1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3	Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
4	Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
5	Copyright (C) 2004 - 2009 Gertjan van Wingerde <gwingerde@gmail.com>
6	<http://rt2x00.serialmonkey.com>
7
8 */
9
10/*
11	Module: rt2x00lib
12	Abstract: rt2x00 queue specific routines.
13 */
14
15#include <linux/slab.h>
16#include <linux/kernel.h>
17#include <linux/module.h>
18#include <linux/dma-mapping.h>
19
20#include "rt2x00.h"
21#include "rt2x00lib.h"
22
23struct sk_buff *rt2x00queue_alloc_rxskb(struct queue_entry *entry, gfp_t gfp)
24{
25	struct data_queue *queue = entry->queue;
26	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
27	struct sk_buff *skb;
28	struct skb_frame_desc *skbdesc;
29	unsigned int frame_size;
30	unsigned int head_size = 0;
31	unsigned int tail_size = 0;
32
33	/*
34	 * The frame size includes descriptor size, because the
35	 * hardware directly receive the frame into the skbuffer.
36	 */
37	frame_size = queue->data_size + queue->desc_size + queue->winfo_size;
38
39	/*
40	 * The payload should be aligned to a 4-byte boundary,
41	 * this means we need at least 3 bytes for moving the frame
42	 * into the correct offset.
43	 */
44	head_size = 4;
45
46	/*
47	 * For IV/EIV/ICV assembly we must make sure there is
48	 * at least 8 bytes bytes available in headroom for IV/EIV
49	 * and 8 bytes for ICV data as tailroon.
50	 */
51	if (rt2x00_has_cap_hw_crypto(rt2x00dev)) {
52		head_size += 8;
53		tail_size += 8;
54	}
55
56	/*
57	 * Allocate skbuffer.
58	 */
59	skb = __dev_alloc_skb(frame_size + head_size + tail_size, gfp);
60	if (!skb)
61		return NULL;
62
63	/*
64	 * Make sure we not have a frame with the requested bytes
65	 * available in the head and tail.
66	 */
67	skb_reserve(skb, head_size);
68	skb_put(skb, frame_size);
69
70	/*
71	 * Populate skbdesc.
72	 */
73	skbdesc = get_skb_frame_desc(skb);
74	memset(skbdesc, 0, sizeof(*skbdesc));
75
76	if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DMA)) {
77		dma_addr_t skb_dma;
78
79		skb_dma = dma_map_single(rt2x00dev->dev, skb->data, skb->len,
80					 DMA_FROM_DEVICE);
81		if (unlikely(dma_mapping_error(rt2x00dev->dev, skb_dma))) {
82			dev_kfree_skb_any(skb);
83			return NULL;
84		}
85
86		skbdesc->skb_dma = skb_dma;
87		skbdesc->flags |= SKBDESC_DMA_MAPPED_RX;
88	}
89
90	return skb;
91}
92
93int rt2x00queue_map_txskb(struct queue_entry *entry)
94{
95	struct device *dev = entry->queue->rt2x00dev->dev;
96	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
97
98	skbdesc->skb_dma =
99	    dma_map_single(dev, entry->skb->data, entry->skb->len, DMA_TO_DEVICE);
100
101	if (unlikely(dma_mapping_error(dev, skbdesc->skb_dma)))
102		return -ENOMEM;
103
104	skbdesc->flags |= SKBDESC_DMA_MAPPED_TX;
105	rt2x00lib_dmadone(entry);
106	return 0;
107}
108EXPORT_SYMBOL_GPL(rt2x00queue_map_txskb);
109
110void rt2x00queue_unmap_skb(struct queue_entry *entry)
111{
112	struct device *dev = entry->queue->rt2x00dev->dev;
113	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
114
115	if (skbdesc->flags & SKBDESC_DMA_MAPPED_RX) {
116		dma_unmap_single(dev, skbdesc->skb_dma, entry->skb->len,
117				 DMA_FROM_DEVICE);
118		skbdesc->flags &= ~SKBDESC_DMA_MAPPED_RX;
119	} else if (skbdesc->flags & SKBDESC_DMA_MAPPED_TX) {
120		dma_unmap_single(dev, skbdesc->skb_dma, entry->skb->len,
121				 DMA_TO_DEVICE);
122		skbdesc->flags &= ~SKBDESC_DMA_MAPPED_TX;
123	}
124}
125EXPORT_SYMBOL_GPL(rt2x00queue_unmap_skb);
126
127void rt2x00queue_free_skb(struct queue_entry *entry)
128{
129	if (!entry->skb)
130		return;
131
132	rt2x00queue_unmap_skb(entry);
133	dev_kfree_skb_any(entry->skb);
134	entry->skb = NULL;
135}
136
137void rt2x00queue_align_frame(struct sk_buff *skb)
138{
139	unsigned int frame_length = skb->len;
140	unsigned int align = ALIGN_SIZE(skb, 0);
141
142	if (!align)
143		return;
144
145	skb_push(skb, align);
146	memmove(skb->data, skb->data + align, frame_length);
147	skb_trim(skb, frame_length);
148}
149
150/*
151 * H/W needs L2 padding between the header and the paylod if header size
152 * is not 4 bytes aligned.
