1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2016 Avago Technologies.  All rights reserved.
4 */
5#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
6#include <linux/module.h>
7#include <linux/parser.h>
8#include <uapi/scsi/fc/fc_fs.h>
9#include <uapi/scsi/fc/fc_els.h>
10#include <linux/delay.h>
11#include <linux/overflow.h>
12#include <linux/blk-cgroup.h>
13#include "nvme.h"
14#include "fabrics.h"
15#include <linux/nvme-fc-driver.h>
16#include <linux/nvme-fc.h>
17#include "fc.h"
18#include <scsi/scsi_transport_fc.h>
19#include <linux/blk-mq-pci.h>
20
21/* *************************** Data Structures/Defines ****************** */
22
23
24enum nvme_fc_queue_flags {
25	NVME_FC_Q_CONNECTED = 0,
26	NVME_FC_Q_LIVE,
27};
28
29#define NVME_FC_DEFAULT_DEV_LOSS_TMO	60	/* seconds */
30#define NVME_FC_DEFAULT_RECONNECT_TMO	2	/* delay between reconnects
31						 * when connected and a
32						 * connection failure.
33						 */
34
35struct nvme_fc_queue {
36	struct nvme_fc_ctrl	*ctrl;
37	struct device		*dev;
38	struct blk_mq_hw_ctx	*hctx;
39	void			*lldd_handle;
40	size_t			cmnd_capsule_len;
41	u32			qnum;
42	u32			rqcnt;
43	u32			seqno;
44
45	u64			connection_id;
46	atomic_t		csn;
47
48	unsigned long		flags;
49} __aligned(sizeof(u64));	/* alignment for other things alloc'd with */
50
51enum nvme_fcop_flags {
52	FCOP_FLAGS_TERMIO	= (1 << 0),
53	FCOP_FLAGS_AEN		= (1 << 1),
54};
55
56struct nvmefc_ls_req_op {
57	struct nvmefc_ls_req	ls_req;
58
59	struct nvme_fc_rport	*rport;
60	struct nvme_fc_queue	*queue;
61	struct request		*rq;
62	u32			flags;
63
64	int			ls_error;
65	struct completion	ls_done;
66	struct list_head	lsreq_list;	/* rport->ls_req_list */
67	bool			req_queued;
68};
69
70struct nvmefc_ls_rcv_op {
71	struct nvme_fc_rport		*rport;
72	struct nvmefc_ls_rsp		*lsrsp;
73	union nvmefc_ls_requests	*rqstbuf;
74	union nvmefc_ls_responses	*rspbuf;
75	u16				rqstdatalen;
76	bool				handled;
77	dma_addr_t			rspdma;
78	struct list_head		lsrcv_list;	/* rport->ls_rcv_list */
79} __aligned(sizeof(u64));	/* alignment for other things alloc'd with */
80
81enum nvme_fcpop_state {
82	FCPOP_STATE_UNINIT	= 0,
83	FCPOP_STATE_IDLE	= 1,
84	FCPOP_STATE_ACTIVE	= 2,
85	FCPOP_STATE_ABORTED	= 3,
86	FCPOP_STATE_COMPLETE	= 4,
87};
88
89struct nvme_fc_fcp_op {
90	struct nvme_request	nreq;		/*
91						 * nvme/host/core.c
92						 * requires this to be
93						 * the 1st element in the
94						 * private structure
95						 * associated with the
96						 * request.
97						 */
98	struct nvmefc_fcp_req	fcp_req;
99
100	struct nvme_fc_ctrl	*ctrl;
101	struct nvme_fc_queue	*queue;
102	struct request		*rq;
103
104	atomic_t		state;
105	u32			flags;
106	u32			rqno;
107	u32			nents;
108
109	struct nvme_fc_cmd_iu	cmd_iu;
110	struct nvme_fc_ersp_iu	rsp_iu;
111};
112
113struct nvme_fcp_op_w_sgl {
114	struct nvme_fc_fcp_op	op;
115	struct scatterlist	sgl[NVME_INLINE_SG_CNT];
116	uint8_t			priv[];
117};
118
119struct nvme_fc_lport {
120	struct nvme_fc_local_port	localport;
121
122	struct ida			endp_cnt;
123	struct list_head		port_list;	/* nvme_fc_port_list */
124	struct list_head		endp_list;
125	struct device			*dev;	/* physical device for dma */
126	struct nvme_fc_port_template	*ops;
127	struct kref			ref;
128	atomic_t                        act_rport_cnt;
129} __aligned(sizeof(u64));	/* alignment for other things alloc'd with */
130
131struct nvme_fc_rport {
132	struct nvme_fc_remote_port	remoteport;
133
134	struct list_head		endp_list; /* for lport->endp_list */
135	struct list_head		ctrl_list;
136	struct list_head		ls_req_list;
137	struct list_head		ls_rcv_list;
138	struct list_head		disc_list;
139	struct device			*dev;	/* physical device for dma */
140	struct nvme_fc_lport		*lport;
141	spinlock_t			lock;
142	struct kref			ref;
143	atomic_t                        act_ctrl_cnt;
144	unsigned long			dev_loss_end;
145	struct work_struct		lsrcv_work;
146} __aligned(sizeof(u64));	/* alignment for other things alloc'd with */
147
148/* fc_ctrl flags values - specified as bit positions */
149#define ASSOC_ACTIVE		0
150#define ASSOC_FAILED		1
151#define FCCTRL_TERMIO		2
152
153struct nvme_fc_ctrl {
154	spinlock_t		lock;
155	struct nvme_fc_queue	*queues;
156	struct device		*dev;
157	struct nvme_fc_lport	*lport;
158	struct nvme_fc_rport	*rport;
159	u32			cnum;
160
161	bool			ioq_live;
162	u64			association_id;
163	struct nvmefc_ls_rcv_op	*rcv_disconn;
164
165	struct list_head	ctrl_list;	/* rport->ctrl_list */
166
167	struct blk_mq_tag_set	admin_tag_set;
168	struct blk_mq_tag_set	tag_set;
169
170	struct work_struct	ioerr_work;
171	struct delayed_work	connect_work;
172
173	struct kref		ref;
174	unsigned long		flags;
175	u32			iocnt;
176	wait_queue_head_t	ioabort_wait;
177
178	struct nvme_fc_fcp_op	aen_ops[NVME_NR_AEN_COMMANDS];
179
180	struct nvme_ctrl	ctrl;
181};
182
183static inline struct nvme_fc_ctrl *
184to_fc_ctrl(struct nvme_ctrl *ctrl)
185{
186	return container_of(ctrl, struct nvme_fc_ctrl, ctrl);
187}
188
189static inline struct nvme_fc_lport *
190localport_to_lport(struct nvme_fc_local_port *portptr)
191{
192	return container_of(portptr, struct nvme_fc_lport, localport);
193}
194
195static inline struct nvme_fc_rport *
196remoteport_to_rport(struct nvme_fc_remote_port *portptr)
197{
198	return container_of(portptr, struct nvme_fc_rport, remoteport);
199}
200
201static inline struct nvmefc_ls_req_op *
202ls_req_to_lsop(struct nvmefc_ls_req *lsreq)
203{
204	return container_of(lsreq, struct nvmefc_ls_req_op, ls_req);
205}
206
207static inline struct nvme_fc_fcp_op *
208fcp_req_to_fcp_op(struct nvmefc_fcp_req *fcpreq)
209{
210	return container_of(fcpreq, struct nvme_fc_fcp_op, fcp_req);
211}
212
213
214
215/* *************************** Globals **************************** */
216
217
218static DEFINE_SPINLOCK(nvme_fc_lock);
219
220static LIST_HEAD(nvme_fc_lport_list);
221static DEFINE_IDA(nvme_fc_local_port_cnt);
222static DEFINE_IDA(nvme_fc_ctrl_cnt);
223
224/*
225 * These items are short-term. They will eventually be moved into
226 * a generic FC class. See comments in module init.
227 */
228static struct device *fc_udev_device;
229
230static void nvme_fc_complete_rq(struct request *rq);
231
232/* *********************** FC-NVME Port Management ************************ */
233
234static void __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *,
235			struct nvme_fc_queue *, unsigned int);
236
237static void nvme_fc_handle_ls_rqst_work(struct work_struct *work);
238
239
240static void
241nvme_fc_free_lport(struct kref *ref)
242{
243	struct nvme_fc_lport *lport =
244		container_of(ref, struct nvme_fc_lport, ref);
245	unsigned long flags;
246
247	WARN_ON(lport->localport.port_state != FC_OBJSTATE_DELETED);
248	WARN_ON(!list_empty(&lport->endp_list));
249
250	/* remove from transport list */
251	spin_lock_irqsave(&nvme_fc_lock, flags);
252	list_del(&lport->port_list);
253	spin_unlock_irqrestore(&nvme_fc_lock, flags);
254
255	ida_free(&nvme_fc_local_port_cnt, lport->localport.port_num);
256	ida_destroy(&lport->endp_cnt);
257
258	put_device(lport->dev);
259
260	kfree(lport);
261}
262
263static void
264nvme_fc_lport_put(struct nvme_fc_lport *lport)
265{
266	kref_put(&lport->ref, nvme_fc_free_lport);
267}
268
269static int
270nvme_fc_lport_get(struct nvme_fc_lport *lport)
271{
272	return kref_get_unless_zero(&lport->ref);
273}
274
275
276static struct nvme_fc_lport *
277nvme_fc_attach_to_unreg_lport(struct nvme_fc_port_info *pinfo,
278			struct nvme_fc_port_template *ops,
279			struct device *dev)
280{
281	struct nvme_fc_lport *lport;
282	unsigned long flags;
283
284	spin_lock_irqsave(&nvme_fc_lock, flags);
285
286	list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
287		if (lport->localport.node_name != pinfo->node_name ||
288		    lport->localport.port_name != pinfo->port_name)
289			continue;
290
291		if (lport->dev != dev) {
292			lport = ERR_PTR(-EXDEV);
293			goto out_done;
294		}
295
296		if (lport->localport.port_state != FC_OBJSTATE_DELETED) {
297			lport = ERR_PTR(-EEXIST);
298			goto out_done;
299		}
300
301		if (!nvme_fc_lport_get(lport)) {
302			/*
303			 * fails if ref cnt already 0. If so,
304			 * act as if lport already deleted
305			 */
306			lport = NULL;
307			goto out_done;
308		}
309
310		/* resume the lport */
311
312		lport->ops = ops;
313		lport->localport.port_role = pinfo->port_role;
314		lport->localport.port_id = pinfo->port_id;
315		lport->localport.port_state = FC_OBJSTATE_ONLINE;
316
317		spin_unlock_irqrestore(&nvme_fc_lock, flags);
318
319		return lport;
320	}
321
322	lport = NULL;
323
324out_done:
325	spin_unlock_irqrestore(&nvme_fc_lock, flags);
326
327	return lport;
328}
329
330/**
331 * nvme_fc_register_localport - transport entry point called by an
332 *                              LLDD to register the existence of a NVME
333 *                              host FC port.
334 * @pinfo:     pointer to information about the port to be registered
335 * @template:  LLDD entrypoints and operational parameters for the port
336 * @dev:       physical hardware device node port corresponds to. Will be
337 *             used for DMA mappings
338 * @portptr:   pointer to a local port pointer. Upon success, the routine
339 *             will allocate a nvme_fc_local_port structure and place its
340 *             address in the local port pointer. Upon failure, local port
341 *             pointer will be set to 0.
342 *
343 * Returns:
344 * a completion status. Must be 0 upon success; a negative errno
345 * (ex: -ENXIO) upon failure.
346 */
347int
348nvme_fc_register_localport(struct nvme_fc_port_info *pinfo,
349			struct nvme_fc_port_template *template,
350			struct device *dev,
351			struct nvme_fc_local_port **portptr)
352{
353	struct nvme_fc_lport *newrec;
354	unsigned long flags;
355	int ret, idx;
356
357	if (!template->localport_delete || !template->remoteport_delete ||
358	    !template->ls_req || !template->fcp_io ||
359	    !template->ls_abort || !template->fcp_abort ||
360	    !template->max_hw_queues || !template->max_sgl_segments ||
361	    !template->max_dif_sgl_segments || !template->dma_boundary) {
362		ret = -EINVAL;
363		goto out_reghost_failed;
364	}
365
366	/*
367	 * look to see if there is already a localport that had been
368	 * deregistered and in the process of waiting for all the
369	 * references to fully be removed.  If the references haven't
370	 * expired, we can simply re-enable the localport. Remoteports
371	 * and controller reconnections should resume naturally.
372	 */
373	newrec = nvme_fc_attach_to_unreg_lport(pinfo, template, dev);
374
375	/* found an lport, but something about its state is bad */
376	if (IS_ERR(newrec)) {
377		ret = PTR_ERR(newrec);
378		goto out_reghost_failed;
379
380	/* found existing lport, which was resumed */
381	} else if (newrec) {
382		*portptr = &newrec->localport;
383		return 0;
384	}
385
386	/* nothing found - allocate a new localport struct */
387
388	newrec = kmalloc((sizeof(*newrec) + template->local_priv_sz),
389			 GFP_KERNEL);
390	if (!newrec) {
391		ret = -ENOMEM;
392		goto out_reghost_failed;
393	}
394
395	idx = ida_alloc(&nvme_fc_local_port_cnt, GFP_KERNEL);
396	if (idx < 0) {
397		ret = -ENOSPC;
398		goto out_fail_kfree;
399	}
400
401	if (!get_device(dev) && dev) {
402		ret = -ENODEV;
403		goto out_ida_put;
404	}
405
406	INIT_LIST_HEAD(&newrec->port_list);
407	INIT_LIST_HEAD(&newrec->endp_list);
408	kref_init(&newrec->ref);
409	atomic_set(&newrec->act_rport_cnt, 0);
410	newrec->ops = template;
411	newrec->dev = dev;
412	ida_init(&newrec->endp_cnt);
413	if (template->local_priv_sz)
414		newrec->localport.private = &newrec[1];
415	else
416		newrec->localport.private = NULL;
417	newrec->localport.node_name = pinfo->node_name;
418	newrec->localport.port_name = pinfo->port_name;
419	newrec->localport.port_role = pinfo->port_role;
420	newrec->localport.port_id = pinfo->port_id;
421	newrec->localport.port_state = FC_OBJSTATE_ONLINE;
422	newrec->localport.port_num = idx;
423
424	spin_lock_irqsave(&nvme_fc_lock, flags);
425	list_add_tail(&newrec->port_list, &nvme_fc_lport_list);
426	spin_unlock_irqrestore(&nvme_fc_lock, flags);
427
428	if (dev)
429		dma_set_seg_boundary(dev, template->dma_boundary);
430
431	*portptr = &newrec->localport;
432	return 0;
433
434out_ida_put:
435	ida_free(&nvme_fc_local_port_cnt, idx);
436out_fail_kfree:
437	kfree(newrec);
438out_reghost_failed:
439	*portptr = NULL;
440
441	return ret;
442}
443EXPORT_SYMBOL_GPL(nvme_fc_register_localport);
444
445/**
446 * nvme_fc_unregister_localport - transport entry point called by an
447 *                              LLDD to deregister/remove a previously
448 *                              registered a NVME host FC port.
449 * @portptr: pointer to the (registered) local port that is to be deregistered.
450 *
451 * Returns:
452 * a completion status. Must be 0 upon success; a negative errno
453 * (ex: -ENXIO) upon failure.
454 */
455int
456nvme_fc_unregister_localport(struct nvme_fc_local_port *portptr)
457{
458	struct nvme_fc_lport *lport = localport_to_lport(portptr);
459	unsigned long flags;
460
461	if (!portptr)
462		return -EINVAL;
463
464	spin_lock_irqsave(&nvme_fc_lock, flags);
465
466	if (portptr->port_state != FC_OBJSTATE_ONLINE) {
467		spin_unlock_irqrestore(&nvme_fc_lock, flags);
468		return -EINVAL;
469	}
470	portptr->port_state = FC_OBJSTATE_DELETED;
471
472	spin_unlock_irqrestore(&nvme_fc_lock, flags);
473
474	if (atomic_read(&lport->act_rport_cnt) == 0)
475		lport->ops->localport_delete(&lport->localport);
476
477	nvme_fc_lport_put(lport);
478
479	return 0;
480}
481EXPORT_SYMBOL_GPL(nvme_fc_unregister_localport);
482
483/*
484 * TRADDR strings, per FC-NVME are fixed format:
485 *   "nn-0x<16hexdigits>:pn-0x<16hexdigits>" - 43 characters
486 * udev event will only differ by prefix of what field is
487 * being specified:
488 *    "NVMEFC_HOST_TRADDR=" or "NVMEFC_TRADDR=" - 19 max characters
489 *  19 + 43 + null_fudge = 64 characters
490 */
491#define FCNVME_TRADDR_LENGTH		64
492
493static void
494nvme_fc_signal_discovery_scan(struct nvme_fc_lport *lport,
495		struct nvme_fc_rport *rport)
496{
497	char hostaddr[FCNVME_TRADDR_LENGTH];	/* NVMEFC_HOST_TRADDR=...*/
498	char tgtaddr[FCNVME_TRADDR_LENGTH];	/* NVMEFC_TRADDR=...*/
499	char *envp[4] = { "FC_EVENT=nvmediscovery", hostaddr, tgtaddr, NULL };
500
501	if (!(rport->remoteport.port_role & FC_PORT_ROLE_NVME_DISCOVERY))
502		return;
503
504	snprintf(hostaddr, sizeof(hostaddr),
505		"NVMEFC_HOST_TRADDR=nn-0x%016llx:pn-0x%016llx",
506		lport->localport.node_name, lport->localport.port_name);
507	snprintf(tgtaddr, sizeof(tgtaddr),
508		"NVMEFC_TRADDR=nn-0x%016llx:pn-0x%016llx",
509		rport->remoteport.node_name, rport->remoteport.port_name);
510	kobject_uevent_env(&fc_udev_device->kobj, KOBJ_CHANGE, envp);
511}
512
513static void
514nvme_fc_free_rport(struct kref *ref)
515{
516	struct nvme_fc_rport *rport =
517		container_of(ref, struct nvme_fc_rport, ref);
518	struct nvme_fc_lport *lport =
519			localport_to_lport(rport->remoteport.localport);
520	unsigned long flags;
521
522	WARN_ON(rport->remoteport.port_state != FC_OBJSTATE_DELETED);
523	WARN_ON(!list_empty(&rport->ctrl_list));
524
525	/* remove from lport list */
526	spin_lock_irqsave(&nvme_fc_lock, flags);
527	list_del(&rport->endp_list);
528	spin_unlock_irqrestore(&nvme_fc_lock, flags);
529
530	WARN_ON(!list_empty(&rport->disc_list));
531	ida_free(&lport->endp_cnt, rport->remoteport.port_num);
532
533	kfree(rport);
534
535	nvme_fc_lport_put(lport);
536}
537
538static void
539nvme_fc_rport_put(struct nvme_fc_rport *rport)
540{
541	kref_put(&rport->ref, nvme_fc_free_rport);
542}
543
544static int
545nvme_fc_rport_get(struct nvme_fc_rport *rport)
546{
547	return kref_get_unless_zero(&rport->ref);
548}
549
550static void
551nvme_fc_resume_controller(struct nvme_fc_ctrl *ctrl)
552{
553	switch (nvme_ctrl_state(&ctrl->ctrl)) {
554	case NVME_CTRL_NEW:
555	case NVME_CTRL_CONNECTING:
556		/*
557		 * As all reconnects were suppressed, schedule a
558		 * connect.
559		 */
560		dev_info(ctrl->ctrl.device,
561			"NVME-FC{%d}: connectivity re-established. "
562			"Attempting reconnect\n", ctrl->cnum);
563
564		queue_delayed_work(nvme_wq, &ctrl->connect_work, 0);
565		break;
566
567	case NVME_CTRL_RESETTING:
568		/*
569		 * Controller is already in the process of terminating the
570		 * association. No need to do anything further. The reconnect
571		 * step will naturally occur after the reset completes.
