1/*
2 * This file is provided under a dual BSD/GPLv2 license.  When using or
3 *   redistributing this file, you may do so under either license.
4 *
5 *   GPL LICENSE SUMMARY
6 *
7 *   Copyright(c) 2012 Intel Corporation. All rights reserved.
8 *   Copyright (C) 2015 EMC Corporation. All Rights Reserved.
9 *
10 *   This program is free software; you can redistribute it and/or modify
11 *   it under the terms of version 2 of the GNU General Public License as
12 *   published by the Free Software Foundation.
13 *
14 *   BSD LICENSE
15 *
16 *   Copyright(c) 2012 Intel Corporation. All rights reserved.
17 *   Copyright (C) 2015 EMC Corporation. All Rights Reserved.
18 *
19 *   Redistribution and use in source and binary forms, with or without
20 *   modification, are permitted provided that the following conditions
21 *   are met:
22 *
23 *     * Redistributions of source code must retain the above copyright
24 *       notice, this list of conditions and the following disclaimer.
25 *     * Redistributions in binary form must reproduce the above copy
26 *       notice, this list of conditions and the following disclaimer in
27 *       the documentation and/or other materials provided with the
28 *       distribution.
29 *     * Neither the name of Intel Corporation nor the names of its
30 *       contributors may be used to endorse or promote products derived
31 *       from this software without specific prior written permission.
32 *
33 *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
34 *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
35 *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
36 *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
37 *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
38 *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
39 *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
40 *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
41 *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
42 *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
43 *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
44 *
45 * PCIe NTB Transport Linux driver
46 *
47 * Contact Information:
48 * Jon Mason <jon.mason@intel.com>
49 */
50#include <linux/debugfs.h>
51#include <linux/delay.h>
52#include <linux/dmaengine.h>
53#include <linux/dma-mapping.h>
54#include <linux/errno.h>
55#include <linux/export.h>
56#include <linux/interrupt.h>
57#include <linux/module.h>
58#include <linux/pci.h>
59#include <linux/slab.h>
60#include <linux/types.h>
61#include <linux/uaccess.h>
62#include "linux/ntb.h"
63#include "linux/ntb_transport.h"
64
65#define NTB_TRANSPORT_VERSION	4
66#define NTB_TRANSPORT_VER	"4"
67#define NTB_TRANSPORT_NAME	"ntb_transport"
68#define NTB_TRANSPORT_DESC	"Software Queue-Pair Transport over NTB"
69#define NTB_TRANSPORT_MIN_SPADS (MW0_SZ_HIGH + 2)
70
71MODULE_DESCRIPTION(NTB_TRANSPORT_DESC);
72MODULE_VERSION(NTB_TRANSPORT_VER);
73MODULE_LICENSE("Dual BSD/GPL");
74MODULE_AUTHOR("Intel Corporation");
75
76static unsigned long max_mw_size;
77module_param(max_mw_size, ulong, 0644);
78MODULE_PARM_DESC(max_mw_size, "Limit size of large memory windows");
79
80static unsigned int transport_mtu = 0x10000;
81module_param(transport_mtu, uint, 0644);
82MODULE_PARM_DESC(transport_mtu, "Maximum size of NTB transport packets");
83
84static unsigned char max_num_clients;
85module_param(max_num_clients, byte, 0644);
86MODULE_PARM_DESC(max_num_clients, "Maximum number of NTB transport clients");
87
88static unsigned int copy_bytes = 1024;
89module_param(copy_bytes, uint, 0644);
90MODULE_PARM_DESC(copy_bytes, "Threshold under which NTB will use the CPU to copy instead of DMA");
91
92static bool use_dma;
93module_param(use_dma, bool, 0644);
94MODULE_PARM_DESC(use_dma, "Use DMA engine to perform large data copy");
95
96static bool use_msi;
97#ifdef CONFIG_NTB_MSI
98module_param(use_msi, bool, 0644);
99MODULE_PARM_DESC(use_msi, "Use MSI interrupts instead of doorbells");
100#endif
101
102static struct dentry *nt_debugfs_dir;
103
104/* Only two-ports NTB devices are supported */
105#define PIDX		NTB_DEF_PEER_IDX
106
107struct ntb_queue_entry {
108	/* ntb_queue list reference */
109	struct list_head entry;
110	/* pointers to data to be transferred */
111	void *cb_data;
112	void *buf;
113	unsigned int len;
114	unsigned int flags;
115	int retries;
116	int errors;
117	unsigned int tx_index;
118	unsigned int rx_index;
119
120	struct ntb_transport_qp *qp;
121	union {
122		struct ntb_payload_header __iomem *tx_hdr;
123		struct ntb_payload_header *rx_hdr;
124	};
125};
126
127struct ntb_rx_info {
128	unsigned int entry;
129};
130
131struct ntb_transport_qp {
132	struct ntb_transport_ctx *transport;
133	struct ntb_dev *ndev;
134	void *cb_data;
135	struct dma_chan *tx_dma_chan;
136	struct dma_chan *rx_dma_chan;
137
138	bool client_ready;
139	bool link_is_up;
140	bool active;
141
142	u8 qp_num;	/* Only 64 QP's are allowed.  0-63 */
143	u64 qp_bit;
144
145	struct ntb_rx_info __iomem *rx_info;
146	struct ntb_rx_info *remote_rx_info;
147
148	void (*tx_handler)(struct ntb_transport_qp *qp, void *qp_data,
149			   void *data, int len);
150	struct list_head tx_free_q;
151	spinlock_t ntb_tx_free_q_lock;
152	void __iomem *tx_mw;
153	phys_addr_t tx_mw_phys;
154	size_t tx_mw_size;
155	dma_addr_t tx_mw_dma_addr;
156	unsigned int tx_index;
157	unsigned int tx_max_entry;
158	unsigned int tx_max_frame;
159
160	void (*rx_handler)(struct ntb_transport_qp *qp, void *qp_data,
161			   void *data, int len);
162	struct list_head rx_post_q;
163	struct list_head rx_pend_q;
164	struct list_head rx_free_q;
165	/* ntb_rx_q_lock: synchronize access to rx_XXXX_q */
166	spinlock_t ntb_rx_q_lock;
167	void *rx_buff;
168	unsigned int rx_index;
169	unsigned int rx_max_entry;
170	unsigned int rx_max_frame;
171	unsigned int rx_alloc_entry;
172	dma_cookie_t last_cookie;
173	struct tasklet_struct rxc_db_work;
174
175	void (*event_handler)(void *data, int status);
176	struct delayed_work link_work;
177	struct work_struct link_cleanup;
178
179	struct dentry *debugfs_dir;
180	struct dentry *debugfs_stats;
181
182	/* Stats */
183	u64 rx_bytes;
184	u64 rx_pkts;
185	u64 rx_ring_empty;
186	u64 rx_err_no_buf;
187	u64 rx_err_oflow;
188	u64 rx_err_ver;
189	u64 rx_memcpy;
190	u64 rx_async;
191	u64 tx_bytes;
192	u64 tx_pkts;
193	u64 tx_ring_full;
194	u64 tx_err_no_buf;
195	u64 tx_memcpy;
196	u64 tx_async;
197
198	bool use_msi;
199	int msi_irq;
200	struct ntb_msi_desc msi_desc;
201	struct ntb_msi_desc peer_msi_desc;
202};
203
204struct ntb_transport_mw {
205	phys_addr_t phys_addr;
206	resource_size_t phys_size;
207	void __iomem *vbase;
208	size_t xlat_size;
209	size_t buff_size;
210	size_t alloc_size;
211	void *alloc_addr;
212	void *virt_addr;
213	dma_addr_t dma_addr;
214};
215
216struct ntb_transport_client_dev {
217	struct list_head entry;
218	struct ntb_transport_ctx *nt;
219	struct device dev;
220};
221
222struct ntb_transport_ctx {
223	struct list_head entry;
224	struct list_head client_devs;
225
226	struct ntb_dev *ndev;
227
228	struct ntb_transport_mw *mw_vec;
229	struct ntb_transport_qp *qp_vec;
230	unsigned int mw_count;
231	unsigned int qp_count;
232	u64 qp_bitmap;
233	u64 qp_bitmap_free;
234
235	bool use_msi;
236	unsigned int msi_spad_offset;
237	u64 msi_db_mask;
238
239	bool link_is_up;
240	struct delayed_work link_work;
241	struct work_struct link_cleanup;
242
243	struct dentry *debugfs_node_dir;
244};
245
246enum {
247	DESC_DONE_FLAG = BIT(0),
248	LINK_DOWN_FLAG = BIT(1),
249};
250
251struct ntb_payload_header {
252	unsigned int ver;
253	unsigned int len;
254	unsigned int flags;
255};
256
257enum {
258	VERSION = 0,
259	QP_LINKS,
260	NUM_QPS,
261	NUM_MWS,
262	MW0_SZ_HIGH,
263	MW0_SZ_LOW,
264};
265
266#define dev_client_dev(__dev) \
267	container_of((__dev), struct ntb_transport_client_dev, dev)
268
269#define drv_client(__drv) \
270	container_of((__drv), struct ntb_transport_client, driver)
271
272#define QP_TO_MW(nt, qp)	((qp) % nt->mw_count)
273#define NTB_QP_DEF_NUM_ENTRIES	100
274#define NTB_LINK_DOWN_TIMEOUT	10
275
276static void ntb_transport_rxc_db(unsigned long data);
277static const struct ntb_ctx_ops ntb_transport_ops;
278static struct ntb_client ntb_transport_client;
279static int ntb_async_tx_submit(struct ntb_transport_qp *qp,
280			       struct ntb_queue_entry *entry);
281static void ntb_memcpy_tx(struct ntb_queue_entry *entry, void __iomem *offset);
282static int ntb_async_rx_submit(struct ntb_queue_entry *entry, void *offset);
283static void ntb_memcpy_rx(struct ntb_queue_entry *entry, void *offset);
284
285
286static int ntb_transport_bus_match(struct device *dev,
287				   struct device_driver *drv)
288{
289	return !strncmp(dev_name(dev), drv->name, strlen(drv->name));
290}
291
292static int ntb_transport_bus_probe(struct device *dev)
293{
294	const struct ntb_transport_client *client;
295	int rc;
296
297	get_device(dev);
298
299	client = drv_client(dev->driver);
300	rc = client->probe(dev);
301	if (rc)
302		put_device(dev);
303
304	return rc;
305}
306
307static void ntb_transport_bus_remove(struct device *dev)
308{
309	const struct ntb_transport_client *client;
310
311	client = drv_client(dev->driver);
312	client->remove(dev);
313
314	put_device(dev);
315}
316
317static struct bus_type ntb_transport_bus = {
318	.name = "ntb_transport",
319	.match = ntb_transport_bus_match,
320	.probe = ntb_transport_bus_probe,
321	.remove = ntb_transport_bus_remove,
322};
323
324static LIST_HEAD(ntb_transport_list);
325
326static int ntb_bus_init(struct ntb_transport_ctx *nt)
327{
328	list_add_tail(&nt->entry, &ntb_transport_list);
329	return 0;
330}
331
332static void ntb_bus_remove(struct ntb_transport_ctx *nt)
333{
334	struct ntb_transport_client_dev *client_dev, *cd;
335
336	list_for_each_entry_safe(client_dev, cd, &nt->client_devs, entry) {
337		dev_err(client_dev->dev.parent, "%s still attached to bus, removing\n",
338			dev_name(&client_dev->dev));