153 */
154void rt2x00queue_insert_l2pad(struct sk_buff *skb, unsigned int hdr_len)
155{
156	unsigned int l2pad = (skb->len > hdr_len) ? L2PAD_SIZE(hdr_len) : 0;
157
158	if (!l2pad)
159		return;
160
161	skb_push(skb, l2pad);
162	memmove(skb->data, skb->data + l2pad, hdr_len);
163}
164
165void rt2x00queue_remove_l2pad(struct sk_buff *skb, unsigned int hdr_len)
166{
167	unsigned int l2pad = (skb->len > hdr_len) ? L2PAD_SIZE(hdr_len) : 0;
168
169	if (!l2pad)
170		return;
171
172	memmove(skb->data + l2pad, skb->data, hdr_len);
173	skb_pull(skb, l2pad);
174}
175
176static void rt2x00queue_create_tx_descriptor_seq(struct rt2x00_dev *rt2x00dev,
177						 struct sk_buff *skb,
178						 struct txentry_desc *txdesc)
179{
180	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
181	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
182	struct rt2x00_intf *intf = vif_to_intf(tx_info->control.vif);
183	u16 seqno;
184
185	if (!(tx_info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ))
186		return;
187
188	__set_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags);
189
190	if (!rt2x00_has_cap_flag(rt2x00dev, REQUIRE_SW_SEQNO)) {
191		/*
192		 * rt2800 has a H/W (or F/W) bug, device incorrectly increase
193		 * seqno on retransmitted data (non-QOS) and management frames.
194		 * To workaround the problem let's generate seqno in software.
195		 * Except for beacons which are transmitted periodically by H/W
196		 * hence hardware has to assign seqno for them.
197		 */
198	    	if (ieee80211_is_beacon(hdr->frame_control)) {
199			__set_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags);
200			/* H/W will generate sequence number */
201			return;
202		}
203
204		__clear_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags);
205	}
206
207	/*
208	 * The hardware is not able to insert a sequence number. Assign a
209	 * software generated one here.
210	 *
211	 * This is wrong because beacons are not getting sequence
212	 * numbers assigned properly.
213	 *
214	 * A secondary problem exists for drivers that cannot toggle
215	 * sequence counting per-frame, since those will override the
216	 * sequence counter given by mac80211.
217	 */
218	if (test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags))
219		seqno = atomic_add_return(0x10, &intf->seqno);
220	else
221		seqno = atomic_read(&intf->seqno);
222
223	hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
224	hdr->seq_ctrl |= cpu_to_le16(seqno);
225}
226
227static void rt2x00queue_create_tx_descriptor_plcp(struct rt2x00_dev *rt2x00dev,
228						  struct sk_buff *skb,
229						  struct txentry_desc *txdesc,
230						  const struct rt2x00_rate *hwrate)
231{
232	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
233	struct ieee80211_tx_rate *txrate = &tx_info->control.rates[0];
234	unsigned int data_length;
235	unsigned int duration;
236	unsigned int residual;
237
238	/*
239	 * Determine with what IFS priority this frame should be send.
240	 * Set ifs to IFS_SIFS when the this is not the first fragment,
241	 * or this fragment came after RTS/CTS.
242	 */
243	if (test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags))
244		txdesc->u.plcp.ifs = IFS_BACKOFF;
245	else
246		txdesc->u.plcp.ifs = IFS_SIFS;
247
248	/* Data length + CRC + Crypto overhead (IV/EIV/ICV/MIC) */
249	data_length = skb->len + 4;
250	data_length += rt2x00crypto_tx_overhead(rt2x00dev, skb);
251
252	/*
253	 * PLCP setup
254	 * Length calculation depends on OFDM/CCK rate.
255	 */
256	txdesc->u.plcp.signal = hwrate->plcp;
257	txdesc->u.plcp.service = 0x04;
258
259	if (hwrate->flags & DEV_RATE_OFDM) {
260		txdesc->u.plcp.length_high = (data_length >> 6) & 0x3f;
261		txdesc->u.plcp.length_low = data_length & 0x3f;
262	} else {
263		/*
264		 * Convert length to microseconds.
265		 */
266		residual = GET_DURATION_RES(data_length, hwrate->bitrate);
267		duration = GET_DURATION(data_length, hwrate->bitrate);
268
269		if (residual != 0) {
270			duration++;
271
272			/*
273			 * Check if we need to set the Length Extension
274			 */
275			if (hwrate->bitrate == 110 && residual <= 30)
276				txdesc->u.plcp.service |= 0x80;
277		}
278
279		txdesc->u.plcp.length_high = (duration >> 8) & 0xff;
280		txdesc->u.plcp.length_low = duration & 0xff;
281
282		/*
283		 * When preamble is enabled we should set the
284		 * preamble bit for the signal.
285		 */
286		if (txrate->flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
287			txdesc->u.plcp.signal |= 0x08;
288	}
289}
290
291static void rt2x00queue_create_tx_descriptor_ht(struct rt2x00_dev *rt2x00dev,
292						struct sk_buff *skb,
293						struct txentry_desc *txdesc,
294						struct ieee80211_sta *sta,
295						const struct rt2x00_rate *hwrate)
296{
297	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
298	struct ieee80211_tx_rate *txrate = &tx_info->control.rates[0];
299	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
300	struct rt2x00_sta *sta_priv = NULL;
301	u8 density = 0;
302
303	if (sta) {
304		sta_priv = sta_to_rt2x00_sta(sta);
305		txdesc->u.ht.wcid = sta_priv->wcid;
306		density = sta->deflink.ht_cap.ampdu_density;
307	}
308
309	/*
310	 * If IEEE80211_TX_RC_MCS is set txrate->idx just contains the
311	 * mcs rate to be used
312	 */
313	if (txrate->flags & IEEE80211_TX_RC_MCS) {
314		txdesc->u.ht.mcs = txrate->idx;
315
316		/*
317		 * MIMO PS should be set to 1 for STA's using dynamic SM PS
318		 * when using more then one tx stream (>MCS7).
319		 */
320		if (sta && txdesc->u.ht.mcs > 7 &&
321		    sta->deflink.smps_mode == IEEE80211_SMPS_DYNAMIC)
322			__set_bit(ENTRY_TXD_HT_MIMO_PS, &txdesc->flags);
323	} else {
324		txdesc->u.ht.mcs = rt2x00_get_rate_mcs(hwrate->mcs);
325		if (txrate->flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
326			txdesc->u.ht.mcs |= 0x08;
327	}
328
329	if (test_bit(CONFIG_HT_DISABLED, &rt2x00dev->flags)) {
330		if (!(tx_info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT))
331			txdesc->u.ht.txop = TXOP_SIFS;
332		else
333			txdesc->u.ht.txop = TXOP_BACKOFF;
334
335		/* Left zero on all other settings. */
336		return;
337	}
338
339	/*
340	 * Only one STBC stream is supported for now.
