1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3	Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
4	<http://rt2x00.serialmonkey.com>
5
6 */
7
8/*
9	Module: rt61pci
10	Abstract: rt61pci device specific routines.
11	Supported chipsets: RT2561, RT2561s, RT2661.
12 */
13
14#include <linux/crc-itu-t.h>
15#include <linux/delay.h>
16#include <linux/etherdevice.h>
17#include <linux/kernel.h>
18#include <linux/module.h>
19#include <linux/slab.h>
20#include <linux/pci.h>
21#include <linux/eeprom_93cx6.h>
22
23#include "rt2x00.h"
24#include "rt2x00mmio.h"
25#include "rt2x00pci.h"
26#include "rt61pci.h"
27
28/*
29 * Allow hardware encryption to be disabled.
30 */
31static bool modparam_nohwcrypt = false;
32module_param_named(nohwcrypt, modparam_nohwcrypt, bool, 0444);
33MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
34
35/*
36 * Register access.
37 * BBP and RF register require indirect register access,
38 * and use the CSR registers PHY_CSR3 and PHY_CSR4 to achieve this.
39 * These indirect registers work with busy bits,
40 * and we will try maximal REGISTER_BUSY_COUNT times to access
41 * the register while taking a REGISTER_BUSY_DELAY us delay
42 * between each attempt. When the busy bit is still set at that time,
43 * the access attempt is considered to have failed,
44 * and we will print an error.
45 */
46#define WAIT_FOR_BBP(__dev, __reg) \
47	rt2x00mmio_regbusy_read((__dev), PHY_CSR3, PHY_CSR3_BUSY, (__reg))
48#define WAIT_FOR_RF(__dev, __reg) \
49	rt2x00mmio_regbusy_read((__dev), PHY_CSR4, PHY_CSR4_BUSY, (__reg))
50#define WAIT_FOR_MCU(__dev, __reg) \
51	rt2x00mmio_regbusy_read((__dev), H2M_MAILBOX_CSR, \
52				H2M_MAILBOX_CSR_OWNER, (__reg))
53
54static void rt61pci_bbp_write(struct rt2x00_dev *rt2x00dev,
55			      const unsigned int word, const u8 value)
56{
57	u32 reg;
58
59	mutex_lock(&rt2x00dev->csr_mutex);
60
61	/*
62	 * Wait until the BBP becomes available, afterwards we
63	 * can safely write the new data into the register.
64	 */
65	if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
66		reg = 0;
67		rt2x00_set_field32(&reg, PHY_CSR3_VALUE, value);
68		rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
69		rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
70		rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 0);
71
72		rt2x00mmio_register_write(rt2x00dev, PHY_CSR3, reg);
73	}
74
75	mutex_unlock(&rt2x00dev->csr_mutex);
76}
77
78static u8 rt61pci_bbp_read(struct rt2x00_dev *rt2x00dev,
79			   const unsigned int word)
80{
81	u32 reg;
82	u8 value;
83
84	mutex_lock(&rt2x00dev->csr_mutex);
85
86	/*
87	 * Wait until the BBP becomes available, afterwards we
88	 * can safely write the read request into the register.
89	 * After the data has been written, we wait until hardware
90	 * returns the correct value, if at any time the register
91	 * doesn't become available in time, reg will be 0xffffffff
92	 * which means we return 0xff to the caller.
93	 */
94	if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
95		reg = 0;
96		rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
97		rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
98		rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 1);
99
100		rt2x00mmio_register_write(rt2x00dev, PHY_CSR3, reg);
101
102		WAIT_FOR_BBP(rt2x00dev, &reg);
103	}
104
105	value = rt2x00_get_field32(reg, PHY_CSR3_VALUE);
106
107	mutex_unlock(&rt2x00dev->csr_mutex);
108
109	return value;
110}
111
112static void rt61pci_rf_write(struct rt2x00_dev *rt2x00dev,
113			     const unsigned int word, const u32 value)
114{
115	u32 reg;
116
117	mutex_lock(&rt2x00dev->csr_mutex);
118
119	/*
120	 * Wait until the RF becomes available, afterwards we
121	 * can safely write the new data into the register.
122	 */
123	if (WAIT_FOR_RF(rt2x00dev, &reg)) {
124		reg = 0;
125		rt2x00_set_field32(&reg, PHY_CSR4_VALUE, value);
126		rt2x00_set_field32(&reg, PHY_CSR4_NUMBER_OF_BITS, 21);
127		rt2x00_set_field32(&reg, PHY_CSR4_IF_SELECT, 0);
128		rt2x00_set_field32(&reg, PHY_CSR4_BUSY, 1);
129
130		rt2x00mmio_register_write(rt2x00dev, PHY_CSR4, reg);
131		rt2x00_rf_write(rt2x00dev, word, value);
132	}
133
134	mutex_unlock(&rt2x00dev->csr_mutex);
135}
136
137static void rt61pci_mcu_request(struct rt2x00_dev *rt2x00dev,
138				const u8 command, const u8 token,
139				const u8 arg0, const u8 arg1)
140{
141	u32 reg;
142
143	mutex_lock(&rt2x00dev->csr_mutex);
144
145	/*
146	 * Wait until the MCU becomes available, afterwards we
147	 * can safely write the new data into the register.
148	 */
149	if (WAIT_FOR_MCU(rt2x00dev, &reg)) {
150		rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_OWNER, 1);
151		rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_CMD_TOKEN, token);
152		rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG0, arg0);
153		rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG1, arg1);
154		rt2x00mmio_register_write(rt2x00dev, H2M_MAILBOX_CSR, reg);
155
156		reg = rt2x00mmio_register_read(rt2x00dev, HOST_CMD_CSR);
157		rt2x00_set_field32(&reg, HOST_CMD_CSR_HOST_COMMAND, command);
158		rt2x00_set_field32(&reg, HOST_CMD_CSR_INTERRUPT_MCU, 1);
159		rt2x00mmio_register_write(rt2x00dev, HOST_CMD_CSR, reg);
160	}
161
162	mutex_unlock(&rt2x00dev->csr_mutex);
163
164}
165
166static void rt61pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
167{
168	struct rt2x00_dev *rt2x00dev = eeprom->data;
169	u32 reg;
170
171	reg = rt2x00mmio_register_read(rt2x00dev, E2PROM_CSR);
172
173	eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN);
174	eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT);
175	eeprom->reg_data_clock =
176	    !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK);
177	eeprom->reg_chip_select =
178	    !!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT);
179}
180
181static void rt61pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
182{
183	struct rt2x00_dev *rt2x00dev = eeprom->data;
184	u32 reg = 0;
185
186	rt2x00_set_field32(&reg, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in);
187	rt2x00_set_field32(&reg, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out);
188	rt2x00_set_field32(&reg, E2PROM_CSR_DATA_CLOCK,
189			   !!eeprom->reg_data_clock);
190	rt2x00_set_field32(&reg, E2PROM_CSR_CHIP_SELECT,
191			   !!eeprom->reg_chip_select);
192
193	rt2x00mmio_register_write(rt2x00dev, E2PROM_CSR, reg);
194}
195
196#ifdef CONFIG_RT2X00_LIB_DEBUGFS
197static const struct rt2x00debug rt61pci_rt2x00debug = {
198	.owner	= THIS_MODULE,
199	.csr	= {
200		.read		= rt2x00mmio_register_read,
201		.write		= rt2x00mmio_register_write,
202		.flags		= RT2X00DEBUGFS_OFFSET,
203		.word_base	= CSR_REG_BASE,
204		.word_size	= sizeof(u32),
205		.word_count	= CSR_REG_SIZE / sizeof(u32),
206	},
207	.eeprom	= {
208		.read		= rt2x00_eeprom_read,
209		.write		= rt2x00_eeprom_write,
210		.word_base	= EEPROM_BASE,
211		.word_size	= sizeof(u16),
212		.word_count	= EEPROM_SIZE / sizeof(u16),
213	},
214	.bbp	= {
215		.read		= rt61pci_bbp_read,
216		.write		= rt61pci_bbp_write,
217		.word_base	= BBP_BASE,
218		.word_size	= sizeof(u8),
219		.word_count	= BBP_SIZE / sizeof(u8),
220	},
221	.rf	= {
222		.read		= rt2x00_rf_read,
223		.write		= rt61pci_rf_write,
224		.word_base	= RF_BASE,
225		.word_size	= sizeof(u32),
226		.word_count	= RF_SIZE / sizeof(u32),
227	},
228};
229#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
230
231static int rt61pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
232{
233	u32 reg;
234
235	reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR13);
236	return rt2x00_get_field32(reg, MAC_CSR13_VAL5);
237}
238
239#ifdef CONFIG_RT2X00_LIB_LEDS
240static void rt61pci_brightness_set(struct led_classdev *led_cdev,
241				   enum led_brightness brightness)
242{
243	struct rt2x00_led *led =
244	    container_of(led_cdev, struct rt2x00_led, led_dev);
245	unsigned int enabled = brightness != LED_OFF;
246	unsigned int a_mode =
247	    (enabled && led->rt2x00dev->curr_band == NL80211_BAND_5GHZ);
248	unsigned int bg_mode =
249	    (enabled && led->rt2x00dev->curr_band == NL80211_BAND_2GHZ);
250
251	if (led->type == LED_TYPE_RADIO) {
252		rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
253				   MCU_LEDCS_RADIO_STATUS, enabled);
254
255		rt61pci_mcu_request(led->rt2x00dev, MCU_LED, 0xff,
256				    (led->rt2x00dev->led_mcu_reg & 0xff),
257				    ((led->rt2x00dev->led_mcu_reg >> 8)));
258	} else if (led->type == LED_TYPE_ASSOC) {
259		rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
260				   MCU_LEDCS_LINK_BG_STATUS, bg_mode);
261		rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
262				   MCU_LEDCS_LINK_A_STATUS, a_mode);
263
264		rt61pci_mcu_request(led->rt2x00dev, MCU_LED, 0xff,
265				    (led->rt2x00dev->led_mcu_reg & 0xff),
266				    ((led->rt2x00dev->led_mcu_reg >> 8)));
267	} else if (led->type == LED_TYPE_QUALITY) {
268		/*
269		 * The brightness is divided into 6 levels (0 - 5),
270		 * this means we need to convert the brightness
271		 * argument into the matching level within that range.
272		 */
273		rt61pci_mcu_request(led->rt2x00dev, MCU_LED_STRENGTH, 0xff,
274				    brightness / (LED_FULL / 6), 0);
275	}
276}
277
278static int rt61pci_blink_set(struct led_classdev *led_cdev,
279			     unsigned long *delay_on,
280			     unsigned long *delay_off)
281{
282	struct rt2x00_led *led =
283	    container_of(led_cdev, struct rt2x00_led, led_dev);
284	u32 reg;
285
286	reg = rt2x00mmio_register_read(led->rt2x00dev, MAC_CSR14);
287	rt2x00_set_field32(&reg, MAC_CSR14_ON_PERIOD, *delay_on);
288	rt2x00_set_field32(&reg, MAC_CSR14_OFF_PERIOD, *delay_off);
289	rt2x00mmio_register_write(led->rt2x00dev, MAC_CSR14, reg);
290
291	return 0;
292}
293
294static void rt61pci_init_led(struct rt2x00_dev *rt2x00dev,
295			     struct rt2x00_led *led,
296			     enum led_type type)
297{
298	led->rt2x00dev = rt2x00dev;
299	led->type = type;
300	led->led_dev.brightness_set = rt61pci_brightness_set;
301	led->led_dev.blink_set = rt61pci_blink_set;
302	led->flags = LED_INITIALIZED;
303}
304#endif /* CONFIG_RT2X00_LIB_LEDS */
305
306/*
307 * Configuration handlers.
308 */
309static int rt61pci_config_shared_key(struct rt2x00_dev *rt2x00dev,
310				     struct rt2x00lib_crypto *crypto,
311				     struct ieee80211_key_conf *key)
312{
313	/*
314	 * Let the software handle the shared keys,
315	 * since the hardware decryption does not work reliably,
316	 * because the firmware does not know the key's keyidx.
317	 */
318	return -EOPNOTSUPP;
319}
320
321static int rt61pci_config_pairwise_key(struct rt2x00_dev *rt2x00dev,
322				       struct rt2x00lib_crypto *crypto,
323				       struct ieee80211_key_conf *key)
324{
325	struct hw_pairwise_ta_entry addr_entry;
326	struct hw_key_entry key_entry;
327	u32 mask;
328	u32 reg;
329
330	if (crypto->cmd == SET_KEY) {
331		/*
332		 * rt2x00lib can't determine the correct free
333		 * key_idx for pairwise keys. We have 2 registers
334		 * with key valid bits. The goal is simple: read
335		 * the first register. If that is full, move to
336		 * the next register.
337		 * When both registers are full, we drop the key.
338		 * Otherwise, we use the first invalid entry.
339		 */
340		reg = rt2x00mmio_register_read(rt2x00dev, SEC_CSR2);
341		if (reg && reg == ~0) {
342			key->hw_key_idx = 32;
343			reg = rt2x00mmio_register_read(rt2x00dev, SEC_CSR3);
344			if (reg && reg == ~0)
345				return -ENOSPC;
346		}
347
348		key->hw_key_idx += reg ? ffz(reg) : 0;
349
350		/*
351		 * Upload key to hardware
352		 */
353		memcpy(key_entry.key, crypto->key,
354		       sizeof(key_entry.key));
355		memcpy(key_entry.tx_mic, crypto->tx_mic,
356		       sizeof(key_entry.tx_mic));
357		memcpy(key_entry.rx_mic, crypto->rx_mic,
358		       sizeof(key_entry.rx_mic));
359
360		memset(&addr_entry, 0, sizeof(addr_entry));
361		memcpy(&addr_entry, crypto->address, ETH_ALEN);
362		addr_entry.cipher = crypto->cipher;
363
364		reg = PAIRWISE_KEY_ENTRY(key->hw_key_idx);
365		rt2x00mmio_register_multiwrite(rt2x00dev, reg,
366					       &key_entry, sizeof(key_entry));
367
368		reg = PAIRWISE_TA_ENTRY(key->hw_key_idx);
369		rt2x00mmio_register_multiwrite(rt2x00dev, reg,
370					       &addr_entry, sizeof(addr_entry));
371
372		/*
373		 * Enable pairwise lookup table for given BSS idx.
374		 * Without this, received frames will not be decrypted
375		 * by the hardware.
376		 */
377		reg = rt2x00mmio_register_read(rt2x00dev, SEC_CSR4);
378		reg |= (1 << crypto->bssidx);
379		rt2x00mmio_register_write(rt2x00dev, SEC_CSR4, reg);
380
381		/*
382		 * The driver does not support the IV/EIV generation
383		 * in hardware. However it doesn't support the IV/EIV
384		 * inside the ieee80211 frame either, but requires it
385		 * to be provided separately for the descriptor.
386		 * rt2x00lib will cut the IV/EIV data out of all frames
387		 * given to us by mac80211, but we must tell mac80211
388		 * to generate the IV/EIV data.
