1// SPDX-License-Identifier: GPL-2.0
2/*
3 * NVM Express device driver
4 * Copyright (c) 2011-2014, Intel Corporation.
5 */
6
7#include <linux/blkdev.h>
8#include <linux/blk-mq.h>
9#include <linux/blk-integrity.h>
10#include <linux/compat.h>
11#include <linux/delay.h>
12#include <linux/errno.h>
13#include <linux/hdreg.h>
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/backing-dev.h>
17#include <linux/slab.h>
18#include <linux/types.h>
19#include <linux/pr.h>
20#include <linux/ptrace.h>
21#include <linux/nvme_ioctl.h>
22#include <linux/pm_qos.h>
23#include <linux/ratelimit.h>
24#include <asm/unaligned.h>
25
26#include "nvme.h"
27#include "fabrics.h"
28#include <linux/nvme-auth.h>
29
30#define CREATE_TRACE_POINTS
31#include "trace.h"
32
33#define NVME_MINORS		(1U << MINORBITS)
34
35struct nvme_ns_info {
36	struct nvme_ns_ids ids;
37	u32 nsid;
38	__le32 anagrpid;
39	bool is_shared;
40	bool is_readonly;
41	bool is_ready;
42	bool is_removed;
43};
44
45unsigned int admin_timeout = 60;
46module_param(admin_timeout, uint, 0644);
47MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
48EXPORT_SYMBOL_GPL(admin_timeout);
49
50unsigned int nvme_io_timeout = 30;
51module_param_named(io_timeout, nvme_io_timeout, uint, 0644);
52MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
53EXPORT_SYMBOL_GPL(nvme_io_timeout);
54
55static unsigned char shutdown_timeout = 5;
56module_param(shutdown_timeout, byte, 0644);
57MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
58
59static u8 nvme_max_retries = 5;
60module_param_named(max_retries, nvme_max_retries, byte, 0644);
61MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
62
63static unsigned long default_ps_max_latency_us = 100000;
64module_param(default_ps_max_latency_us, ulong, 0644);
65MODULE_PARM_DESC(default_ps_max_latency_us,
66		 "max power saving latency for new devices; use PM QOS to change per device");
67
68static bool force_apst;
69module_param(force_apst, bool, 0644);
70MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");
71
72static unsigned long apst_primary_timeout_ms = 100;
73module_param(apst_primary_timeout_ms, ulong, 0644);
74MODULE_PARM_DESC(apst_primary_timeout_ms,
75	"primary APST timeout in ms");
76
77static unsigned long apst_secondary_timeout_ms = 2000;
78module_param(apst_secondary_timeout_ms, ulong, 0644);
79MODULE_PARM_DESC(apst_secondary_timeout_ms,
80	"secondary APST timeout in ms");
81
82static unsigned long apst_primary_latency_tol_us = 15000;
83module_param(apst_primary_latency_tol_us, ulong, 0644);
84MODULE_PARM_DESC(apst_primary_latency_tol_us,
85	"primary APST latency tolerance in us");
86
87static unsigned long apst_secondary_latency_tol_us = 100000;
88module_param(apst_secondary_latency_tol_us, ulong, 0644);
89MODULE_PARM_DESC(apst_secondary_latency_tol_us,
90	"secondary APST latency tolerance in us");
91
92/*
93 * nvme_wq - hosts nvme related works that are not reset or delete
94 * nvme_reset_wq - hosts nvme reset works
95 * nvme_delete_wq - hosts nvme delete works
96 *
97 * nvme_wq will host works such as scan, aen handling, fw activation,
98 * keep-alive, periodic reconnects etc. nvme_reset_wq
99 * runs reset works which also flush works hosted on nvme_wq for
100 * serialization purposes. nvme_delete_wq host controller deletion
101 * works which flush reset works for serialization.
102 */
103struct workqueue_struct *nvme_wq;
104EXPORT_SYMBOL_GPL(nvme_wq);
105
106struct workqueue_struct *nvme_reset_wq;
107EXPORT_SYMBOL_GPL(nvme_reset_wq);
108
109struct workqueue_struct *nvme_delete_wq;
110EXPORT_SYMBOL_GPL(nvme_delete_wq);
111
112static LIST_HEAD(nvme_subsystems);
113static DEFINE_MUTEX(nvme_subsystems_lock);
114
115static DEFINE_IDA(nvme_instance_ida);
116static dev_t nvme_ctrl_base_chr_devt;
117static int nvme_class_uevent(const struct device *dev, struct kobj_uevent_env *env);
118static const struct class nvme_class = {
119	.name = "nvme",
120	.dev_uevent = nvme_class_uevent,
121};
122
123static const struct class nvme_subsys_class = {
124	.name = "nvme-subsystem",
125};
126
127static DEFINE_IDA(nvme_ns_chr_minor_ida);
128static dev_t nvme_ns_chr_devt;
129static const struct class nvme_ns_chr_class = {
130	.name = "nvme-generic",
131};
132
133static void nvme_put_subsystem(struct nvme_subsystem *subsys);
134static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
135					   unsigned nsid);
136static void nvme_update_keep_alive(struct nvme_ctrl *ctrl,
137				   struct nvme_command *cmd);
138
139void nvme_queue_scan(struct nvme_ctrl *ctrl)
140{
141	/*
142	 * Only new queue scan work when admin and IO queues are both alive
143	 */
144	if (nvme_ctrl_state(ctrl) == NVME_CTRL_LIVE && ctrl->tagset)
145		queue_work(nvme_wq, &ctrl->scan_work);
146}
147
148/*
149 * Use this function to proceed with scheduling reset_work for a controller
150 * that had previously been set to the resetting state. This is intended for
151 * code paths that can't be interrupted by other reset attempts. A hot removal
152 * may prevent this from succeeding.
153 */
154int nvme_try_sched_reset(struct nvme_ctrl *ctrl)
155{
156	if (nvme_ctrl_state(ctrl) != NVME_CTRL_RESETTING)
157		return -EBUSY;
158	if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
159		return -EBUSY;
160	return 0;
161}
162EXPORT_SYMBOL_GPL(nvme_try_sched_reset);
163
164static void nvme_failfast_work(struct work_struct *work)
165{
166	struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
167			struct nvme_ctrl, failfast_work);
168
169	if (nvme_ctrl_state(ctrl) != NVME_CTRL_CONNECTING)
170		return;
171
172	set_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
173	dev_info(ctrl->device, "failfast expired\n");
174	nvme_kick_requeue_lists(ctrl);
175}
176
177static inline void nvme_start_failfast_work(struct nvme_ctrl *ctrl)
178{
179	if (!ctrl->opts || ctrl->opts->fast_io_fail_tmo == -1)
180		return;
181
182	schedule_delayed_work(&ctrl->failfast_work,
183			      ctrl->opts->fast_io_fail_tmo * HZ);
184}
185
186static inline void nvme_stop_failfast_work(struct nvme_ctrl *ctrl)
187{
188	if (!ctrl->opts)
189		return;
190
191	cancel_delayed_work_sync(&ctrl->failfast_work);
192	clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
193}
194
195
196int nvme_reset_ctrl(struct nvme_ctrl *ctrl)
197{
198	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
199		return -EBUSY;
200	if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
201		return -EBUSY;
202	return 0;
203}
204EXPORT_SYMBOL_GPL(nvme_reset_ctrl);
205
206int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl)
207{
208	int ret;
209
210	ret = nvme_reset_ctrl(ctrl);
211	if (!ret) {
212		flush_work(&ctrl->reset_work);
213		if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE)
214			ret = -ENETRESET;
215	}
216
217	return ret;
218}
219
220static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl)
221{
222	dev_info(ctrl->device,
223		 "Removing ctrl: NQN \"%s\"\n", nvmf_ctrl_subsysnqn(ctrl));
224
225	flush_work(&ctrl->reset_work);
226	nvme_stop_ctrl(ctrl);
227	nvme_remove_namespaces(ctrl);
228	ctrl->ops->delete_ctrl(ctrl);
229	nvme_uninit_ctrl(ctrl);
230}
231
232static void nvme_delete_ctrl_work(struct work_struct *work)
233{
234	struct nvme_ctrl *ctrl =
235		container_of(work, struct nvme_ctrl, delete_work);
236
237	nvme_do_delete_ctrl(ctrl);
238}
239
240int nvme_delete_ctrl(struct nvme_ctrl *ctrl)
241{
242	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
243		return -EBUSY;
244	if (!queue_work(nvme_delete_wq, &ctrl->delete_work))
245		return -EBUSY;
246	return 0;
247}
248EXPORT_SYMBOL_GPL(nvme_delete_ctrl);
249
250void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl)
251{
252	/*
253	 * Keep a reference until nvme_do_delete_ctrl() complete,
254	 * since ->delete_ctrl can free the controller.
255	 */
256	nvme_get_ctrl(ctrl);
257	if (nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
258		nvme_do_delete_ctrl(ctrl);
259	nvme_put_ctrl(ctrl);
260}
261
262static blk_status_t nvme_error_status(u16 status)
263{
264	switch (status & 0x7ff) {
265	case NVME_SC_SUCCESS:
266		return BLK_STS_OK;
267	case NVME_SC_CAP_EXCEEDED:
268		return BLK_STS_NOSPC;
269	case NVME_SC_LBA_RANGE:
270	case NVME_SC_CMD_INTERRUPTED:
271	case NVME_SC_NS_NOT_READY:
272		return BLK_STS_TARGET;
273	case NVME_SC_BAD_ATTRIBUTES:
274	case NVME_SC_ONCS_NOT_SUPPORTED:
275	case NVME_SC_INVALID_OPCODE:
276	case NVME_SC_INVALID_FIELD:
277	case NVME_SC_INVALID_NS:
278		return BLK_STS_NOTSUPP;
279	case NVME_SC_WRITE_FAULT:
280	case NVME_SC_READ_ERROR:
281	case NVME_SC_UNWRITTEN_BLOCK:
282	case NVME_SC_ACCESS_DENIED:
283	case NVME_SC_READ_ONLY:
284	case NVME_SC_COMPARE_FAILED:
285		return BLK_STS_MEDIUM;
286	case NVME_SC_GUARD_CHECK:
287	case NVME_SC_APPTAG_CHECK:
288	case NVME_SC_REFTAG_CHECK:
289	case NVME_SC_INVALID_PI:
290		return BLK_STS_PROTECTION;
291	case NVME_SC_RESERVATION_CONFLICT:
292		return BLK_STS_RESV_CONFLICT;
293	case NVME_SC_HOST_PATH_ERROR:
294		return BLK_STS_TRANSPORT;
295	case NVME_SC_ZONE_TOO_MANY_ACTIVE:
296		return BLK_STS_ZONE_ACTIVE_RESOURCE;
297	case NVME_SC_ZONE_TOO_MANY_OPEN:
298		return BLK_STS_ZONE_OPEN_RESOURCE;
299	default:
300		return BLK_STS_IOERR;
301	}
302}
303
304static void nvme_retry_req(struct request *req)
305{
306	unsigned long delay = 0;
307	u16 crd;
308
309	/* The mask and shift result must be <= 3 */
310	crd = (nvme_req(req)->status & NVME_SC_CRD) >> 11;
311	if (crd)
312		delay = nvme_req(req)->ctrl->crdt[crd - 1] * 100;
313
314	nvme_req(req)->retries++;
315	blk_mq_requeue_request(req, false);
316	blk_mq_delay_kick_requeue_list(req->q, delay);
317}
318
319static void nvme_log_error(struct request *req)
320{
321	struct nvme_ns *ns = req->q->queuedata;
322	struct nvme_request *nr = nvme_req(req);
323
324	if (ns) {
325		pr_err_ratelimited("%s: %s(0x%x) @ LBA %llu, %u blocks, %s (sct 0x%x / sc 0x%x) %s%s\n",
326		       ns->disk ? ns->disk->disk_name : "?",
327		       nvme_get_opcode_str(nr->cmd->common.opcode),
328		       nr->cmd->common.opcode,
329		       nvme_sect_to_lba(ns->head, blk_rq_pos(req)),
330		       blk_rq_bytes(req) >> ns->head->lba_shift,
331		       nvme_get_error_status_str(nr->status),
332		       nr->status >> 8 & 7,	/* Status Code Type */
333		       nr->status & 0xff,	/* Status Code */
334		       nr->status & NVME_SC_MORE ? "MORE " : "",
335		       nr->status & NVME_SC_DNR  ? "DNR "  : "");
336		return;
337	}
338
339	pr_err_ratelimited("%s: %s(0x%x), %s (sct 0x%x / sc 0x%x) %s%s\n",
340			   dev_name(nr->ctrl->device),
341			   nvme_get_admin_opcode_str(nr->cmd->common.opcode),
342			   nr->cmd->common.opcode,
343			   nvme_get_error_status_str(nr->status),
344			   nr->status >> 8 & 7,	/* Status Code Type */
345			   nr->status & 0xff,	/* Status Code */
346			   nr->status & NVME_SC_MORE ? "MORE " : "",
347			   nr->status & NVME_SC_DNR  ? "DNR "  : "");
348}
349
350static void nvme_log_err_passthru(struct request *req)
351{
352	struct nvme_ns *ns = req->q->queuedata;
353	struct nvme_request *nr = nvme_req(req);
354
355	pr_err_ratelimited("%s: %s(0x%x), %s (sct 0x%x / sc 0x%x) %s%s"
356		"cdw10=0x%x cdw11=0x%x cdw12=0x%x cdw13=0x%x cdw14=0x%x cdw15=0x%x\n",
357		ns ? ns->disk->disk_name : dev_name(nr->ctrl->device),
358		ns ? nvme_get_opcode_str(nr->cmd->common.opcode) :
359		     nvme_get_admin_opcode_str(nr->cmd->common.opcode),
360		nr->cmd->common.opcode,
361		nvme_get_error_status_str(nr->status),
362		nr->status >> 8 & 7,	/* Status Code Type */
363		nr->status & 0xff,	/* Status Code */
364		nr->status & NVME_SC_MORE ? "MORE " : "",
365		nr->status & NVME_SC_DNR  ? "DNR "  : "",
366		nr->cmd->common.cdw10,
367		nr->cmd->common.cdw11,
368		nr->cmd->common.cdw12,
369		nr->cmd->common.cdw13,
370		nr->cmd->common.cdw14,
371		nr->cmd->common.cdw14);
372}
373
374enum nvme_disposition {
375	COMPLETE,
376	RETRY,
377	FAILOVER,
378	AUTHENTICATE,
379};
380
381static inline enum nvme_disposition nvme_decide_disposition(struct request *req)
382{
383	if (likely(nvme_req(req)->status == 0))
384		return COMPLETE;
385
386	if ((nvme_req(req)->status & 0x7ff) == NVME_SC_AUTH_REQUIRED)
387		return AUTHENTICATE;
388
389	if (blk_noretry_request(req) ||
390	    (nvme_req(req)->status & NVME_SC_DNR) ||
391	    nvme_req(req)->retries >= nvme_max_retries)
392		return COMPLETE;
393
394	if (req->cmd_flags & REQ_NVME_MPATH) {
395		if (nvme_is_path_error(nvme_req(req)->status) ||
396		    blk_queue_dying(req->q))
397			return FAILOVER;
398	} else {
399		if (blk_queue_dying(req->q))
400			return COMPLETE;
401	}
402
403	return RETRY;
404}
405
406static inline void nvme_end_req_zoned(struct request *req)
407{
408	if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
409	    req_op(req) == REQ_OP_ZONE_APPEND) {
410		struct nvme_ns *ns = req->q->queuedata;
411
412		req->__sector = nvme_lba_to_sect(ns->head,
413			le64_to_cpu(nvme_req(req)->result.u64));
414	}
415}
416
417static inline void nvme_end_req(struct request *req)
418{
419	blk_status_t status = nvme_error_status(nvme_req(req)->status);
420
421	if (unlikely(nvme_req(req)->status && !(req->rq_flags & RQF_QUIET))) {
422		if (blk_rq_is_passthrough(req))
423			nvme_log_err_passthru(req);
424		else
425			nvme_log_error(req);
426	}
427	nvme_end_req_zoned(req);
428	nvme_trace_bio_complete(req);
429	if (req->cmd_flags & REQ_NVME_MPATH)
430		nvme_mpath_end_request(req);
431	blk_mq_end_request(req, status);
432}
433
434void nvme_complete_rq(struct request *req)
435{
436	struct nvme_ctrl *ctrl = nvme_req(req)->ctrl;
437
438	trace_nvme_complete_rq(req);
439	nvme_cleanup_cmd(req);
440
441	/*
442	 * Completions of long-running commands should not be able to
443	 * defer sending of periodic keep alives, since the controller
444	 * may have completed processing such commands a long time ago
445	 * (arbitrarily close to command submission time).
446	 * req->deadline - req->timeout is the command submission time
447	 * in jiffies.
448	 */
449	if (ctrl->kas &&
450	    req->deadline - req->timeout >= ctrl->ka_last_check_time)
451		ctrl->comp_seen = true;
452
453	switch (nvme_decide_disposition(req)) {
454	case COMPLETE:
455		nvme_end_req(req);
456		return;
457	case RETRY:
458		nvme_retry_req(req);
459		return;
460	case FAILOVER:
461		nvme_failover_req(req);
462		return;
463	case AUTHENTICATE:
464#ifdef CONFIG_NVME_HOST_AUTH
465		queue_work(nvme_wq, &ctrl->dhchap_auth_work);
466		nvme_retry_req(req);
467#else
468		nvme_end_req(req);
469#endif
470		return;
471	}
472}
473EXPORT_SYMBOL_GPL(nvme_complete_rq);
474
475void nvme_complete_batch_req(struct request *req)
476{
477	trace_nvme_complete_rq(req);
478	nvme_cleanup_cmd(req);
479	nvme_end_req_zoned(req);
480}
481EXPORT_SYMBOL_GPL(nvme_complete_batch_req);
482
483/*
484 * Called to unwind from ->queue_rq on a failed command submission so that the
485 * multipathing code gets called to potentially failover to another path.
486 * The caller needs to unwind all transport specific resource allocations and
487 * must return propagate the return value.
488 */
489blk_status_t nvme_host_path_error(struct request *req)
490{
491	nvme_req(req)->status = NVME_SC_HOST_PATH_ERROR;
492	blk_mq_set_request_complete(req);
493	nvme_complete_rq(req);
494	return BLK_STS_OK;
495}
496EXPORT_SYMBOL_GPL(nvme_host_path_error);
497
498bool nvme_cancel_request(struct request *req, void *data)
499{
500	dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
501				"Cancelling I/O %d", req->tag);
502
503	/* don't abort one completed or idle request */
504	if (blk_mq_rq_state(req) != MQ_RQ_IN_FLIGHT)
505		return true;
506
507	nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD;
508	nvme_req(req)->flags |= NVME_REQ_CANCELLED;
509	blk_mq_complete_request(req);
510	return true;
511}
512EXPORT_SYMBOL_GPL(nvme_cancel_request);
513
514void nvme_cancel_tagset(struct nvme_ctrl *ctrl)
515{
516	if (ctrl->tagset) {
517		blk_mq_tagset_busy_iter(ctrl->tagset,
518				nvme_cancel_request, ctrl);
519		blk_mq_tagset_wait_completed_request(ctrl->tagset);
520	}
521}
522EXPORT_SYMBOL_GPL(nvme_cancel_tagset);
523
524void nvme_cancel_admin_tagset(struct nvme_ctrl *ctrl)
525{
526	if (ctrl->admin_tagset) {
527		blk_mq_tagset_busy_iter(ctrl->admin_tagset,
528				nvme_cancel_request, ctrl);
529		blk_mq_tagset_wait_completed_request(ctrl->admin_tagset);
530	}
531}
532EXPORT_SYMBOL_GPL(nvme_cancel_admin_tagset);
533
534bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
535		enum nvme_ctrl_state new_state)
536{
537	enum nvme_ctrl_state old_state;
538	unsigned long flags;
539	bool changed = false;
540
541	spin_lock_irqsave(&ctrl->lock, flags);
542
543	old_state = nvme_ctrl_state(ctrl);
544	switch (new_state) {
545	case NVME_CTRL_LIVE:
546		switch (old_state) {
547		case NVME_CTRL_NEW:
548		case NVME_CTRL_RESETTING:
549		case NVME_CTRL_CONNECTING:
550			changed = true;
551			fallthrough;
552		default:
553			break;
554		}
555		break;
556	case NVME_CTRL_RESETTING:
557		switch (old_state) {
558		case NVME_CTRL_NEW:
559		case NVME_CTRL_LIVE:
560			changed = true;
561			fallthrough;
562		default:
563			break;
564		}
565		break;
566	case NVME_CTRL_CONNECTING:
567		switch (old_state) {
568		case NVME_CTRL_NEW:
569		case NVME_CTRL_RESETTING:
570			changed = true;
571			fallthrough;
572		default:
573			break;
574		}
575		break;
576	case NVME_CTRL_DELETING:
577		switch (old_state) {
578		case NVME_CTRL_LIVE:
579		case NVME_CTRL_RESETTING:
580		case NVME_CTRL_CONNECTING:
581			changed = true;
582			fallthrough;
583		default:
584			break;
585		}
586		break;
587	case NVME_CTRL_DELETING_NOIO:
588		switch (old_state) {
589		case NVME_CTRL_DELETING:
590		case NVME_CTRL_DEAD:
591			changed = true;
592			fallthrough;
593		default:
594			break;
595		}
596		break;
597	case NVME_CTRL_DEAD:
598		switch (old_state) {
599		case NVME_CTRL_DELETING:
600			changed = true;
601			fallthrough;
602		default:
603			break;
604		}
605		break;
606	default:
607		break;
608	}
609
610	if (changed) {
611		WRITE_ONCE(ctrl->state, new_state);
612		wake_up_all(&ctrl->state_wq);
613	}
614
615	spin_unlock_irqrestore(&ctrl->lock, flags);
616	if (!changed)
617		return false;
618
619	if (new_state == NVME_CTRL_LIVE) {
620		if (old_state == NVME_CTRL_CONNECTING)
621			nvme_stop_failfast_work(ctrl);
622		nvme_kick_requeue_lists(ctrl);
623	} else if (new_state == NVME_CTRL_CONNECTING &&
624		old_state == NVME_CTRL_RESETTING) {
625		nvme_start_failfast_work(ctrl);
626	}
627	return changed;
628}
629EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
630
631/*
632 * Returns true for sink states that can't ever transition back to live.
633 */
634static bool nvme_state_terminal(struct nvme_ctrl *ctrl)
635{
636	switch (nvme_ctrl_state(ctrl)) {
637	case NVME_CTRL_NEW:
638	case NVME_CTRL_LIVE:
639	case NVME_CTRL_RESETTING:
640	case NVME_CTRL_CONNECTING:
641		return false;
642	case NVME_CTRL_DELETING:
643	case NVME_CTRL_DELETING_NOIO:
644	case NVME_CTRL_DEAD:
645		return true;
646	default:
647		WARN_ONCE(1, "Unhandled ctrl state:%d", ctrl->state);
648		return true;
649	}
650}
651
652/*
653 * Waits for the controller state to be resetting, or returns false if it is
654 * not possible to ever transition to that state.