339		list_del(&client_dev->entry);
340		device_unregister(&client_dev->dev);
341	}
342
343	list_del(&nt->entry);
344}
345
346static void ntb_transport_client_release(struct device *dev)
347{
348	struct ntb_transport_client_dev *client_dev;
349
350	client_dev = dev_client_dev(dev);
351	kfree(client_dev);
352}
353
354/**
355 * ntb_transport_unregister_client_dev - Unregister NTB client device
356 * @device_name: Name of NTB client device
357 *
358 * Unregister an NTB client device with the NTB transport layer
359 */
360void ntb_transport_unregister_client_dev(char *device_name)
361{
362	struct ntb_transport_client_dev *client, *cd;
363	struct ntb_transport_ctx *nt;
364
365	list_for_each_entry(nt, &ntb_transport_list, entry)
366		list_for_each_entry_safe(client, cd, &nt->client_devs, entry)
367			if (!strncmp(dev_name(&client->dev), device_name,
368				     strlen(device_name))) {
369				list_del(&client->entry);
370				device_unregister(&client->dev);
371			}
372}
373EXPORT_SYMBOL_GPL(ntb_transport_unregister_client_dev);
374
375/**
376 * ntb_transport_register_client_dev - Register NTB client device
377 * @device_name: Name of NTB client device
378 *
379 * Register an NTB client device with the NTB transport layer
380 */
381int ntb_transport_register_client_dev(char *device_name)
382{
383	struct ntb_transport_client_dev *client_dev;
384	struct ntb_transport_ctx *nt;
385	int node;
386	int rc, i = 0;
387
388	if (list_empty(&ntb_transport_list))
389		return -ENODEV;
390
391	list_for_each_entry(nt, &ntb_transport_list, entry) {
392		struct device *dev;
393
394		node = dev_to_node(&nt->ndev->dev);
395
396		client_dev = kzalloc_node(sizeof(*client_dev),
397					  GFP_KERNEL, node);
398		if (!client_dev) {
399			rc = -ENOMEM;
400			goto err;
401		}
402
403		dev = &client_dev->dev;
404
405		/* setup and register client devices */
406		dev_set_name(dev, "%s%d", device_name, i);
407		dev->bus = &ntb_transport_bus;
408		dev->release = ntb_transport_client_release;
409		dev->parent = &nt->ndev->dev;
410
411		rc = device_register(dev);
412		if (rc) {
413			put_device(dev);
414			goto err;
415		}
416
417		list_add_tail(&client_dev->entry, &nt->client_devs);
418		i++;
419	}
420
421	return 0;
422
423err:
424	ntb_transport_unregister_client_dev(device_name);
425
426	return rc;
427}
428EXPORT_SYMBOL_GPL(ntb_transport_register_client_dev);
429
430/**
431 * ntb_transport_register_client - Register NTB client driver
432 * @drv: NTB client driver to be registered
433 *
434 * Register an NTB client driver with the NTB transport layer
435 *
436 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
437 */
438int ntb_transport_register_client(struct ntb_transport_client *drv)
439{
440	drv->driver.bus = &ntb_transport_bus;
441
442	if (list_empty(&ntb_transport_list))
443		return -ENODEV;
444
445	return driver_register(&drv->driver);
446}
447EXPORT_SYMBOL_GPL(ntb_transport_register_client);
448
449/**
450 * ntb_transport_unregister_client - Unregister NTB client driver
451 * @drv: NTB client driver to be unregistered
452 *
453 * Unregister an NTB client driver with the NTB transport layer
454 *
455 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
456 */
457void ntb_transport_unregister_client(struct ntb_transport_client *drv)
458{
459	driver_unregister(&drv->driver);
460}
461EXPORT_SYMBOL_GPL(ntb_transport_unregister_client);
462
463static ssize_t debugfs_read(struct file *filp, char __user *ubuf, size_t count,
464			    loff_t *offp)
465{
466	struct ntb_transport_qp *qp;
467	char *buf;
468	ssize_t ret, out_offset, out_count;
469
470	qp = filp->private_data;
471
472	if (!qp || !qp->link_is_up)
473		return 0;
474
475	out_count = 1000;
476
477	buf = kmalloc(out_count, GFP_KERNEL);
478	if (!buf)
479		return -ENOMEM;
480
481	out_offset = 0;
482	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
483			       "\nNTB QP stats:\n\n");
484	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
485			       "rx_bytes - \t%llu\n", qp->rx_bytes);
486	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
487			       "rx_pkts - \t%llu\n", qp->rx_pkts);
488	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
489			       "rx_memcpy - \t%llu\n", qp->rx_memcpy);
490	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
491			       "rx_async - \t%llu\n", qp->rx_async);
492	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
493			       "rx_ring_empty - %llu\n", qp->rx_ring_empty);
494	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
495			       "rx_err_no_buf - %llu\n", qp->rx_err_no_buf);
496	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
497			       "rx_err_oflow - \t%llu\n", qp->rx_err_oflow);
498	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
499			       "rx_err_ver - \t%llu\n", qp->rx_err_ver);
500	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
501			       "rx_buff - \t0x%p\n", qp->rx_buff);
502	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
503			       "rx_index - \t%u\n", qp->rx_index);
504	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
505			       "rx_max_entry - \t%u\n", qp->rx_max_entry);
506	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
507			       "rx_alloc_entry - \t%u\n\n", qp->rx_alloc_entry);
508
509	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
510			       "tx_bytes - \t%llu\n", qp->tx_bytes);
511	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
512			       "tx_pkts - \t%llu\n", qp->tx_pkts);
513	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
514			       "tx_memcpy - \t%llu\n", qp->tx_memcpy);
515	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
516			       "tx_async - \t%llu\n", qp->tx_async);
517	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
518			       "tx_ring_full - \t%llu\n", qp->tx_ring_full);
519	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
520			       "tx_err_no_buf - %llu\n", qp->tx_err_no_buf);
521	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
522			       "tx_mw - \t0x%p\n", qp->tx_mw);
523	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
524			       "tx_index (H) - \t%u\n", qp->tx_index);
525	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
526			       "RRI (T) - \t%u\n",
527			       qp->remote_rx_info->entry);
528	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
529			       "tx_max_entry - \t%u\n", qp->tx_max_entry);
530	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
531			       "free tx - \t%u\n",
532			       ntb_transport_tx_free_entry(qp));
533
534	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
535			       "\n");
536	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
537			       "Using TX DMA - \t%s\n",
538			       qp->tx_dma_chan ? "Yes" : "No");
539	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
540			       "Using RX DMA - \t%s\n",
541			       qp->rx_dma_chan ? "Yes" : "No");
542	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
543			       "QP Link - \t%s\n",
544			       qp->link_is_up ? "Up" : "Down");
545	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
546			       "\n");
547
548	if (out_offset > out_count)
549		out_offset = out_count;
550
551	ret = simple_read_from_buffer(ubuf, count, offp, buf, out_offset);
552	kfree(buf);
553	return ret;
554}
555
556static const struct file_operations ntb_qp_debugfs_stats = {
557	.owner = THIS_MODULE,
558	.open = simple_open,
559	.read = debugfs_read,
560};
561
562static void ntb_list_add(spinlock_t *lock, struct list_head *entry,
563			 struct list_head *list)
564{
565	unsigned long flags;
566
567	spin_lock_irqsave(lock, flags);
568	list_add_tail(entry, list);
569	spin_unlock_irqrestore(lock, flags);
570}
571
572static struct ntb_queue_entry *ntb_list_rm(spinlock_t *lock,
573					   struct list_head *list)
574{
575	struct ntb_queue_entry *entry;
576	unsigned long flags;
577
578	spin_lock_irqsave(lock, flags);
579	if (list_empty(list)) {
580		entry = NULL;
581		goto out;
582	}
583	entry = list_first_entry(list, struct ntb_queue_entry, entry);
584	list_del(&entry->entry);
585
586out:
587	spin_unlock_irqrestore(lock, flags);
588
589	return entry;
590}
591
592static struct ntb_queue_entry *ntb_list_mv(spinlock_t *lock,
593					   struct list_head *list,
594					   struct list_head *to_list)
595{
596	struct ntb_queue_entry *entry;
597	unsigned long flags;
598
599	spin_lock_irqsave(lock, flags);
600
601	if (list_empty(list)) {
602		entry = NULL;
603	} else {
604		entry = list_first_entry(list, struct ntb_queue_entry, entry);
605		list_move_tail(&entry->entry, to_list);
606	}
607
608	spin_unlock_irqrestore(lock, flags);
609
610	return entry;
611}
612
613static int ntb_transport_setup_qp_mw(struct ntb_transport_ctx *nt,
614				     unsigned int qp_num)
615{
616	struct ntb_transport_qp *qp = &nt->qp_vec[qp_num];
617	struct ntb_transport_mw *mw;
618	struct ntb_dev *ndev = nt->ndev;
619	struct ntb_queue_entry *entry;
620	unsigned int rx_size, num_qps_mw;
621	unsigned int mw_num, mw_count, qp_count;
622	unsigned int i;
623	int node;
624
625	mw_count = nt->mw_count;
626	qp_count = nt->qp_count;
627
628	mw_num = QP_TO_MW(nt, qp_num);
629	mw = &nt->mw_vec[mw_num];
630
631	if (!mw->virt_addr)
632		return -ENOMEM;
633
634	if (mw_num < qp_count % mw_count)
635		num_qps_mw = qp_count / mw_count + 1;
636	else
637		num_qps_mw = qp_count / mw_count;
638
639	rx_size = (unsigned int)mw->xlat_size / num_qps_mw;
640	qp->rx_buff = mw->virt_addr + rx_size * (qp_num / mw_count);
641	rx_size -= sizeof(struct ntb_rx_info);
642
643	qp->remote_rx_info = qp->rx_buff + rx_size;
644
645	/* Due to housekeeping, there must be atleast 2 buffs */
646	qp->rx_max_frame = min(transport_mtu, rx_size / 2);
647	qp->rx_max_entry = rx_size / qp->rx_max_frame;
648	qp->rx_index = 0;
649
650	/*
651	 * Checking to see if we have more entries than the default.
652	 * We should add additional entries if that is the case so we
653	 * can be in sync with the transport frames.