341	 */
342	if (tx_info->flags & IEEE80211_TX_CTL_STBC)
343		txdesc->u.ht.stbc = 1;
344
345	/*
346	 * This frame is eligible for an AMPDU, however, don't aggregate
347	 * frames that are intended to probe a specific tx rate.
348	 */
349	if (tx_info->flags & IEEE80211_TX_CTL_AMPDU &&
350	    !(tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE)) {
351		__set_bit(ENTRY_TXD_HT_AMPDU, &txdesc->flags);
352		txdesc->u.ht.mpdu_density = density;
353		txdesc->u.ht.ba_size = 7; /* FIXME: What value is needed? */
354	}
355
356	/*
357	 * Set 40Mhz mode if necessary (for legacy rates this will
358	 * duplicate the frame to both channels).
359	 */
360	if (txrate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH ||
361	    txrate->flags & IEEE80211_TX_RC_DUP_DATA)
362		__set_bit(ENTRY_TXD_HT_BW_40, &txdesc->flags);
363	if (txrate->flags & IEEE80211_TX_RC_SHORT_GI)
364		__set_bit(ENTRY_TXD_HT_SHORT_GI, &txdesc->flags);
365
366	/*
367	 * Determine IFS values
368	 * - Use TXOP_BACKOFF for management frames except beacons
369	 * - Use TXOP_SIFS for fragment bursts
370	 * - Use TXOP_HTTXOP for everything else
371	 *
372	 * Note: rt2800 devices won't use CTS protection (if used)
373	 * for frames not transmitted with TXOP_HTTXOP
374	 */
375	if (ieee80211_is_mgmt(hdr->frame_control) &&
376	    !ieee80211_is_beacon(hdr->frame_control))
377		txdesc->u.ht.txop = TXOP_BACKOFF;
378	else if (!(tx_info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT))
379		txdesc->u.ht.txop = TXOP_SIFS;
380	else
381		txdesc->u.ht.txop = TXOP_HTTXOP;
382}
383
384static void rt2x00queue_create_tx_descriptor(struct rt2x00_dev *rt2x00dev,
385					     struct sk_buff *skb,
386					     struct txentry_desc *txdesc,
387					     struct ieee80211_sta *sta)
388{
389	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
390	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
391	struct ieee80211_tx_rate *txrate = &tx_info->control.rates[0];
392	struct ieee80211_rate *rate;
393	const struct rt2x00_rate *hwrate = NULL;
394
395	memset(txdesc, 0, sizeof(*txdesc));
396
397	/*
398	 * Header and frame information.
399	 */
400	txdesc->length = skb->len;
401	txdesc->header_length = ieee80211_get_hdrlen_from_skb(skb);
402
403	/*
404	 * Check whether this frame is to be acked.
405	 */
406	if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK))
407		__set_bit(ENTRY_TXD_ACK, &txdesc->flags);
408
409	/*
410	 * Check if this is a RTS/CTS frame
411	 */
412	if (ieee80211_is_rts(hdr->frame_control) ||
413	    ieee80211_is_cts(hdr->frame_control)) {
414		__set_bit(ENTRY_TXD_BURST, &txdesc->flags);
415		if (ieee80211_is_rts(hdr->frame_control))
416			__set_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags);
417		else
418			__set_bit(ENTRY_TXD_CTS_FRAME, &txdesc->flags);
419	}
420
421	/*
422	 * Determine retry information.
423	 */
424	txdesc->retry_limit = tx_info->control.rates[0].count - 1;
425	if (txdesc->retry_limit >= rt2x00dev->long_retry)
426		__set_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags);
427
428	/*
429	 * Check if more fragments are pending
430	 */
431	if (ieee80211_has_morefrags(hdr->frame_control)) {
432		__set_bit(ENTRY_TXD_BURST, &txdesc->flags);
433		__set_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags);
434	}
435
436	/*
437	 * Check if more frames (!= fragments) are pending
438	 */
439	if (tx_info->flags & IEEE80211_TX_CTL_MORE_FRAMES)
440		__set_bit(ENTRY_TXD_BURST, &txdesc->flags);
441
442	/*
443	 * Beacons and probe responses require the tsf timestamp
444	 * to be inserted into the frame.
445	 */
446	if ((ieee80211_is_beacon(hdr->frame_control) ||
447	     ieee80211_is_probe_resp(hdr->frame_control)) &&
448	    !(tx_info->flags & IEEE80211_TX_CTL_INJECTED))
449		__set_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags);
450
451	if ((tx_info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT) &&
452	    !test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags))
453		__set_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags);
454
455	/*
456	 * Determine rate modulation.
457	 */
458	if (txrate->flags & IEEE80211_TX_RC_GREEN_FIELD)
459		txdesc->rate_mode = RATE_MODE_HT_GREENFIELD;
460	else if (txrate->flags & IEEE80211_TX_RC_MCS)
461		txdesc->rate_mode = RATE_MODE_HT_MIX;
462	else {
463		rate = ieee80211_get_tx_rate(rt2x00dev->hw, tx_info);
464		hwrate = rt2x00_get_rate(rate->hw_value);
465		if (hwrate->flags & DEV_RATE_OFDM)
466			txdesc->rate_mode = RATE_MODE_OFDM;
467		else
468			txdesc->rate_mode = RATE_MODE_CCK;
469	}
470
471	/*
472	 * Apply TX descriptor handling by components
473	 */
474	rt2x00crypto_create_tx_descriptor(rt2x00dev, skb, txdesc);
475	rt2x00queue_create_tx_descriptor_seq(rt2x00dev, skb, txdesc);
476
477	if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_HT_TX_DESC))
478		rt2x00queue_create_tx_descriptor_ht(rt2x00dev, skb, txdesc,
479						   sta, hwrate);
480	else
481		rt2x00queue_create_tx_descriptor_plcp(rt2x00dev, skb, txdesc,
482						      hwrate);
483}
484
485static int rt2x00queue_write_tx_data(struct queue_entry *entry,
486				     struct txentry_desc *txdesc)
487{
488	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
489
490	/*
491	 * This should not happen, we already checked the entry
492	 * was ours. When the hardware disagrees there has been
493	 * a queue corruption!
