1// SPDX-License-Identifier: GPL-2.0
2/* Copyright(c) 2009-2012  Realtek Corporation.*/
3
4#include "wifi.h"
5#include "efuse.h"
6#include "pci.h"
7#include <linux/export.h>
8
9static const u8 PGPKT_DATA_SIZE = 8;
10static const int EFUSE_MAX_SIZE = 512;
11
12#define START_ADDRESS		0x1000
13#define REG_MCUFWDL		0x0080
14
15static const struct rtl_efuse_ops efuse_ops = {
16	.efuse_onebyte_read = efuse_one_byte_read,
17	.efuse_logical_map_read = efuse_shadow_read,
18};
19
20static void efuse_shadow_read_1byte(struct ieee80211_hw *hw, u16 offset,
21				    u8 *value);
22static void efuse_shadow_read_2byte(struct ieee80211_hw *hw, u16 offset,
23				    u16 *value);
24static void efuse_shadow_read_4byte(struct ieee80211_hw *hw, u16 offset,
25				    u32 *value);
26static void efuse_shadow_write_1byte(struct ieee80211_hw *hw, u16 offset,
27				     u8 value);
28static void efuse_shadow_write_2byte(struct ieee80211_hw *hw, u16 offset,
29				     u16 value);
30static void efuse_shadow_write_4byte(struct ieee80211_hw *hw, u16 offset,
31				     u32 value);
32static int efuse_one_byte_write(struct ieee80211_hw *hw, u16 addr,
33				u8 data);
34static void efuse_read_all_map(struct ieee80211_hw *hw, u8 *efuse);
35static int efuse_pg_packet_read(struct ieee80211_hw *hw, u8 offset,
36				u8 *data);
37static int efuse_pg_packet_write(struct ieee80211_hw *hw, u8 offset,
38				 u8 word_en, u8 *data);
39static void efuse_word_enable_data_read(u8 word_en, u8 *sourdata,
40					u8 *targetdata);
41static u8 enable_efuse_data_write(struct ieee80211_hw *hw,
42				  u16 efuse_addr, u8 word_en, u8 *data);
43static u16 efuse_get_current_size(struct ieee80211_hw *hw);
44static u8 efuse_calculate_word_cnts(u8 word_en);
45
46void efuse_initialize(struct ieee80211_hw *hw)
47{
48	struct rtl_priv *rtlpriv = rtl_priv(hw);
49	u8 bytetemp;
50	u8 temp;
51
52	bytetemp = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[SYS_FUNC_EN] + 1);
53	temp = bytetemp | 0x20;
54	rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[SYS_FUNC_EN] + 1, temp);
55
56	bytetemp = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[SYS_ISO_CTRL] + 1);
57	temp = bytetemp & 0xFE;
58	rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[SYS_ISO_CTRL] + 1, temp);
59
60	bytetemp = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_TEST] + 3);
61	temp = bytetemp | 0x80;
62	rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_TEST] + 3, temp);
63
64	rtl_write_byte(rtlpriv, 0x2F8, 0x3);
65
66	rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3, 0x72);
67
68}
69
70u8 efuse_read_1byte(struct ieee80211_hw *hw, u16 address)
71{
72	struct rtl_priv *rtlpriv = rtl_priv(hw);
73	u8 data;
74	u8 bytetemp;
75	u8 temp;
76	u32 k = 0;
77	const u32 efuse_len =
78		rtlpriv->cfg->maps[EFUSE_REAL_CONTENT_SIZE];
79
80	if (address < efuse_len) {
81		temp = address & 0xFF;
82		rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1,
83			       temp);
84		bytetemp = rtl_read_byte(rtlpriv,
85					 rtlpriv->cfg->maps[EFUSE_CTRL] + 2);
86		temp = ((address >> 8) & 0x03) | (bytetemp & 0xFC);
87		rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2,
88			       temp);
89
90		bytetemp = rtl_read_byte(rtlpriv,
91					 rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
92		temp = bytetemp & 0x7F;
93		rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3,
94			       temp);
95
96		bytetemp = rtl_read_byte(rtlpriv,
97					 rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
98		while (!(bytetemp & 0x80)) {
99			bytetemp = rtl_read_byte(rtlpriv,
100						 rtlpriv->cfg->
101						 maps[EFUSE_CTRL] + 3);
102			k++;
103			if (k == 1000)
104				break;
105		}
106		data = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]);
107		return data;
108	} else
109		return 0xFF;
110
111}
112EXPORT_SYMBOL(efuse_read_1byte);
113
114void efuse_write_1byte(struct ieee80211_hw *hw, u16 address, u8 value)
115{
116	struct rtl_priv *rtlpriv = rtl_priv(hw);
117	u8 bytetemp;
118	u8 temp;
119	u32 k = 0;
120	const u32 efuse_len =
121		rtlpriv->cfg->maps[EFUSE_REAL_CONTENT_SIZE];
122
123	rtl_dbg(rtlpriv, COMP_EFUSE, DBG_LOUD, "Addr=%x Data =%x\n",
124		address, value);
125
126	if (address < efuse_len) {
127		rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL], value);
128
129		temp = address & 0xFF;
130		rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1,
131			       temp);
132		bytetemp = rtl_read_byte(rtlpriv,
133					 rtlpriv->cfg->maps[EFUSE_CTRL] + 2);
134
135		temp = ((address >> 8) & 0x03) | (bytetemp & 0xFC);
136		rtl_write_byte(rtlpriv,
137			       rtlpriv->cfg->maps[EFUSE_CTRL] + 2, temp);
138
139		bytetemp = rtl_read_byte(rtlpriv,
140					 rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
141		temp = bytetemp | 0x80;
142		rtl_write_byte(rtlpriv,
143			       rtlpriv->cfg->maps[EFUSE_CTRL] + 3, temp);
144
145		bytetemp = rtl_read_byte(rtlpriv,
146					 rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
147
148		while (bytetemp & 0x80) {
149			bytetemp = rtl_read_byte(rtlpriv,
150						 rtlpriv->cfg->
151						 maps[EFUSE_CTRL] + 3);
152			k++;
153			if (k == 100) {
154				k = 0;
155				break;
156			}
157		}
158	}
159
160}
161
162void read_efuse_byte(struct ieee80211_hw *hw, u16 _offset, u8 *pbuf)
163{