655 */
656bool nvme_wait_reset(struct nvme_ctrl *ctrl)
657{
658	wait_event(ctrl->state_wq,
659		   nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) ||
660		   nvme_state_terminal(ctrl));
661	return nvme_ctrl_state(ctrl) == NVME_CTRL_RESETTING;
662}
663EXPORT_SYMBOL_GPL(nvme_wait_reset);
664
665static void nvme_free_ns_head(struct kref *ref)
666{
667	struct nvme_ns_head *head =
668		container_of(ref, struct nvme_ns_head, ref);
669
670	nvme_mpath_remove_disk(head);
671	ida_free(&head->subsys->ns_ida, head->instance);
672	cleanup_srcu_struct(&head->srcu);
673	nvme_put_subsystem(head->subsys);
674	kfree(head);
675}
676
677bool nvme_tryget_ns_head(struct nvme_ns_head *head)
678{
679	return kref_get_unless_zero(&head->ref);
680}
681
682void nvme_put_ns_head(struct nvme_ns_head *head)
683{
684	kref_put(&head->ref, nvme_free_ns_head);
685}
686
687static void nvme_free_ns(struct kref *kref)
688{
689	struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
690
691	put_disk(ns->disk);
692	nvme_put_ns_head(ns->head);
693	nvme_put_ctrl(ns->ctrl);
694	kfree(ns);
695}
696
697static inline bool nvme_get_ns(struct nvme_ns *ns)
698{
699	return kref_get_unless_zero(&ns->kref);
700}
701
702void nvme_put_ns(struct nvme_ns *ns)
703{
704	kref_put(&ns->kref, nvme_free_ns);
705}
706EXPORT_SYMBOL_NS_GPL(nvme_put_ns, NVME_TARGET_PASSTHRU);
707
708static inline void nvme_clear_nvme_request(struct request *req)
709{
710	nvme_req(req)->status = 0;
711	nvme_req(req)->retries = 0;
712	nvme_req(req)->flags = 0;
713	req->rq_flags |= RQF_DONTPREP;
714}
715
716/* initialize a passthrough request */
717void nvme_init_request(struct request *req, struct nvme_command *cmd)
718{
719	struct nvme_request *nr = nvme_req(req);
720	bool logging_enabled;
721
722	if (req->q->queuedata) {
723		struct nvme_ns *ns = req->q->disk->private_data;
724
725		logging_enabled = ns->head->passthru_err_log_enabled;
726		req->timeout = NVME_IO_TIMEOUT;
727	} else { /* no queuedata implies admin queue */
728		logging_enabled = nr->ctrl->passthru_err_log_enabled;
729		req->timeout = NVME_ADMIN_TIMEOUT;
730	}
731
732	if (!logging_enabled)
733		req->rq_flags |= RQF_QUIET;
734
735	/* passthru commands should let the driver set the SGL flags */
736	cmd->common.flags &= ~NVME_CMD_SGL_ALL;
737
738	req->cmd_flags |= REQ_FAILFAST_DRIVER;
739	if (req->mq_hctx->type == HCTX_TYPE_POLL)
740		req->cmd_flags |= REQ_POLLED;
741	nvme_clear_nvme_request(req);
742	memcpy(nr->cmd, cmd, sizeof(*cmd));
743}
744EXPORT_SYMBOL_GPL(nvme_init_request);
745
746/*
747 * For something we're not in a state to send to the device the default action
748 * is to busy it and retry it after the controller state is recovered.  However,
749 * if the controller is deleting or if anything is marked for failfast or
750 * nvme multipath it is immediately failed.
751 *
752 * Note: commands used to initialize the controller will be marked for failfast.
753 * Note: nvme cli/ioctl commands are marked for failfast.
754 */
755blk_status_t nvme_fail_nonready_command(struct nvme_ctrl *ctrl,
756		struct request *rq)
757{
758	enum nvme_ctrl_state state = nvme_ctrl_state(ctrl);
759
760	if (state != NVME_CTRL_DELETING_NOIO &&
761	    state != NVME_CTRL_DELETING &&
762	    state != NVME_CTRL_DEAD &&
763	    !test_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags) &&
764	    !blk_noretry_request(rq) && !(rq->cmd_flags & REQ_NVME_MPATH))
765		return BLK_STS_RESOURCE;
766	return nvme_host_path_error(rq);
767}
768EXPORT_SYMBOL_GPL(nvme_fail_nonready_command);
769
770bool __nvme_check_ready(struct nvme_ctrl *ctrl, struct request *rq,
771		bool queue_live, enum nvme_ctrl_state state)
772{
773	struct nvme_request *req = nvme_req(rq);
774
775	/*
776	 * currently we have a problem sending passthru commands
777	 * on the admin_q if the controller is not LIVE because we can't
778	 * make sure that they are going out after the admin connect,
779	 * controller enable and/or other commands in the initialization
780	 * sequence. until the controller will be LIVE, fail with
781	 * BLK_STS_RESOURCE so that they will be rescheduled.
782	 */
783	if (rq->q == ctrl->admin_q && (req->flags & NVME_REQ_USERCMD))
784		return false;
785
786	if (ctrl->ops->flags & NVME_F_FABRICS) {
787		/*
788		 * Only allow commands on a live queue, except for the connect
789		 * command, which is require to set the queue live in the
790		 * appropinquate states.
791		 */
792		switch (state) {
793		case NVME_CTRL_CONNECTING:
794			if (blk_rq_is_passthrough(rq) && nvme_is_fabrics(req->cmd) &&
795			    (req->cmd->fabrics.fctype == nvme_fabrics_type_connect ||
796			     req->cmd->fabrics.fctype == nvme_fabrics_type_auth_send ||
797			     req->cmd->fabrics.fctype == nvme_fabrics_type_auth_receive))
798				return true;
799			break;
800		default:
801			break;
802		case NVME_CTRL_DEAD:
803			return false;
804		}
805	}
806
807	return queue_live;
808}
809EXPORT_SYMBOL_GPL(__nvme_check_ready);
810
811static inline void nvme_setup_flush(struct nvme_ns *ns,
812		struct nvme_command *cmnd)
813{
814	memset(cmnd, 0, sizeof(*cmnd));
815	cmnd->common.opcode = nvme_cmd_flush;
816	cmnd->common.nsid = cpu_to_le32(ns->head->ns_id);
817}
818
819static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req,
820		struct nvme_command *cmnd)
821{
822	unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
823	struct nvme_dsm_range *range;
824	struct bio *bio;
825
826	/*
827	 * Some devices do not consider the DSM 'Number of Ranges' field when
828	 * determining how much data to DMA. Always allocate memory for maximum
829	 * number of segments to prevent device reading beyond end of buffer.
830	 */
831	static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES;
832
833	range = kzalloc(alloc_size, GFP_ATOMIC | __GFP_NOWARN);
834	if (!range) {
835		/*
836		 * If we fail allocation our range, fallback to the controller
837		 * discard page. If that's also busy, it's safe to return
838		 * busy, as we know we can make progress once that's freed.
839		 */
840		if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy))
841			return BLK_STS_RESOURCE;
842
843		range = page_address(ns->ctrl->discard_page);
844	}
845
846	if (queue_max_discard_segments(req->q) == 1) {
847		u64 slba = nvme_sect_to_lba(ns->head, blk_rq_pos(req));
848		u32 nlb = blk_rq_sectors(req) >> (ns->head->lba_shift - 9);
849
850		range[0].cattr = cpu_to_le32(0);
851		range[0].nlb = cpu_to_le32(nlb);
852		range[0].slba = cpu_to_le64(slba);
853		n = 1;
854	} else {
855		__rq_for_each_bio(bio, req) {
856			u64 slba = nvme_sect_to_lba(ns->head,
857						    bio->bi_iter.bi_sector);
858			u32 nlb = bio->bi_iter.bi_size >> ns->head->lba_shift;
859
860			if (n < segments) {
861				range[n].cattr = cpu_to_le32(0);
862				range[n].nlb = cpu_to_le32(nlb);
863				range[n].slba = cpu_to_le64(slba);
864			}
865			n++;
866		}
867	}
868
869	if (WARN_ON_ONCE(n != segments)) {
870		if (virt_to_page(range) == ns->ctrl->discard_page)
871			clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
872		else
873			kfree(range);
874		return BLK_STS_IOERR;
875	}
876
877	memset(cmnd, 0, sizeof(*cmnd));
878	cmnd->dsm.opcode = nvme_cmd_dsm;
879	cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id);
880	cmnd->dsm.nr = cpu_to_le32(segments - 1);
881	cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
882
883	bvec_set_virt(&req->special_vec, range, alloc_size);
884	req->rq_flags |= RQF_SPECIAL_PAYLOAD;
885
886	return BLK_STS_OK;
887}
888
889static void nvme_set_ref_tag(struct nvme_ns *ns, struct nvme_command *cmnd,
890			      struct request *req)
891{
892	u32 upper, lower;
893	u64 ref48;
894
895	/* both rw and write zeroes share the same reftag format */
896	switch (ns->head->guard_type) {
897	case NVME_NVM_NS_16B_GUARD:
898		cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req));
899		break;
900	case NVME_NVM_NS_64B_GUARD:
901		ref48 = ext_pi_ref_tag(req);
902		lower = lower_32_bits(ref48);
903		upper = upper_32_bits(ref48);
904
905		cmnd->rw.reftag = cpu_to_le32(lower);
906		cmnd->rw.cdw3 = cpu_to_le32(upper);
907		break;
908	default:
909		break;
910	}
911}
912
913static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns,
914		struct request *req, struct nvme_command *cmnd)
915{
916	memset(cmnd, 0, sizeof(*cmnd));
917
918	if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
919		return nvme_setup_discard(ns, req, cmnd);
920
921	cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes;
922	cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id);
923	cmnd->write_zeroes.slba =
924		cpu_to_le64(nvme_sect_to_lba(ns->head, blk_rq_pos(req)));
925	cmnd->write_zeroes.length =
926		cpu_to_le16((blk_rq_bytes(req) >> ns->head->lba_shift) - 1);
927
928	if (!(req->cmd_flags & REQ_NOUNMAP) &&
929	    (ns->head->features & NVME_NS_DEAC))
930		cmnd->write_zeroes.control |= cpu_to_le16(NVME_WZ_DEAC);
931
932	if (nvme_ns_has_pi(ns->head)) {
933		cmnd->write_zeroes.control |= cpu_to_le16(NVME_RW_PRINFO_PRACT);
934
935		switch (ns->head->pi_type) {
936		case NVME_NS_DPS_PI_TYPE1:
937		case NVME_NS_DPS_PI_TYPE2:
938			nvme_set_ref_tag(ns, cmnd, req);
939			break;
940		}
941	}
942
943	return BLK_STS_OK;
944}
945
946static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns,
947		struct request *req, struct nvme_command *cmnd,
948		enum nvme_opcode op)
949{
950	u16 control = 0;
951	u32 dsmgmt = 0;
952
953	if (req->cmd_flags & REQ_FUA)
954		control |= NVME_RW_FUA;
955	if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
956		control |= NVME_RW_LR;
957
958	if (req->cmd_flags & REQ_RAHEAD)
959		dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
960
961	cmnd->rw.opcode = op;
962	cmnd->rw.flags = 0;
963	cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id);
964	cmnd->rw.cdw2 = 0;
965	cmnd->rw.cdw3 = 0;
966	cmnd->rw.metadata = 0;
967	cmnd->rw.slba =
968		cpu_to_le64(nvme_sect_to_lba(ns->head, blk_rq_pos(req)));
969	cmnd->rw.length =
970		cpu_to_le16((blk_rq_bytes(req) >> ns->head->lba_shift) - 1);
971	cmnd->rw.reftag = 0;
972	cmnd->rw.apptag = 0;
973	cmnd->rw.appmask = 0;
974
975	if (ns->head->ms) {
976		/*
977		 * If formated with metadata, the block layer always provides a
978		 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled.  Else
979		 * we enable the PRACT bit for protection information or set the
980		 * namespace capacity to zero to prevent any I/O.
981		 */
982		if (!blk_integrity_rq(req)) {
983			if (WARN_ON_ONCE(!nvme_ns_has_pi(ns->head)))
984				return BLK_STS_NOTSUPP;
985			control |= NVME_RW_PRINFO_PRACT;
986		}
987
988		switch (ns->head->pi_type) {
989		case NVME_NS_DPS_PI_TYPE3:
990			control |= NVME_RW_PRINFO_PRCHK_GUARD;
991			break;
992		case NVME_NS_DPS_PI_TYPE1:
993		case NVME_NS_DPS_PI_TYPE2:
994			control |= NVME_RW_PRINFO_PRCHK_GUARD |
995					NVME_RW_PRINFO_PRCHK_REF;
996			if (op == nvme_cmd_zone_append)
997				control |= NVME_RW_APPEND_PIREMAP;
998			nvme_set_ref_tag(ns, cmnd, req);
999			break;
1000		}
1001	}
1002
1003	cmnd->rw.control = cpu_to_le16(control);
1004	cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
1005	return 0;
1006}
1007
1008void nvme_cleanup_cmd(struct request *req)
1009{
1010	if (req->rq_flags & RQF_SPECIAL_PAYLOAD) {
1011		struct nvme_ctrl *ctrl = nvme_req(req)->ctrl;
1012
1013		if (req->special_vec.bv_page == ctrl->discard_page)
1014			clear_bit_unlock(0, &ctrl->discard_page_busy);
1015		else
1016			kfree(bvec_virt(&req->special_vec));
1017	}
1018}
1019EXPORT_SYMBOL_GPL(nvme_cleanup_cmd);
1020
1021blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req)
1022{
1023	struct nvme_command *cmd = nvme_req(req)->cmd;
1024	blk_status_t ret = BLK_STS_OK;
1025
1026	if (!(req->rq_flags & RQF_DONTPREP))
1027		nvme_clear_nvme_request(req);
1028
1029	switch (req_op(req)) {
1030	case REQ_OP_DRV_IN:
1031	case REQ_OP_DRV_OUT:
1032		/* these are setup prior to execution in nvme_init_request() */
1033		break;
1034	case REQ_OP_FLUSH:
1035		nvme_setup_flush(ns, cmd);
1036		break;
1037	case REQ_OP_ZONE_RESET_ALL:
1038	case REQ_OP_ZONE_RESET:
1039		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_RESET);
1040		break;
1041	case REQ_OP_ZONE_OPEN:
1042		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_OPEN);
1043		break;
1044	case REQ_OP_ZONE_CLOSE:
1045		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_CLOSE);
1046		break;
1047	case REQ_OP_ZONE_FINISH:
1048		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_FINISH);
1049		break;
1050	case REQ_OP_WRITE_ZEROES:
1051		ret = nvme_setup_write_zeroes(ns, req, cmd);
1052		break;
1053	case REQ_OP_DISCARD:
1054		ret = nvme_setup_discard(ns, req, cmd);
1055		break;
1056	case REQ_OP_READ:
1057		ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_read);
1058		break;
1059	case REQ_OP_WRITE:
1060		ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_write);
1061		break;
1062	case REQ_OP_ZONE_APPEND:
1063		ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_zone_append);
1064		break;
1065	default:
1066		WARN_ON_ONCE(1);
1067		return BLK_STS_IOERR;
1068	}
1069
1070	cmd->common.command_id = nvme_cid(req);
1071	trace_nvme_setup_cmd(req, cmd);
1072	return ret;
1073}
1074EXPORT_SYMBOL_GPL(nvme_setup_cmd);
1075
1076/*
1077 * Return values:
1078 * 0:  success
1079 * >0: nvme controller's cqe status response
1080 * <0: kernel error in lieu of controller response
1081 */
1082int nvme_execute_rq(struct request *rq, bool at_head)
1083{
1084	blk_status_t status;
1085
1086	status = blk_execute_rq(rq, at_head);
1087	if (nvme_req(rq)->flags & NVME_REQ_CANCELLED)
1088		return -EINTR;
1089	if (nvme_req(rq)->status)
1090		return nvme_req(rq)->status;
1091	return blk_status_to_errno(status);
1092}
1093EXPORT_SYMBOL_NS_GPL(nvme_execute_rq, NVME_TARGET_PASSTHRU);
1094
1095/*
1096 * Returns 0 on success.  If the result is negative, it's a Linux error code;
1097 * if the result is positive, it's an NVM Express status code
1098 */
1099int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1100		union nvme_result *result, void *buffer, unsigned bufflen,
1101		int qid, nvme_submit_flags_t flags)
1102{
1103	struct request *req;
1104	int ret;
1105	blk_mq_req_flags_t blk_flags = 0;
1106
1107	if (flags & NVME_SUBMIT_NOWAIT)
1108		blk_flags |= BLK_MQ_REQ_NOWAIT;
1109	if (flags & NVME_SUBMIT_RESERVED)
1110		blk_flags |= BLK_MQ_REQ_RESERVED;
1111	if (qid == NVME_QID_ANY)
1112		req = blk_mq_alloc_request(q, nvme_req_op(cmd), blk_flags);
1113	else
1114		req = blk_mq_alloc_request_hctx(q, nvme_req_op(cmd), blk_flags,
1115						qid - 1);
1116
1117	if (IS_ERR(req))
1118		return PTR_ERR(req);
1119	nvme_init_request(req, cmd);
1120	if (flags & NVME_SUBMIT_RETRY)
1121		req->cmd_flags &= ~REQ_FAILFAST_DRIVER;
1122
1123	if (buffer && bufflen) {
1124		ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
1125		if (ret)
1126			goto out;
1127	}
1128
1129	ret = nvme_execute_rq(req, flags & NVME_SUBMIT_AT_HEAD);
1130	if (result && ret >= 0)
1131		*result = nvme_req(req)->result;
1132 out:
1133	blk_mq_free_request(req);
1134	return ret;
1135}
1136EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
1137
1138int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1139		void *buffer, unsigned bufflen)
1140{
1141	return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen,
1142			NVME_QID_ANY, 0);
1143}
1144EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
1145
1146u32 nvme_command_effects(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode)
1147{
1148	u32 effects = 0;
1149
1150	if (ns) {
1151		effects = le32_to_cpu(ns->head->effects->iocs[opcode]);
1152		if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC))
1153			dev_warn_once(ctrl->device,
1154				"IO command:%02x has unusual effects:%08x\n",
1155				opcode, effects);
1156
1157		/*
1158		 * NVME_CMD_EFFECTS_CSE_MASK causes a freeze all I/O queues,
1159		 * which would deadlock when done on an I/O command.  Note that
1160		 * We already warn about an unusual effect above.
1161		 */
1162		effects &= ~NVME_CMD_EFFECTS_CSE_MASK;
1163	} else {
1164		effects = le32_to_cpu(ctrl->effects->acs[opcode]);
1165
1166		/* Ignore execution restrictions if any relaxation bits are set */
1167		if (effects & NVME_CMD_EFFECTS_CSER_MASK)
1168			effects &= ~NVME_CMD_EFFECTS_CSE_MASK;
1169	}
1170
1171	return effects;
1172}
1173EXPORT_SYMBOL_NS_GPL(nvme_command_effects, NVME_TARGET_PASSTHRU);
1174
1175u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode)
1176{
1177	u32 effects = nvme_command_effects(ctrl, ns, opcode);
1178
1179	/*
1180	 * For simplicity, IO to all namespaces is quiesced even if the command
1181	 * effects say only one namespace is affected.
1182	 */
1183	if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1184		mutex_lock(&ctrl->scan_lock);
1185		mutex_lock(&ctrl->subsys->lock);
1186		nvme_mpath_start_freeze(ctrl->subsys);
1187		nvme_mpath_wait_freeze(ctrl->subsys);
1188		nvme_start_freeze(ctrl);
1189		nvme_wait_freeze(ctrl);
1190	}
1191	return effects;
1192}
1193EXPORT_SYMBOL_NS_GPL(nvme_passthru_start, NVME_TARGET_PASSTHRU);
1194
1195void nvme_passthru_end(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u32 effects,
1196		       struct nvme_command *cmd, int status)
1197{
1198	if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1199		nvme_unfreeze(ctrl);
1200		nvme_mpath_unfreeze(ctrl->subsys);
1201		mutex_unlock(&ctrl->subsys->lock);
1202		mutex_unlock(&ctrl->scan_lock);
1203	}
1204	if (effects & NVME_CMD_EFFECTS_CCC) {
1205		if (!test_and_set_bit(NVME_CTRL_DIRTY_CAPABILITY,
1206				      &ctrl->flags)) {
1207			dev_info(ctrl->device,
1208"controller capabilities changed, reset may be required to take effect.\n");
1209		}
1210	}
1211	if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) {
1212		nvme_queue_scan(ctrl);
1213		flush_work(&ctrl->scan_work);
1214	}
1215	if (ns)
1216		return;
1217
1218	switch (cmd->common.opcode) {
1219	case nvme_admin_set_features:
1220		switch (le32_to_cpu(cmd->common.cdw10) & 0xFF) {
1221		case NVME_FEAT_KATO:
1222			/*
1223			 * Keep alive commands interval on the host should be
1224			 * updated when KATO is modified by Set Features
1225			 * commands.
1226			 */
1227			if (!status)
1228				nvme_update_keep_alive(ctrl, cmd);
1229			break;
1230		default:
1231			break;
1232		}
1233		break;
1234	default:
1235		break;
1236	}
1237}
1238EXPORT_SYMBOL_NS_GPL(nvme_passthru_end, NVME_TARGET_PASSTHRU);
1239
1240/*
1241 * Recommended frequency for KATO commands per NVMe 1.4 section 7.12.1:
1242 *
1243 *   The host should send Keep Alive commands at half of the Keep Alive Timeout
1244 *   accounting for transport roundtrip times [..].
1245 */
1246static unsigned long nvme_keep_alive_work_period(struct nvme_ctrl *ctrl)
1247{
1248	unsigned long delay = ctrl->kato * HZ / 2;
1249
1250	/*
1251	 * When using Traffic Based Keep Alive, we need to run
1252	 * nvme_keep_alive_work at twice the normal frequency, as one
1253	 * command completion can postpone sending a keep alive command
1254	 * by up to twice the delay between runs.