572		 */
573		break;
574
575	default:
576		/* no action to take - let it delete */
577		break;
578	}
579}
580
581static struct nvme_fc_rport *
582nvme_fc_attach_to_suspended_rport(struct nvme_fc_lport *lport,
583				struct nvme_fc_port_info *pinfo)
584{
585	struct nvme_fc_rport *rport;
586	struct nvme_fc_ctrl *ctrl;
587	unsigned long flags;
588
589	spin_lock_irqsave(&nvme_fc_lock, flags);
590
591	list_for_each_entry(rport, &lport->endp_list, endp_list) {
592		if (rport->remoteport.node_name != pinfo->node_name ||
593		    rport->remoteport.port_name != pinfo->port_name)
594			continue;
595
596		if (!nvme_fc_rport_get(rport)) {
597			rport = ERR_PTR(-ENOLCK);
598			goto out_done;
599		}
600
601		spin_unlock_irqrestore(&nvme_fc_lock, flags);
602
603		spin_lock_irqsave(&rport->lock, flags);
604
605		/* has it been unregistered */
606		if (rport->remoteport.port_state != FC_OBJSTATE_DELETED) {
607			/* means lldd called us twice */
608			spin_unlock_irqrestore(&rport->lock, flags);
609			nvme_fc_rport_put(rport);
610			return ERR_PTR(-ESTALE);
611		}
612
613		rport->remoteport.port_role = pinfo->port_role;
614		rport->remoteport.port_id = pinfo->port_id;
615		rport->remoteport.port_state = FC_OBJSTATE_ONLINE;
616		rport->dev_loss_end = 0;
617
618		/*
619		 * kick off a reconnect attempt on all associations to the
620		 * remote port. A successful reconnects will resume i/o.
621		 */
622		list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list)
623			nvme_fc_resume_controller(ctrl);
624
625		spin_unlock_irqrestore(&rport->lock, flags);
626
627		return rport;
628	}
629
630	rport = NULL;
631
632out_done:
633	spin_unlock_irqrestore(&nvme_fc_lock, flags);
634
635	return rport;
636}
637
638static inline void
639__nvme_fc_set_dev_loss_tmo(struct nvme_fc_rport *rport,
640			struct nvme_fc_port_info *pinfo)
641{
642	if (pinfo->dev_loss_tmo)
643		rport->remoteport.dev_loss_tmo = pinfo->dev_loss_tmo;
644	else
645		rport->remoteport.dev_loss_tmo = NVME_FC_DEFAULT_DEV_LOSS_TMO;
646}
647
648/**
649 * nvme_fc_register_remoteport - transport entry point called by an
650 *                              LLDD to register the existence of a NVME
651 *                              subsystem FC port on its fabric.
652 * @localport: pointer to the (registered) local port that the remote
653 *             subsystem port is connected to.
654 * @pinfo:     pointer to information about the port to be registered
655 * @portptr:   pointer to a remote port pointer. Upon success, the routine
656 *             will allocate a nvme_fc_remote_port structure and place its
657 *             address in the remote port pointer. Upon failure, remote port
658 *             pointer will be set to 0.
659 *
660 * Returns:
661 * a completion status. Must be 0 upon success; a negative errno
662 * (ex: -ENXIO) upon failure.
663 */
664int
665nvme_fc_register_remoteport(struct nvme_fc_local_port *localport,
666				struct nvme_fc_port_info *pinfo,
667				struct nvme_fc_remote_port **portptr)
668{
669	struct nvme_fc_lport *lport = localport_to_lport(localport);
670	struct nvme_fc_rport *newrec;
671	unsigned long flags;
672	int ret, idx;
673
674	if (!nvme_fc_lport_get(lport)) {
675		ret = -ESHUTDOWN;
676		goto out_reghost_failed;
677	}
678
679	/*
680	 * look to see if there is already a remoteport that is waiting
681	 * for a reconnect (within dev_loss_tmo) with the same WWN's.
682	 * If so, transition to it and reconnect.
683	 */
684	newrec = nvme_fc_attach_to_suspended_rport(lport, pinfo);
685
686	/* found an rport, but something about its state is bad */
687	if (IS_ERR(newrec)) {
688		ret = PTR_ERR(newrec);
689		goto out_lport_put;
690
691	/* found existing rport, which was resumed */
692	} else if (newrec) {
693		nvme_fc_lport_put(lport);
694		__nvme_fc_set_dev_loss_tmo(newrec, pinfo);
695		nvme_fc_signal_discovery_scan(lport, newrec);
696		*portptr = &newrec->remoteport;
697		return 0;
698	}
699
700	/* nothing found - allocate a new remoteport struct */
701
702	newrec = kmalloc((sizeof(*newrec) + lport->ops->remote_priv_sz),
703			 GFP_KERNEL);
704	if (!newrec) {
705		ret = -ENOMEM;
706		goto out_lport_put;
707	}
708
709	idx = ida_alloc(&lport->endp_cnt, GFP_KERNEL);
710	if (idx < 0) {
711		ret = -ENOSPC;
712		goto out_kfree_rport;
713	}
714
715	INIT_LIST_HEAD(&newrec->endp_list);
716	INIT_LIST_HEAD(&newrec->ctrl_list);
717	INIT_LIST_HEAD(&newrec->ls_req_list);
718	INIT_LIST_HEAD(&newrec->disc_list);
719	kref_init(&newrec->ref);
720	atomic_set(&newrec->act_ctrl_cnt, 0);
721	spin_lock_init(&newrec->lock);
722	newrec->remoteport.localport = &lport->localport;
723	INIT_LIST_HEAD(&newrec->ls_rcv_list);
724	newrec->dev = lport->dev;
725	newrec->lport = lport;
726	if (lport->ops->remote_priv_sz)
727		newrec->remoteport.private = &newrec[1];
728	else
729		newrec->remoteport.private = NULL;
730	newrec->remoteport.port_role = pinfo->port_role;
731	newrec->remoteport.node_name = pinfo->node_name;
732	newrec->remoteport.port_name = pinfo->port_name;
733	newrec->remoteport.port_id = pinfo->port_id;
734	newrec->remoteport.port_state = FC_OBJSTATE_ONLINE;
735	newrec->remoteport.port_num = idx;
736	__nvme_fc_set_dev_loss_tmo(newrec, pinfo);
737	INIT_WORK(&newrec->lsrcv_work, nvme_fc_handle_ls_rqst_work);
738
739	spin_lock_irqsave(&nvme_fc_lock, flags);
740	list_add_tail(&newrec->endp_list, &lport->endp_list);
741	spin_unlock_irqrestore(&nvme_fc_lock, flags);
742
743	nvme_fc_signal_discovery_scan(lport, newrec);
744
745	*portptr = &newrec->remoteport;
746	return 0;
747
748out_kfree_rport:
749	kfree(newrec);
750out_lport_put:
751	nvme_fc_lport_put(lport);
752out_reghost_failed:
753	*portptr = NULL;
754	return ret;
755}
756EXPORT_SYMBOL_GPL(nvme_fc_register_remoteport);
757
758static int
759nvme_fc_abort_lsops(struct nvme_fc_rport *rport)
760{
761	struct nvmefc_ls_req_op *lsop;
762	unsigned long flags;
763
764restart:
765	spin_lock_irqsave(&rport->lock, flags);
766
767	list_for_each_entry(lsop, &rport->ls_req_list, lsreq_list) {
768		if (!(lsop->flags & FCOP_FLAGS_TERMIO)) {
769			lsop->flags |= FCOP_FLAGS_TERMIO;
770			spin_unlock_irqrestore(&rport->lock, flags);
771			rport->lport->ops->ls_abort(&rport->lport->localport,
772						&rport->remoteport,
773						&lsop->ls_req);
774			goto restart;
775		}
776	}
777	spin_unlock_irqrestore(&rport->lock, flags);
778
779	return 0;
780}
781
782static void
783nvme_fc_ctrl_connectivity_loss(struct nvme_fc_ctrl *ctrl)
784{
785	dev_info(ctrl->ctrl.device,
786		"NVME-FC{%d}: controller connectivity lost. Awaiting "
787		"Reconnect", ctrl->cnum);
788
789	switch (nvme_ctrl_state(&ctrl->ctrl)) {
790	case NVME_CTRL_NEW:
791	case NVME_CTRL_LIVE:
792		/*
793		 * Schedule a controller reset. The reset will terminate the
794		 * association and schedule the reconnect timer.  Reconnects
795		 * will be attempted until either the ctlr_loss_tmo
796		 * (max_retries * connect_delay) expires or the remoteport's
797		 * dev_loss_tmo expires.
798		 */
799		if (nvme_reset_ctrl(&ctrl->ctrl)) {
800			dev_warn(ctrl->ctrl.device,
801				"NVME-FC{%d}: Couldn't schedule reset.\n",
802				ctrl->cnum);
803			nvme_delete_ctrl(&ctrl->ctrl);
804		}
805		break;
806
807	case NVME_CTRL_CONNECTING:
808		/*
809		 * The association has already been terminated and the
810		 * controller is attempting reconnects.  No need to do anything
811		 * futher.  Reconnects will be attempted until either the
812		 * ctlr_loss_tmo (max_retries * connect_delay) expires or the
813		 * remoteport's dev_loss_tmo expires.
814		 */
815		break;
816
817	case NVME_CTRL_RESETTING:
818		/*
819		 * Controller is already in the process of terminating the
820		 * association.  No need to do anything further. The reconnect
821		 * step will kick in naturally after the association is
822		 * terminated.
823		 */
824		break;
825
826	case NVME_CTRL_DELETING:
827	case NVME_CTRL_DELETING_NOIO:
828	default:
829		/* no action to take - let it delete */
830		break;
831	}
832}
833
834/**
835 * nvme_fc_unregister_remoteport - transport entry point called by an
836 *                              LLDD to deregister/remove a previously
837 *                              registered a NVME subsystem FC port.
838 * @portptr: pointer to the (registered) remote port that is to be
839 *           deregistered.
840 *
841 * Returns:
842 * a completion status. Must be 0 upon success; a negative errno
843 * (ex: -ENXIO) upon failure.
844 */
845int
846nvme_fc_unregister_remoteport(struct nvme_fc_remote_port *portptr)
847{
848	struct nvme_fc_rport *rport = remoteport_to_rport(portptr);
849	struct nvme_fc_ctrl *ctrl;
850	unsigned long flags;
851
852	if (!portptr)
853		return -EINVAL;
854
855	spin_lock_irqsave(&rport->lock, flags);
856
857	if (portptr->port_state != FC_OBJSTATE_ONLINE) {
858		spin_unlock_irqrestore(&rport->lock, flags);
859		return -EINVAL;
860	}
861	portptr->port_state = FC_OBJSTATE_DELETED;
862
863	rport->dev_loss_end = jiffies + (portptr->dev_loss_tmo * HZ);
864
865	list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) {
866		/* if dev_loss_tmo==0, dev loss is immediate */
867		if (!portptr->dev_loss_tmo) {
868			dev_warn(ctrl->ctrl.device,
869				"NVME-FC{%d}: controller connectivity lost.\n",
870				ctrl->cnum);
871			nvme_delete_ctrl(&ctrl->ctrl);
872		} else
873			nvme_fc_ctrl_connectivity_loss(ctrl);
874	}
875
876	spin_unlock_irqrestore(&rport->lock, flags);
877
878	nvme_fc_abort_lsops(rport);
879
880	if (atomic_read(&rport->act_ctrl_cnt) == 0)
881		rport->lport->ops->remoteport_delete(portptr);
882
883	/*
884	 * release the reference, which will allow, if all controllers
885	 * go away, which should only occur after dev_loss_tmo occurs,
886	 * for the rport to be torn down.
887	 */
888	nvme_fc_rport_put(rport);
889
890	return 0;
891}
892EXPORT_SYMBOL_GPL(nvme_fc_unregister_remoteport);
893
894/**
895 * nvme_fc_rescan_remoteport - transport entry point called by an
896 *                              LLDD to request a nvme device rescan.
897 * @remoteport: pointer to the (registered) remote port that is to be
898 *              rescanned.
899 *
900 * Returns: N/A
901 */
902void
903nvme_fc_rescan_remoteport(struct nvme_fc_remote_port *remoteport)
904{
905	struct nvme_fc_rport *rport = remoteport_to_rport(remoteport);
906
907	nvme_fc_signal_discovery_scan(rport->lport, rport);
908}
909EXPORT_SYMBOL_GPL(nvme_fc_rescan_remoteport);
910
911int
912nvme_fc_set_remoteport_devloss(struct nvme_fc_remote_port *portptr,
913			u32 dev_loss_tmo)
914{
915	struct nvme_fc_rport *rport = remoteport_to_rport(portptr);
916	unsigned long flags;
917
918	spin_lock_irqsave(&rport->lock, flags);
919
920	if (portptr->port_state != FC_OBJSTATE_ONLINE) {
921		spin_unlock_irqrestore(&rport->lock, flags);
922		return -EINVAL;
923	}
924
925	/* a dev_loss_tmo of 0 (immediate) is allowed to be set */
926	rport->remoteport.dev_loss_tmo = dev_loss_tmo;
927
928	spin_unlock_irqrestore(&rport->lock, flags);
929
930	return 0;
931}
932EXPORT_SYMBOL_GPL(nvme_fc_set_remoteport_devloss);
933
934
935/* *********************** FC-NVME DMA Handling **************************** */
936
937/*
938 * The fcloop device passes in a NULL device pointer. Real LLD's will
939 * pass in a valid device pointer. If NULL is passed to the dma mapping
940 * routines, depending on the platform, it may or may not succeed, and
941 * may crash.
942 *
943 * As such:
944 * Wrapper all the dma routines and check the dev pointer.
945 *
946 * If simple mappings (return just a dma address, we'll noop them,
947 * returning a dma address of 0.
948 *
949 * On more complex mappings (dma_map_sg), a pseudo routine fills
950 * in the scatter list, setting all dma addresses to 0.
