1// SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2/*
3 * Copyright (C) 2005-2014, 2018-2023 Intel Corporation
4 * Copyright (C) 2013-2015 Intel Mobile Communications GmbH
5 * Copyright (C) 2016-2017 Intel Deutschland GmbH
6 */
7#include <linux/types.h>
8#include <linux/slab.h>
9#include <linux/export.h>
10#include <linux/etherdevice.h>
11#include <linux/pci.h>
12#include <linux/firmware.h>
13
14#include "iwl-drv.h"
15#include "iwl-modparams.h"
16#include "iwl-nvm-parse.h"
17#include "iwl-prph.h"
18#include "iwl-io.h"
19#include "iwl-csr.h"
20#include "fw/acpi.h"
21#include "fw/api/nvm-reg.h"
22#include "fw/api/commands.h"
23#include "fw/api/cmdhdr.h"
24#include "fw/img.h"
25#include "mei/iwl-mei.h"
26
27/* NVM offsets (in words) definitions */
28enum nvm_offsets {
29	/* NVM HW-Section offset (in words) definitions */
30	SUBSYSTEM_ID = 0x0A,
31	HW_ADDR = 0x15,
32
33	/* NVM SW-Section offset (in words) definitions */
34	NVM_SW_SECTION = 0x1C0,
35	NVM_VERSION = 0,
36	RADIO_CFG = 1,
37	SKU = 2,
38	N_HW_ADDRS = 3,
39	NVM_CHANNELS = 0x1E0 - NVM_SW_SECTION,
40
41	/* NVM calibration section offset (in words) definitions */
42	NVM_CALIB_SECTION = 0x2B8,
43	XTAL_CALIB = 0x316 - NVM_CALIB_SECTION,
44
45	/* NVM REGULATORY -Section offset (in words) definitions */
46	NVM_CHANNELS_SDP = 0,
47};
48
49enum ext_nvm_offsets {
50	/* NVM HW-Section offset (in words) definitions */
51	MAC_ADDRESS_OVERRIDE_EXT_NVM = 1,
52
53	/* NVM SW-Section offset (in words) definitions */
54	NVM_VERSION_EXT_NVM = 0,
55	N_HW_ADDRS_FAMILY_8000 = 3,
56
57	/* NVM PHY_SKU-Section offset (in words) definitions */
58	RADIO_CFG_FAMILY_EXT_NVM = 0,
59	SKU_FAMILY_8000 = 2,
60
61	/* NVM REGULATORY -Section offset (in words) definitions */
62	NVM_CHANNELS_EXTENDED = 0,
63	NVM_LAR_OFFSET_OLD = 0x4C7,
64	NVM_LAR_OFFSET = 0x507,
65	NVM_LAR_ENABLED = 0x7,
66};
67
68/* SKU Capabilities (actual values from NVM definition) */
69enum nvm_sku_bits {
70	NVM_SKU_CAP_BAND_24GHZ		= BIT(0),
71	NVM_SKU_CAP_BAND_52GHZ		= BIT(1),
72	NVM_SKU_CAP_11N_ENABLE		= BIT(2),
73	NVM_SKU_CAP_11AC_ENABLE		= BIT(3),
74	NVM_SKU_CAP_MIMO_DISABLE	= BIT(5),
75};
76
77/*
78 * These are the channel numbers in the order that they are stored in the NVM
79 */
80static const u16 iwl_nvm_channels[] = {
81	/* 2.4 GHz */
82	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
83	/* 5 GHz */
84	36, 40, 44, 48, 52, 56, 60, 64,
85	100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
86	149, 153, 157, 161, 165
87};
88
89static const u16 iwl_ext_nvm_channels[] = {
90	/* 2.4 GHz */
91	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
92	/* 5 GHz */
93	36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92,
94	96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
95	149, 153, 157, 161, 165, 169, 173, 177, 181
96};
97
98static const u16 iwl_uhb_nvm_channels[] = {
99	/* 2.4 GHz */
100	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
101	/* 5 GHz */
102	36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92,
103	96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
104	149, 153, 157, 161, 165, 169, 173, 177, 181,
105	/* 6-7 GHz */
106	1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61, 65, 69,
107	73, 77, 81, 85, 89, 93, 97, 101, 105, 109, 113, 117, 121, 125, 129,
108	133, 137, 141, 145, 149, 153, 157, 161, 165, 169, 173, 177, 181, 185,
109	189, 193, 197, 201, 205, 209, 213, 217, 221, 225, 229, 233
110};
111
112#define IWL_NVM_NUM_CHANNELS		ARRAY_SIZE(iwl_nvm_channels)
113#define IWL_NVM_NUM_CHANNELS_EXT	ARRAY_SIZE(iwl_ext_nvm_channels)
114#define IWL_NVM_NUM_CHANNELS_UHB	ARRAY_SIZE(iwl_uhb_nvm_channels)
115#define NUM_2GHZ_CHANNELS		14
116#define NUM_5GHZ_CHANNELS		37
117#define FIRST_2GHZ_HT_MINUS		5
118#define LAST_2GHZ_HT_PLUS		9
119#define N_HW_ADDR_MASK			0xF
120
121/* rate data (static) */
122static struct ieee80211_rate iwl_cfg80211_rates[] = {
123	{ .bitrate = 1 * 10, .hw_value = 0, .hw_value_short = 0, },
124	{ .bitrate = 2 * 10, .hw_value = 1, .hw_value_short = 1,
125	  .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
126	{ .bitrate = 5.5 * 10, .hw_value = 2, .hw_value_short = 2,
127	  .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
128	{ .bitrate = 11 * 10, .hw_value = 3, .hw_value_short = 3,
129	  .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
130	{ .bitrate = 6 * 10, .hw_value = 4, .hw_value_short = 4, },
131	{ .bitrate = 9 * 10, .hw_value = 5, .hw_value_short = 5, },
132	{ .bitrate = 12 * 10, .hw_value = 6, .hw_value_short = 6, },
133	{ .bitrate = 18 * 10, .hw_value = 7, .hw_value_short = 7, },
134	{ .bitrate = 24 * 10, .hw_value = 8, .hw_value_short = 8, },
135	{ .bitrate = 36 * 10, .hw_value = 9, .hw_value_short = 9, },
136	{ .bitrate = 48 * 10, .hw_value = 10, .hw_value_short = 10, },
137	{ .bitrate = 54 * 10, .hw_value = 11, .hw_value_short = 11, },
138};
139#define RATES_24_OFFS	0
140#define N_RATES_24	ARRAY_SIZE(iwl_cfg80211_rates)
141#define RATES_52_OFFS	4
142#define N_RATES_52	(N_RATES_24 - RATES_52_OFFS)
143
144/**
145 * enum iwl_nvm_channel_flags - channel flags in NVM
146 * @NVM_CHANNEL_VALID: channel is usable for this SKU/geo
147 * @NVM_CHANNEL_IBSS: usable as an IBSS channel
148 * @NVM_CHANNEL_ACTIVE: active scanning allowed
149 * @NVM_CHANNEL_RADAR: radar detection required
150 * @NVM_CHANNEL_INDOOR_ONLY: only indoor use is allowed
151 * @NVM_CHANNEL_GO_CONCURRENT: GO operation is allowed when connected to BSS
152 *	on same channel on 2.4 or same UNII band on 5.2
153 * @NVM_CHANNEL_UNIFORM: uniform spreading required
154 * @NVM_CHANNEL_20MHZ: 20 MHz channel okay
155 * @NVM_CHANNEL_40MHZ: 40 MHz channel okay
156 * @NVM_CHANNEL_80MHZ: 80 MHz channel okay
157 * @NVM_CHANNEL_160MHZ: 160 MHz channel okay
158 * @NVM_CHANNEL_DC_HIGH: DC HIGH required/allowed (?)
159 * @NVM_CHANNEL_VLP: client support connection to UHB VLP AP
160 * @NVM_CHANNEL_AFC: client support connection to UHB AFC AP
161 */
162enum iwl_nvm_channel_flags {
163	NVM_CHANNEL_VALID		= BIT(0),
164	NVM_CHANNEL_IBSS		= BIT(1),
165	NVM_CHANNEL_ACTIVE		= BIT(3),
166	NVM_CHANNEL_RADAR		= BIT(4),
167	NVM_CHANNEL_INDOOR_ONLY		= BIT(5),
168	NVM_CHANNEL_GO_CONCURRENT	= BIT(6),
169	NVM_CHANNEL_UNIFORM		= BIT(7),
170	NVM_CHANNEL_20MHZ		= BIT(8),
171	NVM_CHANNEL_40MHZ		= BIT(9),
172	NVM_CHANNEL_80MHZ		= BIT(10),
173	NVM_CHANNEL_160MHZ		= BIT(11),
174	NVM_CHANNEL_DC_HIGH		= BIT(12),
175	NVM_CHANNEL_VLP			= BIT(13),
176	NVM_CHANNEL_AFC			= BIT(14),
177};
178
179/**
180 * enum iwl_reg_capa_flags_v1 - global flags applied for the whole regulatory
181 * domain.
182 * @REG_CAPA_V1_BF_CCD_LOW_BAND: Beam-forming or Cyclic Delay Diversity in the
183 *	2.4Ghz band is allowed.
184 * @REG_CAPA_V1_BF_CCD_HIGH_BAND: Beam-forming or Cyclic Delay Diversity in the
185 *	5Ghz band is allowed.
186 * @REG_CAPA_V1_160MHZ_ALLOWED: 11ac channel with a width of 160Mhz is allowed
187 *	for this regulatory domain (valid only in 5Ghz).
188 * @REG_CAPA_V1_80MHZ_ALLOWED: 11ac channel with a width of 80Mhz is allowed
189 *	for this regulatory domain (valid only in 5Ghz).
190 * @REG_CAPA_V1_MCS_8_ALLOWED: 11ac with MCS 8 is allowed.
191 * @REG_CAPA_V1_MCS_9_ALLOWED: 11ac with MCS 9 is allowed.
192 * @REG_CAPA_V1_40MHZ_FORBIDDEN: 11n channel with a width of 40Mhz is forbidden
193 *	for this regulatory domain (valid only in 5Ghz).
194 * @REG_CAPA_V1_DC_HIGH_ENABLED: DC HIGH allowed.
195 * @REG_CAPA_V1_11AX_DISABLED: 11ax is forbidden for this regulatory domain.
196 */
197enum iwl_reg_capa_flags_v1 {
198	REG_CAPA_V1_BF_CCD_LOW_BAND	= BIT(0),
199	REG_CAPA_V1_BF_CCD_HIGH_BAND	= BIT(1),
200	REG_CAPA_V1_160MHZ_ALLOWED	= BIT(2),
201	REG_CAPA_V1_80MHZ_ALLOWED	= BIT(3),
202	REG_CAPA_V1_MCS_8_ALLOWED	= BIT(4),
203	REG_CAPA_V1_MCS_9_ALLOWED	= BIT(5),
204	REG_CAPA_V1_40MHZ_FORBIDDEN	= BIT(7),
205	REG_CAPA_V1_DC_HIGH_ENABLED	= BIT(9),
206	REG_CAPA_V1_11AX_DISABLED	= BIT(10),
207}; /* GEO_CHANNEL_CAPABILITIES_API_S_VER_1 */
208
209/**
210 * enum iwl_reg_capa_flags_v2 - global flags applied for the whole regulatory
211 * domain (version 2).
212 * @REG_CAPA_V2_STRADDLE_DISABLED: Straddle channels (144, 142, 138) are
213 *	disabled.
214 * @REG_CAPA_V2_BF_CCD_LOW_BAND: Beam-forming or Cyclic Delay Diversity in the
215 *	2.4Ghz band is allowed.
216 * @REG_CAPA_V2_BF_CCD_HIGH_BAND: Beam-forming or Cyclic Delay Diversity in the
217 *	5Ghz band is allowed.
218 * @REG_CAPA_V2_160MHZ_ALLOWED: 11ac channel with a width of 160Mhz is allowed
219 *	for this regulatory domain (valid only in 5Ghz).
220 * @REG_CAPA_V2_80MHZ_ALLOWED: 11ac channel with a width of 80Mhz is allowed
221 *	for this regulatory domain (valid only in 5Ghz).
222 * @REG_CAPA_V2_MCS_8_ALLOWED: 11ac with MCS 8 is allowed.
223 * @REG_CAPA_V2_MCS_9_ALLOWED: 11ac with MCS 9 is allowed.
224 * @REG_CAPA_V2_WEATHER_DISABLED: Weather radar channels (120, 124, 128, 118,
225 *	126, 122) are disabled.
226 * @REG_CAPA_V2_40MHZ_ALLOWED: 11n channel with a width of 40Mhz is allowed
227 *	for this regulatory domain (uvalid only in 5Ghz).
228 * @REG_CAPA_V2_11AX_DISABLED: 11ax is forbidden for this regulatory domain.
229 */
230enum iwl_reg_capa_flags_v2 {
231	REG_CAPA_V2_STRADDLE_DISABLED	= BIT(0),
232	REG_CAPA_V2_BF_CCD_LOW_BAND	= BIT(1),
233	REG_CAPA_V2_BF_CCD_HIGH_BAND	= BIT(2),
234	REG_CAPA_V2_160MHZ_ALLOWED	= BIT(3),
235	REG_CAPA_V2_80MHZ_ALLOWED	= BIT(4),
236	REG_CAPA_V2_MCS_8_ALLOWED	= BIT(5),
237	REG_CAPA_V2_MCS_9_ALLOWED	= BIT(6),
238	REG_CAPA_V2_WEATHER_DISABLED	= BIT(7),
239	REG_CAPA_V2_40MHZ_ALLOWED	= BIT(8),
240	REG_CAPA_V2_11AX_DISABLED	= BIT(10),
241}; /* GEO_CHANNEL_CAPABILITIES_API_S_VER_2 */
242
243/**
244 * enum iwl_reg_capa_flags_v4 - global flags applied for the whole regulatory
245 * domain.
