1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3	Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
4	<http://rt2x00.serialmonkey.com>
5
6 */
7
8/*
9	Module: rt2500pci
10	Abstract: rt2500pci device specific routines.
11	Supported chipsets: RT2560.
12 */
13
14#include <linux/delay.h>
15#include <linux/etherdevice.h>
16#include <linux/kernel.h>
17#include <linux/module.h>
18#include <linux/pci.h>
19#include <linux/eeprom_93cx6.h>
20#include <linux/slab.h>
21
22#include "rt2x00.h"
23#include "rt2x00mmio.h"
24#include "rt2x00pci.h"
25#include "rt2500pci.h"
26
27/*
28 * Register access.
29 * All access to the CSR registers will go through the methods
30 * rt2x00mmio_register_read and rt2x00mmio_register_write.
31 * BBP and RF register require indirect register access,
32 * and use the CSR registers BBPCSR and RFCSR to achieve this.
33 * These indirect registers work with busy bits,
34 * and we will try maximal REGISTER_BUSY_COUNT times to access
35 * the register while taking a REGISTER_BUSY_DELAY us delay
36 * between each attampt. When the busy bit is still set at that time,
37 * the access attempt is considered to have failed,
38 * and we will print an error.
39 */
40#define WAIT_FOR_BBP(__dev, __reg) \
41	rt2x00mmio_regbusy_read((__dev), BBPCSR, BBPCSR_BUSY, (__reg))
42#define WAIT_FOR_RF(__dev, __reg) \
43	rt2x00mmio_regbusy_read((__dev), RFCSR, RFCSR_BUSY, (__reg))
44
45static void rt2500pci_bbp_write(struct rt2x00_dev *rt2x00dev,
46				const unsigned int word, const u8 value)
47{
48	u32 reg;
49
50	mutex_lock(&rt2x00dev->csr_mutex);
51
52	/*
53	 * Wait until the BBP becomes available, afterwards we
54	 * can safely write the new data into the register.
55	 */
56	if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
57		reg = 0;
58		rt2x00_set_field32(&reg, BBPCSR_VALUE, value);
59		rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
60		rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
61		rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 1);
62
63		rt2x00mmio_register_write(rt2x00dev, BBPCSR, reg);
64	}
65
66	mutex_unlock(&rt2x00dev->csr_mutex);
67}
68
69static u8 rt2500pci_bbp_read(struct rt2x00_dev *rt2x00dev,
70			     const unsigned int word)
71{
72	u32 reg;
73	u8 value;
74
75	mutex_lock(&rt2x00dev->csr_mutex);
76
77	/*
78	 * Wait until the BBP becomes available, afterwards we
79	 * can safely write the read request into the register.
80	 * After the data has been written, we wait until hardware
81	 * returns the correct value, if at any time the register
82	 * doesn't become available in time, reg will be 0xffffffff
83	 * which means we return 0xff to the caller.
84	 */
85	if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
86		reg = 0;
87		rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
88		rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
89		rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 0);
90
91		rt2x00mmio_register_write(rt2x00dev, BBPCSR, reg);
92
93		WAIT_FOR_BBP(rt2x00dev, &reg);
94	}
95
96	value = rt2x00_get_field32(reg, BBPCSR_VALUE);
97
98	mutex_unlock(&rt2x00dev->csr_mutex);
99
100	return value;
101}
102
103static void rt2500pci_rf_write(struct rt2x00_dev *rt2x00dev,
104			       const unsigned int word, const u32 value)
105{
106	u32 reg;
107
108	mutex_lock(&rt2x00dev->csr_mutex);
109
110	/*
111	 * Wait until the RF becomes available, afterwards we
112	 * can safely write the new data into the register.
113	 */
114	if (WAIT_FOR_RF(rt2x00dev, &reg)) {
115		reg = 0;
116		rt2x00_set_field32(&reg, RFCSR_VALUE, value);
117		rt2x00_set_field32(&reg, RFCSR_NUMBER_OF_BITS, 20);
118		rt2x00_set_field32(&reg, RFCSR_IF_SELECT, 0);
119		rt2x00_set_field32(&reg, RFCSR_BUSY, 1);
120
121		rt2x00mmio_register_write(rt2x00dev, RFCSR, reg);
122		rt2x00_rf_write(rt2x00dev, word, value);
123	}
124
125	mutex_unlock(&rt2x00dev->csr_mutex);
126}
127
128static void rt2500pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
129{
130	struct rt2x00_dev *rt2x00dev = eeprom->data;
131	u32 reg;
132
133	reg = rt2x00mmio_register_read(rt2x00dev, CSR21);
134
135	eeprom->reg_data_in = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_IN);
136	eeprom->reg_data_out = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_OUT);
137	eeprom->reg_data_clock =
138	    !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_CLOCK);
139	eeprom->reg_chip_select =
140	    !!rt2x00_get_field32(reg, CSR21_EEPROM_CHIP_SELECT);
141}
142
143static void rt2500pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
144{
145	struct rt2x00_dev *rt2x00dev = eeprom->data;
146	u32 reg = 0;
147
148	rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_IN, !!eeprom->reg_data_in);
149	rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_OUT, !!eeprom->reg_data_out);
150	rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_CLOCK,
151			   !!eeprom->reg_data_clock);
152	rt2x00_set_field32(&reg, CSR21_EEPROM_CHIP_SELECT,
153			   !!eeprom->reg_chip_select);
154
155	rt2x00mmio_register_write(rt2x00dev, CSR21, reg);
156}
157
158#ifdef CONFIG_RT2X00_LIB_DEBUGFS
159static const struct rt2x00debug rt2500pci_rt2x00debug = {
160	.owner	= THIS_MODULE,
161	.csr	= {
162		.read		= rt2x00mmio_register_read,
163		.write		= rt2x00mmio_register_write,
164		.flags		= RT2X00DEBUGFS_OFFSET,
165		.word_base	= CSR_REG_BASE,
166		.word_size	= sizeof(u32),
167		.word_count	= CSR_REG_SIZE / sizeof(u32),
168	},
169	.eeprom	= {
170		.read		= rt2x00_eeprom_read,
171		.write		= rt2x00_eeprom_write,
172		.word_base	= EEPROM_BASE,
173		.word_size	= sizeof(u16),
174		.word_count	= EEPROM_SIZE / sizeof(u16),
175	},
176	.bbp	= {
177		.read		= rt2500pci_bbp_read,
178		.write		= rt2500pci_bbp_write,
179		.word_base	= BBP_BASE,
180		.word_size	= sizeof(u8),
181		.word_count	= BBP_SIZE / sizeof(u8),
182	},
183	.rf	= {
184		.read		= rt2x00_rf_read,
185		.write		= rt2500pci_rf_write,
186		.word_base	= RF_BASE,
187		.word_size	= sizeof(u32),
188		.word_count	= RF_SIZE / sizeof(u32),
189	},
190};
191#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
192
193static int rt2500pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
194{
195	u32 reg;
196
197	reg = rt2x00mmio_register_read(rt2x00dev, GPIOCSR);
198	return rt2x00_get_field32(reg, GPIOCSR_VAL0);
199}
200
201#ifdef CONFIG_RT2X00_LIB_LEDS
202static void rt2500pci_brightness_set(struct led_classdev *led_cdev,
203				     enum led_brightness brightness)
204{
205	struct rt2x00_led *led =
206	    container_of(led_cdev, struct rt2x00_led, led_dev);
207	unsigned int enabled = brightness != LED_OFF;
208	u32 reg;
209
210	reg = rt2x00mmio_register_read(led->rt2x00dev, LEDCSR);
211
212	if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
213		rt2x00_set_field32(&reg, LEDCSR_LINK, enabled);
214	else if (led->type == LED_TYPE_ACTIVITY)
215		rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, enabled);
216
217	rt2x00mmio_register_write(led->rt2x00dev, LEDCSR, reg);
218}
219
220static int rt2500pci_blink_set(struct led_classdev *led_cdev,
221			       unsigned long *delay_on,
222			       unsigned long *delay_off)
223{
224	struct rt2x00_led *led =
225	    container_of(led_cdev, struct rt2x00_led, led_dev);
226	u32 reg;
227
228	reg = rt2x00mmio_register_read(led->rt2x00dev, LEDCSR);
229	rt2x00_set_field32(&reg, LEDCSR_ON_PERIOD, *delay_on);
230	rt2x00_set_field32(&reg, LEDCSR_OFF_PERIOD, *delay_off);
231	rt2x00mmio_register_write(led->rt2x00dev, LEDCSR, reg);
232
233	return 0;
234}
235
236static void rt2500pci_init_led(struct rt2x00_dev *rt2x00dev,
237			       struct rt2x00_led *led,
238			       enum led_type type)
239{
240	led->rt2x00dev = rt2x00dev;
241	led->type = type;
242	led->led_dev.brightness_set = rt2500pci_brightness_set;
243	led->led_dev.blink_set = rt2500pci_blink_set;
244	led->flags = LED_INITIALIZED;
245}
246#endif /* CONFIG_RT2X00_LIB_LEDS */
247
248/*
249 * Configuration handlers.
250 */
251static void rt2500pci_config_filter(struct rt2x00_dev *rt2x00dev,
252				    const unsigned int filter_flags)
253{
254	u32 reg;
255
256	/*
257	 * Start configuration steps.
258	 * Note that the version error will always be dropped
259	 * and broadcast frames will always be accepted since
260	 * there is no filter for it at this time.
261	 */
262	reg = rt2x00mmio_register_read(rt2x00dev, RXCSR0);
263	rt2x00_set_field32(&reg, RXCSR0_DROP_CRC,
264			   !(filter_flags & FIF_FCSFAIL));
265	rt2x00_set_field32(&reg, RXCSR0_DROP_PHYSICAL,
266			   !(filter_flags & FIF_PLCPFAIL));
267	rt2x00_set_field32(&reg, RXCSR0_DROP_CONTROL,
268			   !(filter_flags & FIF_CONTROL));
269	rt2x00_set_field32(&reg, RXCSR0_DROP_NOT_TO_ME,
270			   !test_bit(CONFIG_MONITORING, &rt2x00dev->flags));
271	rt2x00_set_field32(&reg, RXCSR0_DROP_TODS,
272			   !test_bit(CONFIG_MONITORING, &rt2x00dev->flags) &&
273			   !rt2x00dev->intf_ap_count);
274	rt2x00_set_field32(&reg, RXCSR0_DROP_VERSION_ERROR, 1);
275	rt2x00_set_field32(&reg, RXCSR0_DROP_MCAST,
276			   !(filter_flags & FIF_ALLMULTI));
277	rt2x00_set_field32(&reg, RXCSR0_DROP_BCAST, 0);
278	rt2x00mmio_register_write(rt2x00dev, RXCSR0, reg);
279}
280
281static void rt2500pci_config_intf(struct rt2x00_dev *rt2x00dev,
282				  struct rt2x00_intf *intf,
283				  struct rt2x00intf_conf *conf,
284				  const unsigned int flags)
285{
286	struct data_queue *queue = rt2x00dev->bcn;
287	unsigned int bcn_preload;
288	u32 reg;
289
290	if (flags & CONFIG_UPDATE_TYPE) {
291		/*
292		 * Enable beacon config
293		 */
294		bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20);
295		reg = rt2x00mmio_register_read(rt2x00dev, BCNCSR1);
296		rt2x00_set_field32(&reg, BCNCSR1_PRELOAD, bcn_preload);
297		rt2x00_set_field32(&reg, BCNCSR1_BEACON_CWMIN, queue->cw_min);
298		rt2x00mmio_register_write(rt2x00dev, BCNCSR1, reg);
299
300		/*
301		 * Enable synchronisation.