951 */
952
953static inline dma_addr_t
954fc_dma_map_single(struct device *dev, void *ptr, size_t size,
955		enum dma_data_direction dir)
956{
957	return dev ? dma_map_single(dev, ptr, size, dir) : (dma_addr_t)0L;
958}
959
960static inline int
961fc_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
962{
963	return dev ? dma_mapping_error(dev, dma_addr) : 0;
964}
965
966static inline void
967fc_dma_unmap_single(struct device *dev, dma_addr_t addr, size_t size,
968	enum dma_data_direction dir)
969{
970	if (dev)
971		dma_unmap_single(dev, addr, size, dir);
972}
973
974static inline void
975fc_dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
976		enum dma_data_direction dir)
977{
978	if (dev)
979		dma_sync_single_for_cpu(dev, addr, size, dir);
980}
981
982static inline void
983fc_dma_sync_single_for_device(struct device *dev, dma_addr_t addr, size_t size,
984		enum dma_data_direction dir)
985{
986	if (dev)
987		dma_sync_single_for_device(dev, addr, size, dir);
988}
989
990/* pseudo dma_map_sg call */
991static int
992fc_map_sg(struct scatterlist *sg, int nents)
993{
994	struct scatterlist *s;
995	int i;
996
997	WARN_ON(nents == 0 || sg[0].length == 0);
998
999	for_each_sg(sg, s, nents, i) {
1000		s->dma_address = 0L;
1001#ifdef CONFIG_NEED_SG_DMA_LENGTH
1002		s->dma_length = s->length;
1003#endif
1004	}
1005	return nents;
1006}
1007
1008static inline int
1009fc_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1010		enum dma_data_direction dir)
1011{
1012	return dev ? dma_map_sg(dev, sg, nents, dir) : fc_map_sg(sg, nents);
1013}
1014
1015static inline void
1016fc_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1017		enum dma_data_direction dir)
1018{
1019	if (dev)
1020		dma_unmap_sg(dev, sg, nents, dir);
1021}
1022
1023/* *********************** FC-NVME LS Handling **************************** */
1024
1025static void nvme_fc_ctrl_put(struct nvme_fc_ctrl *);
1026static int nvme_fc_ctrl_get(struct nvme_fc_ctrl *);
1027
1028static void nvme_fc_error_recovery(struct nvme_fc_ctrl *ctrl, char *errmsg);
1029
1030static void
1031__nvme_fc_finish_ls_req(struct nvmefc_ls_req_op *lsop)
1032{
1033	struct nvme_fc_rport *rport = lsop->rport;
1034	struct nvmefc_ls_req *lsreq = &lsop->ls_req;
1035	unsigned long flags;
1036
1037	spin_lock_irqsave(&rport->lock, flags);
1038
1039	if (!lsop->req_queued) {
1040		spin_unlock_irqrestore(&rport->lock, flags);
1041		return;
1042	}
1043
1044	list_del(&lsop->lsreq_list);
1045
1046	lsop->req_queued = false;
1047
1048	spin_unlock_irqrestore(&rport->lock, flags);
1049
1050	fc_dma_unmap_single(rport->dev, lsreq->rqstdma,
1051				  (lsreq->rqstlen + lsreq->rsplen),
1052				  DMA_BIDIRECTIONAL);
1053
1054	nvme_fc_rport_put(rport);
1055}
1056
1057static int
1058__nvme_fc_send_ls_req(struct nvme_fc_rport *rport,
1059		struct nvmefc_ls_req_op *lsop,
1060		void (*done)(struct nvmefc_ls_req *req, int status))
1061{
1062	struct nvmefc_ls_req *lsreq = &lsop->ls_req;
1063	unsigned long flags;
1064	int ret = 0;
1065
1066	if (rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
1067		return -ECONNREFUSED;
1068
1069	if (!nvme_fc_rport_get(rport))
1070		return -ESHUTDOWN;
1071
1072	lsreq->done = done;
1073	lsop->rport = rport;
1074	lsop->req_queued = false;
1075	INIT_LIST_HEAD(&lsop->lsreq_list);
1076	init_completion(&lsop->ls_done);
1077
1078	lsreq->rqstdma = fc_dma_map_single(rport->dev, lsreq->rqstaddr,
1079				  lsreq->rqstlen + lsreq->rsplen,
1080				  DMA_BIDIRECTIONAL);
1081	if (fc_dma_mapping_error(rport->dev, lsreq->rqstdma)) {
1082		ret = -EFAULT;
1083		goto out_putrport;
1084	}
1085	lsreq->rspdma = lsreq->rqstdma + lsreq->rqstlen;
1086
1087	spin_lock_irqsave(&rport->lock, flags);
1088
1089	list_add_tail(&lsop->lsreq_list, &rport->ls_req_list);
1090
1091	lsop->req_queued = true;
1092
1093	spin_unlock_irqrestore(&rport->lock, flags);
1094
1095	ret = rport->lport->ops->ls_req(&rport->lport->localport,
1096					&rport->remoteport, lsreq);
1097	if (ret)
1098		goto out_unlink;
1099
1100	return 0;
1101
1102out_unlink:
1103	lsop->ls_error = ret;
1104	spin_lock_irqsave(&rport->lock, flags);
1105	lsop->req_queued = false;
1106	list_del(&lsop->lsreq_list);
1107	spin_unlock_irqrestore(&rport->lock, flags);
1108	fc_dma_unmap_single(rport->dev, lsreq->rqstdma,
1109				  (lsreq->rqstlen + lsreq->rsplen),
1110				  DMA_BIDIRECTIONAL);
1111out_putrport:
1112	nvme_fc_rport_put(rport);
1113
1114	return ret;
1115}
1116
1117static void
1118nvme_fc_send_ls_req_done(struct nvmefc_ls_req *lsreq, int status)
1119{
1120	struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq);
1121
1122	lsop->ls_error = status;
1123	complete(&lsop->ls_done);
1124}
1125
1126static int
1127nvme_fc_send_ls_req(struct nvme_fc_rport *rport, struct nvmefc_ls_req_op *lsop)
1128{
1129	struct nvmefc_ls_req *lsreq = &lsop->ls_req;
1130	struct fcnvme_ls_rjt *rjt = lsreq->rspaddr;
1131	int ret;
1132
1133	ret = __nvme_fc_send_ls_req(rport, lsop, nvme_fc_send_ls_req_done);
1134
1135	if (!ret) {
1136		/*
1137		 * No timeout/not interruptible as we need the struct
1138		 * to exist until the lldd calls us back. Thus mandate
1139		 * wait until driver calls back. lldd responsible for
1140		 * the timeout action
1141		 */
1142		wait_for_completion(&lsop->ls_done);
1143
1144		__nvme_fc_finish_ls_req(lsop);
1145
1146		ret = lsop->ls_error;
1147	}
1148
1149	if (ret)
1150		return ret;
1151
1152	/* ACC or RJT payload ? */
1153	if (rjt->w0.ls_cmd == FCNVME_LS_RJT)
1154		return -ENXIO;
1155
1156	return 0;
1157}
1158
1159static int
1160nvme_fc_send_ls_req_async(struct nvme_fc_rport *rport,
1161		struct nvmefc_ls_req_op *lsop,
1162		void (*done)(struct nvmefc_ls_req *req, int status))
1163{
1164	/* don't wait for completion */
1165
1166	return __nvme_fc_send_ls_req(rport, lsop, done);
1167}
1168
1169static int
1170nvme_fc_connect_admin_queue(struct nvme_fc_ctrl *ctrl,
1171	struct nvme_fc_queue *queue, u16 qsize, u16 ersp_ratio)
1172{
1173	struct nvmefc_ls_req_op *lsop;
1174	struct nvmefc_ls_req *lsreq;
1175	struct fcnvme_ls_cr_assoc_rqst *assoc_rqst;
1176	struct fcnvme_ls_cr_assoc_acc *assoc_acc;
1177	unsigned long flags;
1178	int ret, fcret = 0;
1179
1180	lsop = kzalloc((sizeof(*lsop) +
1181			 sizeof(*assoc_rqst) + sizeof(*assoc_acc) +
1182			 ctrl->lport->ops->lsrqst_priv_sz), GFP_KERNEL);
1183	if (!lsop) {
1184		dev_info(ctrl->ctrl.device,
1185			"NVME-FC{%d}: send Create Association failed: ENOMEM\n",
1186			ctrl->cnum);
1187		ret = -ENOMEM;
1188		goto out_no_memory;
1189	}
1190
1191	assoc_rqst = (struct fcnvme_ls_cr_assoc_rqst *)&lsop[1];
1192	assoc_acc = (struct fcnvme_ls_cr_assoc_acc *)&assoc_rqst[1];
1193	lsreq = &lsop->ls_req;
1194	if (ctrl->lport->ops->lsrqst_priv_sz)
1195		lsreq->private = &assoc_acc[1];
1196	else
1197		lsreq->private = NULL;
1198
1199	assoc_rqst->w0.ls_cmd = FCNVME_LS_CREATE_ASSOCIATION;
1200	assoc_rqst->desc_list_len =
1201			cpu_to_be32(sizeof(struct fcnvme_lsdesc_cr_assoc_cmd));
1202
1203	assoc_rqst->assoc_cmd.desc_tag =
1204			cpu_to_be32(FCNVME_LSDESC_CREATE_ASSOC_CMD);
1205	assoc_rqst->assoc_cmd.desc_len =
1206			fcnvme_lsdesc_len(
1207				sizeof(struct fcnvme_lsdesc_cr_assoc_cmd));
1208
1209	assoc_rqst->assoc_cmd.ersp_ratio = cpu_to_be16(ersp_ratio);
1210	assoc_rqst->assoc_cmd.sqsize = cpu_to_be16(qsize - 1);
1211	/* Linux supports only Dynamic controllers */
1212	assoc_rqst->assoc_cmd.cntlid = cpu_to_be16(0xffff);
1213	uuid_copy(&assoc_rqst->assoc_cmd.hostid, &ctrl->ctrl.opts->host->id);
1214	strscpy(assoc_rqst->assoc_cmd.hostnqn, ctrl->ctrl.opts->host->nqn,
1215		sizeof(assoc_rqst->assoc_cmd.hostnqn));
1216	strscpy(assoc_rqst->assoc_cmd.subnqn, ctrl->ctrl.opts->subsysnqn,
1217		sizeof(assoc_rqst->assoc_cmd.subnqn));
1218
1219	lsop->queue = queue;
1220	lsreq->rqstaddr = assoc_rqst;
1221	lsreq->rqstlen = sizeof(*assoc_rqst);
1222	lsreq->rspaddr = assoc_acc;
1223	lsreq->rsplen = sizeof(*assoc_acc);
1224	lsreq->timeout = NVME_FC_LS_TIMEOUT_SEC;
1225
1226	ret = nvme_fc_send_ls_req(ctrl->rport, lsop);
1227	if (ret)
1228		goto out_free_buffer;
1229
1230	/* process connect LS completion */
1231
1232	/* validate the ACC response */
1233	if (assoc_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC)
1234		fcret = VERR_LSACC;
1235	else if (assoc_acc->hdr.desc_list_len !=
1236			fcnvme_lsdesc_len(
1237				sizeof(struct fcnvme_ls_cr_assoc_acc)))
1238		fcret = VERR_CR_ASSOC_ACC_LEN;
1239	else if (assoc_acc->hdr.rqst.desc_tag !=
1240			cpu_to_be32(FCNVME_LSDESC_RQST))
1241		fcret = VERR_LSDESC_RQST;
1242	else if (assoc_acc->hdr.rqst.desc_len !=
1243			fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst)))
1244		fcret = VERR_LSDESC_RQST_LEN;
1245	else if (assoc_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_ASSOCIATION)
1246		fcret = VERR_CR_ASSOC;
1247	else if (assoc_acc->associd.desc_tag !=
1248			cpu_to_be32(FCNVME_LSDESC_ASSOC_ID))
1249		fcret = VERR_ASSOC_ID;
1250	else if (assoc_acc->associd.desc_len !=
1251			fcnvme_lsdesc_len(
1252				sizeof(struct fcnvme_lsdesc_assoc_id)))
1253		fcret = VERR_ASSOC_ID_LEN;
1254	else if (assoc_acc->connectid.desc_tag !=
1255			cpu_to_be32(FCNVME_LSDESC_CONN_ID))
1256		fcret = VERR_CONN_ID;
1257	else if (assoc_acc->connectid.desc_len !=
1258			fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id)))
1259		fcret = VERR_CONN_ID_LEN;
1260
1261	if (fcret) {
1262		ret = -EBADF;
1263		dev_err(ctrl->dev,
1264			"q %d Create Association LS failed: %s\n",
1265			queue->qnum, validation_errors[fcret]);
1266	} else {
1267		spin_lock_irqsave(&ctrl->lock, flags);
1268		ctrl->association_id =
1269			be64_to_cpu(assoc_acc->associd.association_id);
1270		queue->connection_id =
1271			be64_to_cpu(assoc_acc->connectid.connection_id);
1272		set_bit(NVME_FC_Q_CONNECTED, &queue->flags);
1273		spin_unlock_irqrestore(&ctrl->lock, flags);
1274	}
1275
1276out_free_buffer:
1277	kfree(lsop);
1278out_no_memory:
1279	if (ret)
1280		dev_err(ctrl->dev,
1281			"queue %d connect admin queue failed (%d).\n",
1282			queue->qnum, ret);
1283	return ret;
1284}
1285
1286static int
1287nvme_fc_connect_queue(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue,
1288			u16 qsize, u16 ersp_ratio)
1289{
1290	struct nvmefc_ls_req_op *lsop;
1291	struct nvmefc_ls_req *lsreq;
1292	struct fcnvme_ls_cr_conn_rqst *conn_rqst;
1293	struct fcnvme_ls_cr_conn_acc *conn_acc;
1294	int ret, fcret = 0;
1295
1296	lsop = kzalloc((sizeof(*lsop) +
1297			 sizeof(*conn_rqst) + sizeof(*conn_acc) +
1298			 ctrl->lport->ops->lsrqst_priv_sz), GFP_KERNEL);
1299	if (!lsop) {
1300		dev_info(ctrl->ctrl.device,
1301			"NVME-FC{%d}: send Create Connection failed: ENOMEM\n",
1302			ctrl->cnum);
1303		ret = -ENOMEM;
1304		goto out_no_memory;
1305	}
1306
1307	conn_rqst = (struct fcnvme_ls_cr_conn_rqst *)&lsop[1];
1308	conn_acc = (struct fcnvme_ls_cr_conn_acc *)&conn_rqst[1];
1309	lsreq = &lsop->ls_req;
1310	if (ctrl->lport->ops->lsrqst_priv_sz)
1311		lsreq->private = (void *)&conn_acc[1];
1312	else
1313		lsreq->private = NULL;
1314
1315	conn_rqst->w0.ls_cmd = FCNVME_LS_CREATE_CONNECTION;
1316	conn_rqst->desc_list_len = cpu_to_be32(
1317				sizeof(struct fcnvme_lsdesc_assoc_id) +
1318				sizeof(struct fcnvme_lsdesc_cr_conn_cmd));
1319
1320	conn_rqst->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
1321	conn_rqst->associd.desc_len =
1322			fcnvme_lsdesc_len(
1323				sizeof(struct fcnvme_lsdesc_assoc_id));
1324	conn_rqst->associd.association_id = cpu_to_be64(ctrl->association_id);
1325	conn_rqst->connect_cmd.desc_tag =
1326			cpu_to_be32(FCNVME_LSDESC_CREATE_CONN_CMD);
1327	conn_rqst->connect_cmd.desc_len =
1328			fcnvme_lsdesc_len(
1329				sizeof(struct fcnvme_lsdesc_cr_conn_cmd));
1330	conn_rqst->connect_cmd.ersp_ratio = cpu_to_be16(ersp_ratio);
1331	conn_rqst->connect_cmd.qid  = cpu_to_be16(queue->qnum);
1332	conn_rqst->connect_cmd.sqsize = cpu_to_be16(qsize - 1);
1333
1334	lsop->queue = queue;
1335	lsreq->rqstaddr = conn_rqst;
1336	lsreq->rqstlen = sizeof(*conn_rqst);
1337	lsreq->rspaddr = conn_acc;
1338	lsreq->rsplen = sizeof(*conn_acc);
1339	lsreq->timeout = NVME_FC_LS_TIMEOUT_SEC;
1340
1341	ret = nvme_fc_send_ls_req(ctrl->rport, lsop);
1342	if (ret)
1343		goto out_free_buffer;
1344
1345	/* process connect LS completion */
1346
1347	/* validate the ACC response */
1348	if (conn_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC)
1349		fcret = VERR_LSACC;
1350	else if (conn_acc->hdr.desc_list_len !=
1351			fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_cr_conn_acc)))
1352		fcret = VERR_CR_CONN_ACC_LEN;
1353	else if (conn_acc->hdr.rqst.desc_tag != cpu_to_be32(FCNVME_LSDESC_RQST))
1354		fcret = VERR_LSDESC_RQST;
1355	else if (conn_acc->hdr.rqst.desc_len !=
1356			fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst)))
1357		fcret = VERR_LSDESC_RQST_LEN;
1358	else if (conn_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_CONNECTION)
1359		fcret = VERR_CR_CONN;
1360	else if (conn_acc->connectid.desc_tag !=
1361			cpu_to_be32(FCNVME_LSDESC_CONN_ID))
1362		fcret = VERR_CONN_ID;
1363	else if (conn_acc->connectid.desc_len !=
1364			fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id)))
1365		fcret = VERR_CONN_ID_LEN;
1366
1367	if (fcret) {
1368		ret = -EBADF;
1369		dev_err(ctrl->dev,
1370			"q %d Create I/O Connection LS failed: %s\n",
1371			queue->qnum, validation_errors[fcret]);
1372	} else {
1373		queue->connection_id =
1374			be64_to_cpu(conn_acc->connectid.connection_id);
1375		set_bit(NVME_FC_Q_CONNECTED, &queue->flags);
1376	}
1377
1378out_free_buffer:
1379	kfree(lsop);
1380out_no_memory:
1381	if (ret)
1382		dev_err(ctrl->dev,
1383			"queue %d connect I/O queue failed (%d).\n",
1384			queue->qnum, ret);
1385	return ret;
1386}
1387
1388static void
1389nvme_fc_disconnect_assoc_done(struct nvmefc_ls_req *lsreq, int status)
1390{
1391	struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq);
1392
1393	__nvme_fc_finish_ls_req(lsop);
1394
1395	/* fc-nvme initiator doesn't care about success or failure of cmd */
1396
1397	kfree(lsop);
1398}
1399
1400/*
1401 * This routine sends a FC-NVME LS to disconnect (aka terminate)
1402 * the FC-NVME Association.  Terminating the association also
1403 * terminates the FC-NVME connections (per queue, both admin and io
1404 * queues) that are part of the association. E.g. things are torn
1405 * down, and the related FC-NVME Association ID and Connection IDs
1406 * become invalid.
1407 *
1408 * The behavior of the fc-nvme initiator is such that it's
1409 * understanding of the association and connections will implicitly
1410 * be torn down. The action is implicit as it may be due to a loss of
1411 * connectivity with the fc-nvme target, so you may never get a
1412 * response even if you tried.  As such, the action of this routine
1413 * is to asynchronously send the LS, ignore any results of the LS, and
1414 * continue on with terminating the association. If the fc-nvme target
1415 * is present and receives the LS, it too can tear down.
1416 */
1417static void
1418nvme_fc_xmt_disconnect_assoc(struct nvme_fc_ctrl *ctrl)
1419{
1420	struct fcnvme_ls_disconnect_assoc_rqst *discon_rqst;
1421	struct fcnvme_ls_disconnect_assoc_acc *discon_acc;
1422	struct nvmefc_ls_req_op *lsop;
1423	struct nvmefc_ls_req *lsreq;
1424	int ret;
1425
1426	lsop = kzalloc((sizeof(*lsop) +
1427			sizeof(*discon_rqst) + sizeof(*discon_acc) +
1428			ctrl->lport->ops->lsrqst_priv_sz), GFP_KERNEL);
1429	if (!lsop) {
1430		dev_info(ctrl->ctrl.device,
1431			"NVME-FC{%d}: send Disconnect Association "
1432			"failed: ENOMEM\n",
1433			ctrl->cnum);
1434		return;
1435	}
1436
1437	discon_rqst = (struct fcnvme_ls_disconnect_assoc_rqst *)&lsop[1];
1438	discon_acc = (struct fcnvme_ls_disconnect_assoc_acc *)&discon_rqst[1];
1439	lsreq = &lsop->ls_req;
1440	if (ctrl->lport->ops->lsrqst_priv_sz)
1441		lsreq->private = (void *)&discon_acc[1];
1442	else
1443		lsreq->private = NULL;
1444
1445	nvmefc_fmt_lsreq_discon_assoc(lsreq, discon_rqst, discon_acc,
1446				ctrl->association_id);
1447
1448	ret = nvme_fc_send_ls_req_async(ctrl->rport, lsop,
1449				nvme_fc_disconnect_assoc_done);
1450	if (ret)
1451		kfree(lsop);
1452}
1453
1454static void
1455nvme_fc_xmt_ls_rsp_done(struct nvmefc_ls_rsp *lsrsp)
1456{
1457	struct nvmefc_ls_rcv_op *lsop = lsrsp->nvme_fc_private;
1458	struct nvme_fc_rport *rport = lsop->rport;
1459	struct nvme_fc_lport *lport = rport->lport;
1460	unsigned long flags;
1461
1462	spin_lock_irqsave(&rport->lock, flags);
1463	list_del(&lsop->lsrcv_list);
1464	spin_unlock_irqrestore(&rport->lock, flags);
1465
1466	fc_dma_sync_single_for_cpu(lport->dev, lsop->rspdma,
1467				sizeof(*lsop->rspbuf), DMA_TO_DEVICE);
1468	fc_dma_unmap_single(lport->dev, lsop->rspdma,
1469			sizeof(*lsop->rspbuf), DMA_TO_DEVICE);
1470
1471	kfree(lsop->rspbuf);
1472	kfree(lsop->rqstbuf);
1473	kfree(lsop);
1474
1475	nvme_fc_rport_put(rport);
1476}
1477
1478static void
1479nvme_fc_xmt_ls_rsp(struct nvmefc_ls_rcv_op *lsop)
1480{
1481	struct nvme_fc_rport *rport = lsop->rport;
1482	struct nvme_fc_lport *lport = rport->lport;
1483	struct fcnvme_ls_rqst_w0 *w0 = &lsop->rqstbuf->w0;
1484	int ret;
1485
1486	fc_dma_sync_single_for_device(lport->dev, lsop->rspdma,
1487				  sizeof(*lsop->rspbuf), DMA_TO_DEVICE);
1488
1489	ret = lport->ops->xmt_ls_rsp(&lport->localport, &rport->remoteport,
1490				     lsop->lsrsp);
1491	if (ret) {
1492		dev_warn(lport->dev,
1493			"LLDD rejected LS RSP xmt: LS %d status %d\n",
1494			w0->ls_cmd, ret);
1495		nvme_fc_xmt_ls_rsp_done(lsop->lsrsp);
1496		return;
1497	}
1498}
1499
1500static struct nvme_fc_ctrl *
1501nvme_fc_match_disconn_ls(struct nvme_fc_rport *rport,
1502		      struct nvmefc_ls_rcv_op *lsop)
1503{
1504	struct fcnvme_ls_disconnect_assoc_rqst *rqst =
1505					&lsop->rqstbuf->rq_dis_assoc;
1506	struct nvme_fc_ctrl *ctrl, *ret = NULL;
1507	struct nvmefc_ls_rcv_op *oldls = NULL;
1508	u64 association_id = be64_to_cpu(rqst->associd.association_id);
1509	unsigned long flags;
1510
1511	spin_lock_irqsave(&rport->lock, flags);
1512
1513	list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) {
1514		if (!nvme_fc_ctrl_get(ctrl))
1515			continue;
1516		spin_lock(&ctrl->lock);
1517		if (association_id == ctrl->association_id) {
1518			oldls = ctrl->rcv_disconn;
1519			ctrl->rcv_disconn = lsop;
1520			ret = ctrl;
1521		}
1522		spin_unlock(&ctrl->lock);
1523		if (ret)
1524			/* leave the ctrl get reference */
1525			break;
1526		nvme_fc_ctrl_put(ctrl);
1527	}
1528
1529	spin_unlock_irqrestore(&rport->lock, flags);
1530
1531	/* transmit a response for anything that was pending */
1532	if (oldls) {
1533		dev_info(rport->lport->dev,
1534			"NVME-FC{%d}: Multiple Disconnect Association "
1535			"LS's received\n", ctrl->cnum);
1536		/* overwrite good response with bogus failure */
1537		oldls->lsrsp->rsplen = nvme_fc_format_rjt(oldls->rspbuf,
1538						sizeof(*oldls->rspbuf),
1539						rqst->w0.ls_cmd,
1540						FCNVME_RJT_RC_UNAB,
1541						FCNVME_RJT_EXP_NONE, 0);
1542		nvme_fc_xmt_ls_rsp(oldls);
1543	}
1544
1545	return ret;
1546}
1547
1548/*
1549 * returns true to mean LS handled and ls_rsp can be sent
1550 * returns false to defer ls_rsp xmt (will be done as part of
1551 *     association termination)
1552 */
1553static bool
1554nvme_fc_ls_disconnect_assoc(struct nvmefc_ls_rcv_op *lsop)
1555{
1556	struct nvme_fc_rport *rport = lsop->rport;
1557	struct fcnvme_ls_disconnect_assoc_rqst *rqst =
1558					&lsop->rqstbuf->rq_dis_assoc;
1559	struct fcnvme_ls_disconnect_assoc_acc *acc =
1560					&lsop->rspbuf->rsp_dis_assoc;
1561	struct nvme_fc_ctrl *ctrl = NULL;
1562	int ret = 0;
1563
1564	memset(acc, 0, sizeof(*acc));
1565
1566	ret = nvmefc_vldt_lsreq_discon_assoc(lsop->rqstdatalen, rqst);
1567	if (!ret) {
1568		/* match an active association */
1569		ctrl = nvme_fc_match_disconn_ls(rport, lsop);
1570		if (!ctrl)
1571			ret = VERR_NO_ASSOC;
1572	}
1573
1574	if (ret) {
1575		dev_info(rport->lport->dev,
1576			"Disconnect LS failed: %s\n",
1577			validation_errors[ret]);
1578		lsop->lsrsp->rsplen = nvme_fc_format_rjt(acc,
1579					sizeof(*acc), rqst->w0.ls_cmd,
1580					(ret == VERR_NO_ASSOC) ?