164	struct rtl_priv *rtlpriv = rtl_priv(hw);
165	u32 value32;
166	u8 readbyte;
167	u16 retry;
168
169	rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1,
170		       (_offset & 0xff));
171	readbyte = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2);
172	rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2,
173		       ((_offset >> 8) & 0x03) | (readbyte & 0xfc));
174
175	readbyte = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
176	rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3,
177		       (readbyte & 0x7f));
178
179	retry = 0;
180	value32 = rtl_read_dword(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]);
181	while (!(((value32 >> 24) & 0xff) & 0x80) && (retry < 10000)) {
182		value32 = rtl_read_dword(rtlpriv,
183					 rtlpriv->cfg->maps[EFUSE_CTRL]);
184		retry++;
185	}
186
187	udelay(50);
188	value32 = rtl_read_dword(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]);
189
190	*pbuf = (u8) (value32 & 0xff);
191}
192EXPORT_SYMBOL_GPL(read_efuse_byte);
193
194void read_efuse(struct ieee80211_hw *hw, u16 _offset, u16 _size_byte, u8 *pbuf)
195{
196	struct rtl_priv *rtlpriv = rtl_priv(hw);
197	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
198	u8 *efuse_tbl;
199	u8 rtemp8[1];
200	u16 efuse_addr = 0;
201	u8 offset, wren;
202	u8 u1temp = 0;
203	u16 i;
204	u16 j;
205	const u16 efuse_max_section =
206		rtlpriv->cfg->maps[EFUSE_MAX_SECTION_MAP];
207	const u32 efuse_len =
208		rtlpriv->cfg->maps[EFUSE_REAL_CONTENT_SIZE];
209	u16 **efuse_word;
210	u16 efuse_utilized = 0;
211	u8 efuse_usage;
212
213	if ((_offset + _size_byte) > rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]) {
214		rtl_dbg(rtlpriv, COMP_EFUSE, DBG_LOUD,
215			"%s: Invalid offset(%#x) with read bytes(%#x)!!\n",
216			__func__, _offset, _size_byte);
217		return;
218	}
219
220	/* allocate memory for efuse_tbl and efuse_word */
221	efuse_tbl = kzalloc(rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE],
222			    GFP_ATOMIC);
223	if (!efuse_tbl)
224		return;
225	efuse_word = kcalloc(EFUSE_MAX_WORD_UNIT, sizeof(u16 *), GFP_ATOMIC);
226	if (!efuse_word)
227		goto out;
228	for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) {
229		efuse_word[i] = kcalloc(efuse_max_section, sizeof(u16),
230					GFP_ATOMIC);
231		if (!efuse_word[i])
232			goto done;
233	}
234
235	for (i = 0; i < efuse_max_section; i++)
236		for (j = 0; j < EFUSE_MAX_WORD_UNIT; j++)
237			efuse_word[j][i] = 0xFFFF;
238
239	read_efuse_byte(hw, efuse_addr, rtemp8);
240	if (*rtemp8 != 0xFF) {
241		efuse_utilized++;
242		RTPRINT(rtlpriv, FEEPROM, EFUSE_READ_ALL,
243			"Addr=%d\n", efuse_addr);
244		efuse_addr++;
245	}
246
247	while ((*rtemp8 != 0xFF) && (efuse_addr < efuse_len)) {
248		/*  Check PG header for section num.  */
249		if ((*rtemp8 & 0x1F) == 0x0F) {/* extended header */
250			u1temp = ((*rtemp8 & 0xE0) >> 5);
251			read_efuse_byte(hw, efuse_addr, rtemp8);
252
253			if ((*rtemp8 & 0x0F) == 0x0F) {
254				efuse_addr++;
255				read_efuse_byte(hw, efuse_addr, rtemp8);
256
257				if (*rtemp8 != 0xFF &&
258				    (efuse_addr < efuse_len)) {
259					efuse_addr++;
260				}
261				continue;
262			} else {
263				offset = ((*rtemp8 & 0xF0) >> 1) | u1temp;
264				wren = (*rtemp8 & 0x0F);
265				efuse_addr++;
266			}
267		} else {
268			offset = ((*rtemp8 >> 4) & 0x0f);
269			wren = (*rtemp8 & 0x0f);
270		}
271
272		if (offset < efuse_max_section) {
273			RTPRINT(rtlpriv, FEEPROM, EFUSE_READ_ALL,
274				"offset-%d Worden=%x\n", offset, wren);
275
276			for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) {
277				if (!(wren & 0x01)) {
278					RTPRINT(rtlpriv, FEEPROM,
279						EFUSE_READ_ALL,
280						"Addr=%d\n", efuse_addr);
281
282					read_efuse_byte(hw, efuse_addr, rtemp8);
283					efuse_addr++;
284					efuse_utilized++;
285					efuse_word[i][offset] =
286							 (*rtemp8 & 0xff);
287
288					if (efuse_addr >= efuse_len)
289						break;
290
291					RTPRINT(rtlpriv, FEEPROM,
292						EFUSE_READ_ALL,
293						"Addr=%d\n", efuse_addr);
294
295					read_efuse_byte(hw, efuse_addr, rtemp8);
296					efuse_addr++;
297					efuse_utilized++;
298					efuse_word[i][offset] |=
299					    (((u16)*rtemp8 << 8) & 0xff00);
300
301					if (efuse_addr >= efuse_len)
302						break;
303				}
304
305				wren >>= 1;
306			}
307		}
308
309		RTPRINT(rtlpriv, FEEPROM, EFUSE_READ_ALL,
310			"Addr=%d\n", efuse_addr);
311		read_efuse_byte(hw, efuse_addr, rtemp8);
312		if (*rtemp8 != 0xFF && (efuse_addr < efuse_len)) {
313			efuse_utilized++;
314			efuse_addr++;
315		}
316	}
317
318	for (i = 0; i < efuse_max_section; i++) {
319		for (j = 0; j < EFUSE_MAX_WORD_UNIT; j++) {
320			efuse_tbl[(i * 8) + (j * 2)] =
321			    (efuse_word[j][i] & 0xff);
322			efuse_tbl[(i * 8) + ((j * 2) + 1)] =
323			    ((efuse_word[j][i] >> 8) & 0xff);
324		}
325	}
326
327	for (i = 0; i < _size_byte; i++)
328		pbuf[i] = efuse_tbl[_offset + i];
329
330	rtlefuse->efuse_usedbytes = efuse_utilized;
331	efuse_usage = (u8) ((efuse_utilized * 100) / efuse_len);
332	rtlefuse->efuse_usedpercentage = efuse_usage;
333	rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_EFUSE_BYTES,
334				      (u8 *)&efuse_utilized);
335	rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_EFUSE_USAGE,
336				      &efuse_usage);
337done:
338	for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++)
339		kfree(efuse_word[i]);
340	kfree(efuse_word);
341out:
342	kfree(efuse_tbl);
343}
344
345bool efuse_shadow_update_chk(struct ieee80211_hw *hw)
346{
347	struct rtl_priv *rtlpriv = rtl_priv(hw);
348	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
349	u8 section_idx, i, base;
350	u16 words_need = 0, hdr_num = 0, totalbytes, efuse_used;
351	bool wordchanged, result = true;
352
353	for (section_idx = 0; section_idx < 16; section_idx++) {
354		base = section_idx * 8;
355		wordchanged = false;
356
357		for (i = 0; i < 8; i = i + 2) {
358			if (rtlefuse->efuse_map[EFUSE_INIT_MAP][base + i] !=
359			    rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base + i] ||
360			    rtlefuse->efuse_map[EFUSE_INIT_MAP][base + i + 1] !=
361			    rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base + i +
362								   1]) {
363				words_need++;
364				wordchanged = true;
365			}
366		}
367
368		if (wordchanged)
369			hdr_num++;
370	}
371
372	totalbytes = hdr_num + words_need * 2;
373	efuse_used = rtlefuse->efuse_usedbytes;
374
375	if ((totalbytes + efuse_used) >=
376	    (EFUSE_MAX_SIZE - rtlpriv->cfg->maps[EFUSE_OOB_PROTECT_BYTES_LEN]))
377		result = false;
378
379	rtl_dbg(rtlpriv, COMP_EFUSE, DBG_LOUD,
380		"%s: totalbytes(%#x), hdr_num(%#x), words_need(%#x), efuse_used(%d)\n",
381		__func__, totalbytes, hdr_num, words_need, efuse_used);
382
383	return result;
384}
385
386void efuse_shadow_read(struct ieee80211_hw *hw, u8 type,
387		       u16 offset, u32 *value)
388{
389	if (type == 1)
390		efuse_shadow_read_1byte(hw, offset, (u8 *)value);
391	else if (type == 2)
392		efuse_shadow_read_2byte(hw, offset, (u16 *)value);
393	else if (type == 4)
394		efuse_shadow_read_4byte(hw, offset, value);
395
396}
397EXPORT_SYMBOL(efuse_shadow_read);
398
399void efuse_shadow_write(struct ieee80211_hw *hw, u8 type, u16 offset,
400				u32 value)
401{
402	if (type == 1)
403		efuse_shadow_write_1byte(hw, offset, (u8) value);
404	else if (type == 2)
405		efuse_shadow_write_2byte(hw, offset, (u16) value);
406	else if (type == 4)
407		efuse_shadow_write_4byte(hw, offset, value);
408
409}
410
411bool efuse_shadow_update(struct ieee80211_hw *hw)
412{
413	struct rtl_priv *rtlpriv = rtl_priv(hw);
414	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
415	u16 i, offset, base;
416	u8 word_en = 0x0F;
417	u8 first_pg = false;
418
419	rtl_dbg(rtlpriv, COMP_EFUSE, DBG_LOUD, "\n");
420
421	if (!efuse_shadow_update_chk(hw)) {
422		efuse_read_all_map(hw, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0]);
423		memcpy(&rtlefuse->efuse_map[EFUSE_MODIFY_MAP][0],
424		       &rtlefuse->efuse_map[EFUSE_INIT_MAP][0],
425		       rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]);
426
427		rtl_dbg(rtlpriv, COMP_EFUSE, DBG_LOUD,
428			"efuse out of capacity!!\n");
429		return false;
430	}
431	efuse_power_switch(hw, true, true);
432
433	for (offset = 0; offset < 16; offset++) {
434
435		word_en = 0x0F;
436		base = offset * 8;
437
438		for (i = 0; i < 8; i++) {
439			if (first_pg) {
440				word_en &= ~(BIT(i / 2));
441
442				rtlefuse->efuse_map[EFUSE_INIT_MAP][base + i] =
443				    rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base + i];
444			} else {
445
446				if (rtlefuse->efuse_map[EFUSE_INIT_MAP][base + i] !=
447				    rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base + i]) {
448					word_en &= ~(BIT(i / 2));
449
450					rtlefuse->efuse_map[EFUSE_INIT_MAP][base + i] =
451					    rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base + i];
452				}
453			}
454		}
455
456		if (word_en != 0x0F) {
457			u8 tmpdata[8];
458
459			memcpy(tmpdata,
460			       &rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base],
461			       8);
462			RT_PRINT_DATA(rtlpriv, COMP_INIT, DBG_LOUD,
463				      "U-efuse\n", tmpdata, 8);
464
465			if (!efuse_pg_packet_write(hw, (u8) offset, word_en,
466						   tmpdata)) {
467				rtl_dbg(rtlpriv, COMP_ERR, DBG_WARNING,
468					"PG section(%#x) fail!!\n", offset);
469				break;
470			}
471		}
472	}
473
474	efuse_power_switch(hw, true, false);
475	efuse_read_all_map(hw, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0]);
476
477	memcpy(&rtlefuse->efuse_map[EFUSE_MODIFY_MAP][0],
478	       &rtlefuse->efuse_map[EFUSE_INIT_MAP][0],
479	       rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]);
480
481	rtl_dbg(rtlpriv, COMP_EFUSE, DBG_LOUD, "\n");
482	return true;
483}
484
485void rtl_efuse_shadow_map_update(struct ieee80211_hw *hw)
486{
487	struct rtl_priv *rtlpriv = rtl_priv(hw);
488	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
489
490	if (rtlefuse->autoload_failflag)
491		memset((&rtlefuse->efuse_map[EFUSE_INIT_MAP][0]),
492		       0xFF, rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]);
493	else
494		efuse_read_all_map(hw, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0]);
495
496	memcpy(&rtlefuse->efuse_map[EFUSE_MODIFY_MAP][0],
497			&rtlefuse->efuse_map[EFUSE_INIT_MAP][0],
498			rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]);
499
500}
501EXPORT_SYMBOL(rtl_efuse_shadow_map_update);
502
503void efuse_force_write_vendor_id(struct ieee80211_hw *hw)
504{
505	u8 tmpdata[8] = { 0xFF, 0xFF, 0xEC, 0x10, 0xFF, 0xFF, 0xFF, 0xFF };