302		 */
303		reg = rt2x00mmio_register_read(rt2x00dev, CSR14);
304		rt2x00_set_field32(&reg, CSR14_TSF_SYNC, conf->sync);
305		rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
306	}
307
308	if (flags & CONFIG_UPDATE_MAC)
309		rt2x00mmio_register_multiwrite(rt2x00dev, CSR3,
310					      conf->mac, sizeof(conf->mac));
311
312	if (flags & CONFIG_UPDATE_BSSID)
313		rt2x00mmio_register_multiwrite(rt2x00dev, CSR5,
314					      conf->bssid, sizeof(conf->bssid));
315}
316
317static void rt2500pci_config_erp(struct rt2x00_dev *rt2x00dev,
318				 struct rt2x00lib_erp *erp,
319				 u32 changed)
320{
321	int preamble_mask;
322	u32 reg;
323
324	/*
325	 * When short preamble is enabled, we should set bit 0x08
326	 */
327	if (changed & BSS_CHANGED_ERP_PREAMBLE) {
328		preamble_mask = erp->short_preamble << 3;
329
330		reg = rt2x00mmio_register_read(rt2x00dev, TXCSR1);
331		rt2x00_set_field32(&reg, TXCSR1_ACK_TIMEOUT, 0x162);
332		rt2x00_set_field32(&reg, TXCSR1_ACK_CONSUME_TIME, 0xa2);
333		rt2x00_set_field32(&reg, TXCSR1_TSF_OFFSET, IEEE80211_HEADER);
334		rt2x00_set_field32(&reg, TXCSR1_AUTORESPONDER, 1);
335		rt2x00mmio_register_write(rt2x00dev, TXCSR1, reg);
336
337		reg = rt2x00mmio_register_read(rt2x00dev, ARCSR2);
338		rt2x00_set_field32(&reg, ARCSR2_SIGNAL, 0x00);
339		rt2x00_set_field32(&reg, ARCSR2_SERVICE, 0x04);
340		rt2x00_set_field32(&reg, ARCSR2_LENGTH,
341				   GET_DURATION(ACK_SIZE, 10));
342		rt2x00mmio_register_write(rt2x00dev, ARCSR2, reg);
343
344		reg = rt2x00mmio_register_read(rt2x00dev, ARCSR3);
345		rt2x00_set_field32(&reg, ARCSR3_SIGNAL, 0x01 | preamble_mask);
346		rt2x00_set_field32(&reg, ARCSR3_SERVICE, 0x04);
347		rt2x00_set_field32(&reg, ARCSR2_LENGTH,
348				   GET_DURATION(ACK_SIZE, 20));
349		rt2x00mmio_register_write(rt2x00dev, ARCSR3, reg);
350
351		reg = rt2x00mmio_register_read(rt2x00dev, ARCSR4);
352		rt2x00_set_field32(&reg, ARCSR4_SIGNAL, 0x02 | preamble_mask);
353		rt2x00_set_field32(&reg, ARCSR4_SERVICE, 0x04);
354		rt2x00_set_field32(&reg, ARCSR2_LENGTH,
355				   GET_DURATION(ACK_SIZE, 55));
356		rt2x00mmio_register_write(rt2x00dev, ARCSR4, reg);
357
358		reg = rt2x00mmio_register_read(rt2x00dev, ARCSR5);
359		rt2x00_set_field32(&reg, ARCSR5_SIGNAL, 0x03 | preamble_mask);
360		rt2x00_set_field32(&reg, ARCSR5_SERVICE, 0x84);
361		rt2x00_set_field32(&reg, ARCSR2_LENGTH,
362				   GET_DURATION(ACK_SIZE, 110));
363		rt2x00mmio_register_write(rt2x00dev, ARCSR5, reg);
364	}
365
366	if (changed & BSS_CHANGED_BASIC_RATES)
367		rt2x00mmio_register_write(rt2x00dev, ARCSR1, erp->basic_rates);
368
369	if (changed & BSS_CHANGED_ERP_SLOT) {
370		reg = rt2x00mmio_register_read(rt2x00dev, CSR11);
371		rt2x00_set_field32(&reg, CSR11_SLOT_TIME, erp->slot_time);
372		rt2x00mmio_register_write(rt2x00dev, CSR11, reg);
373
374		reg = rt2x00mmio_register_read(rt2x00dev, CSR18);
375		rt2x00_set_field32(&reg, CSR18_SIFS, erp->sifs);
376		rt2x00_set_field32(&reg, CSR18_PIFS, erp->pifs);
377		rt2x00mmio_register_write(rt2x00dev, CSR18, reg);
378
379		reg = rt2x00mmio_register_read(rt2x00dev, CSR19);
380		rt2x00_set_field32(&reg, CSR19_DIFS, erp->difs);
381		rt2x00_set_field32(&reg, CSR19_EIFS, erp->eifs);
382		rt2x00mmio_register_write(rt2x00dev, CSR19, reg);
383	}
384
385	if (changed & BSS_CHANGED_BEACON_INT) {
386		reg = rt2x00mmio_register_read(rt2x00dev, CSR12);
387		rt2x00_set_field32(&reg, CSR12_BEACON_INTERVAL,
388				   erp->beacon_int * 16);
389		rt2x00_set_field32(&reg, CSR12_CFP_MAX_DURATION,
390				   erp->beacon_int * 16);
391		rt2x00mmio_register_write(rt2x00dev, CSR12, reg);
392	}
393
394}
395
396static void rt2500pci_config_ant(struct rt2x00_dev *rt2x00dev,
397				 struct antenna_setup *ant)
398{
399	u32 reg;
400	u8 r14;
401	u8 r2;
402
403	/*
404	 * We should never come here because rt2x00lib is supposed
405	 * to catch this and send us the correct antenna explicitely.
406	 */
407	BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
408	       ant->tx == ANTENNA_SW_DIVERSITY);
409
410	reg = rt2x00mmio_register_read(rt2x00dev, BBPCSR1);
411	r14 = rt2500pci_bbp_read(rt2x00dev, 14);
412	r2 = rt2500pci_bbp_read(rt2x00dev, 2);
413
414	/*
415	 * Configure the TX antenna.
416	 */
417	switch (ant->tx) {
418	case ANTENNA_A:
419		rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0);
420		rt2x00_set_field32(&reg, BBPCSR1_CCK, 0);
421		rt2x00_set_field32(&reg, BBPCSR1_OFDM, 0);
422		break;
423	case ANTENNA_B:
424	default:
425		rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
426		rt2x00_set_field32(&reg, BBPCSR1_CCK, 2);
427		rt2x00_set_field32(&reg, BBPCSR1_OFDM, 2);
428		break;
429	}
430
431	/*
432	 * Configure the RX antenna.
433	 */
434	switch (ant->rx) {
435	case ANTENNA_A:
436		rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0);
437		break;
438	case ANTENNA_B:
439	default:
440		rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
441		break;
442	}
443
444	/*
445	 * RT2525E and RT5222 need to flip TX I/Q
446	 */
447	if (rt2x00_rf(rt2x00dev, RF2525E) || rt2x00_rf(rt2x00dev, RF5222)) {
448		rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1);
449		rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 1);
450		rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 1);
451
452		/*
453		 * RT2525E does not need RX I/Q Flip.
454		 */
455		if (rt2x00_rf(rt2x00dev, RF2525E))
456			rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0);
457	} else {
458		rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 0);
459		rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 0);
460	}
461
462	rt2x00mmio_register_write(rt2x00dev, BBPCSR1, reg);
463	rt2500pci_bbp_write(rt2x00dev, 14, r14);
464	rt2500pci_bbp_write(rt2x00dev, 2, r2);
465}
466
467static void rt2500pci_config_channel(struct rt2x00_dev *rt2x00dev,
468				     struct rf_channel *rf, const int txpower)
469{
470	u8 r70;
471
472	/*
473	 * Set TXpower.
474	 */
475	rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
476
477	/*
478	 * Switch on tuning bits.
479	 * For RT2523 devices we do not need to update the R1 register.
480	 */
481	if (!rt2x00_rf(rt2x00dev, RF2523))
482		rt2x00_set_field32(&rf->rf1, RF1_TUNER, 1);
483	rt2x00_set_field32(&rf->rf3, RF3_TUNER, 1);
484
485	/*
486	 * For RT2525 we should first set the channel to half band higher.
487	 */
488	if (rt2x00_rf(rt2x00dev, RF2525)) {
489		static const u32 vals[] = {
490			0x00080cbe, 0x00080d02, 0x00080d06, 0x00080d0a,
491			0x00080d0e, 0x00080d12, 0x00080d16, 0x00080d1a,
492			0x00080d1e, 0x00080d22, 0x00080d26, 0x00080d2a,
493			0x00080d2e, 0x00080d3a
494		};
495
496		rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
497		rt2500pci_rf_write(rt2x00dev, 2, vals[rf->channel - 1]);
498		rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
499		if (rf->rf4)
500			rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
501	}
502
503	rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
504	rt2500pci_rf_write(rt2x00dev, 2, rf->rf2);
505	rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
506	if (rf->rf4)
507		rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
508
509	/*
510	 * Channel 14 requires the Japan filter bit to be set.
511	 */
512	r70 = 0x46;
513	rt2x00_set_field8(&r70, BBP_R70_JAPAN_FILTER, rf->channel == 14);
514	rt2500pci_bbp_write(rt2x00dev, 70, r70);
515
516	msleep(1);
517
518	/*
519	 * Switch off tuning bits.
520	 * For RT2523 devices we do not need to update the R1 register.
521	 */
522	if (!rt2x00_rf(rt2x00dev, RF2523)) {
523		rt2x00_set_field32(&rf->rf1, RF1_TUNER, 0);
524		rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
525	}
526
527	rt2x00_set_field32(&rf->rf3, RF3_TUNER, 0);
528	rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
529
530	/*
531	 * Clear false CRC during channel switch.