1581						FCNVME_RJT_RC_INV_ASSOC :
1582						FCNVME_RJT_RC_LOGIC,
1583					FCNVME_RJT_EXP_NONE, 0);
1584		return true;
1585	}
1586
1587	/* format an ACCept response */
1588
1589	lsop->lsrsp->rsplen = sizeof(*acc);
1590
1591	nvme_fc_format_rsp_hdr(acc, FCNVME_LS_ACC,
1592			fcnvme_lsdesc_len(
1593				sizeof(struct fcnvme_ls_disconnect_assoc_acc)),
1594			FCNVME_LS_DISCONNECT_ASSOC);
1595
1596	/*
1597	 * the transmit of the response will occur after the exchanges
1598	 * for the association have been ABTS'd by
1599	 * nvme_fc_delete_association().
1600	 */
1601
1602	/* fail the association */
1603	nvme_fc_error_recovery(ctrl, "Disconnect Association LS received");
1604
1605	/* release the reference taken by nvme_fc_match_disconn_ls() */
1606	nvme_fc_ctrl_put(ctrl);
1607
1608	return false;
1609}
1610
1611/*
1612 * Actual Processing routine for received FC-NVME LS Requests from the LLD
1613 * returns true if a response should be sent afterward, false if rsp will
1614 * be sent asynchronously.
1615 */
1616static bool
1617nvme_fc_handle_ls_rqst(struct nvmefc_ls_rcv_op *lsop)
1618{
1619	struct fcnvme_ls_rqst_w0 *w0 = &lsop->rqstbuf->w0;
1620	bool ret = true;
1621
1622	lsop->lsrsp->nvme_fc_private = lsop;
1623	lsop->lsrsp->rspbuf = lsop->rspbuf;
1624	lsop->lsrsp->rspdma = lsop->rspdma;
1625	lsop->lsrsp->done = nvme_fc_xmt_ls_rsp_done;
1626	/* Be preventative. handlers will later set to valid length */
1627	lsop->lsrsp->rsplen = 0;
1628
1629	/*
1630	 * handlers:
1631	 *   parse request input, execute the request, and format the
1632	 *   LS response
1633	 */
1634	switch (w0->ls_cmd) {
1635	case FCNVME_LS_DISCONNECT_ASSOC:
1636		ret = nvme_fc_ls_disconnect_assoc(lsop);
1637		break;
1638	case FCNVME_LS_DISCONNECT_CONN:
1639		lsop->lsrsp->rsplen = nvme_fc_format_rjt(lsop->rspbuf,
1640				sizeof(*lsop->rspbuf), w0->ls_cmd,
1641				FCNVME_RJT_RC_UNSUP, FCNVME_RJT_EXP_NONE, 0);
1642		break;
1643	case FCNVME_LS_CREATE_ASSOCIATION:
1644	case FCNVME_LS_CREATE_CONNECTION:
1645		lsop->lsrsp->rsplen = nvme_fc_format_rjt(lsop->rspbuf,
1646				sizeof(*lsop->rspbuf), w0->ls_cmd,
1647				FCNVME_RJT_RC_LOGIC, FCNVME_RJT_EXP_NONE, 0);
1648		break;
1649	default:
1650		lsop->lsrsp->rsplen = nvme_fc_format_rjt(lsop->rspbuf,
1651				sizeof(*lsop->rspbuf), w0->ls_cmd,
1652				FCNVME_RJT_RC_INVAL, FCNVME_RJT_EXP_NONE, 0);
1653		break;
1654	}
1655
1656	return(ret);
1657}
1658
1659static void
1660nvme_fc_handle_ls_rqst_work(struct work_struct *work)
1661{
1662	struct nvme_fc_rport *rport =
1663		container_of(work, struct nvme_fc_rport, lsrcv_work);
1664	struct fcnvme_ls_rqst_w0 *w0;
1665	struct nvmefc_ls_rcv_op *lsop;
1666	unsigned long flags;
1667	bool sendrsp;
1668
1669restart:
1670	sendrsp = true;
1671	spin_lock_irqsave(&rport->lock, flags);
1672	list_for_each_entry(lsop, &rport->ls_rcv_list, lsrcv_list) {
1673		if (lsop->handled)
1674			continue;
1675
1676		lsop->handled = true;
1677		if (rport->remoteport.port_state == FC_OBJSTATE_ONLINE) {
1678			spin_unlock_irqrestore(&rport->lock, flags);
1679			sendrsp = nvme_fc_handle_ls_rqst(lsop);
1680		} else {
1681			spin_unlock_irqrestore(&rport->lock, flags);
1682			w0 = &lsop->rqstbuf->w0;
1683			lsop->lsrsp->rsplen = nvme_fc_format_rjt(
1684						lsop->rspbuf,
1685						sizeof(*lsop->rspbuf),
1686						w0->ls_cmd,
1687						FCNVME_RJT_RC_UNAB,
1688						FCNVME_RJT_EXP_NONE, 0);
1689		}
1690		if (sendrsp)
1691			nvme_fc_xmt_ls_rsp(lsop);
1692		goto restart;
1693	}
1694	spin_unlock_irqrestore(&rport->lock, flags);
1695}
1696
1697static
1698void nvme_fc_rcv_ls_req_err_msg(struct nvme_fc_lport *lport,
1699				struct fcnvme_ls_rqst_w0 *w0)
1700{
1701	dev_info(lport->dev, "RCV %s LS failed: No memory\n",
1702		(w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ?
1703			nvmefc_ls_names[w0->ls_cmd] : "");
1704}
1705
1706/**
1707 * nvme_fc_rcv_ls_req - transport entry point called by an LLDD
1708 *                       upon the reception of a NVME LS request.
1709 *
1710 * The nvme-fc layer will copy payload to an internal structure for
1711 * processing.  As such, upon completion of the routine, the LLDD may
1712 * immediately free/reuse the LS request buffer passed in the call.
1713 *
1714 * If this routine returns error, the LLDD should abort the exchange.
1715 *
1716 * @portptr:    pointer to the (registered) remote port that the LS
1717 *              was received from. The remoteport is associated with
1718 *              a specific localport.
1719 * @lsrsp:      pointer to a nvmefc_ls_rsp response structure to be
1720 *              used to reference the exchange corresponding to the LS
1721 *              when issuing an ls response.
1722 * @lsreqbuf:   pointer to the buffer containing the LS Request
1723 * @lsreqbuf_len: length, in bytes, of the received LS request
1724 */
1725int
1726nvme_fc_rcv_ls_req(struct nvme_fc_remote_port *portptr,
1727			struct nvmefc_ls_rsp *lsrsp,
1728			void *lsreqbuf, u32 lsreqbuf_len)
1729{
1730	struct nvme_fc_rport *rport = remoteport_to_rport(portptr);
1731	struct nvme_fc_lport *lport = rport->lport;
1732	struct fcnvme_ls_rqst_w0 *w0 = (struct fcnvme_ls_rqst_w0 *)lsreqbuf;
1733	struct nvmefc_ls_rcv_op *lsop;
1734	unsigned long flags;
1735	int ret;
1736
1737	nvme_fc_rport_get(rport);
1738
1739	/* validate there's a routine to transmit a response */
1740	if (!lport->ops->xmt_ls_rsp) {
1741		dev_info(lport->dev,
1742			"RCV %s LS failed: no LLDD xmt_ls_rsp\n",
1743			(w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ?
1744				nvmefc_ls_names[w0->ls_cmd] : "");
1745		ret = -EINVAL;
1746		goto out_put;
1747	}
1748
1749	if (lsreqbuf_len > sizeof(union nvmefc_ls_requests)) {
1750		dev_info(lport->dev,
1751			"RCV %s LS failed: payload too large\n",
1752			(w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ?
1753				nvmefc_ls_names[w0->ls_cmd] : "");
1754		ret = -E2BIG;
1755		goto out_put;
1756	}
1757
1758	lsop = kzalloc(sizeof(*lsop), GFP_KERNEL);
1759	if (!lsop) {
1760		nvme_fc_rcv_ls_req_err_msg(lport, w0);
1761		ret = -ENOMEM;
1762		goto out_put;
1763	}
1764
1765	lsop->rqstbuf = kzalloc(sizeof(*lsop->rqstbuf), GFP_KERNEL);
1766	lsop->rspbuf = kzalloc(sizeof(*lsop->rspbuf), GFP_KERNEL);
1767	if (!lsop->rqstbuf || !lsop->rspbuf) {
1768		nvme_fc_rcv_ls_req_err_msg(lport, w0);
1769		ret = -ENOMEM;
1770		goto out_free;
1771	}
1772
1773	lsop->rspdma = fc_dma_map_single(lport->dev, lsop->rspbuf,
1774					sizeof(*lsop->rspbuf),
1775					DMA_TO_DEVICE);
1776	if (fc_dma_mapping_error(lport->dev, lsop->rspdma)) {
1777		dev_info(lport->dev,
1778			"RCV %s LS failed: DMA mapping failure\n",
1779			(w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ?
1780				nvmefc_ls_names[w0->ls_cmd] : "");
1781		ret = -EFAULT;
1782		goto out_free;
1783	}
1784
1785	lsop->rport = rport;
1786	lsop->lsrsp = lsrsp;
1787
1788	memcpy(lsop->rqstbuf, lsreqbuf, lsreqbuf_len);
1789	lsop->rqstdatalen = lsreqbuf_len;
1790
1791	spin_lock_irqsave(&rport->lock, flags);
1792	if (rport->remoteport.port_state != FC_OBJSTATE_ONLINE) {
1793		spin_unlock_irqrestore(&rport->lock, flags);
1794		ret = -ENOTCONN;
1795		goto out_unmap;
1796	}
1797	list_add_tail(&lsop->lsrcv_list, &rport->ls_rcv_list);
1798	spin_unlock_irqrestore(&rport->lock, flags);
1799
1800	schedule_work(&rport->lsrcv_work);
1801
1802	return 0;
1803
1804out_unmap:
1805	fc_dma_unmap_single(lport->dev, lsop->rspdma,
1806			sizeof(*lsop->rspbuf), DMA_TO_DEVICE);
1807out_free:
1808	kfree(lsop->rspbuf);
1809	kfree(lsop->rqstbuf);
1810	kfree(lsop);
1811out_put:
1812	nvme_fc_rport_put(rport);
1813	return ret;
1814}
1815EXPORT_SYMBOL_GPL(nvme_fc_rcv_ls_req);
1816
1817
1818/* *********************** NVME Ctrl Routines **************************** */
1819
1820static void
1821__nvme_fc_exit_request(struct nvme_fc_ctrl *ctrl,
1822		struct nvme_fc_fcp_op *op)
1823{
1824	fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.rspdma,
1825				sizeof(op->rsp_iu), DMA_FROM_DEVICE);
1826	fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.cmddma,
1827				sizeof(op->cmd_iu), DMA_TO_DEVICE);
1828
1829	atomic_set(&op->state, FCPOP_STATE_UNINIT);
1830}
1831
1832static void
1833nvme_fc_exit_request(struct blk_mq_tag_set *set, struct request *rq,
1834		unsigned int hctx_idx)
1835{
1836	struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1837
1838	return __nvme_fc_exit_request(to_fc_ctrl(set->driver_data), op);
1839}
1840
1841static int
1842__nvme_fc_abort_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_fcp_op *op)
1843{
1844	unsigned long flags;
1845	int opstate;
1846
1847	spin_lock_irqsave(&ctrl->lock, flags);
1848	opstate = atomic_xchg(&op->state, FCPOP_STATE_ABORTED);
1849	if (opstate != FCPOP_STATE_ACTIVE)
1850		atomic_set(&op->state, opstate);
1851	else if (test_bit(FCCTRL_TERMIO, &ctrl->flags)) {
1852		op->flags |= FCOP_FLAGS_TERMIO;
1853		ctrl->iocnt++;
1854	}
1855	spin_unlock_irqrestore(&ctrl->lock, flags);
1856
1857	if (opstate != FCPOP_STATE_ACTIVE)
1858		return -ECANCELED;
1859
1860	ctrl->lport->ops->fcp_abort(&ctrl->lport->localport,
1861					&ctrl->rport->remoteport,
1862					op->queue->lldd_handle,
1863					&op->fcp_req);
1864
1865	return 0;
1866}
1867
1868static void
1869nvme_fc_abort_aen_ops(struct nvme_fc_ctrl *ctrl)
1870{
1871	struct nvme_fc_fcp_op *aen_op = ctrl->aen_ops;
1872	int i;
1873
1874	/* ensure we've initialized the ops once */
1875	if (!(aen_op->flags & FCOP_FLAGS_AEN))
1876		return;
1877
1878	for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++)
1879		__nvme_fc_abort_op(ctrl, aen_op);
1880}
1881
1882static inline void
1883__nvme_fc_fcpop_chk_teardowns(struct nvme_fc_ctrl *ctrl,
1884		struct nvme_fc_fcp_op *op, int opstate)
1885{
1886	unsigned long flags;
1887
1888	if (opstate == FCPOP_STATE_ABORTED) {
1889		spin_lock_irqsave(&ctrl->lock, flags);
1890		if (test_bit(FCCTRL_TERMIO, &ctrl->flags) &&
1891		    op->flags & FCOP_FLAGS_TERMIO) {
1892			if (!--ctrl->iocnt)
1893				wake_up(&ctrl->ioabort_wait);
1894		}
1895		spin_unlock_irqrestore(&ctrl->lock, flags);
1896	}
1897}
1898
1899static void
1900nvme_fc_ctrl_ioerr_work(struct work_struct *work)
1901{
1902	struct nvme_fc_ctrl *ctrl =
1903			container_of(work, struct nvme_fc_ctrl, ioerr_work);
1904
1905	nvme_fc_error_recovery(ctrl, "transport detected io error");
1906}
1907
1908/*
1909 * nvme_fc_io_getuuid - Routine called to get the appid field
1910 * associated with request by the lldd
1911 * @req:IO request from nvme fc to driver
1912 * Returns: UUID if there is an appid associated with VM or
1913 * NULL if the user/libvirt has not set the appid to VM
1914 */
1915char *nvme_fc_io_getuuid(struct nvmefc_fcp_req *req)
1916{
1917	struct nvme_fc_fcp_op *op = fcp_req_to_fcp_op(req);
1918	struct request *rq = op->rq;
1919
1920	if (!IS_ENABLED(CONFIG_BLK_CGROUP_FC_APPID) || !rq || !rq->bio)
1921		return NULL;
1922	return blkcg_get_fc_appid(rq->bio);
1923}
1924EXPORT_SYMBOL_GPL(nvme_fc_io_getuuid);
1925
1926static void
1927nvme_fc_fcpio_done(struct nvmefc_fcp_req *req)
1928{
1929	struct nvme_fc_fcp_op *op = fcp_req_to_fcp_op(req);
1930	struct request *rq = op->rq;
1931	struct nvmefc_fcp_req *freq = &op->fcp_req;
1932	struct nvme_fc_ctrl *ctrl = op->ctrl;
1933	struct nvme_fc_queue *queue = op->queue;
1934	struct nvme_completion *cqe = &op->rsp_iu.cqe;
1935	struct nvme_command *sqe = &op->cmd_iu.sqe;
1936	__le16 status = cpu_to_le16(NVME_SC_SUCCESS << 1);
1937	union nvme_result result;
1938	bool terminate_assoc = true;
1939	int opstate;
1940
1941	/*
1942	 * WARNING:
1943	 * The current linux implementation of a nvme controller
1944	 * allocates a single tag set for all io queues and sizes
1945	 * the io queues to fully hold all possible tags. Thus, the
1946	 * implementation does not reference or care about the sqhd
1947	 * value as it never needs to use the sqhd/sqtail pointers
1948	 * for submission pacing.
1949	 *
1950	 * This affects the FC-NVME implementation in two ways:
1951	 * 1) As the value doesn't matter, we don't need to waste
1952	 *    cycles extracting it from ERSPs and stamping it in the
1953	 *    cases where the transport fabricates CQEs on successful
1954	 *    completions.
1955	 * 2) The FC-NVME implementation requires that delivery of
1956	 *    ERSP completions are to go back to the nvme layer in order
1957	 *    relative to the rsn, such that the sqhd value will always
1958	 *    be "in order" for the nvme layer. As the nvme layer in
1959	 *    linux doesn't care about sqhd, there's no need to return
1960	 *    them in order.
1961	 *
1962	 * Additionally:
1963	 * As the core nvme layer in linux currently does not look at
1964	 * every field in the cqe - in cases where the FC transport must
1965	 * fabricate a CQE, the following fields will not be set as they
1966	 * are not referenced:
1967	 *      cqe.sqid,  cqe.sqhd,  cqe.command_id
1968	 *
1969	 * Failure or error of an individual i/o, in a transport
1970	 * detected fashion unrelated to the nvme completion status,
1971	 * potentially cause the initiator and target sides to get out
1972	 * of sync on SQ head/tail (aka outstanding io count allowed).
1973	 * Per FC-NVME spec, failure of an individual command requires
1974	 * the connection to be terminated, which in turn requires the
1975	 * association to be terminated.
1976	 */
1977
1978	opstate = atomic_xchg(&op->state, FCPOP_STATE_COMPLETE);
1979
1980	fc_dma_sync_single_for_cpu(ctrl->lport->dev, op->fcp_req.rspdma,
1981				sizeof(op->rsp_iu), DMA_FROM_DEVICE);
1982
1983	if (opstate == FCPOP_STATE_ABORTED)
1984		status = cpu_to_le16(NVME_SC_HOST_ABORTED_CMD << 1);
1985	else if (freq->status) {
1986		status = cpu_to_le16(NVME_SC_HOST_PATH_ERROR << 1);
1987		dev_info(ctrl->ctrl.device,
1988			"NVME-FC{%d}: io failed due to lldd error %d\n",
1989			ctrl->cnum, freq->status);
1990	}
1991
1992	/*
1993	 * For the linux implementation, if we have an unsuccesful
1994	 * status, they blk-mq layer can typically be called with the
1995	 * non-zero status and the content of the cqe isn't important.
1996	 */
1997	if (status)
1998		goto done;
1999
2000	/*
2001	 * command completed successfully relative to the wire
2002	 * protocol. However, validate anything received and
2003	 * extract the status and result from the cqe (create it
2004	 * where necessary).
2005	 */
2006
2007	switch (freq->rcv_rsplen) {
2008
2009	case 0:
2010	case NVME_FC_SIZEOF_ZEROS_RSP:
2011		/*
2012		 * No response payload or 12 bytes of payload (which
2013		 * should all be zeros) are considered successful and
2014		 * no payload in the CQE by the transport.