506
507	efuse_power_switch(hw, true, true);
508
509	efuse_pg_packet_write(hw, 1, 0xD, tmpdata);
510
511	efuse_power_switch(hw, true, false);
512
513}
514
515void efuse_re_pg_section(struct ieee80211_hw *hw, u8 section_idx)
516{
517}
518
519static void efuse_shadow_read_1byte(struct ieee80211_hw *hw,
520				    u16 offset, u8 *value)
521{
522	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
523	*value = rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset];
524}
525
526static void efuse_shadow_read_2byte(struct ieee80211_hw *hw,
527				    u16 offset, u16 *value)
528{
529	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
530
531	*value = rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset];
532	*value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] << 8;
533
534}
535
536static void efuse_shadow_read_4byte(struct ieee80211_hw *hw,
537				    u16 offset, u32 *value)
538{
539	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
540
541	*value = rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset];
542	*value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] << 8;
543	*value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 2] << 16;
544	*value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 3] << 24;
545}
546
547static void efuse_shadow_write_1byte(struct ieee80211_hw *hw,
548				     u16 offset, u8 value)
549{
550	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
551
552	rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset] = value;
553}
554
555static void efuse_shadow_write_2byte(struct ieee80211_hw *hw,
556				     u16 offset, u16 value)
557{
558	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
559
560	rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset] = value & 0x00FF;
561	rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] = value >> 8;
562
563}
564
565static void efuse_shadow_write_4byte(struct ieee80211_hw *hw,
566				     u16 offset, u32 value)
567{
568	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
569
570	rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset] =
571	    (u8) (value & 0x000000FF);
572	rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] =
573	    (u8) ((value >> 8) & 0x0000FF);
574	rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 2] =
575	    (u8) ((value >> 16) & 0x00FF);
576	rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 3] =
577	    (u8) ((value >> 24) & 0xFF);
578
579}
580
581int efuse_one_byte_read(struct ieee80211_hw *hw, u16 addr, u8 *data)
582{
583	struct rtl_priv *rtlpriv = rtl_priv(hw);
584	u8 tmpidx = 0;
585	int result;
586
587	rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1,
588		       (u8) (addr & 0xff));
589	rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2,
590		       ((u8) ((addr >> 8) & 0x03)) |
591		       (rtl_read_byte(rtlpriv,
592				      rtlpriv->cfg->maps[EFUSE_CTRL] + 2) &
593			0xFC));
594
595	rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3, 0x72);
596
597	while (!(0x80 & rtl_read_byte(rtlpriv,
598				      rtlpriv->cfg->maps[EFUSE_CTRL] + 3))
599	       && (tmpidx < 100)) {
600		tmpidx++;
601	}
602
603	if (tmpidx < 100) {
604		*data = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]);
605		result = true;
606	} else {
607		*data = 0xff;
608		result = false;
609	}
610	return result;
611}
612EXPORT_SYMBOL(efuse_one_byte_read);
613
614static int efuse_one_byte_write(struct ieee80211_hw *hw, u16 addr, u8 data)
615{
616	struct rtl_priv *rtlpriv = rtl_priv(hw);
617	u8 tmpidx = 0;
618
619	rtl_dbg(rtlpriv, COMP_EFUSE, DBG_LOUD,
620		"Addr = %x Data=%x\n", addr, data);
621
622	rtl_write_byte(rtlpriv,
623		       rtlpriv->cfg->maps[EFUSE_CTRL] + 1, (u8) (addr & 0xff));
624	rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2,
625		       (rtl_read_byte(rtlpriv,
626			 rtlpriv->cfg->maps[EFUSE_CTRL] +
627			 2) & 0xFC) | (u8) ((addr >> 8) & 0x03));
628
629	rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL], data);
630	rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3, 0xF2);
631
632	while ((0x80 & rtl_read_byte(rtlpriv,
633				     rtlpriv->cfg->maps[EFUSE_CTRL] + 3))
634	       && (tmpidx < 100)) {
635		tmpidx++;
636	}
637
638	if (tmpidx < 100)
639		return true;
640	return false;
641}
642
643static void efuse_read_all_map(struct ieee80211_hw *hw, u8 *efuse)
644{
645	struct rtl_priv *rtlpriv = rtl_priv(hw);
646
647	efuse_power_switch(hw, false, true);
648	read_efuse(hw, 0, rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE], efuse);
649	efuse_power_switch(hw, false, false);
650}
651
652static void efuse_read_data_case1(struct ieee80211_hw *hw, u16 *efuse_addr,
653				u8 efuse_data, u8 offset, u8 *tmpdata,
654				u8 *readstate)
655{
656	bool dataempty = true;
657	u8 hoffset;
658	u8 tmpidx;
659	u8 hworden;
660	u8 word_cnts;
661
662	hoffset = (efuse_data >> 4) & 0x0F;
663	hworden = efuse_data & 0x0F;
664	word_cnts = efuse_calculate_word_cnts(hworden);
665
666	if (hoffset == offset) {
667		for (tmpidx = 0; tmpidx < word_cnts * 2; tmpidx++) {
668			if (efuse_one_byte_read(hw, *efuse_addr + 1 + tmpidx,
669						&efuse_data)) {
670				tmpdata[tmpidx] = efuse_data;
671				if (efuse_data != 0xff)
672					dataempty = false;
673			}
674		}
675
676		if (!dataempty) {