1255	 */
1256	if (ctrl->ctratt & NVME_CTRL_ATTR_TBKAS)
1257		delay /= 2;
1258	return delay;
1259}
1260
1261static void nvme_queue_keep_alive_work(struct nvme_ctrl *ctrl)
1262{
1263	unsigned long now = jiffies;
1264	unsigned long delay = nvme_keep_alive_work_period(ctrl);
1265	unsigned long ka_next_check_tm = ctrl->ka_last_check_time + delay;
1266
1267	if (time_after(now, ka_next_check_tm))
1268		delay = 0;
1269	else
1270		delay = ka_next_check_tm - now;
1271
1272	queue_delayed_work(nvme_wq, &ctrl->ka_work, delay);
1273}
1274
1275static enum rq_end_io_ret nvme_keep_alive_end_io(struct request *rq,
1276						 blk_status_t status)
1277{
1278	struct nvme_ctrl *ctrl = rq->end_io_data;
1279	unsigned long flags;
1280	bool startka = false;
1281	unsigned long rtt = jiffies - (rq->deadline - rq->timeout);
1282	unsigned long delay = nvme_keep_alive_work_period(ctrl);
1283
1284	/*
1285	 * Subtract off the keepalive RTT so nvme_keep_alive_work runs
1286	 * at the desired frequency.
1287	 */
1288	if (rtt <= delay) {
1289		delay -= rtt;
1290	} else {
1291		dev_warn(ctrl->device, "long keepalive RTT (%u ms)\n",
1292			 jiffies_to_msecs(rtt));
1293		delay = 0;
1294	}
1295
1296	blk_mq_free_request(rq);
1297
1298	if (status) {
1299		dev_err(ctrl->device,
1300			"failed nvme_keep_alive_end_io error=%d\n",
1301				status);
1302		return RQ_END_IO_NONE;
1303	}
1304
1305	ctrl->ka_last_check_time = jiffies;
1306	ctrl->comp_seen = false;
1307	spin_lock_irqsave(&ctrl->lock, flags);
1308	if (ctrl->state == NVME_CTRL_LIVE ||
1309	    ctrl->state == NVME_CTRL_CONNECTING)
1310		startka = true;
1311	spin_unlock_irqrestore(&ctrl->lock, flags);
1312	if (startka)
1313		queue_delayed_work(nvme_wq, &ctrl->ka_work, delay);
1314	return RQ_END_IO_NONE;
1315}
1316
1317static void nvme_keep_alive_work(struct work_struct *work)
1318{
1319	struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
1320			struct nvme_ctrl, ka_work);
1321	bool comp_seen = ctrl->comp_seen;
1322	struct request *rq;
1323
1324	ctrl->ka_last_check_time = jiffies;
1325
1326	if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) {
1327		dev_dbg(ctrl->device,
1328			"reschedule traffic based keep-alive timer\n");
1329		ctrl->comp_seen = false;
1330		nvme_queue_keep_alive_work(ctrl);
1331		return;
1332	}
1333
1334	rq = blk_mq_alloc_request(ctrl->admin_q, nvme_req_op(&ctrl->ka_cmd),
1335				  BLK_MQ_REQ_RESERVED | BLK_MQ_REQ_NOWAIT);
1336	if (IS_ERR(rq)) {
1337		/* allocation failure, reset the controller */
1338		dev_err(ctrl->device, "keep-alive failed: %ld\n", PTR_ERR(rq));
1339		nvme_reset_ctrl(ctrl);
1340		return;
1341	}
1342	nvme_init_request(rq, &ctrl->ka_cmd);
1343
1344	rq->timeout = ctrl->kato * HZ;
1345	rq->end_io = nvme_keep_alive_end_io;
1346	rq->end_io_data = ctrl;
1347	blk_execute_rq_nowait(rq, false);
1348}
1349
1350static void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
1351{
1352	if (unlikely(ctrl->kato == 0))
1353		return;
1354
1355	nvme_queue_keep_alive_work(ctrl);
1356}
1357
1358void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
1359{
1360	if (unlikely(ctrl->kato == 0))
1361		return;
1362
1363	cancel_delayed_work_sync(&ctrl->ka_work);
1364}
1365EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
1366
1367static void nvme_update_keep_alive(struct nvme_ctrl *ctrl,
1368				   struct nvme_command *cmd)
1369{
1370	unsigned int new_kato =
1371		DIV_ROUND_UP(le32_to_cpu(cmd->common.cdw11), 1000);
1372
1373	dev_info(ctrl->device,
1374		 "keep alive interval updated from %u ms to %u ms\n",
1375		 ctrl->kato * 1000 / 2, new_kato * 1000 / 2);
1376
1377	nvme_stop_keep_alive(ctrl);
1378	ctrl->kato = new_kato;
1379	nvme_start_keep_alive(ctrl);
1380}
1381
1382/*
1383 * In NVMe 1.0 the CNS field was just a binary controller or namespace
1384 * flag, thus sending any new CNS opcodes has a big chance of not working.
1385 * Qemu unfortunately had that bug after reporting a 1.1 version compliance
1386 * (but not for any later version).
1387 */
1388static bool nvme_ctrl_limited_cns(struct nvme_ctrl *ctrl)
1389{
1390	if (ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)
1391		return ctrl->vs < NVME_VS(1, 2, 0);
1392	return ctrl->vs < NVME_VS(1, 1, 0);
1393}
1394
1395static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
1396{
1397	struct nvme_command c = { };
1398	int error;
1399
1400	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1401	c.identify.opcode = nvme_admin_identify;
1402	c.identify.cns = NVME_ID_CNS_CTRL;
1403
1404	*id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
1405	if (!*id)
1406		return -ENOMEM;
1407
1408	error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
1409			sizeof(struct nvme_id_ctrl));
1410	if (error) {
1411		kfree(*id);
1412		*id = NULL;
1413	}
1414	return error;
1415}
1416
1417static int nvme_process_ns_desc(struct nvme_ctrl *ctrl, struct nvme_ns_ids *ids,
1418		struct nvme_ns_id_desc *cur, bool *csi_seen)
1419{
1420	const char *warn_str = "ctrl returned bogus length:";
1421	void *data = cur;
1422
1423	switch (cur->nidt) {
1424	case NVME_NIDT_EUI64:
1425		if (cur->nidl != NVME_NIDT_EUI64_LEN) {
1426			dev_warn(ctrl->device, "%s %d for NVME_NIDT_EUI64\n",
1427				 warn_str, cur->nidl);
1428			return -1;
1429		}
1430		if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
1431			return NVME_NIDT_EUI64_LEN;
1432		memcpy(ids->eui64, data + sizeof(*cur), NVME_NIDT_EUI64_LEN);
1433		return NVME_NIDT_EUI64_LEN;
1434	case NVME_NIDT_NGUID:
1435		if (cur->nidl != NVME_NIDT_NGUID_LEN) {
1436			dev_warn(ctrl->device, "%s %d for NVME_NIDT_NGUID\n",
1437				 warn_str, cur->nidl);
1438			return -1;
1439		}
1440		if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
1441			return NVME_NIDT_NGUID_LEN;
1442		memcpy(ids->nguid, data + sizeof(*cur), NVME_NIDT_NGUID_LEN);
1443		return NVME_NIDT_NGUID_LEN;
1444	case NVME_NIDT_UUID:
1445		if (cur->nidl != NVME_NIDT_UUID_LEN) {
1446			dev_warn(ctrl->device, "%s %d for NVME_NIDT_UUID\n",
1447				 warn_str, cur->nidl);
1448			return -1;
1449		}
1450		if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
1451			return NVME_NIDT_UUID_LEN;
1452		uuid_copy(&ids->uuid, data + sizeof(*cur));
1453		return NVME_NIDT_UUID_LEN;
1454	case NVME_NIDT_CSI:
1455		if (cur->nidl != NVME_NIDT_CSI_LEN) {
1456			dev_warn(ctrl->device, "%s %d for NVME_NIDT_CSI\n",
1457				 warn_str, cur->nidl);
1458			return -1;
1459		}
1460		memcpy(&ids->csi, data + sizeof(*cur), NVME_NIDT_CSI_LEN);
1461		*csi_seen = true;
1462		return NVME_NIDT_CSI_LEN;
1463	default:
1464		/* Skip unknown types */
1465		return cur->nidl;
1466	}
1467}
1468
1469static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl,
1470		struct nvme_ns_info *info)
1471{
1472	struct nvme_command c = { };
1473	bool csi_seen = false;
1474	int status, pos, len;
1475	void *data;
1476
1477	if (ctrl->vs < NVME_VS(1, 3, 0) && !nvme_multi_css(ctrl))
1478		return 0;
1479	if (ctrl->quirks & NVME_QUIRK_NO_NS_DESC_LIST)
1480		return 0;
1481
1482	c.identify.opcode = nvme_admin_identify;
1483	c.identify.nsid = cpu_to_le32(info->nsid);
1484	c.identify.cns = NVME_ID_CNS_NS_DESC_LIST;
1485
1486	data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
1487	if (!data)
1488		return -ENOMEM;
1489
1490	status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data,
1491				      NVME_IDENTIFY_DATA_SIZE);
1492	if (status) {
1493		dev_warn(ctrl->device,
1494			"Identify Descriptors failed (nsid=%u, status=0x%x)\n",
1495			info->nsid, status);
1496		goto free_data;
1497	}
1498
1499	for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) {
1500		struct nvme_ns_id_desc *cur = data + pos;
1501
1502		if (cur->nidl == 0)
1503			break;
1504
1505		len = nvme_process_ns_desc(ctrl, &info->ids, cur, &csi_seen);
1506		if (len < 0)
1507			break;
1508
1509		len += sizeof(*cur);
1510	}
1511
1512	if (nvme_multi_css(ctrl) && !csi_seen) {
1513		dev_warn(ctrl->device, "Command set not reported for nsid:%d\n",
1514			 info->nsid);
1515		status = -EINVAL;
1516	}
1517
1518free_data:
1519	kfree(data);
1520	return status;
1521}
1522
1523int nvme_identify_ns(struct nvme_ctrl *ctrl, unsigned nsid,
1524			struct nvme_id_ns **id)
1525{
1526	struct nvme_command c = { };
1527	int error;
1528
1529	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1530	c.identify.opcode = nvme_admin_identify;
1531	c.identify.nsid = cpu_to_le32(nsid);
1532	c.identify.cns = NVME_ID_CNS_NS;
1533
1534	*id = kmalloc(sizeof(**id), GFP_KERNEL);
1535	if (!*id)
1536		return -ENOMEM;
1537
1538	error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id));
1539	if (error) {
1540		dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error);
1541		kfree(*id);
1542		*id = NULL;
1543	}
1544	return error;
1545}
1546
1547static int nvme_ns_info_from_identify(struct nvme_ctrl *ctrl,
1548		struct nvme_ns_info *info)
1549{
1550	struct nvme_ns_ids *ids = &info->ids;
1551	struct nvme_id_ns *id;
1552	int ret;
1553
1554	ret = nvme_identify_ns(ctrl, info->nsid, &id);
1555	if (ret)
1556		return ret;
1557
1558	if (id->ncap == 0) {
1559		/* namespace not allocated or attached */
1560		info->is_removed = true;
1561		ret = -ENODEV;
1562		goto error;
1563	}
1564
1565	info->anagrpid = id->anagrpid;
1566	info->is_shared = id->nmic & NVME_NS_NMIC_SHARED;
1567	info->is_readonly = id->nsattr & NVME_NS_ATTR_RO;
1568	info->is_ready = true;
1569	if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) {
1570		dev_info(ctrl->device,
1571			 "Ignoring bogus Namespace Identifiers\n");
1572	} else {
1573		if (ctrl->vs >= NVME_VS(1, 1, 0) &&
1574		    !memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
1575			memcpy(ids->eui64, id->eui64, sizeof(ids->eui64));
1576		if (ctrl->vs >= NVME_VS(1, 2, 0) &&
1577		    !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
1578			memcpy(ids->nguid, id->nguid, sizeof(ids->nguid));
1579	}
1580
1581error:
1582	kfree(id);
1583	return ret;
1584}
1585
1586static int nvme_ns_info_from_id_cs_indep(struct nvme_ctrl *ctrl,
1587		struct nvme_ns_info *info)
1588{
1589	struct nvme_id_ns_cs_indep *id;
1590	struct nvme_command c = {
1591		.identify.opcode	= nvme_admin_identify,
1592		.identify.nsid		= cpu_to_le32(info->nsid),
1593		.identify.cns		= NVME_ID_CNS_NS_CS_INDEP,
1594	};
1595	int ret;
1596
1597	id = kmalloc(sizeof(*id), GFP_KERNEL);
1598	if (!id)
1599		return -ENOMEM;
1600
1601	ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id));
1602	if (!ret) {
1603		info->anagrpid = id->anagrpid;
1604		info->is_shared = id->nmic & NVME_NS_NMIC_SHARED;
1605		info->is_readonly = id->nsattr & NVME_NS_ATTR_RO;
1606		info->is_ready = id->nstat & NVME_NSTAT_NRDY;
1607	}
1608	kfree(id);
1609	return ret;
1610}
1611
1612static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid,
1613		unsigned int dword11, void *buffer, size_t buflen, u32 *result)
1614{
1615	union nvme_result res = { 0 };
1616	struct nvme_command c = { };
1617	int ret;
1618
1619	c.features.opcode = op;
1620	c.features.fid = cpu_to_le32(fid);
1621	c.features.dword11 = cpu_to_le32(dword11);
1622
1623	ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
1624			buffer, buflen, NVME_QID_ANY, 0);
1625	if (ret >= 0 && result)
1626		*result = le32_to_cpu(res.u32);
1627	return ret;
1628}
1629
1630int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid,
1631		      unsigned int dword11, void *buffer, size_t buflen,
1632		      u32 *result)
1633{
1634	return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer,
1635			     buflen, result);
1636}
1637EXPORT_SYMBOL_GPL(nvme_set_features);
1638
1639int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid,
1640		      unsigned int dword11, void *buffer, size_t buflen,
1641		      u32 *result)
1642{
1643	return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer,
1644			     buflen, result);
1645}
1646EXPORT_SYMBOL_GPL(nvme_get_features);
1647
1648int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
1649{
1650	u32 q_count = (*count - 1) | ((*count - 1) << 16);
1651	u32 result;
1652	int status, nr_io_queues;
1653
1654	status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
1655			&result);
1656	if (status < 0)
1657		return status;
1658
1659	/*
1660	 * Degraded controllers might return an error when setting the queue
1661	 * count.  We still want to be able to bring them online and offer
1662	 * access to the admin queue, as that might be only way to fix them up.
1663	 */
1664	if (status > 0) {
1665		dev_err(ctrl->device, "Could not set queue count (%d)\n", status);
1666		*count = 0;
1667	} else {
1668		nr_io_queues = min(result & 0xffff, result >> 16) + 1;
1669		*count = min(*count, nr_io_queues);
1670	}
1671
1672	return 0;
1673}
1674EXPORT_SYMBOL_GPL(nvme_set_queue_count);
1675
1676#define NVME_AEN_SUPPORTED \
1677	(NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \
1678	 NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE)
1679
1680static void nvme_enable_aen(struct nvme_ctrl *ctrl)
1681{
1682	u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED;
1683	int status;
1684
1685	if (!supported_aens)
1686		return;
1687
1688	status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens,
1689			NULL, 0, &result);
1690	if (status)
1691		dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n",
1692			 supported_aens);
1693
1694	queue_work(nvme_wq, &ctrl->async_event_work);
1695}
1696
1697static int nvme_ns_open(struct nvme_ns *ns)
1698{
1699
1700	/* should never be called due to GENHD_FL_HIDDEN */
1701	if (WARN_ON_ONCE(nvme_ns_head_multipath(ns->head)))
1702		goto fail;
1703	if (!nvme_get_ns(ns))
1704		goto fail;
1705	if (!try_module_get(ns->ctrl->ops->module))
1706		goto fail_put_ns;
1707
1708	return 0;
1709
1710fail_put_ns:
1711	nvme_put_ns(ns);
1712fail:
1713	return -ENXIO;
1714}
1715
1716static void nvme_ns_release(struct nvme_ns *ns)
1717{
1718
1719	module_put(ns->ctrl->ops->module);
1720	nvme_put_ns(ns);
1721}
1722
1723static int nvme_open(struct gendisk *disk, blk_mode_t mode)
1724{
1725	return nvme_ns_open(disk->private_data);
1726}
1727
1728static void nvme_release(struct gendisk *disk)
1729{
1730	nvme_ns_release(disk->private_data);
1731}
1732
1733int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1734{
1735	/* some standard values */
1736	geo->heads = 1 << 6;
1737	geo->sectors = 1 << 5;
1738	geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
1739	return 0;
1740}
1741
1742static bool nvme_init_integrity(struct gendisk *disk, struct nvme_ns_head *head)
1743{
1744	struct blk_integrity integrity = { };
1745
1746	blk_integrity_unregister(disk);
1747
1748	if (!head->ms)
1749		return true;
1750
1751	/*
1752	 * PI can always be supported as we can ask the controller to simply
1753	 * insert/strip it, which is not possible for other kinds of metadata.
1754	 */
1755	if (!IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) ||
1756	    !(head->features & NVME_NS_METADATA_SUPPORTED))
1757		return nvme_ns_has_pi(head);
1758
1759	switch (head->pi_type) {
1760	case NVME_NS_DPS_PI_TYPE3:
1761		switch (head->guard_type) {
1762		case NVME_NVM_NS_16B_GUARD:
1763			integrity.profile = &t10_pi_type3_crc;
1764			integrity.tag_size = sizeof(u16) + sizeof(u32);
1765			integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1766			break;
1767		case NVME_NVM_NS_64B_GUARD:
1768			integrity.profile = &ext_pi_type3_crc64;
1769			integrity.tag_size = sizeof(u16) + 6;
1770			integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1771			break;
1772		default:
1773			integrity.profile = NULL;
1774			break;
1775		}
1776		break;
1777	case NVME_NS_DPS_PI_TYPE1:
1778	case NVME_NS_DPS_PI_TYPE2:
1779		switch (head->guard_type) {
1780		case NVME_NVM_NS_16B_GUARD:
1781			integrity.profile = &t10_pi_type1_crc;
1782			integrity.tag_size = sizeof(u16);
1783			integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1784			break;
1785		case NVME_NVM_NS_64B_GUARD:
1786			integrity.profile = &ext_pi_type1_crc64;
1787			integrity.tag_size = sizeof(u16);
1788			integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1789			break;
1790		default:
1791			integrity.profile = NULL;
1792			break;
1793		}
1794		break;
1795	default:
1796		integrity.profile = NULL;
1797		break;
1798	}
1799
1800	integrity.tuple_size = head->ms;
1801	integrity.pi_offset = head->pi_offset;
1802	blk_integrity_register(disk, &integrity);
1803	return true;
1804}
1805
1806static void nvme_config_discard(struct nvme_ns *ns, struct queue_limits *lim)
1807{
1808	struct nvme_ctrl *ctrl = ns->ctrl;
1809
1810	if (ctrl->dmrsl && ctrl->dmrsl <= nvme_sect_to_lba(ns->head, UINT_MAX))
1811		lim->max_hw_discard_sectors =
1812			nvme_lba_to_sect(ns->head, ctrl->dmrsl);
1813	else if (ctrl->oncs & NVME_CTRL_ONCS_DSM)
1814		lim->max_hw_discard_sectors = UINT_MAX;
1815	else
1816		lim->max_hw_discard_sectors = 0;
1817
1818	lim->discard_granularity = lim->logical_block_size;
1819
1820	if (ctrl->dmrl)
1821		lim->max_discard_segments = ctrl->dmrl;
1822	else
1823		lim->max_discard_segments = NVME_DSM_MAX_RANGES;
1824}
1825
1826static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b)
1827{
1828	return uuid_equal(&a->uuid, &b->uuid) &&
1829		memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 &&
1830		memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0 &&
1831		a->csi == b->csi;
1832}
1833
1834static int nvme_identify_ns_nvm(struct nvme_ctrl *ctrl, unsigned int nsid,
1835		struct nvme_id_ns_nvm **nvmp)
1836{
1837	struct nvme_command c = {
1838		.identify.opcode	= nvme_admin_identify,
1839		.identify.nsid		= cpu_to_le32(nsid),
1840		.identify.cns		= NVME_ID_CNS_CS_NS,
1841		.identify.csi		= NVME_CSI_NVM,
1842	};
1843	struct nvme_id_ns_nvm *nvm;
1844	int ret;
1845
1846	nvm = kzalloc(sizeof(*nvm), GFP_KERNEL);
1847	if (!nvm)
1848		return -ENOMEM;
1849
1850	ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, nvm, sizeof(*nvm));
1851	if (ret)
1852		kfree(nvm);
1853	else
1854		*nvmp = nvm;
1855	return ret;
1856}
1857
1858static void nvme_configure_pi_elbas(struct nvme_ns_head *head,
1859		struct nvme_id_ns *id, struct nvme_id_ns_nvm *nvm)
1860{
1861	u32 elbaf = le32_to_cpu(nvm->elbaf[nvme_lbaf_index(id->flbas)]);
1862
1863	/* no support for storage tag formats right now */
1864	if (nvme_elbaf_sts(elbaf))
1865		return;
1866
1867	head->guard_type = nvme_elbaf_guard_type(elbaf);
1868	switch (head->guard_type) {
1869	case NVME_NVM_NS_64B_GUARD:
1870		head->pi_size = sizeof(struct crc64_pi_tuple);
1871		break;
1872	case NVME_NVM_NS_16B_GUARD:
1873		head->pi_size = sizeof(struct t10_pi_tuple);
1874		break;
1875	default:
1876		break;
1877	}
1878}
1879
1880static void nvme_configure_metadata(struct nvme_ctrl *ctrl,
1881		struct nvme_ns_head *head, struct nvme_id_ns *id,
1882		struct nvme_id_ns_nvm *nvm)
1883{
1884	head->features &= ~(NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS);
1885	head->pi_type = 0;
1886	head->pi_size = 0;
1887	head->pi_offset = 0;
1888	head->ms = le16_to_cpu(id->lbaf[nvme_lbaf_index(id->flbas)].ms);
1889	if (!head->ms || !(ctrl->ops->flags & NVME_F_METADATA_SUPPORTED))
1890		return;
1891
1892	if (nvm && (ctrl->ctratt & NVME_CTRL_ATTR_ELBAS)) {
1893		nvme_configure_pi_elbas(head, id, nvm);
1894	} else {
1895		head->pi_size = sizeof(struct t10_pi_tuple);
1896		head->guard_type = NVME_NVM_NS_16B_GUARD;
1897	}
1898
1899	if (head->pi_size && head->ms >= head->pi_size)
1900		head->pi_type = id->dps & NVME_NS_DPS_PI_MASK;
1901	if (!(id->dps & NVME_NS_DPS_PI_FIRST))
1902		head->pi_offset = head->ms - head->pi_size;
1903
1904	if (ctrl->ops->flags & NVME_F_FABRICS) {
1905		/*
1906		 * The NVMe over Fabrics specification only supports metadata as
1907		 * part of the extended data LBA.  We rely on HCA/HBA support to
1908		 * remap the separate metadata buffer from the block layer.