2015		 */
2016		if (freq->transferred_length !=
2017		    be32_to_cpu(op->cmd_iu.data_len)) {
2018			status = cpu_to_le16(NVME_SC_HOST_PATH_ERROR << 1);
2019			dev_info(ctrl->ctrl.device,
2020				"NVME-FC{%d}: io failed due to bad transfer "
2021				"length: %d vs expected %d\n",
2022				ctrl->cnum, freq->transferred_length,
2023				be32_to_cpu(op->cmd_iu.data_len));
2024			goto done;
2025		}
2026		result.u64 = 0;
2027		break;
2028
2029	case sizeof(struct nvme_fc_ersp_iu):
2030		/*
2031		 * The ERSP IU contains a full completion with CQE.
2032		 * Validate ERSP IU and look at cqe.
2033		 */
2034		if (unlikely(be16_to_cpu(op->rsp_iu.iu_len) !=
2035					(freq->rcv_rsplen / 4) ||
2036			     be32_to_cpu(op->rsp_iu.xfrd_len) !=
2037					freq->transferred_length ||
2038			     op->rsp_iu.ersp_result ||
2039			     sqe->common.command_id != cqe->command_id)) {
2040			status = cpu_to_le16(NVME_SC_HOST_PATH_ERROR << 1);
2041			dev_info(ctrl->ctrl.device,
2042				"NVME-FC{%d}: io failed due to bad NVMe_ERSP: "
2043				"iu len %d, xfr len %d vs %d, status code "
2044				"%d, cmdid %d vs %d\n",
2045				ctrl->cnum, be16_to_cpu(op->rsp_iu.iu_len),
2046				be32_to_cpu(op->rsp_iu.xfrd_len),
2047				freq->transferred_length,
2048				op->rsp_iu.ersp_result,
2049				sqe->common.command_id,
2050				cqe->command_id);
2051			goto done;
2052		}
2053		result = cqe->result;
2054		status = cqe->status;
2055		break;
2056
2057	default:
2058		status = cpu_to_le16(NVME_SC_HOST_PATH_ERROR << 1);
2059		dev_info(ctrl->ctrl.device,
2060			"NVME-FC{%d}: io failed due to odd NVMe_xRSP iu "
2061			"len %d\n",
2062			ctrl->cnum, freq->rcv_rsplen);
2063		goto done;
2064	}
2065
2066	terminate_assoc = false;
2067
2068done:
2069	if (op->flags & FCOP_FLAGS_AEN) {
2070		nvme_complete_async_event(&queue->ctrl->ctrl, status, &result);
2071		__nvme_fc_fcpop_chk_teardowns(ctrl, op, opstate);
2072		atomic_set(&op->state, FCPOP_STATE_IDLE);
2073		op->flags = FCOP_FLAGS_AEN;	/* clear other flags */
2074		nvme_fc_ctrl_put(ctrl);
2075		goto check_error;
2076	}
2077
2078	__nvme_fc_fcpop_chk_teardowns(ctrl, op, opstate);
2079	if (!nvme_try_complete_req(rq, status, result))
2080		nvme_fc_complete_rq(rq);
2081
2082check_error:
2083	if (terminate_assoc && ctrl->ctrl.state != NVME_CTRL_RESETTING)
2084		queue_work(nvme_reset_wq, &ctrl->ioerr_work);
2085}
2086
2087static int
2088__nvme_fc_init_request(struct nvme_fc_ctrl *ctrl,
2089		struct nvme_fc_queue *queue, struct nvme_fc_fcp_op *op,
2090		struct request *rq, u32 rqno)
2091{
2092	struct nvme_fcp_op_w_sgl *op_w_sgl =
2093		container_of(op, typeof(*op_w_sgl), op);
2094	struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
2095	int ret = 0;
2096
2097	memset(op, 0, sizeof(*op));
2098	op->fcp_req.cmdaddr = &op->cmd_iu;
2099	op->fcp_req.cmdlen = sizeof(op->cmd_iu);
2100	op->fcp_req.rspaddr = &op->rsp_iu;
2101	op->fcp_req.rsplen = sizeof(op->rsp_iu);
2102	op->fcp_req.done = nvme_fc_fcpio_done;
2103	op->ctrl = ctrl;
2104	op->queue = queue;
2105	op->rq = rq;
2106	op->rqno = rqno;
2107
2108	cmdiu->format_id = NVME_CMD_FORMAT_ID;
2109	cmdiu->fc_id = NVME_CMD_FC_ID;
2110	cmdiu->iu_len = cpu_to_be16(sizeof(*cmdiu) / sizeof(u32));
2111	if (queue->qnum)
2112		cmdiu->rsv_cat = fccmnd_set_cat_css(0,
2113					(NVME_CC_CSS_NVM >> NVME_CC_CSS_SHIFT));
2114	else
2115		cmdiu->rsv_cat = fccmnd_set_cat_admin(0);
2116
2117	op->fcp_req.cmddma = fc_dma_map_single(ctrl->lport->dev,
2118				&op->cmd_iu, sizeof(op->cmd_iu), DMA_TO_DEVICE);
2119	if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.cmddma)) {
2120		dev_err(ctrl->dev,
2121			"FCP Op failed - cmdiu dma mapping failed.\n");
2122		ret = -EFAULT;
2123		goto out_on_error;
2124	}
2125
2126	op->fcp_req.rspdma = fc_dma_map_single(ctrl->lport->dev,
2127				&op->rsp_iu, sizeof(op->rsp_iu),
2128				DMA_FROM_DEVICE);
2129	if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.rspdma)) {
2130		dev_err(ctrl->dev,
2131			"FCP Op failed - rspiu dma mapping failed.\n");
2132		ret = -EFAULT;
2133	}
2134
2135	atomic_set(&op->state, FCPOP_STATE_IDLE);
2136out_on_error:
2137	return ret;
2138}
2139
2140static int
2141nvme_fc_init_request(struct blk_mq_tag_set *set, struct request *rq,
2142		unsigned int hctx_idx, unsigned int numa_node)
2143{
2144	struct nvme_fc_ctrl *ctrl = to_fc_ctrl(set->driver_data);
2145	struct nvme_fcp_op_w_sgl *op = blk_mq_rq_to_pdu(rq);
2146	int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
2147	struct nvme_fc_queue *queue = &ctrl->queues[queue_idx];
2148	int res;
2149
2150	res = __nvme_fc_init_request(ctrl, queue, &op->op, rq, queue->rqcnt++);
2151	if (res)
2152		return res;
2153	op->op.fcp_req.first_sgl = op->sgl;
2154	op->op.fcp_req.private = &op->priv[0];
2155	nvme_req(rq)->ctrl = &ctrl->ctrl;
2156	nvme_req(rq)->cmd = &op->op.cmd_iu.sqe;
2157	return res;
2158}
2159
2160static int
2161nvme_fc_init_aen_ops(struct nvme_fc_ctrl *ctrl)
2162{
2163	struct nvme_fc_fcp_op *aen_op;
2164	struct nvme_fc_cmd_iu *cmdiu;
2165	struct nvme_command *sqe;
2166	void *private = NULL;
2167	int i, ret;
2168
2169	aen_op = ctrl->aen_ops;
2170	for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++) {
2171		if (ctrl->lport->ops->fcprqst_priv_sz) {
2172			private = kzalloc(ctrl->lport->ops->fcprqst_priv_sz,
2173						GFP_KERNEL);
2174			if (!private)
2175				return -ENOMEM;
2176		}
2177
2178		cmdiu = &aen_op->cmd_iu;
2179		sqe = &cmdiu->sqe;
2180		ret = __nvme_fc_init_request(ctrl, &ctrl->queues[0],
2181				aen_op, (struct request *)NULL,
2182				(NVME_AQ_BLK_MQ_DEPTH + i));
2183		if (ret) {
2184			kfree(private);
2185			return ret;
2186		}
2187
2188		aen_op->flags = FCOP_FLAGS_AEN;
2189		aen_op->fcp_req.private = private;
2190
2191		memset(sqe, 0, sizeof(*sqe));
2192		sqe->common.opcode = nvme_admin_async_event;
2193		/* Note: core layer may overwrite the sqe.command_id value */
2194		sqe->common.command_id = NVME_AQ_BLK_MQ_DEPTH + i;
2195	}
2196	return 0;
2197}
2198
2199static void
2200nvme_fc_term_aen_ops(struct nvme_fc_ctrl *ctrl)
2201{
2202	struct nvme_fc_fcp_op *aen_op;
2203	int i;
2204
2205	cancel_work_sync(&ctrl->ctrl.async_event_work);
2206	aen_op = ctrl->aen_ops;
2207	for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++) {
2208		__nvme_fc_exit_request(ctrl, aen_op);
2209
2210		kfree(aen_op->fcp_req.private);
2211		aen_op->fcp_req.private = NULL;
2212	}
2213}
2214
2215static inline int
2216__nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, unsigned int qidx)
2217{
2218	struct nvme_fc_ctrl *ctrl = to_fc_ctrl(data);
2219	struct nvme_fc_queue *queue = &ctrl->queues[qidx];
2220
2221	hctx->driver_data = queue;
2222	queue->hctx = hctx;
2223	return 0;
2224}
2225
2226static int
2227nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, unsigned int hctx_idx)
2228{
2229	return __nvme_fc_init_hctx(hctx, data, hctx_idx + 1);
2230}
2231
2232static int
2233nvme_fc_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
2234		unsigned int hctx_idx)
2235{
2236	return __nvme_fc_init_hctx(hctx, data, hctx_idx);
2237}
2238
2239static void
2240nvme_fc_init_queue(struct nvme_fc_ctrl *ctrl, int idx)
2241{
2242	struct nvme_fc_queue *queue;
2243
2244	queue = &ctrl->queues[idx];
2245	memset(queue, 0, sizeof(*queue));
2246	queue->ctrl = ctrl;
2247	queue->qnum = idx;
2248	atomic_set(&queue->csn, 0);
2249	queue->dev = ctrl->dev;
2250
2251	if (idx > 0)
2252		queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
2253	else
2254		queue->cmnd_capsule_len = sizeof(struct nvme_command);
2255
2256	/*
2257	 * Considered whether we should allocate buffers for all SQEs
2258	 * and CQEs and dma map them - mapping their respective entries
2259	 * into the request structures (kernel vm addr and dma address)
2260	 * thus the driver could use the buffers/mappings directly.
2261	 * It only makes sense if the LLDD would use them for its
2262	 * messaging api. It's very unlikely most adapter api's would use
2263	 * a native NVME sqe/cqe. More reasonable if FC-NVME IU payload
2264	 * structures were used instead.
2265	 */
2266}
2267
2268/*
2269 * This routine terminates a queue at the transport level.
2270 * The transport has already ensured that all outstanding ios on
2271 * the queue have been terminated.
2272 * The transport will send a Disconnect LS request to terminate
2273 * the queue's connection. Termination of the admin queue will also
2274 * terminate the association at the target.
2275 */
2276static void
2277nvme_fc_free_queue(struct nvme_fc_queue *queue)
2278{
2279	if (!test_and_clear_bit(NVME_FC_Q_CONNECTED, &queue->flags))
2280		return;
2281
2282	clear_bit(NVME_FC_Q_LIVE, &queue->flags);
2283	/*
2284	 * Current implementation never disconnects a single queue.
2285	 * It always terminates a whole association. So there is never
2286	 * a disconnect(queue) LS sent to the target.
2287	 */
2288
2289	queue->connection_id = 0;
2290	atomic_set(&queue->csn, 0);
2291}
2292
2293static void
2294__nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *ctrl,
2295	struct nvme_fc_queue *queue, unsigned int qidx)
2296{
2297	if (ctrl->lport->ops->delete_queue)
2298		ctrl->lport->ops->delete_queue(&ctrl->lport->localport, qidx,
2299				queue->lldd_handle);
2300	queue->lldd_handle = NULL;
2301}
2302
2303static void
2304nvme_fc_free_io_queues(struct nvme_fc_ctrl *ctrl)
2305{
2306	int i;
2307
2308	for (i = 1; i < ctrl->ctrl.queue_count; i++)
2309		nvme_fc_free_queue(&ctrl->queues[i]);
2310}
2311
2312static int
2313__nvme_fc_create_hw_queue(struct nvme_fc_ctrl *ctrl,
2314	struct nvme_fc_queue *queue, unsigned int qidx, u16 qsize)
2315{
2316	int ret = 0;
2317
2318	queue->lldd_handle = NULL;
2319	if (ctrl->lport->ops->create_queue)
2320		ret = ctrl->lport->ops->create_queue(&ctrl->lport->localport,
2321				qidx, qsize, &queue->lldd_handle);
2322
2323	return ret;
2324}
2325
2326static void
2327nvme_fc_delete_hw_io_queues(struct nvme_fc_ctrl *ctrl)
2328{
2329	struct nvme_fc_queue *queue = &ctrl->queues[ctrl->ctrl.queue_count - 1];
2330	int i;
2331
2332	for (i = ctrl->ctrl.queue_count - 1; i >= 1; i--, queue--)
2333		__nvme_fc_delete_hw_queue(ctrl, queue, i);
2334}
2335
2336static int
2337nvme_fc_create_hw_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize)
2338{
2339	struct nvme_fc_queue *queue = &ctrl->queues[1];
2340	int i, ret;
2341
2342	for (i = 1; i < ctrl->ctrl.queue_count; i++, queue++) {
2343		ret = __nvme_fc_create_hw_queue(ctrl, queue, i, qsize);
2344		if (ret)
2345			goto delete_queues;
2346	}
2347
2348	return 0;
2349
2350delete_queues:
2351	for (; i > 0; i--)
2352		__nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[i], i);
2353	return ret;
2354}
2355
2356static int
2357nvme_fc_connect_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize)
2358{
2359	int i, ret = 0;
2360
2361	for (i = 1; i < ctrl->ctrl.queue_count; i++) {
2362		ret = nvme_fc_connect_queue(ctrl, &ctrl->queues[i], qsize,
2363					(qsize / 5));
2364		if (ret)
2365			break;
2366		ret = nvmf_connect_io_queue(&ctrl->ctrl, i);
2367		if (ret)
2368			break;
2369
2370		set_bit(NVME_FC_Q_LIVE, &ctrl->queues[i].flags);
2371	}
2372
2373	return ret;
2374}
2375
2376static void
2377nvme_fc_init_io_queues(struct nvme_fc_ctrl *ctrl)
2378{
2379	int i;
2380
2381	for (i = 1; i < ctrl->ctrl.queue_count; i++)
2382		nvme_fc_init_queue(ctrl, i);
2383}
2384
2385static void
2386nvme_fc_ctrl_free(struct kref *ref)
2387{
2388	struct nvme_fc_ctrl *ctrl =
2389		container_of(ref, struct nvme_fc_ctrl, ref);
2390	unsigned long flags;
2391
2392	if (ctrl->ctrl.tagset)
2393		nvme_remove_io_tag_set(&ctrl->ctrl);
2394
2395	/* remove from rport list */
2396	spin_lock_irqsave(&ctrl->rport->lock, flags);
2397	list_del(&ctrl->ctrl_list);
2398	spin_unlock_irqrestore(&ctrl->rport->lock, flags);
2399
2400	nvme_unquiesce_admin_queue(&ctrl->ctrl);
2401	nvme_remove_admin_tag_set(&ctrl->ctrl);
2402
2403	kfree(ctrl->queues);
2404
2405	put_device(ctrl->dev);
2406	nvme_fc_rport_put(ctrl->rport);
2407
2408	ida_free(&nvme_fc_ctrl_cnt, ctrl->cnum);
2409	if (ctrl->ctrl.opts)
2410		nvmf_free_options(ctrl->ctrl.opts);
2411	kfree(ctrl);
2412}
2413
2414static void
2415nvme_fc_ctrl_put(struct nvme_fc_ctrl *ctrl)
2416{
2417	kref_put(&ctrl->ref, nvme_fc_ctrl_free);
2418}
2419
2420static int
2421nvme_fc_ctrl_get(struct nvme_fc_ctrl *ctrl)
2422{
2423	return kref_get_unless_zero(&ctrl->ref);
2424}
2425
2426/*
2427 * All accesses from nvme core layer done - can now free the
2428 * controller. Called after last nvme_put_ctrl() call
2429 */
2430static void
2431nvme_fc_free_ctrl(struct nvme_ctrl *nctrl)
2432{
2433	struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2434
2435	WARN_ON(nctrl != &ctrl->ctrl);
2436
2437	nvme_fc_ctrl_put(ctrl);
2438}
2439
2440/*
2441 * This routine is used by the transport when it needs to find active
2442 * io on a queue that is to be terminated. The transport uses
2443 * blk_mq_tagset_busy_itr() to find the busy requests, which then invoke
2444 * this routine to kill them on a 1 by 1 basis.
2445 *
2446 * As FC allocates FC exchange for each io, the transport must contact
2447 * the LLDD to terminate the exchange, thus releasing the FC exchange.
2448 * After terminating the exchange the LLDD will call the transport's
2449 * normal io done path for the request, but it will have an aborted
2450 * status. The done path will return the io request back to the block
2451 * layer with an error status.
2452 */
2453static bool nvme_fc_terminate_exchange(struct request *req, void *data)
2454{
2455	struct nvme_ctrl *nctrl = data;
2456	struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2457	struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(req);
2458
2459	op->nreq.flags |= NVME_REQ_CANCELLED;
2460	__nvme_fc_abort_op(ctrl, op);
2461	return true;
2462}
2463
2464/*
2465 * This routine runs through all outstanding commands on the association
2466 * and aborts them.  This routine is typically be called by the
2467 * delete_association routine. It is also called due to an error during
2468 * reconnect. In that scenario, it is most likely a command that initializes
2469 * the controller, including fabric Connect commands on io queues, that
2470 * may have timed out or failed thus the io must be killed for the connect
2471 * thread to see the error.
2472 */
2473static void
2474__nvme_fc_abort_outstanding_ios(struct nvme_fc_ctrl *ctrl, bool start_queues)
2475{
2476	int q;
2477
2478	/*
2479	 * if aborting io, the queues are no longer good, mark them
2480	 * all as not live.
2481	 */
2482	if (ctrl->ctrl.queue_count > 1) {
2483		for (q = 1; q < ctrl->ctrl.queue_count; q++)
2484			clear_bit(NVME_FC_Q_LIVE, &ctrl->queues[q].flags);
2485	}
2486	clear_bit(NVME_FC_Q_LIVE, &ctrl->queues[0].flags);
2487
2488	/*
2489	 * If io queues are present, stop them and terminate all outstanding
2490	 * ios on them. As FC allocates FC exchange for each io, the
2491	 * transport must contact the LLDD to terminate the exchange,
2492	 * thus releasing the FC exchange. We use blk_mq_tagset_busy_itr()
2493	 * to tell us what io's are busy and invoke a transport routine
2494	 * to kill them with the LLDD.  After terminating the exchange
2495	 * the LLDD will call the transport's normal io done path, but it
2496	 * will have an aborted status. The done path will return the
2497	 * io requests back to the block layer as part of normal completions
2498	 * (but with error status).
2499	 */
2500	if (ctrl->ctrl.queue_count > 1) {
2501		nvme_quiesce_io_queues(&ctrl->ctrl);
2502		nvme_sync_io_queues(&ctrl->ctrl);
2503		blk_mq_tagset_busy_iter(&ctrl->tag_set,
2504				nvme_fc_terminate_exchange, &ctrl->ctrl);
2505		blk_mq_tagset_wait_completed_request(&ctrl->tag_set);
2506		if (start_queues)
2507			nvme_unquiesce_io_queues(&ctrl->ctrl);
2508	}
2509
2510	/*
2511	 * Other transports, which don't have link-level contexts bound
2512	 * to sqe's, would try to gracefully shutdown the controller by
2513	 * writing the registers for shutdown and polling (call
2514	 * nvme_disable_ctrl()). Given a bunch of i/o was potentially
2515	 * just aborted and we will wait on those contexts, and given
2516	 * there was no indication of how live the controlelr is on the
2517	 * link, don't send more io to create more contexts for the
2518	 * shutdown. Let the controller fail via keepalive failure if
2519	 * its still present.
