1// SPDX-License-Identifier: ISC
2/*
3 * Copyright (c) 2012-2017 Qualcomm Atheros, Inc.
4 * Copyright (c) 2018-2019, The Linux Foundation. All rights reserved.
5 */
6
7#include <linux/moduleparam.h>
8#include <linux/if_arp.h>
9#include <linux/etherdevice.h>
10#include <linux/rtnetlink.h>
11
12#include "wil6210.h"
13#include "txrx.h"
14#include "txrx_edma.h"
15#include "wmi.h"
16#include "boot_loader.h"
17
18#define WAIT_FOR_HALP_VOTE_MS 100
19#define WAIT_FOR_SCAN_ABORT_MS 1000
20#define WIL_DEFAULT_NUM_RX_STATUS_RINGS 1
21#define WIL_BOARD_FILE_MAX_NAMELEN 128
22
23bool debug_fw; /* = false; */
24module_param(debug_fw, bool, 0444);
25MODULE_PARM_DESC(debug_fw, " do not perform card reset. For FW debug");
26
27static u8 oob_mode;
28module_param(oob_mode, byte, 0444);
29MODULE_PARM_DESC(oob_mode,
30		 " enable out of the box (OOB) mode in FW, for diagnostics and certification");
31
32bool no_fw_recovery;
33module_param(no_fw_recovery, bool, 0644);
34MODULE_PARM_DESC(no_fw_recovery, " disable automatic FW error recovery");
35
36/* if not set via modparam, will be set to default value of 1/8 of
37 * rx ring size during init flow
38 */
39unsigned short rx_ring_overflow_thrsh = WIL6210_RX_HIGH_TRSH_INIT;
40module_param(rx_ring_overflow_thrsh, ushort, 0444);
41MODULE_PARM_DESC(rx_ring_overflow_thrsh,
42		 " RX ring overflow threshold in descriptors.");
43
44/* We allow allocation of more than 1 page buffers to support large packets.
45 * It is suboptimal behavior performance wise in case MTU above page size.
46 */
47unsigned int mtu_max = TXRX_BUF_LEN_DEFAULT - WIL_MAX_MPDU_OVERHEAD;
48static int mtu_max_set(const char *val, const struct kernel_param *kp)
49{
50	int ret;
51
52	/* sets mtu_max directly. no need to restore it in case of
53	 * illegal value since we assume this will fail insmod
54	 */
55	ret = param_set_uint(val, kp);
56	if (ret)
57		return ret;
58
59	if (mtu_max < 68 || mtu_max > WIL_MAX_ETH_MTU)
60		ret = -EINVAL;
61
62	return ret;
63}
64
65static const struct kernel_param_ops mtu_max_ops = {
66	.set = mtu_max_set,
67	.get = param_get_uint,
68};
69
70module_param_cb(mtu_max, &mtu_max_ops, &mtu_max, 0444);
71MODULE_PARM_DESC(mtu_max, " Max MTU value.");
72
73static uint rx_ring_order;
74static uint tx_ring_order = WIL_TX_RING_SIZE_ORDER_DEFAULT;
75static uint bcast_ring_order = WIL_BCAST_RING_SIZE_ORDER_DEFAULT;
76
77static int ring_order_set(const char *val, const struct kernel_param *kp)
78{
79	int ret;
80	uint x;
81
82	ret = kstrtouint(val, 0, &x);
83	if (ret)
84		return ret;
85
86	if ((x < WIL_RING_SIZE_ORDER_MIN) || (x > WIL_RING_SIZE_ORDER_MAX))
87		return -EINVAL;
88
89	*((uint *)kp->arg) = x;
90
91	return 0;
92}
93
94static const struct kernel_param_ops ring_order_ops = {
95	.set = ring_order_set,
96	.get = param_get_uint,
97};
98
99module_param_cb(rx_ring_order, &ring_order_ops, &rx_ring_order, 0444);
100MODULE_PARM_DESC(rx_ring_order, " Rx ring order; size = 1 << order");
101module_param_cb(tx_ring_order, &ring_order_ops, &tx_ring_order, 0444);
102MODULE_PARM_DESC(tx_ring_order, " Tx ring order; size = 1 << order");
103module_param_cb(bcast_ring_order, &ring_order_ops, &bcast_ring_order, 0444);
104MODULE_PARM_DESC(bcast_ring_order, " Bcast ring order; size = 1 << order");
105
106enum {
107	WIL_BOOT_ERR,
108	WIL_BOOT_VANILLA,
109	WIL_BOOT_PRODUCTION,
110	WIL_BOOT_DEVELOPMENT,
111};
112
113enum {
114	WIL_SIG_STATUS_VANILLA = 0x0,
115	WIL_SIG_STATUS_DEVELOPMENT = 0x1,
116	WIL_SIG_STATUS_PRODUCTION = 0x2,
117	WIL_SIG_STATUS_CORRUPTED_PRODUCTION = 0x3,
118};
119
120#define RST_DELAY (20) /* msec, for loop in @wil_wait_device_ready */
121#define RST_COUNT (1 + 1000/RST_DELAY) /* round up to be above 1 sec total */
122
123#define PMU_READY_DELAY_MS (4) /* ms, for sleep in @wil_wait_device_ready */
124
125#define OTP_HW_DELAY (200) /* usec, loop in @wil_wait_device_ready_talyn_mb */
126/* round up to be above 2 ms total */
127#define OTP_HW_COUNT (1 + 2000 / OTP_HW_DELAY)
128
129/*
130 * Due to a hardware issue,
131 * one has to read/write to/from NIC in 32-bit chunks;
132 * regular memcpy_fromio and siblings will
133 * not work on 64-bit platform - it uses 64-bit transactions
134 *
135 * Force 32-bit transactions to enable NIC on 64-bit platforms
136 *
137 * To avoid byte swap on big endian host, __raw_{read|write}l
138 * should be used - {read|write}l would swap bytes to provide
139 * little endian on PCI value in host endianness.
140 */
141void wil_memcpy_fromio_32(void *dst, const volatile void __iomem *src,
142			  size_t count)
143{
144	u32 *d = dst;
145	const volatile u32 __iomem *s = src;
146
147	for (; count >= 4; count -= 4)
148		*d++ = __raw_readl(s++);
149
150	if (unlikely(count)) {
151		/* count can be 1..3 */
152		u32 tmp = __raw_readl(s);
153
154		memcpy(d, &tmp, count);
155	}
156}
157
158void wil_memcpy_toio_32(volatile void __iomem *dst, const void *src,
159			size_t count)
160{
161	volatile u32 __iomem *d = dst;
162	const u32 *s = src;
163
164	for (; count >= 4; count -= 4)
165		__raw_writel(*s++, d++);
166
167	if (unlikely(count)) {
168		/* count can be 1..3 */
169		u32 tmp = 0;
170
171		memcpy(&tmp, s, count);
172		__raw_writel(tmp, d);
173	}
174}
175
176/* Device memory access is prohibited while reset or suspend.
177 * wil_mem_access_lock protects accessing device memory in these cases
178 */
179int wil_mem_access_lock(struct wil6210_priv *wil)
180{
181	if (!down_read_trylock(&wil->mem_lock))
182		return -EBUSY;
183
184	if (test_bit(wil_status_suspending, wil->status) ||
185	    test_bit(wil_status_suspended, wil->status)) {
186		up_read(&wil->mem_lock);
187		return -EBUSY;
188	}
189
190	return 0;
191}
192
193void wil_mem_access_unlock(struct wil6210_priv *wil)
194{
195	up_read(&wil->mem_lock);
196}
197
198static void wil_ring_fini_tx(struct wil6210_priv *wil, int id)
199{
200	struct wil_ring *ring = &wil->ring_tx[id];
201	struct wil_ring_tx_data *txdata = &wil->ring_tx_data[id];
202
203	lockdep_assert_held(&wil->mutex);
204
205	if (!ring->va)
206		return;
207
208	wil_dbg_misc(wil, "vring_fini_tx: id=%d\n", id);
209
210	spin_lock_bh(&txdata->lock);
211	txdata->dot1x_open = false;
212	txdata->mid = U8_MAX;
213	txdata->enabled = 0; /* no Tx can be in progress or start anew */
214	spin_unlock_bh(&txdata->lock);
215	/* napi_synchronize waits for completion of the current NAPI but will
216	 * not prevent the next NAPI run.