389		 */
390		key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
391	}
392
393	/*
394	 * SEC_CSR2 and SEC_CSR3 contain only single-bit fields to indicate
395	 * a particular key is valid. Because using the FIELD32()
396	 * defines directly will cause a lot of overhead, we use
397	 * a calculation to determine the correct bit directly.
398	 */
399	if (key->hw_key_idx < 32) {
400		mask = 1 << key->hw_key_idx;
401
402		reg = rt2x00mmio_register_read(rt2x00dev, SEC_CSR2);
403		if (crypto->cmd == SET_KEY)
404			reg |= mask;
405		else if (crypto->cmd == DISABLE_KEY)
406			reg &= ~mask;
407		rt2x00mmio_register_write(rt2x00dev, SEC_CSR2, reg);
408	} else {
409		mask = 1 << (key->hw_key_idx - 32);
410
411		reg = rt2x00mmio_register_read(rt2x00dev, SEC_CSR3);
412		if (crypto->cmd == SET_KEY)
413			reg |= mask;
414		else if (crypto->cmd == DISABLE_KEY)
415			reg &= ~mask;
416		rt2x00mmio_register_write(rt2x00dev, SEC_CSR3, reg);
417	}
418
419	return 0;
420}
421
422static void rt61pci_config_filter(struct rt2x00_dev *rt2x00dev,
423				  const unsigned int filter_flags)
424{
425	u32 reg;
426
427	/*
428	 * Start configuration steps.
429	 * Note that the version error will always be dropped
430	 * and broadcast frames will always be accepted since
431	 * there is no filter for it at this time.
432	 */
433	reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR0);
434	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CRC,
435			   !(filter_flags & FIF_FCSFAIL));
436	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_PHYSICAL,
437			   !(filter_flags & FIF_PLCPFAIL));
438	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CONTROL,
439			   !(filter_flags & (FIF_CONTROL | FIF_PSPOLL)));
440	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_NOT_TO_ME,
441			   !test_bit(CONFIG_MONITORING, &rt2x00dev->flags));
442	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_TO_DS,
443			   !test_bit(CONFIG_MONITORING, &rt2x00dev->flags) &&
444			   !rt2x00dev->intf_ap_count);
445	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_VERSION_ERROR, 1);
446	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_MULTICAST,
447			   !(filter_flags & FIF_ALLMULTI));
448	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_BROADCAST, 0);
449	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_ACK_CTS,
450			   !(filter_flags & FIF_CONTROL));
451	rt2x00mmio_register_write(rt2x00dev, TXRX_CSR0, reg);
452}
453
454static void rt61pci_config_intf(struct rt2x00_dev *rt2x00dev,
455				struct rt2x00_intf *intf,
456				struct rt2x00intf_conf *conf,
457				const unsigned int flags)
458{
459	u32 reg;
460
461	if (flags & CONFIG_UPDATE_TYPE) {
462		/*
463		 * Enable synchronisation.
464		 */
465		reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9);
466		rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, conf->sync);
467		rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg);
468	}
469
470	if (flags & CONFIG_UPDATE_MAC) {
471		reg = le32_to_cpu(conf->mac[1]);
472		rt2x00_set_field32(&reg, MAC_CSR3_UNICAST_TO_ME_MASK, 0xff);
473		conf->mac[1] = cpu_to_le32(reg);
474
475		rt2x00mmio_register_multiwrite(rt2x00dev, MAC_CSR2,
476					       conf->mac, sizeof(conf->mac));
477	}
478
479	if (flags & CONFIG_UPDATE_BSSID) {
480		reg = le32_to_cpu(conf->bssid[1]);
481		rt2x00_set_field32(&reg, MAC_CSR5_BSS_ID_MASK, 3);
482		conf->bssid[1] = cpu_to_le32(reg);
483
484		rt2x00mmio_register_multiwrite(rt2x00dev, MAC_CSR4,
485					       conf->bssid,
486					       sizeof(conf->bssid));
487	}
488}
489
490static void rt61pci_config_erp(struct rt2x00_dev *rt2x00dev,
491			       struct rt2x00lib_erp *erp,
492			       u32 changed)
493{
494	u32 reg;
495
496	reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR0);
497	rt2x00_set_field32(&reg, TXRX_CSR0_RX_ACK_TIMEOUT, 0x32);
498	rt2x00_set_field32(&reg, TXRX_CSR0_TSF_OFFSET, IEEE80211_HEADER);
499	rt2x00mmio_register_write(rt2x00dev, TXRX_CSR0, reg);
500
501	if (changed & BSS_CHANGED_ERP_PREAMBLE) {
502		reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR4);
503		rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_ENABLE, 1);
504		rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_PREAMBLE,
505				   !!erp->short_preamble);
506		rt2x00mmio_register_write(rt2x00dev, TXRX_CSR4, reg);
507	}
508
509	if (changed & BSS_CHANGED_BASIC_RATES)
510		rt2x00mmio_register_write(rt2x00dev, TXRX_CSR5,
511					  erp->basic_rates);
512
513	if (changed & BSS_CHANGED_BEACON_INT) {
514		reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9);
515		rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL,
516				   erp->beacon_int * 16);
517		rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg);
518	}
519
520	if (changed & BSS_CHANGED_ERP_SLOT) {
521		reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR9);
522		rt2x00_set_field32(&reg, MAC_CSR9_SLOT_TIME, erp->slot_time);
523		rt2x00mmio_register_write(rt2x00dev, MAC_CSR9, reg);
524
525		reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR8);
526		rt2x00_set_field32(&reg, MAC_CSR8_SIFS, erp->sifs);
527		rt2x00_set_field32(&reg, MAC_CSR8_SIFS_AFTER_RX_OFDM, 3);
528		rt2x00_set_field32(&reg, MAC_CSR8_EIFS, erp->eifs);
529		rt2x00mmio_register_write(rt2x00dev, MAC_CSR8, reg);
530	}
531}
532
533static void rt61pci_config_antenna_5x(struct rt2x00_dev *rt2x00dev,
534				      struct antenna_setup *ant)
535{
536	u8 r3;
537	u8 r4;
538	u8 r77;
539
540	r3 = rt61pci_bbp_read(rt2x00dev, 3);
541	r4 = rt61pci_bbp_read(rt2x00dev, 4);
542	r77 = rt61pci_bbp_read(rt2x00dev, 77);
543
544	rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, rt2x00_rf(rt2x00dev, RF5325));
545
546	/*
547	 * Configure the RX antenna.
548	 */
549	switch (ant->rx) {
550	case ANTENNA_HW_DIVERSITY:
551		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
552		rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
553				  (rt2x00dev->curr_band != NL80211_BAND_5GHZ));
554		break;
555	case ANTENNA_A:
556		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
557		rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
558		if (rt2x00dev->curr_band == NL80211_BAND_5GHZ)
559			rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
560		else
561			rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
562		break;
563	case ANTENNA_B:
564	default:
565		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
566		rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
567		if (rt2x00dev->curr_band == NL80211_BAND_5GHZ)
568			rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
569		else
570			rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
571		break;
572	}
573
574	rt61pci_bbp_write(rt2x00dev, 77, r77);
575	rt61pci_bbp_write(rt2x00dev, 3, r3);
576	rt61pci_bbp_write(rt2x00dev, 4, r4);
577}
578
579static void rt61pci_config_antenna_2x(struct rt2x00_dev *rt2x00dev,
580				      struct antenna_setup *ant)
581{
582	u8 r3;
583	u8 r4;
584	u8 r77;
585
586	r3 = rt61pci_bbp_read(rt2x00dev, 3);
587	r4 = rt61pci_bbp_read(rt2x00dev, 4);
588	r77 = rt61pci_bbp_read(rt2x00dev, 77);
589
590	rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, rt2x00_rf(rt2x00dev, RF2529));
591	rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
592			  !rt2x00_has_cap_frame_type(rt2x00dev));
593
594	/*
595	 * Configure the RX antenna.
596	 */
597	switch (ant->rx) {
598	case ANTENNA_HW_DIVERSITY:
599		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
600		break;
601	case ANTENNA_A:
602		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
603		rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
604		break;
605	case ANTENNA_B:
606	default:
607		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
608		rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
609		break;
610	}
611
612	rt61pci_bbp_write(rt2x00dev, 77, r77);
613	rt61pci_bbp_write(rt2x00dev, 3, r3);
614	rt61pci_bbp_write(rt2x00dev, 4, r4);
615}
616
617static void rt61pci_config_antenna_2529_rx(struct rt2x00_dev *rt2x00dev,
618					   const int p1, const int p2)
619{
620	u32 reg;
621
622	reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR13);
623
624	rt2x00_set_field32(&reg, MAC_CSR13_DIR4, 0);
625	rt2x00_set_field32(&reg, MAC_CSR13_VAL4, p1);
626
627	rt2x00_set_field32(&reg, MAC_CSR13_DIR3, 0);
628	rt2x00_set_field32(&reg, MAC_CSR13_VAL3, !p2);
629
630	rt2x00mmio_register_write(rt2x00dev, MAC_CSR13, reg);
631}
632
633static void rt61pci_config_antenna_2529(struct rt2x00_dev *rt2x00dev,
634					struct antenna_setup *ant)
635{
636	u8 r3;
637	u8 r4;
638	u8 r77;
639
640	r3 = rt61pci_bbp_read(rt2x00dev, 3);
641	r4 = rt61pci_bbp_read(rt2x00dev, 4);
642	r77 = rt61pci_bbp_read(rt2x00dev, 77);
643
644	/*
645	 * Configure the RX antenna.
646	 */
647	switch (ant->rx) {
648	case ANTENNA_A:
649		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
650		rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
651		rt61pci_config_antenna_2529_rx(rt2x00dev, 0, 0);
652		break;
653	case ANTENNA_HW_DIVERSITY:
654		/*
655		 * FIXME: Antenna selection for the rf 2529 is very confusing
656		 * in the legacy driver. Just default to antenna B until the
657		 * legacy code can be properly translated into rt2x00 code.
658		 */
659	case ANTENNA_B:
660	default:
661		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
662		rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
663		rt61pci_config_antenna_2529_rx(rt2x00dev, 1, 1);
664		break;
665	}
666
667	rt61pci_bbp_write(rt2x00dev, 77, r77);
668	rt61pci_bbp_write(rt2x00dev, 3, r3);
669	rt61pci_bbp_write(rt2x00dev, 4, r4);
670}
671
672struct antenna_sel {
673	u8 word;
674	/*
675	 * value[0] -> non-LNA
676	 * value[1] -> LNA
677	 */
678	u8 value[2];
679};
680
681static const struct antenna_sel antenna_sel_a[] = {
682	{ 96,  { 0x58, 0x78 } },
683	{ 104, { 0x38, 0x48 } },
684	{ 75,  { 0xfe, 0x80 } },
685	{ 86,  { 0xfe, 0x80 } },
686	{ 88,  { 0xfe, 0x80 } },
687	{ 35,  { 0x60, 0x60 } },
688	{ 97,  { 0x58, 0x58 } },
689	{ 98,  { 0x58, 0x58 } },
690};
691
692static const struct antenna_sel antenna_sel_bg[] = {
693	{ 96,  { 0x48, 0x68 } },
694	{ 104, { 0x2c, 0x3c } },
695	{ 75,  { 0xfe, 0x80 } },
696	{ 86,  { 0xfe, 0x80 } },
697	{ 88,  { 0xfe, 0x80 } },
698	{ 35,  { 0x50, 0x50 } },
699	{ 97,  { 0x48, 0x48 } },
700	{ 98,  { 0x48, 0x48 } },
701};
702
703static void rt61pci_config_ant(struct rt2x00_dev *rt2x00dev,
704			       struct antenna_setup *ant)
705{
706	const struct antenna_sel *sel;
707	unsigned int lna;
708	unsigned int i;
709	u32 reg;
710
711	/*
712	 * We should never come here because rt2x00lib is supposed
713	 * to catch this and send us the correct antenna explicitely.
714	 */
715	BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
716	       ant->tx == ANTENNA_SW_DIVERSITY);
717
718	if (rt2x00dev->curr_band == NL80211_BAND_5GHZ) {
719		sel = antenna_sel_a;
720		lna = rt2x00_has_cap_external_lna_a(rt2x00dev);
721	} else {
722		sel = antenna_sel_bg;
723		lna = rt2x00_has_cap_external_lna_bg(rt2x00dev);
724	}
725
726	for (i = 0; i < ARRAY_SIZE(antenna_sel_a); i++)
727		rt61pci_bbp_write(rt2x00dev, sel[i].word, sel[i].value[lna]);
728
729	reg = rt2x00mmio_register_read(rt2x00dev, PHY_CSR0);
730
731	rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_BG,
732			   rt2x00dev->curr_band == NL80211_BAND_2GHZ);
733	rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_A,
734			   rt2x00dev->curr_band == NL80211_BAND_5GHZ);
735
736	rt2x00mmio_register_write(rt2x00dev, PHY_CSR0, reg);
737
738	if (rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF5325))
739		rt61pci_config_antenna_5x(rt2x00dev, ant);
740	else if (rt2x00_rf(rt2x00dev, RF2527))
741		rt61pci_config_antenna_2x(rt2x00dev, ant);
742	else if (rt2x00_rf(rt2x00dev, RF2529)) {
743		if (rt2x00_has_cap_double_antenna(rt2x00dev))
744			rt61pci_config_antenna_2x(rt2x00dev, ant);
745		else
746			rt61pci_config_antenna_2529(rt2x00dev, ant);
747	}
748}
749
750static void rt61pci_config_lna_gain(struct rt2x00_dev *rt2x00dev,
751				    struct rt2x00lib_conf *libconf)
752{
753	u16 eeprom;
754	short lna_gain = 0;
755
756	if (libconf->conf->chandef.chan->band == NL80211_BAND_2GHZ) {
757		if (rt2x00_has_cap_external_lna_bg(rt2x00dev))
758			lna_gain += 14;
759
760		eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG);
761		lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_BG_1);
762	} else {
763		if (rt2x00_has_cap_external_lna_a(rt2x00dev))
764			lna_gain += 14;
765
766		eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A);
767		lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_A_1);
768	}
769
770	rt2x00dev->lna_gain = lna_gain;
771}
772
773static void rt61pci_config_channel(struct rt2x00_dev *rt2x00dev,
774				   struct rf_channel *rf, const int txpower)
775{
776	u8 r3;
777	u8 r94;
778	u8 smart;
779
780	rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
781	rt2x00_set_field32(&rf->rf4, RF4_FREQ_OFFSET, rt2x00dev->freq_offset);
782
783	smart = !(rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF2527));
784
785	r3 = rt61pci_bbp_read(rt2x00dev, 3);
786	rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, smart);
787	rt61pci_bbp_write(rt2x00dev, 3, r3);
788
789	r94 = 6;
790	if (txpower > MAX_TXPOWER && txpower <= (MAX_TXPOWER + r94))
791		r94 += txpower - MAX_TXPOWER;
792	else if (txpower < MIN_TXPOWER && txpower >= (MIN_TXPOWER - r94))
793		r94 += txpower;
794	rt61pci_bbp_write(rt2x00dev, 94, r94);
795
796	rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
797	rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
798	rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
799	rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
800
801	udelay(200);
802
803	rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
804	rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
805	rt61pci_rf_write(rt2x00dev, 3, rf->rf3 | 0x00000004);
806	rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
807
808	udelay(200);
809
810	rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
811	rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
812	rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
813	rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
814
815	msleep(1);
816}
817
818static void rt61pci_config_txpower(struct rt2x00_dev *rt2x00dev,
819				   const int txpower)
820{
821	struct rf_channel rf;
822
823	rf.rf1 = rt2x00_rf_read(rt2x00dev, 1);
824	rf.rf2 = rt2x00_rf_read(rt2x00dev, 2);
825	rf.rf3 = rt2x00_rf_read(rt2x00dev, 3);
826	rf.rf4 = rt2x00_rf_read(rt2x00dev, 4);
827
828	rt61pci_config_channel(rt2x00dev, &rf, txpower);
829}
830
831static void rt61pci_config_retry_limit(struct rt2x00_dev *rt2x00dev,
832				    struct rt2x00lib_conf *libconf)
833{
834	u32 reg;
835
836	reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR4);
837	rt2x00_set_field32(&reg, TXRX_CSR4_OFDM_TX_RATE_DOWN, 1);
838	rt2x00_set_field32(&reg, TXRX_CSR4_OFDM_TX_RATE_STEP, 0);
839	rt2x00_set_field32(&reg, TXRX_CSR4_OFDM_TX_FALLBACK_CCK, 0);
840	rt2x00_set_field32(&reg, TXRX_CSR4_LONG_RETRY_LIMIT,
841			   libconf->conf->long_frame_max_tx_count);
842	rt2x00_set_field32(&reg, TXRX_CSR4_SHORT_RETRY_LIMIT,
843			   libconf->conf->short_frame_max_tx_count);
844	rt2x00mmio_register_write(rt2x00dev, TXRX_CSR4, reg);
845}
846
847static void rt61pci_config_ps(struct rt2x00_dev *rt2x00dev,
848				struct rt2x00lib_conf *libconf)
849{
850	enum dev_state state =
851	    (libconf->conf->flags & IEEE80211_CONF_PS) ?