532	 */
533	rf->rf1 = rt2x00mmio_register_read(rt2x00dev, CNT0);
534}
535
536static void rt2500pci_config_txpower(struct rt2x00_dev *rt2x00dev,
537				     const int txpower)
538{
539	u32 rf3;
540
541	rf3 = rt2x00_rf_read(rt2x00dev, 3);
542	rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
543	rt2500pci_rf_write(rt2x00dev, 3, rf3);
544}
545
546static void rt2500pci_config_retry_limit(struct rt2x00_dev *rt2x00dev,
547					 struct rt2x00lib_conf *libconf)
548{
549	u32 reg;
550
551	reg = rt2x00mmio_register_read(rt2x00dev, CSR11);
552	rt2x00_set_field32(&reg, CSR11_LONG_RETRY,
553			   libconf->conf->long_frame_max_tx_count);
554	rt2x00_set_field32(&reg, CSR11_SHORT_RETRY,
555			   libconf->conf->short_frame_max_tx_count);
556	rt2x00mmio_register_write(rt2x00dev, CSR11, reg);
557}
558
559static void rt2500pci_config_ps(struct rt2x00_dev *rt2x00dev,
560				struct rt2x00lib_conf *libconf)
561{
562	enum dev_state state =
563	    (libconf->conf->flags & IEEE80211_CONF_PS) ?
564		STATE_SLEEP : STATE_AWAKE;
565	u32 reg;
566
567	if (state == STATE_SLEEP) {
568		reg = rt2x00mmio_register_read(rt2x00dev, CSR20);
569		rt2x00_set_field32(&reg, CSR20_DELAY_AFTER_TBCN,
570				   (rt2x00dev->beacon_int - 20) * 16);
571		rt2x00_set_field32(&reg, CSR20_TBCN_BEFORE_WAKEUP,
572				   libconf->conf->listen_interval - 1);
573
574		/* We must first disable autowake before it can be enabled */
575		rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 0);
576		rt2x00mmio_register_write(rt2x00dev, CSR20, reg);
577
578		rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 1);
579		rt2x00mmio_register_write(rt2x00dev, CSR20, reg);
580	} else {
581		reg = rt2x00mmio_register_read(rt2x00dev, CSR20);
582		rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 0);
583		rt2x00mmio_register_write(rt2x00dev, CSR20, reg);
584	}
585
586	rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
587}
588
589static void rt2500pci_config(struct rt2x00_dev *rt2x00dev,
590			     struct rt2x00lib_conf *libconf,
591			     const unsigned int flags)
592{
593	if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
594		rt2500pci_config_channel(rt2x00dev, &libconf->rf,
595					 libconf->conf->power_level);
596	if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
597	    !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
598		rt2500pci_config_txpower(rt2x00dev,
599					 libconf->conf->power_level);
600	if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
601		rt2500pci_config_retry_limit(rt2x00dev, libconf);
602	if (flags & IEEE80211_CONF_CHANGE_PS)
603		rt2500pci_config_ps(rt2x00dev, libconf);
604}
605
606/*
607 * Link tuning
608 */
609static void rt2500pci_link_stats(struct rt2x00_dev *rt2x00dev,
610				 struct link_qual *qual)
611{
612	u32 reg;
613
614	/*
615	 * Update FCS error count from register.
616	 */
617	reg = rt2x00mmio_register_read(rt2x00dev, CNT0);
618	qual->rx_failed = rt2x00_get_field32(reg, CNT0_FCS_ERROR);
619
620	/*
621	 * Update False CCA count from register.
622	 */
623	reg = rt2x00mmio_register_read(rt2x00dev, CNT3);
624	qual->false_cca = rt2x00_get_field32(reg, CNT3_FALSE_CCA);
625}
626
627static inline void rt2500pci_set_vgc(struct rt2x00_dev *rt2x00dev,
628				     struct link_qual *qual, u8 vgc_level)
629{
630	if (qual->vgc_level_reg != vgc_level) {
631		rt2500pci_bbp_write(rt2x00dev, 17, vgc_level);
632		qual->vgc_level = vgc_level;
633		qual->vgc_level_reg = vgc_level;
634	}
635}
636
637static void rt2500pci_reset_tuner(struct rt2x00_dev *rt2x00dev,
638				  struct link_qual *qual)
639{
640	rt2500pci_set_vgc(rt2x00dev, qual, 0x48);
641}
642
643static void rt2500pci_link_tuner(struct rt2x00_dev *rt2x00dev,
644				 struct link_qual *qual, const u32 count)
645{
646	/*
647	 * To prevent collisions with MAC ASIC on chipsets
648	 * up to version C the link tuning should halt after 20
649	 * seconds while being associated.
650	 */
651	if (rt2x00_rev(rt2x00dev) < RT2560_VERSION_D &&
652	    rt2x00dev->intf_associated && count > 20)
653		return;
654
655	/*
656	 * Chipset versions C and lower should directly continue
657	 * to the dynamic CCA tuning. Chipset version D and higher
658	 * should go straight to dynamic CCA tuning when they
659	 * are not associated.
660	 */
661	if (rt2x00_rev(rt2x00dev) < RT2560_VERSION_D ||
662	    !rt2x00dev->intf_associated)
663		goto dynamic_cca_tune;
664
665	/*
666	 * A too low RSSI will cause too much false CCA which will
667	 * then corrupt the R17 tuning. To remidy this the tuning should
668	 * be stopped (While making sure the R17 value will not exceed limits)
669	 */
670	if (qual->rssi < -80 && count > 20) {
671		if (qual->vgc_level_reg >= 0x41)
672			rt2500pci_set_vgc(rt2x00dev, qual, qual->vgc_level);
673		return;
674	}
675
676	/*
677	 * Special big-R17 for short distance
678	 */
679	if (qual->rssi >= -58) {
680		rt2500pci_set_vgc(rt2x00dev, qual, 0x50);
681		return;
682	}
683
684	/*
685	 * Special mid-R17 for middle distance
686	 */
687	if (qual->rssi >= -74) {
688		rt2500pci_set_vgc(rt2x00dev, qual, 0x41);
689		return;
690	}
691
692	/*
693	 * Leave short or middle distance condition, restore r17
694	 * to the dynamic tuning range.
695	 */
696	if (qual->vgc_level_reg >= 0x41) {
697		rt2500pci_set_vgc(rt2x00dev, qual, qual->vgc_level);
698		return;
699	}
700
701dynamic_cca_tune:
702
703	/*
704	 * R17 is inside the dynamic tuning range,
705	 * start tuning the link based on the false cca counter.
706	 */
707	if (qual->false_cca > 512 && qual->vgc_level_reg < 0x40)
708		rt2500pci_set_vgc(rt2x00dev, qual, ++qual->vgc_level_reg);
709	else if (qual->false_cca < 100 && qual->vgc_level_reg > 0x32)
710		rt2500pci_set_vgc(rt2x00dev, qual, --qual->vgc_level_reg);
711}
712
713/*
714 * Queue handlers.
715 */
716static void rt2500pci_start_queue(struct data_queue *queue)
717{
718	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
719	u32 reg;
720
721	switch (queue->qid) {
722	case QID_RX:
723		reg = rt2x00mmio_register_read(rt2x00dev, RXCSR0);
724		rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX, 0);
725		rt2x00mmio_register_write(rt2x00dev, RXCSR0, reg);
726		break;
727	case QID_BEACON:
728		reg = rt2x00mmio_register_read(rt2x00dev, CSR14);
729		rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
730		rt2x00_set_field32(&reg, CSR14_TBCN, 1);
731		rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
732		rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
733		break;
734	default:
735		break;
736	}
737}
738
739static void rt2500pci_kick_queue(struct data_queue *queue)
740{
741	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
742	u32 reg;
743
744	switch (queue->qid) {
745	case QID_AC_VO:
746		reg = rt2x00mmio_register_read(rt2x00dev, TXCSR0);
747		rt2x00_set_field32(&reg, TXCSR0_KICK_PRIO, 1);
748		rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg);
749		break;
750	case QID_AC_VI:
751		reg = rt2x00mmio_register_read(rt2x00dev, TXCSR0);
752		rt2x00_set_field32(&reg, TXCSR0_KICK_TX, 1);
753		rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg);
754		break;
755	case QID_ATIM:
756		reg = rt2x00mmio_register_read(rt2x00dev, TXCSR0);
757		rt2x00_set_field32(&reg, TXCSR0_KICK_ATIM, 1);
758		rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg);
759		break;
760	default:
761		break;
762	}
763}
764
765static void rt2500pci_stop_queue(struct data_queue *queue)
766{
767	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
768	u32 reg;
769
770	switch (queue->qid) {
771	case QID_AC_VO:
772	case QID_AC_VI:
773	case QID_ATIM:
774		reg = rt2x00mmio_register_read(rt2x00dev, TXCSR0);
775		rt2x00_set_field32(&reg, TXCSR0_ABORT, 1);
776		rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg);
777		break;
778	case QID_RX:
779		reg = rt2x00mmio_register_read(rt2x00dev, RXCSR0);
780		rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX, 1);
781		rt2x00mmio_register_write(rt2x00dev, RXCSR0, reg);
782		break;
783	case QID_BEACON:
784		reg = rt2x00mmio_register_read(rt2x00dev, CSR14);
785		rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
786		rt2x00_set_field32(&reg, CSR14_TBCN, 0);
787		rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
788		rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
789
790		/*
791		 * Wait for possibly running tbtt tasklets.
792		 */
793		tasklet_kill(&rt2x00dev->tbtt_tasklet);
794		break;
795	default:
796		break;
797	}
798}
799
800/*
801 * Initialization functions.
802 */
803static bool rt2500pci_get_entry_state(struct queue_entry *entry)
804{
805	struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
806	u32 word;
807
808	if (entry->queue->qid == QID_RX) {
809		word = rt2x00_desc_read(entry_priv->desc, 0);
810
811		return rt2x00_get_field32(word, RXD_W0_OWNER_NIC);
812	} else {
813		word = rt2x00_desc_read(entry_priv->desc, 0);
814
815		return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
816		        rt2x00_get_field32(word, TXD_W0_VALID));
817	}
818}
819
820static void rt2500pci_clear_entry(struct queue_entry *entry)
821{
822	struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
823	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
824	u32 word;
825
826	if (entry->queue->qid == QID_RX) {
827		word = rt2x00_desc_read(entry_priv->desc, 1);
828		rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
829		rt2x00_desc_write(entry_priv->desc, 1, word);
830
831		word = rt2x00_desc_read(entry_priv->desc, 0);
832		rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
833		rt2x00_desc_write(entry_priv->desc, 0, word);
834	} else {
835		word = rt2x00_desc_read(entry_priv->desc, 0);
836		rt2x00_set_field32(&word, TXD_W0_VALID, 0);
837		rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
838		rt2x00_desc_write(entry_priv->desc, 0, word);
839	}
840}
841
842static int rt2500pci_init_queues(struct rt2x00_dev *rt2x00dev)
843{
844	struct queue_entry_priv_mmio *entry_priv;
845	u32 reg;
846
847	/*
848	 * Initialize registers.