246 * @REG_CAPA_V4_160MHZ_ALLOWED: 11ac channel with a width of 160Mhz is allowed
247 *	for this regulatory domain (valid only in 5Ghz).
248 * @REG_CAPA_V4_80MHZ_ALLOWED: 11ac channel with a width of 80Mhz is allowed
249 *	for this regulatory domain (valid only in 5Ghz).
250 * @REG_CAPA_V4_MCS_12_ALLOWED: 11ac with MCS 12 is allowed.
251 * @REG_CAPA_V4_MCS_13_ALLOWED: 11ac with MCS 13 is allowed.
252 * @REG_CAPA_V4_11BE_DISABLED: 11be is forbidden for this regulatory domain.
253 * @REG_CAPA_V4_11AX_DISABLED: 11ax is forbidden for this regulatory domain.
254 * @REG_CAPA_V4_320MHZ_ALLOWED: 11be channel with a width of 320Mhz is allowed
255 *	for this regulatory domain (valid only in 5GHz).
256 */
257enum iwl_reg_capa_flags_v4 {
258	REG_CAPA_V4_160MHZ_ALLOWED		= BIT(3),
259	REG_CAPA_V4_80MHZ_ALLOWED		= BIT(4),
260	REG_CAPA_V4_MCS_12_ALLOWED		= BIT(5),
261	REG_CAPA_V4_MCS_13_ALLOWED		= BIT(6),
262	REG_CAPA_V4_11BE_DISABLED		= BIT(8),
263	REG_CAPA_V4_11AX_DISABLED		= BIT(13),
264	REG_CAPA_V4_320MHZ_ALLOWED		= BIT(16),
265}; /* GEO_CHANNEL_CAPABILITIES_API_S_VER_4 */
266
267/*
268* API v2 for reg_capa_flags is relevant from version 6 and onwards of the
269* MCC update command response.
270*/
271#define REG_CAPA_V2_RESP_VER	6
272
273/* API v4 for reg_capa_flags is relevant from version 8 and onwards of the
274 * MCC update command response.
275 */
276#define REG_CAPA_V4_RESP_VER	8
277
278/**
279 * struct iwl_reg_capa - struct for global regulatory capabilities, Used for
280 * handling the different APIs of reg_capa_flags.
281 *
282 * @allow_40mhz: 11n channel with a width of 40Mhz is allowed
283 *	for this regulatory domain.
284 * @allow_80mhz: 11ac channel with a width of 80Mhz is allowed
285 *	for this regulatory domain (valid only in 5 and 6 Ghz).
286 * @allow_160mhz: 11ac channel with a width of 160Mhz is allowed
287 *	for this regulatory domain (valid only in 5 and 6 Ghz).
288 * @allow_320mhz: 11be channel with a width of 320Mhz is allowed
289 *	for this regulatory domain (valid only in 6 Ghz).
290 * @disable_11ax: 11ax is forbidden for this regulatory domain.
291 * @disable_11be: 11be is forbidden for this regulatory domain.
292 */
293struct iwl_reg_capa {
294	bool allow_40mhz;
295	bool allow_80mhz;
296	bool allow_160mhz;
297	bool allow_320mhz;
298	bool disable_11ax;
299	bool disable_11be;
300};
301
302static inline void iwl_nvm_print_channel_flags(struct device *dev, u32 level,
303					       int chan, u32 flags)
304{
305#define CHECK_AND_PRINT_I(x)	\
306	((flags & NVM_CHANNEL_##x) ? " " #x : "")
307
308	if (!(flags & NVM_CHANNEL_VALID)) {
309		IWL_DEBUG_DEV(dev, level, "Ch. %d: 0x%x: No traffic\n",
310			      chan, flags);
311		return;
312	}
313
314	/* Note: already can print up to 101 characters, 110 is the limit! */
315	IWL_DEBUG_DEV(dev, level,
316		      "Ch. %d: 0x%x:%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
317		      chan, flags,
318		      CHECK_AND_PRINT_I(VALID),
319		      CHECK_AND_PRINT_I(IBSS),
320		      CHECK_AND_PRINT_I(ACTIVE),
321		      CHECK_AND_PRINT_I(RADAR),
322		      CHECK_AND_PRINT_I(INDOOR_ONLY),
323		      CHECK_AND_PRINT_I(GO_CONCURRENT),
324		      CHECK_AND_PRINT_I(UNIFORM),
325		      CHECK_AND_PRINT_I(20MHZ),
326		      CHECK_AND_PRINT_I(40MHZ),
327		      CHECK_AND_PRINT_I(80MHZ),
328		      CHECK_AND_PRINT_I(160MHZ),
329		      CHECK_AND_PRINT_I(DC_HIGH),
330		      CHECK_AND_PRINT_I(VLP),
331		      CHECK_AND_PRINT_I(AFC));
332#undef CHECK_AND_PRINT_I
333}
334
335static u32 iwl_get_channel_flags(u8 ch_num, int ch_idx, enum nl80211_band band,
336				 u32 nvm_flags, const struct iwl_cfg *cfg)
337{
338	u32 flags = IEEE80211_CHAN_NO_HT40;
339
340	if (band == NL80211_BAND_2GHZ && (nvm_flags & NVM_CHANNEL_40MHZ)) {
341		if (ch_num <= LAST_2GHZ_HT_PLUS)
342			flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
343		if (ch_num >= FIRST_2GHZ_HT_MINUS)
344			flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
345	} else if (nvm_flags & NVM_CHANNEL_40MHZ) {
346		if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0)
347			flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
348		else
349			flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
350	}
351	if (!(nvm_flags & NVM_CHANNEL_80MHZ))
352		flags |= IEEE80211_CHAN_NO_80MHZ;
353	if (!(nvm_flags & NVM_CHANNEL_160MHZ))
354		flags |= IEEE80211_CHAN_NO_160MHZ;
355
356	if (!(nvm_flags & NVM_CHANNEL_IBSS))
357		flags |= IEEE80211_CHAN_NO_IR;
358
359	if (!(nvm_flags & NVM_CHANNEL_ACTIVE))
360		flags |= IEEE80211_CHAN_NO_IR;
361
362	if (nvm_flags & NVM_CHANNEL_RADAR)
363		flags |= IEEE80211_CHAN_RADAR;
364
365	if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY)
366		flags |= IEEE80211_CHAN_INDOOR_ONLY;
367
368	/* Set the GO concurrent flag only in case that NO_IR is set.
369	 * Otherwise it is meaningless
370	 */
371	if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT) &&
372	    (flags & IEEE80211_CHAN_NO_IR))
373		flags |= IEEE80211_CHAN_IR_CONCURRENT;
374
375	/* Set the AP type for the UHB case. */
376	if (!(nvm_flags & NVM_CHANNEL_VLP))
377		flags |= IEEE80211_CHAN_NO_6GHZ_VLP_CLIENT;
378	if (!(nvm_flags & NVM_CHANNEL_AFC))
379		flags |= IEEE80211_CHAN_NO_6GHZ_AFC_CLIENT;
380
381	return flags;
382}
383
384static enum nl80211_band iwl_nl80211_band_from_channel_idx(int ch_idx)
385{
386	if (ch_idx >= NUM_2GHZ_CHANNELS + NUM_5GHZ_CHANNELS) {
387		return NL80211_BAND_6GHZ;
388	}
389
390	if (ch_idx >= NUM_2GHZ_CHANNELS)
391		return NL80211_BAND_5GHZ;
392	return NL80211_BAND_2GHZ;
393}
394
395static int iwl_init_channel_map(struct device *dev, const struct iwl_cfg *cfg,
396				struct iwl_nvm_data *data,
397				const void * const nvm_ch_flags,
398				u32 sbands_flags, bool v4)
399{
400	int ch_idx;
401	int n_channels = 0;
402	struct ieee80211_channel *channel;
403	u32 ch_flags;
404	int num_of_ch;
405	const u16 *nvm_chan;
406
407	if (cfg->uhb_supported) {
408		num_of_ch = IWL_NVM_NUM_CHANNELS_UHB;
409		nvm_chan = iwl_uhb_nvm_channels;
410	} else if (cfg->nvm_type == IWL_NVM_EXT) {
411		num_of_ch = IWL_NVM_NUM_CHANNELS_EXT;
412		nvm_chan = iwl_ext_nvm_channels;
413	} else {
414		num_of_ch = IWL_NVM_NUM_CHANNELS;
415		nvm_chan = iwl_nvm_channels;
416	}
417
418	for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) {
419		enum nl80211_band band =
420			iwl_nl80211_band_from_channel_idx(ch_idx);
421
422		if (v4)
423			ch_flags =
424				__le32_to_cpup((const __le32 *)nvm_ch_flags + ch_idx);
425		else
426			ch_flags =
427				__le16_to_cpup((const __le16 *)nvm_ch_flags + ch_idx);
428
429		if (band == NL80211_BAND_5GHZ &&
430		    !data->sku_cap_band_52ghz_enable)
431			continue;
432
433		/* workaround to disable wide channels in 5GHz */
434		if ((sbands_flags & IWL_NVM_SBANDS_FLAGS_NO_WIDE_IN_5GHZ) &&
435		    band == NL80211_BAND_5GHZ) {
436			ch_flags &= ~(NVM_CHANNEL_40MHZ |
437				     NVM_CHANNEL_80MHZ |
438				     NVM_CHANNEL_160MHZ);
439		}
440
441		if (ch_flags & NVM_CHANNEL_160MHZ)
442			data->vht160_supported = true;
443
444		if (!(sbands_flags & IWL_NVM_SBANDS_FLAGS_LAR) &&
445		    !(ch_flags & NVM_CHANNEL_VALID)) {
446			/*
447			 * Channels might become valid later if lar is
448			 * supported, hence we still want to add them to
449			 * the list of supported channels to cfg80211.