1909		 */
1910		if (WARN_ON_ONCE(!(id->flbas & NVME_NS_FLBAS_META_EXT)))
1911			return;
1912
1913		head->features |= NVME_NS_EXT_LBAS;
1914
1915		/*
1916		 * The current fabrics transport drivers support namespace
1917		 * metadata formats only if nvme_ns_has_pi() returns true.
1918		 * Suppress support for all other formats so the namespace will
1919		 * have a 0 capacity and not be usable through the block stack.
1920		 *
1921		 * Note, this check will need to be modified if any drivers
1922		 * gain the ability to use other metadata formats.
1923		 */
1924		if (ctrl->max_integrity_segments && nvme_ns_has_pi(head))
1925			head->features |= NVME_NS_METADATA_SUPPORTED;
1926	} else {
1927		/*
1928		 * For PCIe controllers, we can't easily remap the separate
1929		 * metadata buffer from the block layer and thus require a
1930		 * separate metadata buffer for block layer metadata/PI support.
1931		 * We allow extended LBAs for the passthrough interface, though.
1932		 */
1933		if (id->flbas & NVME_NS_FLBAS_META_EXT)
1934			head->features |= NVME_NS_EXT_LBAS;
1935		else
1936			head->features |= NVME_NS_METADATA_SUPPORTED;
1937	}
1938}
1939
1940static u32 nvme_max_drv_segments(struct nvme_ctrl *ctrl)
1941{
1942	return ctrl->max_hw_sectors / (NVME_CTRL_PAGE_SIZE >> SECTOR_SHIFT) + 1;
1943}
1944
1945static void nvme_set_ctrl_limits(struct nvme_ctrl *ctrl,
1946		struct queue_limits *lim)
1947{
1948	lim->max_hw_sectors = ctrl->max_hw_sectors;
1949	lim->max_segments = min_t(u32, USHRT_MAX,
1950		min_not_zero(nvme_max_drv_segments(ctrl), ctrl->max_segments));
1951	lim->max_integrity_segments = ctrl->max_integrity_segments;
1952	lim->virt_boundary_mask = NVME_CTRL_PAGE_SIZE - 1;
1953	lim->max_segment_size = UINT_MAX;
1954	lim->dma_alignment = 3;
1955}
1956
1957static bool nvme_update_disk_info(struct nvme_ns *ns, struct nvme_id_ns *id,
1958		struct queue_limits *lim)
1959{
1960	struct nvme_ns_head *head = ns->head;
1961	u32 bs = 1U << head->lba_shift;
1962	u32 atomic_bs, phys_bs, io_opt = 0;
1963	bool valid = true;
1964
1965	/*
1966	 * The block layer can't support LBA sizes larger than the page size
1967	 * or smaller than a sector size yet, so catch this early and don't
1968	 * allow block I/O.
1969	 */
1970	if (head->lba_shift > PAGE_SHIFT || head->lba_shift < SECTOR_SHIFT) {
1971		bs = (1 << 9);
1972		valid = false;
1973	}
1974
1975	atomic_bs = phys_bs = bs;
1976	if (id->nabo == 0) {
1977		/*
1978		 * Bit 1 indicates whether NAWUPF is defined for this namespace
1979		 * and whether it should be used instead of AWUPF. If NAWUPF ==
1980		 * 0 then AWUPF must be used instead.
1981		 */
1982		if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf)
1983			atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs;
1984		else
1985			atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs;
1986	}
1987
1988	if (id->nsfeat & NVME_NS_FEAT_IO_OPT) {
1989		/* NPWG = Namespace Preferred Write Granularity */
1990		phys_bs = bs * (1 + le16_to_cpu(id->npwg));
1991		/* NOWS = Namespace Optimal Write Size */
1992		io_opt = bs * (1 + le16_to_cpu(id->nows));
1993	}
1994
1995	/*
1996	 * Linux filesystems assume writing a single physical block is
1997	 * an atomic operation. Hence limit the physical block size to the
1998	 * value of the Atomic Write Unit Power Fail parameter.
1999	 */
2000	lim->logical_block_size = bs;
2001	lim->physical_block_size = min(phys_bs, atomic_bs);
2002	lim->io_min = phys_bs;
2003	lim->io_opt = io_opt;
2004	if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
2005		lim->max_write_zeroes_sectors = UINT_MAX;
2006	else
2007		lim->max_write_zeroes_sectors = ns->ctrl->max_zeroes_sectors;
2008	return valid;
2009}
2010
2011static bool nvme_ns_is_readonly(struct nvme_ns *ns, struct nvme_ns_info *info)
2012{
2013	return info->is_readonly || test_bit(NVME_NS_FORCE_RO, &ns->flags);
2014}
2015
2016static inline bool nvme_first_scan(struct gendisk *disk)
2017{
2018	/* nvme_alloc_ns() scans the disk prior to adding it */
2019	return !disk_live(disk);
2020}
2021
2022static void nvme_set_chunk_sectors(struct nvme_ns *ns, struct nvme_id_ns *id,
2023		struct queue_limits *lim)
2024{
2025	struct nvme_ctrl *ctrl = ns->ctrl;
2026	u32 iob;
2027
2028	if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) &&
2029	    is_power_of_2(ctrl->max_hw_sectors))
2030		iob = ctrl->max_hw_sectors;
2031	else
2032		iob = nvme_lba_to_sect(ns->head, le16_to_cpu(id->noiob));
2033
2034	if (!iob)
2035		return;
2036
2037	if (!is_power_of_2(iob)) {
2038		if (nvme_first_scan(ns->disk))
2039			pr_warn("%s: ignoring unaligned IO boundary:%u\n",
2040				ns->disk->disk_name, iob);
2041		return;
2042	}
2043
2044	if (blk_queue_is_zoned(ns->disk->queue)) {
2045		if (nvme_first_scan(ns->disk))
2046			pr_warn("%s: ignoring zoned namespace IO boundary\n",
2047				ns->disk->disk_name);
2048		return;
2049	}
2050
2051	lim->chunk_sectors = iob;
2052}
2053
2054static int nvme_update_ns_info_generic(struct nvme_ns *ns,
2055		struct nvme_ns_info *info)
2056{
2057	struct queue_limits lim;
2058	int ret;
2059
2060	blk_mq_freeze_queue(ns->disk->queue);
2061	lim = queue_limits_start_update(ns->disk->queue);
2062	nvme_set_ctrl_limits(ns->ctrl, &lim);
2063	ret = queue_limits_commit_update(ns->disk->queue, &lim);
2064	set_disk_ro(ns->disk, nvme_ns_is_readonly(ns, info));
2065	blk_mq_unfreeze_queue(ns->disk->queue);
2066
2067	/* Hide the block-interface for these devices */
2068	if (!ret)
2069		ret = -ENODEV;
2070	return ret;
2071}
2072
2073static int nvme_update_ns_info_block(struct nvme_ns *ns,
2074		struct nvme_ns_info *info)
2075{
2076	bool vwc = ns->ctrl->vwc & NVME_CTRL_VWC_PRESENT;
2077	struct queue_limits lim;
2078	struct nvme_id_ns_nvm *nvm = NULL;
2079	struct nvme_zone_info zi = {};
2080	struct nvme_id_ns *id;
2081	sector_t capacity;
2082	unsigned lbaf;
2083	int ret;
2084
2085	ret = nvme_identify_ns(ns->ctrl, info->nsid, &id);
2086	if (ret)
2087		return ret;
2088
2089	if (id->ncap == 0) {
2090		/* namespace not allocated or attached */
2091		info->is_removed = true;
2092		ret = -ENXIO;
2093		goto out;
2094	}
2095	lbaf = nvme_lbaf_index(id->flbas);
2096
2097	if (ns->ctrl->ctratt & NVME_CTRL_ATTR_ELBAS) {
2098		ret = nvme_identify_ns_nvm(ns->ctrl, info->nsid, &nvm);
2099		if (ret < 0)
2100			goto out;
2101	}
2102
2103	if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
2104	    ns->head->ids.csi == NVME_CSI_ZNS) {
2105		ret = nvme_query_zone_info(ns, lbaf, &zi);
2106		if (ret < 0)
2107			goto out;
2108	}
2109
2110	blk_mq_freeze_queue(ns->disk->queue);
2111	ns->head->lba_shift = id->lbaf[lbaf].ds;
2112	ns->head->nuse = le64_to_cpu(id->nuse);
2113	capacity = nvme_lba_to_sect(ns->head, le64_to_cpu(id->nsze));
2114
2115	lim = queue_limits_start_update(ns->disk->queue);
2116	nvme_set_ctrl_limits(ns->ctrl, &lim);
2117	nvme_configure_metadata(ns->ctrl, ns->head, id, nvm);
2118	nvme_set_chunk_sectors(ns, id, &lim);
2119	if (!nvme_update_disk_info(ns, id, &lim))
2120		capacity = 0;
2121	nvme_config_discard(ns, &lim);
2122	if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
2123	    ns->head->ids.csi == NVME_CSI_ZNS)
2124		nvme_update_zone_info(ns, &lim, &zi);
2125	ret = queue_limits_commit_update(ns->disk->queue, &lim);
2126	if (ret) {
2127		blk_mq_unfreeze_queue(ns->disk->queue);
2128		goto out;
2129	}
2130
2131	/*
2132	 * Register a metadata profile for PI, or the plain non-integrity NVMe
2133	 * metadata masquerading as Type 0 if supported, otherwise reject block
2134	 * I/O to namespaces with metadata except when the namespace supports
2135	 * PI, as it can strip/insert in that case.
2136	 */
2137	if (!nvme_init_integrity(ns->disk, ns->head))
2138		capacity = 0;
2139
2140	set_capacity_and_notify(ns->disk, capacity);
2141
2142	/*
2143	 * Only set the DEAC bit if the device guarantees that reads from
2144	 * deallocated data return zeroes.  While the DEAC bit does not
2145	 * require that, it must be a no-op if reads from deallocated data
2146	 * do not return zeroes.
2147	 */
2148	if ((id->dlfeat & 0x7) == 0x1 && (id->dlfeat & (1 << 3)))
2149		ns->head->features |= NVME_NS_DEAC;
2150	set_disk_ro(ns->disk, nvme_ns_is_readonly(ns, info));
2151	blk_queue_write_cache(ns->disk->queue, vwc, vwc);
2152	set_bit(NVME_NS_READY, &ns->flags);
2153	blk_mq_unfreeze_queue(ns->disk->queue);
2154
2155	if (blk_queue_is_zoned(ns->queue)) {
2156		ret = blk_revalidate_disk_zones(ns->disk, NULL);
2157		if (ret && !nvme_first_scan(ns->disk))
2158			goto out;
2159	}
2160
2161	ret = 0;
2162out:
2163	kfree(nvm);
2164	kfree(id);
2165	return ret;
2166}
2167
2168static int nvme_update_ns_info(struct nvme_ns *ns, struct nvme_ns_info *info)
2169{
2170	bool unsupported = false;
2171	int ret;
2172
2173	switch (info->ids.csi) {
2174	case NVME_CSI_ZNS:
2175		if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED)) {
2176			dev_info(ns->ctrl->device,
2177	"block device for nsid %u not supported without CONFIG_BLK_DEV_ZONED\n",
2178				info->nsid);
2179			ret = nvme_update_ns_info_generic(ns, info);
2180			break;
2181		}
2182		ret = nvme_update_ns_info_block(ns, info);
2183		break;
2184	case NVME_CSI_NVM:
2185		ret = nvme_update_ns_info_block(ns, info);
2186		break;
2187	default:
2188		dev_info(ns->ctrl->device,
2189			"block device for nsid %u not supported (csi %u)\n",
2190			info->nsid, info->ids.csi);
2191		ret = nvme_update_ns_info_generic(ns, info);
2192		break;
2193	}
2194
2195	/*
2196	 * If probing fails due an unsupported feature, hide the block device,
2197	 * but still allow other access.
2198	 */
2199	if (ret == -ENODEV) {
2200		ns->disk->flags |= GENHD_FL_HIDDEN;
2201		set_bit(NVME_NS_READY, &ns->flags);
2202		unsupported = true;
2203		ret = 0;
2204	}
2205
2206	if (!ret && nvme_ns_head_multipath(ns->head)) {
2207		struct queue_limits *ns_lim = &ns->disk->queue->limits;
2208		struct queue_limits lim;
2209
2210		blk_mq_freeze_queue(ns->head->disk->queue);
2211		if (unsupported)
2212			ns->head->disk->flags |= GENHD_FL_HIDDEN;
2213		else
2214			nvme_init_integrity(ns->head->disk, ns->head);
2215		set_capacity_and_notify(ns->head->disk, get_capacity(ns->disk));
2216		set_disk_ro(ns->head->disk, nvme_ns_is_readonly(ns, info));
2217		nvme_mpath_revalidate_paths(ns);
2218
2219		/*
2220		 * queue_limits mixes values that are the hardware limitations
2221		 * for bio splitting with what is the device configuration.
2222		 *
2223		 * For NVMe the device configuration can change after e.g. a
2224		 * Format command, and we really want to pick up the new format
2225		 * value here.  But we must still stack the queue limits to the
2226		 * least common denominator for multipathing to split the bios
2227		 * properly.
2228		 *
2229		 * To work around this, we explicitly set the device
2230		 * configuration to those that we just queried, but only stack
2231		 * the splitting limits in to make sure we still obey possibly
2232		 * lower limitations of other controllers.
2233		 */
2234		lim = queue_limits_start_update(ns->head->disk->queue);
2235		lim.logical_block_size = ns_lim->logical_block_size;
2236		lim.physical_block_size = ns_lim->physical_block_size;
2237		lim.io_min = ns_lim->io_min;
2238		lim.io_opt = ns_lim->io_opt;
2239		queue_limits_stack_bdev(&lim, ns->disk->part0, 0,
2240					ns->head->disk->disk_name);
2241		ret = queue_limits_commit_update(ns->head->disk->queue, &lim);
2242		blk_mq_unfreeze_queue(ns->head->disk->queue);
2243	}
2244
2245	return ret;
2246}
2247
2248#ifdef CONFIG_BLK_SED_OPAL
2249static int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
2250		bool send)
2251{
2252	struct nvme_ctrl *ctrl = data;
2253	struct nvme_command cmd = { };
2254
2255	if (send)
2256		cmd.common.opcode = nvme_admin_security_send;
2257	else
2258		cmd.common.opcode = nvme_admin_security_recv;
2259	cmd.common.nsid = 0;
2260	cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
2261	cmd.common.cdw11 = cpu_to_le32(len);
2262
2263	return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len,
2264			NVME_QID_ANY, NVME_SUBMIT_AT_HEAD);
2265}
2266
2267static void nvme_configure_opal(struct nvme_ctrl *ctrl, bool was_suspended)
2268{
2269	if (ctrl->oacs & NVME_CTRL_OACS_SEC_SUPP) {
2270		if (!ctrl->opal_dev)
2271			ctrl->opal_dev = init_opal_dev(ctrl, &nvme_sec_submit);
2272		else if (was_suspended)
2273			opal_unlock_from_suspend(ctrl->opal_dev);
2274	} else {
2275		free_opal_dev(ctrl->opal_dev);
2276		ctrl->opal_dev = NULL;
2277	}
2278}
2279#else
2280static void nvme_configure_opal(struct nvme_ctrl *ctrl, bool was_suspended)
2281{
2282}
2283#endif /* CONFIG_BLK_SED_OPAL */
2284
2285#ifdef CONFIG_BLK_DEV_ZONED
2286static int nvme_report_zones(struct gendisk *disk, sector_t sector,
2287		unsigned int nr_zones, report_zones_cb cb, void *data)
2288{
2289	return nvme_ns_report_zones(disk->private_data, sector, nr_zones, cb,
2290			data);
2291}
2292#else
2293#define nvme_report_zones	NULL
2294#endif /* CONFIG_BLK_DEV_ZONED */
2295
2296const struct block_device_operations nvme_bdev_ops = {
2297	.owner		= THIS_MODULE,
2298	.ioctl		= nvme_ioctl,
2299	.compat_ioctl	= blkdev_compat_ptr_ioctl,
2300	.open		= nvme_open,
2301	.release	= nvme_release,
2302	.getgeo		= nvme_getgeo,
2303	.report_zones	= nvme_report_zones,
2304	.pr_ops		= &nvme_pr_ops,
2305};
2306
2307static int nvme_wait_ready(struct nvme_ctrl *ctrl, u32 mask, u32 val,
2308		u32 timeout, const char *op)
2309{
2310	unsigned long timeout_jiffies = jiffies + timeout * HZ;
2311	u32 csts;
2312	int ret;
2313
2314	while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2315		if (csts == ~0)
2316			return -ENODEV;
2317		if ((csts & mask) == val)
2318			break;
2319
2320		usleep_range(1000, 2000);
2321		if (fatal_signal_pending(current))
2322			return -EINTR;
2323		if (time_after(jiffies, timeout_jiffies)) {
2324			dev_err(ctrl->device,
2325				"Device not ready; aborting %s, CSTS=0x%x\n",
2326				op, csts);
2327			return -ENODEV;
2328		}
2329	}
2330
2331	return ret;
2332}
2333
2334int nvme_disable_ctrl(struct nvme_ctrl *ctrl, bool shutdown)
2335{
2336	int ret;
2337
2338	ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2339	if (shutdown)
2340		ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
2341	else
2342		ctrl->ctrl_config &= ~NVME_CC_ENABLE;
2343
2344	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2345	if (ret)
2346		return ret;
2347
2348	if (shutdown) {
2349		return nvme_wait_ready(ctrl, NVME_CSTS_SHST_MASK,
2350				       NVME_CSTS_SHST_CMPLT,
2351				       ctrl->shutdown_timeout, "shutdown");
2352	}
2353	if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
2354		msleep(NVME_QUIRK_DELAY_AMOUNT);
2355	return nvme_wait_ready(ctrl, NVME_CSTS_RDY, 0,
2356			       (NVME_CAP_TIMEOUT(ctrl->cap) + 1) / 2, "reset");
2357}
2358EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
2359
2360int nvme_enable_ctrl(struct nvme_ctrl *ctrl)
2361{
2362	unsigned dev_page_min;
2363	u32 timeout;
2364	int ret;
2365
2366	ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
2367	if (ret) {
2368		dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
2369		return ret;
2370	}
2371	dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12;
2372
2373	if (NVME_CTRL_PAGE_SHIFT < dev_page_min) {
2374		dev_err(ctrl->device,
2375			"Minimum device page size %u too large for host (%u)\n",
2376			1 << dev_page_min, 1 << NVME_CTRL_PAGE_SHIFT);
2377		return -ENODEV;
2378	}
2379
2380	if (NVME_CAP_CSS(ctrl->cap) & NVME_CAP_CSS_CSI)
2381		ctrl->ctrl_config = NVME_CC_CSS_CSI;
2382	else
2383		ctrl->ctrl_config = NVME_CC_CSS_NVM;
2384
2385	if (ctrl->cap & NVME_CAP_CRMS_CRWMS && ctrl->cap & NVME_CAP_CRMS_CRIMS)
2386		ctrl->ctrl_config |= NVME_CC_CRIME;
2387
2388	ctrl->ctrl_config |= (NVME_CTRL_PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
2389	ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE;
2390	ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
2391	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2392	if (ret)
2393		return ret;
2394
2395	/* Flush write to device (required if transport is PCI) */
2396	ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CC, &ctrl->ctrl_config);
2397	if (ret)
2398		return ret;
2399
2400	/* CAP value may change after initial CC write */
2401	ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
2402	if (ret)
2403		return ret;
2404
2405	timeout = NVME_CAP_TIMEOUT(ctrl->cap);
2406	if (ctrl->cap & NVME_CAP_CRMS_CRWMS) {
2407		u32 crto, ready_timeout;
2408
2409		ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CRTO, &crto);
2410		if (ret) {
2411			dev_err(ctrl->device, "Reading CRTO failed (%d)\n",
2412				ret);
2413			return ret;
2414		}
2415
2416		/*
2417		 * CRTO should always be greater or equal to CAP.TO, but some
2418		 * devices are known to get this wrong. Use the larger of the
2419		 * two values.
2420		 */
2421		if (ctrl->ctrl_config & NVME_CC_CRIME)
2422			ready_timeout = NVME_CRTO_CRIMT(crto);
2423		else
2424			ready_timeout = NVME_CRTO_CRWMT(crto);
2425
2426		if (ready_timeout < timeout)
2427			dev_warn_once(ctrl->device, "bad crto:%x cap:%llx\n",
2428				      crto, ctrl->cap);
2429		else
2430			timeout = ready_timeout;
2431	}
2432
2433	ctrl->ctrl_config |= NVME_CC_ENABLE;
2434	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2435	if (ret)
2436		return ret;
2437	return nvme_wait_ready(ctrl, NVME_CSTS_RDY, NVME_CSTS_RDY,
2438			       (timeout + 1) / 2, "initialisation");
2439}
2440EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
2441
2442static int nvme_configure_timestamp(struct nvme_ctrl *ctrl)
2443{
2444	__le64 ts;
2445	int ret;
2446
2447	if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP))
2448		return 0;
2449
2450	ts = cpu_to_le64(ktime_to_ms(ktime_get_real()));
2451	ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts),
2452			NULL);
2453	if (ret)
2454		dev_warn_once(ctrl->device,
2455			"could not set timestamp (%d)\n", ret);
2456	return ret;
2457}
2458
2459static int nvme_configure_host_options(struct nvme_ctrl *ctrl)
2460{
2461	struct nvme_feat_host_behavior *host;
2462	u8 acre = 0, lbafee = 0;
2463	int ret;
2464
2465	/* Don't bother enabling the feature if retry delay is not reported */
2466	if (ctrl->crdt[0])
2467		acre = NVME_ENABLE_ACRE;
2468	if (ctrl->ctratt & NVME_CTRL_ATTR_ELBAS)
2469		lbafee = NVME_ENABLE_LBAFEE;
2470
2471	if (!acre && !lbafee)
2472		return 0;
2473
2474	host = kzalloc(sizeof(*host), GFP_KERNEL);
2475	if (!host)
2476		return 0;
2477
2478	host->acre = acre;
2479	host->lbafee = lbafee;
2480	ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0,
2481				host, sizeof(*host), NULL);
2482	kfree(host);
2483	return ret;
2484}
2485
2486/*
2487 * The function checks whether the given total (exlat + enlat) latency of
2488 * a power state allows the latter to be used as an APST transition target.
2489 * It does so by comparing the latency to the primary and secondary latency
2490 * tolerances defined by module params. If there's a match, the corresponding
2491 * timeout value is returned and the matching tolerance index (1 or 2) is
2492 * reported.