217	 * Add a memory barrier to guarantee that txdata->enabled is zeroed
218	 * before napi_synchronize so that the next scheduled NAPI will not
219	 * handle this vring
220	 */
221	wmb();
222	/* make sure NAPI won't touch this vring */
223	if (test_bit(wil_status_napi_en, wil->status))
224		napi_synchronize(&wil->napi_tx);
225
226	wil->txrx_ops.ring_fini_tx(wil, ring);
227}
228
229static bool wil_vif_is_connected(struct wil6210_priv *wil, u8 mid)
230{
231	int i;
232
233	for (i = 0; i < wil->max_assoc_sta; i++) {
234		if (wil->sta[i].mid == mid &&
235		    wil->sta[i].status == wil_sta_connected)
236			return true;
237	}
238
239	return false;
240}
241
242static void wil_disconnect_cid_complete(struct wil6210_vif *vif, int cid,
243					u16 reason_code)
244__acquires(&sta->tid_rx_lock) __releases(&sta->tid_rx_lock)
245{
246	uint i;
247	struct wil6210_priv *wil = vif_to_wil(vif);
248	struct net_device *ndev = vif_to_ndev(vif);
249	struct wireless_dev *wdev = vif_to_wdev(vif);
250	struct wil_sta_info *sta = &wil->sta[cid];
251	int min_ring_id = wil_get_min_tx_ring_id(wil);
252
253	might_sleep();
254	wil_dbg_misc(wil,
255		     "disconnect_cid_complete: CID %d, MID %d, status %d\n",
256		     cid, sta->mid, sta->status);
257	/* inform upper layers */
258	if (sta->status != wil_sta_unused) {
259		if (vif->mid != sta->mid) {
260			wil_err(wil, "STA MID mismatch with VIF MID(%d)\n",
261				vif->mid);
262		}
263
264		switch (wdev->iftype) {
265		case NL80211_IFTYPE_AP:
266		case NL80211_IFTYPE_P2P_GO:
267			/* AP-like interface */
268			cfg80211_del_sta(ndev, sta->addr, GFP_KERNEL);
269			break;
270		default:
271			break;
272		}
273		sta->status = wil_sta_unused;
274		sta->mid = U8_MAX;
275	}
276	/* reorder buffers */
277	for (i = 0; i < WIL_STA_TID_NUM; i++) {
278		struct wil_tid_ampdu_rx *r;
279
280		spin_lock_bh(&sta->tid_rx_lock);
281
282		r = sta->tid_rx[i];
283		sta->tid_rx[i] = NULL;
284		wil_tid_ampdu_rx_free(wil, r);
285
286		spin_unlock_bh(&sta->tid_rx_lock);
287	}
288	/* crypto context */
289	memset(sta->tid_crypto_rx, 0, sizeof(sta->tid_crypto_rx));
290	memset(&sta->group_crypto_rx, 0, sizeof(sta->group_crypto_rx));
291	/* release vrings */
292	for (i = min_ring_id; i < ARRAY_SIZE(wil->ring_tx); i++) {
293		if (wil->ring2cid_tid[i][0] == cid)
294			wil_ring_fini_tx(wil, i);
295	}
296	/* statistics */
297	memset(&sta->stats, 0, sizeof(sta->stats));
298	sta->stats.tx_latency_min_us = U32_MAX;
299}
300
301static void _wil6210_disconnect_complete(struct wil6210_vif *vif,
302					 const u8 *bssid, u16 reason_code)
303{
304	struct wil6210_priv *wil = vif_to_wil(vif);
305	int cid = -ENOENT;
306	struct net_device *ndev;
307	struct wireless_dev *wdev;
308
309	ndev = vif_to_ndev(vif);
310	wdev = vif_to_wdev(vif);
311
312	might_sleep();
313	wil_info(wil, "disconnect_complete: bssid=%pM, reason=%d\n",
314		 bssid, reason_code);
315
316	/* Cases are:
317	 * - disconnect single STA, still connected
318	 * - disconnect single STA, already disconnected
319	 * - disconnect all
320	 *
321	 * For "disconnect all", there are 3 options:
322	 * - bssid == NULL
323	 * - bssid is broadcast address (ff:ff:ff:ff:ff:ff)
324	 * - bssid is our MAC address
325	 */
326	if (bssid && !is_broadcast_ether_addr(bssid) &&
327	    !ether_addr_equal_unaligned(ndev->dev_addr, bssid)) {
328		cid = wil_find_cid(wil, vif->mid, bssid);
329		wil_dbg_misc(wil,
330			     "Disconnect complete %pM, CID=%d, reason=%d\n",
331			     bssid, cid, reason_code);
332		if (wil_cid_valid(wil, cid)) /* disconnect 1 peer */
333			wil_disconnect_cid_complete(vif, cid, reason_code);
334	} else { /* all */
335		wil_dbg_misc(wil, "Disconnect complete all\n");
336		for (cid = 0; cid < wil->max_assoc_sta; cid++)
337			wil_disconnect_cid_complete(vif, cid, reason_code);
338	}
339
340	/* link state */
341	switch (wdev->iftype) {
342	case NL80211_IFTYPE_STATION:
343	case NL80211_IFTYPE_P2P_CLIENT:
344		wil_bcast_fini(vif);
345		wil_update_net_queues_bh(wil, vif, NULL, true);
346		netif_carrier_off(ndev);
347		if (!wil_has_other_active_ifaces(wil, ndev, false, true))
348			wil6210_bus_request(wil, WIL_DEFAULT_BUS_REQUEST_KBPS);
349
350		if (test_and_clear_bit(wil_vif_fwconnected, vif->status)) {
351			atomic_dec(&wil->connected_vifs);
352			cfg80211_disconnected(ndev, reason_code,
353					      NULL, 0,
354					      vif->locally_generated_disc,
355					      GFP_KERNEL);
356			vif->locally_generated_disc = false;
357		} else if (test_bit(wil_vif_fwconnecting, vif->status)) {
358			cfg80211_connect_result(ndev, bssid, NULL, 0, NULL, 0,
359						WLAN_STATUS_UNSPECIFIED_FAILURE,
360						GFP_KERNEL);
361			vif->bss = NULL;
362		}
363		clear_bit(wil_vif_fwconnecting, vif->status);
364		clear_bit(wil_vif_ft_roam, vif->status);
365		vif->ptk_rekey_state = WIL_REKEY_IDLE;
366
367		break;
368	case NL80211_IFTYPE_AP:
369	case NL80211_IFTYPE_P2P_GO:
370		if (!wil_vif_is_connected(wil, vif->mid)) {
371			wil_update_net_queues_bh(wil, vif, NULL, true);
372			if (test_and_clear_bit(wil_vif_fwconnected,
373					       vif->status))
374				atomic_dec(&wil->connected_vifs);
375		} else {
376			wil_update_net_queues_bh(wil, vif, NULL, false);
377		}
378		break;
379	default:
380		break;
381	}
382}
383
384static int wil_disconnect_cid(struct wil6210_vif *vif, int cid,
385			      u16 reason_code)
386{
387	struct wil6210_priv *wil = vif_to_wil(vif);
388	struct wireless_dev *wdev = vif_to_wdev(vif);
389	struct wil_sta_info *sta = &wil->sta[cid];
390	bool del_sta = false;
391
392	might_sleep();
393	wil_dbg_misc(wil, "disconnect_cid: CID %d, MID %d, status %d\n",
394		     cid, sta->mid, sta->status);
395
396	if (sta->status == wil_sta_unused)
397		return 0;
398
399	if (vif->mid != sta->mid) {
400		wil_err(wil, "STA MID mismatch with VIF MID(%d)\n", vif->mid);
401		return -EINVAL;
402	}
403
404	/* inform lower layers */
405	if (wdev->iftype == NL80211_IFTYPE_AP && disable_ap_sme)
406		del_sta = true;
407
408	/* disconnect by sending command disconnect/del_sta and wait
409	 * synchronously for WMI_DISCONNECT_EVENTID event.
410	 */
411	return wmi_disconnect_sta(vif, sta->addr, reason_code, del_sta);
412}
413
414static void _wil6210_disconnect(struct wil6210_vif *vif, const u8 *bssid,
415				u16 reason_code)
416{
417	struct wil6210_priv *wil;
418	struct net_device *ndev;
419	int cid = -ENOENT;
420
421	if (unlikely(!vif))
422		return;
423
424	wil = vif_to_wil(vif);
425	ndev = vif_to_ndev(vif);
426
427	might_sleep();
428	wil_info(wil, "disconnect bssid=%pM, reason=%d\n", bssid, reason_code);
429
430	/* Cases are:
431	 * - disconnect single STA, still connected
432	 * - disconnect single STA, already disconnected
433	 * - disconnect all
434	 *
435	 * For "disconnect all", there are 3 options:
436	 * - bssid == NULL
437	 * - bssid is broadcast address (ff:ff:ff:ff:ff:ff)
438	 * - bssid is our MAC address
439	 */
440	if (bssid && !is_broadcast_ether_addr(bssid) &&
441	    !ether_addr_equal_unaligned(ndev->dev_addr, bssid)) {
442		cid = wil_find_cid(wil, vif->mid, bssid);
443		wil_dbg_misc(wil, "Disconnect %pM, CID=%d, reason=%d\n",
444			     bssid, cid, reason_code);
445		if (wil_cid_valid(wil, cid)) /* disconnect 1 peer */
446			wil_disconnect_cid(vif, cid, reason_code);
447	} else { /* all */
448		wil_dbg_misc(wil, "Disconnect all\n");
449		for (cid = 0; cid < wil->max_assoc_sta; cid++)
450			wil_disconnect_cid(vif, cid, reason_code);
451	}
452
453	/* call event handler manually after processing wmi_call,
454	 * to avoid deadlock - disconnect event handler acquires
455	 * wil->mutex while it is already held here
456	 */
457	_wil6210_disconnect_complete(vif, bssid, reason_code);
458}
459
460void wil_disconnect_worker(struct work_struct *work)
461{
462	struct wil6210_vif *vif = container_of(work,
463			struct wil6210_vif, disconnect_worker);
464	struct wil6210_priv *wil = vif_to_wil(vif);
465	struct net_device *ndev = vif_to_ndev(vif);
466	int rc;
467	struct {
468		struct wmi_cmd_hdr wmi;
469		struct wmi_disconnect_event evt;
470	} __packed reply;
471
472	if (test_bit(wil_vif_fwconnected, vif->status))
473		/* connect succeeded after all */
474		return;
475
476	if (!test_bit(wil_vif_fwconnecting, vif->status))
477		/* already disconnected */
478		return;
479
480	memset(&reply, 0, sizeof(reply));
481
482	rc = wmi_call(wil, WMI_DISCONNECT_CMDID, vif->mid, NULL, 0,
483		      WMI_DISCONNECT_EVENTID, &reply, sizeof(reply),
484		      WIL6210_DISCONNECT_TO_MS);
485	if (rc) {
486		wil_err(wil, "disconnect error %d\n", rc);
487		return;
488	}
489
490	wil_update_net_queues_bh(wil, vif, NULL, true);
491	netif_carrier_off(ndev);
492	cfg80211_connect_result(ndev, NULL, NULL, 0, NULL, 0,
493				WLAN_STATUS_UNSPECIFIED_FAILURE, GFP_KERNEL);
494	clear_bit(wil_vif_fwconnecting, vif->status);
495}
496
497static int wil_wait_for_recovery(struct wil6210_priv *wil)
498{
499	if (wait_event_interruptible(wil->wq, wil->recovery_state !=
500				     fw_recovery_pending)) {
501		wil_err(wil, "Interrupt, canceling recovery\n");
502		return -ERESTARTSYS;
503	}
504	if (wil->recovery_state != fw_recovery_running) {
505		wil_info(wil, "Recovery cancelled\n");
506		return -EINTR;
507	}
508	wil_info(wil, "Proceed with recovery\n");
509	return 0;
510}
511
512void wil_set_recovery_state(struct wil6210_priv *wil, int state)
513{
514	wil_dbg_misc(wil, "set_recovery_state: %d -> %d\n",
515		     wil->recovery_state, state);
516
517	wil->recovery_state = state;
518	wake_up_interruptible(&wil->wq);
519}
520
521bool wil_is_recovery_blocked(struct wil6210_priv *wil)
522{
523	return no_fw_recovery && (wil->recovery_state == fw_recovery_pending);
524}
525
526static void wil_fw_error_worker(struct work_struct *work)
527{
528	struct wil6210_priv *wil = container_of(work, struct wil6210_priv,
529						fw_error_worker);
530	struct net_device *ndev = wil->main_ndev;
531	struct wireless_dev *wdev;
532
533	wil_dbg_misc(wil, "fw error worker\n");
534
535	if (!ndev || !(ndev->flags & IFF_UP)) {
536		wil_info(wil, "No recovery - interface is down\n");
537		return;
538	}
539	wdev = ndev->ieee80211_ptr;
540
541	/* increment @recovery_count if less then WIL6210_FW_RECOVERY_TO
542	 * passed since last recovery attempt
543	 */
544	if (time_is_after_jiffies(wil->last_fw_recovery +
545				  WIL6210_FW_RECOVERY_TO))
546		wil->recovery_count++;
547	else
548		wil->recovery_count = 1; /* fw was alive for a long time */
549
550	if (wil->recovery_count > WIL6210_FW_RECOVERY_RETRIES) {
551		wil_err(wil, "too many recovery attempts (%d), giving up\n",
552			wil->recovery_count);
553		return;
554	}
555
556	wil->last_fw_recovery = jiffies;
557
558	wil_info(wil, "fw error recovery requested (try %d)...\n",
559		 wil->recovery_count);
560	if (!no_fw_recovery)
561		wil->recovery_state = fw_recovery_running;
562	if (wil_wait_for_recovery(wil) != 0)
563		return;
564
565	rtnl_lock();
566	mutex_lock(&wil->mutex);
567	/* Needs adaptation for multiple VIFs
568	 * need to go over all VIFs and consider the appropriate
569	 * recovery because each one can have different iftype.