654	 */
655	node = dev_to_node(&ndev->dev);
656	for (i = qp->rx_alloc_entry; i < qp->rx_max_entry; i++) {
657		entry = kzalloc_node(sizeof(*entry), GFP_KERNEL, node);
658		if (!entry)
659			return -ENOMEM;
660
661		entry->qp = qp;
662		ntb_list_add(&qp->ntb_rx_q_lock, &entry->entry,
663			     &qp->rx_free_q);
664		qp->rx_alloc_entry++;
665	}
666
667	qp->remote_rx_info->entry = qp->rx_max_entry - 1;
668
669	/* setup the hdr offsets with 0's */
670	for (i = 0; i < qp->rx_max_entry; i++) {
671		void *offset = (qp->rx_buff + qp->rx_max_frame * (i + 1) -
672				sizeof(struct ntb_payload_header));
673		memset(offset, 0, sizeof(struct ntb_payload_header));
674	}
675
676	qp->rx_pkts = 0;
677	qp->tx_pkts = 0;
678	qp->tx_index = 0;
679
680	return 0;
681}
682
683static irqreturn_t ntb_transport_isr(int irq, void *dev)
684{
685	struct ntb_transport_qp *qp = dev;
686
687	tasklet_schedule(&qp->rxc_db_work);
688
689	return IRQ_HANDLED;
690}
691
692static void ntb_transport_setup_qp_peer_msi(struct ntb_transport_ctx *nt,
693					    unsigned int qp_num)
694{
695	struct ntb_transport_qp *qp = &nt->qp_vec[qp_num];
696	int spad = qp_num * 2 + nt->msi_spad_offset;
697
698	if (!nt->use_msi)
699		return;
700
701	if (spad >= ntb_spad_count(nt->ndev))
702		return;
703
704	qp->peer_msi_desc.addr_offset =
705		ntb_peer_spad_read(qp->ndev, PIDX, spad);
706	qp->peer_msi_desc.data =
707		ntb_peer_spad_read(qp->ndev, PIDX, spad + 1);
708
709	dev_dbg(&qp->ndev->pdev->dev, "QP%d Peer MSI addr=%x data=%x\n",
710		qp_num, qp->peer_msi_desc.addr_offset, qp->peer_msi_desc.data);
711
712	if (qp->peer_msi_desc.addr_offset) {
713		qp->use_msi = true;
714		dev_info(&qp->ndev->pdev->dev,
715			 "Using MSI interrupts for QP%d\n", qp_num);
716	}
717}
718
719static void ntb_transport_setup_qp_msi(struct ntb_transport_ctx *nt,
720				       unsigned int qp_num)
721{
722	struct ntb_transport_qp *qp = &nt->qp_vec[qp_num];
723	int spad = qp_num * 2 + nt->msi_spad_offset;
724	int rc;
725
726	if (!nt->use_msi)
727		return;
728
729	if (spad >= ntb_spad_count(nt->ndev)) {
730		dev_warn_once(&qp->ndev->pdev->dev,
731			      "Not enough SPADS to use MSI interrupts\n");
732		return;
733	}
734
735	ntb_spad_write(qp->ndev, spad, 0);
736	ntb_spad_write(qp->ndev, spad + 1, 0);
737
738	if (!qp->msi_irq) {
739		qp->msi_irq = ntbm_msi_request_irq(qp->ndev, ntb_transport_isr,
740						   KBUILD_MODNAME, qp,
741						   &qp->msi_desc);
742		if (qp->msi_irq < 0) {
743			dev_warn(&qp->ndev->pdev->dev,
744				 "Unable to allocate MSI interrupt for qp%d\n",
745				 qp_num);
746			return;
747		}
748	}
749
750	rc = ntb_spad_write(qp->ndev, spad, qp->msi_desc.addr_offset);
751	if (rc)
752		goto err_free_interrupt;
753
754	rc = ntb_spad_write(qp->ndev, spad + 1, qp->msi_desc.data);
755	if (rc)
756		goto err_free_interrupt;
757
758	dev_dbg(&qp->ndev->pdev->dev, "QP%d MSI %d addr=%x data=%x\n",
759		qp_num, qp->msi_irq, qp->msi_desc.addr_offset,
760		qp->msi_desc.data);
761
762	return;
763
764err_free_interrupt:
765	devm_free_irq(&nt->ndev->dev, qp->msi_irq, qp);
766}
767
768static void ntb_transport_msi_peer_desc_changed(struct ntb_transport_ctx *nt)
769{
770	int i;
771
772	dev_dbg(&nt->ndev->pdev->dev, "Peer MSI descriptors changed");
773
774	for (i = 0; i < nt->qp_count; i++)
775		ntb_transport_setup_qp_peer_msi(nt, i);
776}
777
778static void ntb_transport_msi_desc_changed(void *data)
779{
780	struct ntb_transport_ctx *nt = data;
781	int i;
782
783	dev_dbg(&nt->ndev->pdev->dev, "MSI descriptors changed");
784
785	for (i = 0; i < nt->qp_count; i++)
786		ntb_transport_setup_qp_msi(nt, i);
787
788	ntb_peer_db_set(nt->ndev, nt->msi_db_mask);
789}
790
791static void ntb_free_mw(struct ntb_transport_ctx *nt, int num_mw)
792{
793	struct ntb_transport_mw *mw = &nt->mw_vec[num_mw];
794	struct pci_dev *pdev = nt->ndev->pdev;
795
796	if (!mw->virt_addr)
797		return;
798
799	ntb_mw_clear_trans(nt->ndev, PIDX, num_mw);
800	dma_free_coherent(&pdev->dev, mw->alloc_size,
801			  mw->alloc_addr, mw->dma_addr);
802	mw->xlat_size = 0;
803	mw->buff_size = 0;
804	mw->alloc_size = 0;
805	mw->alloc_addr = NULL;
806	mw->virt_addr = NULL;
807}
808
809static int ntb_alloc_mw_buffer(struct ntb_transport_mw *mw,
810			       struct device *dma_dev, size_t align)
811{
812	dma_addr_t dma_addr;
813	void *alloc_addr, *virt_addr;
814	int rc;
815
816	alloc_addr = dma_alloc_coherent(dma_dev, mw->alloc_size,
817					&dma_addr, GFP_KERNEL);
818	if (!alloc_addr) {
819		dev_err(dma_dev, "Unable to alloc MW buff of size %zu\n",
820			mw->alloc_size);
821		return -ENOMEM;
822	}
823	virt_addr = alloc_addr;
824
825	/*
826	 * we must ensure that the memory address allocated is BAR size
827	 * aligned in order for the XLAT register to take the value. This
828	 * is a requirement of the hardware. It is recommended to setup CMA
829	 * for BAR sizes equal or greater than 4MB.
830	 */
831	if (!IS_ALIGNED(dma_addr, align)) {
832		if (mw->alloc_size > mw->buff_size) {
833			virt_addr = PTR_ALIGN(alloc_addr, align);
834			dma_addr = ALIGN(dma_addr, align);
835		} else {
836			rc = -ENOMEM;
837			goto err;
838		}
839	}
840
841	mw->alloc_addr = alloc_addr;
842	mw->virt_addr = virt_addr;
843	mw->dma_addr = dma_addr;
844
845	return 0;
846
847err:
848	dma_free_coherent(dma_dev, mw->alloc_size, alloc_addr, dma_addr);
849
850	return rc;
851}
852
853static int ntb_set_mw(struct ntb_transport_ctx *nt, int num_mw,
854		      resource_size_t size)
855{
856	struct ntb_transport_mw *mw = &nt->mw_vec[num_mw];
857	struct pci_dev *pdev = nt->ndev->pdev;
858	size_t xlat_size, buff_size;
859	resource_size_t xlat_align;
860	resource_size_t xlat_align_size;
861	int rc;
862
863	if (!size)
864		return -EINVAL;
865
866	rc = ntb_mw_get_align(nt->ndev, PIDX, num_mw, &xlat_align,
867			      &xlat_align_size, NULL);
868	if (rc)
869		return rc;
870
871	xlat_size = round_up(size, xlat_align_size);
872	buff_size = round_up(size, xlat_align);
873
874	/* No need to re-setup */
875	if (mw->xlat_size == xlat_size)
876		return 0;
877
878	if (mw->buff_size)
879		ntb_free_mw(nt, num_mw);
880
881	/* Alloc memory for receiving data.  Must be aligned */
882	mw->xlat_size = xlat_size;
883	mw->buff_size = buff_size;
884	mw->alloc_size = buff_size;
885
886	rc = ntb_alloc_mw_buffer(mw, &pdev->dev, xlat_align);
887	if (rc) {
888		mw->alloc_size *= 2;
889		rc = ntb_alloc_mw_buffer(mw, &pdev->dev, xlat_align);
890		if (rc) {
891			dev_err(&pdev->dev,
892				"Unable to alloc aligned MW buff\n");
893			mw->xlat_size = 0;
894			mw->buff_size = 0;
895			mw->alloc_size = 0;
896			return rc;
897		}
898	}
899
900	/* Notify HW the memory location of the receive buffer */
901	rc = ntb_mw_set_trans(nt->ndev, PIDX, num_mw, mw->dma_addr,
902			      mw->xlat_size);
903	if (rc) {
904		dev_err(&pdev->dev, "Unable to set mw%d translation", num_mw);
905		ntb_free_mw(nt, num_mw);
906		return -EIO;
907	}
908
909	return 0;
910}
911
912static void ntb_qp_link_context_reset(struct ntb_transport_qp *qp)
913{
914	qp->link_is_up = false;
915	qp->active = false;
916
917	qp->tx_index = 0;
918	qp->rx_index = 0;
919	qp->rx_bytes = 0;
920	qp->rx_pkts = 0;
921	qp->rx_ring_empty = 0;
922	qp->rx_err_no_buf = 0;
923	qp->rx_err_oflow = 0;
924	qp->rx_err_ver = 0;
925	qp->rx_memcpy = 0;
926	qp->rx_async = 0;
927	qp->tx_bytes = 0;
928	qp->tx_pkts = 0;
929	qp->tx_ring_full = 0;
930	qp->tx_err_no_buf = 0;
931	qp->tx_memcpy = 0;
932	qp->tx_async = 0;
933}
934
935static void ntb_qp_link_down_reset(struct ntb_transport_qp *qp)
936{
937	ntb_qp_link_context_reset(qp);
938	if (qp->remote_rx_info)
939		qp->remote_rx_info->entry = qp->rx_max_entry - 1;
940}
941
942static void ntb_qp_link_cleanup(struct ntb_transport_qp *qp)
943{
944	struct ntb_transport_ctx *nt = qp->transport;
945	struct pci_dev *pdev = nt->ndev->pdev;
946
947	dev_info(&pdev->dev, "qp %d: Link Cleanup\n", qp->qp_num);
948
949	cancel_delayed_work_sync(&qp->link_work);
950	ntb_qp_link_down_reset(qp);
951
952	if (qp->event_handler)
953		qp->event_handler(qp->cb_data, qp->link_is_up);
954}
955
956static void ntb_qp_link_cleanup_work(struct work_struct *work)
957{
958	struct ntb_transport_qp *qp = container_of(work,
959						   struct ntb_transport_qp,
960						   link_cleanup);
961	struct ntb_transport_ctx *nt = qp->transport;
962
963	ntb_qp_link_cleanup(qp);
964
965	if (nt->link_is_up)
966		schedule_delayed_work(&qp->link_work,
967				      msecs_to_jiffies(NTB_LINK_DOWN_TIMEOUT));
968}
969
970static void ntb_qp_link_down(struct ntb_transport_qp *qp)
971{
972	schedule_work(&qp->link_cleanup);
973}
974
975static void ntb_transport_link_cleanup(struct ntb_transport_ctx *nt)
976{
977	struct ntb_transport_qp *qp;
978	u64 qp_bitmap_alloc;
979	unsigned int i, count;
980
981	qp_bitmap_alloc = nt->qp_bitmap & ~nt->qp_bitmap_free;
982