677			*readstate = PG_STATE_DATA;
678		} else {
679			*efuse_addr = *efuse_addr + (word_cnts * 2) + 1;
680			*readstate = PG_STATE_HEADER;
681		}
682
683	} else {
684		*efuse_addr = *efuse_addr + (word_cnts * 2) + 1;
685		*readstate = PG_STATE_HEADER;
686	}
687}
688
689static int efuse_pg_packet_read(struct ieee80211_hw *hw, u8 offset, u8 *data)
690{
691	u8 readstate = PG_STATE_HEADER;
692
693	bool continual = true;
694
695	u8 efuse_data, word_cnts = 0;
696	u16 efuse_addr = 0;
697	u8 tmpdata[8];
698
699	if (data == NULL)
700		return false;
701	if (offset > 15)
702		return false;
703
704	memset(data, 0xff, PGPKT_DATA_SIZE * sizeof(u8));
705	memset(tmpdata, 0xff, PGPKT_DATA_SIZE * sizeof(u8));
706
707	while (continual && (efuse_addr < EFUSE_MAX_SIZE)) {
708		if (readstate & PG_STATE_HEADER) {
709			if (efuse_one_byte_read(hw, efuse_addr, &efuse_data)
710			    && (efuse_data != 0xFF))
711				efuse_read_data_case1(hw, &efuse_addr,
712						      efuse_data, offset,
713						      tmpdata, &readstate);
714			else
715				continual = false;
716		} else if (readstate & PG_STATE_DATA) {
717			efuse_word_enable_data_read(0, tmpdata, data);
718			efuse_addr = efuse_addr + (word_cnts * 2) + 1;
719			readstate = PG_STATE_HEADER;
720		}
721
722	}
723
724	if ((data[0] == 0xff) && (data[1] == 0xff) &&
725	    (data[2] == 0xff) && (data[3] == 0xff) &&
726	    (data[4] == 0xff) && (data[5] == 0xff) &&
727	    (data[6] == 0xff) && (data[7] == 0xff))
728		return false;
729	else
730		return true;
731
732}
733
734static void efuse_write_data_case1(struct ieee80211_hw *hw, u16 *efuse_addr,
735				   u8 efuse_data, u8 offset,
736				   int *continual, u8 *write_state,
737				   struct pgpkt_struct *target_pkt,
738				   int *repeat_times, int *result, u8 word_en)
739{
740	struct rtl_priv *rtlpriv = rtl_priv(hw);
741	struct pgpkt_struct tmp_pkt;
742	int dataempty = true;
743	u8 originaldata[8 * sizeof(u8)];
744	u8 badworden = 0x0F;
745	u8 match_word_en, tmp_word_en;
746	u8 tmpindex;
747	u8 tmp_header = efuse_data;
748	u8 tmp_word_cnts;
749
750	tmp_pkt.offset = (tmp_header >> 4) & 0x0F;
751	tmp_pkt.word_en = tmp_header & 0x0F;
752	tmp_word_cnts = efuse_calculate_word_cnts(tmp_pkt.word_en);
753
754	if (tmp_pkt.offset != target_pkt->offset) {
755		*efuse_addr = *efuse_addr + (tmp_word_cnts * 2) + 1;
756		*write_state = PG_STATE_HEADER;
757	} else {
758		for (tmpindex = 0; tmpindex < (tmp_word_cnts * 2); tmpindex++) {
759			if (efuse_one_byte_read(hw,
760						(*efuse_addr + 1 + tmpindex),
761						&efuse_data) &&
762			    (efuse_data != 0xFF))
763				dataempty = false;
764		}
765
766		if (!dataempty) {
767			*efuse_addr = *efuse_addr + (tmp_word_cnts * 2) + 1;
768			*write_state = PG_STATE_HEADER;
769		} else {
770			match_word_en = 0x0F;
771			if (!((target_pkt->word_en & BIT(0)) |
772			    (tmp_pkt.word_en & BIT(0))))
773				match_word_en &= (~BIT(0));
774
775			if (!((target_pkt->word_en & BIT(1)) |
776			    (tmp_pkt.word_en & BIT(1))))
777				match_word_en &= (~BIT(1));
778
779			if (!((target_pkt->word_en & BIT(2)) |
780			    (tmp_pkt.word_en & BIT(2))))
781				match_word_en &= (~BIT(2));
782
783			if (!((target_pkt->word_en & BIT(3)) |
784			    (tmp_pkt.word_en & BIT(3))))
785				match_word_en &= (~BIT(3));
786
787			if ((match_word_en & 0x0F) != 0x0F) {
788				badworden =
789				  enable_efuse_data_write(hw,
790							  *efuse_addr + 1,
791							  tmp_pkt.word_en,
792							  target_pkt->data);
793
794				if (0x0F != (badworden & 0x0F))	{
795					u8 reorg_offset = offset;
796					u8 reorg_worden = badworden;
797
798					efuse_pg_packet_write(hw, reorg_offset,
799							      reorg_worden,
800							      originaldata);
801				}
802
803				tmp_word_en = 0x0F;
804				if ((target_pkt->word_en & BIT(0)) ^
805				    (match_word_en & BIT(0)))
806					tmp_word_en &= (~BIT(0));
807
808				if ((target_pkt->word_en & BIT(1)) ^
809				    (match_word_en & BIT(1)))
810					tmp_word_en &= (~BIT(1));
811
812				if ((target_pkt->word_en & BIT(2)) ^
813				    (match_word_en & BIT(2)))
814					tmp_word_en &= (~BIT(2));
815
816				if ((target_pkt->word_en & BIT(3)) ^
817				    (match_word_en & BIT(3)))
818					tmp_word_en &= (~BIT(3));
819
820				if ((tmp_word_en & 0x0F) != 0x0F) {
821					*efuse_addr = efuse_get_current_size(hw);
822					target_pkt->offset = offset;
823					target_pkt->word_en = tmp_word_en;
824				} else {
825					*continual = false;
826				}
827				*write_state = PG_STATE_HEADER;
828				*repeat_times += 1;
829				if (*repeat_times > EFUSE_REPEAT_THRESHOLD_) {
830					*continual = false;
831					*result = false;
832				}
833			} else {
834				*efuse_addr += (2 * tmp_word_cnts) + 1;
835				target_pkt->offset = offset;
836				target_pkt->word_en = word_en;
837				*write_state = PG_STATE_HEADER;
838			}
839		}
840	}
841	RTPRINT(rtlpriv, FEEPROM, EFUSE_PG, "efuse PG_STATE_HEADER-1\n");
842}
843
844static void efuse_write_data_case2(struct ieee80211_hw *hw, u16 *efuse_addr,
845				   int *continual, u8 *write_state,
846				   struct pgpkt_struct target_pkt,
847				   int *repeat_times, int *result)
848{
849	struct rtl_priv *rtlpriv = rtl_priv(hw);
850	struct pgpkt_struct tmp_pkt;
851	u8 pg_header;
852	u8 tmp_header;
853	u8 originaldata[8 * sizeof(u8)];
854	u8 tmp_word_cnts;