570	 */
571	switch (wdev->iftype) {
572	case NL80211_IFTYPE_STATION:
573	case NL80211_IFTYPE_P2P_CLIENT:
574	case NL80211_IFTYPE_MONITOR:
575		/* silent recovery, upper layers will see disconnect */
576		__wil_down(wil);
577		__wil_up(wil);
578		break;
579	case NL80211_IFTYPE_AP:
580	case NL80211_IFTYPE_P2P_GO:
581		if (no_fw_recovery) /* upper layers do recovery */
582			break;
583		/* silent recovery, upper layers will see disconnect */
584		__wil_down(wil);
585		__wil_up(wil);
586		mutex_unlock(&wil->mutex);
587		wil_cfg80211_ap_recovery(wil);
588		mutex_lock(&wil->mutex);
589		wil_info(wil, "... completed\n");
590		break;
591	default:
592		wil_err(wil, "No recovery - unknown interface type %d\n",
593			wdev->iftype);
594		break;
595	}
596
597	mutex_unlock(&wil->mutex);
598	rtnl_unlock();
599}
600
601static int wil_find_free_ring(struct wil6210_priv *wil)
602{
603	int i;
604	int min_ring_id = wil_get_min_tx_ring_id(wil);
605
606	for (i = min_ring_id; i < WIL6210_MAX_TX_RINGS; i++) {
607		if (!wil->ring_tx[i].va)
608			return i;
609	}
610	return -EINVAL;
611}
612
613int wil_ring_init_tx(struct wil6210_vif *vif, int cid)
614{
615	struct wil6210_priv *wil = vif_to_wil(vif);
616	int rc = -EINVAL, ringid;
617
618	if (cid < 0) {
619		wil_err(wil, "No connection pending\n");
620		goto out;
621	}
622	ringid = wil_find_free_ring(wil);
623	if (ringid < 0) {
624		wil_err(wil, "No free vring found\n");
625		goto out;
626	}
627
628	wil_dbg_wmi(wil, "Configure for connection CID %d MID %d ring %d\n",
629		    cid, vif->mid, ringid);
630
631	rc = wil->txrx_ops.ring_init_tx(vif, ringid, 1 << tx_ring_order,
632					cid, 0);
633	if (rc)
634		wil_err(wil, "init TX for CID %d MID %d vring %d failed\n",
635			cid, vif->mid, ringid);
636
637out:
638	return rc;
639}
640
641int wil_bcast_init(struct wil6210_vif *vif)
642{
643	struct wil6210_priv *wil = vif_to_wil(vif);
644	int ri = vif->bcast_ring, rc;
645
646	if (ri >= 0 && wil->ring_tx[ri].va)
647		return 0;
648
649	ri = wil_find_free_ring(wil);
650	if (ri < 0)
651		return ri;
652
653	vif->bcast_ring = ri;
654	rc = wil->txrx_ops.ring_init_bcast(vif, ri, 1 << bcast_ring_order);
655	if (rc)
656		vif->bcast_ring = -1;
657
658	return rc;
659}
660
661void wil_bcast_fini(struct wil6210_vif *vif)
662{
663	struct wil6210_priv *wil = vif_to_wil(vif);
664	int ri = vif->bcast_ring;
665
666	if (ri < 0)
667		return;
668
669	vif->bcast_ring = -1;
670	wil_ring_fini_tx(wil, ri);
671}
672
673void wil_bcast_fini_all(struct wil6210_priv *wil)
674{
675	int i;
676	struct wil6210_vif *vif;
677
678	for (i = 0; i < GET_MAX_VIFS(wil); i++) {
679		vif = wil->vifs[i];
680		if (vif)
681			wil_bcast_fini(vif);
682	}
683}
684
685int wil_priv_init(struct wil6210_priv *wil)
686{
687	uint i;
688
689	wil_dbg_misc(wil, "priv_init\n");
690
691	memset(wil->sta, 0, sizeof(wil->sta));
692	for (i = 0; i < WIL6210_MAX_CID; i++) {
693		spin_lock_init(&wil->sta[i].tid_rx_lock);
694		wil->sta[i].mid = U8_MAX;
695	}
696
697	for (i = 0; i < WIL6210_MAX_TX_RINGS; i++) {
698		spin_lock_init(&wil->ring_tx_data[i].lock);
699		wil->ring2cid_tid[i][0] = WIL6210_MAX_CID;
700	}
701
702	mutex_init(&wil->mutex);
703	mutex_init(&wil->vif_mutex);
704	mutex_init(&wil->wmi_mutex);
705	mutex_init(&wil->halp.lock);
706
707	init_completion(&wil->wmi_ready);
708	init_completion(&wil->wmi_call);
709	init_completion(&wil->halp.comp);
710
711	INIT_WORK(&wil->wmi_event_worker, wmi_event_worker);
712	INIT_WORK(&wil->fw_error_worker, wil_fw_error_worker);
713
714	INIT_LIST_HEAD(&wil->pending_wmi_ev);
715	spin_lock_init(&wil->wmi_ev_lock);
716	spin_lock_init(&wil->net_queue_lock);
717	spin_lock_init(&wil->eap_lock);
718
719	init_waitqueue_head(&wil->wq);
720	init_rwsem(&wil->mem_lock);
721
722	wil->wmi_wq = create_singlethread_workqueue(WIL_NAME "_wmi");
723	if (!wil->wmi_wq)
724		return -EAGAIN;
725
726	wil->wq_service = create_singlethread_workqueue(WIL_NAME "_service");
727	if (!wil->wq_service)
728		goto out_wmi_wq;
729
730	wil->last_fw_recovery = jiffies;
731	wil->tx_interframe_timeout = WIL6210_ITR_TX_INTERFRAME_TIMEOUT_DEFAULT;
732	wil->rx_interframe_timeout = WIL6210_ITR_RX_INTERFRAME_TIMEOUT_DEFAULT;
733	wil->tx_max_burst_duration = WIL6210_ITR_TX_MAX_BURST_DURATION_DEFAULT;
734	wil->rx_max_burst_duration = WIL6210_ITR_RX_MAX_BURST_DURATION_DEFAULT;
735
736	if (rx_ring_overflow_thrsh == WIL6210_RX_HIGH_TRSH_INIT)
737		rx_ring_overflow_thrsh = WIL6210_RX_HIGH_TRSH_DEFAULT;
738
739	wil->ps_profile =  WMI_PS_PROFILE_TYPE_DEFAULT;
740
741	wil->wakeup_trigger = WMI_WAKEUP_TRIGGER_UCAST |
742			      WMI_WAKEUP_TRIGGER_BCAST;
743	memset(&wil->suspend_stats, 0, sizeof(wil->suspend_stats));
744	wil->ring_idle_trsh = 16;
745
746	wil->reply_mid = U8_MAX;
747	wil->max_vifs = 1;
748	wil->max_assoc_sta = max_assoc_sta;
749
750	/* edma configuration can be updated via debugfs before allocation */
751	wil->num_rx_status_rings = WIL_DEFAULT_NUM_RX_STATUS_RINGS;
752	wil->tx_status_ring_order = WIL_TX_SRING_SIZE_ORDER_DEFAULT;
753
754	/* Rx status ring size should be bigger than the number of RX buffers
755	 * in order to prevent backpressure on the status ring, which may
756	 * cause HW freeze.
757	 */
758	wil->rx_status_ring_order = WIL_RX_SRING_SIZE_ORDER_DEFAULT;
759	/* Number of RX buffer IDs should be bigger than the RX descriptor
760	 * ring size as in HW reorder flow, the HW can consume additional
761	 * buffers before releasing the previous ones.
762	 */
763	wil->rx_buff_id_count = WIL_RX_BUFF_ARR_SIZE_DEFAULT;
764
765	wil->amsdu_en = true;
766
767	return 0;
768
769out_wmi_wq:
770	destroy_workqueue(wil->wmi_wq);
771
772	return -EAGAIN;
773}
774
775void wil6210_bus_request(struct wil6210_priv *wil, u32 kbps)
776{
777	if (wil->platform_ops.bus_request) {
778		wil->bus_request_kbps = kbps;
779		wil->platform_ops.bus_request(wil->platform_handle, kbps);
780	}
781}
782
783/**
784 * wil6210_disconnect - disconnect one connection
785 * @vif: virtual interface context
786 * @bssid: peer to disconnect, NULL to disconnect all
787 * @reason_code: Reason code for the Disassociation frame
788 *
789 * Disconnect and release associated resources. Issue WMI
790 * command(s) to trigger MAC disconnect. When command was issued
791 * successfully, call the wil6210_disconnect_complete function
792 * to handle the event synchronously
793 */
794void wil6210_disconnect(struct wil6210_vif *vif, const u8 *bssid,
795			u16 reason_code)
796{
797	struct wil6210_priv *wil = vif_to_wil(vif);
798
799	wil_dbg_misc(wil, "disconnecting\n");
800
801	del_timer_sync(&vif->connect_timer);
802	_wil6210_disconnect(vif, bssid, reason_code);
803}
804
805/**
806 * wil6210_disconnect_complete - handle disconnect event
807 * @vif: virtual interface context
808 * @bssid: peer to disconnect, NULL to disconnect all
809 * @reason_code: Reason code for the Disassociation frame
810 *
811 * Release associated resources and indicate upper layers the
812 * connection is terminated.