983	/* Pass along the info to any clients */
984	for (i = 0; i < nt->qp_count; i++)
985		if (qp_bitmap_alloc & BIT_ULL(i)) {
986			qp = &nt->qp_vec[i];
987			ntb_qp_link_cleanup(qp);
988			cancel_work_sync(&qp->link_cleanup);
989			cancel_delayed_work_sync(&qp->link_work);
990		}
991
992	if (!nt->link_is_up)
993		cancel_delayed_work_sync(&nt->link_work);
994
995	for (i = 0; i < nt->mw_count; i++)
996		ntb_free_mw(nt, i);
997
998	/* The scratchpad registers keep the values if the remote side
999	 * goes down, blast them now to give them a sane value the next
1000	 * time they are accessed
1001	 */
1002	count = ntb_spad_count(nt->ndev);
1003	for (i = 0; i < count; i++)
1004		ntb_spad_write(nt->ndev, i, 0);
1005}
1006
1007static void ntb_transport_link_cleanup_work(struct work_struct *work)
1008{
1009	struct ntb_transport_ctx *nt =
1010		container_of(work, struct ntb_transport_ctx, link_cleanup);
1011
1012	ntb_transport_link_cleanup(nt);
1013}
1014
1015static void ntb_transport_event_callback(void *data)
1016{
1017	struct ntb_transport_ctx *nt = data;
1018
1019	if (ntb_link_is_up(nt->ndev, NULL, NULL) == 1)
1020		schedule_delayed_work(&nt->link_work, 0);
1021	else
1022		schedule_work(&nt->link_cleanup);
1023}
1024
1025static void ntb_transport_link_work(struct work_struct *work)
1026{
1027	struct ntb_transport_ctx *nt =
1028		container_of(work, struct ntb_transport_ctx, link_work.work);
1029	struct ntb_dev *ndev = nt->ndev;
1030	struct pci_dev *pdev = ndev->pdev;
1031	resource_size_t size;
1032	u32 val;
1033	int rc = 0, i, spad;
1034
1035	/* send the local info, in the opposite order of the way we read it */
1036
1037	if (nt->use_msi) {
1038		rc = ntb_msi_setup_mws(ndev);
1039		if (rc) {
1040			dev_warn(&pdev->dev,
1041				 "Failed to register MSI memory window: %d\n",
1042				 rc);
1043			nt->use_msi = false;
1044		}
1045	}
1046
1047	for (i = 0; i < nt->qp_count; i++)
1048		ntb_transport_setup_qp_msi(nt, i);
1049
1050	for (i = 0; i < nt->mw_count; i++) {
1051		size = nt->mw_vec[i].phys_size;
1052
1053		if (max_mw_size && size > max_mw_size)
1054			size = max_mw_size;
1055
1056		spad = MW0_SZ_HIGH + (i * 2);
1057		ntb_peer_spad_write(ndev, PIDX, spad, upper_32_bits(size));
1058
1059		spad = MW0_SZ_LOW + (i * 2);
1060		ntb_peer_spad_write(ndev, PIDX, spad, lower_32_bits(size));
1061	}
1062
1063	ntb_peer_spad_write(ndev, PIDX, NUM_MWS, nt->mw_count);
1064
1065	ntb_peer_spad_write(ndev, PIDX, NUM_QPS, nt->qp_count);
1066
1067	ntb_peer_spad_write(ndev, PIDX, VERSION, NTB_TRANSPORT_VERSION);
1068
1069	/* Query the remote side for its info */
1070	val = ntb_spad_read(ndev, VERSION);
1071	dev_dbg(&pdev->dev, "Remote version = %d\n", val);
1072	if (val != NTB_TRANSPORT_VERSION)
1073		goto out;
1074
1075	val = ntb_spad_read(ndev, NUM_QPS);
1076	dev_dbg(&pdev->dev, "Remote max number of qps = %d\n", val);
1077	if (val != nt->qp_count)
1078		goto out;
1079
1080	val = ntb_spad_read(ndev, NUM_MWS);
1081	dev_dbg(&pdev->dev, "Remote number of mws = %d\n", val);
1082	if (val != nt->mw_count)
1083		goto out;
1084
1085	for (i = 0; i < nt->mw_count; i++) {
1086		u64 val64;
1087
1088		val = ntb_spad_read(ndev, MW0_SZ_HIGH + (i * 2));
1089		val64 = (u64)val << 32;
1090
1091		val = ntb_spad_read(ndev, MW0_SZ_LOW + (i * 2));
1092		val64 |= val;
1093
1094		dev_dbg(&pdev->dev, "Remote MW%d size = %#llx\n", i, val64);
1095
1096		rc = ntb_set_mw(nt, i, val64);
1097		if (rc)
1098			goto out1;
1099	}
1100
1101	nt->link_is_up = true;
1102
1103	for (i = 0; i < nt->qp_count; i++) {
1104		struct ntb_transport_qp *qp = &nt->qp_vec[i];
1105
1106		ntb_transport_setup_qp_mw(nt, i);
1107		ntb_transport_setup_qp_peer_msi(nt, i);
1108
1109		if (qp->client_ready)
1110			schedule_delayed_work(&qp->link_work, 0);
1111	}
1112
1113	return;
1114
1115out1:
1116	for (i = 0; i < nt->mw_count; i++)
1117		ntb_free_mw(nt, i);
1118
1119	/* if there's an actual failure, we should just bail */
1120	if (rc < 0)
1121		return;
1122
1123out:
1124	if (ntb_link_is_up(ndev, NULL, NULL) == 1)
1125		schedule_delayed_work(&nt->link_work,
1126				      msecs_to_jiffies(NTB_LINK_DOWN_TIMEOUT));
1127}
1128
1129static void ntb_qp_link_work(struct work_struct *work)
1130{
1131	struct ntb_transport_qp *qp = container_of(work,
1132						   struct ntb_transport_qp,
1133						   link_work.work);
1134	struct pci_dev *pdev = qp->ndev->pdev;
1135	struct ntb_transport_ctx *nt = qp->transport;
1136	int val;
1137
1138	WARN_ON(!nt->link_is_up);
1139
1140	val = ntb_spad_read(nt->ndev, QP_LINKS);
1141
1142	ntb_peer_spad_write(nt->ndev, PIDX, QP_LINKS, val | BIT(qp->qp_num));
1143
1144	/* query remote spad for qp ready bits */
1145	dev_dbg_ratelimited(&pdev->dev, "Remote QP link status = %x\n", val);
1146
1147	/* See if the remote side is up */
1148	if (val & BIT(qp->qp_num)) {
1149		dev_info(&pdev->dev, "qp %d: Link Up\n", qp->qp_num);
1150		qp->link_is_up = true;
1151		qp->active = true;
1152
1153		if (qp->event_handler)
1154			qp->event_handler(qp->cb_data, qp->link_is_up);
1155
1156		if (qp->active)
1157			tasklet_schedule(&qp->rxc_db_work);
1158	} else if (nt->link_is_up)
1159		schedule_delayed_work(&qp->link_work,
1160				      msecs_to_jiffies(NTB_LINK_DOWN_TIMEOUT));
1161}
1162
1163static int ntb_transport_init_queue(struct ntb_transport_ctx *nt,
1164				    unsigned int qp_num)
1165{
1166	struct ntb_transport_qp *qp;
1167	phys_addr_t mw_base;
1168	resource_size_t mw_size;
1169	unsigned int num_qps_mw, tx_size;
1170	unsigned int mw_num, mw_count, qp_count;
1171	u64 qp_offset;
1172
1173	mw_count = nt->mw_count;
1174	qp_count = nt->qp_count;
1175
1176	mw_num = QP_TO_MW(nt, qp_num);
1177
1178	qp = &nt->qp_vec[qp_num];
1179	qp->qp_num = qp_num;
1180	qp->transport = nt;
1181	qp->ndev = nt->ndev;
1182	qp->client_ready = false;
1183	qp->event_handler = NULL;
1184	ntb_qp_link_context_reset(qp);
1185
1186	if (mw_num < qp_count % mw_count)
1187		num_qps_mw = qp_count / mw_count + 1;
1188	else
1189		num_qps_mw = qp_count / mw_count;
1190
1191	mw_base = nt->mw_vec[mw_num].phys_addr;
1192	mw_size = nt->mw_vec[mw_num].phys_size;
1193
1194	if (max_mw_size && mw_size > max_mw_size)
1195		mw_size = max_mw_size;
1196
1197	tx_size = (unsigned int)mw_size / num_qps_mw;
1198	qp_offset = tx_size * (qp_num / mw_count);
1199
1200	qp->tx_mw_size = tx_size;
1201	qp->tx_mw = nt->mw_vec[mw_num].vbase + qp_offset;
1202	if (!qp->tx_mw)
1203		return -EINVAL;
1204
1205	qp->tx_mw_phys = mw_base + qp_offset;
1206	if (!qp->tx_mw_phys)
1207		return -EINVAL;
1208
1209	tx_size -= sizeof(struct ntb_rx_info);
1210	qp->rx_info = qp->tx_mw + tx_size;
1211
1212	/* Due to housekeeping, there must be atleast 2 buffs */
1213	qp->tx_max_frame = min(transport_mtu, tx_size / 2);
1214	qp->tx_max_entry = tx_size / qp->tx_max_frame;
1215
1216	if (nt->debugfs_node_dir) {
1217		char debugfs_name[4];
1218
1219		snprintf(debugfs_name, 4, "qp%d", qp_num);
1220		qp->debugfs_dir = debugfs_create_dir(debugfs_name,
1221						     nt->debugfs_node_dir);
1222
1223		qp->debugfs_stats = debugfs_create_file("stats", S_IRUSR,
1224							qp->debugfs_dir, qp,
1225							&ntb_qp_debugfs_stats);
1226	} else {
1227		qp->debugfs_dir = NULL;
1228		qp->debugfs_stats = NULL;
1229	}
1230
1231	INIT_DELAYED_WORK(&qp->link_work, ntb_qp_link_work);
1232	INIT_WORK(&qp->link_cleanup, ntb_qp_link_cleanup_work);
1233
1234	spin_lock_init(&qp->ntb_rx_q_lock);
1235	spin_lock_init(&qp->ntb_tx_free_q_lock);
1236
1237	INIT_LIST_HEAD(&qp->rx_post_q);
1238	INIT_LIST_HEAD(&qp->rx_pend_q);
1239	INIT_LIST_HEAD(&qp->rx_free_q);
1240	INIT_LIST_HEAD(&qp->tx_free_q);
1241
1242	tasklet_init(&qp->rxc_db_work, ntb_transport_rxc_db,
1243		     (unsigned long)qp);
1244
1245	return 0;
1246}
1247
1248static int ntb_transport_probe(struct ntb_client *self, struct ntb_dev *ndev)
1249{
1250	struct ntb_transport_ctx *nt;
1251	struct ntb_transport_mw *mw;
1252	unsigned int mw_count, qp_count, spad_count, max_mw_count_for_spads;
1253	u64 qp_bitmap;
1254	int node;
1255	int rc, i;
1256
1257	mw_count = ntb_peer_mw_count(ndev);
1258
1259	if (!ndev->ops->mw_set_trans) {
1260		dev_err(&ndev->dev, "Inbound MW based NTB API is required\n");
1261		return -EINVAL;
1262	}
1263
1264	if (ntb_db_is_unsafe(ndev))
1265		dev_dbg(&ndev->dev,
1266			"doorbell is unsafe, proceed anyway...\n");
1267	if (ntb_spad_is_unsafe(ndev))
1268		dev_dbg(&ndev->dev,
1269			"scratchpad is unsafe, proceed anyway...\n");
1270
1271	if (ntb_peer_port_count(ndev) != NTB_DEF_PEER_CNT)
1272		dev_warn(&ndev->dev, "Multi-port NTB devices unsupported\n");
1273
1274	node = dev_to_node(&ndev->dev);
1275
1276	nt = kzalloc_node(sizeof(*nt), GFP_KERNEL, node);
1277	if (!nt)
1278		return -ENOMEM;
1279
1280	nt->ndev = ndev;
1281
1282	/*
1283	 * If we are using MSI, and have at least one extra memory window,
1284	 * we will reserve the last MW for the MSI window.