852		STATE_SLEEP : STATE_AWAKE;
853	u32 reg;
854
855	if (state == STATE_SLEEP) {
856		reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR11);
857		rt2x00_set_field32(&reg, MAC_CSR11_DELAY_AFTER_TBCN,
858				   rt2x00dev->beacon_int - 10);
859		rt2x00_set_field32(&reg, MAC_CSR11_TBCN_BEFORE_WAKEUP,
860				   libconf->conf->listen_interval - 1);
861		rt2x00_set_field32(&reg, MAC_CSR11_WAKEUP_LATENCY, 5);
862
863		/* We must first disable autowake before it can be enabled */
864		rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 0);
865		rt2x00mmio_register_write(rt2x00dev, MAC_CSR11, reg);
866
867		rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 1);
868		rt2x00mmio_register_write(rt2x00dev, MAC_CSR11, reg);
869
870		rt2x00mmio_register_write(rt2x00dev, SOFT_RESET_CSR,
871					  0x00000005);
872		rt2x00mmio_register_write(rt2x00dev, IO_CNTL_CSR, 0x0000001c);
873		rt2x00mmio_register_write(rt2x00dev, PCI_USEC_CSR, 0x00000060);
874
875		rt61pci_mcu_request(rt2x00dev, MCU_SLEEP, 0xff, 0, 0);
876	} else {
877		reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR11);
878		rt2x00_set_field32(&reg, MAC_CSR11_DELAY_AFTER_TBCN, 0);
879		rt2x00_set_field32(&reg, MAC_CSR11_TBCN_BEFORE_WAKEUP, 0);
880		rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 0);
881		rt2x00_set_field32(&reg, MAC_CSR11_WAKEUP_LATENCY, 0);
882		rt2x00mmio_register_write(rt2x00dev, MAC_CSR11, reg);
883
884		rt2x00mmio_register_write(rt2x00dev, SOFT_RESET_CSR,
885					  0x00000007);
886		rt2x00mmio_register_write(rt2x00dev, IO_CNTL_CSR, 0x00000018);
887		rt2x00mmio_register_write(rt2x00dev, PCI_USEC_CSR, 0x00000020);
888
889		rt61pci_mcu_request(rt2x00dev, MCU_WAKEUP, 0xff, 0, 0);
890	}
891}
892
893static void rt61pci_config(struct rt2x00_dev *rt2x00dev,
894			   struct rt2x00lib_conf *libconf,
895			   const unsigned int flags)
896{
897	/* Always recalculate LNA gain before changing configuration */
898	rt61pci_config_lna_gain(rt2x00dev, libconf);
899
900	if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
901		rt61pci_config_channel(rt2x00dev, &libconf->rf,
902				       libconf->conf->power_level);
903	if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
904	    !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
905		rt61pci_config_txpower(rt2x00dev, libconf->conf->power_level);
906	if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
907		rt61pci_config_retry_limit(rt2x00dev, libconf);
908	if (flags & IEEE80211_CONF_CHANGE_PS)
909		rt61pci_config_ps(rt2x00dev, libconf);
910}
911
912/*
913 * Link tuning
914 */
915static void rt61pci_link_stats(struct rt2x00_dev *rt2x00dev,
916			       struct link_qual *qual)
917{
918	u32 reg;
919
920	/*
921	 * Update FCS error count from register.
922	 */
923	reg = rt2x00mmio_register_read(rt2x00dev, STA_CSR0);
924	qual->rx_failed = rt2x00_get_field32(reg, STA_CSR0_FCS_ERROR);
925
926	/*
927	 * Update False CCA count from register.
928	 */
929	reg = rt2x00mmio_register_read(rt2x00dev, STA_CSR1);
930	qual->false_cca = rt2x00_get_field32(reg, STA_CSR1_FALSE_CCA_ERROR);
931}
932
933static inline void rt61pci_set_vgc(struct rt2x00_dev *rt2x00dev,
934				   struct link_qual *qual, u8 vgc_level)
935{
936	if (qual->vgc_level != vgc_level) {
937		rt61pci_bbp_write(rt2x00dev, 17, vgc_level);
938		qual->vgc_level = vgc_level;
939		qual->vgc_level_reg = vgc_level;
940	}
941}
942
943static void rt61pci_reset_tuner(struct rt2x00_dev *rt2x00dev,
944				struct link_qual *qual)
945{
946	rt61pci_set_vgc(rt2x00dev, qual, 0x20);
947}
948
949static void rt61pci_link_tuner(struct rt2x00_dev *rt2x00dev,
950			       struct link_qual *qual, const u32 count)
951{
952	u8 up_bound;
953	u8 low_bound;
954
955	/*
956	 * Determine r17 bounds.
957	 */
958	if (rt2x00dev->curr_band == NL80211_BAND_5GHZ) {
959		low_bound = 0x28;
960		up_bound = 0x48;
961		if (rt2x00_has_cap_external_lna_a(rt2x00dev)) {
962			low_bound += 0x10;
963			up_bound += 0x10;
964		}
965	} else {
966		low_bound = 0x20;
967		up_bound = 0x40;
968		if (rt2x00_has_cap_external_lna_bg(rt2x00dev)) {
969			low_bound += 0x10;
970			up_bound += 0x10;
971		}
972	}
973
974	/*
975	 * If we are not associated, we should go straight to the
976	 * dynamic CCA tuning.
977	 */
978	if (!rt2x00dev->intf_associated)
979		goto dynamic_cca_tune;
980
981	/*
982	 * Special big-R17 for very short distance
983	 */
984	if (qual->rssi >= -35) {
985		rt61pci_set_vgc(rt2x00dev, qual, 0x60);
986		return;
987	}
988
989	/*
990	 * Special big-R17 for short distance
991	 */
992	if (qual->rssi >= -58) {
993		rt61pci_set_vgc(rt2x00dev, qual, up_bound);
994		return;
995	}
996
997	/*
998	 * Special big-R17 for middle-short distance
999	 */
1000	if (qual->rssi >= -66) {
1001		rt61pci_set_vgc(rt2x00dev, qual, low_bound + 0x10);
1002		return;
1003	}
1004
1005	/*
1006	 * Special mid-R17 for middle distance
1007	 */
1008	if (qual->rssi >= -74) {
1009		rt61pci_set_vgc(rt2x00dev, qual, low_bound + 0x08);
1010		return;
1011	}
1012
1013	/*
1014	 * Special case: Change up_bound based on the rssi.
1015	 * Lower up_bound when rssi is weaker then -74 dBm.
1016	 */
1017	up_bound -= 2 * (-74 - qual->rssi);
1018	if (low_bound > up_bound)
1019		up_bound = low_bound;
1020
1021	if (qual->vgc_level > up_bound) {
1022		rt61pci_set_vgc(rt2x00dev, qual, up_bound);
1023		return;
1024	}
1025
1026dynamic_cca_tune:
1027
1028	/*
1029	 * r17 does not yet exceed upper limit, continue and base
1030	 * the r17 tuning on the false CCA count.
1031	 */
1032	if ((qual->false_cca > 512) && (qual->vgc_level < up_bound))
1033		rt61pci_set_vgc(rt2x00dev, qual, ++qual->vgc_level);
1034	else if ((qual->false_cca < 100) && (qual->vgc_level > low_bound))
1035		rt61pci_set_vgc(rt2x00dev, qual, --qual->vgc_level);
1036}
1037
1038/*
1039 * Queue handlers.
1040 */
1041static void rt61pci_start_queue(struct data_queue *queue)
1042{
1043	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
1044	u32 reg;
1045
1046	switch (queue->qid) {
1047	case QID_RX:
1048		reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR0);
1049		rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 0);
1050		rt2x00mmio_register_write(rt2x00dev, TXRX_CSR0, reg);
1051		break;
1052	case QID_BEACON:
1053		reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9);
1054		rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 1);
1055		rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 1);
1056		rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 1);
1057		rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg);
1058		break;
1059	default:
1060		break;
1061	}
1062}
1063
1064static void rt61pci_kick_queue(struct data_queue *queue)
1065{
1066	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
1067	u32 reg;
1068
1069	switch (queue->qid) {
1070	case QID_AC_VO:
1071		reg = rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR);
1072		rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC0, 1);
1073		rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1074		break;
1075	case QID_AC_VI:
1076		reg = rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR);
1077		rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC1, 1);
1078		rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1079		break;
1080	case QID_AC_BE:
1081		reg = rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR);
1082		rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC2, 1);
1083		rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1084		break;
1085	case QID_AC_BK:
1086		reg = rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR);
1087		rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC3, 1);
1088		rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1089		break;
1090	default:
1091		break;
1092	}
1093}
1094
1095static void rt61pci_stop_queue(struct data_queue *queue)
1096{
1097	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
1098	u32 reg;
1099
1100	switch (queue->qid) {
1101	case QID_AC_VO:
1102		reg = rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR);
1103		rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC0, 1);
1104		rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1105		break;
1106	case QID_AC_VI:
1107		reg = rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR);
1108		rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC1, 1);
1109		rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1110		break;
1111	case QID_AC_BE:
1112		reg = rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR);
1113		rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC2, 1);
1114		rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1115		break;
1116	case QID_AC_BK:
1117		reg = rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR);
1118		rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC3, 1);
1119		rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1120		break;
1121	case QID_RX:
1122		reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR0);
1123		rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 1);
1124		rt2x00mmio_register_write(rt2x00dev, TXRX_CSR0, reg);
1125		break;
1126	case QID_BEACON:
1127		reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9);
1128		rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 0);
1129		rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 0);
1130		rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1131		rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg);
1132
1133		/*
1134		 * Wait for possibly running tbtt tasklets.
1135		 */
1136		tasklet_kill(&rt2x00dev->tbtt_tasklet);
1137		break;
1138	default:
1139		break;
1140	}
1141}
1142
1143/*
1144 * Firmware functions
1145 */
1146static char *rt61pci_get_firmware_name(struct rt2x00_dev *rt2x00dev)
1147{
1148	u16 chip;
1149	char *fw_name;
1150
1151	pci_read_config_word(to_pci_dev(rt2x00dev->dev), PCI_DEVICE_ID, &chip);
1152	switch (chip) {
1153	case RT2561_PCI_ID:
1154		fw_name = FIRMWARE_RT2561;
1155		break;
1156	case RT2561s_PCI_ID:
1157		fw_name = FIRMWARE_RT2561s;
1158		break;
1159	case RT2661_PCI_ID:
1160		fw_name = FIRMWARE_RT2661;
1161		break;
1162	default:
1163		fw_name = NULL;
1164		break;
1165	}
1166
1167	return fw_name;
1168}
1169
1170static int rt61pci_check_firmware(struct rt2x00_dev *rt2x00dev,
1171				  const u8 *data, const size_t len)
1172{
1173	u16 fw_crc;
1174	u16 crc;
1175
1176	/*
1177	 * Only support 8kb firmware files.
1178	 */
1179	if (len != 8192)
1180		return FW_BAD_LENGTH;
1181
1182	/*
1183	 * The last 2 bytes in the firmware array are the crc checksum itself.
1184	 * This means that we should never pass those 2 bytes to the crc
1185	 * algorithm.
1186	 */
1187	fw_crc = (data[len - 2] << 8 | data[len - 1]);
1188
1189	/*
1190	 * Use the crc itu-t algorithm.
1191	 */
1192	crc = crc_itu_t(0, data, len - 2);
1193	crc = crc_itu_t_byte(crc, 0);
1194	crc = crc_itu_t_byte(crc, 0);
1195
1196	return (fw_crc == crc) ? FW_OK : FW_BAD_CRC;
1197}
1198
1199static int rt61pci_load_firmware(struct rt2x00_dev *rt2x00dev,
1200				 const u8 *data, const size_t len)
1201{
1202	int i;
1203	u32 reg;
1204
1205	/*
1206	 * Wait for stable hardware.
1207	 */
1208	for (i = 0; i < 100; i++) {
1209		reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR0);
1210		if (reg)
1211			break;
1212		msleep(1);
1213	}
1214
1215	if (!reg) {
1216		rt2x00_err(rt2x00dev, "Unstable hardware\n");
1217		return -EBUSY;
1218	}
1219
1220	/*
1221	 * Prepare MCU and mailbox for firmware loading.
1222	 */
1223	reg = 0;
1224	rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 1);
1225	rt2x00mmio_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1226	rt2x00mmio_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff);
1227	rt2x00mmio_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
1228	rt2x00mmio_register_write(rt2x00dev, HOST_CMD_CSR, 0);
1229
1230	/*
1231	 * Write firmware to device.
1232	 */
1233	reg = 0;
1234	rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 1);
1235	rt2x00_set_field32(&reg, MCU_CNTL_CSR_SELECT_BANK, 1);
1236	rt2x00mmio_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1237
1238	rt2x00mmio_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE,
1239				       data, len);
1240
1241	rt2x00_set_field32(&reg, MCU_CNTL_CSR_SELECT_BANK, 0);
1242	rt2x00mmio_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1243
1244	rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 0);
1245	rt2x00mmio_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1246
1247	for (i = 0; i < 100; i++) {
1248		reg = rt2x00mmio_register_read(rt2x00dev, MCU_CNTL_CSR);
1249		if (rt2x00_get_field32(reg, MCU_CNTL_CSR_READY))
1250			break;
1251		msleep(1);
1252	}
1253
1254	if (i == 100) {
1255		rt2x00_err(rt2x00dev, "MCU Control register not ready\n");
1256		return -EBUSY;
1257	}
1258
1259	/*
1260	 * Hardware needs another millisecond before it is ready.