813 */
814void wil6210_disconnect_complete(struct wil6210_vif *vif, const u8 *bssid,
815				 u16 reason_code)
816{
817	struct wil6210_priv *wil = vif_to_wil(vif);
818
819	wil_dbg_misc(wil, "got disconnect\n");
820
821	del_timer_sync(&vif->connect_timer);
822	_wil6210_disconnect_complete(vif, bssid, reason_code);
823}
824
825void wil_priv_deinit(struct wil6210_priv *wil)
826{
827	wil_dbg_misc(wil, "priv_deinit\n");
828
829	wil_set_recovery_state(wil, fw_recovery_idle);
830	cancel_work_sync(&wil->fw_error_worker);
831	wmi_event_flush(wil);
832	destroy_workqueue(wil->wq_service);
833	destroy_workqueue(wil->wmi_wq);
834	kfree(wil->brd_info);
835}
836
837static void wil_shutdown_bl(struct wil6210_priv *wil)
838{
839	u32 val;
840
841	wil_s(wil, RGF_USER_BL +
842	      offsetof(struct bl_dedicated_registers_v1,
843		       bl_shutdown_handshake), BL_SHUTDOWN_HS_GRTD);
844
845	usleep_range(100, 150);
846
847	val = wil_r(wil, RGF_USER_BL +
848		    offsetof(struct bl_dedicated_registers_v1,
849			     bl_shutdown_handshake));
850	if (val & BL_SHUTDOWN_HS_RTD) {
851		wil_dbg_misc(wil, "BL is ready for halt\n");
852		return;
853	}
854
855	wil_err(wil, "BL did not report ready for halt\n");
856}
857
858/* this format is used by ARC embedded CPU for instruction memory */
859static inline u32 ARC_me_imm32(u32 d)
860{
861	return ((d & 0xffff0000) >> 16) | ((d & 0x0000ffff) << 16);
862}
863
864/* defines access to interrupt vectors for wil_freeze_bl */
865#define ARC_IRQ_VECTOR_OFFSET(N)	((N) * 8)
866/* ARC long jump instruction */
867#define ARC_JAL_INST			(0x20200f80)
868
869static void wil_freeze_bl(struct wil6210_priv *wil)
870{
871	u32 jal, upc, saved;
872	u32 ivt3 = ARC_IRQ_VECTOR_OFFSET(3);
873
874	jal = wil_r(wil, wil->iccm_base + ivt3);
875	if (jal != ARC_me_imm32(ARC_JAL_INST)) {
876		wil_dbg_misc(wil, "invalid IVT entry found, skipping\n");
877		return;
878	}
879
880	/* prevent the target from entering deep sleep
881	 * and disabling memory access
882	 */
883	saved = wil_r(wil, RGF_USER_USAGE_8);
884	wil_w(wil, RGF_USER_USAGE_8, saved | BIT_USER_PREVENT_DEEP_SLEEP);
885	usleep_range(20, 25); /* let the BL process the bit */
886
887	/* redirect to endless loop in the INT_L1 context and let it trap */
888	wil_w(wil, wil->iccm_base + ivt3 + 4, ARC_me_imm32(ivt3));
889	usleep_range(20, 25); /* let the BL get into the trap */
890
891	/* verify the BL is frozen */
892	upc = wil_r(wil, RGF_USER_CPU_PC);
893	if (upc < ivt3 || (upc > (ivt3 + 8)))
894		wil_dbg_misc(wil, "BL freeze failed, PC=0x%08X\n", upc);
895
896	wil_w(wil, RGF_USER_USAGE_8, saved);
897}
898
899static void wil_bl_prepare_halt(struct wil6210_priv *wil)
900{
901	u32 tmp, ver;
902
903	/* before halting device CPU driver must make sure BL is not accessing
904	 * host memory. This is done differently depending on BL version:
905	 * 1. For very old BL versions the procedure is skipped
906	 * (not supported).
907	 * 2. For old BL version we use a special trick to freeze the BL
908	 * 3. For new BL versions we shutdown the BL using handshake procedure.
909	 */
910	tmp = wil_r(wil, RGF_USER_BL +
911		    offsetof(struct bl_dedicated_registers_v0,
912			     boot_loader_struct_version));
913	if (!tmp) {
914		wil_dbg_misc(wil, "old BL, skipping halt preparation\n");
915		return;
916	}
917
918	tmp = wil_r(wil, RGF_USER_BL +
919		    offsetof(struct bl_dedicated_registers_v1,
920			     bl_shutdown_handshake));
921	ver = BL_SHUTDOWN_HS_PROT_VER(tmp);
922
923	if (ver > 0)
924		wil_shutdown_bl(wil);
925	else
926		wil_freeze_bl(wil);
927}
928
929static inline void wil_halt_cpu(struct wil6210_priv *wil)
930{
931	if (wil->hw_version >= HW_VER_TALYN_MB) {
932		wil_w(wil, RGF_USER_USER_CPU_0_TALYN_MB,
933		      BIT_USER_USER_CPU_MAN_RST);
934		wil_w(wil, RGF_USER_MAC_CPU_0_TALYN_MB,
935		      BIT_USER_MAC_CPU_MAN_RST);
936	} else {
937		wil_w(wil, RGF_USER_USER_CPU_0, BIT_USER_USER_CPU_MAN_RST);
938		wil_w(wil, RGF_USER_MAC_CPU_0,  BIT_USER_MAC_CPU_MAN_RST);
939	}
940}
941
942static inline void wil_release_cpu(struct wil6210_priv *wil)
943{
944	/* Start CPU */
945	if (wil->hw_version >= HW_VER_TALYN_MB)
946		wil_w(wil, RGF_USER_USER_CPU_0_TALYN_MB, 1);
947	else
948		wil_w(wil, RGF_USER_USER_CPU_0, 1);
949}
950
951static void wil_set_oob_mode(struct wil6210_priv *wil, u8 mode)
952{
953	wil_info(wil, "oob_mode to %d\n", mode);
954	switch (mode) {
955	case 0:
956		wil_c(wil, RGF_USER_USAGE_6, BIT_USER_OOB_MODE |
957		      BIT_USER_OOB_R2_MODE);
958		break;
959	case 1:
960		wil_c(wil, RGF_USER_USAGE_6, BIT_USER_OOB_R2_MODE);
961		wil_s(wil, RGF_USER_USAGE_6, BIT_USER_OOB_MODE);
962		break;
963	case 2:
964		wil_c(wil, RGF_USER_USAGE_6, BIT_USER_OOB_MODE);
965		wil_s(wil, RGF_USER_USAGE_6, BIT_USER_OOB_R2_MODE);
966		break;
967	default:
968		wil_err(wil, "invalid oob_mode: %d\n", mode);
969	}
970}
971
972static int wil_wait_device_ready(struct wil6210_priv *wil, int no_flash)
973{
974	int delay = 0;
975	u32 x, x1 = 0;
976
977	/* wait until device ready. */
978	if (no_flash) {
979		msleep(PMU_READY_DELAY_MS);
980
981		wil_dbg_misc(wil, "Reset completed\n");
982	} else {
983		do {
984			msleep(RST_DELAY);
985			x = wil_r(wil, RGF_USER_BL +
986				  offsetof(struct bl_dedicated_registers_v0,
987					   boot_loader_ready));
988			if (x1 != x) {
989				wil_dbg_misc(wil, "BL.ready 0x%08x => 0x%08x\n",
990					     x1, x);
991				x1 = x;
992			}
993			if (delay++ > RST_COUNT) {
994				wil_err(wil, "Reset not completed, bl.ready 0x%08x\n",
995					x);
996				return -ETIME;
997			}
998		} while (x != BL_READY);
999
1000		wil_dbg_misc(wil, "Reset completed in %d ms\n",
1001			     delay * RST_DELAY);
1002	}
1003
1004	return 0;
1005}
1006
1007static int wil_wait_device_ready_talyn_mb(struct wil6210_priv *wil)
1008{
1009	u32 otp_hw;
1010	u8 signature_status;
1011	bool otp_signature_err;
1012	bool hw_section_done;
1013	u32 otp_qc_secured;
1014	int delay = 0;
1015
1016	/* Wait for OTP signature test to complete */
1017	usleep_range(2000, 2200);
1018
1019	wil->boot_config = WIL_BOOT_ERR;
1020
1021	/* Poll until OTP signature status is valid.
1022	 * In vanilla and development modes, when signature test is complete
1023	 * HW sets BIT_OTP_SIGNATURE_ERR_TALYN_MB.
1024	 * In production mode BIT_OTP_SIGNATURE_ERR_TALYN_MB remains 0, poll
1025	 * for signature status change to 2 or 3.