1285	 */
1286	if (use_msi && mw_count > 1) {
1287		rc = ntb_msi_init(ndev, ntb_transport_msi_desc_changed);
1288		if (!rc) {
1289			mw_count -= 1;
1290			nt->use_msi = true;
1291		}
1292	}
1293
1294	spad_count = ntb_spad_count(ndev);
1295
1296	/* Limit the MW's based on the availability of scratchpads */
1297
1298	if (spad_count < NTB_TRANSPORT_MIN_SPADS) {
1299		nt->mw_count = 0;
1300		rc = -EINVAL;
1301		goto err;
1302	}
1303
1304	max_mw_count_for_spads = (spad_count - MW0_SZ_HIGH) / 2;
1305	nt->mw_count = min(mw_count, max_mw_count_for_spads);
1306
1307	nt->msi_spad_offset = nt->mw_count * 2 + MW0_SZ_HIGH;
1308
1309	nt->mw_vec = kcalloc_node(mw_count, sizeof(*nt->mw_vec),
1310				  GFP_KERNEL, node);
1311	if (!nt->mw_vec) {
1312		rc = -ENOMEM;
1313		goto err;
1314	}
1315
1316	for (i = 0; i < mw_count; i++) {
1317		mw = &nt->mw_vec[i];
1318
1319		rc = ntb_peer_mw_get_addr(ndev, i, &mw->phys_addr,
1320					  &mw->phys_size);
1321		if (rc)
1322			goto err1;
1323
1324		mw->vbase = ioremap_wc(mw->phys_addr, mw->phys_size);
1325		if (!mw->vbase) {
1326			rc = -ENOMEM;
1327			goto err1;
1328		}
1329
1330		mw->buff_size = 0;
1331		mw->xlat_size = 0;
1332		mw->virt_addr = NULL;
1333		mw->dma_addr = 0;
1334	}
1335
1336	qp_bitmap = ntb_db_valid_mask(ndev);
1337
1338	qp_count = ilog2(qp_bitmap);
1339	if (nt->use_msi) {
1340		qp_count -= 1;
1341		nt->msi_db_mask = 1 << qp_count;
1342		ntb_db_clear_mask(ndev, nt->msi_db_mask);
1343	}
1344
1345	if (max_num_clients && max_num_clients < qp_count)
1346		qp_count = max_num_clients;
1347	else if (nt->mw_count < qp_count)
1348		qp_count = nt->mw_count;
1349
1350	qp_bitmap &= BIT_ULL(qp_count) - 1;
1351
1352	nt->qp_count = qp_count;
1353	nt->qp_bitmap = qp_bitmap;
1354	nt->qp_bitmap_free = qp_bitmap;
1355
1356	nt->qp_vec = kcalloc_node(qp_count, sizeof(*nt->qp_vec),
1357				  GFP_KERNEL, node);
1358	if (!nt->qp_vec) {
1359		rc = -ENOMEM;
1360		goto err1;
1361	}
1362
1363	if (nt_debugfs_dir) {
1364		nt->debugfs_node_dir =
1365			debugfs_create_dir(pci_name(ndev->pdev),
1366					   nt_debugfs_dir);
1367	}
1368
1369	for (i = 0; i < qp_count; i++) {
1370		rc = ntb_transport_init_queue(nt, i);
1371		if (rc)
1372			goto err2;
1373	}
1374
1375	INIT_DELAYED_WORK(&nt->link_work, ntb_transport_link_work);
1376	INIT_WORK(&nt->link_cleanup, ntb_transport_link_cleanup_work);
1377
1378	rc = ntb_set_ctx(ndev, nt, &ntb_transport_ops);
1379	if (rc)
1380		goto err2;
1381
1382	INIT_LIST_HEAD(&nt->client_devs);
1383	rc = ntb_bus_init(nt);
1384	if (rc)
1385		goto err3;
1386
1387	nt->link_is_up = false;
1388	ntb_link_enable(ndev, NTB_SPEED_AUTO, NTB_WIDTH_AUTO);
1389	ntb_link_event(ndev);
1390
1391	return 0;
1392
1393err3:
1394	ntb_clear_ctx(ndev);
1395err2:
1396	kfree(nt->qp_vec);
1397err1:
1398	while (i--) {
1399		mw = &nt->mw_vec[i];
1400		iounmap(mw->vbase);
1401	}
1402	kfree(nt->mw_vec);
1403err:
1404	kfree(nt);
1405	return rc;
1406}
1407
1408static void ntb_transport_free(struct ntb_client *self, struct ntb_dev *ndev)
1409{
1410	struct ntb_transport_ctx *nt = ndev->ctx;
1411	struct ntb_transport_qp *qp;
1412	u64 qp_bitmap_alloc;
1413	int i;
1414
1415	ntb_transport_link_cleanup(nt);
1416	cancel_work_sync(&nt->link_cleanup);
1417	cancel_delayed_work_sync(&nt->link_work);
1418
1419	qp_bitmap_alloc = nt->qp_bitmap & ~nt->qp_bitmap_free;
1420
1421	/* verify that all the qp's are freed */
1422	for (i = 0; i < nt->qp_count; i++) {
1423		qp = &nt->qp_vec[i];
1424		if (qp_bitmap_alloc & BIT_ULL(i))
1425			ntb_transport_free_queue(qp);
1426		debugfs_remove_recursive(qp->debugfs_dir);
1427	}
1428
1429	ntb_link_disable(ndev);
1430	ntb_clear_ctx(ndev);
1431
1432	ntb_bus_remove(nt);
1433
1434	for (i = nt->mw_count; i--; ) {
1435		ntb_free_mw(nt, i);
1436		iounmap(nt->mw_vec[i].vbase);
1437	}
1438
1439	kfree(nt->qp_vec);
1440	kfree(nt->mw_vec);
1441	kfree(nt);
1442}
1443
1444static void ntb_complete_rxc(struct ntb_transport_qp *qp)
1445{
1446	struct ntb_queue_entry *entry;
1447	void *cb_data;
1448	unsigned int len;
1449	unsigned long irqflags;
1450
1451	spin_lock_irqsave(&qp->ntb_rx_q_lock, irqflags);
1452
1453	while (!list_empty(&qp->rx_post_q)) {
1454		entry = list_first_entry(&qp->rx_post_q,
1455					 struct ntb_queue_entry, entry);
1456		if (!(entry->flags & DESC_DONE_FLAG))
1457			break;
1458
1459		entry->rx_hdr->flags = 0;
1460		iowrite32(entry->rx_index, &qp->rx_info->entry);
1461
1462		cb_data = entry->cb_data;
1463		len = entry->len;
1464
1465		list_move_tail(&entry->entry, &qp->rx_free_q);
1466
1467		spin_unlock_irqrestore(&qp->ntb_rx_q_lock, irqflags);
1468
1469		if (qp->rx_handler && qp->client_ready)
1470			qp->rx_handler(qp, qp->cb_data, cb_data, len);
1471
1472		spin_lock_irqsave(&qp->ntb_rx_q_lock, irqflags);
1473	}
1474
1475	spin_unlock_irqrestore(&qp->ntb_rx_q_lock, irqflags);
1476}
1477
1478static void ntb_rx_copy_callback(void *data,
1479				 const struct dmaengine_result *res)
1480{
1481	struct ntb_queue_entry *entry = data;
1482
1483	/* we need to check DMA results if we are using DMA */
1484	if (res) {
1485		enum dmaengine_tx_result dma_err = res->result;
1486
1487		switch (dma_err) {
1488		case DMA_TRANS_READ_FAILED:
1489		case DMA_TRANS_WRITE_FAILED:
1490			entry->errors++;
1491			fallthrough;
1492		case DMA_TRANS_ABORTED:
1493		{
1494			struct ntb_transport_qp *qp = entry->qp;
1495			void *offset = qp->rx_buff + qp->rx_max_frame *
1496					qp->rx_index;
1497
1498			ntb_memcpy_rx(entry, offset);
1499			qp->rx_memcpy++;
1500			return;
1501		}
1502
1503		case DMA_TRANS_NOERROR:
1504		default:
1505			break;
1506		}
1507	}
1508
1509	entry->flags |= DESC_DONE_FLAG;
1510
1511	ntb_complete_rxc(entry->qp);
1512}
1513
1514static void ntb_memcpy_rx(struct ntb_queue_entry *entry, void *offset)
1515{
1516	void *buf = entry->buf;
1517	size_t len = entry->len;
1518
1519	memcpy(buf, offset, len);
1520
1521	/* Ensure that the data is fully copied out before clearing the flag */
1522	wmb();
1523
1524	ntb_rx_copy_callback(entry, NULL);
1525}
1526
1527static int ntb_async_rx_submit(struct ntb_queue_entry *entry, void *offset)
1528{
1529	struct dma_async_tx_descriptor *txd;
1530	struct ntb_transport_qp *qp = entry->qp;
1531	struct dma_chan *chan = qp->rx_dma_chan;
1532	struct dma_device *device;
1533	size_t pay_off, buff_off, len;
1534	struct dmaengine_unmap_data *unmap;
1535	dma_cookie_t cookie;
1536	void *buf = entry->buf;
1537
1538	len = entry->len;
1539	device = chan->device;
1540	pay_off = (size_t)offset & ~PAGE_MASK;
1541	buff_off = (size_t)buf & ~PAGE_MASK;
1542
1543	if (!is_dma_copy_aligned(device, pay_off, buff_off, len))
1544		goto err;
1545
1546	unmap = dmaengine_get_unmap_data(device->dev, 2, GFP_NOWAIT);
1547	if (!unmap)
1548		goto err;
1549
1550	unmap->len = len;
1551	unmap->addr[0] = dma_map_page(device->dev, virt_to_page(offset),
1552				      pay_off, len, DMA_TO_DEVICE);
1553	if (dma_mapping_error(device->dev, unmap->addr[0]))
1554		goto err_get_unmap;
1555
1556	unmap->to_cnt = 1;
1557
1558	unmap->addr[1] = dma_map_page(device->dev, virt_to_page(buf),
1559				      buff_off, len, DMA_FROM_DEVICE);
1560	if (dma_mapping_error(device->dev, unmap->addr[1]))
1561		goto err_get_unmap;
1562
1563	unmap->from_cnt = 1;
1564
1565	txd = device->device_prep_dma_memcpy(chan, unmap->addr[1],
1566					     unmap->addr[0], len,
1567					     DMA_PREP_INTERRUPT);
1568	if (!txd)
1569		goto err_get_unmap;
1570
1571	txd->callback_result = ntb_rx_copy_callback;
1572	txd->callback_param = entry;
1573	dma_set_unmap(txd, unmap);
1574
1575	cookie = dmaengine_submit(txd);
1576	if (dma_submit_error(cookie))
1577		goto err_set_unmap;
1578
1579	dmaengine_unmap_put(unmap);
1580
1581	qp->last_cookie = cookie;
1582
1583	qp->rx_async++;
1584
1585	return 0;
1586
1587err_set_unmap:
1588	dmaengine_unmap_put(unmap);
1589err_get_unmap:
1590	dmaengine_unmap_put(unmap);
1591err:
1592	return -ENXIO;
1593}
1594
1595static void ntb_async_rx(struct ntb_queue_entry *entry, void *offset)
1596{
1597	struct ntb_transport_qp *qp = entry->qp;
1598	struct dma_chan *chan = qp->rx_dma_chan;
1599	int res;
1600
1601	if (!chan)
1602		goto err;
1603
1604	if (entry->len < copy_bytes)
1605		goto err;
1606
1607	res = ntb_async_rx_submit(entry, offset);
1608	if (res < 0)
1609		goto err;
1610
1611	if (!entry->retries)
1612		qp->rx_async++;
1613
1614	return;
1615
1616err:
1617	ntb_memcpy_rx(entry, offset);
1618	qp->rx_memcpy++;
1619}
1620
1621static int ntb_process_rxc(struct ntb_transport_qp *qp)
1622{
1623	struct ntb_payload_header *hdr;
1624	struct ntb_queue_entry *entry;
1625	void *offset;
1626
1627	offset = qp->rx_buff + qp->rx_max_frame * qp->rx_index;
1628	hdr = offset + qp->rx_max_frame - sizeof(struct ntb_payload_header);
1629
1630	dev_dbg(&qp->ndev->pdev->dev, "qp %d: RX ver %u len %d flags %x\n",
1631		qp->qp_num, hdr->ver, hdr->len, hdr->flags);
1632
1633	if (!(hdr->flags & DESC_DONE_FLAG)) {
1634		dev_dbg(&qp->ndev->pdev->dev, "done flag not set\n");
1635		qp->rx_ring_empty++;
1636		return -EAGAIN;
1637	}
1638
1639	if (hdr->flags & LINK_DOWN_FLAG) {
1640		dev_dbg(&qp->ndev->pdev->dev, "link down flag set\n");
1641		ntb_qp_link_down(qp);
1642		hdr->flags = 0;
1643		return -EAGAIN;
1644	}
1645
1646	if (hdr->ver != (u32)qp->rx_pkts) {
1647		dev_dbg(&qp->ndev->pdev->dev,