494	 */
495	if (unlikely(rt2x00dev->ops->lib->get_entry_state &&
496		     rt2x00dev->ops->lib->get_entry_state(entry))) {
497		rt2x00_err(rt2x00dev,
498			   "Corrupt queue %d, accessing entry which is not ours\n"
499			   "Please file bug report to %s\n",
500			   entry->queue->qid, DRV_PROJECT);
501		return -EINVAL;
502	}
503
504	/*
505	 * Add the requested extra tx headroom in front of the skb.
506	 */
507	skb_push(entry->skb, rt2x00dev->extra_tx_headroom);
508	memset(entry->skb->data, 0, rt2x00dev->extra_tx_headroom);
509
510	/*
511	 * Call the driver's write_tx_data function, if it exists.
512	 */
513	if (rt2x00dev->ops->lib->write_tx_data)
514		rt2x00dev->ops->lib->write_tx_data(entry, txdesc);
515
516	/*
517	 * Map the skb to DMA.
518	 */
519	if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DMA) &&
520	    rt2x00queue_map_txskb(entry))
521		return -ENOMEM;
522
523	return 0;
524}
525
526static void rt2x00queue_write_tx_descriptor(struct queue_entry *entry,
527					    struct txentry_desc *txdesc)
528{
529	struct data_queue *queue = entry->queue;
530
531	queue->rt2x00dev->ops->lib->write_tx_desc(entry, txdesc);
532
533	/*
534	 * All processing on the frame has been completed, this means
535	 * it is now ready to be dumped to userspace through debugfs.
536	 */
537	rt2x00debug_dump_frame(queue->rt2x00dev, DUMP_FRAME_TX, entry);
538}
539
540static void rt2x00queue_kick_tx_queue(struct data_queue *queue,
541				      struct txentry_desc *txdesc)
542{
543	/*
544	 * Check if we need to kick the queue, there are however a few rules
545	 *	1) Don't kick unless this is the last in frame in a burst.
546	 *	   When the burst flag is set, this frame is always followed
547	 *	   by another frame which in some way are related to eachother.
548	 *	   This is true for fragments, RTS or CTS-to-self frames.
549	 *	2) Rule 1 can be broken when the available entries
550	 *	   in the queue are less then a certain threshold.
551	 */
552	if (rt2x00queue_threshold(queue) ||
553	    !test_bit(ENTRY_TXD_BURST, &txdesc->flags))
554		queue->rt2x00dev->ops->lib->kick_queue(queue);
555}
556
557static void rt2x00queue_bar_check(struct queue_entry *entry)
558{
559	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
560	struct ieee80211_bar *bar = (void *) (entry->skb->data +
561				    rt2x00dev->extra_tx_headroom);
562	struct rt2x00_bar_list_entry *bar_entry;
563
564	if (likely(!ieee80211_is_back_req(bar->frame_control)))
565		return;
566
567	bar_entry = kmalloc(sizeof(*bar_entry), GFP_ATOMIC);
568
569	/*
570	 * If the alloc fails we still send the BAR out but just don't track
571	 * it in our bar list. And as a result we will report it to mac80211
572	 * back as failed.
573	 */
574	if (!bar_entry)
575		return;
576
577	bar_entry->entry = entry;
578	bar_entry->block_acked = 0;
579
580	/*
581	 * Copy the relevant parts of the 802.11 BAR into out check list
582	 * such that we can use RCU for less-overhead in the RX path since
583	 * sending BARs and processing the according BlockAck should be
584	 * the exception.
585	 */
586	memcpy(bar_entry->ra, bar->ra, sizeof(bar->ra));
587	memcpy(bar_entry->ta, bar->ta, sizeof(bar->ta));
588	bar_entry->control = bar->control;
589	bar_entry->start_seq_num = bar->start_seq_num;
590
591	/*
592	 * Insert BAR into our BAR check list.
593	 */
594	spin_lock_bh(&rt2x00dev->bar_list_lock);
595	list_add_tail_rcu(&bar_entry->list, &rt2x00dev->bar_list);
596	spin_unlock_bh(&rt2x00dev->bar_list_lock);
597}
598
599int rt2x00queue_write_tx_frame(struct data_queue *queue, struct sk_buff *skb,
600			       struct ieee80211_sta *sta, bool local)
601{
602	struct ieee80211_tx_info *tx_info;
603	struct queue_entry *entry;
604	struct txentry_desc txdesc;
605	struct skb_frame_desc *skbdesc;
606	u8 rate_idx, rate_flags;
607	int ret = 0;
608
609	/*
610	 * Copy all TX descriptor information into txdesc,
611	 * after that we are free to use the skb->cb array
612	 * for our information.
613	 */
614	rt2x00queue_create_tx_descriptor(queue->rt2x00dev, skb, &txdesc, sta);
615
616	/*
617	 * All information is retrieved from the skb->cb array,
618	 * now we should claim ownership of the driver part of that
619	 * array, preserving the bitrate index and flags.
620	 */
621	tx_info = IEEE80211_SKB_CB(skb);
622	rate_idx = tx_info->control.rates[0].idx;
623	rate_flags = tx_info->control.rates[0].flags;
624	skbdesc = get_skb_frame_desc(skb);
625	memset(skbdesc, 0, sizeof(*skbdesc));
626	skbdesc->tx_rate_idx = rate_idx;
627	skbdesc->tx_rate_flags = rate_flags;
628
629	if (local)
630		skbdesc->flags |= SKBDESC_NOT_MAC80211;
631
632	/*
633	 * When hardware encryption is supported, and this frame
634	 * is to be encrypted, we should strip the IV/EIV data from
635	 * the frame so we can provide it to the driver separately.