1261	 */
1262	msleep(1);
1263
1264	/*
1265	 * Reset MAC and BBP registers.
1266	 */
1267	reg = 0;
1268	rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
1269	rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
1270	rt2x00mmio_register_write(rt2x00dev, MAC_CSR1, reg);
1271
1272	reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR1);
1273	rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
1274	rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
1275	rt2x00mmio_register_write(rt2x00dev, MAC_CSR1, reg);
1276
1277	reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR1);
1278	rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
1279	rt2x00mmio_register_write(rt2x00dev, MAC_CSR1, reg);
1280
1281	return 0;
1282}
1283
1284/*
1285 * Initialization functions.
1286 */
1287static bool rt61pci_get_entry_state(struct queue_entry *entry)
1288{
1289	struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
1290	u32 word;
1291
1292	if (entry->queue->qid == QID_RX) {
1293		word = rt2x00_desc_read(entry_priv->desc, 0);
1294
1295		return rt2x00_get_field32(word, RXD_W0_OWNER_NIC);
1296	} else {
1297		word = rt2x00_desc_read(entry_priv->desc, 0);
1298
1299		return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
1300		        rt2x00_get_field32(word, TXD_W0_VALID));
1301	}
1302}
1303
1304static void rt61pci_clear_entry(struct queue_entry *entry)
1305{
1306	struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
1307	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1308	u32 word;
1309
1310	if (entry->queue->qid == QID_RX) {
1311		word = rt2x00_desc_read(entry_priv->desc, 5);
1312		rt2x00_set_field32(&word, RXD_W5_BUFFER_PHYSICAL_ADDRESS,
1313				   skbdesc->skb_dma);
1314		rt2x00_desc_write(entry_priv->desc, 5, word);
1315
1316		word = rt2x00_desc_read(entry_priv->desc, 0);
1317		rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
1318		rt2x00_desc_write(entry_priv->desc, 0, word);
1319	} else {
1320		word = rt2x00_desc_read(entry_priv->desc, 0);
1321		rt2x00_set_field32(&word, TXD_W0_VALID, 0);
1322		rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
1323		rt2x00_desc_write(entry_priv->desc, 0, word);
1324	}
1325}
1326
1327static int rt61pci_init_queues(struct rt2x00_dev *rt2x00dev)
1328{
1329	struct queue_entry_priv_mmio *entry_priv;
1330	u32 reg;
1331
1332	/*
1333	 * Initialize registers.
1334	 */
1335	reg = rt2x00mmio_register_read(rt2x00dev, TX_RING_CSR0);
1336	rt2x00_set_field32(&reg, TX_RING_CSR0_AC0_RING_SIZE,
1337			   rt2x00dev->tx[0].limit);
1338	rt2x00_set_field32(&reg, TX_RING_CSR0_AC1_RING_SIZE,
1339			   rt2x00dev->tx[1].limit);
1340	rt2x00_set_field32(&reg, TX_RING_CSR0_AC2_RING_SIZE,
1341			   rt2x00dev->tx[2].limit);
1342	rt2x00_set_field32(&reg, TX_RING_CSR0_AC3_RING_SIZE,
1343			   rt2x00dev->tx[3].limit);
1344	rt2x00mmio_register_write(rt2x00dev, TX_RING_CSR0, reg);
1345
1346	reg = rt2x00mmio_register_read(rt2x00dev, TX_RING_CSR1);
1347	rt2x00_set_field32(&reg, TX_RING_CSR1_TXD_SIZE,
1348			   rt2x00dev->tx[0].desc_size / 4);
1349	rt2x00mmio_register_write(rt2x00dev, TX_RING_CSR1, reg);
1350
1351	entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
1352	reg = rt2x00mmio_register_read(rt2x00dev, AC0_BASE_CSR);
1353	rt2x00_set_field32(&reg, AC0_BASE_CSR_RING_REGISTER,
1354			   entry_priv->desc_dma);
1355	rt2x00mmio_register_write(rt2x00dev, AC0_BASE_CSR, reg);
1356
1357	entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
1358	reg = rt2x00mmio_register_read(rt2x00dev, AC1_BASE_CSR);
1359	rt2x00_set_field32(&reg, AC1_BASE_CSR_RING_REGISTER,
1360			   entry_priv->desc_dma);
1361	rt2x00mmio_register_write(rt2x00dev, AC1_BASE_CSR, reg);
1362
1363	entry_priv = rt2x00dev->tx[2].entries[0].priv_data;
1364	reg = rt2x00mmio_register_read(rt2x00dev, AC2_BASE_CSR);
1365	rt2x00_set_field32(&reg, AC2_BASE_CSR_RING_REGISTER,
1366			   entry_priv->desc_dma);
1367	rt2x00mmio_register_write(rt2x00dev, AC2_BASE_CSR, reg);
1368
1369	entry_priv = rt2x00dev->tx[3].entries[0].priv_data;
1370	reg = rt2x00mmio_register_read(rt2x00dev, AC3_BASE_CSR);
1371	rt2x00_set_field32(&reg, AC3_BASE_CSR_RING_REGISTER,
1372			   entry_priv->desc_dma);
1373	rt2x00mmio_register_write(rt2x00dev, AC3_BASE_CSR, reg);
1374
1375	reg = rt2x00mmio_register_read(rt2x00dev, RX_RING_CSR);
1376	rt2x00_set_field32(&reg, RX_RING_CSR_RING_SIZE, rt2x00dev->rx->limit);
1377	rt2x00_set_field32(&reg, RX_RING_CSR_RXD_SIZE,
1378			   rt2x00dev->rx->desc_size / 4);
1379	rt2x00_set_field32(&reg, RX_RING_CSR_RXD_WRITEBACK_SIZE, 4);
1380	rt2x00mmio_register_write(rt2x00dev, RX_RING_CSR, reg);
1381
1382	entry_priv = rt2x00dev->rx->entries[0].priv_data;
1383	reg = rt2x00mmio_register_read(rt2x00dev, RX_BASE_CSR);
1384	rt2x00_set_field32(&reg, RX_BASE_CSR_RING_REGISTER,
1385			   entry_priv->desc_dma);
1386	rt2x00mmio_register_write(rt2x00dev, RX_BASE_CSR, reg);
1387
1388	reg = rt2x00mmio_register_read(rt2x00dev, TX_DMA_DST_CSR);
1389	rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC0, 2);
1390	rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC1, 2);
1391	rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC2, 2);
1392	rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC3, 2);
1393	rt2x00mmio_register_write(rt2x00dev, TX_DMA_DST_CSR, reg);
1394
1395	reg = rt2x00mmio_register_read(rt2x00dev, LOAD_TX_RING_CSR);
1396	rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC0, 1);
1397	rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC1, 1);
1398	rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC2, 1);
1399	rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC3, 1);
1400	rt2x00mmio_register_write(rt2x00dev, LOAD_TX_RING_CSR, reg);
1401
1402	reg = rt2x00mmio_register_read(rt2x00dev, RX_CNTL_CSR);
1403	rt2x00_set_field32(&reg, RX_CNTL_CSR_LOAD_RXD, 1);
1404	rt2x00mmio_register_write(rt2x00dev, RX_CNTL_CSR, reg);
1405
1406	return 0;
1407}
1408
1409static int rt61pci_init_registers(struct rt2x00_dev *rt2x00dev)
1410{
1411	u32 reg;
1412
1413	reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR0);
1414	rt2x00_set_field32(&reg, TXRX_CSR0_AUTO_TX_SEQ, 1);
1415	rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 0);
1416	rt2x00_set_field32(&reg, TXRX_CSR0_TX_WITHOUT_WAITING, 0);
1417	rt2x00mmio_register_write(rt2x00dev, TXRX_CSR0, reg);
1418
1419	reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR1);
1420	rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0, 47); /* CCK Signal */
1421	rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0_VALID, 1);
1422	rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1, 30); /* Rssi */
1423	rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1_VALID, 1);
1424	rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2, 42); /* OFDM Rate */
1425	rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2_VALID, 1);
1426	rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3, 30); /* Rssi */
1427	rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3_VALID, 1);
1428	rt2x00mmio_register_write(rt2x00dev, TXRX_CSR1, reg);
1429
1430	/*
1431	 * CCK TXD BBP registers
1432	 */
1433	reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR2);
1434	rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0, 13);
1435	rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0_VALID, 1);
1436	rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1, 12);
1437	rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1_VALID, 1);
1438	rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2, 11);
1439	rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2_VALID, 1);
1440	rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3, 10);
1441	rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3_VALID, 1);
1442	rt2x00mmio_register_write(rt2x00dev, TXRX_CSR2, reg);
1443
1444	/*
1445	 * OFDM TXD BBP registers
1446	 */
1447	reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR3);
1448	rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0, 7);
1449	rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0_VALID, 1);
1450	rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1, 6);
1451	rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1_VALID, 1);
1452	rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2, 5);
1453	rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2_VALID, 1);
1454	rt2x00mmio_register_write(rt2x00dev, TXRX_CSR3, reg);
1455
1456	reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR7);
1457	rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_6MBS, 59);
1458	rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_9MBS, 53);
1459	rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_12MBS, 49);
1460	rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_18MBS, 46);
1461	rt2x00mmio_register_write(rt2x00dev, TXRX_CSR7, reg);
1462
1463	reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR8);
1464	rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_24MBS, 44);
1465	rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_36MBS, 42);
1466	rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_48MBS, 42);
1467	rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_54MBS, 42);
1468	rt2x00mmio_register_write(rt2x00dev, TXRX_CSR8, reg);
1469
1470	reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9);
1471	rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL, 0);
1472	rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 0);
1473	rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, 0);
1474	rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 0);
1475	rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1476	rt2x00_set_field32(&reg, TXRX_CSR9_TIMESTAMP_COMPENSATE, 0);
1477	rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg);
1478
1479	rt2x00mmio_register_write(rt2x00dev, TXRX_CSR15, 0x0000000f);
1480
1481	rt2x00mmio_register_write(rt2x00dev, MAC_CSR6, 0x00000fff);
1482
1483	reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR9);
1484	rt2x00_set_field32(&reg, MAC_CSR9_CW_SELECT, 0);
1485	rt2x00mmio_register_write(rt2x00dev, MAC_CSR9, reg);
1486
1487	rt2x00mmio_register_write(rt2x00dev, MAC_CSR10, 0x0000071c);
1488
1489	if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
1490		return -EBUSY;
1491
1492	rt2x00mmio_register_write(rt2x00dev, MAC_CSR13, 0x0000e000);
1493
1494	/*
1495	 * Invalidate all Shared Keys (SEC_CSR0),
1496	 * and clear the Shared key Cipher algorithms (SEC_CSR1 & SEC_CSR5)
1497	 */
1498	rt2x00mmio_register_write(rt2x00dev, SEC_CSR0, 0x00000000);
1499	rt2x00mmio_register_write(rt2x00dev, SEC_CSR1, 0x00000000);
1500	rt2x00mmio_register_write(rt2x00dev, SEC_CSR5, 0x00000000);
1501
1502	rt2x00mmio_register_write(rt2x00dev, PHY_CSR1, 0x000023b0);
1503	rt2x00mmio_register_write(rt2x00dev, PHY_CSR5, 0x060a100c);
1504	rt2x00mmio_register_write(rt2x00dev, PHY_CSR6, 0x00080606);
1505	rt2x00mmio_register_write(rt2x00dev, PHY_CSR7, 0x00000a08);
1506
1507	rt2x00mmio_register_write(rt2x00dev, PCI_CFG_CSR, 0x28ca4404);
1508
1509	rt2x00mmio_register_write(rt2x00dev, TEST_MODE_CSR, 0x00000200);
1510
1511	rt2x00mmio_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff);
1512
1513	/*
1514	 * Clear all beacons
1515	 * For the Beacon base registers we only need to clear
1516	 * the first byte since that byte contains the VALID and OWNER
1517	 * bits which (when set to 0) will invalidate the entire beacon.
1518	 */
1519	rt2x00mmio_register_write(rt2x00dev, HW_BEACON_BASE0, 0);
1520	rt2x00mmio_register_write(rt2x00dev, HW_BEACON_BASE1, 0);
1521	rt2x00mmio_register_write(rt2x00dev, HW_BEACON_BASE2, 0);
1522	rt2x00mmio_register_write(rt2x00dev, HW_BEACON_BASE3, 0);
1523
1524	/*
1525	 * We must clear the error counters.
1526	 * These registers are cleared on read,
1527	 * so we may pass a useless variable to store the value.
1528	 */
1529	reg = rt2x00mmio_register_read(rt2x00dev, STA_CSR0);
1530	reg = rt2x00mmio_register_read(rt2x00dev, STA_CSR1);
1531	reg = rt2x00mmio_register_read(rt2x00dev, STA_CSR2);
1532
1533	/*
1534	 * Reset MAC and BBP registers.
1535	 */
1536	reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR1);
1537	rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
1538	rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
1539	rt2x00mmio_register_write(rt2x00dev, MAC_CSR1, reg);
1540
1541	reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR1);
1542	rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
1543	rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
1544	rt2x00mmio_register_write(rt2x00dev, MAC_CSR1, reg);
1545
1546	reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR1);
1547	rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
1548	rt2x00mmio_register_write(rt2x00dev, MAC_CSR1, reg);
1549
1550	return 0;
1551}
1552
1553static int rt61pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
1554{
1555	unsigned int i;
1556	u8 value;
1557
1558	for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1559		value = rt61pci_bbp_read(rt2x00dev, 0);
1560		if ((value != 0xff) && (value != 0x00))
1561			return 0;
1562		udelay(REGISTER_BUSY_DELAY);
1563	}
1564
1565	rt2x00_err(rt2x00dev, "BBP register access failed, aborting\n");
1566	return -EACCES;
1567}
1568
1569static int rt61pci_init_bbp(struct rt2x00_dev *rt2x00dev)
1570{
1571	unsigned int i;
1572	u16 eeprom;
1573	u8 reg_id;
1574	u8 value;
1575
1576	if (unlikely(rt61pci_wait_bbp_ready(rt2x00dev)))
1577		return -EACCES;
1578
1579	rt61pci_bbp_write(rt2x00dev, 3, 0x00);
1580	rt61pci_bbp_write(rt2x00dev, 15, 0x30);
1581	rt61pci_bbp_write(rt2x00dev, 21, 0xc8);
1582	rt61pci_bbp_write(rt2x00dev, 22, 0x38);
1583	rt61pci_bbp_write(rt2x00dev, 23, 0x06);
1584	rt61pci_bbp_write(rt2x00dev, 24, 0xfe);
1585	rt61pci_bbp_write(rt2x00dev, 25, 0x0a);
1586	rt61pci_bbp_write(rt2x00dev, 26, 0x0d);
1587	rt61pci_bbp_write(rt2x00dev, 34, 0x12);
1588	rt61pci_bbp_write(rt2x00dev, 37, 0x07);
1589	rt61pci_bbp_write(rt2x00dev, 39, 0xf8);
1590	rt61pci_bbp_write(rt2x00dev, 41, 0x60);
1591	rt61pci_bbp_write(rt2x00dev, 53, 0x10);
1592	rt61pci_bbp_write(rt2x00dev, 54, 0x18);
1593	rt61pci_bbp_write(rt2x00dev, 60, 0x10);
1594	rt61pci_bbp_write(rt2x00dev, 61, 0x04);
1595	rt61pci_bbp_write(rt2x00dev, 62, 0x04);
1596	rt61pci_bbp_write(rt2x00dev, 75, 0xfe);
1597	rt61pci_bbp_write(rt2x00dev, 86, 0xfe);
1598	rt61pci_bbp_write(rt2x00dev, 88, 0xfe);
1599	rt61pci_bbp_write(rt2x00dev, 90, 0x0f);
1600	rt61pci_bbp_write(rt2x00dev, 99, 0x00);
1601	rt61pci_bbp_write(rt2x00dev, 102, 0x16);
1602	rt61pci_bbp_write(rt2x00dev, 107, 0x04);
1603
1604	for (i = 0; i < EEPROM_BBP_SIZE; i++) {
1605		eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i);
1606
1607		if (eeprom != 0xffff && eeprom != 0x0000) {
1608			reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
1609			value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
1610			rt61pci_bbp_write(rt2x00dev, reg_id, value);
1611		}
1612	}
1613
1614	return 0;
1615}
1616
1617/*
1618 * Device state switch handlers.