855	u8 badworden = 0x0F;
856
857	pg_header = ((target_pkt.offset << 4) & 0xf0) | target_pkt.word_en;
858	efuse_one_byte_write(hw, *efuse_addr, pg_header);
859	efuse_one_byte_read(hw, *efuse_addr, &tmp_header);
860
861	if (tmp_header == pg_header) {
862		*write_state = PG_STATE_DATA;
863	} else if (tmp_header == 0xFF) {
864		*write_state = PG_STATE_HEADER;
865		*repeat_times += 1;
866		if (*repeat_times > EFUSE_REPEAT_THRESHOLD_) {
867			*continual = false;
868			*result = false;
869		}
870	} else {
871		tmp_pkt.offset = (tmp_header >> 4) & 0x0F;
872		tmp_pkt.word_en = tmp_header & 0x0F;
873
874		tmp_word_cnts = efuse_calculate_word_cnts(tmp_pkt.word_en);
875
876		memset(originaldata, 0xff,  8 * sizeof(u8));
877
878		if (efuse_pg_packet_read(hw, tmp_pkt.offset, originaldata)) {
879			badworden = enable_efuse_data_write(hw,
880							    *efuse_addr + 1,
881							    tmp_pkt.word_en,
882							    originaldata);
883
884			if (0x0F != (badworden & 0x0F)) {
885				u8 reorg_offset = tmp_pkt.offset;
886				u8 reorg_worden = badworden;
887
888				efuse_pg_packet_write(hw, reorg_offset,
889						      reorg_worden,
890						      originaldata);
891				*efuse_addr = efuse_get_current_size(hw);
892			} else {
893				*efuse_addr = *efuse_addr +
894					      (tmp_word_cnts * 2) + 1;
895			}
896		} else {
897			*efuse_addr = *efuse_addr + (tmp_word_cnts * 2) + 1;
898		}
899
900		*write_state = PG_STATE_HEADER;
901		*repeat_times += 1;
902		if (*repeat_times > EFUSE_REPEAT_THRESHOLD_) {
903			*continual = false;
904			*result = false;
905		}
906
907		RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
908			"efuse PG_STATE_HEADER-2\n");
909	}
910}
911
912static int efuse_pg_packet_write(struct ieee80211_hw *hw,
913				 u8 offset, u8 word_en, u8 *data)
914{
915	struct rtl_priv *rtlpriv = rtl_priv(hw);
916	struct pgpkt_struct target_pkt;
917	u8 write_state = PG_STATE_HEADER;
918	int continual = true, result = true;
919	u16 efuse_addr = 0;
920	u8 efuse_data;
921	u8 target_word_cnts = 0;
922	u8 badworden = 0x0F;
923	static int repeat_times;
924
925	if (efuse_get_current_size(hw) >= (EFUSE_MAX_SIZE -
926		rtlpriv->cfg->maps[EFUSE_OOB_PROTECT_BYTES_LEN])) {
927		RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
928			"efuse_pg_packet_write error\n");
929		return false;
930	}
931
932	target_pkt.offset = offset;
933	target_pkt.word_en = word_en;
934
935	memset(target_pkt.data, 0xFF,  8 * sizeof(u8));
936
937	efuse_word_enable_data_read(word_en, data, target_pkt.data);
938	target_word_cnts = efuse_calculate_word_cnts(target_pkt.word_en);
939
940	RTPRINT(rtlpriv, FEEPROM, EFUSE_PG, "efuse Power ON\n");
941
942	while (continual && (efuse_addr < (EFUSE_MAX_SIZE -
943		rtlpriv->cfg->maps[EFUSE_OOB_PROTECT_BYTES_LEN]))) {
944		if (write_state == PG_STATE_HEADER) {
945			badworden = 0x0F;
946			RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
947				"efuse PG_STATE_HEADER\n");
948
949			if (efuse_one_byte_read(hw, efuse_addr, &efuse_data) &&
950			    (efuse_data != 0xFF))
951				efuse_write_data_case1(hw, &efuse_addr,
952						       efuse_data, offset,
953						       &continual,
954						       &write_state,
955						       &target_pkt,
956						       &repeat_times, &result,
957						       word_en);
958			else
959				efuse_write_data_case2(hw, &efuse_addr,
960						       &continual,
961						       &write_state,
962						       target_pkt,
963						       &repeat_times,
964						       &result);
965
966		} else if (write_state == PG_STATE_DATA) {
967			RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
968				"efuse PG_STATE_DATA\n");
969			badworden =
970			    enable_efuse_data_write(hw, efuse_addr + 1,
971						    target_pkt.word_en,
972						    target_pkt.data);
973
974			if ((badworden & 0x0F) == 0x0F) {
975				continual = false;
976			} else {
977				efuse_addr =
978				    efuse_addr + (2 * target_word_cnts) + 1;
979
980				target_pkt.offset = offset;
981				target_pkt.word_en = badworden;
982				target_word_cnts =
983				    efuse_calculate_word_cnts(target_pkt.
984							      word_en);
985				write_state = PG_STATE_HEADER;
986				repeat_times++;
987				if (repeat_times > EFUSE_REPEAT_THRESHOLD_) {
988					continual = false;
989					result = false;
990				}
991				RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
992					"efuse PG_STATE_HEADER-3\n");
993			}
994		}
995	}
996
997	if (efuse_addr >= (EFUSE_MAX_SIZE -
998		rtlpriv->cfg->maps[EFUSE_OOB_PROTECT_BYTES_LEN])) {
999		rtl_dbg(rtlpriv, COMP_EFUSE, DBG_LOUD,
1000			"efuse_addr(%#x) Out of size!!\n", efuse_addr);
1001	}
1002
1003	return true;
1004}
1005
1006static void efuse_word_enable_data_read(u8 word_en, u8 *sourdata,
1007					u8 *targetdata)
1008{
1009	if (!(word_en & BIT(0))) {
1010		targetdata[0] = sourdata[0];
1011		targetdata[1] = sourdata[1];
1012	}
1013
1014	if (!(word_en & BIT(1))) {
1015		targetdata[2] = sourdata[2];
1016		targetdata[3] = sourdata[3];
1017	}
1018
1019	if (!(word_en & BIT(2))) {
1020		targetdata[4] = sourdata[4];
1021		targetdata[5] = sourdata[5];
1022	}
1023
1024	if (!(word_en & BIT(3))) {
1025		targetdata[6] = sourdata[6];
1026		targetdata[7] = sourdata[7];
1027	}
1028}
1029
1030static u8 enable_efuse_data_write(struct ieee80211_hw *hw,