2493 */
2494static bool nvme_apst_get_transition_time(u64 total_latency,
2495		u64 *transition_time, unsigned *last_index)
2496{
2497	if (total_latency <= apst_primary_latency_tol_us) {
2498		if (*last_index == 1)
2499			return false;
2500		*last_index = 1;
2501		*transition_time = apst_primary_timeout_ms;
2502		return true;
2503	}
2504	if (apst_secondary_timeout_ms &&
2505		total_latency <= apst_secondary_latency_tol_us) {
2506		if (*last_index <= 2)
2507			return false;
2508		*last_index = 2;
2509		*transition_time = apst_secondary_timeout_ms;
2510		return true;
2511	}
2512	return false;
2513}
2514
2515/*
2516 * APST (Autonomous Power State Transition) lets us program a table of power
2517 * state transitions that the controller will perform automatically.
2518 *
2519 * Depending on module params, one of the two supported techniques will be used:
2520 *
2521 * - If the parameters provide explicit timeouts and tolerances, they will be
2522 *   used to build a table with up to 2 non-operational states to transition to.
2523 *   The default parameter values were selected based on the values used by
2524 *   Microsoft's and Intel's NVMe drivers. Yet, since we don't implement dynamic
2525 *   regeneration of the APST table in the event of switching between external
2526 *   and battery power, the timeouts and tolerances reflect a compromise
2527 *   between values used by Microsoft for AC and battery scenarios.
2528 * - If not, we'll configure the table with a simple heuristic: we are willing
2529 *   to spend at most 2% of the time transitioning between power states.
2530 *   Therefore, when running in any given state, we will enter the next
2531 *   lower-power non-operational state after waiting 50 * (enlat + exlat)
2532 *   microseconds, as long as that state's exit latency is under the requested
2533 *   maximum latency.
2534 *
2535 * We will not autonomously enter any non-operational state for which the total
2536 * latency exceeds ps_max_latency_us.
2537 *
2538 * Users can set ps_max_latency_us to zero to turn off APST.
2539 */
2540static int nvme_configure_apst(struct nvme_ctrl *ctrl)
2541{
2542	struct nvme_feat_auto_pst *table;
2543	unsigned apste = 0;
2544	u64 max_lat_us = 0;
2545	__le64 target = 0;
2546	int max_ps = -1;
2547	int state;
2548	int ret;
2549	unsigned last_lt_index = UINT_MAX;
2550
2551	/*
2552	 * If APST isn't supported or if we haven't been initialized yet,
2553	 * then don't do anything.
2554	 */
2555	if (!ctrl->apsta)
2556		return 0;
2557
2558	if (ctrl->npss > 31) {
2559		dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
2560		return 0;
2561	}
2562
2563	table = kzalloc(sizeof(*table), GFP_KERNEL);
2564	if (!table)
2565		return 0;
2566
2567	if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) {
2568		/* Turn off APST. */
2569		dev_dbg(ctrl->device, "APST disabled\n");
2570		goto done;
2571	}
2572
2573	/*
2574	 * Walk through all states from lowest- to highest-power.
2575	 * According to the spec, lower-numbered states use more power.  NPSS,
2576	 * despite the name, is the index of the lowest-power state, not the
2577	 * number of states.
2578	 */
2579	for (state = (int)ctrl->npss; state >= 0; state--) {
2580		u64 total_latency_us, exit_latency_us, transition_ms;
2581
2582		if (target)
2583			table->entries[state] = target;
2584
2585		/*
2586		 * Don't allow transitions to the deepest state if it's quirked
2587		 * off.
2588		 */
2589		if (state == ctrl->npss &&
2590		    (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
2591			continue;
2592
2593		/*
2594		 * Is this state a useful non-operational state for higher-power
2595		 * states to autonomously transition to?
2596		 */
2597		if (!(ctrl->psd[state].flags & NVME_PS_FLAGS_NON_OP_STATE))
2598			continue;
2599
2600		exit_latency_us = (u64)le32_to_cpu(ctrl->psd[state].exit_lat);
2601		if (exit_latency_us > ctrl->ps_max_latency_us)
2602			continue;
2603
2604		total_latency_us = exit_latency_us +
2605			le32_to_cpu(ctrl->psd[state].entry_lat);
2606
2607		/*
2608		 * This state is good. It can be used as the APST idle target
2609		 * for higher power states.
2610		 */
2611		if (apst_primary_timeout_ms && apst_primary_latency_tol_us) {
2612			if (!nvme_apst_get_transition_time(total_latency_us,
2613					&transition_ms, &last_lt_index))
2614				continue;
2615		} else {
2616			transition_ms = total_latency_us + 19;
2617			do_div(transition_ms, 20);
2618			if (transition_ms > (1 << 24) - 1)
2619				transition_ms = (1 << 24) - 1;
2620		}
2621
2622		target = cpu_to_le64((state << 3) | (transition_ms << 8));
2623		if (max_ps == -1)
2624			max_ps = state;
2625		if (total_latency_us > max_lat_us)
2626			max_lat_us = total_latency_us;
2627	}
2628
2629	if (max_ps == -1)
2630		dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
2631	else
2632		dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
2633			max_ps, max_lat_us, (int)sizeof(*table), table);
2634	apste = 1;
2635
2636done:
2637	ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
2638				table, sizeof(*table), NULL);
2639	if (ret)
2640		dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
2641	kfree(table);
2642	return ret;
2643}
2644
2645static void nvme_set_latency_tolerance(struct device *dev, s32 val)
2646{
2647	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2648	u64 latency;
2649
2650	switch (val) {
2651	case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
2652	case PM_QOS_LATENCY_ANY:
2653		latency = U64_MAX;
2654		break;
2655
2656	default:
2657		latency = val;
2658	}
2659
2660	if (ctrl->ps_max_latency_us != latency) {
2661		ctrl->ps_max_latency_us = latency;
2662		if (nvme_ctrl_state(ctrl) == NVME_CTRL_LIVE)
2663			nvme_configure_apst(ctrl);
2664	}
2665}
2666
2667struct nvme_core_quirk_entry {
2668	/*
2669	 * NVMe model and firmware strings are padded with spaces.  For
2670	 * simplicity, strings in the quirk table are padded with NULLs
2671	 * instead.
2672	 */
2673	u16 vid;
2674	const char *mn;
2675	const char *fr;
2676	unsigned long quirks;
2677};
2678
2679static const struct nvme_core_quirk_entry core_quirks[] = {
2680	{
2681		/*
2682		 * This Toshiba device seems to die using any APST states.  See:
2683		 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
2684		 */
2685		.vid = 0x1179,
2686		.mn = "THNSF5256GPUK TOSHIBA",
2687		.quirks = NVME_QUIRK_NO_APST,
2688	},
2689	{
2690		/*
2691		 * This LiteON CL1-3D*-Q11 firmware version has a race
2692		 * condition associated with actions related to suspend to idle
2693		 * LiteON has resolved the problem in future firmware
2694		 */
2695		.vid = 0x14a4,
2696		.fr = "22301111",
2697		.quirks = NVME_QUIRK_SIMPLE_SUSPEND,
2698	},
2699	{
2700		/*
2701		 * This Kioxia CD6-V Series / HPE PE8030 device times out and
2702		 * aborts I/O during any load, but more easily reproducible
2703		 * with discards (fstrim).
2704		 *
2705		 * The device is left in a state where it is also not possible
2706		 * to use "nvme set-feature" to disable APST, but booting with
2707		 * nvme_core.default_ps_max_latency=0 works.
2708		 */
2709		.vid = 0x1e0f,
2710		.mn = "KCD6XVUL6T40",
2711		.quirks = NVME_QUIRK_NO_APST,
2712	},
2713	{
2714		/*
2715		 * The external Samsung X5 SSD fails initialization without a
2716		 * delay before checking if it is ready and has a whole set of
2717		 * other problems.  To make this even more interesting, it
2718		 * shares the PCI ID with internal Samsung 970 Evo Plus that
2719		 * does not need or want these quirks.
2720		 */
2721		.vid = 0x144d,
2722		.mn = "Samsung Portable SSD X5",
2723		.quirks = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
2724			  NVME_QUIRK_NO_DEEPEST_PS |
2725			  NVME_QUIRK_IGNORE_DEV_SUBNQN,
2726	}
2727};
2728
2729/* match is null-terminated but idstr is space-padded. */
2730static bool string_matches(const char *idstr, const char *match, size_t len)
2731{
2732	size_t matchlen;
2733
2734	if (!match)
2735		return true;
2736
2737	matchlen = strlen(match);
2738	WARN_ON_ONCE(matchlen > len);
2739
2740	if (memcmp(idstr, match, matchlen))
2741		return false;
2742
2743	for (; matchlen < len; matchlen++)
2744		if (idstr[matchlen] != ' ')
2745			return false;
2746
2747	return true;
2748}
2749
2750static bool quirk_matches(const struct nvme_id_ctrl *id,
2751			  const struct nvme_core_quirk_entry *q)
2752{
2753	return q->vid == le16_to_cpu(id->vid) &&
2754		string_matches(id->mn, q->mn, sizeof(id->mn)) &&
2755		string_matches(id->fr, q->fr, sizeof(id->fr));
2756}
2757
2758static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl,
2759		struct nvme_id_ctrl *id)
2760{
2761	size_t nqnlen;
2762	int off;
2763
2764	if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) {
2765		nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE);
2766		if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) {
2767			strscpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE);
2768			return;
2769		}
2770
2771		if (ctrl->vs >= NVME_VS(1, 2, 1))
2772			dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n");
2773	}
2774
2775	/*
2776	 * Generate a "fake" NQN similar to the one in Section 4.5 of the NVMe
2777	 * Base Specification 2.0.  It is slightly different from the format
2778	 * specified there due to historic reasons, and we can't change it now.
2779	 */
2780	off = snprintf(subsys->subnqn, NVMF_NQN_SIZE,
2781			"nqn.2014.08.org.nvmexpress:%04x%04x",
2782			le16_to_cpu(id->vid), le16_to_cpu(id->ssvid));
2783	memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn));
2784	off += sizeof(id->sn);
2785	memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn));
2786	off += sizeof(id->mn);
2787	memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off);
2788}
2789
2790static void nvme_release_subsystem(struct device *dev)
2791{
2792	struct nvme_subsystem *subsys =
2793		container_of(dev, struct nvme_subsystem, dev);
2794
2795	if (subsys->instance >= 0)
2796		ida_free(&nvme_instance_ida, subsys->instance);
2797	kfree(subsys);
2798}
2799
2800static void nvme_destroy_subsystem(struct kref *ref)
2801{
2802	struct nvme_subsystem *subsys =
2803			container_of(ref, struct nvme_subsystem, ref);
2804
2805	mutex_lock(&nvme_subsystems_lock);
2806	list_del(&subsys->entry);
2807	mutex_unlock(&nvme_subsystems_lock);
2808
2809	ida_destroy(&subsys->ns_ida);
2810	device_del(&subsys->dev);
2811	put_device(&subsys->dev);
2812}
2813
2814static void nvme_put_subsystem(struct nvme_subsystem *subsys)
2815{
2816	kref_put(&subsys->ref, nvme_destroy_subsystem);
2817}
2818
2819static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn)
2820{
2821	struct nvme_subsystem *subsys;
2822
2823	lockdep_assert_held(&nvme_subsystems_lock);
2824
2825	/*
2826	 * Fail matches for discovery subsystems. This results
2827	 * in each discovery controller bound to a unique subsystem.
2828	 * This avoids issues with validating controller values
2829	 * that can only be true when there is a single unique subsystem.
2830	 * There may be multiple and completely independent entities
2831	 * that provide discovery controllers.
2832	 */
2833	if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME))
2834		return NULL;
2835
2836	list_for_each_entry(subsys, &nvme_subsystems, entry) {
2837		if (strcmp(subsys->subnqn, subsysnqn))
2838			continue;
2839		if (!kref_get_unless_zero(&subsys->ref))
2840			continue;
2841		return subsys;
2842	}
2843
2844	return NULL;
2845}
2846
2847static inline bool nvme_discovery_ctrl(struct nvme_ctrl *ctrl)
2848{
2849	return ctrl->opts && ctrl->opts->discovery_nqn;
2850}
2851
2852static bool nvme_validate_cntlid(struct nvme_subsystem *subsys,
2853		struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2854{
2855	struct nvme_ctrl *tmp;
2856
2857	lockdep_assert_held(&nvme_subsystems_lock);
2858
2859	list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) {
2860		if (nvme_state_terminal(tmp))
2861			continue;
2862
2863		if (tmp->cntlid == ctrl->cntlid) {
2864			dev_err(ctrl->device,
2865				"Duplicate cntlid %u with %s, subsys %s, rejecting\n",
2866				ctrl->cntlid, dev_name(tmp->device),
2867				subsys->subnqn);
2868			return false;
2869		}
2870
2871		if ((id->cmic & NVME_CTRL_CMIC_MULTI_CTRL) ||
2872		    nvme_discovery_ctrl(ctrl))
2873			continue;
2874
2875		dev_err(ctrl->device,
2876			"Subsystem does not support multiple controllers\n");
2877		return false;
2878	}
2879
2880	return true;
2881}
2882
2883static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2884{
2885	struct nvme_subsystem *subsys, *found;
2886	int ret;
2887
2888	subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
2889	if (!subsys)
2890		return -ENOMEM;
2891
2892	subsys->instance = -1;
2893	mutex_init(&subsys->lock);
2894	kref_init(&subsys->ref);
2895	INIT_LIST_HEAD(&subsys->ctrls);
2896	INIT_LIST_HEAD(&subsys->nsheads);
2897	nvme_init_subnqn(subsys, ctrl, id);
2898	memcpy(subsys->serial, id->sn, sizeof(subsys->serial));
2899	memcpy(subsys->model, id->mn, sizeof(subsys->model));
2900	subsys->vendor_id = le16_to_cpu(id->vid);
2901	subsys->cmic = id->cmic;
2902
2903	/* Versions prior to 1.4 don't necessarily report a valid type */
2904	if (id->cntrltype == NVME_CTRL_DISC ||
2905	    !strcmp(subsys->subnqn, NVME_DISC_SUBSYS_NAME))
2906		subsys->subtype = NVME_NQN_DISC;
2907	else
2908		subsys->subtype = NVME_NQN_NVME;
2909
2910	if (nvme_discovery_ctrl(ctrl) && subsys->subtype != NVME_NQN_DISC) {
2911		dev_err(ctrl->device,
2912			"Subsystem %s is not a discovery controller",
2913			subsys->subnqn);
2914		kfree(subsys);
2915		return -EINVAL;
2916	}
2917	subsys->awupf = le16_to_cpu(id->awupf);
2918	nvme_mpath_default_iopolicy(subsys);
2919
2920	subsys->dev.class = &nvme_subsys_class;
2921	subsys->dev.release = nvme_release_subsystem;
2922	subsys->dev.groups = nvme_subsys_attrs_groups;
2923	dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance);
2924	device_initialize(&subsys->dev);
2925
2926	mutex_lock(&nvme_subsystems_lock);
2927	found = __nvme_find_get_subsystem(subsys->subnqn);
2928	if (found) {
2929		put_device(&subsys->dev);
2930		subsys = found;
2931
2932		if (!nvme_validate_cntlid(subsys, ctrl, id)) {
2933			ret = -EINVAL;
2934			goto out_put_subsystem;
2935		}
2936	} else {
2937		ret = device_add(&subsys->dev);
2938		if (ret) {
2939			dev_err(ctrl->device,
2940				"failed to register subsystem device.\n");
2941			put_device(&subsys->dev);
2942			goto out_unlock;
2943		}
2944		ida_init(&subsys->ns_ida);
2945		list_add_tail(&subsys->entry, &nvme_subsystems);
2946	}
2947
2948	ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj,
2949				dev_name(ctrl->device));
2950	if (ret) {
2951		dev_err(ctrl->device,
2952			"failed to create sysfs link from subsystem.\n");
2953		goto out_put_subsystem;
2954	}
2955
2956	if (!found)
2957		subsys->instance = ctrl->instance;
2958	ctrl->subsys = subsys;
2959	list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
2960	mutex_unlock(&nvme_subsystems_lock);
2961	return 0;
2962
2963out_put_subsystem:
2964	nvme_put_subsystem(subsys);
2965out_unlock:
2966	mutex_unlock(&nvme_subsystems_lock);
2967	return ret;
2968}
2969
2970int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, u8 csi,
2971		void *log, size_t size, u64 offset)
2972{
2973	struct nvme_command c = { };
2974	u32 dwlen = nvme_bytes_to_numd(size);
2975
2976	c.get_log_page.opcode = nvme_admin_get_log_page;
2977	c.get_log_page.nsid = cpu_to_le32(nsid);
2978	c.get_log_page.lid = log_page;
2979	c.get_log_page.lsp = lsp;
2980	c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1));
2981	c.get_log_page.numdu = cpu_to_le16(dwlen >> 16);
2982	c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset));
2983	c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset));
2984	c.get_log_page.csi = csi;
2985
2986	return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size);
2987}
2988
2989static int nvme_get_effects_log(struct nvme_ctrl *ctrl, u8 csi,
2990				struct nvme_effects_log **log)
2991{
2992	struct nvme_effects_log	*cel = xa_load(&ctrl->cels, csi);
2993	int ret;
2994
2995	if (cel)
2996		goto out;
2997
2998	cel = kzalloc(sizeof(*cel), GFP_KERNEL);
2999	if (!cel)
3000		return -ENOMEM;
3001
3002	ret = nvme_get_log(ctrl, 0x00, NVME_LOG_CMD_EFFECTS, 0, csi,
3003			cel, sizeof(*cel), 0);
3004	if (ret) {
3005		kfree(cel);
3006		return ret;
3007	}
3008
3009	xa_store(&ctrl->cels, csi, cel, GFP_KERNEL);
3010out:
3011	*log = cel;
3012	return 0;
3013}
3014
3015static inline u32 nvme_mps_to_sectors(struct nvme_ctrl *ctrl, u32 units)
3016{
3017	u32 page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12, val;
3018
3019	if (check_shl_overflow(1U, units + page_shift - 9, &val))
3020		return UINT_MAX;
3021	return val;
3022}
3023
3024static int nvme_init_non_mdts_limits(struct nvme_ctrl *ctrl)
3025{
3026	struct nvme_command c = { };
3027	struct nvme_id_ctrl_nvm *id;
3028	int ret;
3029
3030	/*
3031	 * Even though NVMe spec explicitly states that MDTS is not applicable
3032	 * to the write-zeroes, we are cautious and limit the size to the
3033	 * controllers max_hw_sectors value, which is based on the MDTS field
3034	 * and possibly other limiting factors.
3035	 */
3036	if ((ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) &&
3037	    !(ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES))
3038		ctrl->max_zeroes_sectors = ctrl->max_hw_sectors;
3039	else
3040		ctrl->max_zeroes_sectors = 0;
3041
3042	if (ctrl->subsys->subtype != NVME_NQN_NVME ||
3043	    nvme_ctrl_limited_cns(ctrl) ||
3044	    test_bit(NVME_CTRL_SKIP_ID_CNS_CS, &ctrl->flags))
3045		return 0;
3046
3047	id = kzalloc(sizeof(*id), GFP_KERNEL);
3048	if (!id)
3049		return -ENOMEM;
3050
3051	c.identify.opcode = nvme_admin_identify;
3052	c.identify.cns = NVME_ID_CNS_CS_CTRL;
3053	c.identify.csi = NVME_CSI_NVM;
3054
3055	ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id));
3056	if (ret)
3057		goto free_data;
3058
3059	ctrl->dmrl = id->dmrl;
3060	ctrl->dmrsl = le32_to_cpu(id->dmrsl);
3061	if (id->wzsl)
3062		ctrl->max_zeroes_sectors = nvme_mps_to_sectors(ctrl, id->wzsl);
3063
3064free_data:
3065	if (ret > 0)
3066		set_bit(NVME_CTRL_SKIP_ID_CNS_CS, &ctrl->flags);
3067	kfree(id);
3068	return ret;
3069}
3070
3071static void nvme_init_known_nvm_effects(struct nvme_ctrl *ctrl)
3072{
3073	struct nvme_effects_log	*log = ctrl->effects;
3074
3075	log->acs[nvme_admin_format_nvm] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC |
3076						NVME_CMD_EFFECTS_NCC |
3077						NVME_CMD_EFFECTS_CSE_MASK);
3078	log->acs[nvme_admin_sanitize_nvm] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC |
3079						NVME_CMD_EFFECTS_CSE_MASK);
3080
3081	/*
3082	 * The spec says the result of a security receive command depends on
3083	 * the previous security send command. As such, many vendors log this
3084	 * command as one to submitted only when no other commands to the same
3085	 * namespace are outstanding. The intention is to tell the host to
3086	 * prevent mixing security send and receive.
3087	 *
3088	 * This driver can only enforce such exclusive access against IO
3089	 * queues, though. We are not readily able to enforce such a rule for
3090	 * two commands to the admin queue, which is the only queue that
3091	 * matters for this command.
3092	 *
3093	 * Rather than blindly freezing the IO queues for this effect that
3094	 * doesn't even apply to IO, mask it off.
3095	 */
3096	log->acs[nvme_admin_security_recv] &= cpu_to_le32(~NVME_CMD_EFFECTS_CSE_MASK);
3097
3098	log->iocs[nvme_cmd_write] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC);
3099	log->iocs[nvme_cmd_write_zeroes] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC);
3100	log->iocs[nvme_cmd_write_uncor] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC);
3101}
3102
3103static int nvme_init_effects(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
3104{
3105	int ret = 0;
3106
3107	if (ctrl->effects)
3108		return 0;
3109
3110	if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) {
3111		ret = nvme_get_effects_log(ctrl, NVME_CSI_NVM, &ctrl->effects);
3112		if (ret < 0)
3113			return ret;
3114	}
3115
3116	if (!ctrl->effects) {
3117		ctrl->effects = kzalloc(sizeof(*ctrl->effects), GFP_KERNEL);
3118		if (!ctrl->effects)
3119			return -ENOMEM;
3120		xa_store(&ctrl->cels, NVME_CSI_NVM, ctrl->effects, GFP_KERNEL);
3121	}
3122
3123	nvme_init_known_nvm_effects(ctrl);
3124	return 0;
3125}
3126
3127static int nvme_check_ctrl_fabric_info(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
3128{
3129	/*
3130	 * In fabrics we need to verify the cntlid matches the
3131	 * admin connect
3132	 */
3133	if (ctrl->cntlid != le16_to_cpu(id->cntlid)) {
3134		dev_err(ctrl->device,
3135			"Mismatching cntlid: Connect %u vs Identify %u, rejecting\n",
3136			ctrl->cntlid, le16_to_cpu(id->cntlid));
3137		return -EINVAL;
3138	}
3139
3140	if (!nvme_discovery_ctrl(ctrl) && !ctrl->kas) {
3141		dev_err(ctrl->device,
3142			"keep-alive support is mandatory for fabrics\n");
3143		return -EINVAL;
3144	}
3145
3146	if (!nvme_discovery_ctrl(ctrl) && ctrl->ioccsz < 4) {
3147		dev_err(ctrl->device,
3148			"I/O queue command capsule supported size %d < 4\n",
3149			ctrl->ioccsz);
3150		return -EINVAL;
3151	}
3152
3153	if (!nvme_discovery_ctrl(ctrl) && ctrl->iorcsz < 1) {
3154		dev_err(ctrl->device,
3155			"I/O queue response capsule supported size %d < 1\n",
3156			ctrl->iorcsz);
3157		return -EINVAL;
3158	}
3159
3160	if (!ctrl->maxcmd) {
3161		dev_err(ctrl->device, "Maximum outstanding commands is 0\n");
3162		return -EINVAL;
3163	}
3164
3165	return 0;
3166}
3167
3168static int nvme_init_identify(struct nvme_ctrl *ctrl)
3169{
3170	struct queue_limits lim;
3171	struct nvme_id_ctrl *id;
3172	u32 max_hw_sectors;
3173	bool prev_apst_enabled;
3174	int ret;
3175
3176	ret = nvme_identify_ctrl(ctrl, &id);
3177	if (ret) {
3178		dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
3179		return -EIO;
3180	}
3181
3182	if (!(ctrl->ops->flags & NVME_F_FABRICS))
3183		ctrl->cntlid = le16_to_cpu(id->cntlid);
3184
3185	if (!ctrl->identified) {
3186		unsigned int i;
3187
3188		/*
3189		 * Check for quirks.  Quirk can depend on firmware version,
3190		 * so, in principle, the set of quirks present can change
3191		 * across a reset.  As a possible future enhancement, we
3192		 * could re-scan for quirks every time we reinitialize
3193		 * the device, but we'd have to make sure that the driver
3194		 * behaves intelligently if the quirks change.