1648			"version mismatch, expected %llu - got %u\n",
1649			qp->rx_pkts, hdr->ver);
1650		qp->rx_err_ver++;
1651		return -EIO;
1652	}
1653
1654	entry = ntb_list_mv(&qp->ntb_rx_q_lock, &qp->rx_pend_q, &qp->rx_post_q);
1655	if (!entry) {
1656		dev_dbg(&qp->ndev->pdev->dev, "no receive buffer\n");
1657		qp->rx_err_no_buf++;
1658		return -EAGAIN;
1659	}
1660
1661	entry->rx_hdr = hdr;
1662	entry->rx_index = qp->rx_index;
1663
1664	if (hdr->len > entry->len) {
1665		dev_dbg(&qp->ndev->pdev->dev,
1666			"receive buffer overflow! Wanted %d got %d\n",
1667			hdr->len, entry->len);
1668		qp->rx_err_oflow++;
1669
1670		entry->len = -EIO;
1671		entry->flags |= DESC_DONE_FLAG;
1672
1673		ntb_complete_rxc(qp);
1674	} else {
1675		dev_dbg(&qp->ndev->pdev->dev,
1676			"RX OK index %u ver %u size %d into buf size %d\n",
1677			qp->rx_index, hdr->ver, hdr->len, entry->len);
1678
1679		qp->rx_bytes += hdr->len;
1680		qp->rx_pkts++;
1681
1682		entry->len = hdr->len;
1683
1684		ntb_async_rx(entry, offset);
1685	}
1686
1687	qp->rx_index++;
1688	qp->rx_index %= qp->rx_max_entry;
1689
1690	return 0;
1691}
1692
1693static void ntb_transport_rxc_db(unsigned long data)
1694{
1695	struct ntb_transport_qp *qp = (void *)data;
1696	int rc, i;
1697
1698	dev_dbg(&qp->ndev->pdev->dev, "%s: doorbell %d received\n",
1699		__func__, qp->qp_num);
1700
1701	/* Limit the number of packets processed in a single interrupt to
1702	 * provide fairness to others
1703	 */
1704	for (i = 0; i < qp->rx_max_entry; i++) {
1705		rc = ntb_process_rxc(qp);
1706		if (rc)
1707			break;
1708	}
1709
1710	if (i && qp->rx_dma_chan)
1711		dma_async_issue_pending(qp->rx_dma_chan);
1712
1713	if (i == qp->rx_max_entry) {
1714		/* there is more work to do */
1715		if (qp->active)
1716			tasklet_schedule(&qp->rxc_db_work);
1717	} else if (ntb_db_read(qp->ndev) & BIT_ULL(qp->qp_num)) {
1718		/* the doorbell bit is set: clear it */
1719		ntb_db_clear(qp->ndev, BIT_ULL(qp->qp_num));
1720		/* ntb_db_read ensures ntb_db_clear write is committed */
1721		ntb_db_read(qp->ndev);
1722
1723		/* an interrupt may have arrived between finishing
1724		 * ntb_process_rxc and clearing the doorbell bit:
1725		 * there might be some more work to do.
1726		 */
1727		if (qp->active)
1728			tasklet_schedule(&qp->rxc_db_work);
1729	}
1730}
1731
1732static void ntb_tx_copy_callback(void *data,
1733				 const struct dmaengine_result *res)
1734{
1735	struct ntb_queue_entry *entry = data;
1736	struct ntb_transport_qp *qp = entry->qp;
1737	struct ntb_payload_header __iomem *hdr = entry->tx_hdr;
1738
1739	/* we need to check DMA results if we are using DMA */
1740	if (res) {
1741		enum dmaengine_tx_result dma_err = res->result;
1742
1743		switch (dma_err) {
1744		case DMA_TRANS_READ_FAILED:
1745		case DMA_TRANS_WRITE_FAILED:
1746			entry->errors++;
1747			fallthrough;
1748		case DMA_TRANS_ABORTED:
1749		{
1750			void __iomem *offset =
1751				qp->tx_mw + qp->tx_max_frame *
1752				entry->tx_index;
1753
1754			/* resubmit via CPU */
1755			ntb_memcpy_tx(entry, offset);
1756			qp->tx_memcpy++;
1757			return;
1758		}
1759
1760		case DMA_TRANS_NOERROR:
1761		default:
1762			break;
1763		}
1764	}
1765
1766	iowrite32(entry->flags | DESC_DONE_FLAG, &hdr->flags);
1767
1768	if (qp->use_msi)
1769		ntb_msi_peer_trigger(qp->ndev, PIDX, &qp->peer_msi_desc);
1770	else
1771		ntb_peer_db_set(qp->ndev, BIT_ULL(qp->qp_num));
1772
1773	/* The entry length can only be zero if the packet is intended to be a
1774	 * "link down" or similar.  Since no payload is being sent in these
1775	 * cases, there is nothing to add to the completion queue.
1776	 */
1777	if (entry->len > 0) {
1778		qp->tx_bytes += entry->len;
1779
1780		if (qp->tx_handler)
1781			qp->tx_handler(qp, qp->cb_data, entry->cb_data,
1782				       entry->len);
1783	}
1784
1785	ntb_list_add(&qp->ntb_tx_free_q_lock, &entry->entry, &qp->tx_free_q);
1786}
1787
1788static void ntb_memcpy_tx(struct ntb_queue_entry *entry, void __iomem *offset)
1789{
1790#ifdef ARCH_HAS_NOCACHE_UACCESS
1791	/*
1792	 * Using non-temporal mov to improve performance on non-cached
1793	 * writes, even though we aren't actually copying from user space.
1794	 */
1795	__copy_from_user_inatomic_nocache(offset, entry->buf, entry->len);
1796#else
1797	memcpy_toio(offset, entry->buf, entry->len);
1798#endif
1799
1800	/* Ensure that the data is fully copied out before setting the flags */
1801	wmb();
1802
1803	ntb_tx_copy_callback(entry, NULL);
1804}
1805
1806static int ntb_async_tx_submit(struct ntb_transport_qp *qp,
1807			       struct ntb_queue_entry *entry)
1808{
1809	struct dma_async_tx_descriptor *txd;
1810	struct dma_chan *chan = qp->tx_dma_chan;
1811	struct dma_device *device;
1812	size_t len = entry->len;
1813	void *buf = entry->buf;
1814	size_t dest_off, buff_off;
1815	struct dmaengine_unmap_data *unmap;
1816	dma_addr_t dest;
1817	dma_cookie_t cookie;
1818
1819	device = chan->device;
1820	dest = qp->tx_mw_dma_addr + qp->tx_max_frame * entry->tx_index;
1821	buff_off = (size_t)buf & ~PAGE_MASK;
1822	dest_off = (size_t)dest & ~PAGE_MASK;
1823
1824	if (!is_dma_copy_aligned(device, buff_off, dest_off, len))
1825		goto err;
1826
1827	unmap = dmaengine_get_unmap_data(device->dev, 1, GFP_NOWAIT);
1828	if (!unmap)
1829		goto err;
1830
1831	unmap->len = len;
1832	unmap->addr[0] = dma_map_page(device->dev, virt_to_page(buf),
1833				      buff_off, len, DMA_TO_DEVICE);
1834	if (dma_mapping_error(device->dev, unmap->addr[0]))
1835		goto err_get_unmap;
1836
1837	unmap->to_cnt = 1;
1838
1839	txd = device->device_prep_dma_memcpy(chan, dest, unmap->addr[0], len,
1840					     DMA_PREP_INTERRUPT);
1841	if (!txd)
1842		goto err_get_unmap;
1843
1844	txd->callback_result = ntb_tx_copy_callback;
1845	txd->callback_param = entry;
1846	dma_set_unmap(txd, unmap);
1847
1848	cookie = dmaengine_submit(txd);
1849	if (dma_submit_error(cookie))
1850		goto err_set_unmap;
1851
1852	dmaengine_unmap_put(unmap);
1853
1854	dma_async_issue_pending(chan);
1855
1856	return 0;
1857err_set_unmap:
1858	dmaengine_unmap_put(unmap);
1859err_get_unmap:
1860	dmaengine_unmap_put(unmap);
1861err:
1862	return -ENXIO;
1863}
1864
1865static void ntb_async_tx(struct ntb_transport_qp *qp,
1866			 struct ntb_queue_entry *entry)
1867{
1868	struct ntb_payload_header __iomem *hdr;
1869	struct dma_chan *chan = qp->tx_dma_chan;
1870	void __iomem *offset;
1871	int res;
1872
1873	entry->tx_index = qp->tx_index;
1874	offset = qp->tx_mw + qp->tx_max_frame * entry->tx_index;
1875	hdr = offset + qp->tx_max_frame - sizeof(struct ntb_payload_header);
1876	entry->tx_hdr = hdr;
1877
1878	iowrite32(entry->len, &hdr->len);
1879	iowrite32((u32)qp->tx_pkts, &hdr->ver);
1880
1881	if (!chan)
1882		goto err;
1883
1884	if (entry->len < copy_bytes)
1885		goto err;
1886
1887	res = ntb_async_tx_submit(qp, entry);
1888	if (res < 0)
1889		goto err;
1890
1891	if (!entry->retries)
1892		qp->tx_async++;
1893
1894	return;
1895
1896err:
1897	ntb_memcpy_tx(entry, offset);
1898	qp->tx_memcpy++;
1899}
1900
1901static int ntb_process_tx(struct ntb_transport_qp *qp,
1902			  struct ntb_queue_entry *entry)
1903{
1904	if (!ntb_transport_tx_free_entry(qp)) {
1905		qp->tx_ring_full++;
1906		return -EAGAIN;
1907	}
1908
1909	if (entry->len > qp->tx_max_frame - sizeof(struct ntb_payload_header)) {
1910		if (qp->tx_handler)
1911			qp->tx_handler(qp, qp->cb_data, NULL, -EIO);
1912
1913		ntb_list_add(&qp->ntb_tx_free_q_lock, &entry->entry,
1914			     &qp->tx_free_q);
1915		return 0;
1916	}
1917
1918	ntb_async_tx(qp, entry);
1919
1920	qp->tx_index++;
1921	qp->tx_index %= qp->tx_max_entry;
1922
1923	qp->tx_pkts++;
1924
1925	return 0;
1926}
1927
1928static void ntb_send_link_down(struct ntb_transport_qp *qp)
1929{
1930	struct pci_dev *pdev = qp->ndev->pdev;
1931	struct ntb_queue_entry *entry;
1932	int i, rc;
1933
1934	if (!qp->link_is_up)
1935		return;
1936
1937	dev_info(&pdev->dev, "qp %d: Send Link Down\n", qp->qp_num);
1938
1939	for (i = 0; i < NTB_LINK_DOWN_TIMEOUT; i++) {
1940		entry = ntb_list_rm(&qp->ntb_tx_free_q_lock, &qp->tx_free_q);
1941		if (entry)
1942			break;
1943		msleep(100);
1944	}
1945
1946	if (!entry)
1947		return;
1948
1949	entry->cb_data = NULL;
1950	entry->buf = NULL;
1951	entry->len = 0;
1952	entry->flags = LINK_DOWN_FLAG;
1953
1954	rc = ntb_process_tx(qp, entry);
1955	if (rc)
1956		dev_err(&pdev->dev, "ntb: QP%d unable to send linkdown msg\n",
1957			qp->qp_num);
1958
1959	ntb_qp_link_down_reset(qp);
1960}
1961
1962static bool ntb_dma_filter_fn(struct dma_chan *chan, void *node)
1963{
1964	return dev_to_node(&chan->dev->device) == (int)(unsigned long)node;
1965}
1966
1967/**
1968 * ntb_transport_create_queue - Create a new NTB transport layer queue
1969 * @rx_handler: receive callback function
1970 * @tx_handler: transmit callback function
1971 * @event_handler: event callback function
1972 *
1973 * Create a new NTB transport layer queue and provide the queue with a callback
1974 * routine for both transmit and receive.  The receive callback routine will be
1975 * used to pass up data when the transport has received it on the queue.   The
1976 * transmit callback routine will be called when the transport has completed the
1977 * transmission of the data on the queue and the data is ready to be freed.