1619 */
1620static void rt61pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
1621			       enum dev_state state)
1622{
1623	int mask = (state == STATE_RADIO_IRQ_OFF);
1624	u32 reg;
1625	unsigned long flags;
1626
1627	/*
1628	 * When interrupts are being enabled, the interrupt registers
1629	 * should clear the register to assure a clean state.
1630	 */
1631	if (state == STATE_RADIO_IRQ_ON) {
1632		reg = rt2x00mmio_register_read(rt2x00dev, INT_SOURCE_CSR);
1633		rt2x00mmio_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
1634
1635		reg = rt2x00mmio_register_read(rt2x00dev, MCU_INT_SOURCE_CSR);
1636		rt2x00mmio_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg);
1637	}
1638
1639	/*
1640	 * Only toggle the interrupts bits we are going to use.
1641	 * Non-checked interrupt bits are disabled by default.
1642	 */
1643	spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags);
1644
1645	reg = rt2x00mmio_register_read(rt2x00dev, INT_MASK_CSR);
1646	rt2x00_set_field32(&reg, INT_MASK_CSR_TXDONE, mask);
1647	rt2x00_set_field32(&reg, INT_MASK_CSR_RXDONE, mask);
1648	rt2x00_set_field32(&reg, INT_MASK_CSR_BEACON_DONE, mask);
1649	rt2x00_set_field32(&reg, INT_MASK_CSR_ENABLE_MITIGATION, mask);
1650	rt2x00_set_field32(&reg, INT_MASK_CSR_MITIGATION_PERIOD, 0xff);
1651	rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, reg);
1652
1653	reg = rt2x00mmio_register_read(rt2x00dev, MCU_INT_MASK_CSR);
1654	rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_0, mask);
1655	rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_1, mask);
1656	rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_2, mask);
1657	rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_3, mask);
1658	rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_4, mask);
1659	rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_5, mask);
1660	rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_6, mask);
1661	rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_7, mask);
1662	rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_TWAKEUP, mask);
1663	rt2x00mmio_register_write(rt2x00dev, MCU_INT_MASK_CSR, reg);
1664
1665	spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags);
1666
1667	if (state == STATE_RADIO_IRQ_OFF) {
1668		/*
1669		 * Ensure that all tasklets are finished.
1670		 */
1671		tasklet_kill(&rt2x00dev->txstatus_tasklet);
1672		tasklet_kill(&rt2x00dev->rxdone_tasklet);
1673		tasklet_kill(&rt2x00dev->autowake_tasklet);
1674		tasklet_kill(&rt2x00dev->tbtt_tasklet);
1675	}
1676}
1677
1678static int rt61pci_enable_radio(struct rt2x00_dev *rt2x00dev)
1679{
1680	u32 reg;
1681
1682	/*
1683	 * Initialize all registers.
1684	 */
1685	if (unlikely(rt61pci_init_queues(rt2x00dev) ||
1686		     rt61pci_init_registers(rt2x00dev) ||
1687		     rt61pci_init_bbp(rt2x00dev)))
1688		return -EIO;
1689
1690	/*
1691	 * Enable RX.
1692	 */
1693	reg = rt2x00mmio_register_read(rt2x00dev, RX_CNTL_CSR);
1694	rt2x00_set_field32(&reg, RX_CNTL_CSR_ENABLE_RX_DMA, 1);
1695	rt2x00mmio_register_write(rt2x00dev, RX_CNTL_CSR, reg);
1696
1697	return 0;
1698}
1699
1700static void rt61pci_disable_radio(struct rt2x00_dev *rt2x00dev)
1701{
1702	/*
1703	 * Disable power
1704	 */
1705	rt2x00mmio_register_write(rt2x00dev, MAC_CSR10, 0x00001818);
1706}
1707
1708static int rt61pci_set_state(struct rt2x00_dev *rt2x00dev, enum dev_state state)
1709{
1710	u32 reg, reg2;
1711	unsigned int i;
1712	bool put_to_sleep;
1713
1714	put_to_sleep = (state != STATE_AWAKE);
1715
1716	reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR12);
1717	rt2x00_set_field32(&reg, MAC_CSR12_FORCE_WAKEUP, !put_to_sleep);
1718	rt2x00_set_field32(&reg, MAC_CSR12_PUT_TO_SLEEP, put_to_sleep);
1719	rt2x00mmio_register_write(rt2x00dev, MAC_CSR12, reg);
1720
1721	/*
1722	 * Device is not guaranteed to be in the requested state yet.
1723	 * We must wait until the register indicates that the
1724	 * device has entered the correct state.
1725	 */
1726	for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1727		reg2 = rt2x00mmio_register_read(rt2x00dev, MAC_CSR12);
1728		state = rt2x00_get_field32(reg2, MAC_CSR12_BBP_CURRENT_STATE);
1729		if (state == !put_to_sleep)
1730			return 0;
1731		rt2x00mmio_register_write(rt2x00dev, MAC_CSR12, reg);
1732		msleep(10);
1733	}
1734
1735	return -EBUSY;
1736}
1737
1738static int rt61pci_set_device_state(struct rt2x00_dev *rt2x00dev,
1739				    enum dev_state state)
1740{
1741	int retval = 0;
1742
1743	switch (state) {
1744	case STATE_RADIO_ON:
1745		retval = rt61pci_enable_radio(rt2x00dev);
1746		break;
1747	case STATE_RADIO_OFF:
1748		rt61pci_disable_radio(rt2x00dev);
1749		break;
1750	case STATE_RADIO_IRQ_ON:
1751	case STATE_RADIO_IRQ_OFF:
1752		rt61pci_toggle_irq(rt2x00dev, state);
1753		break;
1754	case STATE_DEEP_SLEEP:
1755	case STATE_SLEEP:
1756	case STATE_STANDBY:
1757	case STATE_AWAKE:
1758		retval = rt61pci_set_state(rt2x00dev, state);
1759		break;
1760	default:
1761		retval = -ENOTSUPP;
1762		break;
1763	}
1764
1765	if (unlikely(retval))
1766		rt2x00_err(rt2x00dev, "Device failed to enter state %d (%d)\n",
1767			   state, retval);
1768
1769	return retval;
1770}
1771
1772/*
1773 * TX descriptor initialization
1774 */
1775static void rt61pci_write_tx_desc(struct queue_entry *entry,
1776				  struct txentry_desc *txdesc)
1777{
1778	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1779	struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
1780	__le32 *txd = entry_priv->desc;
1781	u32 word;
1782
1783	/*
1784	 * Start writing the descriptor words.
1785	 */
1786	word = rt2x00_desc_read(txd, 1);
1787	rt2x00_set_field32(&word, TXD_W1_HOST_Q_ID, entry->queue->qid);
1788	rt2x00_set_field32(&word, TXD_W1_AIFSN, entry->queue->aifs);
1789	rt2x00_set_field32(&word, TXD_W1_CWMIN, entry->queue->cw_min);
1790	rt2x00_set_field32(&word, TXD_W1_CWMAX, entry->queue->cw_max);
1791	rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, txdesc->iv_offset);
1792	rt2x00_set_field32(&word, TXD_W1_HW_SEQUENCE,
1793			   test_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags));
1794	rt2x00_set_field32(&word, TXD_W1_BUFFER_COUNT, 1);
1795	rt2x00_desc_write(txd, 1, word);
1796
1797	word = rt2x00_desc_read(txd, 2);
1798	rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->u.plcp.signal);
1799	rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->u.plcp.service);
1800	rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW,
1801			   txdesc->u.plcp.length_low);
1802	rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH,
1803			   txdesc->u.plcp.length_high);
1804	rt2x00_desc_write(txd, 2, word);
1805
1806	if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags)) {
1807		_rt2x00_desc_write(txd, 3, skbdesc->iv[0]);
1808		_rt2x00_desc_write(txd, 4, skbdesc->iv[1]);
1809	}
1810
1811	word = rt2x00_desc_read(txd, 5);
1812	rt2x00_set_field32(&word, TXD_W5_PID_TYPE, entry->queue->qid);
1813	rt2x00_set_field32(&word, TXD_W5_PID_SUBTYPE, entry->entry_idx);
1814	rt2x00_set_field32(&word, TXD_W5_TX_POWER,
1815			   TXPOWER_TO_DEV(entry->queue->rt2x00dev->tx_power));
1816	rt2x00_set_field32(&word, TXD_W5_WAITING_DMA_DONE_INT, 1);
1817	rt2x00_desc_write(txd, 5, word);
1818
1819	if (entry->queue->qid != QID_BEACON) {
1820		word = rt2x00_desc_read(txd, 6);
1821		rt2x00_set_field32(&word, TXD_W6_BUFFER_PHYSICAL_ADDRESS,
1822				   skbdesc->skb_dma);
1823		rt2x00_desc_write(txd, 6, word);
1824
1825		word = rt2x00_desc_read(txd, 11);
1826		rt2x00_set_field32(&word, TXD_W11_BUFFER_LENGTH0,
1827				   txdesc->length);
1828		rt2x00_desc_write(txd, 11, word);
1829	}
1830
1831	/*
1832	 * Writing TXD word 0 must the last to prevent a race condition with
1833	 * the device, whereby the device may take hold of the TXD before we
1834	 * finished updating it.
1835	 */
1836	word = rt2x00_desc_read(txd, 0);
1837	rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1838	rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1839	rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1840			   test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1841	rt2x00_set_field32(&word, TXD_W0_ACK,
1842			   test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1843	rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1844			   test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1845	rt2x00_set_field32(&word, TXD_W0_OFDM,
1846			   (txdesc->rate_mode == RATE_MODE_OFDM));
1847	rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->u.plcp.ifs);
1848	rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1849			   test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
1850	rt2x00_set_field32(&word, TXD_W0_TKIP_MIC,
1851			   test_bit(ENTRY_TXD_ENCRYPT_MMIC, &txdesc->flags));
1852	rt2x00_set_field32(&word, TXD_W0_KEY_TABLE,
1853			   test_bit(ENTRY_TXD_ENCRYPT_PAIRWISE, &txdesc->flags));
1854	rt2x00_set_field32(&word, TXD_W0_KEY_INDEX, txdesc->key_idx);
1855	rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, txdesc->length);
1856	rt2x00_set_field32(&word, TXD_W0_BURST,
1857			   test_bit(ENTRY_TXD_BURST, &txdesc->flags));
1858	rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, txdesc->cipher);
1859	rt2x00_desc_write(txd, 0, word);
1860
1861	/*
1862	 * Register descriptor details in skb frame descriptor.
1863	 */
1864	skbdesc->desc = txd;
1865	skbdesc->desc_len = (entry->queue->qid == QID_BEACON) ? TXINFO_SIZE :
1866			    TXD_DESC_SIZE;
1867}
1868
1869/*
1870 * TX data initialization
1871 */
1872static void rt61pci_write_beacon(struct queue_entry *entry,
1873				 struct txentry_desc *txdesc)
1874{
1875	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1876	struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
1877	unsigned int beacon_base;
1878	unsigned int padding_len;
1879	u32 orig_reg, reg;
1880
1881	/*
1882	 * Disable beaconing while we are reloading the beacon data,
1883	 * otherwise we might be sending out invalid data.
1884	 */
1885	reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9);
1886	orig_reg = reg;
1887	rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1888	rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg);
1889
1890	/*
1891	 * Write the TX descriptor for the beacon.
1892	 */
1893	rt61pci_write_tx_desc(entry, txdesc);
1894
1895	/*
1896	 * Dump beacon to userspace through debugfs.
1897	 */
1898	rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry);
1899
1900	/*
1901	 * Write entire beacon with descriptor and padding to register.
1902	 */
1903	padding_len = roundup(entry->skb->len, 4) - entry->skb->len;
1904	if (padding_len && skb_pad(entry->skb, padding_len)) {
1905		rt2x00_err(rt2x00dev, "Failure padding beacon, aborting\n");
1906		/* skb freed by skb_pad() on failure */
1907		entry->skb = NULL;
1908		rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, orig_reg);
1909		return;
1910	}
1911
1912	beacon_base = HW_BEACON_OFFSET(entry->entry_idx);
1913	rt2x00mmio_register_multiwrite(rt2x00dev, beacon_base,
1914				       entry_priv->desc, TXINFO_SIZE);
1915	rt2x00mmio_register_multiwrite(rt2x00dev, beacon_base + TXINFO_SIZE,
1916				       entry->skb->data,
1917				       entry->skb->len + padding_len);
1918
1919	/*
1920	 * Enable beaconing again.
1921	 *
1922	 * For Wi-Fi faily generated beacons between participating
1923	 * stations. Set TBTT phase adaptive adjustment step to 8us.
1924	 */
1925	rt2x00mmio_register_write(rt2x00dev, TXRX_CSR10, 0x00001008);
1926
1927	rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 1);
1928	rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg);
1929
1930	/*
1931	 * Clean up beacon skb.
1932	 */
1933	dev_kfree_skb_any(entry->skb);
1934	entry->skb = NULL;
1935}
1936
1937static void rt61pci_clear_beacon(struct queue_entry *entry)
1938{
1939	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1940	u32 orig_reg, reg;
1941
1942	/*
1943	 * Disable beaconing while we are reloading the beacon data,
1944	 * otherwise we might be sending out invalid data.
1945	 */
1946	orig_reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9);
1947	reg = orig_reg;
1948	rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1949	rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg);
1950
1951	/*
1952	 * Clear beacon.