450			 */
451			iwl_nvm_print_channel_flags(dev, IWL_DL_EEPROM,
452						    nvm_chan[ch_idx], ch_flags);
453			continue;
454		}
455
456		channel = &data->channels[n_channels];
457		n_channels++;
458
459		channel->hw_value = nvm_chan[ch_idx];
460		channel->band = band;
461		channel->center_freq =
462			ieee80211_channel_to_frequency(
463				channel->hw_value, channel->band);
464
465		/* Initialize regulatory-based run-time data */
466
467		/*
468		 * Default value - highest tx power value.  max_power
469		 * is not used in mvm, and is used for backwards compatibility
470		 */
471		channel->max_power = IWL_DEFAULT_MAX_TX_POWER;
472
473		/* don't put limitations in case we're using LAR */
474		if (!(sbands_flags & IWL_NVM_SBANDS_FLAGS_LAR))
475			channel->flags = iwl_get_channel_flags(nvm_chan[ch_idx],
476							       ch_idx, band,
477							       ch_flags, cfg);
478		else
479			channel->flags = 0;
480
481		/* TODO: Don't put limitations on UHB devices as we still don't
482		 * have NVM for them
483		 */
484		if (cfg->uhb_supported)
485			channel->flags = 0;
486		iwl_nvm_print_channel_flags(dev, IWL_DL_EEPROM,
487					    channel->hw_value, ch_flags);
488		IWL_DEBUG_EEPROM(dev, "Ch. %d: %ddBm\n",
489				 channel->hw_value, channel->max_power);
490	}
491
492	return n_channels;
493}
494
495static void iwl_init_vht_hw_capab(struct iwl_trans *trans,
496				  struct iwl_nvm_data *data,
497				  struct ieee80211_sta_vht_cap *vht_cap,
498				  u8 tx_chains, u8 rx_chains)
499{
500	const struct iwl_cfg *cfg = trans->cfg;
501	int num_rx_ants = num_of_ant(rx_chains);
502	int num_tx_ants = num_of_ant(tx_chains);
503
504	vht_cap->vht_supported = true;
505
506	vht_cap->cap = IEEE80211_VHT_CAP_SHORT_GI_80 |
507		       IEEE80211_VHT_CAP_RXSTBC_1 |
508		       IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE |
509		       3 << IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT |
510		       IEEE80211_VHT_MAX_AMPDU_1024K <<
511		       IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_SHIFT;
512
513	if (!trans->cfg->ht_params->stbc)
514		vht_cap->cap &= ~IEEE80211_VHT_CAP_RXSTBC_MASK;
515
516	if (data->vht160_supported)
517		vht_cap->cap |= IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ |
518				IEEE80211_VHT_CAP_SHORT_GI_160;
519
520	if (cfg->vht_mu_mimo_supported)
521		vht_cap->cap |= IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE;
522
523	if (cfg->ht_params->ldpc)
524		vht_cap->cap |= IEEE80211_VHT_CAP_RXLDPC;
525
526	if (data->sku_cap_mimo_disabled) {
527		num_rx_ants = 1;
528		num_tx_ants = 1;
529	}
530
531	if (trans->cfg->ht_params->stbc && num_tx_ants > 1)
532		vht_cap->cap |= IEEE80211_VHT_CAP_TXSTBC;
533	else
534		vht_cap->cap |= IEEE80211_VHT_CAP_TX_ANTENNA_PATTERN;
535
536	switch (iwlwifi_mod_params.amsdu_size) {
537	case IWL_AMSDU_DEF:
538		if (trans->trans_cfg->mq_rx_supported)
539			vht_cap->cap |=
540				IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
541		else
542			vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895;
543		break;
544	case IWL_AMSDU_2K:
545		if (trans->trans_cfg->mq_rx_supported)
546			vht_cap->cap |=
547				IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
548		else
549			WARN(1, "RB size of 2K is not supported by this device\n");
550		break;
551	case IWL_AMSDU_4K:
552		vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895;
553		break;
554	case IWL_AMSDU_8K:
555		vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_7991;
556		break;
557	case IWL_AMSDU_12K:
558		vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
559		break;
560	default:
561		break;
562	}
563
564	vht_cap->vht_mcs.rx_mcs_map =
565		cpu_to_le16(IEEE80211_VHT_MCS_SUPPORT_0_9 << 0 |
566			    IEEE80211_VHT_MCS_SUPPORT_0_9 << 2 |
567			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 4 |
568			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 6 |
569			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 8 |
570			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 10 |
571			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 12 |
572			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 14);
573
574	if (num_rx_ants == 1 || cfg->rx_with_siso_diversity) {
575		vht_cap->cap |= IEEE80211_VHT_CAP_RX_ANTENNA_PATTERN;
576		/* this works because NOT_SUPPORTED == 3 */
577		vht_cap->vht_mcs.rx_mcs_map |=
578			cpu_to_le16(IEEE80211_VHT_MCS_NOT_SUPPORTED << 2);
579	}
580
581	vht_cap->vht_mcs.tx_mcs_map = vht_cap->vht_mcs.rx_mcs_map;
582
583	vht_cap->vht_mcs.tx_highest |=
584		cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE);
585}
586
587static const u8 iwl_vendor_caps[] = {
588	0xdd,			/* vendor element */
589	0x06,			/* length */
590	0x00, 0x17, 0x35,	/* Intel OUI */
591	0x08,			/* type (Intel Capabilities) */
592	/* followed by 16 bits of capabilities */
593#define IWL_VENDOR_CAP_IMPROVED_BF_FDBK_HE	BIT(0)
594	IWL_VENDOR_CAP_IMPROVED_BF_FDBK_HE,
595	0x00
596};
597
598static const struct ieee80211_sband_iftype_data iwl_he_eht_capa[] = {
599	{
600		.types_mask = BIT(NL80211_IFTYPE_STATION),
601		.he_cap = {
602			.has_he = true,
603			.he_cap_elem = {
604				.mac_cap_info[0] =
605					IEEE80211_HE_MAC_CAP0_HTC_HE,
606				.mac_cap_info[1] =
607					IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_16US |
608					IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_8,
609				.mac_cap_info[2] =
610					IEEE80211_HE_MAC_CAP2_32BIT_BA_BITMAP,
611				.mac_cap_info[3] =
612					IEEE80211_HE_MAC_CAP3_OMI_CONTROL |
613					IEEE80211_HE_MAC_CAP3_RX_CTRL_FRAME_TO_MULTIBSS,
614				.mac_cap_info[4] =
615					IEEE80211_HE_MAC_CAP4_AMSDU_IN_AMPDU |
616					IEEE80211_HE_MAC_CAP4_MULTI_TID_AGG_TX_QOS_B39,
617				.mac_cap_info[5] =
618					IEEE80211_HE_MAC_CAP5_MULTI_TID_AGG_TX_QOS_B40 |
619					IEEE80211_HE_MAC_CAP5_MULTI_TID_AGG_TX_QOS_B41 |
620					IEEE80211_HE_MAC_CAP5_UL_2x996_TONE_RU |
621					IEEE80211_HE_MAC_CAP5_HE_DYNAMIC_SM_PS |
622					IEEE80211_HE_MAC_CAP5_HT_VHT_TRIG_FRAME_RX,
623				.phy_cap_info[1] =
624					IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_MASK |
625					IEEE80211_HE_PHY_CAP1_DEVICE_CLASS_A |
626					IEEE80211_HE_PHY_CAP1_LDPC_CODING_IN_PAYLOAD,
627				.phy_cap_info[2] =
628					IEEE80211_HE_PHY_CAP2_NDP_4x_LTF_AND_3_2US |
629					IEEE80211_HE_PHY_CAP2_STBC_RX_UNDER_80MHZ,
630				.phy_cap_info[3] =
631					IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_BPSK |
632					IEEE80211_HE_PHY_CAP3_DCM_MAX_TX_NSS_1 |
633					IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_BPSK |
634					IEEE80211_HE_PHY_CAP3_DCM_MAX_RX_NSS_1,
635				.phy_cap_info[4] =
636					IEEE80211_HE_PHY_CAP4_SU_BEAMFORMEE |
637					IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_8 |
638					IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_8,
639				.phy_cap_info[6] =
640					IEEE80211_HE_PHY_CAP6_TRIG_SU_BEAMFORMING_FB |
641					IEEE80211_HE_PHY_CAP6_TRIG_MU_BEAMFORMING_PARTIAL_BW_FB |
642					IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT,
643				.phy_cap_info[7] =
644					IEEE80211_HE_PHY_CAP7_POWER_BOOST_FACTOR_SUPP |
645					IEEE80211_HE_PHY_CAP7_HE_SU_MU_PPDU_4XLTF_AND_08_US_GI,
646				.phy_cap_info[8] =
647					IEEE80211_HE_PHY_CAP8_HE_ER_SU_PPDU_4XLTF_AND_08_US_GI |
648					IEEE80211_HE_PHY_CAP8_20MHZ_IN_40MHZ_HE_PPDU_IN_2G |
649					IEEE80211_HE_PHY_CAP8_20MHZ_IN_160MHZ_HE_PPDU |
650					IEEE80211_HE_PHY_CAP8_80MHZ_IN_160MHZ_HE_PPDU |
651					IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_242,
652				.phy_cap_info[9] =
653					IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_COMP_SIGB |
654					IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_NON_COMP_SIGB |
655					(IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_RESERVED <<
656					IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_POS),
657				.phy_cap_info[10] =
658					IEEE80211_HE_PHY_CAP10_HE_MU_M1RU_MAX_LTF,
659			},
660			/*
661			 * Set default Tx/Rx HE MCS NSS Support field.
662			 * Indicate support for up to 2 spatial streams and all
663			 * MCS, without any special cases
664			 */
665			.he_mcs_nss_supp = {
666				.rx_mcs_80 = cpu_to_le16(0xfffa),
667				.tx_mcs_80 = cpu_to_le16(0xfffa),
668				.rx_mcs_160 = cpu_to_le16(0xfffa),
669				.tx_mcs_160 = cpu_to_le16(0xfffa),
670				.rx_mcs_80p80 = cpu_to_le16(0xffff),
671				.tx_mcs_80p80 = cpu_to_le16(0xffff),
672			},
673			/*
674			 * Set default PPE thresholds, with PPET16 set to 0,
675			 * PPET8 set to 7
676			 */
677			.ppe_thres = {0x61, 0x1c, 0xc7, 0x71},
678		},
679		.eht_cap = {
680			.has_eht = true,
681			.eht_cap_elem = {
682				.mac_cap_info[0] =
683					IEEE80211_EHT_MAC_CAP0_OM_CONTROL |
684					IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE1 |
685					IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE2 |
686					IEEE80211_EHT_MAC_CAP0_SCS_TRAFFIC_DESC,
687				.phy_cap_info[0] =
688					IEEE80211_EHT_PHY_CAP0_242_TONE_RU_GT20MHZ |
689					IEEE80211_EHT_PHY_CAP0_NDP_4_EHT_LFT_32_GI |
690					IEEE80211_EHT_PHY_CAP0_PARTIAL_BW_UL_MU_MIMO |
691					IEEE80211_EHT_PHY_CAP0_SU_BEAMFORMEE |
692					IEEE80211_EHT_PHY_CAP0_BEAMFORMEE_SS_80MHZ_MASK,
693				.phy_cap_info[1] =
694					IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_80MHZ_MASK  |
695					IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_160MHZ_MASK,
696				.phy_cap_info[3] =
697					IEEE80211_EHT_PHY_CAP3_NG_16_SU_FEEDBACK |
698					IEEE80211_EHT_PHY_CAP3_NG_16_MU_FEEDBACK |
699					IEEE80211_EHT_PHY_CAP3_CODEBOOK_4_2_SU_FDBK |
700					IEEE80211_EHT_PHY_CAP3_CODEBOOK_7_5_MU_FDBK |
701					IEEE80211_EHT_PHY_CAP3_TRIG_SU_BF_FDBK |
702					IEEE80211_EHT_PHY_CAP3_TRIG_MU_BF_PART_BW_FDBK |
703					IEEE80211_EHT_PHY_CAP3_TRIG_CQI_FDBK,
704
705				.phy_cap_info[4] =
706					IEEE80211_EHT_PHY_CAP4_PART_BW_DL_MU_MIMO |
707					IEEE80211_EHT_PHY_CAP4_POWER_BOOST_FACT_SUPP |
708					IEEE80211_EHT_PHY_CAP4_EHT_MU_PPDU_4_EHT_LTF_08_GI,
709				.phy_cap_info[5] =
710					FIELD_PREP_CONST(IEEE80211_EHT_PHY_CAP5_COMMON_NOMINAL_PKT_PAD_MASK,
711							 IEEE80211_EHT_PHY_CAP5_COMMON_NOMINAL_PKT_PAD_16US) |
712					IEEE80211_EHT_PHY_CAP5_NON_TRIG_CQI_FEEDBACK |
713					IEEE80211_EHT_PHY_CAP5_TX_LESS_242_TONE_RU_SUPP |
714					IEEE80211_EHT_PHY_CAP5_RX_LESS_242_TONE_RU_SUPP,
715				.phy_cap_info[6] =
716					IEEE80211_EHT_PHY_CAP6_MCS15_SUPP_MASK |
717					IEEE80211_EHT_PHY_CAP6_EHT_DUP_6GHZ_SUPP,
718				.phy_cap_info[8] =
719					IEEE80211_EHT_PHY_CAP8_RX_1024QAM_WIDER_BW_DL_OFDMA |
720					IEEE80211_EHT_PHY_CAP8_RX_4096QAM_WIDER_BW_DL_OFDMA,
721			},
722
723			/* For all MCS and bandwidth, set 2 NSS for both Tx and
724			 * Rx - note we don't set the only_20mhz, but due to this
725			 * being a union, it gets set correctly anyway.
726			 */
727			.eht_mcs_nss_supp = {
728				.bw._80 = {
729					.rx_tx_mcs9_max_nss = 0x22,
730					.rx_tx_mcs11_max_nss = 0x22,
731					.rx_tx_mcs13_max_nss = 0x22,
732				},
733				.bw._160 = {
734					.rx_tx_mcs9_max_nss = 0x22,
735					.rx_tx_mcs11_max_nss = 0x22,
736					.rx_tx_mcs13_max_nss = 0x22,
737				},
738				.bw._320 = {
739					.rx_tx_mcs9_max_nss = 0x22,
740					.rx_tx_mcs11_max_nss = 0x22,
741					.rx_tx_mcs13_max_nss = 0x22,
742				},
743			},
744
745			/*
746			 * PPE thresholds for NSS = 2, and RU index bitmap set
747			 * to 0xc.
748			 * Note: just for stating what we want, not present in
749			 * the transmitted data due to not including
750			 * IEEE80211_EHT_PHY_CAP5_PPE_THRESHOLD_PRESENT.
751			 */
752			.eht_ppe_thres = {0xc1, 0x0e, 0xe0 }
753		},
754	},
755	{
756		.types_mask = BIT(NL80211_IFTYPE_AP),
757		.he_cap = {
758			.has_he = true,
759			.he_cap_elem = {
760				.mac_cap_info[0] =
761					IEEE80211_HE_MAC_CAP0_HTC_HE,
762				.mac_cap_info[1] =
763					IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_8,
764				.mac_cap_info[3] =
765					IEEE80211_HE_MAC_CAP3_OMI_CONTROL,
766				.phy_cap_info[1] =
767					IEEE80211_HE_PHY_CAP1_LDPC_CODING_IN_PAYLOAD,
768				.phy_cap_info[2] =
769					IEEE80211_HE_PHY_CAP2_STBC_RX_UNDER_80MHZ |
770					IEEE80211_HE_PHY_CAP2_NDP_4x_LTF_AND_3_2US,
771				.phy_cap_info[3] =
772					IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_BPSK |
773					IEEE80211_HE_PHY_CAP3_DCM_MAX_TX_NSS_1 |
774					IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_BPSK |
775					IEEE80211_HE_PHY_CAP3_DCM_MAX_RX_NSS_1,
776				.phy_cap_info[6] =
777					IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT,
778				.phy_cap_info[7] =
779					IEEE80211_HE_PHY_CAP7_HE_SU_MU_PPDU_4XLTF_AND_08_US_GI,
780				.phy_cap_info[8] =
781					IEEE80211_HE_PHY_CAP8_HE_ER_SU_PPDU_4XLTF_AND_08_US_GI |
782					IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_242,
783				.phy_cap_info[9] =
784					IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_RESERVED
785					<< IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_POS,
786			},
787			/*
788			 * Set default Tx/Rx HE MCS NSS Support field.