1978 *
1979 * RETURNS: pointer to newly created ntb_queue, NULL on error.
1980 */
1981struct ntb_transport_qp *
1982ntb_transport_create_queue(void *data, struct device *client_dev,
1983			   const struct ntb_queue_handlers *handlers)
1984{
1985	struct ntb_dev *ndev;
1986	struct pci_dev *pdev;
1987	struct ntb_transport_ctx *nt;
1988	struct ntb_queue_entry *entry;
1989	struct ntb_transport_qp *qp;
1990	u64 qp_bit;
1991	unsigned int free_queue;
1992	dma_cap_mask_t dma_mask;
1993	int node;
1994	int i;
1995
1996	ndev = dev_ntb(client_dev->parent);
1997	pdev = ndev->pdev;
1998	nt = ndev->ctx;
1999
2000	node = dev_to_node(&ndev->dev);
2001
2002	free_queue = ffs(nt->qp_bitmap_free);
2003	if (!free_queue)
2004		goto err;
2005
2006	/* decrement free_queue to make it zero based */
2007	free_queue--;
2008
2009	qp = &nt->qp_vec[free_queue];
2010	qp_bit = BIT_ULL(qp->qp_num);
2011
2012	nt->qp_bitmap_free &= ~qp_bit;
2013
2014	qp->cb_data = data;
2015	qp->rx_handler = handlers->rx_handler;
2016	qp->tx_handler = handlers->tx_handler;
2017	qp->event_handler = handlers->event_handler;
2018
2019	dma_cap_zero(dma_mask);
2020	dma_cap_set(DMA_MEMCPY, dma_mask);
2021
2022	if (use_dma) {
2023		qp->tx_dma_chan =
2024			dma_request_channel(dma_mask, ntb_dma_filter_fn,
2025					    (void *)(unsigned long)node);
2026		if (!qp->tx_dma_chan)
2027			dev_info(&pdev->dev, "Unable to allocate TX DMA channel\n");
2028
2029		qp->rx_dma_chan =
2030			dma_request_channel(dma_mask, ntb_dma_filter_fn,
2031					    (void *)(unsigned long)node);
2032		if (!qp->rx_dma_chan)
2033			dev_info(&pdev->dev, "Unable to allocate RX DMA channel\n");
2034	} else {
2035		qp->tx_dma_chan = NULL;
2036		qp->rx_dma_chan = NULL;
2037	}
2038
2039	qp->tx_mw_dma_addr = 0;
2040	if (qp->tx_dma_chan) {
2041		qp->tx_mw_dma_addr =
2042			dma_map_resource(qp->tx_dma_chan->device->dev,
2043					 qp->tx_mw_phys, qp->tx_mw_size,
2044					 DMA_FROM_DEVICE, 0);
2045		if (dma_mapping_error(qp->tx_dma_chan->device->dev,
2046				      qp->tx_mw_dma_addr)) {
2047			qp->tx_mw_dma_addr = 0;
2048			goto err1;
2049		}
2050	}
2051
2052	dev_dbg(&pdev->dev, "Using %s memcpy for TX\n",
2053		qp->tx_dma_chan ? "DMA" : "CPU");
2054
2055	dev_dbg(&pdev->dev, "Using %s memcpy for RX\n",
2056		qp->rx_dma_chan ? "DMA" : "CPU");
2057
2058	for (i = 0; i < NTB_QP_DEF_NUM_ENTRIES; i++) {
2059		entry = kzalloc_node(sizeof(*entry), GFP_KERNEL, node);
2060		if (!entry)
2061			goto err1;
2062
2063		entry->qp = qp;
2064		ntb_list_add(&qp->ntb_rx_q_lock, &entry->entry,
2065			     &qp->rx_free_q);
2066	}
2067	qp->rx_alloc_entry = NTB_QP_DEF_NUM_ENTRIES;
2068
2069	for (i = 0; i < qp->tx_max_entry; i++) {
2070		entry = kzalloc_node(sizeof(*entry), GFP_KERNEL, node);
2071		if (!entry)
2072			goto err2;
2073
2074		entry->qp = qp;
2075		ntb_list_add(&qp->ntb_tx_free_q_lock, &entry->entry,
2076			     &qp->tx_free_q);
2077	}
2078
2079	ntb_db_clear(qp->ndev, qp_bit);
2080	ntb_db_clear_mask(qp->ndev, qp_bit);
2081
2082	dev_info(&pdev->dev, "NTB Transport QP %d created\n", qp->qp_num);
2083
2084	return qp;
2085
2086err2:
2087	while ((entry = ntb_list_rm(&qp->ntb_tx_free_q_lock, &qp->tx_free_q)))
2088		kfree(entry);
2089err1:
2090	qp->rx_alloc_entry = 0;
2091	while ((entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_free_q)))
2092		kfree(entry);
2093	if (qp->tx_mw_dma_addr)
2094		dma_unmap_resource(qp->tx_dma_chan->device->dev,
2095				   qp->tx_mw_dma_addr, qp->tx_mw_size,
2096				   DMA_FROM_DEVICE, 0);
2097	if (qp->tx_dma_chan)
2098		dma_release_channel(qp->tx_dma_chan);
2099	if (qp->rx_dma_chan)
2100		dma_release_channel(qp->rx_dma_chan);
2101	nt->qp_bitmap_free |= qp_bit;
2102err:
2103	return NULL;
2104}
2105EXPORT_SYMBOL_GPL(ntb_transport_create_queue);
2106
2107/**
2108 * ntb_transport_free_queue - Frees NTB transport queue
2109 * @qp: NTB queue to be freed
2110 *
2111 * Frees NTB transport queue
2112 */
2113void ntb_transport_free_queue(struct ntb_transport_qp *qp)
2114{
2115	struct pci_dev *pdev;
2116	struct ntb_queue_entry *entry;
2117	u64 qp_bit;
2118
2119	if (!qp)
2120		return;
2121
2122	pdev = qp->ndev->pdev;
2123
2124	qp->active = false;
2125
2126	if (qp->tx_dma_chan) {
2127		struct dma_chan *chan = qp->tx_dma_chan;
2128		/* Putting the dma_chan to NULL will force any new traffic to be
2129		 * processed by the CPU instead of the DAM engine
2130		 */
2131		qp->tx_dma_chan = NULL;
2132
2133		/* Try to be nice and wait for any queued DMA engine
2134		 * transactions to process before smashing it with a rock
2135		 */
2136		dma_sync_wait(chan, qp->last_cookie);
2137		dmaengine_terminate_all(chan);
2138
2139		dma_unmap_resource(chan->device->dev,
2140				   qp->tx_mw_dma_addr, qp->tx_mw_size,
2141				   DMA_FROM_DEVICE, 0);
2142
2143		dma_release_channel(chan);
2144	}
2145
2146	if (qp->rx_dma_chan) {
2147		struct dma_chan *chan = qp->rx_dma_chan;
2148		/* Putting the dma_chan to NULL will force any new traffic to be
2149		 * processed by the CPU instead of the DAM engine
2150		 */
2151		qp->rx_dma_chan = NULL;
2152
2153		/* Try to be nice and wait for any queued DMA engine
2154		 * transactions to process before smashing it with a rock
2155		 */
2156		dma_sync_wait(chan, qp->last_cookie);
2157		dmaengine_terminate_all(chan);
2158		dma_release_channel(chan);
2159	}
2160
2161	qp_bit = BIT_ULL(qp->qp_num);
2162
2163	ntb_db_set_mask(qp->ndev, qp_bit);
2164	tasklet_kill(&qp->rxc_db_work);
2165
2166	cancel_delayed_work_sync(&qp->link_work);
2167
2168	qp->cb_data = NULL;
2169	qp->rx_handler = NULL;
2170	qp->tx_handler = NULL;
2171	qp->event_handler = NULL;
2172
2173	while ((entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_free_q)))
2174		kfree(entry);
2175
2176	while ((entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_pend_q))) {
2177		dev_warn(&pdev->dev, "Freeing item from non-empty rx_pend_q\n");
2178		kfree(entry);
2179	}
2180
2181	while ((entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_post_q))) {
2182		dev_warn(&pdev->dev, "Freeing item from non-empty rx_post_q\n");
2183		kfree(entry);
2184	}
2185
2186	while ((entry = ntb_list_rm(&qp->ntb_tx_free_q_lock, &qp->tx_free_q)))
2187		kfree(entry);
2188
2189	qp->transport->qp_bitmap_free |= qp_bit;
2190
2191	dev_info(&pdev->dev, "NTB Transport QP %d freed\n", qp->qp_num);
2192}
2193EXPORT_SYMBOL_GPL(ntb_transport_free_queue);
2194
2195/**
2196 * ntb_transport_rx_remove - Dequeues enqueued rx packet
2197 * @qp: NTB queue to be freed
2198 * @len: pointer to variable to write enqueued buffers length
2199 *
2200 * Dequeues unused buffers from receive queue.  Should only be used during
2201 * shutdown of qp.