2520	 */
2521
2522	/*
2523	 * clean up the admin queue. Same thing as above.
2524	 */
2525	nvme_quiesce_admin_queue(&ctrl->ctrl);
2526	blk_sync_queue(ctrl->ctrl.admin_q);
2527	blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
2528				nvme_fc_terminate_exchange, &ctrl->ctrl);
2529	blk_mq_tagset_wait_completed_request(&ctrl->admin_tag_set);
2530	if (start_queues)
2531		nvme_unquiesce_admin_queue(&ctrl->ctrl);
2532}
2533
2534static void
2535nvme_fc_error_recovery(struct nvme_fc_ctrl *ctrl, char *errmsg)
2536{
2537	/*
2538	 * if an error (io timeout, etc) while (re)connecting, the remote
2539	 * port requested terminating of the association (disconnect_ls)
2540	 * or an error (timeout or abort) occurred on an io while creating
2541	 * the controller.  Abort any ios on the association and let the
2542	 * create_association error path resolve things.
2543	 */
2544	if (ctrl->ctrl.state == NVME_CTRL_CONNECTING) {
2545		__nvme_fc_abort_outstanding_ios(ctrl, true);
2546		set_bit(ASSOC_FAILED, &ctrl->flags);
2547		dev_warn(ctrl->ctrl.device,
2548			"NVME-FC{%d}: transport error during (re)connect\n",
2549			ctrl->cnum);
2550		return;
2551	}
2552
2553	/* Otherwise, only proceed if in LIVE state - e.g. on first error */
2554	if (ctrl->ctrl.state != NVME_CTRL_LIVE)
2555		return;
2556
2557	dev_warn(ctrl->ctrl.device,
2558		"NVME-FC{%d}: transport association event: %s\n",
2559		ctrl->cnum, errmsg);
2560	dev_warn(ctrl->ctrl.device,
2561		"NVME-FC{%d}: resetting controller\n", ctrl->cnum);
2562
2563	nvme_reset_ctrl(&ctrl->ctrl);
2564}
2565
2566static enum blk_eh_timer_return nvme_fc_timeout(struct request *rq)
2567{
2568	struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2569	struct nvme_fc_ctrl *ctrl = op->ctrl;
2570	u16 qnum = op->queue->qnum;
2571	struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
2572	struct nvme_command *sqe = &cmdiu->sqe;
2573
2574	/*
2575	 * Attempt to abort the offending command. Command completion
2576	 * will detect the aborted io and will fail the connection.
2577	 */
2578	dev_info(ctrl->ctrl.device,
2579		"NVME-FC{%d.%d}: io timeout: opcode %d fctype %d (%s) w10/11: "
2580		"x%08x/x%08x\n",
2581		ctrl->cnum, qnum, sqe->common.opcode, sqe->fabrics.fctype,
2582		nvme_fabrics_opcode_str(qnum, sqe),
2583		sqe->common.cdw10, sqe->common.cdw11);
2584	if (__nvme_fc_abort_op(ctrl, op))
2585		nvme_fc_error_recovery(ctrl, "io timeout abort failed");
2586
2587	/*
2588	 * the io abort has been initiated. Have the reset timer
2589	 * restarted and the abort completion will complete the io
2590	 * shortly. Avoids a synchronous wait while the abort finishes.
2591	 */
2592	return BLK_EH_RESET_TIMER;
2593}
2594
2595static int
2596nvme_fc_map_data(struct nvme_fc_ctrl *ctrl, struct request *rq,
2597		struct nvme_fc_fcp_op *op)
2598{
2599	struct nvmefc_fcp_req *freq = &op->fcp_req;
2600	int ret;
2601
2602	freq->sg_cnt = 0;
2603
2604	if (!blk_rq_nr_phys_segments(rq))
2605		return 0;
2606
2607	freq->sg_table.sgl = freq->first_sgl;
2608	ret = sg_alloc_table_chained(&freq->sg_table,
2609			blk_rq_nr_phys_segments(rq), freq->sg_table.sgl,
2610			NVME_INLINE_SG_CNT);
2611	if (ret)
2612		return -ENOMEM;
2613
2614	op->nents = blk_rq_map_sg(rq->q, rq, freq->sg_table.sgl);
2615	WARN_ON(op->nents > blk_rq_nr_phys_segments(rq));
2616	freq->sg_cnt = fc_dma_map_sg(ctrl->lport->dev, freq->sg_table.sgl,
2617				op->nents, rq_dma_dir(rq));
2618	if (unlikely(freq->sg_cnt <= 0)) {
2619		sg_free_table_chained(&freq->sg_table, NVME_INLINE_SG_CNT);
2620		freq->sg_cnt = 0;
2621		return -EFAULT;
2622	}
2623
2624	/*
2625	 * TODO: blk_integrity_rq(rq)  for DIF
2626	 */
2627	return 0;
2628}
2629
2630static void
2631nvme_fc_unmap_data(struct nvme_fc_ctrl *ctrl, struct request *rq,
2632		struct nvme_fc_fcp_op *op)
2633{
2634	struct nvmefc_fcp_req *freq = &op->fcp_req;
2635
2636	if (!freq->sg_cnt)
2637		return;
2638
2639	fc_dma_unmap_sg(ctrl->lport->dev, freq->sg_table.sgl, op->nents,
2640			rq_dma_dir(rq));
2641
2642	sg_free_table_chained(&freq->sg_table, NVME_INLINE_SG_CNT);
2643
2644	freq->sg_cnt = 0;
2645}
2646
2647/*
2648 * In FC, the queue is a logical thing. At transport connect, the target
2649 * creates its "queue" and returns a handle that is to be given to the
2650 * target whenever it posts something to the corresponding SQ.  When an
2651 * SQE is sent on a SQ, FC effectively considers the SQE, or rather the
2652 * command contained within the SQE, an io, and assigns a FC exchange
2653 * to it. The SQE and the associated SQ handle are sent in the initial
2654 * CMD IU sents on the exchange. All transfers relative to the io occur
2655 * as part of the exchange.  The CQE is the last thing for the io,
2656 * which is transferred (explicitly or implicitly) with the RSP IU
2657 * sent on the exchange. After the CQE is received, the FC exchange is
2658 * terminaed and the Exchange may be used on a different io.
2659 *
2660 * The transport to LLDD api has the transport making a request for a
2661 * new fcp io request to the LLDD. The LLDD then allocates a FC exchange
2662 * resource and transfers the command. The LLDD will then process all
2663 * steps to complete the io. Upon completion, the transport done routine
2664 * is called.
2665 *
2666 * So - while the operation is outstanding to the LLDD, there is a link
2667 * level FC exchange resource that is also outstanding. This must be
2668 * considered in all cleanup operations.
2669 */
2670static blk_status_t
2671nvme_fc_start_fcp_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue,
2672	struct nvme_fc_fcp_op *op, u32 data_len,
2673	enum nvmefc_fcp_datadir	io_dir)
2674{
2675	struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
2676	struct nvme_command *sqe = &cmdiu->sqe;
2677	int ret, opstate;
2678
2679	/*
2680	 * before attempting to send the io, check to see if we believe
2681	 * the target device is present
2682	 */
2683	if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
2684		return BLK_STS_RESOURCE;
2685
2686	if (!nvme_fc_ctrl_get(ctrl))
2687		return BLK_STS_IOERR;
2688
2689	/* format the FC-NVME CMD IU and fcp_req */
2690	cmdiu->connection_id = cpu_to_be64(queue->connection_id);
2691	cmdiu->data_len = cpu_to_be32(data_len);
2692	switch (io_dir) {
2693	case NVMEFC_FCP_WRITE:
2694		cmdiu->flags = FCNVME_CMD_FLAGS_WRITE;
2695		break;
2696	case NVMEFC_FCP_READ:
2697		cmdiu->flags = FCNVME_CMD_FLAGS_READ;
2698		break;
2699	case NVMEFC_FCP_NODATA:
2700		cmdiu->flags = 0;
2701		break;
2702	}
2703	op->fcp_req.payload_length = data_len;
2704	op->fcp_req.io_dir = io_dir;
2705	op->fcp_req.transferred_length = 0;
2706	op->fcp_req.rcv_rsplen = 0;
2707	op->fcp_req.status = NVME_SC_SUCCESS;
2708	op->fcp_req.sqid = cpu_to_le16(queue->qnum);
2709
2710	/*
2711	 * validate per fabric rules, set fields mandated by fabric spec
2712	 * as well as those by FC-NVME spec.
2713	 */
2714	WARN_ON_ONCE(sqe->common.metadata);
2715	sqe->common.flags |= NVME_CMD_SGL_METABUF;
2716
2717	/*
2718	 * format SQE DPTR field per FC-NVME rules:
2719	 *    type=0x5     Transport SGL Data Block Descriptor
2720	 *    subtype=0xA  Transport-specific value
2721	 *    address=0
2722	 *    length=length of the data series
2723	 */
2724	sqe->rw.dptr.sgl.type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2725					NVME_SGL_FMT_TRANSPORT_A;
2726	sqe->rw.dptr.sgl.length = cpu_to_le32(data_len);
2727	sqe->rw.dptr.sgl.addr = 0;
2728
2729	if (!(op->flags & FCOP_FLAGS_AEN)) {
2730		ret = nvme_fc_map_data(ctrl, op->rq, op);
2731		if (ret < 0) {
2732			nvme_cleanup_cmd(op->rq);
2733			nvme_fc_ctrl_put(ctrl);
2734			if (ret == -ENOMEM || ret == -EAGAIN)
2735				return BLK_STS_RESOURCE;
2736			return BLK_STS_IOERR;
2737		}
2738	}
2739
2740	fc_dma_sync_single_for_device(ctrl->lport->dev, op->fcp_req.cmddma,
2741				  sizeof(op->cmd_iu), DMA_TO_DEVICE);
2742
2743	atomic_set(&op->state, FCPOP_STATE_ACTIVE);
2744
2745	if (!(op->flags & FCOP_FLAGS_AEN))
2746		nvme_start_request(op->rq);
2747
2748	cmdiu->csn = cpu_to_be32(atomic_inc_return(&queue->csn));
2749	ret = ctrl->lport->ops->fcp_io(&ctrl->lport->localport,
2750					&ctrl->rport->remoteport,
2751					queue->lldd_handle, &op->fcp_req);
2752
2753	if (ret) {
2754		/*
2755		 * If the lld fails to send the command is there an issue with
2756		 * the csn value?  If the command that fails is the Connect,
2757		 * no - as the connection won't be live.  If it is a command
2758		 * post-connect, it's possible a gap in csn may be created.
2759		 * Does this matter?  As Linux initiators don't send fused
2760		 * commands, no.  The gap would exist, but as there's nothing
2761		 * that depends on csn order to be delivered on the target
2762		 * side, it shouldn't hurt.  It would be difficult for a
2763		 * target to even detect the csn gap as it has no idea when the
2764		 * cmd with the csn was supposed to arrive.
2765		 */
2766		opstate = atomic_xchg(&op->state, FCPOP_STATE_COMPLETE);
2767		__nvme_fc_fcpop_chk_teardowns(ctrl, op, opstate);
2768
2769		if (!(op->flags & FCOP_FLAGS_AEN)) {
2770			nvme_fc_unmap_data(ctrl, op->rq, op);
2771			nvme_cleanup_cmd(op->rq);
2772		}
2773
2774		nvme_fc_ctrl_put(ctrl);
2775
2776		if (ctrl->rport->remoteport.port_state == FC_OBJSTATE_ONLINE &&
2777				ret != -EBUSY)
2778			return BLK_STS_IOERR;
2779
2780		return BLK_STS_RESOURCE;
2781	}
2782
2783	return BLK_STS_OK;
2784}
2785
2786static blk_status_t
2787nvme_fc_queue_rq(struct blk_mq_hw_ctx *hctx,
2788			const struct blk_mq_queue_data *bd)
2789{
2790	struct nvme_ns *ns = hctx->queue->queuedata;
2791	struct nvme_fc_queue *queue = hctx->driver_data;
2792	struct nvme_fc_ctrl *ctrl = queue->ctrl;
2793	struct request *rq = bd->rq;
2794	struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2795	enum nvmefc_fcp_datadir	io_dir;
2796	bool queue_ready = test_bit(NVME_FC_Q_LIVE, &queue->flags);
2797	u32 data_len;
2798	blk_status_t ret;
2799
2800	if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE ||
2801	    !nvme_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
2802		return nvme_fail_nonready_command(&queue->ctrl->ctrl, rq);
2803
2804	ret = nvme_setup_cmd(ns, rq);
2805	if (ret)
2806		return ret;
2807
2808	/*
2809	 * nvme core doesn't quite treat the rq opaquely. Commands such
2810	 * as WRITE ZEROES will return a non-zero rq payload_bytes yet
2811	 * there is no actual payload to be transferred.
2812	 * To get it right, key data transmission on there being 1 or
2813	 * more physical segments in the sg list. If there is no
2814	 * physical segments, there is no payload.
2815	 */
2816	if (blk_rq_nr_phys_segments(rq)) {
2817		data_len = blk_rq_payload_bytes(rq);
2818		io_dir = ((rq_data_dir(rq) == WRITE) ?
2819					NVMEFC_FCP_WRITE : NVMEFC_FCP_READ);
2820	} else {
2821		data_len = 0;
2822		io_dir = NVMEFC_FCP_NODATA;
2823	}
2824
2825
2826	return nvme_fc_start_fcp_op(ctrl, queue, op, data_len, io_dir);
2827}
2828
2829static void
2830nvme_fc_submit_async_event(struct nvme_ctrl *arg)
2831{
2832	struct nvme_fc_ctrl *ctrl = to_fc_ctrl(arg);
2833	struct nvme_fc_fcp_op *aen_op;
2834	blk_status_t ret;
2835
2836	if (test_bit(FCCTRL_TERMIO, &ctrl->flags))
2837		return;
2838
2839	aen_op = &ctrl->aen_ops[0];
2840
2841	ret = nvme_fc_start_fcp_op(ctrl, aen_op->queue, aen_op, 0,
2842					NVMEFC_FCP_NODATA);
2843	if (ret)
2844		dev_err(ctrl->ctrl.device,
2845			"failed async event work\n");
2846}
2847
2848static void
2849nvme_fc_complete_rq(struct request *rq)
2850{
2851	struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2852	struct nvme_fc_ctrl *ctrl = op->ctrl;
2853
2854	atomic_set(&op->state, FCPOP_STATE_IDLE);
2855	op->flags &= ~FCOP_FLAGS_TERMIO;
2856
2857	nvme_fc_unmap_data(ctrl, rq, op);
2858	nvme_complete_rq(rq);
2859	nvme_fc_ctrl_put(ctrl);
2860}
2861
2862static void nvme_fc_map_queues(struct blk_mq_tag_set *set)
2863{
2864	struct nvme_fc_ctrl *ctrl = to_fc_ctrl(set->driver_data);
2865	int i;
2866
2867	for (i = 0; i < set->nr_maps; i++) {
2868		struct blk_mq_queue_map *map = &set->map[i];
2869
2870		if (!map->nr_queues) {
2871			WARN_ON(i == HCTX_TYPE_DEFAULT);
2872			continue;
2873		}
2874
2875		/* Call LLDD map queue functionality if defined */
2876		if (ctrl->lport->ops->map_queues)
2877			ctrl->lport->ops->map_queues(&ctrl->lport->localport,
2878						     map);
2879		else
2880			blk_mq_map_queues(map);
2881	}
2882}
2883
2884static const struct blk_mq_ops nvme_fc_mq_ops = {
2885	.queue_rq	= nvme_fc_queue_rq,
2886	.complete	= nvme_fc_complete_rq,
2887	.init_request	= nvme_fc_init_request,
2888	.exit_request	= nvme_fc_exit_request,
2889	.init_hctx	= nvme_fc_init_hctx,
2890	.timeout	= nvme_fc_timeout,
2891	.map_queues	= nvme_fc_map_queues,
2892};
2893
2894static int
2895nvme_fc_create_io_queues(struct nvme_fc_ctrl *ctrl)
2896{
2897	struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2898	unsigned int nr_io_queues;
2899	int ret;
2900
2901	nr_io_queues = min(min(opts->nr_io_queues, num_online_cpus()),
2902				ctrl->lport->ops->max_hw_queues);
2903	ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
2904	if (ret) {
2905		dev_info(ctrl->ctrl.device,
2906			"set_queue_count failed: %d\n", ret);
2907		return ret;
2908	}
2909
2910	ctrl->ctrl.queue_count = nr_io_queues + 1;
2911	if (!nr_io_queues)
2912		return 0;
2913
2914	nvme_fc_init_io_queues(ctrl);
2915
2916	ret = nvme_alloc_io_tag_set(&ctrl->ctrl, &ctrl->tag_set,
2917			&nvme_fc_mq_ops, 1,
2918			struct_size_t(struct nvme_fcp_op_w_sgl, priv,
2919				      ctrl->lport->ops->fcprqst_priv_sz));
2920	if (ret)
2921		return ret;
2922
2923	ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.sqsize + 1);
2924	if (ret)
2925		goto out_cleanup_tagset;
2926
2927	ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.sqsize + 1);
2928	if (ret)
2929		goto out_delete_hw_queues;
2930
2931	ctrl->ioq_live = true;
2932
2933	return 0;
2934
2935out_delete_hw_queues:
2936	nvme_fc_delete_hw_io_queues(ctrl);
2937out_cleanup_tagset:
2938	nvme_remove_io_tag_set(&ctrl->ctrl);
2939	nvme_fc_free_io_queues(ctrl);
2940
2941	/* force put free routine to ignore io queues */
2942	ctrl->ctrl.tagset = NULL;
2943
2944	return ret;
2945}
2946
2947static int
2948nvme_fc_recreate_io_queues(struct nvme_fc_ctrl *ctrl)
2949{
2950	struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2951	u32 prior_ioq_cnt = ctrl->ctrl.queue_count - 1;
2952	unsigned int nr_io_queues;
2953	int ret;
2954
2955	nr_io_queues = min(min(opts->nr_io_queues, num_online_cpus()),
2956				ctrl->lport->ops->max_hw_queues);
2957	ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
2958	if (ret) {
2959		dev_info(ctrl->ctrl.device,
2960			"set_queue_count failed: %d\n", ret);
2961		return ret;
2962	}
2963
2964	if (!nr_io_queues && prior_ioq_cnt) {
2965		dev_info(ctrl->ctrl.device,
2966			"Fail Reconnect: At least 1 io queue "
2967			"required (was %d)\n", prior_ioq_cnt);
2968		return -ENOSPC;
2969	}
2970
2971	ctrl->ctrl.queue_count = nr_io_queues + 1;
2972	/* check for io queues existing */
2973	if (ctrl->ctrl.queue_count == 1)
2974		return 0;
2975
2976	if (prior_ioq_cnt != nr_io_queues) {
2977		dev_info(ctrl->ctrl.device,
2978			"reconnect: revising io queue count from %d to %d\n",
2979			prior_ioq_cnt, nr_io_queues);
2980		blk_mq_update_nr_hw_queues(&ctrl->tag_set, nr_io_queues);
2981	}
2982
2983	ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.sqsize + 1);
2984	if (ret)
2985		goto out_free_io_queues;
2986
2987	ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.sqsize + 1);
2988	if (ret)
2989		goto out_delete_hw_queues;
2990
2991	return 0;
2992
2993out_delete_hw_queues:
2994	nvme_fc_delete_hw_io_queues(ctrl);
2995out_free_io_queues:
2996	nvme_fc_free_io_queues(ctrl);
2997	return ret;
2998}
2999
3000static void
3001nvme_fc_rport_active_on_lport(struct nvme_fc_rport *rport)
3002{
3003	struct nvme_fc_lport *lport = rport->lport;
3004
3005	atomic_inc(&lport->act_rport_cnt);
3006}
3007
3008static void
3009nvme_fc_rport_inactive_on_lport(struct nvme_fc_rport *rport)
3010{
3011	struct nvme_fc_lport *lport = rport->lport;
3012	u32 cnt;
3013
3014	cnt = atomic_dec_return(&lport->act_rport_cnt);
3015	if (cnt == 0 && lport->localport.port_state == FC_OBJSTATE_DELETED)
3016		lport->ops->localport_delete(&lport->localport);
3017}
3018
3019static int
3020nvme_fc_ctlr_active_on_rport(struct nvme_fc_ctrl *ctrl)
3021{
3022	struct nvme_fc_rport *rport = ctrl->rport;
3023	u32 cnt;
3024
3025	if (test_and_set_bit(ASSOC_ACTIVE, &ctrl->flags))
3026		return 1;
3027
3028	cnt = atomic_inc_return(&rport->act_ctrl_cnt);
3029	if (cnt == 1)
3030		nvme_fc_rport_active_on_lport(rport);
3031
3032	return 0;
3033}
3034
3035static int
3036nvme_fc_ctlr_inactive_on_rport(struct nvme_fc_ctrl *ctrl)
3037{
3038	struct nvme_fc_rport *rport = ctrl->rport;
3039	struct nvme_fc_lport *lport = rport->lport;
3040	u32 cnt;
3041
3042	/* clearing of ctrl->flags ASSOC_ACTIVE bit is in association delete */
3043
3044	cnt = atomic_dec_return(&rport->act_ctrl_cnt);
3045	if (cnt == 0) {
3046		if (rport->remoteport.port_state == FC_OBJSTATE_DELETED)
3047			lport->ops->remoteport_delete(&rport->remoteport);
3048		nvme_fc_rport_inactive_on_lport(rport);
3049	}
3050
3051	return 0;
3052}
3053
3054/*
3055 * This routine restarts the controller on the host side, and
3056 * on the link side, recreates the controller association.