3195		 */
3196		for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
3197			if (quirk_matches(id, &core_quirks[i]))
3198				ctrl->quirks |= core_quirks[i].quirks;
3199		}
3200
3201		ret = nvme_init_subsystem(ctrl, id);
3202		if (ret)
3203			goto out_free;
3204
3205		ret = nvme_init_effects(ctrl, id);
3206		if (ret)
3207			goto out_free;
3208	}
3209	memcpy(ctrl->subsys->firmware_rev, id->fr,
3210	       sizeof(ctrl->subsys->firmware_rev));
3211
3212	if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
3213		dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
3214		ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
3215	}
3216
3217	ctrl->crdt[0] = le16_to_cpu(id->crdt1);
3218	ctrl->crdt[1] = le16_to_cpu(id->crdt2);
3219	ctrl->crdt[2] = le16_to_cpu(id->crdt3);
3220
3221	ctrl->oacs = le16_to_cpu(id->oacs);
3222	ctrl->oncs = le16_to_cpu(id->oncs);
3223	ctrl->mtfa = le16_to_cpu(id->mtfa);
3224	ctrl->oaes = le32_to_cpu(id->oaes);
3225	ctrl->wctemp = le16_to_cpu(id->wctemp);
3226	ctrl->cctemp = le16_to_cpu(id->cctemp);
3227
3228	atomic_set(&ctrl->abort_limit, id->acl + 1);
3229	ctrl->vwc = id->vwc;
3230	if (id->mdts)
3231		max_hw_sectors = nvme_mps_to_sectors(ctrl, id->mdts);
3232	else
3233		max_hw_sectors = UINT_MAX;
3234	ctrl->max_hw_sectors =
3235		min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
3236
3237	lim = queue_limits_start_update(ctrl->admin_q);
3238	nvme_set_ctrl_limits(ctrl, &lim);
3239	ret = queue_limits_commit_update(ctrl->admin_q, &lim);
3240	if (ret)
3241		goto out_free;
3242
3243	ctrl->sgls = le32_to_cpu(id->sgls);
3244	ctrl->kas = le16_to_cpu(id->kas);
3245	ctrl->max_namespaces = le32_to_cpu(id->mnan);
3246	ctrl->ctratt = le32_to_cpu(id->ctratt);
3247
3248	ctrl->cntrltype = id->cntrltype;
3249	ctrl->dctype = id->dctype;
3250
3251	if (id->rtd3e) {
3252		/* us -> s */
3253		u32 transition_time = le32_to_cpu(id->rtd3e) / USEC_PER_SEC;
3254
3255		ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time,
3256						 shutdown_timeout, 60);
3257
3258		if (ctrl->shutdown_timeout != shutdown_timeout)
3259			dev_info(ctrl->device,
3260				 "D3 entry latency set to %u seconds\n",
3261				 ctrl->shutdown_timeout);
3262	} else
3263		ctrl->shutdown_timeout = shutdown_timeout;
3264
3265	ctrl->npss = id->npss;
3266	ctrl->apsta = id->apsta;
3267	prev_apst_enabled = ctrl->apst_enabled;
3268	if (ctrl->quirks & NVME_QUIRK_NO_APST) {
3269		if (force_apst && id->apsta) {
3270			dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
3271			ctrl->apst_enabled = true;
3272		} else {
3273			ctrl->apst_enabled = false;
3274		}
3275	} else {
3276		ctrl->apst_enabled = id->apsta;
3277	}
3278	memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
3279
3280	if (ctrl->ops->flags & NVME_F_FABRICS) {
3281		ctrl->icdoff = le16_to_cpu(id->icdoff);
3282		ctrl->ioccsz = le32_to_cpu(id->ioccsz);
3283		ctrl->iorcsz = le32_to_cpu(id->iorcsz);
3284		ctrl->maxcmd = le16_to_cpu(id->maxcmd);
3285
3286		ret = nvme_check_ctrl_fabric_info(ctrl, id);
3287		if (ret)
3288			goto out_free;
3289	} else {
3290		ctrl->hmpre = le32_to_cpu(id->hmpre);
3291		ctrl->hmmin = le32_to_cpu(id->hmmin);
3292		ctrl->hmminds = le32_to_cpu(id->hmminds);
3293		ctrl->hmmaxd = le16_to_cpu(id->hmmaxd);
3294	}
3295
3296	ret = nvme_mpath_init_identify(ctrl, id);
3297	if (ret < 0)
3298		goto out_free;
3299
3300	if (ctrl->apst_enabled && !prev_apst_enabled)
3301		dev_pm_qos_expose_latency_tolerance(ctrl->device);
3302	else if (!ctrl->apst_enabled && prev_apst_enabled)
3303		dev_pm_qos_hide_latency_tolerance(ctrl->device);
3304
3305out_free:
3306	kfree(id);
3307	return ret;
3308}
3309
3310/*
3311 * Initialize the cached copies of the Identify data and various controller
3312 * register in our nvme_ctrl structure.  This should be called as soon as
3313 * the admin queue is fully up and running.
3314 */
3315int nvme_init_ctrl_finish(struct nvme_ctrl *ctrl, bool was_suspended)
3316{
3317	int ret;
3318
3319	ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
3320	if (ret) {
3321		dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
3322		return ret;
3323	}
3324
3325	ctrl->sqsize = min_t(u16, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize);
3326
3327	if (ctrl->vs >= NVME_VS(1, 1, 0))
3328		ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap);
3329
3330	ret = nvme_init_identify(ctrl);
3331	if (ret)
3332		return ret;
3333
3334	ret = nvme_configure_apst(ctrl);
3335	if (ret < 0)
3336		return ret;
3337
3338	ret = nvme_configure_timestamp(ctrl);
3339	if (ret < 0)
3340		return ret;
3341
3342	ret = nvme_configure_host_options(ctrl);
3343	if (ret < 0)
3344		return ret;
3345
3346	nvme_configure_opal(ctrl, was_suspended);
3347
3348	if (!ctrl->identified && !nvme_discovery_ctrl(ctrl)) {
3349		/*
3350		 * Do not return errors unless we are in a controller reset,
3351		 * the controller works perfectly fine without hwmon.
3352		 */
3353		ret = nvme_hwmon_init(ctrl);
3354		if (ret == -EINTR)
3355			return ret;
3356	}
3357
3358	clear_bit(NVME_CTRL_DIRTY_CAPABILITY, &ctrl->flags);
3359	ctrl->identified = true;
3360
3361	nvme_start_keep_alive(ctrl);
3362
3363	return 0;
3364}
3365EXPORT_SYMBOL_GPL(nvme_init_ctrl_finish);
3366
3367static int nvme_dev_open(struct inode *inode, struct file *file)
3368{
3369	struct nvme_ctrl *ctrl =
3370		container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3371
3372	switch (nvme_ctrl_state(ctrl)) {
3373	case NVME_CTRL_LIVE:
3374		break;
3375	default:
3376		return -EWOULDBLOCK;
3377	}
3378
3379	nvme_get_ctrl(ctrl);
3380	if (!try_module_get(ctrl->ops->module)) {
3381		nvme_put_ctrl(ctrl);
3382		return -EINVAL;
3383	}
3384
3385	file->private_data = ctrl;
3386	return 0;
3387}
3388
3389static int nvme_dev_release(struct inode *inode, struct file *file)
3390{
3391	struct nvme_ctrl *ctrl =
3392		container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3393
3394	module_put(ctrl->ops->module);
3395	nvme_put_ctrl(ctrl);
3396	return 0;
3397}
3398
3399static const struct file_operations nvme_dev_fops = {
3400	.owner		= THIS_MODULE,
3401	.open		= nvme_dev_open,
3402	.release	= nvme_dev_release,
3403	.unlocked_ioctl	= nvme_dev_ioctl,
3404	.compat_ioctl	= compat_ptr_ioctl,
3405	.uring_cmd	= nvme_dev_uring_cmd,
3406};
3407
3408static struct nvme_ns_head *nvme_find_ns_head(struct nvme_ctrl *ctrl,
3409		unsigned nsid)
3410{
3411	struct nvme_ns_head *h;
3412
3413	lockdep_assert_held(&ctrl->subsys->lock);
3414
3415	list_for_each_entry(h, &ctrl->subsys->nsheads, entry) {
3416		/*
3417		 * Private namespaces can share NSIDs under some conditions.
3418		 * In that case we can't use the same ns_head for namespaces
3419		 * with the same NSID.
3420		 */
3421		if (h->ns_id != nsid || !nvme_is_unique_nsid(ctrl, h))
3422			continue;
3423		if (!list_empty(&h->list) && nvme_tryget_ns_head(h))
3424			return h;
3425	}
3426
3427	return NULL;
3428}
3429
3430static int nvme_subsys_check_duplicate_ids(struct nvme_subsystem *subsys,
3431		struct nvme_ns_ids *ids)
3432{
3433	bool has_uuid = !uuid_is_null(&ids->uuid);
3434	bool has_nguid = memchr_inv(ids->nguid, 0, sizeof(ids->nguid));
3435	bool has_eui64 = memchr_inv(ids->eui64, 0, sizeof(ids->eui64));
3436	struct nvme_ns_head *h;
3437
3438	lockdep_assert_held(&subsys->lock);
3439
3440	list_for_each_entry(h, &subsys->nsheads, entry) {
3441		if (has_uuid && uuid_equal(&ids->uuid, &h->ids.uuid))
3442			return -EINVAL;
3443		if (has_nguid &&
3444		    memcmp(&ids->nguid, &h->ids.nguid, sizeof(ids->nguid)) == 0)
3445			return -EINVAL;
3446		if (has_eui64 &&
3447		    memcmp(&ids->eui64, &h->ids.eui64, sizeof(ids->eui64)) == 0)
3448			return -EINVAL;
3449	}
3450
3451	return 0;
3452}
3453
3454static void nvme_cdev_rel(struct device *dev)
3455{
3456	ida_free(&nvme_ns_chr_minor_ida, MINOR(dev->devt));
3457}
3458
3459void nvme_cdev_del(struct cdev *cdev, struct device *cdev_device)
3460{
3461	cdev_device_del(cdev, cdev_device);
3462	put_device(cdev_device);
3463}
3464
3465int nvme_cdev_add(struct cdev *cdev, struct device *cdev_device,
3466		const struct file_operations *fops, struct module *owner)
3467{
3468	int minor, ret;
3469
3470	minor = ida_alloc(&nvme_ns_chr_minor_ida, GFP_KERNEL);
3471	if (minor < 0)
3472		return minor;
3473	cdev_device->devt = MKDEV(MAJOR(nvme_ns_chr_devt), minor);
3474	cdev_device->class = &nvme_ns_chr_class;
3475	cdev_device->release = nvme_cdev_rel;
3476	device_initialize(cdev_device);
3477	cdev_init(cdev, fops);
3478	cdev->owner = owner;
3479	ret = cdev_device_add(cdev, cdev_device);
3480	if (ret)
3481		put_device(cdev_device);
3482
3483	return ret;
3484}
3485
3486static int nvme_ns_chr_open(struct inode *inode, struct file *file)
3487{
3488	return nvme_ns_open(container_of(inode->i_cdev, struct nvme_ns, cdev));
3489}
3490
3491static int nvme_ns_chr_release(struct inode *inode, struct file *file)
3492{
3493	nvme_ns_release(container_of(inode->i_cdev, struct nvme_ns, cdev));
3494	return 0;
3495}
3496
3497static const struct file_operations nvme_ns_chr_fops = {
3498	.owner		= THIS_MODULE,
3499	.open		= nvme_ns_chr_open,
3500	.release	= nvme_ns_chr_release,
3501	.unlocked_ioctl	= nvme_ns_chr_ioctl,
3502	.compat_ioctl	= compat_ptr_ioctl,
3503	.uring_cmd	= nvme_ns_chr_uring_cmd,
3504	.uring_cmd_iopoll = nvme_ns_chr_uring_cmd_iopoll,
3505};
3506
3507static int nvme_add_ns_cdev(struct nvme_ns *ns)
3508{
3509	int ret;
3510
3511	ns->cdev_device.parent = ns->ctrl->device;
3512	ret = dev_set_name(&ns->cdev_device, "ng%dn%d",
3513			   ns->ctrl->instance, ns->head->instance);
3514	if (ret)
3515		return ret;
3516
3517	return nvme_cdev_add(&ns->cdev, &ns->cdev_device, &nvme_ns_chr_fops,
3518			     ns->ctrl->ops->module);
3519}
3520
3521static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl,
3522		struct nvme_ns_info *info)
3523{
3524	struct nvme_ns_head *head;
3525	size_t size = sizeof(*head);
3526	int ret = -ENOMEM;
3527
3528#ifdef CONFIG_NVME_MULTIPATH
3529	size += num_possible_nodes() * sizeof(struct nvme_ns *);
3530#endif
3531
3532	head = kzalloc(size, GFP_KERNEL);
3533	if (!head)
3534		goto out;
3535	ret = ida_alloc_min(&ctrl->subsys->ns_ida, 1, GFP_KERNEL);
3536	if (ret < 0)
3537		goto out_free_head;
3538	head->instance = ret;
3539	INIT_LIST_HEAD(&head->list);
3540	ret = init_srcu_struct(&head->srcu);
3541	if (ret)
3542		goto out_ida_remove;
3543	head->subsys = ctrl->subsys;
3544	head->ns_id = info->nsid;
3545	head->ids = info->ids;
3546	head->shared = info->is_shared;
3547	ratelimit_state_init(&head->rs_nuse, 5 * HZ, 1);
3548	ratelimit_set_flags(&head->rs_nuse, RATELIMIT_MSG_ON_RELEASE);
3549	kref_init(&head->ref);
3550
3551	if (head->ids.csi) {
3552		ret = nvme_get_effects_log(ctrl, head->ids.csi, &head->effects);
3553		if (ret)
3554			goto out_cleanup_srcu;
3555	} else
3556		head->effects = ctrl->effects;
3557
3558	ret = nvme_mpath_alloc_disk(ctrl, head);
3559	if (ret)
3560		goto out_cleanup_srcu;
3561
3562	list_add_tail(&head->entry, &ctrl->subsys->nsheads);
3563
3564	kref_get(&ctrl->subsys->ref);
3565
3566	return head;
3567out_cleanup_srcu:
3568	cleanup_srcu_struct(&head->srcu);
3569out_ida_remove:
3570	ida_free(&ctrl->subsys->ns_ida, head->instance);
3571out_free_head:
3572	kfree(head);
3573out:
3574	if (ret > 0)
3575		ret = blk_status_to_errno(nvme_error_status(ret));
3576	return ERR_PTR(ret);
3577}
3578
3579static int nvme_global_check_duplicate_ids(struct nvme_subsystem *this,
3580		struct nvme_ns_ids *ids)
3581{
3582	struct nvme_subsystem *s;
3583	int ret = 0;
3584
3585	/*
3586	 * Note that this check is racy as we try to avoid holding the global
3587	 * lock over the whole ns_head creation.  But it is only intended as
3588	 * a sanity check anyway.
3589	 */
3590	mutex_lock(&nvme_subsystems_lock);
3591	list_for_each_entry(s, &nvme_subsystems, entry) {
3592		if (s == this)
3593			continue;
3594		mutex_lock(&s->lock);
3595		ret = nvme_subsys_check_duplicate_ids(s, ids);
3596		mutex_unlock(&s->lock);
3597		if (ret)
3598			break;
3599	}
3600	mutex_unlock(&nvme_subsystems_lock);
3601
3602	return ret;
3603}
3604
3605static int nvme_init_ns_head(struct nvme_ns *ns, struct nvme_ns_info *info)
3606{
3607	struct nvme_ctrl *ctrl = ns->ctrl;
3608	struct nvme_ns_head *head = NULL;
3609	int ret;
3610
3611	ret = nvme_global_check_duplicate_ids(ctrl->subsys, &info->ids);
3612	if (ret) {
3613		/*
3614		 * We've found two different namespaces on two different
3615		 * subsystems that report the same ID.  This is pretty nasty
3616		 * for anything that actually requires unique device
3617		 * identification.  In the kernel we need this for multipathing,
3618		 * and in user space the /dev/disk/by-id/ links rely on it.
3619		 *
3620		 * If the device also claims to be multi-path capable back off
3621		 * here now and refuse the probe the second device as this is a
3622		 * recipe for data corruption.  If not this is probably a
3623		 * cheap consumer device if on the PCIe bus, so let the user
3624		 * proceed and use the shiny toy, but warn that with changing
3625		 * probing order (which due to our async probing could just be
3626		 * device taking longer to startup) the other device could show
3627		 * up at any time.
3628		 */
3629		nvme_print_device_info(ctrl);
3630		if ((ns->ctrl->ops->flags & NVME_F_FABRICS) || /* !PCIe */
3631		    ((ns->ctrl->subsys->cmic & NVME_CTRL_CMIC_MULTI_CTRL) &&
3632		     info->is_shared)) {
3633			dev_err(ctrl->device,
3634				"ignoring nsid %d because of duplicate IDs\n",
3635				info->nsid);
3636			return ret;
3637		}
3638
3639		dev_err(ctrl->device,
3640			"clearing duplicate IDs for nsid %d\n", info->nsid);
3641		dev_err(ctrl->device,
3642			"use of /dev/disk/by-id/ may cause data corruption\n");
3643		memset(&info->ids.nguid, 0, sizeof(info->ids.nguid));
3644		memset(&info->ids.uuid, 0, sizeof(info->ids.uuid));
3645		memset(&info->ids.eui64, 0, sizeof(info->ids.eui64));
3646		ctrl->quirks |= NVME_QUIRK_BOGUS_NID;
3647	}
3648
3649	mutex_lock(&ctrl->subsys->lock);
3650	head = nvme_find_ns_head(ctrl, info->nsid);
3651	if (!head) {
3652		ret = nvme_subsys_check_duplicate_ids(ctrl->subsys, &info->ids);
3653		if (ret) {
3654			dev_err(ctrl->device,
3655				"duplicate IDs in subsystem for nsid %d\n",
3656				info->nsid);
3657			goto out_unlock;
3658		}
3659		head = nvme_alloc_ns_head(ctrl, info);
3660		if (IS_ERR(head)) {
3661			ret = PTR_ERR(head);
3662			goto out_unlock;
3663		}
3664	} else {
3665		ret = -EINVAL;
3666		if (!info->is_shared || !head->shared) {
3667			dev_err(ctrl->device,
3668				"Duplicate unshared namespace %d\n",
3669				info->nsid);
3670			goto out_put_ns_head;
3671		}
3672		if (!nvme_ns_ids_equal(&head->ids, &info->ids)) {
3673			dev_err(ctrl->device,
3674				"IDs don't match for shared namespace %d\n",
3675					info->nsid);
3676			goto out_put_ns_head;
3677		}
3678
3679		if (!multipath) {
3680			dev_warn(ctrl->device,
3681				"Found shared namespace %d, but multipathing not supported.\n",
3682				info->nsid);
3683			dev_warn_once(ctrl->device,
3684				"Support for shared namespaces without CONFIG_NVME_MULTIPATH is deprecated and will be removed in Linux 6.0\n.");
3685		}
3686	}
3687
3688	list_add_tail_rcu(&ns->siblings, &head->list);
3689	ns->head = head;
3690	mutex_unlock(&ctrl->subsys->lock);
3691	return 0;
3692
3693out_put_ns_head:
3694	nvme_put_ns_head(head);
3695out_unlock:
3696	mutex_unlock(&ctrl->subsys->lock);
3697	return ret;
3698}
3699
3700struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3701{
3702	struct nvme_ns *ns, *ret = NULL;
3703
3704	down_read(&ctrl->namespaces_rwsem);
3705	list_for_each_entry(ns, &ctrl->namespaces, list) {
3706		if (ns->head->ns_id == nsid) {
3707			if (!nvme_get_ns(ns))
3708				continue;
3709			ret = ns;
3710			break;
3711		}
3712		if (ns->head->ns_id > nsid)
3713			break;
3714	}
3715	up_read(&ctrl->namespaces_rwsem);
3716	return ret;
3717}
3718EXPORT_SYMBOL_NS_GPL(nvme_find_get_ns, NVME_TARGET_PASSTHRU);
3719
3720/*
3721 * Add the namespace to the controller list while keeping the list ordered.