636	 */
637	if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc.flags) &&
638	    !test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc.flags)) {
639		if (rt2x00_has_cap_flag(queue->rt2x00dev, REQUIRE_COPY_IV))
640			rt2x00crypto_tx_copy_iv(skb, &txdesc);
641		else
642			rt2x00crypto_tx_remove_iv(skb, &txdesc);
643	}
644
645	/*
646	 * When DMA allocation is required we should guarantee to the
647	 * driver that the DMA is aligned to a 4-byte boundary.
648	 * However some drivers require L2 padding to pad the payload
649	 * rather then the header. This could be a requirement for
650	 * PCI and USB devices, while header alignment only is valid
651	 * for PCI devices.
652	 */
653	if (rt2x00_has_cap_flag(queue->rt2x00dev, REQUIRE_L2PAD))
654		rt2x00queue_insert_l2pad(skb, txdesc.header_length);
655	else if (rt2x00_has_cap_flag(queue->rt2x00dev, REQUIRE_DMA))
656		rt2x00queue_align_frame(skb);
657
658	/*
659	 * That function must be called with bh disabled.
660	 */
661	spin_lock(&queue->tx_lock);
662
663	if (unlikely(rt2x00queue_full(queue))) {
664		rt2x00_dbg(queue->rt2x00dev, "Dropping frame due to full tx queue %d\n",
665			   queue->qid);
666		ret = -ENOBUFS;
667		goto out;
668	}
669
670	entry = rt2x00queue_get_entry(queue, Q_INDEX);
671
672	if (unlikely(test_and_set_bit(ENTRY_OWNER_DEVICE_DATA,
673				      &entry->flags))) {
674		rt2x00_err(queue->rt2x00dev,
675			   "Arrived at non-free entry in the non-full queue %d\n"
676			   "Please file bug report to %s\n",
677			   queue->qid, DRV_PROJECT);
678		ret = -EINVAL;
679		goto out;
680	}
681
682	entry->skb = skb;
683
684	/*
685	 * It could be possible that the queue was corrupted and this
686	 * call failed. Since we always return NETDEV_TX_OK to mac80211,
687	 * this frame will simply be dropped.
688	 */
689	if (unlikely(rt2x00queue_write_tx_data(entry, &txdesc))) {
690		clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
691		entry->skb = NULL;
692		ret = -EIO;
693		goto out;
694	}
695
696	/*
697	 * Put BlockAckReqs into our check list for driver BA processing.
698	 */
699	rt2x00queue_bar_check(entry);
700
701	set_bit(ENTRY_DATA_PENDING, &entry->flags);
702
703	rt2x00queue_index_inc(entry, Q_INDEX);
704	rt2x00queue_write_tx_descriptor(entry, &txdesc);
705	rt2x00queue_kick_tx_queue(queue, &txdesc);
706
707out:
708	/*
709	 * Pausing queue has to be serialized with rt2x00lib_txdone(), so we
710	 * do this under queue->tx_lock. Bottom halve was already disabled
711	 * before ieee80211_xmit() call.
712	 */
713	if (rt2x00queue_threshold(queue))
714		rt2x00queue_pause_queue(queue);
715
716	spin_unlock(&queue->tx_lock);
717	return ret;
718}
719
720int rt2x00queue_clear_beacon(struct rt2x00_dev *rt2x00dev,
721			     struct ieee80211_vif *vif)
722{
723	struct rt2x00_intf *intf = vif_to_intf(vif);
724
725	if (unlikely(!intf->beacon))
726		return -ENOBUFS;
727
728	/*
729	 * Clean up the beacon skb.
730	 */
731	rt2x00queue_free_skb(intf->beacon);
732
733	/*
734	 * Clear beacon (single bssid devices don't need to clear the beacon
735	 * since the beacon queue will get stopped anyway).
736	 */
737	if (rt2x00dev->ops->lib->clear_beacon)
738		rt2x00dev->ops->lib->clear_beacon(intf->beacon);
739
740	return 0;
741}
742
743int rt2x00queue_update_beacon(struct rt2x00_dev *rt2x00dev,
744			      struct ieee80211_vif *vif)
745{
746	struct rt2x00_intf *intf = vif_to_intf(vif);
747	struct skb_frame_desc *skbdesc;
748	struct txentry_desc txdesc;
749
750	if (unlikely(!intf->beacon))
751		return -ENOBUFS;
752
753	/*
754	 * Clean up the beacon skb.
755	 */
756	rt2x00queue_free_skb(intf->beacon);
757
758	intf->beacon->skb = ieee80211_beacon_get(rt2x00dev->hw, vif, 0);
759	if (!intf->beacon->skb)
760		return -ENOMEM;
761
762	/*
763	 * Copy all TX descriptor information into txdesc,
764	 * after that we are free to use the skb->cb array
765	 * for our information.
766	 */
767	rt2x00queue_create_tx_descriptor(rt2x00dev, intf->beacon->skb, &txdesc, NULL);
768
769	/*
770	 * Fill in skb descriptor
771	 */
772	skbdesc = get_skb_frame_desc(intf->beacon->skb);
773	memset(skbdesc, 0, sizeof(*skbdesc));
774
775	/*
776	 * Send beacon to hardware.