789			 * Indicate support for up to 2 spatial streams and all
790			 * MCS, without any special cases
791			 */
792			.he_mcs_nss_supp = {
793				.rx_mcs_80 = cpu_to_le16(0xfffa),
794				.tx_mcs_80 = cpu_to_le16(0xfffa),
795				.rx_mcs_160 = cpu_to_le16(0xfffa),
796				.tx_mcs_160 = cpu_to_le16(0xfffa),
797				.rx_mcs_80p80 = cpu_to_le16(0xffff),
798				.tx_mcs_80p80 = cpu_to_le16(0xffff),
799			},
800			/*
801			 * Set default PPE thresholds, with PPET16 set to 0,
802			 * PPET8 set to 7
803			 */
804			.ppe_thres = {0x61, 0x1c, 0xc7, 0x71},
805		},
806		.eht_cap = {
807			.has_eht = true,
808			.eht_cap_elem = {
809				.mac_cap_info[0] =
810					IEEE80211_EHT_MAC_CAP0_OM_CONTROL |
811					IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE1 |
812					IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE2,
813				.phy_cap_info[0] =
814					IEEE80211_EHT_PHY_CAP0_242_TONE_RU_GT20MHZ |
815					IEEE80211_EHT_PHY_CAP0_NDP_4_EHT_LFT_32_GI,
816				.phy_cap_info[5] =
817					FIELD_PREP_CONST(IEEE80211_EHT_PHY_CAP5_COMMON_NOMINAL_PKT_PAD_MASK,
818							 IEEE80211_EHT_PHY_CAP5_COMMON_NOMINAL_PKT_PAD_16US),
819			},
820
821			/* For all MCS and bandwidth, set 2 NSS for both Tx and
822			 * Rx - note we don't set the only_20mhz, but due to this
823			 * being a union, it gets set correctly anyway.
824			 */
825			.eht_mcs_nss_supp = {
826				.bw._80 = {
827					.rx_tx_mcs9_max_nss = 0x22,
828					.rx_tx_mcs11_max_nss = 0x22,
829					.rx_tx_mcs13_max_nss = 0x22,
830				},
831				.bw._160 = {
832					.rx_tx_mcs9_max_nss = 0x22,
833					.rx_tx_mcs11_max_nss = 0x22,
834					.rx_tx_mcs13_max_nss = 0x22,
835				},
836				.bw._320 = {
837					.rx_tx_mcs9_max_nss = 0x22,
838					.rx_tx_mcs11_max_nss = 0x22,
839					.rx_tx_mcs13_max_nss = 0x22,
840				},
841			},
842
843			/*
844			 * PPE thresholds for NSS = 2, and RU index bitmap set
845			 * to 0xc.
846			 * Note: just for stating what we want, not present in
847			 * the transmitted data due to not including
848			 * IEEE80211_EHT_PHY_CAP5_PPE_THRESHOLD_PRESENT.
849			 */
850			.eht_ppe_thres = {0xc1, 0x0e, 0xe0 }
851		},
852	},
853};
854
855static void iwl_init_he_6ghz_capa(struct iwl_trans *trans,
856				  struct iwl_nvm_data *data,
857				  struct ieee80211_supported_band *sband,
858				  u8 tx_chains, u8 rx_chains)
859{
860	struct ieee80211_sta_ht_cap ht_cap;
861	struct ieee80211_sta_vht_cap vht_cap = {};
862	struct ieee80211_sband_iftype_data *iftype_data;
863	u16 he_6ghz_capa = 0;
864	u32 exp;
865	int i;
866
867	if (sband->band != NL80211_BAND_6GHZ)
868		return;
869
870	/* grab HT/VHT capabilities and calculate HE 6 GHz capabilities */
871	iwl_init_ht_hw_capab(trans, data, &ht_cap, NL80211_BAND_5GHZ,
872			     tx_chains, rx_chains);
873	WARN_ON(!ht_cap.ht_supported);
874	iwl_init_vht_hw_capab(trans, data, &vht_cap, tx_chains, rx_chains);
875	WARN_ON(!vht_cap.vht_supported);
876
877	he_6ghz_capa |=
878		u16_encode_bits(ht_cap.ampdu_density,
879				IEEE80211_HE_6GHZ_CAP_MIN_MPDU_START);
880	exp = u32_get_bits(vht_cap.cap,
881			   IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK);
882	he_6ghz_capa |=
883		u16_encode_bits(exp, IEEE80211_HE_6GHZ_CAP_MAX_AMPDU_LEN_EXP);
884	exp = u32_get_bits(vht_cap.cap, IEEE80211_VHT_CAP_MAX_MPDU_MASK);
885	he_6ghz_capa |=
886		u16_encode_bits(exp, IEEE80211_HE_6GHZ_CAP_MAX_MPDU_LEN);
887	/* we don't support extended_ht_cap_info anywhere, so no RD_RESPONDER */
888	if (vht_cap.cap & IEEE80211_VHT_CAP_TX_ANTENNA_PATTERN)
889		he_6ghz_capa |= IEEE80211_HE_6GHZ_CAP_TX_ANTPAT_CONS;
890	if (vht_cap.cap & IEEE80211_VHT_CAP_RX_ANTENNA_PATTERN)
891		he_6ghz_capa |= IEEE80211_HE_6GHZ_CAP_RX_ANTPAT_CONS;
892
893	IWL_DEBUG_EEPROM(trans->dev, "he_6ghz_capa=0x%x\n", he_6ghz_capa);
894
895	/* we know it's writable - we set it before ourselves */
896	iftype_data = (void *)(uintptr_t)sband->iftype_data;
897	for (i = 0; i < sband->n_iftype_data; i++)
898		iftype_data[i].he_6ghz_capa.capa = cpu_to_le16(he_6ghz_capa);
899}
900
901static void
902iwl_nvm_fixup_sband_iftd(struct iwl_trans *trans,
903			 struct iwl_nvm_data *data,
904			 struct ieee80211_supported_band *sband,
905			 struct ieee80211_sband_iftype_data *iftype_data,
906			 u8 tx_chains, u8 rx_chains,
907			 const struct iwl_fw *fw)
908{
909	bool is_ap = iftype_data->types_mask & BIT(NL80211_IFTYPE_AP);
910	bool no_320;
911
912	no_320 = (!trans->trans_cfg->integrated &&
913		 trans->pcie_link_speed < PCI_EXP_LNKSTA_CLS_8_0GB) ||
914		 trans->reduced_cap_sku;
915
916	if (!data->sku_cap_11be_enable || iwlwifi_mod_params.disable_11be)
917		iftype_data->eht_cap.has_eht = false;
918
919	/* Advertise an A-MPDU exponent extension based on
920	 * operating band
921	 */
922	if (sband->band == NL80211_BAND_6GHZ && iftype_data->eht_cap.has_eht)
923		iftype_data->he_cap.he_cap_elem.mac_cap_info[3] |=
924			IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_2;
925	else if (sband->band != NL80211_BAND_2GHZ)
926		iftype_data->he_cap.he_cap_elem.mac_cap_info[3] |=
927			IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_1;
928	else
929		iftype_data->he_cap.he_cap_elem.mac_cap_info[3] |=
930			IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_3;
931
932	switch (sband->band) {
933	case NL80211_BAND_2GHZ:
934		iftype_data->he_cap.he_cap_elem.phy_cap_info[0] |=
935			IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_IN_2G;
936		iftype_data->eht_cap.eht_cap_elem.mac_cap_info[0] |=
937			u8_encode_bits(IEEE80211_EHT_MAC_CAP0_MAX_MPDU_LEN_11454,
938				       IEEE80211_EHT_MAC_CAP0_MAX_MPDU_LEN_MASK);
939		break;
940	case NL80211_BAND_6GHZ:
941		if (!no_320) {
942			iftype_data->eht_cap.eht_cap_elem.phy_cap_info[0] |=
943				IEEE80211_EHT_PHY_CAP0_320MHZ_IN_6GHZ;
944			iftype_data->eht_cap.eht_cap_elem.phy_cap_info[1] |=
945				IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_320MHZ_MASK;
946		}
947		fallthrough;
948	case NL80211_BAND_5GHZ:
949		iftype_data->he_cap.he_cap_elem.phy_cap_info[0] |=
950			IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G |
951			IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G;
952		break;
953	default:
954		WARN_ON(1);
955		break;
956	}
957
958	if ((tx_chains & rx_chains) == ANT_AB) {
959		iftype_data->he_cap.he_cap_elem.phy_cap_info[2] |=
960			IEEE80211_HE_PHY_CAP2_STBC_TX_UNDER_80MHZ;
961		iftype_data->he_cap.he_cap_elem.phy_cap_info[5] |=
962			IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_2 |
963			IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_2;
964		if (!is_ap) {
965			iftype_data->he_cap.he_cap_elem.phy_cap_info[7] |=
966				IEEE80211_HE_PHY_CAP7_MAX_NC_2;
967
968			if (iftype_data->eht_cap.has_eht) {
969				/*
970				 * Set the number of sounding dimensions for each
971				 * bandwidth to 1 to indicate the maximal supported
972				 * value of TXVECTOR parameter NUM_STS of 2
973				 */
974				iftype_data->eht_cap.eht_cap_elem.phy_cap_info[2] |= 0x49;
975
976				/*
977				 * Set the MAX NC to 1 to indicate sounding feedback of
978				 * 2 supported by the beamfomee.
979				 */
980				iftype_data->eht_cap.eht_cap_elem.phy_cap_info[4] |= 0x10;
981			}
982		}
983	} else {
984		struct ieee80211_he_mcs_nss_supp *he_mcs_nss_supp =
985			&iftype_data->he_cap.he_mcs_nss_supp;
986
987		if (iftype_data->eht_cap.has_eht) {
988			struct ieee80211_eht_mcs_nss_supp *mcs_nss =
989				&iftype_data->eht_cap.eht_mcs_nss_supp;
990
991			memset(mcs_nss, 0x11, sizeof(*mcs_nss));
992		}
993
994		if (!is_ap) {
995			/* If not 2x2, we need to indicate 1x1 in the
996			 * Midamble RX Max NSTS - but not for AP mode
997			 */
998			iftype_data->he_cap.he_cap_elem.phy_cap_info[1] &=
999				~IEEE80211_HE_PHY_CAP1_MIDAMBLE_RX_TX_MAX_NSTS;
1000			iftype_data->he_cap.he_cap_elem.phy_cap_info[2] &=
1001				~IEEE80211_HE_PHY_CAP2_MIDAMBLE_RX_TX_MAX_NSTS;
1002			iftype_data->he_cap.he_cap_elem.phy_cap_info[7] |=
1003				IEEE80211_HE_PHY_CAP7_MAX_NC_1;
1004		}
1005
1006		he_mcs_nss_supp->rx_mcs_80 |=
1007			cpu_to_le16(IEEE80211_HE_MCS_NOT_SUPPORTED << 2);
1008		he_mcs_nss_supp->tx_mcs_80 |=
1009			cpu_to_le16(IEEE80211_HE_MCS_NOT_SUPPORTED << 2);
1010		he_mcs_nss_supp->rx_mcs_160 |=
1011			cpu_to_le16(IEEE80211_HE_MCS_NOT_SUPPORTED << 2);
1012		he_mcs_nss_supp->tx_mcs_160 |=
1013			cpu_to_le16(IEEE80211_HE_MCS_NOT_SUPPORTED << 2);
1014		he_mcs_nss_supp->rx_mcs_80p80 |=
1015			cpu_to_le16(IEEE80211_HE_MCS_NOT_SUPPORTED << 2);
1016		he_mcs_nss_supp->tx_mcs_80p80 |=
1017			cpu_to_le16(IEEE80211_HE_MCS_NOT_SUPPORTED << 2);
1018	}
1019
1020	if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210 && !is_ap)
1021		iftype_data->he_cap.he_cap_elem.phy_cap_info[2] |=
1022			IEEE80211_HE_PHY_CAP2_UL_MU_FULL_MU_MIMO;
1023
1024	switch (CSR_HW_RFID_TYPE(trans->hw_rf_id)) {
1025	case IWL_CFG_RF_TYPE_GF:
1026	case IWL_CFG_RF_TYPE_MR:
1027	case IWL_CFG_RF_TYPE_MS:
1028	case IWL_CFG_RF_TYPE_FM:
1029	case IWL_CFG_RF_TYPE_WH:
1030		iftype_data->he_cap.he_cap_elem.phy_cap_info[9] |=
1031			IEEE80211_HE_PHY_CAP9_TX_1024_QAM_LESS_THAN_242_TONE_RU;
1032		if (!is_ap)
1033			iftype_data->he_cap.he_cap_elem.phy_cap_info[9] |=
1034				IEEE80211_HE_PHY_CAP9_RX_1024_QAM_LESS_THAN_242_TONE_RU;
1035		break;
1036	}
1037
1038	if (CSR_HW_REV_TYPE(trans->hw_rev) == IWL_CFG_MAC_TYPE_GL &&
1039	    iftype_data->eht_cap.has_eht) {
1040		iftype_data->eht_cap.eht_cap_elem.mac_cap_info[0] &=
1041			~(IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE1 |
1042			  IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE2);
1043		iftype_data->eht_cap.eht_cap_elem.phy_cap_info[3] &=
1044			~(IEEE80211_EHT_PHY_CAP0_PARTIAL_BW_UL_MU_MIMO |
1045			  IEEE80211_EHT_PHY_CAP3_NG_16_SU_FEEDBACK |
1046			  IEEE80211_EHT_PHY_CAP3_NG_16_MU_FEEDBACK |
1047			  IEEE80211_EHT_PHY_CAP3_CODEBOOK_4_2_SU_FDBK |
1048			  IEEE80211_EHT_PHY_CAP3_CODEBOOK_7_5_MU_FDBK |
1049			  IEEE80211_EHT_PHY_CAP3_TRIG_MU_BF_PART_BW_FDBK |
1050			  IEEE80211_EHT_PHY_CAP3_TRIG_CQI_FDBK);
1051		iftype_data->eht_cap.eht_cap_elem.phy_cap_info[4] &=
1052			~(IEEE80211_EHT_PHY_CAP4_PART_BW_DL_MU_MIMO |
1053			  IEEE80211_EHT_PHY_CAP4_POWER_BOOST_FACT_SUPP);
1054		iftype_data->eht_cap.eht_cap_elem.phy_cap_info[5] &=
1055			~IEEE80211_EHT_PHY_CAP5_NON_TRIG_CQI_FEEDBACK;
1056		iftype_data->eht_cap.eht_cap_elem.phy_cap_info[6] &=
1057			~(IEEE80211_EHT_PHY_CAP6_MCS15_SUPP_MASK |
1058			  IEEE80211_EHT_PHY_CAP6_EHT_DUP_6GHZ_SUPP);
1059		iftype_data->eht_cap.eht_cap_elem.phy_cap_info[5] |=