3057 */
3058static int
3059nvme_fc_create_association(struct nvme_fc_ctrl *ctrl)
3060{
3061	struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
3062	struct nvmefc_ls_rcv_op *disls = NULL;
3063	unsigned long flags;
3064	int ret;
3065	bool changed;
3066
3067	++ctrl->ctrl.nr_reconnects;
3068
3069	if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
3070		return -ENODEV;
3071
3072	if (nvme_fc_ctlr_active_on_rport(ctrl))
3073		return -ENOTUNIQ;
3074
3075	dev_info(ctrl->ctrl.device,
3076		"NVME-FC{%d}: create association : host wwpn 0x%016llx "
3077		" rport wwpn 0x%016llx: NQN \"%s\"\n",
3078		ctrl->cnum, ctrl->lport->localport.port_name,
3079		ctrl->rport->remoteport.port_name, ctrl->ctrl.opts->subsysnqn);
3080
3081	clear_bit(ASSOC_FAILED, &ctrl->flags);
3082
3083	/*
3084	 * Create the admin queue
3085	 */
3086
3087	ret = __nvme_fc_create_hw_queue(ctrl, &ctrl->queues[0], 0,
3088				NVME_AQ_DEPTH);
3089	if (ret)
3090		goto out_free_queue;
3091
3092	ret = nvme_fc_connect_admin_queue(ctrl, &ctrl->queues[0],
3093				NVME_AQ_DEPTH, (NVME_AQ_DEPTH / 4));
3094	if (ret)
3095		goto out_delete_hw_queue;
3096
3097	ret = nvmf_connect_admin_queue(&ctrl->ctrl);
3098	if (ret)
3099		goto out_disconnect_admin_queue;
3100
3101	set_bit(NVME_FC_Q_LIVE, &ctrl->queues[0].flags);
3102
3103	/*
3104	 * Check controller capabilities
3105	 *
3106	 * todo:- add code to check if ctrl attributes changed from
3107	 * prior connection values
3108	 */
3109
3110	ret = nvme_enable_ctrl(&ctrl->ctrl);
3111	if (!ret && test_bit(ASSOC_FAILED, &ctrl->flags))
3112		ret = -EIO;
3113	if (ret)
3114		goto out_disconnect_admin_queue;
3115
3116	ctrl->ctrl.max_segments = ctrl->lport->ops->max_sgl_segments;
3117	ctrl->ctrl.max_hw_sectors = ctrl->ctrl.max_segments <<
3118						(ilog2(SZ_4K) - 9);
3119
3120	nvme_unquiesce_admin_queue(&ctrl->ctrl);
3121
3122	ret = nvme_init_ctrl_finish(&ctrl->ctrl, false);
3123	if (ret)
3124		goto out_disconnect_admin_queue;
3125	if (test_bit(ASSOC_FAILED, &ctrl->flags)) {
3126		ret = -EIO;
3127		goto out_stop_keep_alive;
3128	}
3129	/* sanity checks */
3130
3131	/* FC-NVME does not have other data in the capsule */
3132	if (ctrl->ctrl.icdoff) {
3133		dev_err(ctrl->ctrl.device, "icdoff %d is not supported!\n",
3134				ctrl->ctrl.icdoff);
3135		ret = NVME_SC_INVALID_FIELD | NVME_SC_DNR;
3136		goto out_stop_keep_alive;
3137	}
3138
3139	/* FC-NVME supports normal SGL Data Block Descriptors */
3140	if (!nvme_ctrl_sgl_supported(&ctrl->ctrl)) {
3141		dev_err(ctrl->ctrl.device,
3142			"Mandatory sgls are not supported!\n");
3143		ret = NVME_SC_INVALID_FIELD | NVME_SC_DNR;
3144		goto out_stop_keep_alive;
3145	}
3146
3147	if (opts->queue_size > ctrl->ctrl.maxcmd) {
3148		/* warn if maxcmd is lower than queue_size */
3149		dev_warn(ctrl->ctrl.device,
3150			"queue_size %zu > ctrl maxcmd %u, reducing "
3151			"to maxcmd\n",
3152			opts->queue_size, ctrl->ctrl.maxcmd);
3153		opts->queue_size = ctrl->ctrl.maxcmd;
3154		ctrl->ctrl.sqsize = opts->queue_size - 1;
3155	}
3156
3157	ret = nvme_fc_init_aen_ops(ctrl);
3158	if (ret)
3159		goto out_term_aen_ops;
3160
3161	/*
3162	 * Create the io queues
3163	 */
3164
3165	if (ctrl->ctrl.queue_count > 1) {
3166		if (!ctrl->ioq_live)
3167			ret = nvme_fc_create_io_queues(ctrl);
3168		else
3169			ret = nvme_fc_recreate_io_queues(ctrl);
3170	}
3171	if (!ret && test_bit(ASSOC_FAILED, &ctrl->flags))
3172		ret = -EIO;
3173	if (ret)
3174		goto out_term_aen_ops;
3175
3176	changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
3177
3178	ctrl->ctrl.nr_reconnects = 0;
3179
3180	if (changed)
3181		nvme_start_ctrl(&ctrl->ctrl);
3182
3183	return 0;	/* Success */
3184
3185out_term_aen_ops:
3186	nvme_fc_term_aen_ops(ctrl);
3187out_stop_keep_alive:
3188	nvme_stop_keep_alive(&ctrl->ctrl);
3189out_disconnect_admin_queue:
3190	dev_warn(ctrl->ctrl.device,
3191		"NVME-FC{%d}: create_assoc failed, assoc_id %llx ret %d\n",
3192		ctrl->cnum, ctrl->association_id, ret);
3193	/* send a Disconnect(association) LS to fc-nvme target */
3194	nvme_fc_xmt_disconnect_assoc(ctrl);
3195	spin_lock_irqsave(&ctrl->lock, flags);
3196	ctrl->association_id = 0;
3197	disls = ctrl->rcv_disconn;
3198	ctrl->rcv_disconn = NULL;
3199	spin_unlock_irqrestore(&ctrl->lock, flags);
3200	if (disls)
3201		nvme_fc_xmt_ls_rsp(disls);
3202out_delete_hw_queue:
3203	__nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0);
3204out_free_queue:
3205	nvme_fc_free_queue(&ctrl->queues[0]);
3206	clear_bit(ASSOC_ACTIVE, &ctrl->flags);
3207	nvme_fc_ctlr_inactive_on_rport(ctrl);
3208
3209	return ret;
3210}
3211
3212
3213/*
3214 * This routine stops operation of the controller on the host side.
3215 * On the host os stack side: Admin and IO queues are stopped,
3216 *   outstanding ios on them terminated via FC ABTS.
3217 * On the link side: the association is terminated.
3218 */
3219static void
3220nvme_fc_delete_association(struct nvme_fc_ctrl *ctrl)
3221{
3222	struct nvmefc_ls_rcv_op *disls = NULL;
3223	unsigned long flags;
3224
3225	if (!test_and_clear_bit(ASSOC_ACTIVE, &ctrl->flags))
3226		return;
3227
3228	spin_lock_irqsave(&ctrl->lock, flags);
3229	set_bit(FCCTRL_TERMIO, &ctrl->flags);
3230	ctrl->iocnt = 0;
3231	spin_unlock_irqrestore(&ctrl->lock, flags);
3232
3233	__nvme_fc_abort_outstanding_ios(ctrl, false);
3234
3235	/* kill the aens as they are a separate path */
3236	nvme_fc_abort_aen_ops(ctrl);
3237
3238	/* wait for all io that had to be aborted */
3239	spin_lock_irq(&ctrl->lock);
3240	wait_event_lock_irq(ctrl->ioabort_wait, ctrl->iocnt == 0, ctrl->lock);
3241	clear_bit(FCCTRL_TERMIO, &ctrl->flags);
3242	spin_unlock_irq(&ctrl->lock);
3243
3244	nvme_fc_term_aen_ops(ctrl);
3245
3246	/*
3247	 * send a Disconnect(association) LS to fc-nvme target
3248	 * Note: could have been sent at top of process, but
3249	 * cleaner on link traffic if after the aborts complete.
3250	 * Note: if association doesn't exist, association_id will be 0
3251	 */
3252	if (ctrl->association_id)
3253		nvme_fc_xmt_disconnect_assoc(ctrl);
3254
3255	spin_lock_irqsave(&ctrl->lock, flags);
3256	ctrl->association_id = 0;
3257	disls = ctrl->rcv_disconn;
3258	ctrl->rcv_disconn = NULL;
3259	spin_unlock_irqrestore(&ctrl->lock, flags);
3260	if (disls)
3261		/*
3262		 * if a Disconnect Request was waiting for a response, send
3263		 * now that all ABTS's have been issued (and are complete).
3264		 */
3265		nvme_fc_xmt_ls_rsp(disls);
3266
3267	if (ctrl->ctrl.tagset) {
3268		nvme_fc_delete_hw_io_queues(ctrl);
3269		nvme_fc_free_io_queues(ctrl);
3270	}
3271
3272	__nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0);
3273	nvme_fc_free_queue(&ctrl->queues[0]);
3274
3275	/* re-enable the admin_q so anything new can fast fail */
3276	nvme_unquiesce_admin_queue(&ctrl->ctrl);
3277
3278	/* resume the io queues so that things will fast fail */
3279	nvme_unquiesce_io_queues(&ctrl->ctrl);
3280
3281	nvme_fc_ctlr_inactive_on_rport(ctrl);
3282}
3283
3284static void
3285nvme_fc_delete_ctrl(struct nvme_ctrl *nctrl)
3286{
3287	struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
3288
3289	cancel_work_sync(&ctrl->ioerr_work);
3290	cancel_delayed_work_sync(&ctrl->connect_work);
3291	/*
3292	 * kill the association on the link side.  this will block
3293	 * waiting for io to terminate
3294	 */
3295	nvme_fc_delete_association(ctrl);
3296}
3297
3298static void
3299nvme_fc_reconnect_or_delete(struct nvme_fc_ctrl *ctrl, int status)
3300{
3301	struct nvme_fc_rport *rport = ctrl->rport;
3302	struct nvme_fc_remote_port *portptr = &rport->remoteport;
3303	unsigned long recon_delay = ctrl->ctrl.opts->reconnect_delay * HZ;
3304	bool recon = true;
3305
3306	if (nvme_ctrl_state(&ctrl->ctrl) != NVME_CTRL_CONNECTING)
3307		return;
3308
3309	if (portptr->port_state == FC_OBJSTATE_ONLINE) {
3310		dev_info(ctrl->ctrl.device,
3311			"NVME-FC{%d}: reset: Reconnect attempt failed (%d)\n",
3312			ctrl->cnum, status);
3313		if (status > 0 && (status & NVME_SC_DNR))
3314			recon = false;
3315	} else if (time_after_eq(jiffies, rport->dev_loss_end))
3316		recon = false;
3317
3318	if (recon && nvmf_should_reconnect(&ctrl->ctrl)) {
3319		if (portptr->port_state == FC_OBJSTATE_ONLINE)
3320			dev_info(ctrl->ctrl.device,
3321				"NVME-FC{%d}: Reconnect attempt in %ld "
3322				"seconds\n",
3323				ctrl->cnum, recon_delay / HZ);
3324		else if (time_after(jiffies + recon_delay, rport->dev_loss_end))
3325			recon_delay = rport->dev_loss_end - jiffies;
3326
3327		queue_delayed_work(nvme_wq, &ctrl->connect_work, recon_delay);
3328	} else {
3329		if (portptr->port_state == FC_OBJSTATE_ONLINE) {
3330			if (status > 0 && (status & NVME_SC_DNR))
3331				dev_warn(ctrl->ctrl.device,
3332					 "NVME-FC{%d}: reconnect failure\n",
3333					 ctrl->cnum);
3334			else
3335				dev_warn(ctrl->ctrl.device,
3336					 "NVME-FC{%d}: Max reconnect attempts "
3337					 "(%d) reached.\n",
3338					 ctrl->cnum, ctrl->ctrl.nr_reconnects);
3339		} else
3340			dev_warn(ctrl->ctrl.device,
3341				"NVME-FC{%d}: dev_loss_tmo (%d) expired "
3342				"while waiting for remoteport connectivity.\n",
3343				ctrl->cnum, min_t(int, portptr->dev_loss_tmo,
3344					(ctrl->ctrl.opts->max_reconnects *
3345					 ctrl->ctrl.opts->reconnect_delay)));
3346		WARN_ON(nvme_delete_ctrl(&ctrl->ctrl));
3347	}
3348}
3349
3350static void
3351nvme_fc_reset_ctrl_work(struct work_struct *work)
3352{
3353	struct nvme_fc_ctrl *ctrl =
3354		container_of(work, struct nvme_fc_ctrl, ctrl.reset_work);
3355
3356	nvme_stop_ctrl(&ctrl->ctrl);
3357
3358	/* will block will waiting for io to terminate */
3359	nvme_fc_delete_association(ctrl);
3360
3361	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING))
3362		dev_err(ctrl->ctrl.device,
3363			"NVME-FC{%d}: error_recovery: Couldn't change state "
3364			"to CONNECTING\n", ctrl->cnum);
3365
3366	if (ctrl->rport->remoteport.port_state == FC_OBJSTATE_ONLINE) {
3367		if (!queue_delayed_work(nvme_wq, &ctrl->connect_work, 0)) {
3368			dev_err(ctrl->ctrl.device,
3369				"NVME-FC{%d}: failed to schedule connect "
3370				"after reset\n", ctrl->cnum);
3371		} else {
3372			flush_delayed_work(&ctrl->connect_work);
3373		}
3374	} else {
3375		nvme_fc_reconnect_or_delete(ctrl, -ENOTCONN);
3376	}
3377}
3378
3379
3380static const struct nvme_ctrl_ops nvme_fc_ctrl_ops = {
3381	.name			= "fc",
3382	.module			= THIS_MODULE,
3383	.flags			= NVME_F_FABRICS,
3384	.reg_read32		= nvmf_reg_read32,
3385	.reg_read64		= nvmf_reg_read64,
3386	.reg_write32		= nvmf_reg_write32,
3387	.free_ctrl		= nvme_fc_free_ctrl,
3388	.submit_async_event	= nvme_fc_submit_async_event,
3389	.delete_ctrl		= nvme_fc_delete_ctrl,
3390	.get_address		= nvmf_get_address,
3391};
3392
3393static void
3394nvme_fc_connect_ctrl_work(struct work_struct *work)
3395{
3396	int ret;
3397
3398	struct nvme_fc_ctrl *ctrl =
3399			container_of(to_delayed_work(work),
3400				struct nvme_fc_ctrl, connect_work);
3401
3402	ret = nvme_fc_create_association(ctrl);
3403	if (ret)
3404		nvme_fc_reconnect_or_delete(ctrl, ret);
3405	else
3406		dev_info(ctrl->ctrl.device,
3407			"NVME-FC{%d}: controller connect complete\n",
3408			ctrl->cnum);
3409}
3410
3411
3412static const struct blk_mq_ops nvme_fc_admin_mq_ops = {
3413	.queue_rq	= nvme_fc_queue_rq,
3414	.complete	= nvme_fc_complete_rq,
3415	.init_request	= nvme_fc_init_request,
3416	.exit_request	= nvme_fc_exit_request,
3417	.init_hctx	= nvme_fc_init_admin_hctx,
3418	.timeout	= nvme_fc_timeout,
3419};
3420
3421
3422/*
3423 * Fails a controller request if it matches an existing controller
3424 * (association) with the same tuple:
3425 * <Host NQN, Host ID, local FC port, remote FC port, SUBSYS NQN>
3426 *
3427 * The ports don't need to be compared as they are intrinsically
3428 * already matched by the port pointers supplied.
3429 */
3430static bool
3431nvme_fc_existing_controller(struct nvme_fc_rport *rport,
3432		struct nvmf_ctrl_options *opts)
3433{
3434	struct nvme_fc_ctrl *ctrl;
3435	unsigned long flags;
3436	bool found = false;
3437
3438	spin_lock_irqsave(&rport->lock, flags);
3439	list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) {
3440		found = nvmf_ctlr_matches_baseopts(&ctrl->ctrl, opts);
3441		if (found)
3442			break;
3443	}
3444	spin_unlock_irqrestore(&rport->lock, flags);
3445
3446	return found;
3447}
3448
3449static struct nvme_ctrl *
3450nvme_fc_init_ctrl(struct device *dev, struct nvmf_ctrl_options *opts,
3451	struct nvme_fc_lport *lport, struct nvme_fc_rport *rport)
3452{
3453	struct nvme_fc_ctrl *ctrl;
3454	unsigned long flags;
3455	int ret, idx, ctrl_loss_tmo;
3456
3457	if (!(rport->remoteport.port_role &
3458	    (FC_PORT_ROLE_NVME_DISCOVERY | FC_PORT_ROLE_NVME_TARGET))) {
3459		ret = -EBADR;
3460		goto out_fail;
3461	}
3462
3463	if (!opts->duplicate_connect &&
3464	    nvme_fc_existing_controller(rport, opts)) {
3465		ret = -EALREADY;
3466		goto out_fail;
3467	}
3468
3469	ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
3470	if (!ctrl) {
3471		ret = -ENOMEM;
3472		goto out_fail;
3473	}
3474
3475	idx = ida_alloc(&nvme_fc_ctrl_cnt, GFP_KERNEL);
3476	if (idx < 0) {
3477		ret = -ENOSPC;
3478		goto out_free_ctrl;
3479	}
3480
3481	/*
3482	 * if ctrl_loss_tmo is being enforced and the default reconnect delay
3483	 * is being used, change to a shorter reconnect delay for FC.