777	 */
778	rt2x00dev->ops->lib->write_beacon(intf->beacon, &txdesc);
779
780	return 0;
781
782}
783
784bool rt2x00queue_for_each_entry(struct data_queue *queue,
785				enum queue_index start,
786				enum queue_index end,
787				void *data,
788				bool (*fn)(struct queue_entry *entry,
789					   void *data))
790{
791	unsigned long irqflags;
792	unsigned int index_start;
793	unsigned int index_end;
794	unsigned int i;
795
796	if (unlikely(start >= Q_INDEX_MAX || end >= Q_INDEX_MAX)) {
797		rt2x00_err(queue->rt2x00dev,
798			   "Entry requested from invalid index range (%d - %d)\n",
799			   start, end);
800		return true;
801	}
802
803	/*
804	 * Only protect the range we are going to loop over,
805	 * if during our loop a extra entry is set to pending
806	 * it should not be kicked during this run, since it
807	 * is part of another TX operation.
808	 */
809	spin_lock_irqsave(&queue->index_lock, irqflags);
810	index_start = queue->index[start];
811	index_end = queue->index[end];
812	spin_unlock_irqrestore(&queue->index_lock, irqflags);
813
814	/*
815	 * Start from the TX done pointer, this guarantees that we will
816	 * send out all frames in the correct order.
817	 */
818	if (index_start < index_end) {
819		for (i = index_start; i < index_end; i++) {
820			if (fn(&queue->entries[i], data))
821				return true;
822		}
823	} else {
824		for (i = index_start; i < queue->limit; i++) {
825			if (fn(&queue->entries[i], data))
826				return true;
827		}
828
829		for (i = 0; i < index_end; i++) {
830			if (fn(&queue->entries[i], data))
831				return true;
832		}
833	}
834
835	return false;
836}
837EXPORT_SYMBOL_GPL(rt2x00queue_for_each_entry);
838
839struct queue_entry *rt2x00queue_get_entry(struct data_queue *queue,
840					  enum queue_index index)
841{
842	struct queue_entry *entry;
843	unsigned long irqflags;
844
845	if (unlikely(index >= Q_INDEX_MAX)) {
846		rt2x00_err(queue->rt2x00dev, "Entry requested from invalid index type (%d)\n",
847			   index);
848		return NULL;
849	}
850
851	spin_lock_irqsave(&queue->index_lock, irqflags);
852
853	entry = &queue->entries[queue->index[index]];
854
855	spin_unlock_irqrestore(&queue->index_lock, irqflags);
856
857	return entry;
858}
859EXPORT_SYMBOL_GPL(rt2x00queue_get_entry);
860
861void rt2x00queue_index_inc(struct queue_entry *entry, enum queue_index index)
862{
863	struct data_queue *queue = entry->queue;
864	unsigned long irqflags;
865
866	if (unlikely(index >= Q_INDEX_MAX)) {
867		rt2x00_err(queue->rt2x00dev,
868			   "Index change on invalid index type (%d)\n", index);
869		return;
870	}
871
872	spin_lock_irqsave(&queue->index_lock, irqflags);
873
874	queue->index[index]++;
875	if (queue->index[index] >= queue->limit)
876		queue->index[index] = 0;
877
878	entry->last_action = jiffies;
879
880	if (index == Q_INDEX) {
881		queue->length++;
882	} else if (index == Q_INDEX_DONE) {
883		queue->length--;
884		queue->count++;
885	}
886
887	spin_unlock_irqrestore(&queue->index_lock, irqflags);
888}
889
890static void rt2x00queue_pause_queue_nocheck(struct data_queue *queue)
891{
892	switch (queue->qid) {
893	case QID_AC_VO:
894	case QID_AC_VI:
895	case QID_AC_BE:
896	case QID_AC_BK:
897		/*
898		 * For TX queues, we have to disable the queue
899		 * inside mac80211.
900		 */
901		ieee80211_stop_queue(queue->rt2x00dev->hw, queue->qid);
902		break;
903	default:
904		break;
905	}
906}
907void rt2x00queue_pause_queue(struct data_queue *queue)
908{
909	if (!test_bit(DEVICE_STATE_PRESENT, &queue->rt2x00dev->flags) ||
910	    !test_bit(QUEUE_STARTED, &queue->flags) ||
911	    test_and_set_bit(QUEUE_PAUSED, &queue->flags))
912		return;
913
914	rt2x00queue_pause_queue_nocheck(queue);
915}
916EXPORT_SYMBOL_GPL(rt2x00queue_pause_queue);
917
918void rt2x00queue_unpause_queue(struct data_queue *queue)
919{
920	if (!test_bit(DEVICE_STATE_PRESENT, &queue->rt2x00dev->flags) ||
921	    !test_bit(QUEUE_STARTED, &queue->flags) ||
922	    !test_and_clear_bit(QUEUE_PAUSED, &queue->flags))
923		return;
924
925	switch (queue->qid) {
926	case QID_AC_VO:
927	case QID_AC_VI:
928	case QID_AC_BE:
929	case QID_AC_BK:
930		/*
931		 * For TX queues, we have to enable the queue
932		 * inside mac80211.
933		 */
934		ieee80211_wake_queue(queue->rt2x00dev->hw, queue->qid);
935		break;
936	case QID_RX:
937		/*
938		 * For RX we need to kick the queue now in order to
939		 * receive frames.