1026	 */
1027	do {
1028		otp_hw = wil_r(wil, RGF_USER_OTP_HW_RD_MACHINE_1);
1029		signature_status = WIL_GET_BITS(otp_hw, 8, 9);
1030		otp_signature_err = otp_hw & BIT_OTP_SIGNATURE_ERR_TALYN_MB;
1031
1032		if (otp_signature_err &&
1033		    signature_status == WIL_SIG_STATUS_VANILLA) {
1034			wil->boot_config = WIL_BOOT_VANILLA;
1035			break;
1036		}
1037		if (otp_signature_err &&
1038		    signature_status == WIL_SIG_STATUS_DEVELOPMENT) {
1039			wil->boot_config = WIL_BOOT_DEVELOPMENT;
1040			break;
1041		}
1042		if (!otp_signature_err &&
1043		    signature_status == WIL_SIG_STATUS_PRODUCTION) {
1044			wil->boot_config = WIL_BOOT_PRODUCTION;
1045			break;
1046		}
1047		if  (!otp_signature_err &&
1048		     signature_status ==
1049		     WIL_SIG_STATUS_CORRUPTED_PRODUCTION) {
1050			/* Unrecognized OTP signature found. Possibly a
1051			 * corrupted production signature, access control
1052			 * is applied as in production mode, therefore
1053			 * do not fail
1054			 */
1055			wil->boot_config = WIL_BOOT_PRODUCTION;
1056			break;
1057		}
1058		if (delay++ > OTP_HW_COUNT)
1059			break;
1060
1061		usleep_range(OTP_HW_DELAY, OTP_HW_DELAY + 10);
1062	} while (!otp_signature_err && signature_status == 0);
1063
1064	if (wil->boot_config == WIL_BOOT_ERR) {
1065		wil_err(wil,
1066			"invalid boot config, signature_status %d otp_signature_err %d\n",
1067			signature_status, otp_signature_err);
1068		return -ETIME;
1069	}
1070
1071	wil_dbg_misc(wil,
1072		     "signature test done in %d usec, otp_hw 0x%x, boot_config %d\n",
1073		     delay * OTP_HW_DELAY, otp_hw, wil->boot_config);
1074
1075	if (wil->boot_config == WIL_BOOT_VANILLA)
1076		/* Assuming not SPI boot (currently not supported) */
1077		goto out;
1078
1079	hw_section_done = otp_hw & BIT_OTP_HW_SECTION_DONE_TALYN_MB;
1080	delay = 0;
1081
1082	while (!hw_section_done) {
1083		msleep(RST_DELAY);
1084
1085		otp_hw = wil_r(wil, RGF_USER_OTP_HW_RD_MACHINE_1);
1086		hw_section_done = otp_hw & BIT_OTP_HW_SECTION_DONE_TALYN_MB;
1087
1088		if (delay++ > RST_COUNT) {
1089			wil_err(wil, "TO waiting for hw_section_done\n");
1090			return -ETIME;
1091		}
1092	}
1093
1094	wil_dbg_misc(wil, "HW section done in %d ms\n", delay * RST_DELAY);
1095
1096	otp_qc_secured = wil_r(wil, RGF_OTP_QC_SECURED);
1097	wil->secured_boot = otp_qc_secured & BIT_BOOT_FROM_ROM ? 1 : 0;
1098	wil_dbg_misc(wil, "secured boot is %sabled\n",
1099		     wil->secured_boot ? "en" : "dis");
1100
1101out:
1102	wil_dbg_misc(wil, "Reset completed\n");
1103
1104	return 0;
1105}
1106
1107static int wil_target_reset(struct wil6210_priv *wil, int no_flash)
1108{
1109	u32 x;
1110	int rc;
1111
1112	wil_dbg_misc(wil, "Resetting \"%s\"...\n", wil->hw_name);
1113
1114	if (wil->hw_version < HW_VER_TALYN) {
1115		/* Clear MAC link up */
1116		wil_s(wil, RGF_HP_CTRL, BIT(15));
1117		wil_s(wil, RGF_USER_CLKS_CTL_SW_RST_MASK_0,
1118		      BIT_HPAL_PERST_FROM_PAD);
1119		wil_s(wil, RGF_USER_CLKS_CTL_SW_RST_MASK_0, BIT_CAR_PERST_RST);
1120	}
1121
1122	wil_halt_cpu(wil);
1123
1124	if (!no_flash) {
1125		/* clear all boot loader "ready" bits */
1126		wil_w(wil, RGF_USER_BL +
1127		      offsetof(struct bl_dedicated_registers_v0,
1128			       boot_loader_ready), 0);
1129		/* this should be safe to write even with old BLs */
1130		wil_w(wil, RGF_USER_BL +
1131		      offsetof(struct bl_dedicated_registers_v1,
1132			       bl_shutdown_handshake), 0);
1133	}
1134	/* Clear Fw Download notification */
1135	wil_c(wil, RGF_USER_USAGE_6, BIT(0));
1136
1137	wil_s(wil, RGF_CAF_OSC_CONTROL, BIT_CAF_OSC_XTAL_EN);
1138	/* XTAL stabilization should take about 3ms */
1139	usleep_range(5000, 7000);
1140	x = wil_r(wil, RGF_CAF_PLL_LOCK_STATUS);
1141	if (!(x & BIT_CAF_OSC_DIG_XTAL_STABLE)) {
1142		wil_err(wil, "Xtal stabilization timeout\n"
1143			"RGF_CAF_PLL_LOCK_STATUS = 0x%08x\n", x);
1144		return -ETIME;
1145	}
1146	/* switch 10k to XTAL*/
1147	wil_c(wil, RGF_USER_SPARROW_M_4, BIT_SPARROW_M_4_SEL_SLEEP_OR_REF);
1148	/* 40 MHz */
1149	wil_c(wil, RGF_USER_CLKS_CTL_0, BIT_USER_CLKS_CAR_AHB_SW_SEL);
1150
1151	wil_w(wil, RGF_USER_CLKS_CTL_EXT_SW_RST_VEC_0, 0x3ff81f);
1152	wil_w(wil, RGF_USER_CLKS_CTL_EXT_SW_RST_VEC_1, 0xf);
1153
1154	if (wil->hw_version >= HW_VER_TALYN_MB) {
1155		wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_2, 0x7e000000);
1156		wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_1, 0x0000003f);
1157		wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_3, 0xc00000f0);
1158		wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_0, 0xffe7fe00);
1159	} else {
1160		wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_2, 0xfe000000);
1161		wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_1, 0x0000003f);
1162		wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_3, 0x000000f0);
1163		wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_0, 0xffe7fe00);
1164	}
1165
1166	wil_w(wil, RGF_USER_CLKS_CTL_EXT_SW_RST_VEC_0, 0x0);
1167	wil_w(wil, RGF_USER_CLKS_CTL_EXT_SW_RST_VEC_1, 0x0);
1168
1169	wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_3, 0);
1170	wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_2, 0);
1171	wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_1, 0);
1172	wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_0, 0);
1173
1174	wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_3, 0x00000003);
1175	/* reset A2 PCIE AHB */
1176	wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_2, 0x00008000);
1177
1178	wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_0, 0);
1179
1180	if (wil->hw_version == HW_VER_TALYN_MB)
1181		rc = wil_wait_device_ready_talyn_mb(wil);
1182	else
1183		rc = wil_wait_device_ready(wil, no_flash);
1184	if (rc)
1185		return rc;
1186
1187	wil_c(wil, RGF_USER_CLKS_CTL_0, BIT_USER_CLKS_RST_PWGD);
1188
1189	/* enable fix for HW bug related to the SA/DA swap in AP Rx */
1190	wil_s(wil, RGF_DMA_OFUL_NID_0, BIT_DMA_OFUL_NID_0_RX_EXT_TR_EN |
1191	      BIT_DMA_OFUL_NID_0_RX_EXT_A3_SRC);
1192
1193	if (wil->hw_version < HW_VER_TALYN_MB && no_flash) {
1194		/* Reset OTP HW vectors to fit 40MHz */
1195		wil_w(wil, RGF_USER_XPM_IFC_RD_TIME1, 0x60001);
1196		wil_w(wil, RGF_USER_XPM_IFC_RD_TIME2, 0x20027);
1197		wil_w(wil, RGF_USER_XPM_IFC_RD_TIME3, 0x1);
1198		wil_w(wil, RGF_USER_XPM_IFC_RD_TIME4, 0x20027);
1199		wil_w(wil, RGF_USER_XPM_IFC_RD_TIME5, 0x30003);
1200		wil_w(wil, RGF_USER_XPM_IFC_RD_TIME6, 0x20002);
1201		wil_w(wil, RGF_USER_XPM_IFC_RD_TIME7, 0x60001);
1202		wil_w(wil, RGF_USER_XPM_IFC_RD_TIME8, 0x60001);
1203		wil_w(wil, RGF_USER_XPM_IFC_RD_TIME9, 0x60001);
1204		wil_w(wil, RGF_USER_XPM_IFC_RD_TIME10, 0x60001);
1205		wil_w(wil, RGF_USER_XPM_RD_DOUT_SAMPLE_TIME, 0x57);
1206	}
1207
1208	return 0;
1209}
1210
1211static void wil_collect_fw_info(struct wil6210_priv *wil)
1212{
1213	struct wiphy *wiphy = wil_to_wiphy(wil);
1214	u8 retry_short;
1215	int rc;
1216
1217	wil_refresh_fw_capabilities(wil);
1218
1219	rc = wmi_get_mgmt_retry(wil, &retry_short);
1220	if (!rc) {
1221		wiphy->retry_short = retry_short;
1222		wil_dbg_misc(wil, "FW retry_short: %d\n", retry_short);
1223	}
1224}
1225
1226void wil_refresh_fw_capabilities(struct wil6210_priv *wil)
1227{
1228	struct wiphy *wiphy = wil_to_wiphy(wil);
1229	int features;
1230
1231	wil->keep_radio_on_during_sleep =
1232		test_bit(WIL_PLATFORM_CAPA_RADIO_ON_IN_SUSPEND,
1233			 wil->platform_capa) &&
1234		test_bit(WMI_FW_CAPABILITY_D3_SUSPEND, wil->fw_capabilities);
1235
1236	wil_info(wil, "keep_radio_on_during_sleep (%d)\n",
1237		 wil->keep_radio_on_during_sleep);
1238
1239	if (test_bit(WMI_FW_CAPABILITY_RSSI_REPORTING, wil->fw_capabilities))
1240		wiphy->signal_type = CFG80211_SIGNAL_TYPE_MBM;
1241	else
1242		wiphy->signal_type = CFG80211_SIGNAL_TYPE_UNSPEC;
1243
1244	if (test_bit(WMI_FW_CAPABILITY_PNO, wil->fw_capabilities)) {
1245		wiphy->max_sched_scan_reqs = 1;
1246		wiphy->max_sched_scan_ssids = WMI_MAX_PNO_SSID_NUM;
1247		wiphy->max_match_sets = WMI_MAX_PNO_SSID_NUM;
1248		wiphy->max_sched_scan_ie_len = WMI_MAX_IE_LEN;
1249		wiphy->max_sched_scan_plans = WMI_MAX_PLANS_NUM;
1250	}
1251
1252	if (test_bit(WMI_FW_CAPABILITY_TX_REQ_EXT, wil->fw_capabilities))
1253		wiphy->flags |= WIPHY_FLAG_OFFCHAN_TX;
1254
1255	if (wil->platform_ops.set_features) {
1256		features = (test_bit(WMI_FW_CAPABILITY_REF_CLOCK_CONTROL,
1257				     wil->fw_capabilities) &&
1258			    test_bit(WIL_PLATFORM_CAPA_EXT_CLK,
1259				     wil->platform_capa)) ?