1031				  u16 efuse_addr, u8 word_en, u8 *data)
1032{
1033	struct rtl_priv *rtlpriv = rtl_priv(hw);
1034	u16 tmpaddr;
1035	u16 start_addr = efuse_addr;
1036	u8 badworden = 0x0F;
1037	u8 tmpdata[8];
1038
1039	memset(tmpdata, 0xff, PGPKT_DATA_SIZE);
1040	rtl_dbg(rtlpriv, COMP_EFUSE, DBG_LOUD,
1041		"word_en = %x efuse_addr=%x\n", word_en, efuse_addr);
1042
1043	if (!(word_en & BIT(0))) {
1044		tmpaddr = start_addr;
1045		efuse_one_byte_write(hw, start_addr++, data[0]);
1046		efuse_one_byte_write(hw, start_addr++, data[1]);
1047
1048		efuse_one_byte_read(hw, tmpaddr, &tmpdata[0]);
1049		efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[1]);
1050		if ((data[0] != tmpdata[0]) || (data[1] != tmpdata[1]))
1051			badworden &= (~BIT(0));
1052	}
1053
1054	if (!(word_en & BIT(1))) {
1055		tmpaddr = start_addr;
1056		efuse_one_byte_write(hw, start_addr++, data[2]);
1057		efuse_one_byte_write(hw, start_addr++, data[3]);
1058
1059		efuse_one_byte_read(hw, tmpaddr, &tmpdata[2]);
1060		efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[3]);
1061		if ((data[2] != tmpdata[2]) || (data[3] != tmpdata[3]))
1062			badworden &= (~BIT(1));
1063	}
1064
1065	if (!(word_en & BIT(2))) {
1066		tmpaddr = start_addr;
1067		efuse_one_byte_write(hw, start_addr++, data[4]);
1068		efuse_one_byte_write(hw, start_addr++, data[5]);
1069
1070		efuse_one_byte_read(hw, tmpaddr, &tmpdata[4]);
1071		efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[5]);
1072		if ((data[4] != tmpdata[4]) || (data[5] != tmpdata[5]))
1073			badworden &= (~BIT(2));
1074	}
1075
1076	if (!(word_en & BIT(3))) {
1077		tmpaddr = start_addr;
1078		efuse_one_byte_write(hw, start_addr++, data[6]);
1079		efuse_one_byte_write(hw, start_addr++, data[7]);
1080
1081		efuse_one_byte_read(hw, tmpaddr, &tmpdata[6]);
1082		efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[7]);
1083		if ((data[6] != tmpdata[6]) || (data[7] != tmpdata[7]))
1084			badworden &= (~BIT(3));
1085	}
1086
1087	return badworden;
1088}
1089
1090void efuse_power_switch(struct ieee80211_hw *hw, u8 write, u8 pwrstate)
1091{
1092	struct rtl_priv *rtlpriv = rtl_priv(hw);
1093	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
1094	u8 tempval;
1095	u16 tmpv16;
1096
1097	if (pwrstate && (rtlhal->hw_type != HARDWARE_TYPE_RTL8192SE)) {
1098		if (rtlhal->hw_type != HARDWARE_TYPE_RTL8192CE &&
1099		    rtlhal->hw_type != HARDWARE_TYPE_RTL8192DE) {
1100			rtl_write_byte(rtlpriv,
1101				       rtlpriv->cfg->maps[EFUSE_ACCESS], 0x69);
1102		} else {
1103			tmpv16 =
1104			  rtl_read_word(rtlpriv,
1105					rtlpriv->cfg->maps[SYS_ISO_CTRL]);
1106			if (!(tmpv16 & rtlpriv->cfg->maps[EFUSE_PWC_EV12V])) {
1107				tmpv16 |= rtlpriv->cfg->maps[EFUSE_PWC_EV12V];
1108				rtl_write_word(rtlpriv,
1109					       rtlpriv->cfg->maps[SYS_ISO_CTRL],
1110					       tmpv16);
1111			}
1112		}
1113		tmpv16 = rtl_read_word(rtlpriv,
1114				       rtlpriv->cfg->maps[SYS_FUNC_EN]);
1115		if (!(tmpv16 & rtlpriv->cfg->maps[EFUSE_FEN_ELDR])) {
1116			tmpv16 |= rtlpriv->cfg->maps[EFUSE_FEN_ELDR];
1117			rtl_write_word(rtlpriv,
1118				       rtlpriv->cfg->maps[SYS_FUNC_EN], tmpv16);
1119		}
1120
1121		tmpv16 = rtl_read_word(rtlpriv, rtlpriv->cfg->maps[SYS_CLK]);
1122		if ((!(tmpv16 & rtlpriv->cfg->maps[EFUSE_LOADER_CLK_EN])) ||
1123		    (!(tmpv16 & rtlpriv->cfg->maps[EFUSE_ANA8M]))) {
1124			tmpv16 |= (rtlpriv->cfg->maps[EFUSE_LOADER_CLK_EN] |
1125				   rtlpriv->cfg->maps[EFUSE_ANA8M]);
1126			rtl_write_word(rtlpriv,
1127				       rtlpriv->cfg->maps[SYS_CLK], tmpv16);
1128		}
1129	}
1130
1131	if (pwrstate) {
1132		if (write) {
1133			tempval = rtl_read_byte(rtlpriv,
1134						rtlpriv->cfg->maps[EFUSE_TEST] +
1135						3);
1136
1137			if (rtlhal->hw_type == HARDWARE_TYPE_RTL8812AE) {
1138				tempval &= ~(BIT(3) | BIT(4) | BIT(5) | BIT(6));
1139				tempval |= (VOLTAGE_V25 << 3);
1140			} else if (rtlhal->hw_type != HARDWARE_TYPE_RTL8192SE) {
1141				tempval &= 0x0F;
1142				tempval |= (VOLTAGE_V25 << 4);
1143			}
1144
1145			rtl_write_byte(rtlpriv,
1146				       rtlpriv->cfg->maps[EFUSE_TEST] + 3,
1147				       (tempval | 0x80));
1148		}
1149
1150		if (rtlhal->hw_type == HARDWARE_TYPE_RTL8192SE) {
1151			rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CLK],
1152				       0x03);
1153		}
1154	} else {
1155		if (rtlhal->hw_type != HARDWARE_TYPE_RTL8192CE &&
1156		    rtlhal->hw_type != HARDWARE_TYPE_RTL8192DE)
1157			rtl_write_byte(rtlpriv,
1158				       rtlpriv->cfg->maps[EFUSE_ACCESS], 0);
1159
1160		if (write) {
1161			tempval = rtl_read_byte(rtlpriv,
1162						rtlpriv->cfg->maps[EFUSE_TEST] +
1163						3);
1164			rtl_write_byte(rtlpriv,
1165				       rtlpriv->cfg->maps[EFUSE_TEST] + 3,
1166				       (tempval & 0x7F));
1167		}
1168
1169		if (rtlhal->hw_type == HARDWARE_TYPE_RTL8192SE) {
1170			rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CLK],
1171				       0x02);
1172		}
1173	}
1174}
1175EXPORT_SYMBOL(efuse_power_switch);
1176
1177static u16 efuse_get_current_size(struct ieee80211_hw *hw)
1178{
1179	int continual = true;
1180	u16 efuse_addr = 0;
1181	u8 hworden;
1182	u8 efuse_data, word_cnts;
1183
1184	while (continual && efuse_one_byte_read(hw, efuse_addr, &efuse_data) &&
1185	       (efuse_addr < EFUSE_MAX_SIZE)) {
1186		if (efuse_data != 0xFF) {