1060			IEEE80211_EHT_PHY_CAP5_SUPP_EXTRA_EHT_LTF;
1061	}
1062
1063	if (fw_has_capa(&fw->ucode_capa, IWL_UCODE_TLV_CAPA_BROADCAST_TWT))
1064		iftype_data->he_cap.he_cap_elem.mac_cap_info[2] |=
1065			IEEE80211_HE_MAC_CAP2_BCAST_TWT;
1066
1067	if (trans->trans_cfg->device_family == IWL_DEVICE_FAMILY_22000 &&
1068	    !is_ap) {
1069		iftype_data->vendor_elems.data = iwl_vendor_caps;
1070		iftype_data->vendor_elems.len = ARRAY_SIZE(iwl_vendor_caps);
1071	}
1072
1073	if (!trans->cfg->ht_params->stbc) {
1074		iftype_data->he_cap.he_cap_elem.phy_cap_info[2] &=
1075			~IEEE80211_HE_PHY_CAP2_STBC_RX_UNDER_80MHZ;
1076		iftype_data->he_cap.he_cap_elem.phy_cap_info[7] &=
1077			~IEEE80211_HE_PHY_CAP7_STBC_RX_ABOVE_80MHZ;
1078	}
1079
1080	if (trans->step_urm) {
1081		iftype_data->eht_cap.eht_mcs_nss_supp.bw._320.rx_tx_mcs11_max_nss = 0;
1082		iftype_data->eht_cap.eht_mcs_nss_supp.bw._320.rx_tx_mcs13_max_nss = 0;
1083	}
1084
1085	if (trans->no_160)
1086		iftype_data->he_cap.he_cap_elem.phy_cap_info[0] &=
1087			~IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G;
1088
1089	if (trans->reduced_cap_sku) {
1090		memset(&iftype_data->eht_cap.eht_mcs_nss_supp.bw._320, 0,
1091		       sizeof(iftype_data->eht_cap.eht_mcs_nss_supp.bw._320));
1092		iftype_data->eht_cap.eht_mcs_nss_supp.bw._80.rx_tx_mcs13_max_nss = 0;
1093		iftype_data->eht_cap.eht_mcs_nss_supp.bw._160.rx_tx_mcs13_max_nss = 0;
1094		iftype_data->eht_cap.eht_cap_elem.phy_cap_info[8] &=
1095			~IEEE80211_EHT_PHY_CAP8_RX_4096QAM_WIDER_BW_DL_OFDMA;
1096		iftype_data->eht_cap.eht_cap_elem.phy_cap_info[2] &=
1097			~IEEE80211_EHT_PHY_CAP2_SOUNDING_DIM_320MHZ_MASK;
1098	}
1099}
1100
1101static void iwl_init_he_hw_capab(struct iwl_trans *trans,
1102				 struct iwl_nvm_data *data,
1103				 struct ieee80211_supported_band *sband,
1104				 u8 tx_chains, u8 rx_chains,
1105				 const struct iwl_fw *fw)
1106{
1107	struct ieee80211_sband_iftype_data *iftype_data;
1108	int i;
1109
1110	BUILD_BUG_ON(sizeof(data->iftd.low) != sizeof(iwl_he_eht_capa));
1111	BUILD_BUG_ON(sizeof(data->iftd.high) != sizeof(iwl_he_eht_capa));
1112	BUILD_BUG_ON(sizeof(data->iftd.uhb) != sizeof(iwl_he_eht_capa));
1113
1114	switch (sband->band) {
1115	case NL80211_BAND_2GHZ:
1116		iftype_data = data->iftd.low;
1117		break;
1118	case NL80211_BAND_5GHZ:
1119		iftype_data = data->iftd.high;
1120		break;
1121	case NL80211_BAND_6GHZ:
1122		iftype_data = data->iftd.uhb;
1123		break;
1124	default:
1125		WARN_ON(1);
1126		return;
1127	}
1128
1129	memcpy(iftype_data, iwl_he_eht_capa, sizeof(iwl_he_eht_capa));
1130
1131	_ieee80211_set_sband_iftype_data(sband, iftype_data,
1132					 ARRAY_SIZE(iwl_he_eht_capa));
1133
1134	for (i = 0; i < sband->n_iftype_data; i++)
1135		iwl_nvm_fixup_sband_iftd(trans, data, sband, &iftype_data[i],
1136					 tx_chains, rx_chains, fw);
1137
1138	iwl_init_he_6ghz_capa(trans, data, sband, tx_chains, rx_chains);
1139}
1140
1141void iwl_reinit_cab(struct iwl_trans *trans, struct iwl_nvm_data *data,
1142		    u8 tx_chains, u8 rx_chains, const struct iwl_fw *fw)
1143{
1144	struct ieee80211_supported_band *sband;
1145
1146	sband = &data->bands[NL80211_BAND_2GHZ];
1147	iwl_init_ht_hw_capab(trans, data, &sband->ht_cap, NL80211_BAND_2GHZ,
1148			     tx_chains, rx_chains);
1149
1150	if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
1151		iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains,
1152				     fw);
1153
1154	sband = &data->bands[NL80211_BAND_5GHZ];
1155	iwl_init_ht_hw_capab(trans, data, &sband->ht_cap, NL80211_BAND_5GHZ,
1156			     tx_chains, rx_chains);
1157	if (data->sku_cap_11ac_enable && !iwlwifi_mod_params.disable_11ac)
1158		iwl_init_vht_hw_capab(trans, data, &sband->vht_cap,
1159				      tx_chains, rx_chains);
1160
1161	if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
1162		iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains,
1163				     fw);
1164
1165	sband = &data->bands[NL80211_BAND_6GHZ];
1166	if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
1167		iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains,
1168				     fw);
1169}
1170IWL_EXPORT_SYMBOL(iwl_reinit_cab);
1171
1172static void iwl_init_sbands(struct iwl_trans *trans,
1173			    struct iwl_nvm_data *data,
1174			    const void *nvm_ch_flags, u8 tx_chains,
1175			    u8 rx_chains, u32 sbands_flags, bool v4,
1176			    const struct iwl_fw *fw)
1177{
1178	struct device *dev = trans->dev;
1179	const struct iwl_cfg *cfg = trans->cfg;
1180	int n_channels;
1181	int n_used = 0;
1182	struct ieee80211_supported_band *sband;
1183
1184	n_channels = iwl_init_channel_map(dev, cfg, data, nvm_ch_flags,
1185					  sbands_flags, v4);
1186	sband = &data->bands[NL80211_BAND_2GHZ];
1187	sband->band = NL80211_BAND_2GHZ;
1188	sband->bitrates = &iwl_cfg80211_rates[RATES_24_OFFS];
1189	sband->n_bitrates = N_RATES_24;
1190	n_used += iwl_init_sband_channels(data, sband, n_channels,
1191					  NL80211_BAND_2GHZ);
1192	iwl_init_ht_hw_capab(trans, data, &sband->ht_cap, NL80211_BAND_2GHZ,
1193			     tx_chains, rx_chains);
1194
1195	if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
1196		iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains,
1197				     fw);
1198
1199	sband = &data->bands[NL80211_BAND_5GHZ];
1200	sband->band = NL80211_BAND_5GHZ;
1201	sband->bitrates = &iwl_cfg80211_rates[RATES_52_OFFS];
1202	sband->n_bitrates = N_RATES_52;
1203	n_used += iwl_init_sband_channels(data, sband, n_channels,
1204					  NL80211_BAND_5GHZ);
1205	iwl_init_ht_hw_capab(trans, data, &sband->ht_cap, NL80211_BAND_5GHZ,
1206			     tx_chains, rx_chains);
1207	if (data->sku_cap_11ac_enable && !iwlwifi_mod_params.disable_11ac)
1208		iwl_init_vht_hw_capab(trans, data, &sband->vht_cap,
1209				      tx_chains, rx_chains);
1210
1211	if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
1212		iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains,
1213				     fw);
1214
1215	/* 6GHz band. */
1216	sband = &data->bands[NL80211_BAND_6GHZ];
1217	sband->band = NL80211_BAND_6GHZ;
1218	/* use the same rates as 5GHz band */
1219	sband->bitrates = &iwl_cfg80211_rates[RATES_52_OFFS];
1220	sband->n_bitrates = N_RATES_52;
1221	n_used += iwl_init_sband_channels(data, sband, n_channels,
1222					  NL80211_BAND_6GHZ);
1223
1224	if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
1225		iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains,
1226				     fw);
1227	else
1228		sband->n_channels = 0;
1229	if (n_channels != n_used)
1230		IWL_ERR_DEV(dev, "NVM: used only %d of %d channels\n",
1231			    n_used, n_channels);
1232}
1233
1234static int iwl_get_sku(const struct iwl_cfg *cfg, const __le16 *nvm_sw,
1235		       const __le16 *phy_sku)
1236{
1237	if (cfg->nvm_type != IWL_NVM_EXT)
1238		return le16_to_cpup(nvm_sw + SKU);
1239
1240	return le32_to_cpup((const __le32 *)(phy_sku + SKU_FAMILY_8000));
1241}
1242
1243static int iwl_get_nvm_version(const struct iwl_cfg *cfg, const __le16 *nvm_sw)
1244{
1245	if (cfg->nvm_type != IWL_NVM_EXT)
1246		return le16_to_cpup(nvm_sw + NVM_VERSION);
1247	else
1248		return le32_to_cpup((const __le32 *)(nvm_sw +
1249						     NVM_VERSION_EXT_NVM));
1250}
1251
1252static int iwl_get_radio_cfg(const struct iwl_cfg *cfg, const __le16 *nvm_sw,
1253			     const __le16 *phy_sku)
1254{
1255	if (cfg->nvm_type != IWL_NVM_EXT)
1256		return le16_to_cpup(nvm_sw + RADIO_CFG);
1257
1258	return le32_to_cpup((const __le32 *)(phy_sku + RADIO_CFG_FAMILY_EXT_NVM));
1259
1260}
1261
1262static int iwl_get_n_hw_addrs(const struct iwl_cfg *cfg, const __le16 *nvm_sw)
1263{
1264	int n_hw_addr;
1265
1266	if (cfg->nvm_type != IWL_NVM_EXT)
1267		return le16_to_cpup(nvm_sw + N_HW_ADDRS);
1268
1269	n_hw_addr = le32_to_cpup((const __le32 *)(nvm_sw + N_HW_ADDRS_FAMILY_8000));
1270
1271	return n_hw_addr & N_HW_ADDR_MASK;
1272}
1273
1274static void iwl_set_radio_cfg(const struct iwl_cfg *cfg,
1275			      struct iwl_nvm_data *data,
1276			      u32 radio_cfg)
1277{
1278	if (cfg->nvm_type != IWL_NVM_EXT) {
1279		data->radio_cfg_type = NVM_RF_CFG_TYPE_MSK(radio_cfg);
1280		data->radio_cfg_step = NVM_RF_CFG_STEP_MSK(radio_cfg);
1281		data->radio_cfg_dash = NVM_RF_CFG_DASH_MSK(radio_cfg);
1282		data->radio_cfg_pnum = NVM_RF_CFG_PNUM_MSK(radio_cfg);
1283		return;
1284	}
1285
1286	/* set the radio configuration for family 8000 */
1287	data->radio_cfg_type = EXT_NVM_RF_CFG_TYPE_MSK(radio_cfg);
1288	data->radio_cfg_step = EXT_NVM_RF_CFG_STEP_MSK(radio_cfg);
1289	data->radio_cfg_dash = EXT_NVM_RF_CFG_DASH_MSK(radio_cfg);
1290	data->radio_cfg_pnum = EXT_NVM_RF_CFG_FLAVOR_MSK(radio_cfg);
1291	data->valid_tx_ant = EXT_NVM_RF_CFG_TX_ANT_MSK(radio_cfg);
1292	data->valid_rx_ant = EXT_NVM_RF_CFG_RX_ANT_MSK(radio_cfg);
1293}
1294
1295static void iwl_flip_hw_address(__le32 mac_addr0, __le32 mac_addr1, u8 *dest)
1296{
1297	const u8 *hw_addr;
1298
1299	hw_addr = (const u8 *)&mac_addr0;
1300	dest[0] = hw_addr[3];
1301	dest[1] = hw_addr[2];
1302	dest[2] = hw_addr[1];
1303	dest[3] = hw_addr[0];
1304
1305	hw_addr = (const u8 *)&mac_addr1;
1306	dest[4] = hw_addr[1];
1307	dest[5] = hw_addr[0];
1308}
1309
1310static void iwl_set_hw_address_from_csr(struct iwl_trans *trans,
1311					struct iwl_nvm_data *data)
1312{
1313	__le32 mac_addr0 = cpu_to_le32(iwl_read32(trans,
1314						  CSR_MAC_ADDR0_STRAP(trans)));
1315	__le32 mac_addr1 = cpu_to_le32(iwl_read32(trans,
1316						  CSR_MAC_ADDR1_STRAP(trans)));
1317
1318	iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
1319	/*
1320	 * If the OEM fused a valid address, use it instead of the one in the
1321	 * OTP
1322	 */
1323	if (is_valid_ether_addr(data->hw_addr))
1324		return;
1325
1326	mac_addr0 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR0_OTP(trans)));
1327	mac_addr1 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR1_OTP(trans)));
1328
1329	iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
1330}
1331
1332static void iwl_set_hw_address_family_8000(struct iwl_trans *trans,
1333					   const struct iwl_cfg *cfg,
1334					   struct iwl_nvm_data *data,
1335					   const __le16 *mac_override,
1336					   const __be16 *nvm_hw)
1337{
1338	const u8 *hw_addr;
1339
1340	if (mac_override) {
1341		static const u8 reserved_mac[] = {
1342			0x02, 0xcc, 0xaa, 0xff, 0xee, 0x00
1343		};
1344
1345		hw_addr = (const u8 *)(mac_override +
1346				 MAC_ADDRESS_OVERRIDE_EXT_NVM);
1347
1348		/*
1349		 * Store the MAC address from MAO section.