940		 */
941		queue->rt2x00dev->ops->lib->kick_queue(queue);
942		break;
943	default:
944		break;
945	}
946}
947EXPORT_SYMBOL_GPL(rt2x00queue_unpause_queue);
948
949void rt2x00queue_start_queue(struct data_queue *queue)
950{
951	mutex_lock(&queue->status_lock);
952
953	if (!test_bit(DEVICE_STATE_PRESENT, &queue->rt2x00dev->flags) ||
954	    test_and_set_bit(QUEUE_STARTED, &queue->flags)) {
955		mutex_unlock(&queue->status_lock);
956		return;
957	}
958
959	set_bit(QUEUE_PAUSED, &queue->flags);
960
961	queue->rt2x00dev->ops->lib->start_queue(queue);
962
963	rt2x00queue_unpause_queue(queue);
964
965	mutex_unlock(&queue->status_lock);
966}
967EXPORT_SYMBOL_GPL(rt2x00queue_start_queue);
968
969void rt2x00queue_stop_queue(struct data_queue *queue)
970{
971	mutex_lock(&queue->status_lock);
972
973	if (!test_and_clear_bit(QUEUE_STARTED, &queue->flags)) {
974		mutex_unlock(&queue->status_lock);
975		return;
976	}
977
978	rt2x00queue_pause_queue_nocheck(queue);
979
980	queue->rt2x00dev->ops->lib->stop_queue(queue);
981
982	mutex_unlock(&queue->status_lock);
983}
984EXPORT_SYMBOL_GPL(rt2x00queue_stop_queue);
985
986void rt2x00queue_flush_queue(struct data_queue *queue, bool drop)
987{
988	bool tx_queue =
989		(queue->qid == QID_AC_VO) ||
990		(queue->qid == QID_AC_VI) ||
991		(queue->qid == QID_AC_BE) ||
992		(queue->qid == QID_AC_BK);
993
994	if (rt2x00queue_empty(queue))
995		return;
996
997	/*
998	 * If we are not supposed to drop any pending
999	 * frames, this means we must force a start (=kick)
1000	 * to the queue to make sure the hardware will
1001	 * start transmitting.
1002	 */
1003	if (!drop && tx_queue)
1004		queue->rt2x00dev->ops->lib->kick_queue(queue);
1005
1006	/*
1007	 * Check if driver supports flushing, if that is the case we can
1008	 * defer the flushing to the driver. Otherwise we must use the
1009	 * alternative which just waits for the queue to become empty.
1010	 */
1011	if (likely(queue->rt2x00dev->ops->lib->flush_queue))
1012		queue->rt2x00dev->ops->lib->flush_queue(queue, drop);
1013
1014	/*
1015	 * The queue flush has failed...
1016	 */
1017	if (unlikely(!rt2x00queue_empty(queue)))
1018		rt2x00_warn(queue->rt2x00dev, "Queue %d failed to flush\n",
1019			    queue->qid);
1020}
1021EXPORT_SYMBOL_GPL(rt2x00queue_flush_queue);
1022
1023void rt2x00queue_start_queues(struct rt2x00_dev *rt2x00dev)
1024{
1025	struct data_queue *queue;
1026
1027	/*
1028	 * rt2x00queue_start_queue will call ieee80211_wake_queue
1029	 * for each queue after is has been properly initialized.
1030	 */
1031	tx_queue_for_each(rt2x00dev, queue)
1032		rt2x00queue_start_queue(queue);
1033
1034	rt2x00queue_start_queue(rt2x00dev->rx);
1035}
1036EXPORT_SYMBOL_GPL(rt2x00queue_start_queues);
1037
1038void rt2x00queue_stop_queues(struct rt2x00_dev *rt2x00dev)
1039{
1040	struct data_queue *queue;
1041
1042	/*
1043	 * rt2x00queue_stop_queue will call ieee80211_stop_queue
1044	 * as well, but we are completely shutting doing everything
1045	 * now, so it is much safer to stop all TX queues at once,
1046	 * and use rt2x00queue_stop_queue for cleaning up.
1047	 */
1048	ieee80211_stop_queues(rt2x00dev->hw);
1049
1050	tx_queue_for_each(rt2x00dev, queue)
1051		rt2x00queue_stop_queue(queue);
1052
1053	rt2x00queue_stop_queue(rt2x00dev->rx);
1054}
1055EXPORT_SYMBOL_GPL(rt2x00queue_stop_queues);
1056
1057void rt2x00queue_flush_queues(struct rt2x00_dev *rt2x00dev, bool drop)
1058{
1059	struct data_queue *queue;
1060
1061	tx_queue_for_each(rt2x00dev, queue)
1062		rt2x00queue_flush_queue(queue, drop);
1063
1064	rt2x00queue_flush_queue(rt2x00dev->rx, drop);
1065}
1066EXPORT_SYMBOL_GPL(rt2x00queue_flush_queues);
1067
1068static void rt2x00queue_reset(struct data_queue *queue)
1069{
1070	unsigned long irqflags;
1071	unsigned int i;
1072
1073	spin_lock_irqsave(&queue->index_lock, irqflags);
1074
1075	queue->count = 0;
1076	queue->length = 0;
1077
1078	for (i = 0; i < Q_INDEX_MAX; i++)
1079		queue->index[i] = 0;
1080
1081	spin_unlock_irqrestore(&queue->index_lock, irqflags);
1082}
1083
1084void rt2x00queue_init_queues(struct rt2x00_dev *rt2x00dev)
1085{
1086	struct data_queue *queue;
1087	unsigned int i;
1088
1089	queue_for_each(rt2x00dev, queue) {
1090		rt2x00queue_reset(queue);
1091
1092		for (i = 0; i < queue->limit; i++)
1093			rt2x00dev->ops->lib->clear_entry(&queue->entries[i]);
1094	}
1095}
1096
1097static int rt2x00queue_alloc_entries(struct data_queue *queue)
1098{
1099	struct queue_entry *entries;
1100	unsigned int entry_size;
1101	unsigned int i;
1102
1103	rt2x00queue_reset(queue);
1104
1105	/*
1106	 * Allocate all queue entries.