3722 */
3723static void nvme_ns_add_to_ctrl_list(struct nvme_ns *ns)
3724{
3725	struct nvme_ns *tmp;
3726
3727	list_for_each_entry_reverse(tmp, &ns->ctrl->namespaces, list) {
3728		if (tmp->head->ns_id < ns->head->ns_id) {
3729			list_add(&ns->list, &tmp->list);
3730			return;
3731		}
3732	}
3733	list_add(&ns->list, &ns->ctrl->namespaces);
3734}
3735
3736static void nvme_alloc_ns(struct nvme_ctrl *ctrl, struct nvme_ns_info *info)
3737{
3738	struct nvme_ns *ns;
3739	struct gendisk *disk;
3740	int node = ctrl->numa_node;
3741
3742	ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
3743	if (!ns)
3744		return;
3745
3746	disk = blk_mq_alloc_disk(ctrl->tagset, NULL, ns);
3747	if (IS_ERR(disk))
3748		goto out_free_ns;
3749	disk->fops = &nvme_bdev_ops;
3750	disk->private_data = ns;
3751
3752	ns->disk = disk;
3753	ns->queue = disk->queue;
3754
3755	if (ctrl->opts && ctrl->opts->data_digest)
3756		blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, ns->queue);
3757
3758	blk_queue_flag_set(QUEUE_FLAG_NONROT, ns->queue);
3759	if (ctrl->ops->supports_pci_p2pdma &&
3760	    ctrl->ops->supports_pci_p2pdma(ctrl))
3761		blk_queue_flag_set(QUEUE_FLAG_PCI_P2PDMA, ns->queue);
3762
3763	ns->ctrl = ctrl;
3764	kref_init(&ns->kref);
3765
3766	if (nvme_init_ns_head(ns, info))
3767		goto out_cleanup_disk;
3768
3769	/*
3770	 * If multipathing is enabled, the device name for all disks and not
3771	 * just those that represent shared namespaces needs to be based on the
3772	 * subsystem instance.  Using the controller instance for private
3773	 * namespaces could lead to naming collisions between shared and private
3774	 * namespaces if they don't use a common numbering scheme.
3775	 *
3776	 * If multipathing is not enabled, disk names must use the controller
3777	 * instance as shared namespaces will show up as multiple block
3778	 * devices.
3779	 */
3780	if (nvme_ns_head_multipath(ns->head)) {
3781		sprintf(disk->disk_name, "nvme%dc%dn%d", ctrl->subsys->instance,
3782			ctrl->instance, ns->head->instance);
3783		disk->flags |= GENHD_FL_HIDDEN;
3784	} else if (multipath) {
3785		sprintf(disk->disk_name, "nvme%dn%d", ctrl->subsys->instance,
3786			ns->head->instance);
3787	} else {
3788		sprintf(disk->disk_name, "nvme%dn%d", ctrl->instance,
3789			ns->head->instance);
3790	}
3791
3792	if (nvme_update_ns_info(ns, info))
3793		goto out_unlink_ns;
3794
3795	down_write(&ctrl->namespaces_rwsem);
3796	/*
3797	 * Ensure that no namespaces are added to the ctrl list after the queues
3798	 * are frozen, thereby avoiding a deadlock between scan and reset.
3799	 */
3800	if (test_bit(NVME_CTRL_FROZEN, &ctrl->flags)) {
3801		up_write(&ctrl->namespaces_rwsem);
3802		goto out_unlink_ns;
3803	}
3804	nvme_ns_add_to_ctrl_list(ns);
3805	up_write(&ctrl->namespaces_rwsem);
3806	nvme_get_ctrl(ctrl);
3807
3808	if (device_add_disk(ctrl->device, ns->disk, nvme_ns_attr_groups))
3809		goto out_cleanup_ns_from_list;
3810
3811	if (!nvme_ns_head_multipath(ns->head))
3812		nvme_add_ns_cdev(ns);
3813
3814	nvme_mpath_add_disk(ns, info->anagrpid);
3815	nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name);
3816
3817	/*
3818	 * Set ns->disk->device->driver_data to ns so we can access
3819	 * ns->head->passthru_err_log_enabled in
3820	 * nvme_io_passthru_err_log_enabled_[store | show]().
3821	 */
3822	dev_set_drvdata(disk_to_dev(ns->disk), ns);
3823
3824	return;
3825
3826 out_cleanup_ns_from_list:
3827	nvme_put_ctrl(ctrl);
3828	down_write(&ctrl->namespaces_rwsem);
3829	list_del_init(&ns->list);
3830	up_write(&ctrl->namespaces_rwsem);
3831 out_unlink_ns:
3832	mutex_lock(&ctrl->subsys->lock);
3833	list_del_rcu(&ns->siblings);
3834	if (list_empty(&ns->head->list))
3835		list_del_init(&ns->head->entry);
3836	mutex_unlock(&ctrl->subsys->lock);
3837	nvme_put_ns_head(ns->head);
3838 out_cleanup_disk:
3839	put_disk(disk);
3840 out_free_ns:
3841	kfree(ns);
3842}
3843
3844static void nvme_ns_remove(struct nvme_ns *ns)
3845{
3846	bool last_path = false;
3847
3848	if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
3849		return;
3850
3851	clear_bit(NVME_NS_READY, &ns->flags);
3852	set_capacity(ns->disk, 0);
3853	nvme_fault_inject_fini(&ns->fault_inject);
3854
3855	/*
3856	 * Ensure that !NVME_NS_READY is seen by other threads to prevent
3857	 * this ns going back into current_path.
3858	 */
3859	synchronize_srcu(&ns->head->srcu);
3860
3861	/* wait for concurrent submissions */
3862	if (nvme_mpath_clear_current_path(ns))
3863		synchronize_srcu(&ns->head->srcu);
3864
3865	mutex_lock(&ns->ctrl->subsys->lock);
3866	list_del_rcu(&ns->siblings);
3867	if (list_empty(&ns->head->list)) {
3868		list_del_init(&ns->head->entry);
3869		last_path = true;
3870	}
3871	mutex_unlock(&ns->ctrl->subsys->lock);
3872
3873	/* guarantee not available in head->list */
3874	synchronize_srcu(&ns->head->srcu);
3875
3876	if (!nvme_ns_head_multipath(ns->head))
3877		nvme_cdev_del(&ns->cdev, &ns->cdev_device);
3878	del_gendisk(ns->disk);
3879
3880	down_write(&ns->ctrl->namespaces_rwsem);
3881	list_del_init(&ns->list);
3882	up_write(&ns->ctrl->namespaces_rwsem);
3883
3884	if (last_path)
3885		nvme_mpath_shutdown_disk(ns->head);
3886	nvme_put_ns(ns);
3887}
3888
3889static void nvme_ns_remove_by_nsid(struct nvme_ctrl *ctrl, u32 nsid)
3890{
3891	struct nvme_ns *ns = nvme_find_get_ns(ctrl, nsid);
3892
3893	if (ns) {
3894		nvme_ns_remove(ns);
3895		nvme_put_ns(ns);
3896	}
3897}
3898
3899static void nvme_validate_ns(struct nvme_ns *ns, struct nvme_ns_info *info)
3900{
3901	int ret = NVME_SC_INVALID_NS | NVME_SC_DNR;
3902
3903	if (!nvme_ns_ids_equal(&ns->head->ids, &info->ids)) {
3904		dev_err(ns->ctrl->device,
3905			"identifiers changed for nsid %d\n", ns->head->ns_id);
3906		goto out;
3907	}
3908
3909	ret = nvme_update_ns_info(ns, info);
3910out:
3911	/*
3912	 * Only remove the namespace if we got a fatal error back from the
3913	 * device, otherwise ignore the error and just move on.
3914	 *
3915	 * TODO: we should probably schedule a delayed retry here.
3916	 */
3917	if (ret > 0 && (ret & NVME_SC_DNR))
3918		nvme_ns_remove(ns);
3919}
3920
3921static void nvme_scan_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3922{
3923	struct nvme_ns_info info = { .nsid = nsid };
3924	struct nvme_ns *ns;
3925	int ret;
3926
3927	if (nvme_identify_ns_descs(ctrl, &info))
3928		return;
3929
3930	if (info.ids.csi != NVME_CSI_NVM && !nvme_multi_css(ctrl)) {
3931		dev_warn(ctrl->device,
3932			"command set not reported for nsid: %d\n", nsid);
3933		return;
3934	}
3935
3936	/*
3937	 * If available try to use the Command Set Idependent Identify Namespace
3938	 * data structure to find all the generic information that is needed to
3939	 * set up a namespace.  If not fall back to the legacy version.
3940	 */
3941	if ((ctrl->cap & NVME_CAP_CRMS_CRIMS) ||
3942	    (info.ids.csi != NVME_CSI_NVM && info.ids.csi != NVME_CSI_ZNS))
3943		ret = nvme_ns_info_from_id_cs_indep(ctrl, &info);
3944	else
3945		ret = nvme_ns_info_from_identify(ctrl, &info);
3946
3947	if (info.is_removed)
3948		nvme_ns_remove_by_nsid(ctrl, nsid);
3949
3950	/*
3951	 * Ignore the namespace if it is not ready. We will get an AEN once it
3952	 * becomes ready and restart the scan.
3953	 */
3954	if (ret || !info.is_ready)
3955		return;
3956
3957	ns = nvme_find_get_ns(ctrl, nsid);
3958	if (ns) {
3959		nvme_validate_ns(ns, &info);
3960		nvme_put_ns(ns);
3961	} else {
3962		nvme_alloc_ns(ctrl, &info);
3963	}
3964}
3965
3966static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
3967					unsigned nsid)
3968{
3969	struct nvme_ns *ns, *next;
3970	LIST_HEAD(rm_list);
3971
3972	down_write(&ctrl->namespaces_rwsem);
3973	list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
3974		if (ns->head->ns_id > nsid)
3975			list_move_tail(&ns->list, &rm_list);
3976	}
3977	up_write(&ctrl->namespaces_rwsem);
3978
3979	list_for_each_entry_safe(ns, next, &rm_list, list)
3980		nvme_ns_remove(ns);
3981
3982}
3983
3984static int nvme_scan_ns_list(struct nvme_ctrl *ctrl)
3985{
3986	const int nr_entries = NVME_IDENTIFY_DATA_SIZE / sizeof(__le32);
3987	__le32 *ns_list;
3988	u32 prev = 0;
3989	int ret = 0, i;
3990
3991	ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
3992	if (!ns_list)
3993		return -ENOMEM;
3994
3995	for (;;) {
3996		struct nvme_command cmd = {
3997			.identify.opcode	= nvme_admin_identify,
3998			.identify.cns		= NVME_ID_CNS_NS_ACTIVE_LIST,
3999			.identify.nsid		= cpu_to_le32(prev),
4000		};
4001
4002		ret = nvme_submit_sync_cmd(ctrl->admin_q, &cmd, ns_list,
4003					    NVME_IDENTIFY_DATA_SIZE);
4004		if (ret) {
4005			dev_warn(ctrl->device,
4006				"Identify NS List failed (status=0x%x)\n", ret);
4007			goto free;
4008		}
4009
4010		for (i = 0; i < nr_entries; i++) {
4011			u32 nsid = le32_to_cpu(ns_list[i]);
4012
4013			if (!nsid)	/* end of the list? */
4014				goto out;
4015			nvme_scan_ns(ctrl, nsid);
4016			while (++prev < nsid)
4017				nvme_ns_remove_by_nsid(ctrl, prev);
4018		}
4019	}
4020 out:
4021	nvme_remove_invalid_namespaces(ctrl, prev);
4022 free:
4023	kfree(ns_list);
4024	return ret;
4025}
4026
4027static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl)
4028{
4029	struct nvme_id_ctrl *id;
4030	u32 nn, i;
4031
4032	if (nvme_identify_ctrl(ctrl, &id))
4033		return;
4034	nn = le32_to_cpu(id->nn);
4035	kfree(id);
4036
4037	for (i = 1; i <= nn; i++)
4038		nvme_scan_ns(ctrl, i);
4039
4040	nvme_remove_invalid_namespaces(ctrl, nn);
4041}
4042
4043static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl)
4044{
4045	size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32);
4046	__le32 *log;
4047	int error;
4048
4049	log = kzalloc(log_size, GFP_KERNEL);
4050	if (!log)
4051		return;
4052
4053	/*
4054	 * We need to read the log to clear the AEN, but we don't want to rely
4055	 * on it for the changed namespace information as userspace could have
4056	 * raced with us in reading the log page, which could cause us to miss
4057	 * updates.
4058	 */
4059	error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0,
4060			NVME_CSI_NVM, log, log_size, 0);
4061	if (error)
4062		dev_warn(ctrl->device,
4063			"reading changed ns log failed: %d\n", error);
4064
4065	kfree(log);
4066}
4067
4068static void nvme_scan_work(struct work_struct *work)
4069{
4070	struct nvme_ctrl *ctrl =
4071		container_of(work, struct nvme_ctrl, scan_work);
4072	int ret;
4073
4074	/* No tagset on a live ctrl means IO queues could not created */
4075	if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE || !ctrl->tagset)
4076		return;
4077
4078	/*
4079	 * Identify controller limits can change at controller reset due to
4080	 * new firmware download, even though it is not common we cannot ignore
4081	 * such scenario. Controller's non-mdts limits are reported in the unit
4082	 * of logical blocks that is dependent on the format of attached
4083	 * namespace. Hence re-read the limits at the time of ns allocation.
4084	 */
4085	ret = nvme_init_non_mdts_limits(ctrl);
4086	if (ret < 0) {
4087		dev_warn(ctrl->device,
4088			"reading non-mdts-limits failed: %d\n", ret);
4089		return;
4090	}
4091
4092	if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) {
4093		dev_info(ctrl->device, "rescanning namespaces.\n");
4094		nvme_clear_changed_ns_log(ctrl);
4095	}
4096
4097	mutex_lock(&ctrl->scan_lock);
4098	if (nvme_ctrl_limited_cns(ctrl)) {
4099		nvme_scan_ns_sequential(ctrl);
4100	} else {
4101		/*
4102		 * Fall back to sequential scan if DNR is set to handle broken
4103		 * devices which should support Identify NS List (as per the VS
4104		 * they report) but don't actually support it.
4105		 */
4106		ret = nvme_scan_ns_list(ctrl);
4107		if (ret > 0 && ret & NVME_SC_DNR)
4108			nvme_scan_ns_sequential(ctrl);
4109	}
4110	mutex_unlock(&ctrl->scan_lock);
4111}
4112
4113/*
4114 * This function iterates the namespace list unlocked to allow recovery from
4115 * controller failure. It is up to the caller to ensure the namespace list is
4116 * not modified by scan work while this function is executing.
4117 */
4118void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
4119{
4120	struct nvme_ns *ns, *next;
4121	LIST_HEAD(ns_list);
4122
4123	/*
4124	 * make sure to requeue I/O to all namespaces as these
4125	 * might result from the scan itself and must complete
4126	 * for the scan_work to make progress
4127	 */
4128	nvme_mpath_clear_ctrl_paths(ctrl);
4129
4130	/*
4131	 * Unquiesce io queues so any pending IO won't hang, especially
4132	 * those submitted from scan work
4133	 */
4134	nvme_unquiesce_io_queues(ctrl);
4135
4136	/* prevent racing with ns scanning */
4137	flush_work(&ctrl->scan_work);
4138
4139	/*
4140	 * The dead states indicates the controller was not gracefully
4141	 * disconnected. In that case, we won't be able to flush any data while
4142	 * removing the namespaces' disks; fail all the queues now to avoid
4143	 * potentially having to clean up the failed sync later.
4144	 */
4145	if (nvme_ctrl_state(ctrl) == NVME_CTRL_DEAD)
4146		nvme_mark_namespaces_dead(ctrl);
4147
4148	/* this is a no-op when called from the controller reset handler */
4149	nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING_NOIO);
4150
4151	down_write(&ctrl->namespaces_rwsem);
4152	list_splice_init(&ctrl->namespaces, &ns_list);
4153	up_write(&ctrl->namespaces_rwsem);
4154
4155	list_for_each_entry_safe(ns, next, &ns_list, list)
4156		nvme_ns_remove(ns);
4157}
4158EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
4159
4160static int nvme_class_uevent(const struct device *dev, struct kobj_uevent_env *env)
4161{
4162	const struct nvme_ctrl *ctrl =
4163		container_of(dev, struct nvme_ctrl, ctrl_device);
4164	struct nvmf_ctrl_options *opts = ctrl->opts;
4165	int ret;
4166
4167	ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name);
4168	if (ret)
4169		return ret;
4170
4171	if (opts) {
4172		ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr);
4173		if (ret)
4174			return ret;
4175
4176		ret = add_uevent_var(env, "NVME_TRSVCID=%s",
4177				opts->trsvcid ?: "none");
4178		if (ret)
4179			return ret;
4180
4181		ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s",
4182				opts->host_traddr ?: "none");
4183		if (ret)
4184			return ret;
4185
4186		ret = add_uevent_var(env, "NVME_HOST_IFACE=%s",
4187				opts->host_iface ?: "none");
4188	}
4189	return ret;
4190}
4191
4192static void nvme_change_uevent(struct nvme_ctrl *ctrl, char *envdata)
4193{
4194	char *envp[2] = { envdata, NULL };
4195
4196	kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
4197}
4198
4199static void nvme_aen_uevent(struct nvme_ctrl *ctrl)
4200{
4201	char *envp[2] = { NULL, NULL };
4202	u32 aen_result = ctrl->aen_result;
4203
4204	ctrl->aen_result = 0;
4205	if (!aen_result)
4206		return;
4207
4208	envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result);
4209	if (!envp[0])
4210		return;
4211	kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
4212	kfree(envp[0]);
4213}
4214
4215static void nvme_async_event_work(struct work_struct *work)
4216{
4217	struct nvme_ctrl *ctrl =
4218		container_of(work, struct nvme_ctrl, async_event_work);
4219
4220	nvme_aen_uevent(ctrl);
4221
4222	/*
4223	 * The transport drivers must guarantee AER submission here is safe by
4224	 * flushing ctrl async_event_work after changing the controller state
4225	 * from LIVE and before freeing the admin queue.
4226	*/
4227	if (nvme_ctrl_state(ctrl) == NVME_CTRL_LIVE)
4228		ctrl->ops->submit_async_event(ctrl);
4229}
4230
4231static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl)
4232{
4233
4234	u32 csts;
4235
4236	if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts))
4237		return false;
4238
4239	if (csts == ~0)
4240		return false;
4241
4242	return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP));
4243}
4244
4245static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl)
4246{
4247	struct nvme_fw_slot_info_log *log;
4248	u8 next_fw_slot, cur_fw_slot;
4249
4250	log = kmalloc(sizeof(*log), GFP_KERNEL);
4251	if (!log)
4252		return;
4253
4254	if (nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_FW_SLOT, 0, NVME_CSI_NVM,
4255			 log, sizeof(*log), 0)) {
4256		dev_warn(ctrl->device, "Get FW SLOT INFO log error\n");
4257		goto out_free_log;
4258	}
4259
4260	cur_fw_slot = log->afi & 0x7;
4261	next_fw_slot = (log->afi & 0x70) >> 4;
4262	if (!cur_fw_slot || (next_fw_slot && (cur_fw_slot != next_fw_slot))) {
4263		dev_info(ctrl->device,
4264			 "Firmware is activated after next Controller Level Reset\n");
4265		goto out_free_log;
4266	}
4267
4268	memcpy(ctrl->subsys->firmware_rev, &log->frs[cur_fw_slot - 1],
4269		sizeof(ctrl->subsys->firmware_rev));
4270
4271out_free_log:
4272	kfree(log);
4273}
4274
4275static void nvme_fw_act_work(struct work_struct *work)
4276{
4277	struct nvme_ctrl *ctrl = container_of(work,
4278				struct nvme_ctrl, fw_act_work);
4279	unsigned long fw_act_timeout;
4280
4281	nvme_auth_stop(ctrl);
4282
4283	if (ctrl->mtfa)
4284		fw_act_timeout = jiffies +
4285				msecs_to_jiffies(ctrl->mtfa * 100);
4286	else
4287		fw_act_timeout = jiffies +
4288				msecs_to_jiffies(admin_timeout * 1000);
4289
4290	nvme_quiesce_io_queues(ctrl);
4291	while (nvme_ctrl_pp_status(ctrl)) {
4292		if (time_after(jiffies, fw_act_timeout)) {
4293			dev_warn(ctrl->device,
4294				"Fw activation timeout, reset controller\n");
4295			nvme_try_sched_reset(ctrl);
4296			return;
4297		}
4298		msleep(100);
4299	}
4300
4301	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE))
4302		return;
4303
4304	nvme_unquiesce_io_queues(ctrl);
4305	/* read FW slot information to clear the AER */
4306	nvme_get_fw_slot_info(ctrl);
4307
4308	queue_work(nvme_wq, &ctrl->async_event_work);
4309}
4310
4311static u32 nvme_aer_type(u32 result)
4312{
4313	return result & 0x7;
4314}
4315
4316static u32 nvme_aer_subtype(u32 result)
4317{
4318	return (result & 0xff00) >> 8;
4319}
4320
4321static bool nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result)
4322{
4323	u32 aer_notice_type = nvme_aer_subtype(result);
4324	bool requeue = true;
4325
4326	switch (aer_notice_type) {
4327	case NVME_AER_NOTICE_NS_CHANGED:
4328		set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events);
4329		nvme_queue_scan(ctrl);
4330		break;
4331	case NVME_AER_NOTICE_FW_ACT_STARTING:
4332		/*
4333		 * We are (ab)using the RESETTING state to prevent subsequent
4334		 * recovery actions from interfering with the controller's
4335		 * firmware activation.
4336		 */
4337		if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) {
4338			requeue = false;
4339			queue_work(nvme_wq, &ctrl->fw_act_work);
4340		}
4341		break;
4342#ifdef CONFIG_NVME_MULTIPATH
4343	case NVME_AER_NOTICE_ANA:
4344		if (!ctrl->ana_log_buf)
4345			break;
4346		queue_work(nvme_wq, &ctrl->ana_work);
4347		break;
4348#endif
4349	case NVME_AER_NOTICE_DISC_CHANGED:
4350		ctrl->aen_result = result;
4351		break;
4352	default:
4353		dev_warn(ctrl->device, "async event result %08x\n", result);
4354	}
4355	return requeue;
4356}
4357
4358static void nvme_handle_aer_persistent_error(struct nvme_ctrl *ctrl)
4359{
4360	dev_warn(ctrl->device, "resetting controller due to AER\n");
4361	nvme_reset_ctrl(ctrl);
4362}
4363
4364void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
4365		volatile union nvme_result *res)
4366{
4367	u32 result = le32_to_cpu(res->u32);
4368	u32 aer_type = nvme_aer_type(result);
4369	u32 aer_subtype = nvme_aer_subtype(result);
4370	bool requeue = true;
4371
4372	if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS)
4373		return;
4374
4375	trace_nvme_async_event(ctrl, result);
4376	switch (aer_type) {
4377	case NVME_AER_NOTICE:
4378		requeue = nvme_handle_aen_notice(ctrl, result);
4379		break;
4380	case NVME_AER_ERROR:
4381		/*
4382		 * For a persistent internal error, don't run async_event_work
4383		 * to submit a new AER. The controller reset will do it.