1187			hworden = efuse_data & 0x0F;
1188			word_cnts = efuse_calculate_word_cnts(hworden);
1189			efuse_addr = efuse_addr + (word_cnts * 2) + 1;
1190		} else {
1191			continual = false;
1192		}
1193	}
1194
1195	return efuse_addr;
1196}
1197
1198static u8 efuse_calculate_word_cnts(u8 word_en)
1199{
1200	u8 word_cnts = 0;
1201
1202	if (!(word_en & BIT(0)))
1203		word_cnts++;
1204	if (!(word_en & BIT(1)))
1205		word_cnts++;
1206	if (!(word_en & BIT(2)))
1207		word_cnts++;
1208	if (!(word_en & BIT(3)))
1209		word_cnts++;
1210	return word_cnts;
1211}
1212
1213int rtl_get_hwinfo(struct ieee80211_hw *hw, struct rtl_priv *rtlpriv,
1214		   int max_size, u8 *hwinfo, int *params)
1215{
1216	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
1217	struct rtl_pci_priv *rtlpcipriv = rtl_pcipriv(hw);
1218	struct device *dev = &rtlpcipriv->dev.pdev->dev;
1219	u16 eeprom_id;
1220	u16 i, usvalue;
1221
1222	switch (rtlefuse->epromtype) {
1223	case EEPROM_BOOT_EFUSE:
1224		rtl_efuse_shadow_map_update(hw);
1225		break;
1226
1227	case EEPROM_93C46:
1228		pr_err("RTL8XXX did not boot from eeprom, check it !!\n");
1229		return 1;
1230
1231	default:
1232		dev_warn(dev, "no efuse data\n");
1233		return 1;
1234	}
1235
1236	memcpy(hwinfo, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0], max_size);
1237
1238	RT_PRINT_DATA(rtlpriv, COMP_INIT, DBG_DMESG, "MAP",
1239		      hwinfo, max_size);
1240
1241	eeprom_id = *((u16 *)&hwinfo[0]);
1242	if (eeprom_id != params[0]) {
1243		rtl_dbg(rtlpriv, COMP_ERR, DBG_WARNING,
1244			"EEPROM ID(%#x) is invalid!!\n", eeprom_id);
1245		rtlefuse->autoload_failflag = true;
1246	} else {
1247		rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD, "Autoload OK\n");
1248		rtlefuse->autoload_failflag = false;
1249	}
1250
1251	if (rtlefuse->autoload_failflag)
1252		return 1;
1253
1254	rtlefuse->eeprom_vid = *(u16 *)&hwinfo[params[1]];
1255	rtlefuse->eeprom_did = *(u16 *)&hwinfo[params[2]];
1256	rtlefuse->eeprom_svid = *(u16 *)&hwinfo[params[3]];
1257	rtlefuse->eeprom_smid = *(u16 *)&hwinfo[params[4]];
1258	rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD,
1259		"EEPROMId = 0x%4x\n", eeprom_id);
1260	rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD,
1261		"EEPROM VID = 0x%4x\n", rtlefuse->eeprom_vid);
1262	rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD,
1263		"EEPROM DID = 0x%4x\n", rtlefuse->eeprom_did);
1264	rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD,
1265		"EEPROM SVID = 0x%4x\n", rtlefuse->eeprom_svid);
1266	rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD,
1267		"EEPROM SMID = 0x%4x\n", rtlefuse->eeprom_smid);
1268
1269	for (i = 0; i < 6; i += 2) {
1270		usvalue = *(u16 *)&hwinfo[params[5] + i];
1271		*((u16 *)(&rtlefuse->dev_addr[i])) = usvalue;
1272	}
1273	rtl_dbg(rtlpriv, COMP_INIT, DBG_DMESG, "%pM\n", rtlefuse->dev_addr);
1274
1275	rtlefuse->eeprom_channelplan = *&hwinfo[params[6]];
1276	rtlefuse->eeprom_version = *(u16 *)&hwinfo[params[7]];
1277	rtlefuse->txpwr_fromeprom = true;
1278	rtlefuse->eeprom_oemid = *&hwinfo[params[8]];
1279
1280	rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD,
1281		"EEPROM Customer ID: 0x%2x\n", rtlefuse->eeprom_oemid);
1282
1283	/* set channel plan to world wide 13 */
1284	rtlefuse->channel_plan = params[9];
1285
1286	return 0;
1287}
1288EXPORT_SYMBOL_GPL(rtl_get_hwinfo);
1289
1290static void _rtl_fw_block_write_usb(struct ieee80211_hw *hw, u8 *buffer, u32 size)
1291{
1292	struct rtl_priv *rtlpriv = rtl_priv(hw);
1293	u32 start = START_ADDRESS;
1294	u32 n;
1295
1296	while (size > 0) {
1297		if (size >= 64)
1298			n = 64;
1299		else if (size >= 8)
1300			n = 8;
1301		else
1302			n = 1;
1303
1304		rtl_write_chunk(rtlpriv, start, n, buffer);
1305
1306		start += n;
1307		buffer += n;
1308		size -= n;
1309	}
1310}
1311
1312void rtl_fw_block_write(struct ieee80211_hw *hw, u8 *buffer, u32 size)
1313{
1314	struct rtl_priv *rtlpriv = rtl_priv(hw);
1315	u32 i;
1316
1317	if (rtlpriv->rtlhal.interface == INTF_PCI) {
1318		for (i = 0; i < size; i++)
1319			rtl_write_byte(rtlpriv, (START_ADDRESS + i),
1320				       *(buffer + i));
1321	} else if (rtlpriv->rtlhal.interface == INTF_USB) {
1322		_rtl_fw_block_write_usb(hw, buffer, size);
1323	}
1324}
1325EXPORT_SYMBOL_GPL(rtl_fw_block_write);
1326
1327void rtl_fw_page_write(struct ieee80211_hw *hw, u32 page, u8 *buffer,
1328		       u32 size)
1329{
1330	struct rtl_priv *rtlpriv = rtl_priv(hw);
1331	u8 value8;
1332	u8 u8page = (u8)(page & 0x07);
1333
1334	value8 = (rtl_read_byte(rtlpriv, REG_MCUFWDL + 2) & 0xF8) | u8page;
1335
1336	rtl_write_byte(rtlpriv, (REG_MCUFWDL + 2), value8);
1337	rtl_fw_block_write(hw, buffer, size);
1338}
1339EXPORT_SYMBOL_GPL(rtl_fw_page_write);
1340
1341void rtl_fill_dummy(u8 *pfwbuf, u32 *pfwlen)
1342{
1343	u32 fwlen = *pfwlen;
1344	u8 remain = (u8)(fwlen % 4);
1345
1346	remain = (remain == 0) ? 0 : (4 - remain);
1347
1348	while (remain > 0) {
1349		pfwbuf[fwlen] = 0;
1350		fwlen++;
1351		remain--;
1352	}
1353
1354	*pfwlen = fwlen;
1355}
1356EXPORT_SYMBOL_GPL(rtl_fill_dummy);
1357
1358void rtl_efuse_ops_init(struct ieee80211_hw *hw)
1359{
1360	struct rtl_priv *rtlpriv = rtl_priv(hw);
1361
1362	rtlpriv->efuse.efuse_ops = &efuse_ops;
1363}
1364EXPORT_SYMBOL_GPL(rtl_efuse_ops_init);
1365