1260			BIT(WIL_PLATFORM_FEATURE_FW_EXT_CLK_CONTROL) : 0;
1261
1262		if (wil->n_msi == 3)
1263			features |= BIT(WIL_PLATFORM_FEATURE_TRIPLE_MSI);
1264
1265		wil->platform_ops.set_features(wil->platform_handle, features);
1266	}
1267
1268	if (test_bit(WMI_FW_CAPABILITY_BACK_WIN_SIZE_64,
1269		     wil->fw_capabilities)) {
1270		wil->max_agg_wsize = WIL_MAX_AGG_WSIZE_64;
1271		wil->max_ampdu_size = WIL_MAX_AMPDU_SIZE_128;
1272	} else {
1273		wil->max_agg_wsize = WIL_MAX_AGG_WSIZE;
1274		wil->max_ampdu_size = WIL_MAX_AMPDU_SIZE;
1275	}
1276
1277	update_supported_bands(wil);
1278}
1279
1280void wil_mbox_ring_le2cpus(struct wil6210_mbox_ring *r)
1281{
1282	le32_to_cpus(&r->base);
1283	le16_to_cpus(&r->entry_size);
1284	le16_to_cpus(&r->size);
1285	le32_to_cpus(&r->tail);
1286	le32_to_cpus(&r->head);
1287}
1288
1289/* construct actual board file name to use */
1290void wil_get_board_file(struct wil6210_priv *wil, char *buf, size_t len)
1291{
1292	const char *board_file;
1293	const char *wil_talyn_fw_name = ftm_mode ? WIL_FW_NAME_FTM_TALYN :
1294			      WIL_FW_NAME_TALYN;
1295
1296	if (wil->board_file) {
1297		board_file = wil->board_file;
1298	} else {
1299		/* If specific FW file is used for Talyn,
1300		 * use specific board file
1301		 */
1302		if (strcmp(wil->wil_fw_name, wil_talyn_fw_name) == 0)
1303			board_file = WIL_BRD_NAME_TALYN;
1304		else
1305			board_file = WIL_BOARD_FILE_NAME;
1306	}
1307
1308	strscpy(buf, board_file, len);
1309}
1310
1311static int wil_get_bl_info(struct wil6210_priv *wil)
1312{
1313	struct net_device *ndev = wil->main_ndev;
1314	struct wiphy *wiphy = wil_to_wiphy(wil);
1315	union {
1316		struct bl_dedicated_registers_v0 bl0;
1317		struct bl_dedicated_registers_v1 bl1;
1318	} bl;
1319	u32 bl_ver;
1320	u8 *mac;
1321	u16 rf_status;
1322
1323	wil_memcpy_fromio_32(&bl, wil->csr + HOSTADDR(RGF_USER_BL),
1324			     sizeof(bl));
1325	bl_ver = le32_to_cpu(bl.bl0.boot_loader_struct_version);
1326	mac = bl.bl0.mac_address;
1327
1328	if (bl_ver == 0) {
1329		le32_to_cpus(&bl.bl0.rf_type);
1330		le32_to_cpus(&bl.bl0.baseband_type);
1331		rf_status = 0; /* actually, unknown */
1332		wil_info(wil,
1333			 "Boot Loader struct v%d: MAC = %pM RF = 0x%08x bband = 0x%08x\n",
1334			 bl_ver, mac,
1335			 bl.bl0.rf_type, bl.bl0.baseband_type);
1336		wil_info(wil, "Boot Loader build unknown for struct v0\n");
1337	} else {
1338		le16_to_cpus(&bl.bl1.rf_type);
1339		rf_status = le16_to_cpu(bl.bl1.rf_status);
1340		le32_to_cpus(&bl.bl1.baseband_type);
1341		le16_to_cpus(&bl.bl1.bl_version_subminor);
1342		le16_to_cpus(&bl.bl1.bl_version_build);
1343		wil_info(wil,
1344			 "Boot Loader struct v%d: MAC = %pM RF = 0x%04x (status 0x%04x) bband = 0x%08x\n",
1345			 bl_ver, mac,
1346			 bl.bl1.rf_type, rf_status,
1347			 bl.bl1.baseband_type);
1348		wil_info(wil, "Boot Loader build %d.%d.%d.%d\n",
1349			 bl.bl1.bl_version_major, bl.bl1.bl_version_minor,
1350			 bl.bl1.bl_version_subminor, bl.bl1.bl_version_build);
1351	}
1352
1353	if (!is_valid_ether_addr(mac)) {
1354		wil_err(wil, "BL: Invalid MAC %pM\n", mac);
1355		return -EINVAL;
1356	}
1357
1358	ether_addr_copy(ndev->perm_addr, mac);
1359	ether_addr_copy(wiphy->perm_addr, mac);
1360	if (!is_valid_ether_addr(ndev->dev_addr))
1361		eth_hw_addr_set(ndev, mac);
1362
1363	if (rf_status) {/* bad RF cable? */
1364		wil_err(wil, "RF communication error 0x%04x",
1365			rf_status);
1366		return -EAGAIN;
1367	}
1368
1369	return 0;
1370}
1371
1372static void wil_bl_crash_info(struct wil6210_priv *wil, bool is_err)
1373{
1374	u32 bl_assert_code, bl_assert_blink, bl_magic_number;
1375	u32 bl_ver = wil_r(wil, RGF_USER_BL +
1376			   offsetof(struct bl_dedicated_registers_v0,
1377				    boot_loader_struct_version));
1378
1379	if (bl_ver < 2)
1380		return;
1381
1382	bl_assert_code = wil_r(wil, RGF_USER_BL +
1383			       offsetof(struct bl_dedicated_registers_v1,
1384					bl_assert_code));
1385	bl_assert_blink = wil_r(wil, RGF_USER_BL +
1386				offsetof(struct bl_dedicated_registers_v1,
1387					 bl_assert_blink));
1388	bl_magic_number = wil_r(wil, RGF_USER_BL +
1389				offsetof(struct bl_dedicated_registers_v1,
1390					 bl_magic_number));
1391
1392	if (is_err) {
1393		wil_err(wil,
1394			"BL assert code 0x%08x blink 0x%08x magic 0x%08x\n",
1395			bl_assert_code, bl_assert_blink, bl_magic_number);
1396	} else {
1397		wil_dbg_misc(wil,
1398			     "BL assert code 0x%08x blink 0x%08x magic 0x%08x\n",
1399			     bl_assert_code, bl_assert_blink, bl_magic_number);
1400	}
1401}
1402
1403static int wil_get_otp_info(struct wil6210_priv *wil)
1404{
1405	struct net_device *ndev = wil->main_ndev;
1406	struct wiphy *wiphy = wil_to_wiphy(wil);
1407	u8 mac[8];
1408	int mac_addr;
1409
1410	/* OEM MAC has precedence */
1411	mac_addr = RGF_OTP_OEM_MAC;
1412	wil_memcpy_fromio_32(mac, wil->csr + HOSTADDR(mac_addr), sizeof(mac));
1413
1414	if (is_valid_ether_addr(mac)) {
1415		wil_info(wil, "using OEM MAC %pM\n", mac);
1416	} else {
1417		if (wil->hw_version >= HW_VER_TALYN_MB)
1418			mac_addr = RGF_OTP_MAC_TALYN_MB;
1419		else
1420			mac_addr = RGF_OTP_MAC;
1421
1422		wil_memcpy_fromio_32(mac, wil->csr + HOSTADDR(mac_addr),
1423				     sizeof(mac));
1424	}
1425
1426	if (!is_valid_ether_addr(mac)) {
1427		wil_err(wil, "Invalid MAC %pM\n", mac);
1428		return -EINVAL;
1429	}
1430
1431	ether_addr_copy(ndev->perm_addr, mac);
1432	ether_addr_copy(wiphy->perm_addr, mac);
1433	if (!is_valid_ether_addr(ndev->dev_addr))
1434		eth_hw_addr_set(ndev, mac);
1435
1436	return 0;
1437}
1438
1439static int wil_wait_for_fw_ready(struct wil6210_priv *wil)
1440{
1441	ulong to = msecs_to_jiffies(2000);
1442	ulong left = wait_for_completion_timeout(&wil->wmi_ready, to);
1443
1444	if (0 == left) {
1445		wil_err(wil, "Firmware not ready\n");
1446		return -ETIME;
1447	} else {
1448		wil_info(wil, "FW ready after %d ms. HW version 0x%08x\n",
1449			 jiffies_to_msecs(to-left), wil->hw_version);
1450	}
1451	return 0;
1452}
1453
1454void wil_abort_scan(struct wil6210_vif *vif, bool sync)
1455{
1456	struct wil6210_priv *wil = vif_to_wil(vif);
1457	int rc;
1458	struct cfg80211_scan_info info = {
1459		.aborted = true,
1460	};
1461
1462	lockdep_assert_held(&wil->vif_mutex);
1463
1464	if (!vif->scan_request)
1465		return;
1466
1467	wil_dbg_misc(wil, "Abort scan_request 0x%p\n", vif->scan_request);
1468	del_timer_sync(&vif->scan_timer);
1469	mutex_unlock(&wil->vif_mutex);
1470	rc = wmi_abort_scan(vif);
1471	if (!rc && sync)
1472		wait_event_interruptible_timeout(wil->wq, !vif->scan_request,
1473						 msecs_to_jiffies(
1474						 WAIT_FOR_SCAN_ABORT_MS));
1475
1476	mutex_lock(&wil->vif_mutex);
1477	if (vif->scan_request) {
1478		cfg80211_scan_done(vif->scan_request, &info);
1479		vif->scan_request = NULL;
1480	}
1481}
1482
1483void wil_abort_scan_all_vifs(struct wil6210_priv *wil, bool sync)
1484{
1485	int i;
1486
1487	lockdep_assert_held(&wil->vif_mutex);
1488
1489	for (i = 0; i < GET_MAX_VIFS(wil); i++) {
1490		struct wil6210_vif *vif = wil->vifs[i];
1491
1492		if (vif)
1493			wil_abort_scan(vif, sync);
1494	}
1495}
1496
1497int wil_ps_update(struct wil6210_priv *wil, enum wmi_ps_profile_type ps_profile)
