1/*
2 * Copyright (c) 2004-2007 Reyk Floeter <reyk@openbsd.org>
3 * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com>
4 * Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com>
5 * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org>
6 *
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 *
19 */
20
21/***********************\
22* PHY related functions *
23\***********************/
24
25#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
26
27#include <linux/delay.h>
28#include <linux/slab.h>
29#include <linux/sort.h>
30#include <asm/unaligned.h>
31
32#include "ath5k.h"
33#include "reg.h"
34#include "rfbuffer.h"
35#include "rfgain.h"
36#include "../regd.h"
37
38
39/**
40 * DOC: PHY related functions
41 *
42 * Here we handle the low-level functions related to baseband
43 * and analog frontend (RF) parts. This is by far the most complex
44 * part of the hw code so make sure you know what you are doing.
45 *
46 * Here is a list of what this is all about:
47 *
48 * - Channel setting/switching
49 *
50 * - Automatic Gain Control (AGC) calibration
51 *
52 * - Noise Floor calibration
53 *
54 * - I/Q imbalance calibration (QAM correction)
55 *
56 * - Calibration due to thermal changes (gain_F)
57 *
58 * - Spur noise mitigation
59 *
60 * - RF/PHY initialization for the various operating modes and bwmodes
61 *
62 * - Antenna control
63 *
64 * - TX power control per channel/rate/packet type
65 *
66 * Also have in mind we never got documentation for most of these
67 * functions, what we have comes mostly from Atheros's code, reverse
68 * engineering and patent docs/presentations etc.
69 */
70
71
72/******************\
73* Helper functions *
74\******************/
75
76/**
77 * ath5k_hw_radio_revision() - Get the PHY Chip revision
78 * @ah: The &struct ath5k_hw
79 * @band: One of enum nl80211_band
80 *
81 * Returns the revision number of a 2GHz, 5GHz or single chip
82 * radio.
83 */
84u16
85ath5k_hw_radio_revision(struct ath5k_hw *ah, enum nl80211_band band)
86{
87	unsigned int i;
88	u32 srev;
89	u16 ret;
90
91	/*
92	 * Set the radio chip access register
93	 */
94	switch (band) {
95	case NL80211_BAND_2GHZ:
96		ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_2GHZ, AR5K_PHY(0));
97		break;
98	case NL80211_BAND_5GHZ:
99		ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
100		break;
101	default:
102		return 0;
103	}
104
105	usleep_range(2000, 2500);
106
107	/* ...wait until PHY is ready and read the selected radio revision */
108	ath5k_hw_reg_write(ah, 0x00001c16, AR5K_PHY(0x34));
109
110	for (i = 0; i < 8; i++)
111		ath5k_hw_reg_write(ah, 0x00010000, AR5K_PHY(0x20));
112
113	if (ah->ah_version == AR5K_AR5210) {
114		srev = (ath5k_hw_reg_read(ah, AR5K_PHY(256)) >> 28) & 0xf;
115		ret = (u16)ath5k_hw_bitswap(srev, 4) + 1;
116	} else {
117		srev = (ath5k_hw_reg_read(ah, AR5K_PHY(0x100)) >> 24) & 0xff;
118		ret = (u16)ath5k_hw_bitswap(((srev & 0xf0) >> 4) |
119				((srev & 0x0f) << 4), 8);
120	}
121
122	/* Reset to the 5GHz mode */
123	ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
124
125	return ret;
126}
127
128/**
129 * ath5k_channel_ok() - Check if a channel is supported by the hw
130 * @ah: The &struct ath5k_hw
131 * @channel: The &struct ieee80211_channel
132 *
133 * Note: We don't do any regulatory domain checks here, it's just
134 * a sanity check.