1350		 * No byte swapping is required in MAO section
1351		 */
1352		memcpy(data->hw_addr, hw_addr, ETH_ALEN);
1353
1354		/*
1355		 * Force the use of the OTP MAC address in case of reserved MAC
1356		 * address in the NVM, or if address is given but invalid.
1357		 */
1358		if (is_valid_ether_addr(data->hw_addr) &&
1359		    memcmp(reserved_mac, hw_addr, ETH_ALEN) != 0)
1360			return;
1361
1362		IWL_ERR(trans,
1363			"mac address from nvm override section is not valid\n");
1364	}
1365
1366	if (nvm_hw) {
1367		/* read the mac address from WFMP registers */
1368		__le32 mac_addr0 = cpu_to_le32(iwl_trans_read_prph(trans,
1369						WFMP_MAC_ADDR_0));
1370		__le32 mac_addr1 = cpu_to_le32(iwl_trans_read_prph(trans,
1371						WFMP_MAC_ADDR_1));
1372
1373		iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
1374
1375		return;
1376	}
1377
1378	IWL_ERR(trans, "mac address is not found\n");
1379}
1380
1381static int iwl_set_hw_address(struct iwl_trans *trans,
1382			      const struct iwl_cfg *cfg,
1383			      struct iwl_nvm_data *data, const __be16 *nvm_hw,
1384			      const __le16 *mac_override)
1385{
1386	if (cfg->mac_addr_from_csr) {
1387		iwl_set_hw_address_from_csr(trans, data);
1388	} else if (cfg->nvm_type != IWL_NVM_EXT) {
1389		const u8 *hw_addr = (const u8 *)(nvm_hw + HW_ADDR);
1390
1391		/* The byte order is little endian 16 bit, meaning 214365 */
1392		data->hw_addr[0] = hw_addr[1];
1393		data->hw_addr[1] = hw_addr[0];
1394		data->hw_addr[2] = hw_addr[3];
1395		data->hw_addr[3] = hw_addr[2];
1396		data->hw_addr[4] = hw_addr[5];
1397		data->hw_addr[5] = hw_addr[4];
1398	} else {
1399		iwl_set_hw_address_family_8000(trans, cfg, data,
1400					       mac_override, nvm_hw);
1401	}
1402
1403	if (!is_valid_ether_addr(data->hw_addr)) {
1404		IWL_ERR(trans, "no valid mac address was found\n");
1405		return -EINVAL;
1406	}
1407
1408	if (!trans->csme_own)
1409		IWL_INFO(trans, "base HW address: %pM, OTP minor version: 0x%x\n",
1410			 data->hw_addr, iwl_read_prph(trans, REG_OTP_MINOR));
1411
1412	return 0;
1413}
1414
1415static bool
1416iwl_nvm_no_wide_in_5ghz(struct iwl_trans *trans, const struct iwl_cfg *cfg,
1417			const __be16 *nvm_hw)
1418{
1419	/*
1420	 * Workaround a bug in Indonesia SKUs where the regulatory in
1421	 * some 7000-family OTPs erroneously allow wide channels in
1422	 * 5GHz.  To check for Indonesia, we take the SKU value from
1423	 * bits 1-4 in the subsystem ID and check if it is either 5 or
1424	 * 9.  In those cases, we need to force-disable wide channels
1425	 * in 5GHz otherwise the FW will throw a sysassert when we try
1426	 * to use them.
1427	 */
1428	if (trans->trans_cfg->device_family == IWL_DEVICE_FAMILY_7000) {
1429		/*
1430		 * Unlike the other sections in the NVM, the hw
1431		 * section uses big-endian.
1432		 */
1433		u16 subsystem_id = be16_to_cpup(nvm_hw + SUBSYSTEM_ID);
1434		u8 sku = (subsystem_id & 0x1e) >> 1;
1435
1436		if (sku == 5 || sku == 9) {
1437			IWL_DEBUG_EEPROM(trans->dev,
1438					 "disabling wide channels in 5GHz (0x%0x %d)\n",
1439					 subsystem_id, sku);
1440			return true;
1441		}
1442	}
1443
1444	return false;
1445}
1446
1447struct iwl_nvm_data *
1448iwl_parse_mei_nvm_data(struct iwl_trans *trans, const struct iwl_cfg *cfg,
1449		       const struct iwl_mei_nvm *mei_nvm,
1450		       const struct iwl_fw *fw, u8 tx_ant, u8 rx_ant)
1451{
1452	struct iwl_nvm_data *data;
1453	u32 sbands_flags = 0;
1454	u8 rx_chains = fw->valid_rx_ant;
1455	u8 tx_chains = fw->valid_rx_ant;
1456
1457	if (cfg->uhb_supported)
1458		data = kzalloc(struct_size(data, channels,
1459					   IWL_NVM_NUM_CHANNELS_UHB),
1460					   GFP_KERNEL);
1461	else
1462		data = kzalloc(struct_size(data, channels,
1463					   IWL_NVM_NUM_CHANNELS_EXT),
1464					   GFP_KERNEL);
1465	if (!data)
1466		return NULL;
1467
1468	BUILD_BUG_ON(ARRAY_SIZE(mei_nvm->channels) !=
1469		     IWL_NVM_NUM_CHANNELS_UHB);
1470	data->nvm_version = mei_nvm->nvm_version;
1471
1472	iwl_set_radio_cfg(cfg, data, mei_nvm->radio_cfg);
1473	if (data->valid_tx_ant)
1474		tx_chains &= data->valid_tx_ant;
1475	if (data->valid_rx_ant)
1476		rx_chains &= data->valid_rx_ant;
1477	if (tx_ant)
1478		tx_chains &= tx_ant;
1479	if (rx_ant)
1480		rx_chains &= rx_ant;
1481
1482	data->sku_cap_mimo_disabled = false;
1483	data->sku_cap_band_24ghz_enable = true;
1484	data->sku_cap_band_52ghz_enable = true;
1485	data->sku_cap_11n_enable =
1486		!(iwlwifi_mod_params.disable_11n & IWL_DISABLE_HT_ALL);
1487	data->sku_cap_11ac_enable = true;
1488	data->sku_cap_11ax_enable =
1489		mei_nvm->caps & MEI_NVM_CAPS_11AX_SUPPORT;
1490
1491	data->lar_enabled = mei_nvm->caps & MEI_NVM_CAPS_LARI_SUPPORT;
1492
1493	data->n_hw_addrs = mei_nvm->n_hw_addrs;
1494	/* If no valid mac address was found - bail out */
1495	if (iwl_set_hw_address(trans, cfg, data, NULL, NULL)) {
1496		kfree(data);
1497		return NULL;
1498	}
1499
1500	if (data->lar_enabled &&
1501	    fw_has_capa(&fw->ucode_capa, IWL_UCODE_TLV_CAPA_LAR_SUPPORT))
1502		sbands_flags |= IWL_NVM_SBANDS_FLAGS_LAR;
1503
1504	iwl_init_sbands(trans, data, mei_nvm->channels, tx_chains, rx_chains,
1505			sbands_flags, true, fw);
1506
1507	return data;
1508}
1509IWL_EXPORT_SYMBOL(iwl_parse_mei_nvm_data);
1510
1511struct iwl_nvm_data *
1512iwl_parse_nvm_data(struct iwl_trans *trans, const struct iwl_cfg *cfg,
1513		   const struct iwl_fw *fw,
1514		   const __be16 *nvm_hw, const __le16 *nvm_sw,
1515		   const __le16 *nvm_calib, const __le16 *regulatory,
1516		   const __le16 *mac_override, const __le16 *phy_sku,
1517		   u8 tx_chains, u8 rx_chains)
1518{
1519	struct iwl_nvm_data *data;
1520	bool lar_enabled;
1521	u32 sku, radio_cfg;
1522	u32 sbands_flags = 0;
1523	u16 lar_config;
1524	const __le16 *ch_section;
1525
1526	if (cfg->uhb_supported)
1527		data = kzalloc(struct_size(data, channels,
1528					   IWL_NVM_NUM_CHANNELS_UHB),
1529					   GFP_KERNEL);
1530	else if (cfg->nvm_type != IWL_NVM_EXT)
1531		data = kzalloc(struct_size(data, channels,
1532					   IWL_NVM_NUM_CHANNELS),
1533					   GFP_KERNEL);
1534	else
1535		data = kzalloc(struct_size(data, channels,
1536					   IWL_NVM_NUM_CHANNELS_EXT),
1537					   GFP_KERNEL);
1538	if (!data)
1539		return NULL;
1540
1541	data->nvm_version = iwl_get_nvm_version(cfg, nvm_sw);
1542
1543	radio_cfg = iwl_get_radio_cfg(cfg, nvm_sw, phy_sku);
1544	iwl_set_radio_cfg(cfg, data, radio_cfg);
1545	if (data->valid_tx_ant)
1546		tx_chains &= data->valid_tx_ant;
1547	if (data->valid_rx_ant)
1548		rx_chains &= data->valid_rx_ant;
1549
1550	sku = iwl_get_sku(cfg, nvm_sw, phy_sku);
1551	data->sku_cap_band_24ghz_enable = sku & NVM_SKU_CAP_BAND_24GHZ;
1552	data->sku_cap_band_52ghz_enable = sku & NVM_SKU_CAP_BAND_52GHZ;
1553	data->sku_cap_11n_enable = sku & NVM_SKU_CAP_11N_ENABLE;
1554	if (iwlwifi_mod_params.disable_11n & IWL_DISABLE_HT_ALL)
1555		data->sku_cap_11n_enable = false;
1556	data->sku_cap_11ac_enable = data->sku_cap_11n_enable &&
1557				    (sku & NVM_SKU_CAP_11AC_ENABLE);
1558	data->sku_cap_mimo_disabled = sku & NVM_SKU_CAP_MIMO_DISABLE;
1559
1560	data->n_hw_addrs = iwl_get_n_hw_addrs(cfg, nvm_sw);
1561
1562	if (cfg->nvm_type != IWL_NVM_EXT) {
1563		/* Checking for required sections */
1564		if (!nvm_calib) {
1565			IWL_ERR(trans,
1566				"Can't parse empty Calib NVM sections\n");
1567			kfree(data);
1568			return NULL;
1569		}
1570
1571		ch_section = cfg->nvm_type == IWL_NVM_SDP ?
1572			     &regulatory[NVM_CHANNELS_SDP] :
1573			     &nvm_sw[NVM_CHANNELS];
1574
1575		/* in family 8000 Xtal calibration values moved to OTP */
1576		data->xtal_calib[0] = *(nvm_calib + XTAL_CALIB);
1577		data->xtal_calib[1] = *(nvm_calib + XTAL_CALIB + 1);
1578		lar_enabled = true;
1579	} else {
1580		u16 lar_offset = data->nvm_version < 0xE39 ?