1498{
1499	int rc;
1500
1501	if (!test_bit(WMI_FW_CAPABILITY_PS_CONFIG, wil->fw_capabilities)) {
1502		wil_err(wil, "set_power_mgmt not supported\n");
1503		return -EOPNOTSUPP;
1504	}
1505
1506	rc  = wmi_ps_dev_profile_cfg(wil, ps_profile);
1507	if (rc)
1508		wil_err(wil, "wmi_ps_dev_profile_cfg failed (%d)\n", rc);
1509	else
1510		wil->ps_profile = ps_profile;
1511
1512	return rc;
1513}
1514
1515static void wil_pre_fw_config(struct wil6210_priv *wil)
1516{
1517	wil_clear_fw_log_addr(wil);
1518	/* Mark FW as loaded from host */
1519	wil_s(wil, RGF_USER_USAGE_6, 1);
1520
1521	/* clear any interrupts which on-card-firmware
1522	 * may have set
1523	 */
1524	wil6210_clear_irq(wil);
1525	/* CAF_ICR - clear and mask */
1526	/* it is W1C, clear by writing back same value */
1527	if (wil->hw_version < HW_VER_TALYN_MB) {
1528		wil_s(wil, RGF_CAF_ICR + offsetof(struct RGF_ICR, ICR), 0);
1529		wil_w(wil, RGF_CAF_ICR + offsetof(struct RGF_ICR, IMV), ~0);
1530	}
1531	/* clear PAL_UNIT_ICR (potential D0->D3 leftover)
1532	 * In Talyn-MB host cannot access this register due to
1533	 * access control, hence PAL_UNIT_ICR is cleared by the FW
1534	 */
1535	if (wil->hw_version < HW_VER_TALYN_MB)
1536		wil_s(wil, RGF_PAL_UNIT_ICR + offsetof(struct RGF_ICR, ICR),
1537		      0);
1538
1539	if (wil->fw_calib_result > 0) {
1540		__le32 val = cpu_to_le32(wil->fw_calib_result |
1541						(CALIB_RESULT_SIGNATURE << 8));
1542		wil_w(wil, RGF_USER_FW_CALIB_RESULT, (u32 __force)val);
1543	}
1544}
1545
1546static int wil_restore_vifs(struct wil6210_priv *wil)
1547{
1548	struct wil6210_vif *vif;
1549	struct net_device *ndev;
1550	struct wireless_dev *wdev;
1551	int i, rc;
1552
1553	for (i = 0; i < GET_MAX_VIFS(wil); i++) {
1554		vif = wil->vifs[i];
1555		if (!vif)
1556			continue;
1557		vif->ap_isolate = 0;
1558		if (vif->mid) {
1559			ndev = vif_to_ndev(vif);
1560			wdev = vif_to_wdev(vif);
1561			rc = wmi_port_allocate(wil, vif->mid, ndev->dev_addr,
1562					       wdev->iftype);
1563			if (rc) {
1564				wil_err(wil, "fail to restore VIF %d type %d, rc %d\n",
1565					i, wdev->iftype, rc);
1566				return rc;
1567			}
1568		}
1569	}
1570
1571	return 0;
1572}
1573
1574/*
1575 * Clear FW and ucode log start addr to indicate FW log is not ready. The host
1576 * driver clears the addresses before FW starts and FW initializes the address
1577 * when it is ready to send logs.
1578 */
1579void wil_clear_fw_log_addr(struct wil6210_priv *wil)
1580{
1581	/* FW log addr */
1582	wil_w(wil, RGF_USER_USAGE_1, 0);
1583	/* ucode log addr */
1584	wil_w(wil, RGF_USER_USAGE_2, 0);
1585	wil_dbg_misc(wil, "Cleared FW and ucode log address");
1586}
1587
1588/*
1589 * We reset all the structures, and we reset the UMAC.
1590 * After calling this routine, you're expected to reload
1591 * the firmware.
1592 */
1593int wil_reset(struct wil6210_priv *wil, bool load_fw)
1594{
1595	int rc, i;
1596	unsigned long status_flags = BIT(wil_status_resetting);
1597	int no_flash;
1598	struct wil6210_vif *vif;
1599
1600	wil_dbg_misc(wil, "reset\n");
1601
1602	WARN_ON(!mutex_is_locked(&wil->mutex));
1603	WARN_ON(test_bit(wil_status_napi_en, wil->status));
1604
1605	if (debug_fw) {
1606		static const u8 mac[ETH_ALEN] = {
1607			0x00, 0xde, 0xad, 0x12, 0x34, 0x56,
1608		};
1609		struct net_device *ndev = wil->main_ndev;
1610
1611		ether_addr_copy(ndev->perm_addr, mac);
1612		eth_hw_addr_set(ndev, ndev->perm_addr);
1613		return 0;
1614	}
1615
1616	if (wil->hw_version == HW_VER_UNKNOWN)
1617		return -ENODEV;
1618
1619	if (test_bit(WIL_PLATFORM_CAPA_T_PWR_ON_0, wil->platform_capa) &&
1620	    wil->hw_version < HW_VER_TALYN_MB) {
1621		wil_dbg_misc(wil, "Notify FW to set T_POWER_ON=0\n");
1622		wil_s(wil, RGF_USER_USAGE_8, BIT_USER_SUPPORT_T_POWER_ON_0);
1623	}
1624
1625	if (test_bit(WIL_PLATFORM_CAPA_EXT_CLK, wil->platform_capa)) {
1626		wil_dbg_misc(wil, "Notify FW on ext clock configuration\n");
1627		wil_s(wil, RGF_USER_USAGE_8, BIT_USER_EXT_CLK);
1628	}
1629
1630	if (wil->platform_ops.notify) {
1631		rc = wil->platform_ops.notify(wil->platform_handle,
1632					      WIL_PLATFORM_EVT_PRE_RESET);
1633		if (rc)
1634			wil_err(wil, "PRE_RESET platform notify failed, rc %d\n",
1635				rc);
1636	}
1637
1638	set_bit(wil_status_resetting, wil->status);
1639	mutex_lock(&wil->vif_mutex);
1640	wil_abort_scan_all_vifs(wil, false);
1641	mutex_unlock(&wil->vif_mutex);
1642
1643	for (i = 0; i < GET_MAX_VIFS(wil); i++) {
1644		vif = wil->vifs[i];
1645		if (vif) {
1646			cancel_work_sync(&vif->disconnect_worker);
1647			wil6210_disconnect(vif, NULL,
1648					   WLAN_REASON_DEAUTH_LEAVING);
1649			vif->ptk_rekey_state = WIL_REKEY_IDLE;
1650		}
1651	}
1652	wil_bcast_fini_all(wil);
1653
1654	/* Disable device led before reset*/
1655	wmi_led_cfg(wil, false);
1656
1657	down_write(&wil->mem_lock);
1658
1659	/* prevent NAPI from being scheduled and prevent wmi commands */
1660	mutex_lock(&wil->wmi_mutex);
1661	if (test_bit(wil_status_suspending, wil->status))
1662		status_flags |= BIT(wil_status_suspending);
1663	bitmap_and(wil->status, wil->status, &status_flags,
1664		   wil_status_last);
1665	wil_dbg_misc(wil, "wil->status (0x%lx)\n", *wil->status);
1666	mutex_unlock(&wil->wmi_mutex);
1667
1668	wil_mask_irq(wil);
1669
1670	wmi_event_flush(wil);
1671
1672	flush_workqueue(wil->wq_service);
1673	flush_workqueue(wil->wmi_wq);
1674
1675	no_flash = test_bit(hw_capa_no_flash, wil->hw_capa);
1676	if (!no_flash)
1677		wil_bl_crash_info(wil, false);
1678	wil_disable_irq(wil);
1679	rc = wil_target_reset(wil, no_flash);
1680	wil6210_clear_irq(wil);
1681	wil_enable_irq(wil);
1682	wil->txrx_ops.rx_fini(wil);
1683	wil->txrx_ops.tx_fini(wil);
1684	if (rc) {
1685		if (!no_flash)
1686			wil_bl_crash_info(wil, true);
1687		goto out;
1688	}
1689
1690	if (no_flash) {
1691		rc = wil_get_otp_info(wil);
1692	} else {
1693		rc = wil_get_bl_info(wil);
1694		if (rc == -EAGAIN && !load_fw)
1695			/* ignore RF error if not going up */
1696			rc = 0;
1697	}
1698	if (rc)
1699		goto out;
1700
1701	wil_set_oob_mode(wil, oob_mode);
1702	if (load_fw) {
1703		char board_file[WIL_BOARD_FILE_MAX_NAMELEN];
1704
1705		if  (wil->secured_boot) {
1706			wil_err(wil, "secured boot is not supported\n");
1707			up_write(&wil->mem_lock);
1708			return -ENOTSUPP;
1709		}
1710
1711		board_file[0] = '\0';
1712		wil_get_board_file(wil, board_file, sizeof(board_file));
1713		wil_info(wil, "Use firmware <%s> + board <%s>\n",
1714			 wil->wil_fw_name, board_file);
1715
1716		if (!no_flash)
1717			wil_bl_prepare_halt(wil);
1718
1719		wil_halt_cpu(wil);
1720		memset(wil->fw_version, 0, sizeof(wil->fw_version));
1721		/* Loading f/w from the file */
1722		rc = wil_request_firmware(wil, wil->wil_fw_name, true);
1723		if (rc)
1724			goto out;
1725		if (wil->num_of_brd_entries)
1726			rc = wil_request_board(wil, board_file);
1727		else
1728			rc = wil_request_firmware(wil, board_file, true);
1729		if (rc)
1730			goto out;
1731
1732		wil_pre_fw_config(wil);
1733		wil_release_cpu(wil);
1734	}
1735
1736	/* init after reset */
1737	reinit_completion(&wil->wmi_ready);
1738	reinit_completion(&wil->wmi_call);