135 */
136bool
137ath5k_channel_ok(struct ath5k_hw *ah, struct ieee80211_channel *channel)
138{
139	u16 freq = channel->center_freq;
140
141	/* Check if the channel is in our supported range */
142	if (channel->band == NL80211_BAND_2GHZ) {
143		if ((freq >= ah->ah_capabilities.cap_range.range_2ghz_min) &&
144		    (freq <= ah->ah_capabilities.cap_range.range_2ghz_max))
145			return true;
146	} else if (channel->band == NL80211_BAND_5GHZ)
147		if ((freq >= ah->ah_capabilities.cap_range.range_5ghz_min) &&
148		    (freq <= ah->ah_capabilities.cap_range.range_5ghz_max))
149			return true;
150
151	return false;
152}
153
154/**
155 * ath5k_hw_chan_has_spur_noise() - Check if channel is sensitive to spur noise
156 * @ah: The &struct ath5k_hw
157 * @channel: The &struct ieee80211_channel
158 */
159bool
160ath5k_hw_chan_has_spur_noise(struct ath5k_hw *ah,
161				struct ieee80211_channel *channel)
162{
163	u8 refclk_freq;
164
165	if ((ah->ah_radio == AR5K_RF5112) ||
166	(ah->ah_radio == AR5K_RF5413) ||
167	(ah->ah_radio == AR5K_RF2413) ||
168	(ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4)))
169		refclk_freq = 40;
170	else
171		refclk_freq = 32;
172
173	if ((channel->center_freq % refclk_freq != 0) &&
174	((channel->center_freq % refclk_freq < 10) ||
175	(channel->center_freq % refclk_freq > 22)))
176		return true;
177	else
178		return false;
179}
180
181/**
182 * ath5k_hw_rfb_op() - Perform an operation on the given RF Buffer
183 * @ah: The &struct ath5k_hw
184 * @rf_regs: The struct ath5k_rf_reg
185 * @val: New value
186 * @reg_id: RF register ID
187 * @set: Indicate we need to swap data
188 *
189 * This is an internal function used to modify RF Banks before
190 * writing them to AR5K_RF_BUFFER. Check out rfbuffer.h for more
191 * infos.
192 */
193static unsigned int
194ath5k_hw_rfb_op(struct ath5k_hw *ah, const struct ath5k_rf_reg *rf_regs,
195					u32 val, u8 reg_id, bool set)
196{
197	const struct ath5k_rf_reg *rfreg = NULL;
198	u8 offset, bank, num_bits, col, position;
199	u16 entry;
200	u32 mask, data, last_bit, bits_shifted, first_bit;
201	u32 *rfb;
202	s32 bits_left;
203	int i;
204
205	data = 0;
206	rfb = ah->ah_rf_banks;
207
208	for (i = 0; i < ah->ah_rf_regs_count; i++) {
209		if (rf_regs[i].index == reg_id) {
210			rfreg = &rf_regs[i];
211			break;
212		}
213	}
214
215	if (rfb == NULL || rfreg == NULL) {
216		ATH5K_PRINTF("Rf register not found!\n");
217		/* should not happen */
218		return 0;
219	}
220
221	bank = rfreg->bank;
222	num_bits = rfreg->field.len;
223	first_bit = rfreg->field.pos;
224	col = rfreg->field.col;
225
226	/* first_bit is an offset from bank's
227	 * start. Since we have all banks on
228	 * the same array, we use this offset
229	 * to mark each bank's start */
230	offset = ah->ah_offset[bank];
231
232	/* Boundary check */
233	if (!(col <= 3 && num_bits <= 32 && first_bit + num_bits <= 319)) {
234		ATH5K_PRINTF("invalid values at offset %u\n", offset);
235		return 0;
236	}
237
238	entry = ((first_bit - 1) / 8) + offset;
239	position = (first_bit - 1) % 8;
240
241	if (set)
242		data = ath5k_hw_bitswap(val, num_bits);
243
244	for (bits_shifted = 0, bits_left = num_bits; bits_left > 0;
245	     position = 0, entry++) {
246
247		last_bit = (position + bits_left > 8) ? 8 :
248					position + bits_left;
249
250		mask = (((1 << last_bit) - 1) ^ ((1 << position) - 1)) <<
251								(col * 8);
252
253		if (set) {
254			rfb[entry] &= ~mask;
255			rfb[entry] |= ((data << position) << (col * 8)) & mask;
256			data >>= (8 - position);
257		} else {
258			data |= (((rfb[entry] & mask) >> (col * 8)) >> position)
259				<< bits_shifted;
260			bits_shifted += last_bit - position;
261		}
262
263		bits_left -= 8 - position;
264	}
265
266	data = set ? 1 : ath5k_hw_bitswap(data, num_bits);
267
268	return data;
269}
270
271/**
272 * ath5k_hw_write_ofdm_timings() - set OFDM timings on AR5212
273 * @ah: the &struct ath5k_hw
274 * @channel: the currently set channel upon reset
275 *
276 * Write the delta slope coefficient (used on pilot tracking ?) for OFDM
277 * operation on the AR5212 upon reset. This is a helper for ath5k_hw_phy_init.