1581				 NVM_LAR_OFFSET_OLD :
1582				 NVM_LAR_OFFSET;
1583
1584		lar_config = le16_to_cpup(regulatory + lar_offset);
1585		data->lar_enabled = !!(lar_config &
1586				       NVM_LAR_ENABLED);
1587		lar_enabled = data->lar_enabled;
1588		ch_section = &regulatory[NVM_CHANNELS_EXTENDED];
1589	}
1590
1591	/* If no valid mac address was found - bail out */
1592	if (iwl_set_hw_address(trans, cfg, data, nvm_hw, mac_override)) {
1593		kfree(data);
1594		return NULL;
1595	}
1596
1597	if (lar_enabled &&
1598	    fw_has_capa(&fw->ucode_capa, IWL_UCODE_TLV_CAPA_LAR_SUPPORT))
1599		sbands_flags |= IWL_NVM_SBANDS_FLAGS_LAR;
1600
1601	if (iwl_nvm_no_wide_in_5ghz(trans, cfg, nvm_hw))
1602		sbands_flags |= IWL_NVM_SBANDS_FLAGS_NO_WIDE_IN_5GHZ;
1603
1604	iwl_init_sbands(trans, data, ch_section, tx_chains, rx_chains,
1605			sbands_flags, false, fw);
1606	data->calib_version = 255;
1607
1608	return data;
1609}
1610IWL_EXPORT_SYMBOL(iwl_parse_nvm_data);
1611
1612static u32 iwl_nvm_get_regdom_bw_flags(const u16 *nvm_chan,
1613				       int ch_idx, u16 nvm_flags,
1614				       struct iwl_reg_capa reg_capa,
1615				       const struct iwl_cfg *cfg,
1616				       bool uats_enabled)
1617{
1618	u32 flags = NL80211_RRF_NO_HT40;
1619
1620	if (ch_idx < NUM_2GHZ_CHANNELS &&
1621	    (nvm_flags & NVM_CHANNEL_40MHZ)) {
1622		if (nvm_chan[ch_idx] <= LAST_2GHZ_HT_PLUS)
1623			flags &= ~NL80211_RRF_NO_HT40PLUS;
1624		if (nvm_chan[ch_idx] >= FIRST_2GHZ_HT_MINUS)
1625			flags &= ~NL80211_RRF_NO_HT40MINUS;
1626	} else if (nvm_flags & NVM_CHANNEL_40MHZ) {
1627		if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0)
1628			flags &= ~NL80211_RRF_NO_HT40PLUS;
1629		else
1630			flags &= ~NL80211_RRF_NO_HT40MINUS;
1631	}
1632
1633	if (!(nvm_flags & NVM_CHANNEL_80MHZ))
1634		flags |= NL80211_RRF_NO_80MHZ;
1635	if (!(nvm_flags & NVM_CHANNEL_160MHZ))
1636		flags |= NL80211_RRF_NO_160MHZ;
1637
1638	if (!(nvm_flags & NVM_CHANNEL_ACTIVE))
1639		flags |= NL80211_RRF_NO_IR;
1640
1641	if (nvm_flags & NVM_CHANNEL_RADAR)
1642		flags |= NL80211_RRF_DFS;
1643
1644	if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY)
1645		flags |= NL80211_RRF_NO_OUTDOOR;
1646
1647	/* Set the GO concurrent flag only in case that NO_IR is set.
1648	 * Otherwise it is meaningless
1649	 */
1650	if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT)) {
1651		if (flags & NL80211_RRF_NO_IR)
1652			flags |= NL80211_RRF_GO_CONCURRENT;
1653		if (flags & NL80211_RRF_DFS) {
1654			flags |= NL80211_RRF_DFS_CONCURRENT;
1655			/* Our device doesn't set active bit for DFS channels
1656			 * however, once marked as DFS no-ir is not needed.
1657			 */
1658			flags &= ~NL80211_RRF_NO_IR;
1659		}
1660	}
1661
1662	/* Set the AP type for the UHB case. */
1663	if (uats_enabled) {
1664		if (!(nvm_flags & NVM_CHANNEL_VLP))
1665			flags |= NL80211_RRF_NO_6GHZ_VLP_CLIENT;
1666
1667		if (!(nvm_flags & NVM_CHANNEL_AFC))
1668			flags |= NL80211_RRF_NO_6GHZ_AFC_CLIENT;
1669	}
1670
1671	/*
1672	 * reg_capa is per regulatory domain so apply it for every channel
1673	 */
1674	if (ch_idx >= NUM_2GHZ_CHANNELS) {
1675		if (!reg_capa.allow_40mhz)
1676			flags |= NL80211_RRF_NO_HT40;
1677
1678		if (!reg_capa.allow_80mhz)
1679			flags |= NL80211_RRF_NO_80MHZ;
1680
1681		if (!reg_capa.allow_160mhz)
1682			flags |= NL80211_RRF_NO_160MHZ;
1683
1684		if (!reg_capa.allow_320mhz)
1685			flags |= NL80211_RRF_NO_320MHZ;
1686	}
1687
1688	if (reg_capa.disable_11ax)
1689		flags |= NL80211_RRF_NO_HE;
1690
1691	if (reg_capa.disable_11be)
1692		flags |= NL80211_RRF_NO_EHT;
1693
1694	return flags;
1695}
1696
1697static struct iwl_reg_capa iwl_get_reg_capa(u32 flags, u8 resp_ver)
1698{
1699	struct iwl_reg_capa reg_capa = {};
1700
1701	if (resp_ver >= REG_CAPA_V4_RESP_VER) {
1702		reg_capa.allow_40mhz = true;
1703		reg_capa.allow_80mhz = flags & REG_CAPA_V4_80MHZ_ALLOWED;
1704		reg_capa.allow_160mhz = flags & REG_CAPA_V4_160MHZ_ALLOWED;
1705		reg_capa.allow_320mhz = flags & REG_CAPA_V4_320MHZ_ALLOWED;
1706		reg_capa.disable_11ax = flags & REG_CAPA_V4_11AX_DISABLED;
1707		reg_capa.disable_11be = flags & REG_CAPA_V4_11BE_DISABLED;
1708	} else if (resp_ver >= REG_CAPA_V2_RESP_VER) {
1709		reg_capa.allow_40mhz = flags & REG_CAPA_V2_40MHZ_ALLOWED;
1710		reg_capa.allow_80mhz = flags & REG_CAPA_V2_80MHZ_ALLOWED;
1711		reg_capa.allow_160mhz = flags & REG_CAPA_V2_160MHZ_ALLOWED;
1712		reg_capa.disable_11ax = flags & REG_CAPA_V2_11AX_DISABLED;
1713	} else {
1714		reg_capa.allow_40mhz = !(flags & REG_CAPA_V1_40MHZ_FORBIDDEN);
1715		reg_capa.allow_80mhz = flags & REG_CAPA_V1_80MHZ_ALLOWED;
1716		reg_capa.allow_160mhz = flags & REG_CAPA_V1_160MHZ_ALLOWED;
1717		reg_capa.disable_11ax = flags & REG_CAPA_V1_11AX_DISABLED;
1718	}
1719	return reg_capa;
1720}
1721
1722struct ieee80211_regdomain *
1723iwl_parse_nvm_mcc_info(struct device *dev, const struct iwl_cfg *cfg,
1724		       int num_of_ch, __le32 *channels, u16 fw_mcc,
1725		       u16 geo_info, u32 cap, u8 resp_ver, bool uats_enabled)
1726{
1727	int ch_idx;
1728	u16 ch_flags;
1729	u32 reg_rule_flags, prev_reg_rule_flags = 0;
1730	const u16 *nvm_chan;
1731	struct ieee80211_regdomain *regd, *copy_rd;
1732	struct ieee80211_reg_rule *rule;
1733	enum nl80211_band band;
1734	int center_freq, prev_center_freq = 0;
1735	int valid_rules = 0;
1736	bool new_rule;
1737	int max_num_ch;
1738	struct iwl_reg_capa reg_capa;
1739
1740	if (cfg->uhb_supported) {
1741		max_num_ch = IWL_NVM_NUM_CHANNELS_UHB;
1742		nvm_chan = iwl_uhb_nvm_channels;
1743	} else if (cfg->nvm_type == IWL_NVM_EXT) {
1744		max_num_ch = IWL_NVM_NUM_CHANNELS_EXT;
1745		nvm_chan = iwl_ext_nvm_channels;
1746	} else {
1747		max_num_ch = IWL_NVM_NUM_CHANNELS;
1748		nvm_chan = iwl_nvm_channels;
1749	}
1750
1751	if (num_of_ch > max_num_ch) {
1752		IWL_DEBUG_DEV(dev, IWL_DL_LAR,
1753			      "Num of channels (%d) is greater than expected. Truncating to %d\n",
1754			      num_of_ch, max_num_ch);
1755		num_of_ch = max_num_ch;
1756	}
1757
1758	if (WARN_ON_ONCE(num_of_ch > NL80211_MAX_SUPP_REG_RULES))
1759		return ERR_PTR(-EINVAL);
1760
1761	IWL_DEBUG_DEV(dev, IWL_DL_LAR, "building regdom for %d channels\n",
1762		      num_of_ch);
1763
1764	/* build a regdomain rule for every valid channel */
1765	regd = kzalloc(struct_size(regd, reg_rules, num_of_ch), GFP_KERNEL);
1766	if (!regd)
1767		return ERR_PTR(-ENOMEM);
1768
1769	/* set alpha2 from FW. */
1770	regd->alpha2[0] = fw_mcc >> 8;
1771	regd->alpha2[1] = fw_mcc & 0xff;
1772
1773	/* parse regulatory capability flags */
1774	reg_capa = iwl_get_reg_capa(cap, resp_ver);
1775
1776	for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) {
1777		ch_flags = (u16)__le32_to_cpup(channels + ch_idx);
1778		band = iwl_nl80211_band_from_channel_idx(ch_idx);
1779		center_freq = ieee80211_channel_to_frequency(nvm_chan[ch_idx],
1780							     band);
1781		new_rule = false;
1782
1783		if (!(ch_flags & NVM_CHANNEL_VALID)) {
1784			iwl_nvm_print_channel_flags(dev, IWL_DL_LAR,
1785						    nvm_chan[ch_idx], ch_flags);
1786			continue;
1787		}
1788
1789		reg_rule_flags = iwl_nvm_get_regdom_bw_flags(nvm_chan, ch_idx,
1790							     ch_flags, reg_capa,
1791							     cfg, uats_enabled);
1792
1793		/* we can't continue the same rule */
1794		if (ch_idx == 0 || prev_reg_rule_flags != reg_rule_flags ||
1795		    center_freq - prev_center_freq > 20) {
1796			valid_rules++;
1797			new_rule = true;
1798		}
1799
1800		rule = &regd->reg_rules[valid_rules - 1];
1801
1802		if (new_rule)
1803			rule->freq_range.start_freq_khz =
1804						MHZ_TO_KHZ(center_freq - 10);
1805
1806		rule->freq_range.end_freq_khz = MHZ_TO_KHZ(center_freq + 10);
1807
1808		/* this doesn't matter - not used by FW */
1809		rule->power_rule.max_antenna_gain = DBI_TO_MBI(6);
1810		rule->power_rule.max_eirp =
1811			DBM_TO_MBM(IWL_DEFAULT_MAX_TX_POWER);
1812
1813		rule->flags = reg_rule_flags;
1814
1815		/* rely on auto-calculation to merge BW of contiguous chans */
1816		rule->flags |= NL80211_RRF_AUTO_BW;
1817		rule->freq_range.max_bandwidth_khz = 0;
1818
1819		prev_center_freq = center_freq;
1820		prev_reg_rule_flags = reg_rule_flags;
1821
1822		iwl_nvm_print_channel_flags(dev, IWL_DL_LAR,
1823					    nvm_chan[ch_idx], ch_flags);
1824
1825		if (!(geo_info & GEO_WMM_ETSI_5GHZ_INFO) ||
1826		    band == NL80211_BAND_2GHZ)
1827			continue;
1828
1829		reg_query_regdb_wmm(regd->alpha2, center_freq, rule);
1830	}
1831
1832	/*
1833	 * Certain firmware versions might report no valid channels
1834	 * if booted in RF-kill, i.e. not all calibrations etc. are
1835	 * running. We'll get out of this situation later when the
1836	 * rfkill is removed and we update the regdomain again, but
1837	 * since cfg80211 doesn't accept an empty regdomain, add a
1838	 * dummy (unusable) rule here in this case so we can init.
1839	 */
1840	if (!valid_rules) {
1841		valid_rules = 1;
1842		rule = &regd->reg_rules[valid_rules - 1];
1843		rule->freq_range.start_freq_khz = MHZ_TO_KHZ(2412);
1844		rule->freq_range.end_freq_khz = MHZ_TO_KHZ(2413);
1845		rule->freq_range.max_bandwidth_khz = MHZ_TO_KHZ(1);
1846		rule->power_rule.max_antenna_gain = DBI_TO_MBI(6);
1847		rule->power_rule.max_eirp =
1848			DBM_TO_MBM(IWL_DEFAULT_MAX_TX_POWER);
1849	}
1850
1851	regd->n_reg_rules = valid_rules;
1852
1853	/*
1854	 * Narrow down regdom for unused regulatory rules to prevent hole
1855	 * between reg rules to wmm rules.