1953	 */
1954	rt2x00mmio_register_write(rt2x00dev,
1955				  HW_BEACON_OFFSET(entry->entry_idx), 0);
1956
1957	/*
1958	 * Restore global beaconing state.
1959	 */
1960	rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, orig_reg);
1961}
1962
1963/*
1964 * RX control handlers
1965 */
1966static int rt61pci_agc_to_rssi(struct rt2x00_dev *rt2x00dev, int rxd_w1)
1967{
1968	u8 offset = rt2x00dev->lna_gain;
1969	u8 lna;
1970
1971	lna = rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_LNA);
1972	switch (lna) {
1973	case 3:
1974		offset += 90;
1975		break;
1976	case 2:
1977		offset += 74;
1978		break;
1979	case 1:
1980		offset += 64;
1981		break;
1982	default:
1983		return 0;
1984	}
1985
1986	if (rt2x00dev->curr_band == NL80211_BAND_5GHZ) {
1987		if (lna == 3 || lna == 2)
1988			offset += 10;
1989	}
1990
1991	return rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_AGC) * 2 - offset;
1992}
1993
1994static void rt61pci_fill_rxdone(struct queue_entry *entry,
1995				struct rxdone_entry_desc *rxdesc)
1996{
1997	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1998	struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
1999	u32 word0;
2000	u32 word1;
2001
2002	word0 = rt2x00_desc_read(entry_priv->desc, 0);
2003	word1 = rt2x00_desc_read(entry_priv->desc, 1);
2004
2005	if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
2006		rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
2007
2008	rxdesc->cipher = rt2x00_get_field32(word0, RXD_W0_CIPHER_ALG);
2009	rxdesc->cipher_status = rt2x00_get_field32(word0, RXD_W0_CIPHER_ERROR);
2010
2011	if (rxdesc->cipher != CIPHER_NONE) {
2012		rxdesc->iv[0] = _rt2x00_desc_read(entry_priv->desc, 2);
2013		rxdesc->iv[1] = _rt2x00_desc_read(entry_priv->desc, 3);
2014		rxdesc->dev_flags |= RXDONE_CRYPTO_IV;
2015
2016		rxdesc->icv = _rt2x00_desc_read(entry_priv->desc, 4);
2017		rxdesc->dev_flags |= RXDONE_CRYPTO_ICV;
2018
2019		/*
2020		 * Hardware has stripped IV/EIV data from 802.11 frame during
2021		 * decryption. It has provided the data separately but rt2x00lib
2022		 * should decide if it should be reinserted.
2023		 */
2024		rxdesc->flags |= RX_FLAG_IV_STRIPPED;
2025
2026		/*
2027		 * The hardware has already checked the Michael Mic and has
2028		 * stripped it from the frame. Signal this to mac80211.
2029		 */
2030		rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
2031
2032		if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
2033			rxdesc->flags |= RX_FLAG_DECRYPTED;
2034		else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
2035			rxdesc->flags |= RX_FLAG_MMIC_ERROR;
2036	}
2037
2038	/*
2039	 * Obtain the status about this packet.
2040	 * When frame was received with an OFDM bitrate,
2041	 * the signal is the PLCP value. If it was received with
2042	 * a CCK bitrate the signal is the rate in 100kbit/s.
2043	 */
2044	rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
2045	rxdesc->rssi = rt61pci_agc_to_rssi(rt2x00dev, word1);
2046	rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
2047
2048	if (rt2x00_get_field32(word0, RXD_W0_OFDM))
2049		rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
2050	else
2051		rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
2052	if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
2053		rxdesc->dev_flags |= RXDONE_MY_BSS;
2054}
2055
2056/*
2057 * Interrupt functions.
2058 */
2059static void rt61pci_txdone(struct rt2x00_dev *rt2x00dev)
2060{
2061	struct data_queue *queue;
2062	struct queue_entry *entry;
2063	struct queue_entry *entry_done;
2064	struct queue_entry_priv_mmio *entry_priv;
2065	struct txdone_entry_desc txdesc;
2066	u32 word;
2067	u32 reg;
2068	int type;
2069	int index;
2070	int i;
2071
2072	/*
2073	 * TX_STA_FIFO is a stack of X entries, hence read TX_STA_FIFO
2074	 * at most X times and also stop processing once the TX_STA_FIFO_VALID
2075	 * flag is not set anymore.
2076	 *
2077	 * The legacy drivers use X=TX_RING_SIZE but state in a comment
2078	 * that the TX_STA_FIFO stack has a size of 16. We stick to our
2079	 * tx ring size for now.
2080	 */
2081	for (i = 0; i < rt2x00dev->tx->limit; i++) {
2082		reg = rt2x00mmio_register_read(rt2x00dev, STA_CSR4);
2083		if (!rt2x00_get_field32(reg, STA_CSR4_VALID))
2084			break;
2085
2086		/*
2087		 * Skip this entry when it contains an invalid
2088		 * queue identication number.
2089		 */
2090		type = rt2x00_get_field32(reg, STA_CSR4_PID_TYPE);
2091		queue = rt2x00queue_get_tx_queue(rt2x00dev, type);
2092		if (unlikely(!queue))
2093			continue;
2094
2095		/*
2096		 * Skip this entry when it contains an invalid
2097		 * index number.
2098		 */
2099		index = rt2x00_get_field32(reg, STA_CSR4_PID_SUBTYPE);
2100		if (unlikely(index >= queue->limit))
2101			continue;
2102
2103		entry = &queue->entries[index];
2104		entry_priv = entry->priv_data;
2105		word = rt2x00_desc_read(entry_priv->desc, 0);
2106
2107		if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
2108		    !rt2x00_get_field32(word, TXD_W0_VALID))
2109			return;
2110
2111		entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
2112		while (entry != entry_done) {
2113			/* Catch up.
2114			 * Just report any entries we missed as failed.
2115			 */
2116			rt2x00_warn(rt2x00dev, "TX status report missed for entry %d\n",
2117				    entry_done->entry_idx);
2118
2119			rt2x00lib_txdone_noinfo(entry_done, TXDONE_UNKNOWN);
2120			entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
2121		}
2122
2123		/*
2124		 * Obtain the status about this packet.
2125		 */
2126		txdesc.flags = 0;
2127		switch (rt2x00_get_field32(reg, STA_CSR4_TX_RESULT)) {
2128		case 0: /* Success, maybe with retry */
2129			__set_bit(TXDONE_SUCCESS, &txdesc.flags);
2130			break;
2131		case 6: /* Failure, excessive retries */
2132			__set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
2133			fallthrough;	/* this is a failed frame! */
2134		default: /* Failure */
2135			__set_bit(TXDONE_FAILURE, &txdesc.flags);
2136		}
2137		txdesc.retry = rt2x00_get_field32(reg, STA_CSR4_RETRY_COUNT);
2138
2139		/*
2140		 * the frame was retried at least once
2141		 * -> hw used fallback rates
2142		 */
2143		if (txdesc.retry)
2144			__set_bit(TXDONE_FALLBACK, &txdesc.flags);
2145
2146		rt2x00lib_txdone(entry, &txdesc);
2147	}
2148}
2149
2150static void rt61pci_wakeup(struct rt2x00_dev *rt2x00dev)
2151{
2152	struct rt2x00lib_conf libconf = { .conf = &rt2x00dev->hw->conf };
2153
2154	rt61pci_config(rt2x00dev, &libconf, IEEE80211_CONF_CHANGE_PS);
2155}
2156
2157static inline void rt61pci_enable_interrupt(struct rt2x00_dev *rt2x00dev,
2158					    struct rt2x00_field32 irq_field)
2159{
2160	u32 reg;
2161
2162	/*
2163	 * Enable a single interrupt. The interrupt mask register
2164	 * access needs locking.
2165	 */
2166	spin_lock_irq(&rt2x00dev->irqmask_lock);
2167
2168	reg = rt2x00mmio_register_read(rt2x00dev, INT_MASK_CSR);
2169	rt2x00_set_field32(&reg, irq_field, 0);
2170	rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, reg);
2171
2172	spin_unlock_irq(&rt2x00dev->irqmask_lock);
2173}
2174
2175static void rt61pci_enable_mcu_interrupt(struct rt2x00_dev *rt2x00dev,
2176					 struct rt2x00_field32 irq_field)
2177{
2178	u32 reg;
2179
2180	/*
2181	 * Enable a single MCU interrupt. The interrupt mask register
2182	 * access needs locking.
2183	 */
2184	spin_lock_irq(&rt2x00dev->irqmask_lock);
2185
2186	reg = rt2x00mmio_register_read(rt2x00dev, MCU_INT_MASK_CSR);
2187	rt2x00_set_field32(&reg, irq_field, 0);
2188	rt2x00mmio_register_write(rt2x00dev, MCU_INT_MASK_CSR, reg);
2189
2190	spin_unlock_irq(&rt2x00dev->irqmask_lock);
2191}
2192
2193static void rt61pci_txstatus_tasklet(struct tasklet_struct *t)
2194{
2195	struct rt2x00_dev *rt2x00dev = from_tasklet(rt2x00dev, t,
2196						    txstatus_tasklet);
2197
2198	rt61pci_txdone(rt2x00dev);
2199	if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
2200		rt61pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_TXDONE);
2201}
2202
2203static void rt61pci_tbtt_tasklet(struct tasklet_struct *t)
2204{
2205	struct rt2x00_dev *rt2x00dev = from_tasklet(rt2x00dev, t, tbtt_tasklet);
2206	rt2x00lib_beacondone(rt2x00dev);
2207	if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
2208		rt61pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_BEACON_DONE);
2209}
2210
2211static void rt61pci_rxdone_tasklet(struct tasklet_struct *t)
2212{
2213	struct rt2x00_dev *rt2x00dev = from_tasklet(rt2x00dev, t,
2214						    rxdone_tasklet);
2215	if (rt2x00mmio_rxdone(rt2x00dev))
2216		tasklet_schedule(&rt2x00dev->rxdone_tasklet);
2217	else if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
2218		rt61pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_RXDONE);
2219}
2220
2221static void rt61pci_autowake_tasklet(struct tasklet_struct *t)
2222{
2223	struct rt2x00_dev *rt2x00dev = from_tasklet(rt2x00dev, t,
2224						    autowake_tasklet);
2225	rt61pci_wakeup(rt2x00dev);
2226	rt2x00mmio_register_write(rt2x00dev,
2227				  M2H_CMD_DONE_CSR, 0xffffffff);
2228	if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
2229		rt61pci_enable_mcu_interrupt(rt2x00dev, MCU_INT_MASK_CSR_TWAKEUP);
2230}
2231
2232static irqreturn_t rt61pci_interrupt(int irq, void *dev_instance)
2233{
2234	struct rt2x00_dev *rt2x00dev = dev_instance;
2235	u32 reg_mcu, mask_mcu;
2236	u32 reg, mask;
2237
2238	/*
2239	 * Get the interrupt sources & saved to local variable.
2240	 * Write register value back to clear pending interrupts.
2241	 */
2242	reg_mcu = rt2x00mmio_register_read(rt2x00dev, MCU_INT_SOURCE_CSR);
2243	rt2x00mmio_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg_mcu);
2244
2245	reg = rt2x00mmio_register_read(rt2x00dev, INT_SOURCE_CSR);
2246	rt2x00mmio_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
2247
2248	if (!reg && !reg_mcu)
2249		return IRQ_NONE;
2250
2251	if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
2252		return IRQ_HANDLED;
2253
2254	/*
2255	 * Schedule tasklets for interrupt handling.
2256	 */
2257	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RXDONE))
2258		tasklet_schedule(&rt2x00dev->rxdone_tasklet);
2259
2260	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TXDONE))
2261		tasklet_schedule(&rt2x00dev->txstatus_tasklet);
2262
2263	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_BEACON_DONE))
2264		tasklet_hi_schedule(&rt2x00dev->tbtt_tasklet);
2265
2266	if (rt2x00_get_field32(reg_mcu, MCU_INT_SOURCE_CSR_TWAKEUP))
2267		tasklet_schedule(&rt2x00dev->autowake_tasklet);
2268
2269	/*
2270	 * Since INT_MASK_CSR and INT_SOURCE_CSR use the same bits
2271	 * for interrupts and interrupt masks we can just use the value of
2272	 * INT_SOURCE_CSR to create the interrupt mask.
2273	 */
2274	mask = reg;
2275	mask_mcu = reg_mcu;
2276
2277	/*
2278	 * Disable all interrupts for which a tasklet was scheduled right now,
2279	 * the tasklet will reenable the appropriate interrupts.
2280	 */
2281	spin_lock(&rt2x00dev->irqmask_lock);
2282
2283	reg = rt2x00mmio_register_read(rt2x00dev, INT_MASK_CSR);
2284	reg |= mask;
2285	rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, reg);
2286
2287	reg = rt2x00mmio_register_read(rt2x00dev, MCU_INT_MASK_CSR);
2288	reg |= mask_mcu;
2289	rt2x00mmio_register_write(rt2x00dev, MCU_INT_MASK_CSR, reg);
2290
2291	spin_unlock(&rt2x00dev->irqmask_lock);
2292
2293	return IRQ_HANDLED;
2294}
2295
2296/*
2297 * Device probe functions.
2298 */
2299static int rt61pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
2300{
2301	struct eeprom_93cx6 eeprom;
2302	u32 reg;
2303	u16 word;
2304	u8 *mac;
2305	s8 value;
2306
2307	reg = rt2x00mmio_register_read(rt2x00dev, E2PROM_CSR);
2308
2309	eeprom.data = rt2x00dev;
2310	eeprom.register_read = rt61pci_eepromregister_read;
2311	eeprom.register_write = rt61pci_eepromregister_write;
2312	eeprom.width = rt2x00_get_field32(reg, E2PROM_CSR_TYPE_93C46) ?
2313	    PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
2314	eeprom.reg_data_in = 0;
2315	eeprom.reg_data_out = 0;
2316	eeprom.reg_data_clock = 0;
2317	eeprom.reg_chip_select = 0;
2318
2319	eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
2320			       EEPROM_SIZE / sizeof(u16));
2321
2322	/*
2323	 * Start validation of the data that has been read.