1107	 */
1108	entry_size = sizeof(*entries) + queue->priv_size;
1109	entries = kcalloc(queue->limit, entry_size, GFP_KERNEL);
1110	if (!entries)
1111		return -ENOMEM;
1112
1113#define QUEUE_ENTRY_PRIV_OFFSET(__base, __index, __limit, __esize, __psize) \
1114	(((char *)(__base)) + ((__limit) * (__esize)) + \
1115	    ((__index) * (__psize)))
1116
1117	for (i = 0; i < queue->limit; i++) {
1118		entries[i].flags = 0;
1119		entries[i].queue = queue;
1120		entries[i].skb = NULL;
1121		entries[i].entry_idx = i;
1122		entries[i].priv_data =
1123		    QUEUE_ENTRY_PRIV_OFFSET(entries, i, queue->limit,
1124					    sizeof(*entries), queue->priv_size);
1125	}
1126
1127#undef QUEUE_ENTRY_PRIV_OFFSET
1128
1129	queue->entries = entries;
1130
1131	return 0;
1132}
1133
1134static void rt2x00queue_free_skbs(struct data_queue *queue)
1135{
1136	unsigned int i;
1137
1138	if (!queue->entries)
1139		return;
1140
1141	for (i = 0; i < queue->limit; i++) {
1142		rt2x00queue_free_skb(&queue->entries[i]);
1143	}
1144}
1145
1146static int rt2x00queue_alloc_rxskbs(struct data_queue *queue)
1147{
1148	unsigned int i;
1149	struct sk_buff *skb;
1150
1151	for (i = 0; i < queue->limit; i++) {
1152		skb = rt2x00queue_alloc_rxskb(&queue->entries[i], GFP_KERNEL);
1153		if (!skb)
1154			return -ENOMEM;
1155		queue->entries[i].skb = skb;
1156	}
1157
1158	return 0;
1159}
1160
1161int rt2x00queue_initialize(struct rt2x00_dev *rt2x00dev)
1162{
1163	struct data_queue *queue;
1164	int status;
1165
1166	status = rt2x00queue_alloc_entries(rt2x00dev->rx);
1167	if (status)
1168		goto exit;
1169
1170	tx_queue_for_each(rt2x00dev, queue) {
1171		status = rt2x00queue_alloc_entries(queue);
1172		if (status)
1173			goto exit;
1174	}
1175
1176	status = rt2x00queue_alloc_entries(rt2x00dev->bcn);
1177	if (status)
1178		goto exit;
1179
1180	if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_ATIM_QUEUE)) {
1181		status = rt2x00queue_alloc_entries(rt2x00dev->atim);
1182		if (status)
1183			goto exit;
1184	}
1185
1186	status = rt2x00queue_alloc_rxskbs(rt2x00dev->rx);
1187	if (status)
1188		goto exit;
1189
1190	return 0;
1191
1192exit:
1193	rt2x00_err(rt2x00dev, "Queue entries allocation failed\n");
1194
1195	rt2x00queue_uninitialize(rt2x00dev);
1196
1197	return status;
1198}
1199
1200void rt2x00queue_uninitialize(struct rt2x00_dev *rt2x00dev)
1201{
1202	struct data_queue *queue;
1203
1204	rt2x00queue_free_skbs(rt2x00dev->rx);
1205
1206	queue_for_each(rt2x00dev, queue) {
1207		kfree(queue->entries);
1208		queue->entries = NULL;
1209	}
1210}
1211
1212static void rt2x00queue_init(struct rt2x00_dev *rt2x00dev,
1213			     struct data_queue *queue, enum data_queue_qid qid)
1214{
1215	mutex_init(&queue->status_lock);
1216	spin_lock_init(&queue->tx_lock);
1217	spin_lock_init(&queue->index_lock);
1218
1219	queue->rt2x00dev = rt2x00dev;
1220	queue->qid = qid;
1221	queue->txop = 0;
1222	queue->aifs = 2;
1223	queue->cw_min = 5;
1224	queue->cw_max = 10;
1225
1226	rt2x00dev->ops->queue_init(queue);
1227
1228	queue->threshold = DIV_ROUND_UP(queue->limit, 10);
1229}
1230
1231int rt2x00queue_allocate(struct rt2x00_dev *rt2x00dev)
1232{
1233	struct data_queue *queue;
1234	enum data_queue_qid qid;
1235	unsigned int req_atim =
1236	    rt2x00_has_cap_flag(rt2x00dev, REQUIRE_ATIM_QUEUE);
1237
1238	/*
1239	 * We need the following queues:
1240	 * RX: 1
1241	 * TX: ops->tx_queues
1242	 * Beacon: 1
1243	 * Atim: 1 (if required)
1244	 */
1245	rt2x00dev->data_queues = 2 + rt2x00dev->ops->tx_queues + req_atim;
1246
1247	queue = kcalloc(rt2x00dev->data_queues, sizeof(*queue), GFP_KERNEL);
1248	if (!queue)
1249		return -ENOMEM;
1250
1251	/*
1252	 * Initialize pointers
1253	 */
1254	rt2x00dev->rx = queue;
1255	rt2x00dev->tx = &queue[1];
1256	rt2x00dev->bcn = &queue[1 + rt2x00dev->ops->tx_queues];
1257	rt2x00dev->atim = req_atim ? &queue[2 + rt2x00dev->ops->tx_queues] : NULL;
1258
1259	/*
1260	 * Initialize queue parameters.
1261	 * RX: qid = QID_RX
1262	 * TX: qid = QID_AC_VO + index
1263	 * TX: cw_min: 2^5 = 32.
1264	 * TX: cw_max: 2^10 = 1024.
1265	 * BCN: qid = QID_BEACON
1266	 * ATIM: qid = QID_ATIM
1267	 */
1268	rt2x00queue_init(rt2x00dev, rt2x00dev->rx, QID_RX);
1269
1270	qid = QID_AC_VO;
1271	tx_queue_for_each(rt2x00dev, queue)
1272		rt2x00queue_init(rt2x00dev, queue, qid++);
1273
1274	rt2x00queue_init(rt2x00dev, rt2x00dev->bcn, QID_BEACON);
1275	if (req_atim)
1276		rt2x00queue_init(rt2x00dev, rt2x00dev->atim, QID_ATIM);
1277
1278	return 0;
1279}
1280
1281void rt2x00queue_free(struct rt2x00_dev *rt2x00dev)
1282{
1283	kfree(rt2x00dev->rx);
1284	rt2x00dev->rx = NULL;
1285	rt2x00dev->tx = NULL;
1286	rt2x00dev->bcn = NULL;
1287}
1288