849	 */
850	reg = rt2x00mmio_register_read(rt2x00dev, TXCSR2);
851	rt2x00_set_field32(&reg, TXCSR2_TXD_SIZE, rt2x00dev->tx[0].desc_size);
852	rt2x00_set_field32(&reg, TXCSR2_NUM_TXD, rt2x00dev->tx[1].limit);
853	rt2x00_set_field32(&reg, TXCSR2_NUM_ATIM, rt2x00dev->atim->limit);
854	rt2x00_set_field32(&reg, TXCSR2_NUM_PRIO, rt2x00dev->tx[0].limit);
855	rt2x00mmio_register_write(rt2x00dev, TXCSR2, reg);
856
857	entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
858	reg = rt2x00mmio_register_read(rt2x00dev, TXCSR3);
859	rt2x00_set_field32(&reg, TXCSR3_TX_RING_REGISTER,
860			   entry_priv->desc_dma);
861	rt2x00mmio_register_write(rt2x00dev, TXCSR3, reg);
862
863	entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
864	reg = rt2x00mmio_register_read(rt2x00dev, TXCSR5);
865	rt2x00_set_field32(&reg, TXCSR5_PRIO_RING_REGISTER,
866			   entry_priv->desc_dma);
867	rt2x00mmio_register_write(rt2x00dev, TXCSR5, reg);
868
869	entry_priv = rt2x00dev->atim->entries[0].priv_data;
870	reg = rt2x00mmio_register_read(rt2x00dev, TXCSR4);
871	rt2x00_set_field32(&reg, TXCSR4_ATIM_RING_REGISTER,
872			   entry_priv->desc_dma);
873	rt2x00mmio_register_write(rt2x00dev, TXCSR4, reg);
874
875	entry_priv = rt2x00dev->bcn->entries[0].priv_data;
876	reg = rt2x00mmio_register_read(rt2x00dev, TXCSR6);
877	rt2x00_set_field32(&reg, TXCSR6_BEACON_RING_REGISTER,
878			   entry_priv->desc_dma);
879	rt2x00mmio_register_write(rt2x00dev, TXCSR6, reg);
880
881	reg = rt2x00mmio_register_read(rt2x00dev, RXCSR1);
882	rt2x00_set_field32(&reg, RXCSR1_RXD_SIZE, rt2x00dev->rx->desc_size);
883	rt2x00_set_field32(&reg, RXCSR1_NUM_RXD, rt2x00dev->rx->limit);
884	rt2x00mmio_register_write(rt2x00dev, RXCSR1, reg);
885
886	entry_priv = rt2x00dev->rx->entries[0].priv_data;
887	reg = rt2x00mmio_register_read(rt2x00dev, RXCSR2);
888	rt2x00_set_field32(&reg, RXCSR2_RX_RING_REGISTER,
889			   entry_priv->desc_dma);
890	rt2x00mmio_register_write(rt2x00dev, RXCSR2, reg);
891
892	return 0;
893}
894
895static int rt2500pci_init_registers(struct rt2x00_dev *rt2x00dev)
896{
897	u32 reg;
898
899	rt2x00mmio_register_write(rt2x00dev, PSCSR0, 0x00020002);
900	rt2x00mmio_register_write(rt2x00dev, PSCSR1, 0x00000002);
901	rt2x00mmio_register_write(rt2x00dev, PSCSR2, 0x00020002);
902	rt2x00mmio_register_write(rt2x00dev, PSCSR3, 0x00000002);
903
904	reg = rt2x00mmio_register_read(rt2x00dev, TIMECSR);
905	rt2x00_set_field32(&reg, TIMECSR_US_COUNT, 33);
906	rt2x00_set_field32(&reg, TIMECSR_US_64_COUNT, 63);
907	rt2x00_set_field32(&reg, TIMECSR_BEACON_EXPECT, 0);
908	rt2x00mmio_register_write(rt2x00dev, TIMECSR, reg);
909
910	reg = rt2x00mmio_register_read(rt2x00dev, CSR9);
911	rt2x00_set_field32(&reg, CSR9_MAX_FRAME_UNIT,
912			   rt2x00dev->rx->data_size / 128);
913	rt2x00mmio_register_write(rt2x00dev, CSR9, reg);
914
915	/*
916	 * Always use CWmin and CWmax set in descriptor.
917	 */
918	reg = rt2x00mmio_register_read(rt2x00dev, CSR11);
919	rt2x00_set_field32(&reg, CSR11_CW_SELECT, 0);
920	rt2x00mmio_register_write(rt2x00dev, CSR11, reg);
921
922	reg = rt2x00mmio_register_read(rt2x00dev, CSR14);
923	rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
924	rt2x00_set_field32(&reg, CSR14_TSF_SYNC, 0);
925	rt2x00_set_field32(&reg, CSR14_TBCN, 0);
926	rt2x00_set_field32(&reg, CSR14_TCFP, 0);
927	rt2x00_set_field32(&reg, CSR14_TATIMW, 0);
928	rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
929	rt2x00_set_field32(&reg, CSR14_CFP_COUNT_PRELOAD, 0);
930	rt2x00_set_field32(&reg, CSR14_TBCM_PRELOAD, 0);
931	rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
932
933	rt2x00mmio_register_write(rt2x00dev, CNT3, 0);
934
935	reg = rt2x00mmio_register_read(rt2x00dev, TXCSR8);
936	rt2x00_set_field32(&reg, TXCSR8_BBP_ID0, 10);
937	rt2x00_set_field32(&reg, TXCSR8_BBP_ID0_VALID, 1);
938	rt2x00_set_field32(&reg, TXCSR8_BBP_ID1, 11);
939	rt2x00_set_field32(&reg, TXCSR8_BBP_ID1_VALID, 1);
940	rt2x00_set_field32(&reg, TXCSR8_BBP_ID2, 13);
941	rt2x00_set_field32(&reg, TXCSR8_BBP_ID2_VALID, 1);
942	rt2x00_set_field32(&reg, TXCSR8_BBP_ID3, 12);
943	rt2x00_set_field32(&reg, TXCSR8_BBP_ID3_VALID, 1);
944	rt2x00mmio_register_write(rt2x00dev, TXCSR8, reg);
945
946	reg = rt2x00mmio_register_read(rt2x00dev, ARTCSR0);
947	rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_1MBS, 112);
948	rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_2MBS, 56);
949	rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_5_5MBS, 20);
950	rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_11MBS, 10);
951	rt2x00mmio_register_write(rt2x00dev, ARTCSR0, reg);
952
953	reg = rt2x00mmio_register_read(rt2x00dev, ARTCSR1);
954	rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_6MBS, 45);
955	rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_9MBS, 37);
956	rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_12MBS, 33);
957	rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_18MBS, 29);
958	rt2x00mmio_register_write(rt2x00dev, ARTCSR1, reg);
959
960	reg = rt2x00mmio_register_read(rt2x00dev, ARTCSR2);
961	rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_24MBS, 29);
962	rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_36MBS, 25);
963	rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_48MBS, 25);
964	rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_54MBS, 25);
965	rt2x00mmio_register_write(rt2x00dev, ARTCSR2, reg);
966
967	reg = rt2x00mmio_register_read(rt2x00dev, RXCSR3);
968	rt2x00_set_field32(&reg, RXCSR3_BBP_ID0, 47); /* CCK Signal */
969	rt2x00_set_field32(&reg, RXCSR3_BBP_ID0_VALID, 1);
970	rt2x00_set_field32(&reg, RXCSR3_BBP_ID1, 51); /* Rssi */
971	rt2x00_set_field32(&reg, RXCSR3_BBP_ID1_VALID, 1);
972	rt2x00_set_field32(&reg, RXCSR3_BBP_ID2, 42); /* OFDM Rate */
973	rt2x00_set_field32(&reg, RXCSR3_BBP_ID2_VALID, 1);
974	rt2x00_set_field32(&reg, RXCSR3_BBP_ID3, 51); /* RSSI */
975	rt2x00_set_field32(&reg, RXCSR3_BBP_ID3_VALID, 1);
976	rt2x00mmio_register_write(rt2x00dev, RXCSR3, reg);
977
978	reg = rt2x00mmio_register_read(rt2x00dev, PCICSR);
979	rt2x00_set_field32(&reg, PCICSR_BIG_ENDIAN, 0);
980	rt2x00_set_field32(&reg, PCICSR_RX_TRESHOLD, 0);
981	rt2x00_set_field32(&reg, PCICSR_TX_TRESHOLD, 3);
982	rt2x00_set_field32(&reg, PCICSR_BURST_LENTH, 1);
983	rt2x00_set_field32(&reg, PCICSR_ENABLE_CLK, 1);
984	rt2x00_set_field32(&reg, PCICSR_READ_MULTIPLE, 1);
985	rt2x00_set_field32(&reg, PCICSR_WRITE_INVALID, 1);
986	rt2x00mmio_register_write(rt2x00dev, PCICSR, reg);
987
988	rt2x00mmio_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100);
989
990	rt2x00mmio_register_write(rt2x00dev, GPIOCSR, 0x0000ff00);
991	rt2x00mmio_register_write(rt2x00dev, TESTCSR, 0x000000f0);
992
993	if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
994		return -EBUSY;
995
996	rt2x00mmio_register_write(rt2x00dev, MACCSR0, 0x00213223);
997	rt2x00mmio_register_write(rt2x00dev, MACCSR1, 0x00235518);
998
999	reg = rt2x00mmio_register_read(rt2x00dev, MACCSR2);
1000	rt2x00_set_field32(&reg, MACCSR2_DELAY, 64);
1001	rt2x00mmio_register_write(rt2x00dev, MACCSR2, reg);
1002
1003	reg = rt2x00mmio_register_read(rt2x00dev, RALINKCSR);
1004	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA0, 17);
1005	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID0, 26);
1006	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_VALID0, 1);
1007	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA1, 0);
1008	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID1, 26);
1009	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_VALID1, 1);
1010	rt2x00mmio_register_write(rt2x00dev, RALINKCSR, reg);
1011
1012	rt2x00mmio_register_write(rt2x00dev, BBPCSR1, 0x82188200);
1013
1014	rt2x00mmio_register_write(rt2x00dev, TXACKCSR0, 0x00000020);
1015
1016	reg = rt2x00mmio_register_read(rt2x00dev, CSR1);
1017	rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 1);
1018	rt2x00_set_field32(&reg, CSR1_BBP_RESET, 0);
1019	rt2x00_set_field32(&reg, CSR1_HOST_READY, 0);
1020	rt2x00mmio_register_write(rt2x00dev, CSR1, reg);
1021
1022	reg = rt2x00mmio_register_read(rt2x00dev, CSR1);
1023	rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 0);
1024	rt2x00_set_field32(&reg, CSR1_HOST_READY, 1);
1025	rt2x00mmio_register_write(rt2x00dev, CSR1, reg);
1026
1027	/*
1028	 * We must clear the FCS and FIFO error count.