2324	 */
2325	mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
2326	rt2x00lib_set_mac_address(rt2x00dev, mac);
2327
2328	word = rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA);
2329	if (word == 0xffff) {
2330		rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
2331		rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
2332				   ANTENNA_B);
2333		rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
2334				   ANTENNA_B);
2335		rt2x00_set_field16(&word, EEPROM_ANTENNA_FRAME_TYPE, 0);
2336		rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
2337		rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
2338		rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF5225);
2339		rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
2340		rt2x00_eeprom_dbg(rt2x00dev, "Antenna: 0x%04x\n", word);
2341	}
2342
2343	word = rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC);
2344	if (word == 0xffff) {
2345		rt2x00_set_field16(&word, EEPROM_NIC_ENABLE_DIVERSITY, 0);
2346		rt2x00_set_field16(&word, EEPROM_NIC_TX_DIVERSITY, 0);
2347		rt2x00_set_field16(&word, EEPROM_NIC_RX_FIXED, 0);
2348		rt2x00_set_field16(&word, EEPROM_NIC_TX_FIXED, 0);
2349		rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_BG, 0);
2350		rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
2351		rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_A, 0);
2352		rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
2353		rt2x00_eeprom_dbg(rt2x00dev, "NIC: 0x%04x\n", word);
2354	}
2355
2356	word = rt2x00_eeprom_read(rt2x00dev, EEPROM_LED);
2357	if (word == 0xffff) {
2358		rt2x00_set_field16(&word, EEPROM_LED_LED_MODE,
2359				   LED_MODE_DEFAULT);
2360		rt2x00_eeprom_write(rt2x00dev, EEPROM_LED, word);
2361		rt2x00_eeprom_dbg(rt2x00dev, "Led: 0x%04x\n", word);
2362	}
2363
2364	word = rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ);
2365	if (word == 0xffff) {
2366		rt2x00_set_field16(&word, EEPROM_FREQ_OFFSET, 0);
2367		rt2x00_set_field16(&word, EEPROM_FREQ_SEQ, 0);
2368		rt2x00_eeprom_write(rt2x00dev, EEPROM_FREQ, word);
2369		rt2x00_eeprom_dbg(rt2x00dev, "Freq: 0x%04x\n", word);
2370	}
2371
2372	word = rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG);
2373	if (word == 0xffff) {
2374		rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
2375		rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
2376		rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
2377		rt2x00_eeprom_dbg(rt2x00dev, "RSSI OFFSET BG: 0x%04x\n", word);
2378	} else {
2379		value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_1);
2380		if (value < -10 || value > 10)
2381			rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
2382		value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_2);
2383		if (value < -10 || value > 10)
2384			rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
2385		rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
2386	}
2387
2388	word = rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A);
2389	if (word == 0xffff) {
2390		rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
2391		rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
2392		rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
2393		rt2x00_eeprom_dbg(rt2x00dev, "RSSI OFFSET A: 0x%04x\n", word);
2394	} else {
2395		value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_1);
2396		if (value < -10 || value > 10)
2397			rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
2398		value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_2);
2399		if (value < -10 || value > 10)
2400			rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
2401		rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
2402	}
2403
2404	return 0;
2405}
2406
2407static int rt61pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
2408{
2409	u32 reg;
2410	u16 value;
2411	u16 eeprom;
2412
2413	/*
2414	 * Read EEPROM word for configuration.
2415	 */
2416	eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA);
2417
2418	/*
2419	 * Identify RF chipset.
2420	 */
2421	value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
2422	reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR0);
2423	rt2x00_set_chip(rt2x00dev, rt2x00_get_field32(reg, MAC_CSR0_CHIPSET),
2424			value, rt2x00_get_field32(reg, MAC_CSR0_REVISION));
2425
2426	if (!rt2x00_rf(rt2x00dev, RF5225) &&
2427	    !rt2x00_rf(rt2x00dev, RF5325) &&
2428	    !rt2x00_rf(rt2x00dev, RF2527) &&
2429	    !rt2x00_rf(rt2x00dev, RF2529)) {
2430		rt2x00_err(rt2x00dev, "Invalid RF chipset detected\n");
2431		return -ENODEV;
2432	}
2433
2434	/*
2435	 * Determine number of antennas.
2436	 */
2437	if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_NUM) == 2)
2438		__set_bit(CAPABILITY_DOUBLE_ANTENNA, &rt2x00dev->cap_flags);
2439
2440	/*
2441	 * Identify default antenna configuration.
2442	 */
2443	rt2x00dev->default_ant.tx =
2444	    rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
2445	rt2x00dev->default_ant.rx =
2446	    rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
2447
2448	/*
2449	 * Read the Frame type.
2450	 */
2451	if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_FRAME_TYPE))
2452		__set_bit(CAPABILITY_FRAME_TYPE, &rt2x00dev->cap_flags);
2453
2454	/*
2455	 * Detect if this device has a hardware controlled radio.
2456	 */
2457	if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
2458		__set_bit(CAPABILITY_HW_BUTTON, &rt2x00dev->cap_flags);
2459
2460	/*
2461	 * Read frequency offset and RF programming sequence.
2462	 */
2463	eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ);
2464	if (rt2x00_get_field16(eeprom, EEPROM_FREQ_SEQ))
2465		__set_bit(CAPABILITY_RF_SEQUENCE, &rt2x00dev->cap_flags);
2466
2467	rt2x00dev->freq_offset = rt2x00_get_field16(eeprom, EEPROM_FREQ_OFFSET);
2468
2469	/*
2470	 * Read external LNA informations.
2471	 */
2472	eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC);
2473
2474	if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_A))
2475		__set_bit(CAPABILITY_EXTERNAL_LNA_A, &rt2x00dev->cap_flags);
2476	if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_BG))
2477		__set_bit(CAPABILITY_EXTERNAL_LNA_BG, &rt2x00dev->cap_flags);
2478
2479	/*
2480	 * When working with a RF2529 chip without double antenna,
2481	 * the antenna settings should be gathered from the NIC
2482	 * eeprom word.
2483	 */
2484	if (rt2x00_rf(rt2x00dev, RF2529) &&
2485	    !rt2x00_has_cap_double_antenna(rt2x00dev)) {
2486		rt2x00dev->default_ant.rx =
2487		    ANTENNA_A + rt2x00_get_field16(eeprom, EEPROM_NIC_RX_FIXED);
2488		rt2x00dev->default_ant.tx =
2489		    ANTENNA_B - rt2x00_get_field16(eeprom, EEPROM_NIC_TX_FIXED);
2490
2491		if (rt2x00_get_field16(eeprom, EEPROM_NIC_TX_DIVERSITY))
2492			rt2x00dev->default_ant.tx = ANTENNA_SW_DIVERSITY;
2493		if (rt2x00_get_field16(eeprom, EEPROM_NIC_ENABLE_DIVERSITY))
2494			rt2x00dev->default_ant.rx = ANTENNA_SW_DIVERSITY;
2495	}
2496
2497	/*
2498	 * Store led settings, for correct led behaviour.
2499	 * If the eeprom value is invalid,
2500	 * switch to default led mode.
2501	 */
2502#ifdef CONFIG_RT2X00_LIB_LEDS
2503	eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_LED);
2504	value = rt2x00_get_field16(eeprom, EEPROM_LED_LED_MODE);
2505
2506	rt61pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
2507	rt61pci_init_led(rt2x00dev, &rt2x00dev->led_assoc, LED_TYPE_ASSOC);
2508	if (value == LED_MODE_SIGNAL_STRENGTH)
2509		rt61pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
2510				 LED_TYPE_QUALITY);
2511
2512	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_LED_MODE, value);
2513	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_0,
2514			   rt2x00_get_field16(eeprom,
2515					      EEPROM_LED_POLARITY_GPIO_0));
2516	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_1,
2517			   rt2x00_get_field16(eeprom,
2518					      EEPROM_LED_POLARITY_GPIO_1));
2519	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_2,
2520			   rt2x00_get_field16(eeprom,
2521					      EEPROM_LED_POLARITY_GPIO_2));
2522	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_3,
2523			   rt2x00_get_field16(eeprom,
2524					      EEPROM_LED_POLARITY_GPIO_3));
2525	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_4,
2526			   rt2x00_get_field16(eeprom,
2527					      EEPROM_LED_POLARITY_GPIO_4));
2528	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_ACT,
2529			   rt2x00_get_field16(eeprom, EEPROM_LED_POLARITY_ACT));
2530	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_BG,
2531			   rt2x00_get_field16(eeprom,
2532					      EEPROM_LED_POLARITY_RDY_G));
2533	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_A,
2534			   rt2x00_get_field16(eeprom,
2535					      EEPROM_LED_POLARITY_RDY_A));
2536#endif /* CONFIG_RT2X00_LIB_LEDS */
2537
2538	return 0;
2539}
2540
2541/*
2542 * RF value list for RF5225 & RF5325
2543 * Supports: 2.4 GHz & 5.2 GHz, rf_sequence disabled
2544 */
2545static const struct rf_channel rf_vals_noseq[] = {
2546	{ 1,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
2547	{ 2,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
2548	{ 3,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
2549	{ 4,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
2550	{ 5,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
2551	{ 6,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
2552	{ 7,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
2553	{ 8,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
2554	{ 9,  0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
2555	{ 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
2556	{ 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
2557	{ 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
2558	{ 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
2559	{ 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
2560
2561	/* 802.11 UNI / HyperLan 2 */
2562	{ 36, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa23 },
2563	{ 40, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa03 },
2564	{ 44, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa0b },
2565	{ 48, 0x00002ccc, 0x000049aa, 0x0009be55, 0x000ffa13 },
2566	{ 52, 0x00002ccc, 0x000049ae, 0x0009ae55, 0x000ffa1b },
2567	{ 56, 0x00002ccc, 0x000049b2, 0x0009ae55, 0x000ffa23 },
2568	{ 60, 0x00002ccc, 0x000049ba, 0x0009ae55, 0x000ffa03 },
2569	{ 64, 0x00002ccc, 0x000049be, 0x0009ae55, 0x000ffa0b },
2570
2571	/* 802.11 HyperLan 2 */
2572	{ 100, 0x00002ccc, 0x00004a2a, 0x000bae55, 0x000ffa03 },
2573	{ 104, 0x00002ccc, 0x00004a2e, 0x000bae55, 0x000ffa0b },
2574	{ 108, 0x00002ccc, 0x00004a32, 0x000bae55, 0x000ffa13 },
2575	{ 112, 0x00002ccc, 0x00004a36, 0x000bae55, 0x000ffa1b },
2576	{ 116, 0x00002ccc, 0x00004a3a, 0x000bbe55, 0x000ffa23 },
2577	{ 120, 0x00002ccc, 0x00004a82, 0x000bbe55, 0x000ffa03 },
2578	{ 124, 0x00002ccc, 0x00004a86, 0x000bbe55, 0x000ffa0b },
2579	{ 128, 0x00002ccc, 0x00004a8a, 0x000bbe55, 0x000ffa13 },
2580	{ 132, 0x00002ccc, 0x00004a8e, 0x000bbe55, 0x000ffa1b },
2581	{ 136, 0x00002ccc, 0x00004a92, 0x000bbe55, 0x000ffa23 },
2582
2583	/* 802.11 UNII */
2584	{ 140, 0x00002ccc, 0x00004a9a, 0x000bbe55, 0x000ffa03 },
2585	{ 149, 0x00002ccc, 0x00004aa2, 0x000bbe55, 0x000ffa1f },
2586	{ 153, 0x00002ccc, 0x00004aa6, 0x000bbe55, 0x000ffa27 },
2587	{ 157, 0x00002ccc, 0x00004aae, 0x000bbe55, 0x000ffa07 },
2588	{ 161, 0x00002ccc, 0x00004ab2, 0x000bbe55, 0x000ffa0f },
2589	{ 165, 0x00002ccc, 0x00004ab6, 0x000bbe55, 0x000ffa17 },
2590
2591	/* MMAC(Japan)J52 ch 34,38,42,46 */
2592	{ 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa0b },
2593	{ 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000ffa13 },
2594	{ 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa1b },
2595	{ 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa23 },
2596};
2597
2598/*
2599 * RF value list for RF5225 & RF5325
2600 * Supports: 2.4 GHz & 5.2 GHz, rf_sequence enabled
2601 */
2602static const struct rf_channel rf_vals_seq[] = {
2603	{ 1,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
2604	{ 2,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
2605	{ 3,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
2606	{ 4,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
2607	{ 5,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
2608	{ 6,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
2609	{ 7,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
2610	{ 8,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
2611	{ 9,  0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
2612	{ 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
2613	{ 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
2614	{ 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
2615	{ 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
2616	{ 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
2617
2618	/* 802.11 UNI / HyperLan 2 */
2619	{ 36, 0x00002cd4, 0x0004481a, 0x00098455, 0x000c0a03 },
2620	{ 40, 0x00002cd0, 0x00044682, 0x00098455, 0x000c0a03 },
2621	{ 44, 0x00002cd0, 0x00044686, 0x00098455, 0x000c0a1b },
2622	{ 48, 0x00002cd0, 0x0004468e, 0x00098655, 0x000c0a0b },
2623	{ 52, 0x00002cd0, 0x00044692, 0x00098855, 0x000c0a23 },
2624	{ 56, 0x00002cd0, 0x0004469a, 0x00098c55, 0x000c0a13 },
2625	{ 60, 0x00002cd0, 0x000446a2, 0x00098e55, 0x000c0a03 },
2626	{ 64, 0x00002cd0, 0x000446a6, 0x00099255, 0x000c0a1b },
2627
2628	/* 802.11 HyperLan 2 */
2629	{ 100, 0x00002cd4, 0x0004489a, 0x000b9855, 0x000c0a03 },
2630	{ 104, 0x00002cd4, 0x000448a2, 0x000b9855, 0x000c0a03 },
2631	{ 108, 0x00002cd4, 0x000448aa, 0x000b9855, 0x000c0a03 },
2632	{ 112, 0x00002cd4, 0x000448b2, 0x000b9a55, 0x000c0a03 },
2633	{ 116, 0x00002cd4, 0x000448ba, 0x000b9a55, 0x000c0a03 },
2634	{ 120, 0x00002cd0, 0x00044702, 0x000b9a55, 0x000c0a03 },
2635	{ 124, 0x00002cd0, 0x00044706, 0x000b9a55, 0x000c0a1b },
2636	{ 128, 0x00002cd0, 0x0004470e, 0x000b9c55, 0x000c0a0b },
2637	{ 132, 0x00002cd0, 0x00044712, 0x000b9c55, 0x000c0a23 },
2638	{ 136, 0x00002cd0, 0x0004471a, 0x000b9e55, 0x000c0a13 },
2639
2640	/* 802.11 UNII */
2641	{ 140, 0x00002cd0, 0x00044722, 0x000b9e55, 0x000c0a03 },
2642	{ 149, 0x00002cd0, 0x0004472e, 0x000ba255, 0x000c0a1b },
2643	{ 153, 0x00002cd0, 0x00044736, 0x000ba255, 0x000c0a0b },
2644	{ 157, 0x00002cd4, 0x0004490a, 0x000ba255, 0x000c0a17 },
2645	{ 161, 0x00002cd4, 0x00044912, 0x000ba255, 0x000c0a17 },
2646	{ 165, 0x00002cd4, 0x0004491a, 0x000ba255, 0x000c0a17 },
2647
2648	/* MMAC(Japan)J52 ch 34,38,42,46 */
2649	{ 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000c0a0b },
2650	{ 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000c0a13 },
2651	{ 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000c0a1b },
2652	{ 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000c0a23 },
2653};
2654
2655static int rt61pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
2656{
2657	struct hw_mode_spec *spec = &rt2x00dev->spec;
2658	struct channel_info *info;
2659	u8 *tx_power;
2660	unsigned int i;
2661
2662	/*
2663	 * Disable powersaving as default.
2664	 */
2665	rt2x00dev->hw->wiphy->flags &= ~WIPHY_FLAG_PS_ON_BY_DEFAULT;
2666
2667	/*
2668	 * Initialize all hw fields.