2202 *
2203 * RETURNS: NULL error value on error, or void* for success.
2204 */
2205void *ntb_transport_rx_remove(struct ntb_transport_qp *qp, unsigned int *len)
2206{
2207	struct ntb_queue_entry *entry;
2208	void *buf;
2209
2210	if (!qp || qp->client_ready)
2211		return NULL;
2212
2213	entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_pend_q);
2214	if (!entry)
2215		return NULL;
2216
2217	buf = entry->cb_data;
2218	*len = entry->len;
2219
2220	ntb_list_add(&qp->ntb_rx_q_lock, &entry->entry, &qp->rx_free_q);
2221
2222	return buf;
2223}
2224EXPORT_SYMBOL_GPL(ntb_transport_rx_remove);
2225
2226/**
2227 * ntb_transport_rx_enqueue - Enqueue a new NTB queue entry
2228 * @qp: NTB transport layer queue the entry is to be enqueued on
2229 * @cb: per buffer pointer for callback function to use
2230 * @data: pointer to data buffer that incoming packets will be copied into
2231 * @len: length of the data buffer
2232 *
2233 * Enqueue a new receive buffer onto the transport queue into which a NTB
2234 * payload can be received into.
2235 *
2236 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2237 */
2238int ntb_transport_rx_enqueue(struct ntb_transport_qp *qp, void *cb, void *data,
2239			     unsigned int len)
2240{
2241	struct ntb_queue_entry *entry;
2242
2243	if (!qp)
2244		return -EINVAL;
2245
2246	entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_free_q);
2247	if (!entry)
2248		return -ENOMEM;
2249
2250	entry->cb_data = cb;
2251	entry->buf = data;
2252	entry->len = len;
2253	entry->flags = 0;
2254	entry->retries = 0;
2255	entry->errors = 0;
2256	entry->rx_index = 0;
2257
2258	ntb_list_add(&qp->ntb_rx_q_lock, &entry->entry, &qp->rx_pend_q);
2259
2260	if (qp->active)
2261		tasklet_schedule(&qp->rxc_db_work);
2262
2263	return 0;
2264}
2265EXPORT_SYMBOL_GPL(ntb_transport_rx_enqueue);
2266
2267/**
2268 * ntb_transport_tx_enqueue - Enqueue a new NTB queue entry
2269 * @qp: NTB transport layer queue the entry is to be enqueued on
2270 * @cb: per buffer pointer for callback function to use
2271 * @data: pointer to data buffer that will be sent
2272 * @len: length of the data buffer
2273 *
2274 * Enqueue a new transmit buffer onto the transport queue from which a NTB
2275 * payload will be transmitted.  This assumes that a lock is being held to
2276 * serialize access to the qp.
2277 *
2278 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2279 */
2280int ntb_transport_tx_enqueue(struct ntb_transport_qp *qp, void *cb, void *data,
2281			     unsigned int len)
2282{
2283	struct ntb_queue_entry *entry;
2284	int rc;
2285
2286	if (!qp || !len)
2287		return -EINVAL;
2288
2289	/* If the qp link is down already, just ignore. */
2290	if (!qp->link_is_up)
2291		return 0;
2292
2293	entry = ntb_list_rm(&qp->ntb_tx_free_q_lock, &qp->tx_free_q);
2294	if (!entry) {
2295		qp->tx_err_no_buf++;
2296		return -EBUSY;
2297	}
2298
2299	entry->cb_data = cb;
2300	entry->buf = data;
2301	entry->len = len;
2302	entry->flags = 0;
2303	entry->errors = 0;
2304	entry->retries = 0;
2305	entry->tx_index = 0;
2306
2307	rc = ntb_process_tx(qp, entry);
2308	if (rc)
2309		ntb_list_add(&qp->ntb_tx_free_q_lock, &entry->entry,
2310			     &qp->tx_free_q);
2311
2312	return rc;
2313}
2314EXPORT_SYMBOL_GPL(ntb_transport_tx_enqueue);
2315
2316/**
2317 * ntb_transport_link_up - Notify NTB transport of client readiness to use queue
2318 * @qp: NTB transport layer queue to be enabled
2319 *
2320 * Notify NTB transport layer of client readiness to use queue
2321 */
2322void ntb_transport_link_up(struct ntb_transport_qp *qp)
2323{
2324	if (!qp)
2325		return;
2326
2327	qp->client_ready = true;
2328
2329	if (qp->transport->link_is_up)
2330		schedule_delayed_work(&qp->link_work, 0);
2331}
2332EXPORT_SYMBOL_GPL(ntb_transport_link_up);
2333
2334/**
2335 * ntb_transport_link_down - Notify NTB transport to no longer enqueue data
2336 * @qp: NTB transport layer queue to be disabled
2337 *
2338 * Notify NTB transport layer of client's desire to no longer receive data on
2339 * transport queue specified.  It is the client's responsibility to ensure all
2340 * entries on queue are purged or otherwise handled appropriately.
2341 */
2342void ntb_transport_link_down(struct ntb_transport_qp *qp)
2343{
2344	int val;
2345
2346	if (!qp)
2347		return;
2348
2349	qp->client_ready = false;
2350
2351	val = ntb_spad_read(qp->ndev, QP_LINKS);
2352
2353	ntb_peer_spad_write(qp->ndev, PIDX, QP_LINKS, val & ~BIT(qp->qp_num));
2354
2355	if (qp->link_is_up)
2356		ntb_send_link_down(qp);
2357	else
2358		cancel_delayed_work_sync(&qp->link_work);
2359}
2360EXPORT_SYMBOL_GPL(ntb_transport_link_down);
2361
2362/**
2363 * ntb_transport_link_query - Query transport link state
2364 * @qp: NTB transport layer queue to be queried
2365 *
2366 * Query connectivity to the remote system of the NTB transport queue
2367 *
2368 * RETURNS: true for link up or false for link down
2369 */
2370bool ntb_transport_link_query(struct ntb_transport_qp *qp)
2371{
2372	if (!qp)
2373		return false;
2374
2375	return qp->link_is_up;
2376}
2377EXPORT_SYMBOL_GPL(ntb_transport_link_query);
2378
2379/**
2380 * ntb_transport_qp_num - Query the qp number
2381 * @qp: NTB transport layer queue to be queried
2382 *
2383 * Query qp number of the NTB transport queue
2384 *
2385 * RETURNS: a zero based number specifying the qp number
2386 */
2387unsigned char ntb_transport_qp_num(struct ntb_transport_qp *qp)
2388{
2389	if (!qp)
2390		return 0;
2391
2392	return qp->qp_num;
2393}
2394EXPORT_SYMBOL_GPL(ntb_transport_qp_num);
2395
2396/**
2397 * ntb_transport_max_size - Query the max payload size of a qp
2398 * @qp: NTB transport layer queue to be queried
2399 *
2400 * Query the maximum payload size permissible on the given qp
2401 *
2402 * RETURNS: the max payload size of a qp
2403 */
2404unsigned int ntb_transport_max_size(struct ntb_transport_qp *qp)
2405{
2406	unsigned int max_size;
2407	unsigned int copy_align;
2408	struct dma_chan *rx_chan, *tx_chan;
2409
2410	if (!qp)
2411		return 0;
2412
2413	rx_chan = qp->rx_dma_chan;
2414	tx_chan = qp->tx_dma_chan;
2415
2416	copy_align = max(rx_chan ? rx_chan->device->copy_align : 0,
2417			 tx_chan ? tx_chan->device->copy_align : 0);
2418
2419	/* If DMA engine usage is possible, try to find the max size for that */
2420	max_size = qp->tx_max_frame - sizeof(struct ntb_payload_header);
2421	max_size = round_down(max_size, 1 << copy_align);
2422
2423	return max_size;
2424}
2425EXPORT_SYMBOL_GPL(ntb_transport_max_size);
2426
2427unsigned int ntb_transport_tx_free_entry(struct ntb_transport_qp *qp)
2428{
2429	unsigned int head = qp->tx_index;
2430	unsigned int tail = qp->remote_rx_info->entry;
2431
2432	return tail >= head ? tail - head : qp->tx_max_entry + tail - head;
2433}
2434EXPORT_SYMBOL_GPL(ntb_transport_tx_free_entry);
2435
2436static void ntb_transport_doorbell_callback(void *data, int vector)
2437{
2438	struct ntb_transport_ctx *nt = data;
2439	struct ntb_transport_qp *qp;
2440	u64 db_bits;
2441	unsigned int qp_num;
2442
2443	if (ntb_db_read(nt->ndev) & nt->msi_db_mask) {
2444		ntb_transport_msi_peer_desc_changed(nt);
2445		ntb_db_clear(nt->ndev, nt->msi_db_mask);
2446	}
2447
2448	db_bits = (nt->qp_bitmap & ~nt->qp_bitmap_free &
2449		   ntb_db_vector_mask(nt->ndev, vector));
2450
2451	while (db_bits) {
2452		qp_num = __ffs(db_bits);
2453		qp = &nt->qp_vec[qp_num];
2454
2455		if (qp->active)
2456			tasklet_schedule(&qp->rxc_db_work);
2457
2458		db_bits &= ~BIT_ULL(qp_num);
2459	}
2460}
2461
2462static const struct ntb_ctx_ops ntb_transport_ops = {
2463	.link_event = ntb_transport_event_callback,
2464	.db_event = ntb_transport_doorbell_callback,
2465};
2466
2467static struct ntb_client ntb_transport_client = {
2468	.ops = {
2469		.probe = ntb_transport_probe,
2470		.remove = ntb_transport_free,
2471	},
2472};
2473
2474static int __init ntb_transport_init(void)
2475{
2476	int rc;
2477
2478	pr_info("%s, version %s\n", NTB_TRANSPORT_DESC, NTB_TRANSPORT_VER);
2479
2480	if (debugfs_initialized())
2481		nt_debugfs_dir = debugfs_create_dir(KBUILD_MODNAME, NULL);
2482
2483	rc = bus_register(&ntb_transport_bus);
2484	if (rc)
2485		goto err_bus;
2486
2487	rc = ntb_register_client(&ntb_transport_client);
2488	if (rc)
2489		goto err_client;
2490
2491	return 0;
2492
2493err_client:
2494	bus_unregister(&ntb_transport_bus);
2495err_bus:
2496	debugfs_remove_recursive(nt_debugfs_dir);
2497	return rc;
2498}
2499module_init(ntb_transport_init);
2500
2501static void __exit ntb_transport_exit(void)
2502{
2503	ntb_unregister_client(&ntb_transport_client);
2504	bus_unregister(&ntb_transport_bus);
2505	debugfs_remove_recursive(nt_debugfs_dir);
2506}
2507module_exit(ntb_transport_exit);
2508