1029	 * These registers are cleared on read,
1030	 * so we may pass a useless variable to store the value.
1031	 */
1032	reg = rt2x00mmio_register_read(rt2x00dev, CNT0);
1033	reg = rt2x00mmio_register_read(rt2x00dev, CNT4);
1034
1035	return 0;
1036}
1037
1038static int rt2500pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
1039{
1040	unsigned int i;
1041	u8 value;
1042
1043	for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1044		value = rt2500pci_bbp_read(rt2x00dev, 0);
1045		if ((value != 0xff) && (value != 0x00))
1046			return 0;
1047		udelay(REGISTER_BUSY_DELAY);
1048	}
1049
1050	rt2x00_err(rt2x00dev, "BBP register access failed, aborting\n");
1051	return -EACCES;
1052}
1053
1054static int rt2500pci_init_bbp(struct rt2x00_dev *rt2x00dev)
1055{
1056	unsigned int i;
1057	u16 eeprom;
1058	u8 reg_id;
1059	u8 value;
1060
1061	if (unlikely(rt2500pci_wait_bbp_ready(rt2x00dev)))
1062		return -EACCES;
1063
1064	rt2500pci_bbp_write(rt2x00dev, 3, 0x02);
1065	rt2500pci_bbp_write(rt2x00dev, 4, 0x19);
1066	rt2500pci_bbp_write(rt2x00dev, 14, 0x1c);
1067	rt2500pci_bbp_write(rt2x00dev, 15, 0x30);
1068	rt2500pci_bbp_write(rt2x00dev, 16, 0xac);
1069	rt2500pci_bbp_write(rt2x00dev, 18, 0x18);
1070	rt2500pci_bbp_write(rt2x00dev, 19, 0xff);
1071	rt2500pci_bbp_write(rt2x00dev, 20, 0x1e);
1072	rt2500pci_bbp_write(rt2x00dev, 21, 0x08);
1073	rt2500pci_bbp_write(rt2x00dev, 22, 0x08);
1074	rt2500pci_bbp_write(rt2x00dev, 23, 0x08);
1075	rt2500pci_bbp_write(rt2x00dev, 24, 0x70);
1076	rt2500pci_bbp_write(rt2x00dev, 25, 0x40);
1077	rt2500pci_bbp_write(rt2x00dev, 26, 0x08);
1078	rt2500pci_bbp_write(rt2x00dev, 27, 0x23);
1079	rt2500pci_bbp_write(rt2x00dev, 30, 0x10);
1080	rt2500pci_bbp_write(rt2x00dev, 31, 0x2b);
1081	rt2500pci_bbp_write(rt2x00dev, 32, 0xb9);
1082	rt2500pci_bbp_write(rt2x00dev, 34, 0x12);
1083	rt2500pci_bbp_write(rt2x00dev, 35, 0x50);
1084	rt2500pci_bbp_write(rt2x00dev, 39, 0xc4);
1085	rt2500pci_bbp_write(rt2x00dev, 40, 0x02);
1086	rt2500pci_bbp_write(rt2x00dev, 41, 0x60);
1087	rt2500pci_bbp_write(rt2x00dev, 53, 0x10);
1088	rt2500pci_bbp_write(rt2x00dev, 54, 0x18);
1089	rt2500pci_bbp_write(rt2x00dev, 56, 0x08);
1090	rt2500pci_bbp_write(rt2x00dev, 57, 0x10);
1091	rt2500pci_bbp_write(rt2x00dev, 58, 0x08);
1092	rt2500pci_bbp_write(rt2x00dev, 61, 0x6d);
1093	rt2500pci_bbp_write(rt2x00dev, 62, 0x10);
1094
1095	for (i = 0; i < EEPROM_BBP_SIZE; i++) {
1096		eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i);
1097
1098		if (eeprom != 0xffff && eeprom != 0x0000) {
1099			reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
1100			value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
1101			rt2500pci_bbp_write(rt2x00dev, reg_id, value);
1102		}
1103	}
1104
1105	return 0;
1106}
1107
1108/*
1109 * Device state switch handlers.
1110 */
1111static void rt2500pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
1112				 enum dev_state state)
1113{
1114	int mask = (state == STATE_RADIO_IRQ_OFF);
1115	u32 reg;
1116	unsigned long flags;
1117
1118	/*
1119	 * When interrupts are being enabled, the interrupt registers
1120	 * should clear the register to assure a clean state.
1121	 */
1122	if (state == STATE_RADIO_IRQ_ON) {
1123		reg = rt2x00mmio_register_read(rt2x00dev, CSR7);
1124		rt2x00mmio_register_write(rt2x00dev, CSR7, reg);
1125	}
1126
1127	/*
1128	 * Only toggle the interrupts bits we are going to use.
1129	 * Non-checked interrupt bits are disabled by default.
1130	 */
1131	spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags);
1132
1133	reg = rt2x00mmio_register_read(rt2x00dev, CSR8);
1134	rt2x00_set_field32(&reg, CSR8_TBCN_EXPIRE, mask);
1135	rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, mask);
1136	rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, mask);
1137	rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, mask);
1138	rt2x00_set_field32(&reg, CSR8_RXDONE, mask);
1139	rt2x00mmio_register_write(rt2x00dev, CSR8, reg);
1140
1141	spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags);
1142
1143	if (state == STATE_RADIO_IRQ_OFF) {
1144		/*
1145		 * Ensure that all tasklets are finished.
1146		 */
1147		tasklet_kill(&rt2x00dev->txstatus_tasklet);
1148		tasklet_kill(&rt2x00dev->rxdone_tasklet);
1149		tasklet_kill(&rt2x00dev->tbtt_tasklet);
1150	}
1151}
1152
1153static int rt2500pci_enable_radio(struct rt2x00_dev *rt2x00dev)
1154{
1155	/*
1156	 * Initialize all registers.
1157	 */
1158	if (unlikely(rt2500pci_init_queues(rt2x00dev) ||
1159		     rt2500pci_init_registers(rt2x00dev) ||
1160		     rt2500pci_init_bbp(rt2x00dev)))
1161		return -EIO;
1162
1163	return 0;
1164}
1165
1166static void rt2500pci_disable_radio(struct rt2x00_dev *rt2x00dev)
1167{
1168	/*
1169	 * Disable power
1170	 */
1171	rt2x00mmio_register_write(rt2x00dev, PWRCSR0, 0);
1172}
1173
1174static int rt2500pci_set_state(struct rt2x00_dev *rt2x00dev,
1175			       enum dev_state state)
1176{
1177	u32 reg, reg2;
1178	unsigned int i;
1179	bool put_to_sleep;
1180	u8 bbp_state;
1181	u8 rf_state;
1182
1183	put_to_sleep = (state != STATE_AWAKE);
1184
1185	reg = rt2x00mmio_register_read(rt2x00dev, PWRCSR1);
1186	rt2x00_set_field32(&reg, PWRCSR1_SET_STATE, 1);
1187	rt2x00_set_field32(&reg, PWRCSR1_BBP_DESIRE_STATE, state);
1188	rt2x00_set_field32(&reg, PWRCSR1_RF_DESIRE_STATE, state);
1189	rt2x00_set_field32(&reg, PWRCSR1_PUT_TO_SLEEP, put_to_sleep);
1190	rt2x00mmio_register_write(rt2x00dev, PWRCSR1, reg);
1191
1192	/*
1193	 * Device is not guaranteed to be in the requested state yet.
1194	 * We must wait until the register indicates that the
1195	 * device has entered the correct state.
1196	 */
1197	for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1198		reg2 = rt2x00mmio_register_read(rt2x00dev, PWRCSR1);
1199		bbp_state = rt2x00_get_field32(reg2, PWRCSR1_BBP_CURR_STATE);
1200		rf_state = rt2x00_get_field32(reg2, PWRCSR1_RF_CURR_STATE);
1201		if (bbp_state == state && rf_state == state)
1202			return 0;
1203		rt2x00mmio_register_write(rt2x00dev, PWRCSR1, reg);
1204		msleep(10);
1205	}
1206
1207	return -EBUSY;
1208}
1209
1210static int rt2500pci_set_device_state(struct rt2x00_dev *rt2x00dev,
1211				      enum dev_state state)
1212{
1213	int retval = 0;
1214
1215	switch (state) {
1216	case STATE_RADIO_ON:
1217		retval = rt2500pci_enable_radio(rt2x00dev);
1218		break;
1219	case STATE_RADIO_OFF:
1220		rt2500pci_disable_radio(rt2x00dev);
1221		break;
1222	case STATE_RADIO_IRQ_ON:
1223	case STATE_RADIO_IRQ_OFF:
1224		rt2500pci_toggle_irq(rt2x00dev, state);
1225		break;
1226	case STATE_DEEP_SLEEP:
1227	case STATE_SLEEP:
1228	case STATE_STANDBY:
1229	case STATE_AWAKE:
1230		retval = rt2500pci_set_state(rt2x00dev, state);
1231		break;
1232	default:
1233		retval = -ENOTSUPP;
1234		break;
1235	}
1236
1237	if (unlikely(retval))
1238		rt2x00_err(rt2x00dev, "Device failed to enter state %d (%d)\n",
1239			   state, retval);
1240
1241	return retval;
1242}
1243
1244/*
1245 * TX descriptor initialization
1246 */
1247static void rt2500pci_write_tx_desc(struct queue_entry *entry,
1248				    struct txentry_desc *txdesc)
1249{
1250	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1251	struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
1252	__le32 *txd = entry_priv->desc;
1253	u32 word;
1254
1255	/*
1256	 * Start writing the descriptor words.
1257	 */
1258	word = rt2x00_desc_read(txd, 1);
1259	rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
1260	rt2x00_desc_write(txd, 1, word);
1261
1262	word = rt2x00_desc_read(txd, 2);
1263	rt2x00_set_field32(&word, TXD_W2_IV_OFFSET, IEEE80211_HEADER);
1264	rt2x00_set_field32(&word, TXD_W2_AIFS, entry->queue->aifs);
1265	rt2x00_set_field32(&word, TXD_W2_CWMIN, entry->queue->cw_min);
1266	rt2x00_set_field32(&word, TXD_W2_CWMAX, entry->queue->cw_max);
1267	rt2x00_desc_write(txd, 2, word);
1268
1269	word = rt2x00_desc_read(txd, 3);
1270	rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, txdesc->u.plcp.signal);
1271	rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, txdesc->u.plcp.service);
1272	rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW,
1273			   txdesc->u.plcp.length_low);
1274	rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH,
1275			   txdesc->u.plcp.length_high);
1276	rt2x00_desc_write(txd, 3, word);
1277
1278	word = rt2x00_desc_read(txd, 10);
1279	rt2x00_set_field32(&word, TXD_W10_RTS,
1280			   test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags));
1281	rt2x00_desc_write(txd, 10, word);
1282
1283	/*
1284	 * Writing TXD word 0 must the last to prevent a race condition with
1285	 * the device, whereby the device may take hold of the TXD before we
1286	 * finished updating it.