2669	 */
2670	ieee80211_hw_set(rt2x00dev->hw, PS_NULLFUNC_STACK);
2671	ieee80211_hw_set(rt2x00dev->hw, SUPPORTS_PS);
2672	ieee80211_hw_set(rt2x00dev->hw, HOST_BROADCAST_PS_BUFFERING);
2673	ieee80211_hw_set(rt2x00dev->hw, SIGNAL_DBM);
2674
2675	SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
2676	SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
2677				rt2x00_eeprom_addr(rt2x00dev,
2678						   EEPROM_MAC_ADDR_0));
2679
2680	/*
2681	 * As rt61 has a global fallback table we cannot specify
2682	 * more then one tx rate per frame but since the hw will
2683	 * try several rates (based on the fallback table) we should
2684	 * initialize max_report_rates to the maximum number of rates
2685	 * we are going to try. Otherwise mac80211 will truncate our
2686	 * reported tx rates and the rc algortihm will end up with
2687	 * incorrect data.
2688	 */
2689	rt2x00dev->hw->max_rates = 1;
2690	rt2x00dev->hw->max_report_rates = 7;
2691	rt2x00dev->hw->max_rate_tries = 1;
2692
2693	/*
2694	 * Initialize hw_mode information.
2695	 */
2696	spec->supported_bands = SUPPORT_BAND_2GHZ;
2697	spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
2698
2699	if (!rt2x00_has_cap_rf_sequence(rt2x00dev)) {
2700		spec->num_channels = 14;
2701		spec->channels = rf_vals_noseq;
2702	} else {
2703		spec->num_channels = 14;
2704		spec->channels = rf_vals_seq;
2705	}
2706
2707	if (rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF5325)) {
2708		spec->supported_bands |= SUPPORT_BAND_5GHZ;
2709		spec->num_channels = ARRAY_SIZE(rf_vals_seq);
2710	}
2711
2712	/*
2713	 * Create channel information array
2714	 */
2715	info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL);
2716	if (!info)
2717		return -ENOMEM;
2718
2719	spec->channels_info = info;
2720
2721	tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_G_START);
2722	for (i = 0; i < 14; i++) {
2723		info[i].max_power = MAX_TXPOWER;
2724		info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
2725	}
2726
2727	if (spec->num_channels > 14) {
2728		tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A_START);
2729		for (i = 14; i < spec->num_channels; i++) {
2730			info[i].max_power = MAX_TXPOWER;
2731			info[i].default_power1 =
2732					TXPOWER_FROM_DEV(tx_power[i - 14]);
2733		}
2734	}
2735
2736	return 0;
2737}
2738
2739static int rt61pci_probe_hw(struct rt2x00_dev *rt2x00dev)
2740{
2741	int retval;
2742	u32 reg;
2743
2744	/*
2745	 * Disable power saving.
2746	 */
2747	rt2x00mmio_register_write(rt2x00dev, SOFT_RESET_CSR, 0x00000007);
2748
2749	/*
2750	 * Allocate eeprom data.
2751	 */
2752	retval = rt61pci_validate_eeprom(rt2x00dev);
2753	if (retval)
2754		return retval;
2755
2756	retval = rt61pci_init_eeprom(rt2x00dev);
2757	if (retval)
2758		return retval;
2759
2760	/*
2761	 * Enable rfkill polling by setting GPIO direction of the
2762	 * rfkill switch GPIO pin correctly.
2763	 */
2764	reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR13);
2765	rt2x00_set_field32(&reg, MAC_CSR13_DIR5, 1);
2766	rt2x00mmio_register_write(rt2x00dev, MAC_CSR13, reg);
2767
2768	/*
2769	 * Initialize hw specifications.
2770	 */
2771	retval = rt61pci_probe_hw_mode(rt2x00dev);
2772	if (retval)
2773		return retval;
2774
2775	/*
2776	 * This device has multiple filters for control frames,
2777	 * but has no a separate filter for PS Poll frames.
2778	 */
2779	__set_bit(CAPABILITY_CONTROL_FILTERS, &rt2x00dev->cap_flags);
2780
2781	/*
2782	 * This device requires firmware and DMA mapped skbs.
2783	 */
2784	__set_bit(REQUIRE_FIRMWARE, &rt2x00dev->cap_flags);
2785	__set_bit(REQUIRE_DMA, &rt2x00dev->cap_flags);
2786	if (!modparam_nohwcrypt)
2787		__set_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags);
2788	__set_bit(CAPABILITY_LINK_TUNING, &rt2x00dev->cap_flags);
2789
2790	/*
2791	 * Set the rssi offset.
2792	 */
2793	rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
2794
2795	return 0;
2796}
2797
2798/*
2799 * IEEE80211 stack callback functions.
2800 */
2801static int rt61pci_conf_tx(struct ieee80211_hw *hw,
2802			   struct ieee80211_vif *vif,
2803			   unsigned int link_id, u16 queue_idx,
2804			   const struct ieee80211_tx_queue_params *params)
2805{
2806	struct rt2x00_dev *rt2x00dev = hw->priv;
2807	struct data_queue *queue;
2808	struct rt2x00_field32 field;
2809	int retval;
2810	u32 reg;
2811	u32 offset;
2812
2813	/*
2814	 * First pass the configuration through rt2x00lib, that will
2815	 * update the queue settings and validate the input. After that
2816	 * we are free to update the registers based on the value
2817	 * in the queue parameter.
2818	 */
2819	retval = rt2x00mac_conf_tx(hw, vif, link_id, queue_idx, params);
2820	if (retval)
2821		return retval;
2822
2823	/*
2824	 * We only need to perform additional register initialization
2825	 * for WMM queues.
2826	 */
2827	if (queue_idx >= 4)
2828		return 0;
2829
2830	queue = rt2x00queue_get_tx_queue(rt2x00dev, queue_idx);
2831
2832	/* Update WMM TXOP register */
2833	offset = AC_TXOP_CSR0 + (sizeof(u32) * (!!(queue_idx & 2)));
2834	field.bit_offset = (queue_idx & 1) * 16;
2835	field.bit_mask = 0xffff << field.bit_offset;
2836
2837	reg = rt2x00mmio_register_read(rt2x00dev, offset);
2838	rt2x00_set_field32(&reg, field, queue->txop);
2839	rt2x00mmio_register_write(rt2x00dev, offset, reg);
2840
2841	/* Update WMM registers */
2842	field.bit_offset = queue_idx * 4;
2843	field.bit_mask = 0xf << field.bit_offset;
2844
2845	reg = rt2x00mmio_register_read(rt2x00dev, AIFSN_CSR);
2846	rt2x00_set_field32(&reg, field, queue->aifs);
2847	rt2x00mmio_register_write(rt2x00dev, AIFSN_CSR, reg);
2848
2849	reg = rt2x00mmio_register_read(rt2x00dev, CWMIN_CSR);
2850	rt2x00_set_field32(&reg, field, queue->cw_min);
2851	rt2x00mmio_register_write(rt2x00dev, CWMIN_CSR, reg);
2852
2853	reg = rt2x00mmio_register_read(rt2x00dev, CWMAX_CSR);
2854	rt2x00_set_field32(&reg, field, queue->cw_max);
2855	rt2x00mmio_register_write(rt2x00dev, CWMAX_CSR, reg);
2856
2857	return 0;
2858}
2859
2860static u64 rt61pci_get_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
2861{
2862	struct rt2x00_dev *rt2x00dev = hw->priv;
2863	u64 tsf;
2864	u32 reg;
2865
2866	reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR13);
2867	tsf = (u64) rt2x00_get_field32(reg, TXRX_CSR13_HIGH_TSFTIMER) << 32;
2868	reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR12);
2869	tsf |= rt2x00_get_field32(reg, TXRX_CSR12_LOW_TSFTIMER);
2870
2871	return tsf;
2872}
2873
2874static const struct ieee80211_ops rt61pci_mac80211_ops = {
2875	.add_chanctx = ieee80211_emulate_add_chanctx,
2876	.remove_chanctx = ieee80211_emulate_remove_chanctx,
2877	.change_chanctx = ieee80211_emulate_change_chanctx,
2878	.switch_vif_chanctx = ieee80211_emulate_switch_vif_chanctx,
2879	.tx			= rt2x00mac_tx,
2880	.wake_tx_queue		= ieee80211_handle_wake_tx_queue,
2881	.start			= rt2x00mac_start,
2882	.stop			= rt2x00mac_stop,
2883	.add_interface		= rt2x00mac_add_interface,
2884	.remove_interface	= rt2x00mac_remove_interface,
2885	.config			= rt2x00mac_config,
2886	.configure_filter	= rt2x00mac_configure_filter,
2887	.set_key		= rt2x00mac_set_key,
2888	.sw_scan_start		= rt2x00mac_sw_scan_start,
2889	.sw_scan_complete	= rt2x00mac_sw_scan_complete,
2890	.get_stats		= rt2x00mac_get_stats,
2891	.bss_info_changed	= rt2x00mac_bss_info_changed,
2892	.conf_tx		= rt61pci_conf_tx,
2893	.get_tsf		= rt61pci_get_tsf,
2894	.rfkill_poll		= rt2x00mac_rfkill_poll,
2895	.flush			= rt2x00mac_flush,
2896	.set_antenna		= rt2x00mac_set_antenna,
2897	.get_antenna		= rt2x00mac_get_antenna,
2898	.get_ringparam		= rt2x00mac_get_ringparam,
2899	.tx_frames_pending	= rt2x00mac_tx_frames_pending,
2900};
2901
2902static const struct rt2x00lib_ops rt61pci_rt2x00_ops = {
2903	.irq_handler		= rt61pci_interrupt,
2904	.txstatus_tasklet	= rt61pci_txstatus_tasklet,
2905	.tbtt_tasklet		= rt61pci_tbtt_tasklet,
2906	.rxdone_tasklet		= rt61pci_rxdone_tasklet,
2907	.autowake_tasklet	= rt61pci_autowake_tasklet,
2908	.probe_hw		= rt61pci_probe_hw,
2909	.get_firmware_name	= rt61pci_get_firmware_name,
2910	.check_firmware		= rt61pci_check_firmware,
2911	.load_firmware		= rt61pci_load_firmware,
2912	.initialize		= rt2x00mmio_initialize,
2913	.uninitialize		= rt2x00mmio_uninitialize,
2914	.get_entry_state	= rt61pci_get_entry_state,
2915	.clear_entry		= rt61pci_clear_entry,
2916	.set_device_state	= rt61pci_set_device_state,
2917	.rfkill_poll		= rt61pci_rfkill_poll,
2918	.link_stats		= rt61pci_link_stats,
2919	.reset_tuner		= rt61pci_reset_tuner,
2920	.link_tuner		= rt61pci_link_tuner,
2921	.start_queue		= rt61pci_start_queue,
2922	.kick_queue		= rt61pci_kick_queue,
2923	.stop_queue		= rt61pci_stop_queue,
2924	.flush_queue		= rt2x00mmio_flush_queue,
2925	.write_tx_desc		= rt61pci_write_tx_desc,
2926	.write_beacon		= rt61pci_write_beacon,
2927	.clear_beacon		= rt61pci_clear_beacon,
2928	.fill_rxdone		= rt61pci_fill_rxdone,
2929	.config_shared_key	= rt61pci_config_shared_key,
2930	.config_pairwise_key	= rt61pci_config_pairwise_key,
2931	.config_filter		= rt61pci_config_filter,
2932	.config_intf		= rt61pci_config_intf,
2933	.config_erp		= rt61pci_config_erp,
2934	.config_ant		= rt61pci_config_ant,
2935	.config			= rt61pci_config,
2936};
2937
2938static void rt61pci_queue_init(struct data_queue *queue)
2939{
2940	switch (queue->qid) {
2941	case QID_RX:
2942		queue->limit = 32;
2943		queue->data_size = DATA_FRAME_SIZE;
2944		queue->desc_size = RXD_DESC_SIZE;
2945		queue->priv_size = sizeof(struct queue_entry_priv_mmio);
2946		break;
2947
2948	case QID_AC_VO:
2949	case QID_AC_VI:
2950	case QID_AC_BE:
2951	case QID_AC_BK:
2952		queue->limit = 32;
2953		queue->data_size = DATA_FRAME_SIZE;
2954		queue->desc_size = TXD_DESC_SIZE;
2955		queue->priv_size = sizeof(struct queue_entry_priv_mmio);
2956		break;
2957
2958	case QID_BEACON:
2959		queue->limit = 4;
2960		queue->data_size = 0; /* No DMA required for beacons */
2961		queue->desc_size = TXINFO_SIZE;
2962		queue->priv_size = sizeof(struct queue_entry_priv_mmio);
2963		break;
2964
2965	case QID_ATIM:
2966	default:
2967		BUG();
2968		break;
2969	}
2970}
2971
2972static const struct rt2x00_ops rt61pci_ops = {
2973	.name			= KBUILD_MODNAME,
2974	.max_ap_intf		= 4,
2975	.eeprom_size		= EEPROM_SIZE,
2976	.rf_size		= RF_SIZE,
2977	.tx_queues		= NUM_TX_QUEUES,
2978	.queue_init		= rt61pci_queue_init,
2979	.lib			= &rt61pci_rt2x00_ops,
2980	.hw			= &rt61pci_mac80211_ops,
2981#ifdef CONFIG_RT2X00_LIB_DEBUGFS
2982	.debugfs		= &rt61pci_rt2x00debug,
2983#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
2984};
2985
2986/*
2987 * RT61pci module information.
2988 */
2989static const struct pci_device_id rt61pci_device_table[] = {
2990	/* RT2561s */
2991	{ PCI_DEVICE(0x1814, 0x0301) },
2992	/* RT2561 v2 */
2993	{ PCI_DEVICE(0x1814, 0x0302) },
2994	/* RT2661 */
2995	{ PCI_DEVICE(0x1814, 0x0401) },
2996	{ 0, }
2997};
2998
2999MODULE_AUTHOR(DRV_PROJECT);
3000MODULE_VERSION(DRV_VERSION);
3001MODULE_DESCRIPTION("Ralink RT61 PCI & PCMCIA Wireless LAN driver.");
3002MODULE_DEVICE_TABLE(pci, rt61pci_device_table);
3003MODULE_FIRMWARE(FIRMWARE_RT2561);
3004MODULE_FIRMWARE(FIRMWARE_RT2561s);
3005MODULE_FIRMWARE(FIRMWARE_RT2661);
3006MODULE_LICENSE("GPL");
3007
3008static int rt61pci_probe(struct pci_dev *pci_dev,
3009			 const struct pci_device_id *id)
3010{
3011	return rt2x00pci_probe(pci_dev, &rt61pci_ops);
3012}
3013
3014static struct pci_driver rt61pci_driver = {
3015	.name		= KBUILD_MODNAME,
3016	.id_table	= rt61pci_device_table,
3017	.probe		= rt61pci_probe,
3018	.remove		= rt2x00pci_remove,
3019	.driver.pm	= &rt2x00pci_pm_ops,
3020};
3021
3022module_pci_driver(rt61pci_driver);
3023