278 *
279 * Since delta slope is floating point we split it on its exponent and
280 * mantissa and provide these values on hw.
281 *
282 * For more infos i think this patent is related
283 * "http://www.freepatentsonline.com/7184495.html"
284 */
285static inline int
286ath5k_hw_write_ofdm_timings(struct ath5k_hw *ah,
287				struct ieee80211_channel *channel)
288{
289	/* Get exponent and mantissa and set it */
290	u32 coef_scaled, coef_exp, coef_man,
291		ds_coef_exp, ds_coef_man, clock;
292
293	BUG_ON(!(ah->ah_version == AR5K_AR5212) ||
294		(channel->hw_value == AR5K_MODE_11B));
295
296	/* Get coefficient
297	 * ALGO: coef = (5 * clock / carrier_freq) / 2
298	 * we scale coef by shifting clock value by 24 for
299	 * better precision since we use integers */
300	switch (ah->ah_bwmode) {
301	case AR5K_BWMODE_40MHZ:
302		clock = 40 * 2;
303		break;
304	case AR5K_BWMODE_10MHZ:
305		clock = 40 / 2;
306		break;
307	case AR5K_BWMODE_5MHZ:
308		clock = 40 / 4;
309		break;
310	default:
311		clock = 40;
312		break;
313	}
314	coef_scaled = ((5 * (clock << 24)) / 2) / channel->center_freq;
315
316	/* Get exponent
317	 * ALGO: coef_exp = 14 - highest set bit position */
318	coef_exp = ilog2(coef_scaled);
319
320	/* Doesn't make sense if it's zero*/
321	if (!coef_scaled || !coef_exp)
322		return -EINVAL;
323
324	/* Note: we've shifted coef_scaled by 24 */
325	coef_exp = 14 - (coef_exp - 24);
326
327
328	/* Get mantissa (significant digits)
329	 * ALGO: coef_mant = floor(coef_scaled* 2^coef_exp+0.5) */
330	coef_man = coef_scaled +
331		(1 << (24 - coef_exp - 1));
332
333	/* Calculate delta slope coefficient exponent
334	 * and mantissa (remove scaling) and set them on hw */
335	ds_coef_man = coef_man >> (24 - coef_exp);
336	ds_coef_exp = coef_exp - 16;
337
338	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3,
339		AR5K_PHY_TIMING_3_DSC_MAN, ds_coef_man);
340	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3,
341		AR5K_PHY_TIMING_3_DSC_EXP, ds_coef_exp);
342
343	return 0;
344}
345
346/**
347 * ath5k_hw_phy_disable() - Disable PHY
348 * @ah: The &struct ath5k_hw
349 */
350int ath5k_hw_phy_disable(struct ath5k_hw *ah)
351{
352	/*Just a try M.F.*/
353	ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);
354
355	return 0;
356}
357
358/**
359 * ath5k_hw_wait_for_synth() - Wait for synth to settle
360 * @ah: The &struct ath5k_hw
361 * @channel: The &struct ieee80211_channel
362 */
363static void
364ath5k_hw_wait_for_synth(struct ath5k_hw *ah,
365			struct ieee80211_channel *channel)
366{
367	/*
368	 * On 5211+ read activation -> rx delay
369	 * and use it (100ns steps).
370	 */
371	if (ah->ah_version != AR5K_AR5210) {
372		u32 delay;
373		delay = ath5k_hw_reg_read(ah, AR5K_PHY_RX_DELAY) &
374			AR5K_PHY_RX_DELAY_M;
375		delay = (channel->hw_value == AR5K_MODE_11B) ?
376			((delay << 2) / 22) : (delay / 10);
377		if (ah->ah_bwmode == AR5K_BWMODE_10MHZ)
378			delay = delay << 1;
379		if (ah->ah_bwmode == AR5K_BWMODE_5MHZ)
380			delay = delay << 2;
381		/* XXX: /2 on turbo ? Let's be safe
382		 * for now */
383		usleep_range(100 + delay, 100 + (2 * delay));
384	} else {
385		usleep_range(1000, 1500);
386	}
387}
388
389
390/**********************\
391* RF Gain optimization *
392\**********************/
393
394/**
395 * DOC: RF Gain optimization
396 *
397 * This code is used to optimize RF gain on different environments
398 * (temperature mostly) based on feedback from a power detector.