1287	 */
1288	word = rt2x00_desc_read(txd, 0);
1289	rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1290	rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1291	rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1292			   test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1293	rt2x00_set_field32(&word, TXD_W0_ACK,
1294			   test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1295	rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1296			   test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1297	rt2x00_set_field32(&word, TXD_W0_OFDM,
1298			   (txdesc->rate_mode == RATE_MODE_OFDM));
1299	rt2x00_set_field32(&word, TXD_W0_CIPHER_OWNER, 1);
1300	rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->u.plcp.ifs);
1301	rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1302			   test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
1303	rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, txdesc->length);
1304	rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, CIPHER_NONE);
1305	rt2x00_desc_write(txd, 0, word);
1306
1307	/*
1308	 * Register descriptor details in skb frame descriptor.
1309	 */
1310	skbdesc->desc = txd;
1311	skbdesc->desc_len = TXD_DESC_SIZE;
1312}
1313
1314/*
1315 * TX data initialization
1316 */
1317static void rt2500pci_write_beacon(struct queue_entry *entry,
1318				   struct txentry_desc *txdesc)
1319{
1320	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1321	u32 reg;
1322
1323	/*
1324	 * Disable beaconing while we are reloading the beacon data,
1325	 * otherwise we might be sending out invalid data.
1326	 */
1327	reg = rt2x00mmio_register_read(rt2x00dev, CSR14);
1328	rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
1329	rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
1330
1331	if (rt2x00queue_map_txskb(entry)) {
1332		rt2x00_err(rt2x00dev, "Fail to map beacon, aborting\n");
1333		goto out;
1334	}
1335
1336	/*
1337	 * Write the TX descriptor for the beacon.
1338	 */
1339	rt2500pci_write_tx_desc(entry, txdesc);
1340
1341	/*
1342	 * Dump beacon to userspace through debugfs.
1343	 */
1344	rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry);
1345out:
1346	/*
1347	 * Enable beaconing again.
1348	 */
1349	rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
1350	rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
1351}
1352
1353/*
1354 * RX control handlers
1355 */
1356static void rt2500pci_fill_rxdone(struct queue_entry *entry,
1357				  struct rxdone_entry_desc *rxdesc)
1358{
1359	struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
1360	u32 word0;
1361	u32 word2;
1362
1363	word0 = rt2x00_desc_read(entry_priv->desc, 0);
1364	word2 = rt2x00_desc_read(entry_priv->desc, 2);
1365
1366	if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1367		rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1368	if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
1369		rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
1370
1371	/*
1372	 * Obtain the status about this packet.
1373	 * When frame was received with an OFDM bitrate,
1374	 * the signal is the PLCP value. If it was received with
1375	 * a CCK bitrate the signal is the rate in 100kbit/s.
1376	 */
1377	rxdesc->signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL);
1378	rxdesc->rssi = rt2x00_get_field32(word2, RXD_W2_RSSI) -
1379	    entry->queue->rt2x00dev->rssi_offset;
1380	rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1381
1382	if (rt2x00_get_field32(word0, RXD_W0_OFDM))
1383		rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
1384	else
1385		rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
1386	if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
1387		rxdesc->dev_flags |= RXDONE_MY_BSS;
1388}
1389
1390/*
1391 * Interrupt functions.
1392 */
1393static void rt2500pci_txdone(struct rt2x00_dev *rt2x00dev,
1394			     const enum data_queue_qid queue_idx)
1395{
1396	struct data_queue *queue = rt2x00queue_get_tx_queue(rt2x00dev, queue_idx);
1397	struct queue_entry_priv_mmio *entry_priv;
1398	struct queue_entry *entry;
1399	struct txdone_entry_desc txdesc;
1400	u32 word;
1401
1402	while (!rt2x00queue_empty(queue)) {
1403		entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
1404		entry_priv = entry->priv_data;
1405		word = rt2x00_desc_read(entry_priv->desc, 0);
1406
1407		if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
1408		    !rt2x00_get_field32(word, TXD_W0_VALID))
1409			break;
1410
1411		/*
1412		 * Obtain the status about this packet.
1413		 */
1414		txdesc.flags = 0;
1415		switch (rt2x00_get_field32(word, TXD_W0_RESULT)) {
1416		case 0: /* Success */
1417		case 1: /* Success with retry */
1418			__set_bit(TXDONE_SUCCESS, &txdesc.flags);
1419			break;
1420		case 2: /* Failure, excessive retries */
1421			__set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
1422			fallthrough;	/* this is a failed frame! */
1423		default: /* Failure */
1424			__set_bit(TXDONE_FAILURE, &txdesc.flags);
1425		}
1426		txdesc.retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT);
1427
1428		rt2x00lib_txdone(entry, &txdesc);
1429	}
1430}
1431
1432static inline void rt2500pci_enable_interrupt(struct rt2x00_dev *rt2x00dev,
1433					      struct rt2x00_field32 irq_field)
1434{
1435	u32 reg;
1436
1437	/*
1438	 * Enable a single interrupt. The interrupt mask register
1439	 * access needs locking.
1440	 */
1441	spin_lock_irq(&rt2x00dev->irqmask_lock);
1442
1443	reg = rt2x00mmio_register_read(rt2x00dev, CSR8);
1444	rt2x00_set_field32(&reg, irq_field, 0);
1445	rt2x00mmio_register_write(rt2x00dev, CSR8, reg);
1446
1447	spin_unlock_irq(&rt2x00dev->irqmask_lock);
1448}
1449
1450static void rt2500pci_txstatus_tasklet(struct tasklet_struct *t)
1451{
1452	struct rt2x00_dev *rt2x00dev = from_tasklet(rt2x00dev, t,
1453						    txstatus_tasklet);
1454	u32 reg;
1455
1456	/*
1457	 * Handle all tx queues.
1458	 */
1459	rt2500pci_txdone(rt2x00dev, QID_ATIM);
1460	rt2500pci_txdone(rt2x00dev, QID_AC_VO);
1461	rt2500pci_txdone(rt2x00dev, QID_AC_VI);
1462
1463	/*
1464	 * Enable all TXDONE interrupts again.
1465	 */
1466	if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) {
1467		spin_lock_irq(&rt2x00dev->irqmask_lock);
1468
1469		reg = rt2x00mmio_register_read(rt2x00dev, CSR8);
1470		rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, 0);
1471		rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, 0);
1472		rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, 0);
1473		rt2x00mmio_register_write(rt2x00dev, CSR8, reg);
1474
1475		spin_unlock_irq(&rt2x00dev->irqmask_lock);
1476	}
1477}
1478
1479static void rt2500pci_tbtt_tasklet(struct tasklet_struct *t)
1480{
1481	struct rt2x00_dev *rt2x00dev = from_tasklet(rt2x00dev, t, tbtt_tasklet);
1482	rt2x00lib_beacondone(rt2x00dev);
1483	if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
1484		rt2500pci_enable_interrupt(rt2x00dev, CSR8_TBCN_EXPIRE);
1485}
1486
1487static void rt2500pci_rxdone_tasklet(struct tasklet_struct *t)
1488{
1489	struct rt2x00_dev *rt2x00dev = from_tasklet(rt2x00dev, t,
1490						    rxdone_tasklet);
1491	if (rt2x00mmio_rxdone(rt2x00dev))
1492		tasklet_schedule(&rt2x00dev->rxdone_tasklet);
1493	else if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
1494		rt2500pci_enable_interrupt(rt2x00dev, CSR8_RXDONE);
1495}
1496
1497static irqreturn_t rt2500pci_interrupt(int irq, void *dev_instance)
1498{
1499	struct rt2x00_dev *rt2x00dev = dev_instance;
1500	u32 reg, mask;
1501
1502	/*
1503	 * Get the interrupt sources & saved to local variable.
1504	 * Write register value back to clear pending interrupts.
1505	 */
1506	reg = rt2x00mmio_register_read(rt2x00dev, CSR7);
1507	rt2x00mmio_register_write(rt2x00dev, CSR7, reg);
1508
1509	if (!reg)
1510		return IRQ_NONE;
1511
1512	if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
1513		return IRQ_HANDLED;
1514
1515	mask = reg;
1516
1517	/*
1518	 * Schedule tasklets for interrupt handling.
1519	 */
1520	if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE))
1521		tasklet_hi_schedule(&rt2x00dev->tbtt_tasklet);
1522
1523	if (rt2x00_get_field32(reg, CSR7_RXDONE))
1524		tasklet_schedule(&rt2x00dev->rxdone_tasklet);
1525
1526	if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING) ||
1527	    rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING) ||
1528	    rt2x00_get_field32(reg, CSR7_TXDONE_TXRING)) {
1529		tasklet_schedule(&rt2x00dev->txstatus_tasklet);
1530		/*
1531		 * Mask out all txdone interrupts.
1532		 */
1533		rt2x00_set_field32(&mask, CSR8_TXDONE_TXRING, 1);
1534		rt2x00_set_field32(&mask, CSR8_TXDONE_ATIMRING, 1);
1535		rt2x00_set_field32(&mask, CSR8_TXDONE_PRIORING, 1);
1536	}
1537
1538	/*
1539	 * Disable all interrupts for which a tasklet was scheduled right now,
1540	 * the tasklet will reenable the appropriate interrupts.
1541	 */
1542	spin_lock(&rt2x00dev->irqmask_lock);
1543
1544	reg = rt2x00mmio_register_read(rt2x00dev, CSR8);
1545	reg |= mask;
1546	rt2x00mmio_register_write(rt2x00dev, CSR8, reg);
1547
1548	spin_unlock(&rt2x00dev->irqmask_lock);
1549
1550	return IRQ_HANDLED;
1551}
1552
1553/*
1554 * Device probe functions.
1555 */
1556static int rt2500pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1557{
1558	struct eeprom_93cx6 eeprom;
1559	u32 reg;
1560	u16 word;
1561	u8 *mac;
1562
1563	reg = rt2x00mmio_register_read(rt2x00dev, CSR21);
1564
1565	eeprom.data = rt2x00dev;
1566	eeprom.register_read = rt2500pci_eepromregister_read;
1567	eeprom.register_write = rt2500pci_eepromregister_write;
1568	eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ?
1569	    PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
1570	eeprom.reg_data_in = 0;
1571	eeprom.reg_data_out = 0;
1572	eeprom.reg_data_clock = 0;
1573	eeprom.reg_chip_select = 0;
1574
1575	eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
1576			       EEPROM_SIZE / sizeof(u16));
1577
1578	/*
1579	 * Start validation of the data that has been read.