4384		 */
4385		if (aer_subtype == NVME_AER_ERROR_PERSIST_INT_ERR) {
4386			nvme_handle_aer_persistent_error(ctrl);
4387			return;
4388		}
4389		fallthrough;
4390	case NVME_AER_SMART:
4391	case NVME_AER_CSS:
4392	case NVME_AER_VS:
4393		ctrl->aen_result = result;
4394		break;
4395	default:
4396		break;
4397	}
4398
4399	if (requeue)
4400		queue_work(nvme_wq, &ctrl->async_event_work);
4401}
4402EXPORT_SYMBOL_GPL(nvme_complete_async_event);
4403
4404int nvme_alloc_admin_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set,
4405		const struct blk_mq_ops *ops, unsigned int cmd_size)
4406{
4407	struct queue_limits lim = {};
4408	int ret;
4409
4410	memset(set, 0, sizeof(*set));
4411	set->ops = ops;
4412	set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
4413	if (ctrl->ops->flags & NVME_F_FABRICS)
4414		/* Reserved for fabric connect and keep alive */
4415		set->reserved_tags = 2;
4416	set->numa_node = ctrl->numa_node;
4417	set->flags = BLK_MQ_F_NO_SCHED;
4418	if (ctrl->ops->flags & NVME_F_BLOCKING)
4419		set->flags |= BLK_MQ_F_BLOCKING;
4420	set->cmd_size = cmd_size;
4421	set->driver_data = ctrl;
4422	set->nr_hw_queues = 1;
4423	set->timeout = NVME_ADMIN_TIMEOUT;
4424	ret = blk_mq_alloc_tag_set(set);
4425	if (ret)
4426		return ret;
4427
4428	ctrl->admin_q = blk_mq_alloc_queue(set, &lim, NULL);
4429	if (IS_ERR(ctrl->admin_q)) {
4430		ret = PTR_ERR(ctrl->admin_q);
4431		goto out_free_tagset;
4432	}
4433
4434	if (ctrl->ops->flags & NVME_F_FABRICS) {
4435		ctrl->fabrics_q = blk_mq_alloc_queue(set, NULL, NULL);
4436		if (IS_ERR(ctrl->fabrics_q)) {
4437			ret = PTR_ERR(ctrl->fabrics_q);
4438			goto out_cleanup_admin_q;
4439		}
4440	}
4441
4442	ctrl->admin_tagset = set;
4443	return 0;
4444
4445out_cleanup_admin_q:
4446	blk_mq_destroy_queue(ctrl->admin_q);
4447	blk_put_queue(ctrl->admin_q);
4448out_free_tagset:
4449	blk_mq_free_tag_set(set);
4450	ctrl->admin_q = NULL;
4451	ctrl->fabrics_q = NULL;
4452	return ret;
4453}
4454EXPORT_SYMBOL_GPL(nvme_alloc_admin_tag_set);
4455
4456void nvme_remove_admin_tag_set(struct nvme_ctrl *ctrl)
4457{
4458	blk_mq_destroy_queue(ctrl->admin_q);
4459	blk_put_queue(ctrl->admin_q);
4460	if (ctrl->ops->flags & NVME_F_FABRICS) {
4461		blk_mq_destroy_queue(ctrl->fabrics_q);
4462		blk_put_queue(ctrl->fabrics_q);
4463	}
4464	blk_mq_free_tag_set(ctrl->admin_tagset);
4465}
4466EXPORT_SYMBOL_GPL(nvme_remove_admin_tag_set);
4467
4468int nvme_alloc_io_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set,
4469		const struct blk_mq_ops *ops, unsigned int nr_maps,
4470		unsigned int cmd_size)
4471{
4472	int ret;
4473
4474	memset(set, 0, sizeof(*set));
4475	set->ops = ops;
4476	set->queue_depth = min_t(unsigned, ctrl->sqsize, BLK_MQ_MAX_DEPTH - 1);
4477	/*
4478	 * Some Apple controllers requires tags to be unique across admin and
4479	 * the (only) I/O queue, so reserve the first 32 tags of the I/O queue.
4480	 */
4481	if (ctrl->quirks & NVME_QUIRK_SHARED_TAGS)
4482		set->reserved_tags = NVME_AQ_DEPTH;
4483	else if (ctrl->ops->flags & NVME_F_FABRICS)
4484		/* Reserved for fabric connect */
4485		set->reserved_tags = 1;
4486	set->numa_node = ctrl->numa_node;
4487	set->flags = BLK_MQ_F_SHOULD_MERGE;
4488	if (ctrl->ops->flags & NVME_F_BLOCKING)
4489		set->flags |= BLK_MQ_F_BLOCKING;
4490	set->cmd_size = cmd_size,
4491	set->driver_data = ctrl;
4492	set->nr_hw_queues = ctrl->queue_count - 1;
4493	set->timeout = NVME_IO_TIMEOUT;
4494	set->nr_maps = nr_maps;
4495	ret = blk_mq_alloc_tag_set(set);
4496	if (ret)
4497		return ret;
4498
4499	if (ctrl->ops->flags & NVME_F_FABRICS) {
4500		ctrl->connect_q = blk_mq_alloc_queue(set, NULL, NULL);
4501        	if (IS_ERR(ctrl->connect_q)) {
4502			ret = PTR_ERR(ctrl->connect_q);
4503			goto out_free_tag_set;
4504		}
4505		blk_queue_flag_set(QUEUE_FLAG_SKIP_TAGSET_QUIESCE,
4506				   ctrl->connect_q);
4507	}
4508
4509	ctrl->tagset = set;
4510	return 0;
4511
4512out_free_tag_set:
4513	blk_mq_free_tag_set(set);
4514	ctrl->connect_q = NULL;
4515	return ret;
4516}
4517EXPORT_SYMBOL_GPL(nvme_alloc_io_tag_set);
4518
4519void nvme_remove_io_tag_set(struct nvme_ctrl *ctrl)
4520{
4521	if (ctrl->ops->flags & NVME_F_FABRICS) {
4522		blk_mq_destroy_queue(ctrl->connect_q);
4523		blk_put_queue(ctrl->connect_q);
4524	}
4525	blk_mq_free_tag_set(ctrl->tagset);
4526}
4527EXPORT_SYMBOL_GPL(nvme_remove_io_tag_set);
4528
4529void nvme_stop_ctrl(struct nvme_ctrl *ctrl)
4530{
4531	nvme_mpath_stop(ctrl);
4532	nvme_auth_stop(ctrl);
4533	nvme_stop_keep_alive(ctrl);
4534	nvme_stop_failfast_work(ctrl);
4535	flush_work(&ctrl->async_event_work);
4536	cancel_work_sync(&ctrl->fw_act_work);
4537	if (ctrl->ops->stop_ctrl)
4538		ctrl->ops->stop_ctrl(ctrl);
4539}
4540EXPORT_SYMBOL_GPL(nvme_stop_ctrl);
4541
4542void nvme_start_ctrl(struct nvme_ctrl *ctrl)
4543{
4544	nvme_enable_aen(ctrl);
4545
4546	/*
4547	 * persistent discovery controllers need to send indication to userspace
4548	 * to re-read the discovery log page to learn about possible changes
4549	 * that were missed. We identify persistent discovery controllers by
4550	 * checking that they started once before, hence are reconnecting back.
4551	 */
4552	if (test_bit(NVME_CTRL_STARTED_ONCE, &ctrl->flags) &&
4553	    nvme_discovery_ctrl(ctrl))
4554		nvme_change_uevent(ctrl, "NVME_EVENT=rediscover");
4555
4556	if (ctrl->queue_count > 1) {
4557		nvme_queue_scan(ctrl);
4558		nvme_unquiesce_io_queues(ctrl);
4559		nvme_mpath_update(ctrl);
4560	}
4561
4562	nvme_change_uevent(ctrl, "NVME_EVENT=connected");
4563	set_bit(NVME_CTRL_STARTED_ONCE, &ctrl->flags);
4564}
4565EXPORT_SYMBOL_GPL(nvme_start_ctrl);
4566
4567void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
4568{
4569	nvme_hwmon_exit(ctrl);
4570	nvme_fault_inject_fini(&ctrl->fault_inject);
4571	dev_pm_qos_hide_latency_tolerance(ctrl->device);
4572	cdev_device_del(&ctrl->cdev, ctrl->device);
4573	nvme_put_ctrl(ctrl);
4574}
4575EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
4576
4577static void nvme_free_cels(struct nvme_ctrl *ctrl)
4578{
4579	struct nvme_effects_log	*cel;
4580	unsigned long i;
4581
4582	xa_for_each(&ctrl->cels, i, cel) {
4583		xa_erase(&ctrl->cels, i);
4584		kfree(cel);
4585	}
4586
4587	xa_destroy(&ctrl->cels);
4588}
4589
4590static void nvme_free_ctrl(struct device *dev)
4591{
4592	struct nvme_ctrl *ctrl =
4593		container_of(dev, struct nvme_ctrl, ctrl_device);
4594	struct nvme_subsystem *subsys = ctrl->subsys;
4595
4596	if (!subsys || ctrl->instance != subsys->instance)
4597		ida_free(&nvme_instance_ida, ctrl->instance);
4598	key_put(ctrl->tls_key);
4599	nvme_free_cels(ctrl);
4600	nvme_mpath_uninit(ctrl);
4601	nvme_auth_stop(ctrl);
4602	nvme_auth_free(ctrl);
4603	__free_page(ctrl->discard_page);
4604	free_opal_dev(ctrl->opal_dev);
4605
4606	if (subsys) {
4607		mutex_lock(&nvme_subsystems_lock);
4608		list_del(&ctrl->subsys_entry);
4609		sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device));
4610		mutex_unlock(&nvme_subsystems_lock);
4611	}
4612
4613	ctrl->ops->free_ctrl(ctrl);
4614
4615	if (subsys)
4616		nvme_put_subsystem(subsys);
4617}
4618
4619/*
4620 * Initialize a NVMe controller structures.  This needs to be called during
4621 * earliest initialization so that we have the initialized structured around
4622 * during probing.
4623 */
4624int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
4625		const struct nvme_ctrl_ops *ops, unsigned long quirks)
4626{
4627	int ret;
4628
4629	WRITE_ONCE(ctrl->state, NVME_CTRL_NEW);
4630	ctrl->passthru_err_log_enabled = false;
4631	clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
4632	spin_lock_init(&ctrl->lock);
4633	mutex_init(&ctrl->scan_lock);
4634	INIT_LIST_HEAD(&ctrl->namespaces);
4635	xa_init(&ctrl->cels);
4636	init_rwsem(&ctrl->namespaces_rwsem);
4637	ctrl->dev = dev;
4638	ctrl->ops = ops;
4639	ctrl->quirks = quirks;
4640	ctrl->numa_node = NUMA_NO_NODE;
4641	INIT_WORK(&ctrl->scan_work, nvme_scan_work);
4642	INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
4643	INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work);
4644	INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work);
4645	init_waitqueue_head(&ctrl->state_wq);
4646
4647	INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
4648	INIT_DELAYED_WORK(&ctrl->failfast_work, nvme_failfast_work);
4649	memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd));
4650	ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive;
4651	ctrl->ka_last_check_time = jiffies;
4652
4653	BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) >
4654			PAGE_SIZE);
4655	ctrl->discard_page = alloc_page(GFP_KERNEL);
4656	if (!ctrl->discard_page) {
4657		ret = -ENOMEM;
4658		goto out;
4659	}
4660
4661	ret = ida_alloc(&nvme_instance_ida, GFP_KERNEL);
4662	if (ret < 0)
4663		goto out;
4664	ctrl->instance = ret;
4665
4666	device_initialize(&ctrl->ctrl_device);
4667	ctrl->device = &ctrl->ctrl_device;
4668	ctrl->device->devt = MKDEV(MAJOR(nvme_ctrl_base_chr_devt),
4669			ctrl->instance);
4670	ctrl->device->class = &nvme_class;
4671	ctrl->device->parent = ctrl->dev;
4672	if (ops->dev_attr_groups)
4673		ctrl->device->groups = ops->dev_attr_groups;
4674	else
4675		ctrl->device->groups = nvme_dev_attr_groups;
4676	ctrl->device->release = nvme_free_ctrl;
4677	dev_set_drvdata(ctrl->device, ctrl);
4678	ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance);
4679	if (ret)
4680		goto out_release_instance;
4681
4682	nvme_get_ctrl(ctrl);
4683	cdev_init(&ctrl->cdev, &nvme_dev_fops);
4684	ctrl->cdev.owner = ops->module;
4685	ret = cdev_device_add(&ctrl->cdev, ctrl->device);
4686	if (ret)
4687		goto out_free_name;
4688
4689	/*
4690	 * Initialize latency tolerance controls.  The sysfs files won't
4691	 * be visible to userspace unless the device actually supports APST.
4692	 */
4693	ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
4694	dev_pm_qos_update_user_latency_tolerance(ctrl->device,
4695		min(default_ps_max_latency_us, (unsigned long)S32_MAX));
4696
4697	nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device));
4698	nvme_mpath_init_ctrl(ctrl);
4699	ret = nvme_auth_init_ctrl(ctrl);
4700	if (ret)
4701		goto out_free_cdev;
4702
4703	return 0;
4704out_free_cdev:
4705	nvme_fault_inject_fini(&ctrl->fault_inject);
4706	dev_pm_qos_hide_latency_tolerance(ctrl->device);
4707	cdev_device_del(&ctrl->cdev, ctrl->device);
4708out_free_name:
4709	nvme_put_ctrl(ctrl);
4710	kfree_const(ctrl->device->kobj.name);
4711out_release_instance:
4712	ida_free(&nvme_instance_ida, ctrl->instance);
4713out:
4714	if (ctrl->discard_page)
4715		__free_page(ctrl->discard_page);
4716	return ret;
4717}
4718EXPORT_SYMBOL_GPL(nvme_init_ctrl);
4719
4720/* let I/O to all namespaces fail in preparation for surprise removal */
4721void nvme_mark_namespaces_dead(struct nvme_ctrl *ctrl)
4722{
4723	struct nvme_ns *ns;
4724
4725	down_read(&ctrl->namespaces_rwsem);
4726	list_for_each_entry(ns, &ctrl->namespaces, list)
4727		blk_mark_disk_dead(ns->disk);
4728	up_read(&ctrl->namespaces_rwsem);
4729}
4730EXPORT_SYMBOL_GPL(nvme_mark_namespaces_dead);
4731
4732void nvme_unfreeze(struct nvme_ctrl *ctrl)
4733{
4734	struct nvme_ns *ns;
4735
4736	down_read(&ctrl->namespaces_rwsem);
4737	list_for_each_entry(ns, &ctrl->namespaces, list)
4738		blk_mq_unfreeze_queue(ns->queue);
4739	up_read(&ctrl->namespaces_rwsem);
4740	clear_bit(NVME_CTRL_FROZEN, &ctrl->flags);
4741}
4742EXPORT_SYMBOL_GPL(nvme_unfreeze);
4743
4744int nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
4745{
4746	struct nvme_ns *ns;
4747
4748	down_read(&ctrl->namespaces_rwsem);
4749	list_for_each_entry(ns, &ctrl->namespaces, list) {
4750		timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
4751		if (timeout <= 0)
4752			break;
4753	}
4754	up_read(&ctrl->namespaces_rwsem);
4755	return timeout;
4756}
4757EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
4758
4759void nvme_wait_freeze(struct nvme_ctrl *ctrl)
4760{
4761	struct nvme_ns *ns;
4762
4763	down_read(&ctrl->namespaces_rwsem);
4764	list_for_each_entry(ns, &ctrl->namespaces, list)
4765		blk_mq_freeze_queue_wait(ns->queue);
4766	up_read(&ctrl->namespaces_rwsem);
4767}
4768EXPORT_SYMBOL_GPL(nvme_wait_freeze);
4769
4770void nvme_start_freeze(struct nvme_ctrl *ctrl)
4771{
4772	struct nvme_ns *ns;
4773
4774	set_bit(NVME_CTRL_FROZEN, &ctrl->flags);
4775	down_read(&ctrl->namespaces_rwsem);
4776	list_for_each_entry(ns, &ctrl->namespaces, list)
4777		blk_freeze_queue_start(ns->queue);
4778	up_read(&ctrl->namespaces_rwsem);
4779}
4780EXPORT_SYMBOL_GPL(nvme_start_freeze);
4781
4782void nvme_quiesce_io_queues(struct nvme_ctrl *ctrl)
4783{
4784	if (!ctrl->tagset)
4785		return;
4786	if (!test_and_set_bit(NVME_CTRL_STOPPED, &ctrl->flags))
4787		blk_mq_quiesce_tagset(ctrl->tagset);
4788	else
4789		blk_mq_wait_quiesce_done(ctrl->tagset);
4790}
4791EXPORT_SYMBOL_GPL(nvme_quiesce_io_queues);
4792
4793void nvme_unquiesce_io_queues(struct nvme_ctrl *ctrl)
4794{
4795	if (!ctrl->tagset)
4796		return;
4797	if (test_and_clear_bit(NVME_CTRL_STOPPED, &ctrl->flags))
4798		blk_mq_unquiesce_tagset(ctrl->tagset);
4799}
4800EXPORT_SYMBOL_GPL(nvme_unquiesce_io_queues);
4801
4802void nvme_quiesce_admin_queue(struct nvme_ctrl *ctrl)
4803{
4804	if (!test_and_set_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags))
4805		blk_mq_quiesce_queue(ctrl->admin_q);
4806	else
4807		blk_mq_wait_quiesce_done(ctrl->admin_q->tag_set);
4808}
4809EXPORT_SYMBOL_GPL(nvme_quiesce_admin_queue);
4810
4811void nvme_unquiesce_admin_queue(struct nvme_ctrl *ctrl)
4812{
4813	if (test_and_clear_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags))
4814		blk_mq_unquiesce_queue(ctrl->admin_q);
4815}
4816EXPORT_SYMBOL_GPL(nvme_unquiesce_admin_queue);
4817
4818void nvme_sync_io_queues(struct nvme_ctrl *ctrl)
4819{
4820	struct nvme_ns *ns;
4821
4822	down_read(&ctrl->namespaces_rwsem);
4823	list_for_each_entry(ns, &ctrl->namespaces, list)
4824		blk_sync_queue(ns->queue);
4825	up_read(&ctrl->namespaces_rwsem);
4826}
4827EXPORT_SYMBOL_GPL(nvme_sync_io_queues);
4828
4829void nvme_sync_queues(struct nvme_ctrl *ctrl)
4830{
4831	nvme_sync_io_queues(ctrl);
4832	if (ctrl->admin_q)
4833		blk_sync_queue(ctrl->admin_q);
4834}
4835EXPORT_SYMBOL_GPL(nvme_sync_queues);
4836
4837struct nvme_ctrl *nvme_ctrl_from_file(struct file *file)
4838{
4839	if (file->f_op != &nvme_dev_fops)
4840		return NULL;
4841	return file->private_data;
4842}
4843EXPORT_SYMBOL_NS_GPL(nvme_ctrl_from_file, NVME_TARGET_PASSTHRU);
4844
4845/*
4846 * Check we didn't inadvertently grow the command structure sizes:
4847 */
4848static inline void _nvme_check_size(void)
4849{
4850	BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64);
4851	BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
4852	BUILD_BUG_ON(sizeof(struct nvme_identify) != 64);
4853	BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
4854	BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64);
4855	BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
4856	BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64);
4857	BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64);
4858	BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
4859	BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64);
4860	BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
4861	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
4862	BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
4863	BUILD_BUG_ON(sizeof(struct nvme_id_ns_cs_indep) !=
4864			NVME_IDENTIFY_DATA_SIZE);
4865	BUILD_BUG_ON(sizeof(struct nvme_id_ns_zns) != NVME_IDENTIFY_DATA_SIZE);
4866	BUILD_BUG_ON(sizeof(struct nvme_id_ns_nvm) != NVME_IDENTIFY_DATA_SIZE);
4867	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_zns) != NVME_IDENTIFY_DATA_SIZE);
4868	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_nvm) != NVME_IDENTIFY_DATA_SIZE);
4869	BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
4870	BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
4871	BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
4872	BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64);
4873	BUILD_BUG_ON(sizeof(struct nvme_feat_host_behavior) != 512);
4874}
4875
4876
4877static int __init nvme_core_init(void)
4878{
4879	int result = -ENOMEM;
4880
4881	_nvme_check_size();
4882
4883	nvme_wq = alloc_workqueue("nvme-wq",
4884			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4885	if (!nvme_wq)
4886		goto out;
4887
4888	nvme_reset_wq = alloc_workqueue("nvme-reset-wq",
4889			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4890	if (!nvme_reset_wq)
4891		goto destroy_wq;
4892
4893	nvme_delete_wq = alloc_workqueue("nvme-delete-wq",
4894			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4895	if (!nvme_delete_wq)
4896		goto destroy_reset_wq;
4897
4898	result = alloc_chrdev_region(&nvme_ctrl_base_chr_devt, 0,
4899			NVME_MINORS, "nvme");
4900	if (result < 0)
4901		goto destroy_delete_wq;
4902
4903	result = class_register(&nvme_class);
4904	if (result)
4905		goto unregister_chrdev;
4906
4907	result = class_register(&nvme_subsys_class);
4908	if (result)
4909		goto destroy_class;
4910
4911	result = alloc_chrdev_region(&nvme_ns_chr_devt, 0, NVME_MINORS,
4912				     "nvme-generic");
4913	if (result < 0)
4914		goto destroy_subsys_class;
4915
4916	result = class_register(&nvme_ns_chr_class);
4917	if (result)
4918		goto unregister_generic_ns;
4919
4920	result = nvme_init_auth();
4921	if (result)
4922		goto destroy_ns_chr;
4923	return 0;
4924
4925destroy_ns_chr:
4926	class_unregister(&nvme_ns_chr_class);
4927unregister_generic_ns:
4928	unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS);
4929destroy_subsys_class:
4930	class_unregister(&nvme_subsys_class);
4931destroy_class:
4932	class_unregister(&nvme_class);
4933unregister_chrdev:
4934	unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
4935destroy_delete_wq:
4936	destroy_workqueue(nvme_delete_wq);
4937destroy_reset_wq:
4938	destroy_workqueue(nvme_reset_wq);
4939destroy_wq:
4940	destroy_workqueue(nvme_wq);
4941out:
4942	return result;
4943}
4944
4945static void __exit nvme_core_exit(void)
4946{
4947	nvme_exit_auth();
4948	class_unregister(&nvme_ns_chr_class);
4949	class_unregister(&nvme_subsys_class);
4950	class_unregister(&nvme_class);
4951	unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS);
4952	unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
4953	destroy_workqueue(nvme_delete_wq);
4954	destroy_workqueue(nvme_reset_wq);
4955	destroy_workqueue(nvme_wq);
4956	ida_destroy(&nvme_ns_chr_minor_ida);
4957	ida_destroy(&nvme_instance_ida);
4958}
4959
4960MODULE_LICENSE("GPL");
4961MODULE_VERSION("1.0");
4962MODULE_DESCRIPTION("NVMe host core framework");
4963module_init(nvme_core_init);
4964module_exit(nvme_core_exit);
4965