1739	reinit_completion(&wil->halp.comp);
1740
1741	clear_bit(wil_status_resetting, wil->status);
1742
1743	up_write(&wil->mem_lock);
1744
1745	if (load_fw) {
1746		wil_unmask_irq(wil);
1747
1748		/* we just started MAC, wait for FW ready */
1749		rc = wil_wait_for_fw_ready(wil);
1750		if (rc)
1751			return rc;
1752
1753		/* check FW is responsive */
1754		rc = wmi_echo(wil);
1755		if (rc) {
1756			wil_err(wil, "wmi_echo failed, rc %d\n", rc);
1757			return rc;
1758		}
1759
1760		wil->txrx_ops.configure_interrupt_moderation(wil);
1761
1762		/* Enable OFU rdy valid bug fix, to prevent hang in oful34_rx
1763		 * while there is back-pressure from Host during RX
1764		 */
1765		if (wil->hw_version >= HW_VER_TALYN_MB)
1766			wil_s(wil, RGF_DMA_MISC_CTL,
1767			      BIT_OFUL34_RDY_VALID_BUG_FIX_EN);
1768
1769		rc = wil_restore_vifs(wil);
1770		if (rc) {
1771			wil_err(wil, "failed to restore vifs, rc %d\n", rc);
1772			return rc;
1773		}
1774
1775		wil_collect_fw_info(wil);
1776
1777		if (wil->ps_profile != WMI_PS_PROFILE_TYPE_DEFAULT)
1778			wil_ps_update(wil, wil->ps_profile);
1779
1780		if (wil->platform_ops.notify) {
1781			rc = wil->platform_ops.notify(wil->platform_handle,
1782						      WIL_PLATFORM_EVT_FW_RDY);
1783			if (rc) {
1784				wil_err(wil, "FW_RDY notify failed, rc %d\n",
1785					rc);
1786				rc = 0;
1787			}
1788		}
1789	}
1790
1791	return rc;
1792
1793out:
1794	up_write(&wil->mem_lock);
1795	clear_bit(wil_status_resetting, wil->status);
1796	return rc;
1797}
1798
1799void wil_fw_error_recovery(struct wil6210_priv *wil)
1800{
1801	wil_dbg_misc(wil, "starting fw error recovery\n");
1802
1803	if (test_bit(wil_status_resetting, wil->status)) {
1804		wil_info(wil, "Reset already in progress\n");
1805		return;
1806	}
1807
1808	wil->recovery_state = fw_recovery_pending;
1809	schedule_work(&wil->fw_error_worker);
1810}
1811
1812int __wil_up(struct wil6210_priv *wil)
1813{
1814	struct net_device *ndev = wil->main_ndev;
1815	struct wireless_dev *wdev = ndev->ieee80211_ptr;
1816	int rc;
1817
1818	WARN_ON(!mutex_is_locked(&wil->mutex));
1819
1820	rc = wil_reset(wil, true);
1821	if (rc)
1822		return rc;
1823
1824	/* Rx RING. After MAC and beacon */
1825	if (rx_ring_order == 0)
1826		rx_ring_order = wil->hw_version < HW_VER_TALYN_MB ?
1827			WIL_RX_RING_SIZE_ORDER_DEFAULT :
1828			WIL_RX_RING_SIZE_ORDER_TALYN_DEFAULT;
1829
1830	rc = wil->txrx_ops.rx_init(wil, rx_ring_order);
1831	if (rc)
1832		return rc;
1833
1834	rc = wil->txrx_ops.tx_init(wil);
1835	if (rc)
1836		return rc;
1837
1838	switch (wdev->iftype) {
1839	case NL80211_IFTYPE_STATION:
1840		wil_dbg_misc(wil, "type: STATION\n");
1841		ndev->type = ARPHRD_ETHER;
1842		break;
1843	case NL80211_IFTYPE_AP:
1844		wil_dbg_misc(wil, "type: AP\n");
1845		ndev->type = ARPHRD_ETHER;
1846		break;
1847	case NL80211_IFTYPE_P2P_CLIENT:
1848		wil_dbg_misc(wil, "type: P2P_CLIENT\n");
1849		ndev->type = ARPHRD_ETHER;
1850		break;
1851	case NL80211_IFTYPE_P2P_GO:
1852		wil_dbg_misc(wil, "type: P2P_GO\n");
1853		ndev->type = ARPHRD_ETHER;
1854		break;
1855	case NL80211_IFTYPE_MONITOR:
1856		wil_dbg_misc(wil, "type: Monitor\n");
1857		ndev->type = ARPHRD_IEEE80211_RADIOTAP;
1858		/* ARPHRD_IEEE80211 or ARPHRD_IEEE80211_RADIOTAP ? */
1859		break;
1860	default:
1861		return -EOPNOTSUPP;
1862	}
1863
1864	/* MAC address - pre-requisite for other commands */
1865	wmi_set_mac_address(wil, ndev->dev_addr);
1866
1867	wil_dbg_misc(wil, "NAPI enable\n");
1868	napi_enable(&wil->napi_rx);
1869	napi_enable(&wil->napi_tx);
1870	set_bit(wil_status_napi_en, wil->status);
1871
1872	wil6210_bus_request(wil, WIL_DEFAULT_BUS_REQUEST_KBPS);
1873
1874	return 0;
1875}
1876
1877int wil_up(struct wil6210_priv *wil)
1878{
1879	int rc;
1880
1881	wil_dbg_misc(wil, "up\n");
1882
1883	mutex_lock(&wil->mutex);
1884	rc = __wil_up(wil);
1885	mutex_unlock(&wil->mutex);
1886
1887	return rc;
1888}
1889
1890int __wil_down(struct wil6210_priv *wil)
1891{
1892	int rc;
1893	WARN_ON(!mutex_is_locked(&wil->mutex));
1894
1895	set_bit(wil_status_resetting, wil->status);
1896
1897	wil6210_bus_request(wil, 0);
1898
1899	wil_disable_irq(wil);
1900	if (test_and_clear_bit(wil_status_napi_en, wil->status)) {
1901		napi_disable(&wil->napi_rx);
1902		napi_disable(&wil->napi_tx);
1903		wil_dbg_misc(wil, "NAPI disable\n");
1904	}
1905	wil_enable_irq(wil);
1906
1907	mutex_lock(&wil->vif_mutex);
1908	wil_p2p_stop_radio_operations(wil);
1909	wil_abort_scan_all_vifs(wil, false);
1910	mutex_unlock(&wil->vif_mutex);
1911
1912	rc = wil_reset(wil, false);
1913
1914	return rc;
1915}
1916
1917int wil_down(struct wil6210_priv *wil)
1918{
1919	int rc;
1920
1921	wil_dbg_misc(wil, "down\n");
1922
1923	wil_set_recovery_state(wil, fw_recovery_idle);
1924	mutex_lock(&wil->mutex);
1925	rc = __wil_down(wil);
1926	mutex_unlock(&wil->mutex);
1927
1928	return rc;
1929}
1930
1931int wil_find_cid(struct wil6210_priv *wil, u8 mid, const u8 *mac)
1932{
1933	int i;
1934	int rc = -ENOENT;
1935
1936	for (i = 0; i < wil->max_assoc_sta; i++) {
1937		if (wil->sta[i].mid == mid &&
1938		    wil->sta[i].status != wil_sta_unused &&
1939		    ether_addr_equal(wil->sta[i].addr, mac)) {
1940			rc = i;
1941			break;
1942		}
1943	}
1944
1945	return rc;
1946}
1947
1948void wil_halp_vote(struct wil6210_priv *wil)
1949{
1950	unsigned long rc;
1951	unsigned long to_jiffies = msecs_to_jiffies(WAIT_FOR_HALP_VOTE_MS);
1952
1953	if (wil->hw_version >= HW_VER_TALYN_MB)
1954		return;
1955
1956	mutex_lock(&wil->halp.lock);
1957
1958	wil_dbg_irq(wil, "halp_vote: start, HALP ref_cnt (%d)\n",
1959		    wil->halp.ref_cnt);
1960
1961	if (++wil->halp.ref_cnt == 1) {
1962		reinit_completion(&wil->halp.comp);
1963		/* mark to IRQ context to handle HALP ICR */
1964		wil->halp.handle_icr = true;
1965		wil6210_set_halp(wil);
1966		rc = wait_for_completion_timeout(&wil->halp.comp, to_jiffies);
1967		if (!rc) {
1968			wil_err(wil, "HALP vote timed out\n");
1969			/* Mask HALP as done in case the interrupt is raised */
1970			wil->halp.handle_icr = false;
1971			wil6210_mask_halp(wil);
1972		} else {
1973			wil_dbg_irq(wil,
1974				    "halp_vote: HALP vote completed after %d ms\n",
1975				    jiffies_to_msecs(to_jiffies - rc));
1976		}
1977	}
1978
1979	wil_dbg_irq(wil, "halp_vote: end, HALP ref_cnt (%d)\n",
1980		    wil->halp.ref_cnt);
1981
1982	mutex_unlock(&wil->halp.lock);
1983}
1984
1985void wil_halp_unvote(struct wil6210_priv *wil)
1986{
1987	if (wil->hw_version >= HW_VER_TALYN_MB)
1988		return;
1989
1990	WARN_ON(wil->halp.ref_cnt == 0);
1991
1992	mutex_lock(&wil->halp.lock);
1993
1994	wil_dbg_irq(wil, "halp_unvote: start, HALP ref_cnt (%d)\n",
1995		    wil->halp.ref_cnt);
1996
1997	if (--wil->halp.ref_cnt == 0) {
1998		wil6210_clear_halp(wil);
1999		wil_dbg_irq(wil, "HALP unvote\n");
2000	}
2001
2002	wil_dbg_irq(wil, "halp_unvote:end, HALP ref_cnt (%d)\n",
2003		    wil->halp.ref_cnt);
2004
2005	mutex_unlock(&wil->halp.lock);
2006}
2007
2008void wil_init_txrx_ops(struct wil6210_priv *wil)
2009{
2010	if (wil->use_enhanced_dma_hw)
2011		wil_init_txrx_ops_edma(wil);
2012	else
2013		wil_init_txrx_ops_legacy_dma(wil);
2014}
2015