1580	 */
1581	mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1582	rt2x00lib_set_mac_address(rt2x00dev, mac);
1583
1584	word = rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA);
1585	if (word == 0xffff) {
1586		rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
1587		rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
1588				   ANTENNA_SW_DIVERSITY);
1589		rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
1590				   ANTENNA_SW_DIVERSITY);
1591		rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE,
1592				   LED_MODE_DEFAULT);
1593		rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
1594		rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
1595		rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522);
1596		rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
1597		rt2x00_eeprom_dbg(rt2x00dev, "Antenna: 0x%04x\n", word);
1598	}
1599
1600	word = rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC);
1601	if (word == 0xffff) {
1602		rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
1603		rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0);
1604		rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0);
1605		rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
1606		rt2x00_eeprom_dbg(rt2x00dev, "NIC: 0x%04x\n", word);
1607	}
1608
1609	word = rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET);
1610	if (word == 0xffff) {
1611		rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI,
1612				   DEFAULT_RSSI_OFFSET);
1613		rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
1614		rt2x00_eeprom_dbg(rt2x00dev, "Calibrate offset: 0x%04x\n",
1615				  word);
1616	}
1617
1618	return 0;
1619}
1620
1621static int rt2500pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
1622{
1623	u32 reg;
1624	u16 value;
1625	u16 eeprom;
1626
1627	/*
1628	 * Read EEPROM word for configuration.
1629	 */
1630	eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA);
1631
1632	/*
1633	 * Identify RF chipset.
1634	 */
1635	value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1636	reg = rt2x00mmio_register_read(rt2x00dev, CSR0);
1637	rt2x00_set_chip(rt2x00dev, RT2560, value,
1638			rt2x00_get_field32(reg, CSR0_REVISION));
1639
1640	if (!rt2x00_rf(rt2x00dev, RF2522) &&
1641	    !rt2x00_rf(rt2x00dev, RF2523) &&
1642	    !rt2x00_rf(rt2x00dev, RF2524) &&
1643	    !rt2x00_rf(rt2x00dev, RF2525) &&
1644	    !rt2x00_rf(rt2x00dev, RF2525E) &&
1645	    !rt2x00_rf(rt2x00dev, RF5222)) {
1646		rt2x00_err(rt2x00dev, "Invalid RF chipset detected\n");
1647		return -ENODEV;
1648	}
1649
1650	/*
1651	 * Identify default antenna configuration.
1652	 */
1653	rt2x00dev->default_ant.tx =
1654	    rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1655	rt2x00dev->default_ant.rx =
1656	    rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1657
1658	/*
1659	 * Store led mode, for correct led behaviour.
1660	 */
1661#ifdef CONFIG_RT2X00_LIB_LEDS
1662	value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
1663
1664	rt2500pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
1665	if (value == LED_MODE_TXRX_ACTIVITY ||
1666	    value == LED_MODE_DEFAULT ||
1667	    value == LED_MODE_ASUS)
1668		rt2500pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
1669				   LED_TYPE_ACTIVITY);
1670#endif /* CONFIG_RT2X00_LIB_LEDS */
1671
1672	/*
1673	 * Detect if this device has an hardware controlled radio.
1674	 */
1675	if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO)) {
1676		__set_bit(CAPABILITY_HW_BUTTON, &rt2x00dev->cap_flags);
1677		/*
1678		 * On this device RFKILL initialized during probe does not work.
1679		 */
1680		__set_bit(REQUIRE_DELAYED_RFKILL, &rt2x00dev->cap_flags);
1681	}
1682
1683	/*
1684	 * Check if the BBP tuning should be enabled.
1685	 */
1686	eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC);
1687	if (!rt2x00_get_field16(eeprom, EEPROM_NIC_DYN_BBP_TUNE))
1688		__set_bit(CAPABILITY_LINK_TUNING, &rt2x00dev->cap_flags);
1689
1690	/*
1691	 * Read the RSSI <-> dBm offset information.
1692	 */
1693	eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET);
1694	rt2x00dev->rssi_offset =
1695	    rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI);
1696
1697	return 0;
1698}
1699
1700/*
1701 * RF value list for RF2522
1702 * Supports: 2.4 GHz
1703 */
1704static const struct rf_channel rf_vals_bg_2522[] = {
1705	{ 1,  0x00002050, 0x000c1fda, 0x00000101, 0 },
1706	{ 2,  0x00002050, 0x000c1fee, 0x00000101, 0 },
1707	{ 3,  0x00002050, 0x000c2002, 0x00000101, 0 },
1708	{ 4,  0x00002050, 0x000c2016, 0x00000101, 0 },
1709	{ 5,  0x00002050, 0x000c202a, 0x00000101, 0 },
1710	{ 6,  0x00002050, 0x000c203e, 0x00000101, 0 },
1711	{ 7,  0x00002050, 0x000c2052, 0x00000101, 0 },
1712	{ 8,  0x00002050, 0x000c2066, 0x00000101, 0 },
1713	{ 9,  0x00002050, 0x000c207a, 0x00000101, 0 },
1714	{ 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
1715	{ 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
1716	{ 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
1717	{ 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
1718	{ 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
1719};
1720
1721/*
1722 * RF value list for RF2523
1723 * Supports: 2.4 GHz
1724 */
1725static const struct rf_channel rf_vals_bg_2523[] = {
1726	{ 1,  0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
1727	{ 2,  0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
1728	{ 3,  0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
1729	{ 4,  0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
1730	{ 5,  0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
1731	{ 6,  0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
1732	{ 7,  0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
1733	{ 8,  0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
1734	{ 9,  0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
1735	{ 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
1736	{ 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
1737	{ 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
1738	{ 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
1739	{ 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
1740};
1741
1742/*
1743 * RF value list for RF2524
1744 * Supports: 2.4 GHz
1745 */
1746static const struct rf_channel rf_vals_bg_2524[] = {
1747	{ 1,  0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
1748	{ 2,  0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
1749	{ 3,  0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
1750	{ 4,  0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
1751	{ 5,  0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
1752	{ 6,  0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
1753	{ 7,  0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
1754	{ 8,  0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
1755	{ 9,  0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
1756	{ 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
1757	{ 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
1758	{ 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
1759	{ 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
1760	{ 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
1761};
1762
1763/*
1764 * RF value list for RF2525
1765 * Supports: 2.4 GHz
1766 */
1767static const struct rf_channel rf_vals_bg_2525[] = {
1768	{ 1,  0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
1769	{ 2,  0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
1770	{ 3,  0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
1771	{ 4,  0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
1772	{ 5,  0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
1773	{ 6,  0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
1774	{ 7,  0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
1775	{ 8,  0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
1776	{ 9,  0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
1777	{ 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
1778	{ 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
1779	{ 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
1780	{ 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
1781	{ 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
1782};
1783
1784/*
1785 * RF value list for RF2525e
1786 * Supports: 2.4 GHz
1787 */
1788static const struct rf_channel rf_vals_bg_2525e[] = {
1789	{ 1,  0x00022020, 0x00081136, 0x00060111, 0x00000a0b },
1790	{ 2,  0x00022020, 0x0008113a, 0x00060111, 0x00000a0b },
1791	{ 3,  0x00022020, 0x0008113e, 0x00060111, 0x00000a0b },
1792	{ 4,  0x00022020, 0x00081182, 0x00060111, 0x00000a0b },
1793	{ 5,  0x00022020, 0x00081186, 0x00060111, 0x00000a0b },
1794	{ 6,  0x00022020, 0x0008118a, 0x00060111, 0x00000a0b },
1795	{ 7,  0x00022020, 0x0008118e, 0x00060111, 0x00000a0b },
1796	{ 8,  0x00022020, 0x00081192, 0x00060111, 0x00000a0b },
1797	{ 9,  0x00022020, 0x00081196, 0x00060111, 0x00000a0b },
1798	{ 10, 0x00022020, 0x0008119a, 0x00060111, 0x00000a0b },
1799	{ 11, 0x00022020, 0x0008119e, 0x00060111, 0x00000a0b },
1800	{ 12, 0x00022020, 0x000811a2, 0x00060111, 0x00000a0b },
1801	{ 13, 0x00022020, 0x000811a6, 0x00060111, 0x00000a0b },
1802	{ 14, 0x00022020, 0x000811ae, 0x00060111, 0x00000a1b },
1803};
1804
1805/*
1806 * RF value list for RF5222
1807 * Supports: 2.4 GHz & 5.2 GHz
1808 */
1809static const struct rf_channel rf_vals_5222[] = {
1810	{ 1,  0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
1811	{ 2,  0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
1812	{ 3,  0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
1813	{ 4,  0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
1814	{ 5,  0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
1815	{ 6,  0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
1816	{ 7,  0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
1817	{ 8,  0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
1818	{ 9,  0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
1819	{ 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
1820	{ 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
1821	{ 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
1822	{ 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
1823	{ 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
1824
1825	/* 802.11 UNI / HyperLan 2 */
1826	{ 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
1827	{ 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
1828	{ 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
1829	{ 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
1830	{ 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
1831	{ 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
1832	{ 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
1833	{ 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
1834
1835	/* 802.11 HyperLan 2 */
1836	{ 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
1837	{ 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
1838	{ 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
1839	{ 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
1840	{ 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
1841	{ 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
1842	{ 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
1843	{ 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
1844	{ 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
1845	{ 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
1846
1847	/* 802.11 UNII */
1848	{ 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
1849	{ 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
1850	{ 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
1851	{ 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
1852	{ 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
1853};
1854
1855static int rt2500pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1856{
1857	struct hw_mode_spec *spec = &rt2x00dev->spec;
1858	struct channel_info *info;
1859	u8 *tx_power;
1860	unsigned int i;
1861
1862	/*
1863	 * Initialize all hw fields.
1864	 */
1865	ieee80211_hw_set(rt2x00dev->hw, PS_NULLFUNC_STACK);
1866	ieee80211_hw_set(rt2x00dev->hw, SUPPORTS_PS);
1867	ieee80211_hw_set(rt2x00dev->hw, HOST_BROADCAST_PS_BUFFERING);
1868	ieee80211_hw_set(rt2x00dev->hw, SIGNAL_DBM);
1869
1870	SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
1871	SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
1872				rt2x00_eeprom_addr(rt2x00dev,
1873						   EEPROM_MAC_ADDR_0));
1874
1875	/*
1876	 * Disable powersaving as default.
1877	 */
1878	rt2x00dev->hw->wiphy->flags &= ~WIPHY_FLAG_PS_ON_BY_DEFAULT;
1879
1880	/*
1881	 * Initialize hw_mode information.