1856	 */
1857	copy_rd = kmemdup(regd, struct_size(regd, reg_rules, valid_rules),
1858			  GFP_KERNEL);
1859	if (!copy_rd)
1860		copy_rd = ERR_PTR(-ENOMEM);
1861
1862	kfree(regd);
1863	return copy_rd;
1864}
1865IWL_EXPORT_SYMBOL(iwl_parse_nvm_mcc_info);
1866
1867#define IWL_MAX_NVM_SECTION_SIZE	0x1b58
1868#define IWL_MAX_EXT_NVM_SECTION_SIZE	0x1ffc
1869#define MAX_NVM_FILE_LEN	16384
1870
1871void iwl_nvm_fixups(u32 hw_id, unsigned int section, u8 *data,
1872		    unsigned int len)
1873{
1874#define IWL_4165_DEVICE_ID	0x5501
1875#define NVM_SKU_CAP_MIMO_DISABLE BIT(5)
1876
1877	if (section == NVM_SECTION_TYPE_PHY_SKU &&
1878	    hw_id == IWL_4165_DEVICE_ID && data && len >= 5 &&
1879	    (data[4] & NVM_SKU_CAP_MIMO_DISABLE))
1880		/* OTP 0x52 bug work around: it's a 1x1 device */
1881		data[3] = ANT_B | (ANT_B << 4);
1882}
1883IWL_EXPORT_SYMBOL(iwl_nvm_fixups);
1884
1885/*
1886 * Reads external NVM from a file into mvm->nvm_sections
1887 *
1888 * HOW TO CREATE THE NVM FILE FORMAT:
1889 * ------------------------------
1890 * 1. create hex file, format:
1891 *      3800 -> header
1892 *      0000 -> header
1893 *      5a40 -> data
1894 *
1895 *   rev - 6 bit (word1)
1896 *   len - 10 bit (word1)
1897 *   id - 4 bit (word2)
1898 *   rsv - 12 bit (word2)
1899 *
1900 * 2. flip 8bits with 8 bits per line to get the right NVM file format
1901 *
1902 * 3. create binary file from the hex file
1903 *
1904 * 4. save as "iNVM_xxx.bin" under /lib/firmware
1905 */
1906int iwl_read_external_nvm(struct iwl_trans *trans,
1907			  const char *nvm_file_name,
1908			  struct iwl_nvm_section *nvm_sections)
1909{
1910	int ret, section_size;
1911	u16 section_id;
1912	const struct firmware *fw_entry;
1913	const struct {
1914		__le16 word1;
1915		__le16 word2;
1916		u8 data[];
1917	} *file_sec;
1918	const u8 *eof;
1919	u8 *temp;
1920	int max_section_size;
1921	const __le32 *dword_buff;
1922
1923#define NVM_WORD1_LEN(x) (8 * (x & 0x03FF))
1924#define NVM_WORD2_ID(x) (x >> 12)
1925#define EXT_NVM_WORD2_LEN(x) (2 * (((x) & 0xFF) << 8 | (x) >> 8))
1926#define EXT_NVM_WORD1_ID(x) ((x) >> 4)
1927#define NVM_HEADER_0	(0x2A504C54)
1928#define NVM_HEADER_1	(0x4E564D2A)
1929#define NVM_HEADER_SIZE	(4 * sizeof(u32))
1930
1931	IWL_DEBUG_EEPROM(trans->dev, "Read from external NVM\n");
1932
1933	/* Maximal size depends on NVM version */
1934	if (trans->cfg->nvm_type != IWL_NVM_EXT)
1935		max_section_size = IWL_MAX_NVM_SECTION_SIZE;
1936	else
1937		max_section_size = IWL_MAX_EXT_NVM_SECTION_SIZE;
1938
1939	/*
1940	 * Obtain NVM image via request_firmware. Since we already used
1941	 * request_firmware_nowait() for the firmware binary load and only
1942	 * get here after that we assume the NVM request can be satisfied
1943	 * synchronously.
1944	 */
1945	ret = request_firmware(&fw_entry, nvm_file_name, trans->dev);
1946	if (ret) {
1947		IWL_ERR(trans, "ERROR: %s isn't available %d\n",
1948			nvm_file_name, ret);
1949		return ret;
1950	}
1951
1952	IWL_INFO(trans, "Loaded NVM file %s (%zu bytes)\n",
1953		 nvm_file_name, fw_entry->size);
1954
1955	if (fw_entry->size > MAX_NVM_FILE_LEN) {
1956		IWL_ERR(trans, "NVM file too large\n");
1957		ret = -EINVAL;
1958		goto out;
1959	}
1960
1961	eof = fw_entry->data + fw_entry->size;
1962	dword_buff = (const __le32 *)fw_entry->data;
1963
1964	/* some NVM file will contain a header.
1965	 * The header is identified by 2 dwords header as follow:
1966	 * dword[0] = 0x2A504C54
1967	 * dword[1] = 0x4E564D2A
1968	 *
1969	 * This header must be skipped when providing the NVM data to the FW.
1970	 */
1971	if (fw_entry->size > NVM_HEADER_SIZE &&
1972	    dword_buff[0] == cpu_to_le32(NVM_HEADER_0) &&
1973	    dword_buff[1] == cpu_to_le32(NVM_HEADER_1)) {
1974		file_sec = (const void *)(fw_entry->data + NVM_HEADER_SIZE);
1975		IWL_INFO(trans, "NVM Version %08X\n", le32_to_cpu(dword_buff[2]));
1976		IWL_INFO(trans, "NVM Manufacturing date %08X\n",
1977			 le32_to_cpu(dword_buff[3]));
1978
1979		/* nvm file validation, dword_buff[2] holds the file version */
1980		if (trans->trans_cfg->device_family == IWL_DEVICE_FAMILY_8000 &&
1981		    trans->hw_rev_step == SILICON_C_STEP &&
1982		    le32_to_cpu(dword_buff[2]) < 0xE4A) {
1983			ret = -EFAULT;
1984			goto out;
1985		}
1986	} else {
1987		file_sec = (const void *)fw_entry->data;
1988	}
1989
1990	while (true) {
1991		if (file_sec->data > eof) {
1992			IWL_ERR(trans,
1993				"ERROR - NVM file too short for section header\n");
1994			ret = -EINVAL;
1995			break;
1996		}
1997
1998		/* check for EOF marker */
1999		if (!file_sec->word1 && !file_sec->word2) {
2000			ret = 0;
2001			break;
2002		}
2003
2004		if (trans->cfg->nvm_type != IWL_NVM_EXT) {
2005			section_size =
2006				2 * NVM_WORD1_LEN(le16_to_cpu(file_sec->word1));
2007			section_id = NVM_WORD2_ID(le16_to_cpu(file_sec->word2));
2008		} else {
2009			section_size = 2 * EXT_NVM_WORD2_LEN(
2010						le16_to_cpu(file_sec->word2));
2011			section_id = EXT_NVM_WORD1_ID(
2012						le16_to_cpu(file_sec->word1));
2013		}
2014
2015		if (section_size > max_section_size) {
2016			IWL_ERR(trans, "ERROR - section too large (%d)\n",
2017				section_size);
2018			ret = -EINVAL;
2019			break;
2020		}
2021
2022		if (!section_size) {
2023			IWL_ERR(trans, "ERROR - section empty\n");
2024			ret = -EINVAL;
2025			break;
2026		}
2027
2028		if (file_sec->data + section_size > eof) {
2029			IWL_ERR(trans,
2030				"ERROR - NVM file too short for section (%d bytes)\n",
2031				section_size);
2032			ret = -EINVAL;
2033			break;
2034		}
2035
2036		if (WARN(section_id >= NVM_MAX_NUM_SECTIONS,
2037			 "Invalid NVM section ID %d\n", section_id)) {
2038			ret = -EINVAL;
2039			break;
2040		}
2041
2042		temp = kmemdup(file_sec->data, section_size, GFP_KERNEL);
2043		if (!temp) {
2044			ret = -ENOMEM;
2045			break;
2046		}
2047
2048		iwl_nvm_fixups(trans->hw_id, section_id, temp, section_size);
2049
2050		kfree(nvm_sections[section_id].data);
2051		nvm_sections[section_id].data = temp;
2052		nvm_sections[section_id].length = section_size;
2053
2054		/* advance to the next section */
2055		file_sec = (const void *)(file_sec->data + section_size);
2056	}
2057out:
2058	release_firmware(fw_entry);
2059	return ret;
2060}
2061IWL_EXPORT_SYMBOL(iwl_read_external_nvm);
2062
2063struct iwl_nvm_data *iwl_get_nvm(struct iwl_trans *trans,
2064				 const struct iwl_fw *fw,
2065				 u8 set_tx_ant, u8 set_rx_ant)
2066{
2067	struct iwl_nvm_get_info cmd = {};
2068	struct iwl_nvm_data *nvm;
2069	struct iwl_host_cmd hcmd = {
2070		.flags = CMD_WANT_SKB | CMD_SEND_IN_RFKILL,
2071		.data = { &cmd, },
2072		.len = { sizeof(cmd) },
2073		.id = WIDE_ID(REGULATORY_AND_NVM_GROUP, NVM_GET_INFO)
2074	};
2075	int  ret;
2076	bool empty_otp;
2077	u32 mac_flags;
2078	u32 sbands_flags = 0;
2079	u8 tx_ant;
2080	u8 rx_ant;
2081
2082	/*
2083	 * All the values in iwl_nvm_get_info_rsp v4 are the same as
2084	 * in v3, except for the channel profile part of the
2085	 * regulatory.  So we can just access the new struct, with the
2086	 * exception of the latter.
2087	 */
2088	struct iwl_nvm_get_info_rsp *rsp;
2089	struct iwl_nvm_get_info_rsp_v3 *rsp_v3;
2090	bool v4 = fw_has_api(&fw->ucode_capa,
2091			     IWL_UCODE_TLV_API_REGULATORY_NVM_INFO);
2092	size_t rsp_size = v4 ? sizeof(*rsp) : sizeof(*rsp_v3);
2093	void *channel_profile;
2094
2095	ret = iwl_trans_send_cmd(trans, &hcmd);
2096	if (ret)
2097		return ERR_PTR(ret);
2098
2099	if (WARN(iwl_rx_packet_payload_len(hcmd.resp_pkt) != rsp_size,
2100		 "Invalid payload len in NVM response from FW %d",
2101		 iwl_rx_packet_payload_len(hcmd.resp_pkt))) {
2102		ret = -EINVAL;
2103		goto out;
2104	}
2105
2106	rsp = (void *)hcmd.resp_pkt->data;
2107	empty_otp = !!(le32_to_cpu(rsp->general.flags) &
2108		       NVM_GENERAL_FLAGS_EMPTY_OTP);
2109	if (empty_otp)
2110		IWL_INFO(trans, "OTP is empty\n");
2111
2112	nvm = kzalloc(struct_size(nvm, channels, IWL_NUM_CHANNELS), GFP_KERNEL);
2113	if (!nvm) {
2114		ret = -ENOMEM;
2115		goto out;
2116	}
2117
2118	iwl_set_hw_address_from_csr(trans, nvm);
2119	/* TODO: if platform NVM has MAC address - override it here */
2120
2121	if (!is_valid_ether_addr(nvm->hw_addr)) {
2122		IWL_ERR(trans, "no valid mac address was found\n");
2123		ret = -EINVAL;
2124		goto err_free;
2125	}
2126
2127	IWL_INFO(trans, "base HW address: %pM\n", nvm->hw_addr);
2128
2129	/* Initialize general data */
2130	nvm->nvm_version = le16_to_cpu(rsp->general.nvm_version);
2131	nvm->n_hw_addrs = rsp->general.n_hw_addrs;
2132	if (nvm->n_hw_addrs == 0)
2133		IWL_WARN(trans,
2134			 "Firmware declares no reserved mac addresses. OTP is empty: %d\n",
2135			 empty_otp);
2136
2137	/* Initialize MAC sku data */
2138	mac_flags = le32_to_cpu(rsp->mac_sku.mac_sku_flags);
2139	nvm->sku_cap_11ac_enable =
2140		!!(mac_flags & NVM_MAC_SKU_FLAGS_802_11AC_ENABLED);
2141	nvm->sku_cap_11n_enable =
2142		!!(mac_flags & NVM_MAC_SKU_FLAGS_802_11N_ENABLED);
2143	nvm->sku_cap_11ax_enable =
2144		!!(mac_flags & NVM_MAC_SKU_FLAGS_802_11AX_ENABLED);
2145	nvm->sku_cap_band_24ghz_enable =
2146		!!(mac_flags & NVM_MAC_SKU_FLAGS_BAND_2_4_ENABLED);
2147	nvm->sku_cap_band_52ghz_enable =
2148		!!(mac_flags & NVM_MAC_SKU_FLAGS_BAND_5_2_ENABLED);
2149	nvm->sku_cap_mimo_disabled =
2150		!!(mac_flags & NVM_MAC_SKU_FLAGS_MIMO_DISABLED);
2151	if (CSR_HW_RFID_TYPE(trans->hw_rf_id) >= IWL_CFG_RF_TYPE_FM)
2152		nvm->sku_cap_11be_enable = true;
2153
2154	/* Initialize PHY sku data */
2155	nvm->valid_tx_ant = (u8)le32_to_cpu(rsp->phy_sku.tx_chains);
2156	nvm->valid_rx_ant = (u8)le32_to_cpu(rsp->phy_sku.rx_chains);
2157
2158	if (le32_to_cpu(rsp->regulatory.lar_enabled) &&
2159	    fw_has_capa(&fw->ucode_capa,
2160			IWL_UCODE_TLV_CAPA_LAR_SUPPORT)) {
2161		nvm->lar_enabled = true;
2162		sbands_flags |= IWL_NVM_SBANDS_FLAGS_LAR;
2163	}
2164
2165	rsp_v3 = (void *)rsp;
2166	channel_profile = v4 ? (void *)rsp->regulatory.channel_profile :
2167			  (void *)rsp_v3->regulatory.channel_profile;
2168
2169	tx_ant = nvm->valid_tx_ant & fw->valid_tx_ant;
2170	rx_ant = nvm->valid_rx_ant & fw->valid_rx_ant;
2171
2172	if (set_tx_ant)
2173		tx_ant &= set_tx_ant;
2174	if (set_rx_ant)
2175		rx_ant &= set_rx_ant;
2176
2177	iwl_init_sbands(trans, nvm, channel_profile, tx_ant, rx_ant,
2178			sbands_flags, v4, fw);
2179
2180	iwl_free_resp(&hcmd);
2181	return nvm;
2182
2183err_free:
2184	kfree(nvm);
2185out:
2186	iwl_free_resp(&hcmd);
2187	return ERR_PTR(ret);
2188}
2189IWL_EXPORT_SYMBOL(iwl_get_nvm);
2190