free_ctrl:
2327	kfree(ctrl);
2328	return ERR_PTR(ret);
2329}
2330
2331static struct nvmf_transport_ops nvme_rdma_transport = {
2332	.name		= "rdma",
2333	.module		= THIS_MODULE,
2334	.required_opts	= NVMF_OPT_TRADDR,
2335	.allowed_opts	= NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
2336			  NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO |
2337			  NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES |
2338			  NVMF_OPT_TOS,
2339	.create_ctrl	= nvme_rdma_create_ctrl,
2340};
2341
2342static void nvme_rdma_remove_one(struct ib_device *ib_device, void *client_data)
2343{
2344	struct nvme_rdma_ctrl *ctrl;
2345	struct nvme_rdma_device *ndev;
2346	bool found = false;
2347
2348	mutex_lock(&device_list_mutex);
2349	list_for_each_entry(ndev, &device_list, entry) {
2350		if (ndev->dev == ib_device) {
2351			found = true;
2352			break;
2353		}
2354	}
2355	mutex_unlock(&device_list_mutex);
2356
2357	if (!found)
2358		return;
2359
2360	/* Delete all controllers using this device */
2361	mutex_lock(&nvme_rdma_ctrl_mutex);
2362	list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
2363		if (ctrl->device->dev != ib_device)
2364			continue;
2365		nvme_delete_ctrl(&ctrl->ctrl);
2366	}
2367	mutex_unlock(&nvme_rdma_ctrl_mutex);
2368
2369	flush_workqueue(nvme_delete_wq);
2370}
2371
2372static struct ib_client nvme_rdma_ib_client = {
2373	.name   = "nvme_rdma",
2374	.remove = nvme_rdma_remove_one
2375};
2376
2377static int __init nvme_rdma_init_module(void)
2378{
2379	int ret;
2380
2381	ret = ib_register_client(&nvme_rdma_ib_client);
2382	if (ret)
2383		return ret;
2384
2385	ret = nvmf_register_transport(&nvme_rdma_transport);
2386	if (ret)
2387		goto err_unreg_client;
2388
2389	return 0;
2390
2391err_unreg_client:
2392	ib_unregister_client(&nvme_rdma_ib_client);
2393	return ret;
2394}
2395
2396static void __exit nvme_rdma_cleanup_module(void)
2397{
2398	struct nvme_rdma_ctrl *ctrl;
2399
2400	nvmf_unregister_transport(&nvme_rdma_transport);
2401	ib_unregister_client(&nvme_rdma_ib_client);
2402
2403	mutex_lock(&nvme_rdma_ctrl_mutex);
2404	list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list)
2405		nvme_delete_ctrl(&ctrl->ctrl);
2406	mutex_unlock(&nvme_rdma_ctrl_mutex);
2407	flush_workqueue(nvme_delete_wq);
2408}
2409
2410module_init(nvme_rdma_init_module);
2411module_exit(nvme_rdma_cleanup_module);
2412
2413MODULE_DESCRIPTION("NVMe host RDMA transport driver");
2414MODULE_LICENSE("GPL v2");
2415