1882	 */
1883	spec->supported_bands = SUPPORT_BAND_2GHZ;
1884	spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
1885
1886	if (rt2x00_rf(rt2x00dev, RF2522)) {
1887		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522);
1888		spec->channels = rf_vals_bg_2522;
1889	} else if (rt2x00_rf(rt2x00dev, RF2523)) {
1890		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523);
1891		spec->channels = rf_vals_bg_2523;
1892	} else if (rt2x00_rf(rt2x00dev, RF2524)) {
1893		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524);
1894		spec->channels = rf_vals_bg_2524;
1895	} else if (rt2x00_rf(rt2x00dev, RF2525)) {
1896		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525);
1897		spec->channels = rf_vals_bg_2525;
1898	} else if (rt2x00_rf(rt2x00dev, RF2525E)) {
1899		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e);
1900		spec->channels = rf_vals_bg_2525e;
1901	} else if (rt2x00_rf(rt2x00dev, RF5222)) {
1902		spec->supported_bands |= SUPPORT_BAND_5GHZ;
1903		spec->num_channels = ARRAY_SIZE(rf_vals_5222);
1904		spec->channels = rf_vals_5222;
1905	}
1906
1907	/*
1908	 * Create channel information array
1909	 */
1910	info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL);
1911	if (!info)
1912		return -ENOMEM;
1913
1914	spec->channels_info = info;
1915
1916	tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1917	for (i = 0; i < 14; i++) {
1918		info[i].max_power = MAX_TXPOWER;
1919		info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
1920	}
1921
1922	if (spec->num_channels > 14) {
1923		for (i = 14; i < spec->num_channels; i++) {
1924			info[i].max_power = MAX_TXPOWER;
1925			info[i].default_power1 = DEFAULT_TXPOWER;
1926		}
1927	}
1928
1929	return 0;
1930}
1931
1932static int rt2500pci_probe_hw(struct rt2x00_dev *rt2x00dev)
1933{
1934	int retval;
1935	u32 reg;
1936
1937	/*
1938	 * Allocate eeprom data.
1939	 */
1940	retval = rt2500pci_validate_eeprom(rt2x00dev);
1941	if (retval)
1942		return retval;
1943
1944	retval = rt2500pci_init_eeprom(rt2x00dev);
1945	if (retval)
1946		return retval;
1947
1948	/*
1949	 * Enable rfkill polling by setting GPIO direction of the
1950	 * rfkill switch GPIO pin correctly.
1951	 */
1952	reg = rt2x00mmio_register_read(rt2x00dev, GPIOCSR);
1953	rt2x00_set_field32(&reg, GPIOCSR_DIR0, 1);
1954	rt2x00mmio_register_write(rt2x00dev, GPIOCSR, reg);
1955
1956	/*
1957	 * Initialize hw specifications.
1958	 */
1959	retval = rt2500pci_probe_hw_mode(rt2x00dev);
1960	if (retval)
1961		return retval;
1962
1963	/*
1964	 * This device requires the atim queue and DMA-mapped skbs.
1965	 */
1966	__set_bit(REQUIRE_ATIM_QUEUE, &rt2x00dev->cap_flags);
1967	__set_bit(REQUIRE_DMA, &rt2x00dev->cap_flags);
1968	__set_bit(REQUIRE_SW_SEQNO, &rt2x00dev->cap_flags);
1969
1970	/*
1971	 * Set the rssi offset.
1972	 */
1973	rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1974
1975	return 0;
1976}
1977
1978/*
1979 * IEEE80211 stack callback functions.
1980 */
1981static u64 rt2500pci_get_tsf(struct ieee80211_hw *hw,
1982			     struct ieee80211_vif *vif)
1983{
1984	struct rt2x00_dev *rt2x00dev = hw->priv;
1985	u64 tsf;
1986	u32 reg;
1987
1988	reg = rt2x00mmio_register_read(rt2x00dev, CSR17);
1989	tsf = (u64) rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32;
1990	reg = rt2x00mmio_register_read(rt2x00dev, CSR16);
1991	tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER);
1992
1993	return tsf;
1994}
1995
1996static int rt2500pci_tx_last_beacon(struct ieee80211_hw *hw)
1997{
1998	struct rt2x00_dev *rt2x00dev = hw->priv;
1999	u32 reg;
2000
2001	reg = rt2x00mmio_register_read(rt2x00dev, CSR15);
2002	return rt2x00_get_field32(reg, CSR15_BEACON_SENT);
2003}
2004
2005static const struct ieee80211_ops rt2500pci_mac80211_ops = {
2006	.add_chanctx = ieee80211_emulate_add_chanctx,
2007	.remove_chanctx = ieee80211_emulate_remove_chanctx,
2008	.change_chanctx = ieee80211_emulate_change_chanctx,
2009	.switch_vif_chanctx = ieee80211_emulate_switch_vif_chanctx,
2010	.tx			= rt2x00mac_tx,
2011	.wake_tx_queue		= ieee80211_handle_wake_tx_queue,
2012	.start			= rt2x00mac_start,
2013	.stop			= rt2x00mac_stop,
2014	.add_interface		= rt2x00mac_add_interface,
2015	.remove_interface	= rt2x00mac_remove_interface,
2016	.config			= rt2x00mac_config,
2017	.configure_filter	= rt2x00mac_configure_filter,
2018	.sw_scan_start		= rt2x00mac_sw_scan_start,
2019	.sw_scan_complete	= rt2x00mac_sw_scan_complete,
2020	.get_stats		= rt2x00mac_get_stats,
2021	.bss_info_changed	= rt2x00mac_bss_info_changed,
2022	.conf_tx		= rt2x00mac_conf_tx,
2023	.get_tsf		= rt2500pci_get_tsf,
2024	.tx_last_beacon		= rt2500pci_tx_last_beacon,
2025	.rfkill_poll		= rt2x00mac_rfkill_poll,
2026	.flush			= rt2x00mac_flush,
2027	.set_antenna		= rt2x00mac_set_antenna,
2028	.get_antenna		= rt2x00mac_get_antenna,
2029	.get_ringparam		= rt2x00mac_get_ringparam,
2030	.tx_frames_pending	= rt2x00mac_tx_frames_pending,
2031};
2032
2033static const struct rt2x00lib_ops rt2500pci_rt2x00_ops = {
2034	.irq_handler		= rt2500pci_interrupt,
2035	.txstatus_tasklet	= rt2500pci_txstatus_tasklet,
2036	.tbtt_tasklet		= rt2500pci_tbtt_tasklet,
2037	.rxdone_tasklet		= rt2500pci_rxdone_tasklet,
2038	.probe_hw		= rt2500pci_probe_hw,
2039	.initialize		= rt2x00mmio_initialize,
2040	.uninitialize		= rt2x00mmio_uninitialize,
2041	.get_entry_state	= rt2500pci_get_entry_state,
2042	.clear_entry		= rt2500pci_clear_entry,
2043	.set_device_state	= rt2500pci_set_device_state,
2044	.rfkill_poll		= rt2500pci_rfkill_poll,
2045	.link_stats		= rt2500pci_link_stats,
2046	.reset_tuner		= rt2500pci_reset_tuner,
2047	.link_tuner		= rt2500pci_link_tuner,
2048	.start_queue		= rt2500pci_start_queue,
2049	.kick_queue		= rt2500pci_kick_queue,
2050	.stop_queue		= rt2500pci_stop_queue,
2051	.flush_queue		= rt2x00mmio_flush_queue,
2052	.write_tx_desc		= rt2500pci_write_tx_desc,
2053	.write_beacon		= rt2500pci_write_beacon,
2054	.fill_rxdone		= rt2500pci_fill_rxdone,
2055	.config_filter		= rt2500pci_config_filter,
2056	.config_intf		= rt2500pci_config_intf,
2057	.config_erp		= rt2500pci_config_erp,
2058	.config_ant		= rt2500pci_config_ant,
2059	.config			= rt2500pci_config,
2060};
2061
2062static void rt2500pci_queue_init(struct data_queue *queue)
2063{
2064	switch (queue->qid) {
2065	case QID_RX:
2066		queue->limit = 32;
2067		queue->data_size = DATA_FRAME_SIZE;
2068		queue->desc_size = RXD_DESC_SIZE;
2069		queue->priv_size = sizeof(struct queue_entry_priv_mmio);
2070		break;
2071
2072	case QID_AC_VO:
2073	case QID_AC_VI:
2074	case QID_AC_BE:
2075	case QID_AC_BK:
2076		queue->limit = 32;
2077		queue->data_size = DATA_FRAME_SIZE;
2078		queue->desc_size = TXD_DESC_SIZE;
2079		queue->priv_size = sizeof(struct queue_entry_priv_mmio);
2080		break;
2081
2082	case QID_BEACON:
2083		queue->limit = 1;
2084		queue->data_size = MGMT_FRAME_SIZE;
2085		queue->desc_size = TXD_DESC_SIZE;
2086		queue->priv_size = sizeof(struct queue_entry_priv_mmio);
2087		break;
2088
2089	case QID_ATIM:
2090		queue->limit = 8;
2091		queue->data_size = DATA_FRAME_SIZE;
2092		queue->desc_size = TXD_DESC_SIZE;
2093		queue->priv_size = sizeof(struct queue_entry_priv_mmio);
2094		break;
2095
2096	default:
2097		BUG();
2098		break;
2099	}
2100}
2101
2102static const struct rt2x00_ops rt2500pci_ops = {
2103	.name			= KBUILD_MODNAME,
2104	.max_ap_intf		= 1,
2105	.eeprom_size		= EEPROM_SIZE,
2106	.rf_size		= RF_SIZE,
2107	.tx_queues		= NUM_TX_QUEUES,
2108	.queue_init		= rt2500pci_queue_init,
2109	.lib			= &rt2500pci_rt2x00_ops,
2110	.hw			= &rt2500pci_mac80211_ops,
2111#ifdef CONFIG_RT2X00_LIB_DEBUGFS
2112	.debugfs		= &rt2500pci_rt2x00debug,
2113#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
2114};
2115
2116/*
2117 * RT2500pci module information.
2118 */
2119static const struct pci_device_id rt2500pci_device_table[] = {
2120	{ PCI_DEVICE(0x1814, 0x0201) },
2121	{ 0, }
2122};
2123
2124MODULE_AUTHOR(DRV_PROJECT);
2125MODULE_VERSION(DRV_VERSION);
2126MODULE_DESCRIPTION("Ralink RT2500 PCI & PCMCIA Wireless LAN driver.");
2127MODULE_DEVICE_TABLE(pci, rt2500pci_device_table);
2128MODULE_LICENSE("GPL");
2129
2130static int rt2500pci_probe(struct pci_dev *pci_dev,
2131			   const struct pci_device_id *id)
2132{
2133	return rt2x00pci_probe(pci_dev, &rt2500pci_ops);
2134}
2135
2136static struct pci_driver rt2500pci_driver = {
2137	.name		= KBUILD_MODNAME,
2138	.id_table	= rt2500pci_device_table,
2139	.probe		= rt2500pci_probe,
2140	.remove		= rt2x00pci_remove,
2141	.driver.pm	= &rt2x00pci_pm_ops,
2142};
2143
2144module_pci_driver(rt2500pci_driver);
2145