3484	 */
3485	if (opts->max_reconnects != -1 &&
3486	    opts->reconnect_delay == NVMF_DEF_RECONNECT_DELAY &&
3487	    opts->reconnect_delay > NVME_FC_DEFAULT_RECONNECT_TMO) {
3488		ctrl_loss_tmo = opts->max_reconnects * opts->reconnect_delay;
3489		opts->reconnect_delay = NVME_FC_DEFAULT_RECONNECT_TMO;
3490		opts->max_reconnects = DIV_ROUND_UP(ctrl_loss_tmo,
3491						opts->reconnect_delay);
3492	}
3493
3494	ctrl->ctrl.opts = opts;
3495	ctrl->ctrl.nr_reconnects = 0;
3496	INIT_LIST_HEAD(&ctrl->ctrl_list);
3497	ctrl->lport = lport;
3498	ctrl->rport = rport;
3499	ctrl->dev = lport->dev;
3500	ctrl->cnum = idx;
3501	ctrl->ioq_live = false;
3502	init_waitqueue_head(&ctrl->ioabort_wait);
3503
3504	get_device(ctrl->dev);
3505	kref_init(&ctrl->ref);
3506
3507	INIT_WORK(&ctrl->ctrl.reset_work, nvme_fc_reset_ctrl_work);
3508	INIT_DELAYED_WORK(&ctrl->connect_work, nvme_fc_connect_ctrl_work);
3509	INIT_WORK(&ctrl->ioerr_work, nvme_fc_ctrl_ioerr_work);
3510	spin_lock_init(&ctrl->lock);
3511
3512	/* io queue count */
3513	ctrl->ctrl.queue_count = min_t(unsigned int,
3514				opts->nr_io_queues,
3515				lport->ops->max_hw_queues);
3516	ctrl->ctrl.queue_count++;	/* +1 for admin queue */
3517
3518	ctrl->ctrl.sqsize = opts->queue_size - 1;
3519	ctrl->ctrl.kato = opts->kato;
3520	ctrl->ctrl.cntlid = 0xffff;
3521
3522	ret = -ENOMEM;
3523	ctrl->queues = kcalloc(ctrl->ctrl.queue_count,
3524				sizeof(struct nvme_fc_queue), GFP_KERNEL);
3525	if (!ctrl->queues)
3526		goto out_free_ida;
3527
3528	nvme_fc_init_queue(ctrl, 0);
3529
3530	/*
3531	 * Would have been nice to init io queues tag set as well.
3532	 * However, we require interaction from the controller
3533	 * for max io queue count before we can do so.
3534	 * Defer this to the connect path.
3535	 */
3536
3537	ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_fc_ctrl_ops, 0);
3538	if (ret)
3539		goto out_free_queues;
3540	if (lport->dev)
3541		ctrl->ctrl.numa_node = dev_to_node(lport->dev);
3542
3543	/* at this point, teardown path changes to ref counting on nvme ctrl */
3544
3545	ret = nvme_alloc_admin_tag_set(&ctrl->ctrl, &ctrl->admin_tag_set,
3546			&nvme_fc_admin_mq_ops,
3547			struct_size_t(struct nvme_fcp_op_w_sgl, priv,
3548				      ctrl->lport->ops->fcprqst_priv_sz));
3549	if (ret)
3550		goto fail_ctrl;
3551
3552	spin_lock_irqsave(&rport->lock, flags);
3553	list_add_tail(&ctrl->ctrl_list, &rport->ctrl_list);
3554	spin_unlock_irqrestore(&rport->lock, flags);
3555
3556	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING) ||
3557	    !nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
3558		dev_err(ctrl->ctrl.device,
3559			"NVME-FC{%d}: failed to init ctrl state\n", ctrl->cnum);
3560		goto fail_ctrl;
3561	}
3562
3563	if (!queue_delayed_work(nvme_wq, &ctrl->connect_work, 0)) {
3564		dev_err(ctrl->ctrl.device,
3565			"NVME-FC{%d}: failed to schedule initial connect\n",
3566			ctrl->cnum);
3567		goto fail_ctrl;
3568	}
3569
3570	flush_delayed_work(&ctrl->connect_work);
3571
3572	dev_info(ctrl->ctrl.device,
3573		"NVME-FC{%d}: new ctrl: NQN \"%s\", hostnqn: %s\n",
3574		ctrl->cnum, nvmf_ctrl_subsysnqn(&ctrl->ctrl), opts->host->nqn);
3575
3576	return &ctrl->ctrl;
3577
3578fail_ctrl:
3579	nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_DELETING);
3580	cancel_work_sync(&ctrl->ioerr_work);
3581	cancel_work_sync(&ctrl->ctrl.reset_work);
3582	cancel_delayed_work_sync(&ctrl->connect_work);
3583
3584	ctrl->ctrl.opts = NULL;
3585
3586	/* initiate nvme ctrl ref counting teardown */
3587	nvme_uninit_ctrl(&ctrl->ctrl);
3588
3589	/* Remove core ctrl ref. */
3590	nvme_put_ctrl(&ctrl->ctrl);
3591
3592	/* as we're past the point where we transition to the ref
3593	 * counting teardown path, if we return a bad pointer here,
3594	 * the calling routine, thinking it's prior to the
3595	 * transition, will do an rport put. Since the teardown
3596	 * path also does a rport put, we do an extra get here to
3597	 * so proper order/teardown happens.
3598	 */
3599	nvme_fc_rport_get(rport);
3600
3601	return ERR_PTR(-EIO);
3602
3603out_free_queues:
3604	kfree(ctrl->queues);
3605out_free_ida:
3606	put_device(ctrl->dev);
3607	ida_free(&nvme_fc_ctrl_cnt, ctrl->cnum);
3608out_free_ctrl:
3609	kfree(ctrl);
3610out_fail:
3611	/* exit via here doesn't follow ctlr ref points */
3612	return ERR_PTR(ret);
3613}
3614
3615
3616struct nvmet_fc_traddr {
3617	u64	nn;
3618	u64	pn;
3619};
3620
3621static int
3622__nvme_fc_parse_u64(substring_t *sstr, u64 *val)
3623{
3624	u64 token64;
3625
3626	if (match_u64(sstr, &token64))
3627		return -EINVAL;
3628	*val = token64;
3629
3630	return 0;
3631}
3632
3633/*
3634 * This routine validates and extracts the WWN's from the TRADDR string.
3635 * As kernel parsers need the 0x to determine number base, universally
3636 * build string to parse with 0x prefix before parsing name strings.
3637 */
3638static int
3639nvme_fc_parse_traddr(struct nvmet_fc_traddr *traddr, char *buf, size_t blen)
3640{
3641	char name[2 + NVME_FC_TRADDR_HEXNAMELEN + 1];
3642	substring_t wwn = { name, &name[sizeof(name)-1] };
3643	int nnoffset, pnoffset;
3644
3645	/* validate if string is one of the 2 allowed formats */
3646	if (strnlen(buf, blen) == NVME_FC_TRADDR_MAXLENGTH &&
3647			!strncmp(buf, "nn-0x", NVME_FC_TRADDR_OXNNLEN) &&
3648			!strncmp(&buf[NVME_FC_TRADDR_MAX_PN_OFFSET],
3649				"pn-0x", NVME_FC_TRADDR_OXNNLEN)) {
3650		nnoffset = NVME_FC_TRADDR_OXNNLEN;
3651		pnoffset = NVME_FC_TRADDR_MAX_PN_OFFSET +
3652						NVME_FC_TRADDR_OXNNLEN;
3653	} else if ((strnlen(buf, blen) == NVME_FC_TRADDR_MINLENGTH &&
3654			!strncmp(buf, "nn-", NVME_FC_TRADDR_NNLEN) &&
3655			!strncmp(&buf[NVME_FC_TRADDR_MIN_PN_OFFSET],
3656				"pn-", NVME_FC_TRADDR_NNLEN))) {
3657		nnoffset = NVME_FC_TRADDR_NNLEN;
3658		pnoffset = NVME_FC_TRADDR_MIN_PN_OFFSET + NVME_FC_TRADDR_NNLEN;
3659	} else
3660		goto out_einval;
3661
3662	name[0] = '0';
3663	name[1] = 'x';
3664	name[2 + NVME_FC_TRADDR_HEXNAMELEN] = 0;
3665
3666	memcpy(&name[2], &buf[nnoffset], NVME_FC_TRADDR_HEXNAMELEN);
3667	if (__nvme_fc_parse_u64(&wwn, &traddr->nn))
3668		goto out_einval;
3669
3670	memcpy(&name[2], &buf[pnoffset], NVME_FC_TRADDR_HEXNAMELEN);
3671	if (__nvme_fc_parse_u64(&wwn, &traddr->pn))
3672		goto out_einval;
3673
3674	return 0;
3675
3676out_einval:
3677	pr_warn("%s: bad traddr string\n", __func__);
3678	return -EINVAL;
3679}
3680
3681static struct nvme_ctrl *
3682nvme_fc_create_ctrl(struct device *dev, struct nvmf_ctrl_options *opts)
3683{
3684	struct nvme_fc_lport *lport;
3685	struct nvme_fc_rport *rport;
3686	struct nvme_ctrl *ctrl;
3687	struct nvmet_fc_traddr laddr = { 0L, 0L };
3688	struct nvmet_fc_traddr raddr = { 0L, 0L };
3689	unsigned long flags;
3690	int ret;
3691
3692	ret = nvme_fc_parse_traddr(&raddr, opts->traddr, NVMF_TRADDR_SIZE);
3693	if (ret || !raddr.nn || !raddr.pn)
3694		return ERR_PTR(-EINVAL);
3695
3696	ret = nvme_fc_parse_traddr(&laddr, opts->host_traddr, NVMF_TRADDR_SIZE);
3697	if (ret || !laddr.nn || !laddr.pn)
3698		return ERR_PTR(-EINVAL);
3699
3700	/* find the host and remote ports to connect together */
3701	spin_lock_irqsave(&nvme_fc_lock, flags);
3702	list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
3703		if (lport->localport.node_name != laddr.nn ||
3704		    lport->localport.port_name != laddr.pn ||
3705		    lport->localport.port_state != FC_OBJSTATE_ONLINE)
3706			continue;
3707
3708		list_for_each_entry(rport, &lport->endp_list, endp_list) {
3709			if (rport->remoteport.node_name != raddr.nn ||
3710			    rport->remoteport.port_name != raddr.pn ||
3711			    rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
3712				continue;
3713
3714			/* if fail to get reference fall through. Will error */
3715			if (!nvme_fc_rport_get(rport))
3716				break;
3717
3718			spin_unlock_irqrestore(&nvme_fc_lock, flags);
3719
3720			ctrl = nvme_fc_init_ctrl(dev, opts, lport, rport);
3721			if (IS_ERR(ctrl))
3722				nvme_fc_rport_put(rport);
3723			return ctrl;
3724		}
3725	}
3726	spin_unlock_irqrestore(&nvme_fc_lock, flags);
3727
3728	pr_warn("%s: %s - %s combination not found\n",
3729		__func__, opts->traddr, opts->host_traddr);
3730	return ERR_PTR(-ENOENT);
3731}
3732
3733
3734static struct nvmf_transport_ops nvme_fc_transport = {
3735	.name		= "fc",
3736	.module		= THIS_MODULE,
3737	.required_opts	= NVMF_OPT_TRADDR | NVMF_OPT_HOST_TRADDR,
3738	.allowed_opts	= NVMF_OPT_RECONNECT_DELAY | NVMF_OPT_CTRL_LOSS_TMO,
3739	.create_ctrl	= nvme_fc_create_ctrl,
3740};
3741
3742/* Arbitrary successive failures max. With lots of subsystems could be high */
3743#define DISCOVERY_MAX_FAIL	20
3744
3745static ssize_t nvme_fc_nvme_discovery_store(struct device *dev,
3746		struct device_attribute *attr, const char *buf, size_t count)
3747{
3748	unsigned long flags;
3749	LIST_HEAD(local_disc_list);
3750	struct nvme_fc_lport *lport;
3751	struct nvme_fc_rport *rport;
3752	int failcnt = 0;
3753
3754	spin_lock_irqsave(&nvme_fc_lock, flags);
3755restart:
3756	list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
3757		list_for_each_entry(rport, &lport->endp_list, endp_list) {
3758			if (!nvme_fc_lport_get(lport))
3759				continue;
3760			if (!nvme_fc_rport_get(rport)) {
3761				/*
3762				 * This is a temporary condition. Upon restart
3763				 * this rport will be gone from the list.
3764				 *
3765				 * Revert the lport put and retry.  Anything
3766				 * added to the list already will be skipped (as
3767				 * they are no longer list_empty).  Loops should
3768				 * resume at rports that were not yet seen.
3769				 */
3770				nvme_fc_lport_put(lport);
3771
3772				if (failcnt++ < DISCOVERY_MAX_FAIL)
3773					goto restart;
3774
3775				pr_err("nvme_discovery: too many reference "
3776				       "failures\n");
3777				goto process_local_list;
3778			}
3779			if (list_empty(&rport->disc_list))
3780				list_add_tail(&rport->disc_list,
3781					      &local_disc_list);
3782		}
3783	}
3784
3785process_local_list:
3786	while (!list_empty(&local_disc_list)) {
3787		rport = list_first_entry(&local_disc_list,
3788					 struct nvme_fc_rport, disc_list);
3789		list_del_init(&rport->disc_list);
3790		spin_unlock_irqrestore(&nvme_fc_lock, flags);
3791
3792		lport = rport->lport;
3793		/* signal discovery. Won't hurt if it repeats */
3794		nvme_fc_signal_discovery_scan(lport, rport);
3795		nvme_fc_rport_put(rport);
3796		nvme_fc_lport_put(lport);
3797
3798		spin_lock_irqsave(&nvme_fc_lock, flags);
3799	}
3800	spin_unlock_irqrestore(&nvme_fc_lock, flags);
3801
3802	return count;
3803}
3804
3805static DEVICE_ATTR(nvme_discovery, 0200, NULL, nvme_fc_nvme_discovery_store);
3806
3807#ifdef CONFIG_BLK_CGROUP_FC_APPID
3808/* Parse the cgroup id from a buf and return the length of cgrpid */
3809static int fc_parse_cgrpid(const char *buf, u64 *id)
3810{
3811	char cgrp_id[16+1];
3812	int cgrpid_len, j;
3813
3814	memset(cgrp_id, 0x0, sizeof(cgrp_id));
3815	for (cgrpid_len = 0, j = 0; cgrpid_len < 17; cgrpid_len++) {
3816		if (buf[cgrpid_len] != ':')
3817			cgrp_id[cgrpid_len] = buf[cgrpid_len];
3818		else {
3819			j = 1;
3820			break;
3821		}
3822	}
3823	if (!j)
3824		return -EINVAL;
3825	if (kstrtou64(cgrp_id, 16, id) < 0)
3826		return -EINVAL;
3827	return cgrpid_len;
3828}
3829
3830/*
3831 * Parse and update the appid in the blkcg associated with the cgroupid.
3832 */
3833static ssize_t fc_appid_store(struct device *dev,
3834		struct device_attribute *attr, const char *buf, size_t count)
3835{
3836	size_t orig_count = count;
3837	u64 cgrp_id;
3838	int appid_len = 0;
3839	int cgrpid_len = 0;
3840	char app_id[FC_APPID_LEN];
3841	int ret = 0;
3842
3843	if (buf[count-1] == '\n')
3844		count--;
3845
3846	if ((count > (16+1+FC_APPID_LEN)) || (!strchr(buf, ':')))
3847		return -EINVAL;
3848
3849	cgrpid_len = fc_parse_cgrpid(buf, &cgrp_id);
3850	if (cgrpid_len < 0)
3851		return -EINVAL;
3852	appid_len = count - cgrpid_len - 1;
3853	if (appid_len > FC_APPID_LEN)
3854		return -EINVAL;
3855
3856	memset(app_id, 0x0, sizeof(app_id));
3857	memcpy(app_id, &buf[cgrpid_len+1], appid_len);
3858	ret = blkcg_set_fc_appid(app_id, cgrp_id, sizeof(app_id));
3859	if (ret < 0)
3860		return ret;
3861	return orig_count;
3862}
3863static DEVICE_ATTR(appid_store, 0200, NULL, fc_appid_store);
3864#endif /* CONFIG_BLK_CGROUP_FC_APPID */
3865
3866static struct attribute *nvme_fc_attrs[] = {
3867	&dev_attr_nvme_discovery.attr,
3868#ifdef CONFIG_BLK_CGROUP_FC_APPID
3869	&dev_attr_appid_store.attr,
3870#endif
3871	NULL
3872};
3873
3874static const struct attribute_group nvme_fc_attr_group = {
3875	.attrs = nvme_fc_attrs,
3876};
3877
3878static const struct attribute_group *nvme_fc_attr_groups[] = {
3879	&nvme_fc_attr_group,
3880	NULL
3881};
3882
3883static struct class fc_class = {
3884	.name = "fc",
3885	.dev_groups = nvme_fc_attr_groups,
3886};
3887
3888static int __init nvme_fc_init_module(void)
3889{
3890	int ret;
3891
3892	/*
3893	 * NOTE:
3894	 * It is expected that in the future the kernel will combine
3895	 * the FC-isms that are currently under scsi and now being
3896	 * added to by NVME into a new standalone FC class. The SCSI
3897	 * and NVME protocols and their devices would be under this
3898	 * new FC class.
3899	 *
3900	 * As we need something to post FC-specific udev events to,
3901	 * specifically for nvme probe events, start by creating the
3902	 * new device class.  When the new standalone FC class is
3903	 * put in place, this code will move to a more generic
3904	 * location for the class.
3905	 */
3906	ret = class_register(&fc_class);
3907	if (ret) {
3908		pr_err("couldn't register class fc\n");
3909		return ret;
3910	}
3911
3912	/*
3913	 * Create a device for the FC-centric udev events
3914	 */
3915	fc_udev_device = device_create(&fc_class, NULL, MKDEV(0, 0), NULL,
3916				"fc_udev_device");
3917	if (IS_ERR(fc_udev_device)) {
3918		pr_err("couldn't create fc_udev device!\n");
3919		ret = PTR_ERR(fc_udev_device);
3920		goto out_destroy_class;
3921	}
3922
3923	ret = nvmf_register_transport(&nvme_fc_transport);
3924	if (ret)
3925		goto out_destroy_device;
3926
3927	return 0;
3928
3929out_destroy_device:
3930	device_destroy(&fc_class, MKDEV(0, 0));
3931out_destroy_class:
3932	class_unregister(&fc_class);
3933
3934	return ret;
3935}
3936
3937static void
3938nvme_fc_delete_controllers(struct nvme_fc_rport *rport)
3939{
3940	struct nvme_fc_ctrl *ctrl;
3941
3942	spin_lock(&rport->lock);
3943	list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) {
3944		dev_warn(ctrl->ctrl.device,
3945			"NVME-FC{%d}: transport unloading: deleting ctrl\n",
3946			ctrl->cnum);
3947		nvme_delete_ctrl(&ctrl->ctrl);
3948	}
3949	spin_unlock(&rport->lock);
3950}
3951
3952static void __exit nvme_fc_exit_module(void)
3953{
3954	struct nvme_fc_lport *lport;
3955	struct nvme_fc_rport *rport;
3956	unsigned long flags;
3957
3958	spin_lock_irqsave(&nvme_fc_lock, flags);
3959	list_for_each_entry(lport, &nvme_fc_lport_list, port_list)
3960		list_for_each_entry(rport, &lport->endp_list, endp_list)
3961			nvme_fc_delete_controllers(rport);
3962	spin_unlock_irqrestore(&nvme_fc_lock, flags);
3963	flush_workqueue(nvme_delete_wq);
3964
3965	nvmf_unregister_transport(&nvme_fc_transport);
3966
3967	device_destroy(&fc_class, MKDEV(0, 0));
3968	class_unregister(&fc_class);
3969}
3970
3971module_init(nvme_fc_init_module);
3972module_exit(nvme_fc_exit_module);
3973
3974MODULE_DESCRIPTION("NVMe host FC transport driver");
3975MODULE_LICENSE("GPL v2");
3976