399 *
400 * It's only used on RF5111 and RF5112, later RF chips seem to have
401 * auto adjustment on hw -notice they have a much smaller BANK 7 and
402 * no gain optimization ladder-.
403 *
404 * For more infos check out this patent doc
405 * "http://www.freepatentsonline.com/7400691.html"
406 *
407 * This paper describes power drops as seen on the receiver due to
408 * probe packets
409 * "http://www.cnri.dit.ie/publications/ICT08%20-%20Practical%20Issues
410 * %20of%20Power%20Control.pdf"
411 *
412 * And this is the MadWiFi bug entry related to the above
413 * "http://madwifi-project.org/ticket/1659"
414 * with various measurements and diagrams
415 */
416
417/**
418 * ath5k_hw_rfgain_opt_init() - Initialize ah_gain during attach
419 * @ah: The &struct ath5k_hw
420 */
421int ath5k_hw_rfgain_opt_init(struct ath5k_hw *ah)
422{
423	/* Initialize the gain optimization values */
424	switch (ah->ah_radio) {
425	case AR5K_RF5111:
426		ah->ah_gain.g_step_idx = rfgain_opt_5111.go_default;
427		ah->ah_gain.g_low = 20;
428		ah->ah_gain.g_high = 35;
429		ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
430		break;
431	case AR5K_RF5112:
432		ah->ah_gain.g_step_idx = rfgain_opt_5112.go_default;
433		ah->ah_gain.g_low = 20;
434		ah->ah_gain.g_high = 85;
435		ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
436		break;
437	default:
438		return -EINVAL;
439	}
440
441	return 0;
442}
443
444/**
445 * ath5k_hw_request_rfgain_probe() - Request a PAPD probe packet
446 * @ah: The &struct ath5k_hw
447 *
448 * Schedules a gain probe check on the next transmitted packet.
449 * That means our next packet is going to be sent with lower
450 * tx power and a Peak to Average Power Detector (PAPD) will try
451 * to measure the gain.
452 *
453 * TODO: Force a tx packet (bypassing PCU arbitrator etc)
454 * just after we enable the probe so that we don't mess with
455 * standard traffic.
456 */
457static void
458ath5k_hw_request_rfgain_probe(struct ath5k_hw *ah)
459{
460
461	/* Skip if gain calibration is inactive or
462	 * we already handle a probe request */
463	if (ah->ah_gain.g_state != AR5K_RFGAIN_ACTIVE)
464		return;
465
466	/* Send the packet with 2dB below max power as
467	 * patent doc suggest */
468	ath5k_hw_reg_write(ah, AR5K_REG_SM(ah->ah_txpower.txp_ofdm - 4,
469			AR5K_PHY_PAPD_PROBE_TXPOWER) |
470			AR5K_PHY_PAPD_PROBE_TX_NEXT, AR5K_PHY_PAPD_PROBE);
471
472	ah->ah_gain.g_state = AR5K_RFGAIN_READ_REQUESTED;
473
474}
475
476/**
477 * ath5k_hw_rf_gainf_corr() - Calculate Gain_F measurement correction
478 * @ah: The &struct ath5k_hw
479 *
480 * Calculate Gain_F measurement correction
481 * based on the current step for RF5112 rev. 2
482 */
483static u32
484ath5k_hw_rf_gainf_corr(struct ath5k_hw *ah)
485{
486	u32 mix, step;
487	const struct ath5k_gain_opt *go;
488	const struct ath5k_gain_opt_step *g_step;
489	const struct ath5k_rf_reg *rf_regs;
490
491	/* Only RF5112 Rev. 2 supports it */
492	if ((ah->ah_radio != AR5K_RF5112) ||
493	(ah->ah_radio_5ghz_revision <= AR5K_SREV_RAD_5112A))
494		return 0;
495
496	go = &rfgain_opt_5112;
497	rf_regs = rf_regs_5112a;
498	ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
499
500	g_step = &go->go_step[ah->ah_gain.g_step_idx];
501
502	if (ah->ah_rf_banks == NULL)
503		return 0;
504
505	ah->ah_gain.g_f_corr = 0;
506
507	/* No VGA (Variable Gain Amplifier) override, skip */
508	if (ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR, false) != 1)
509		return 0;
510
511	/* Mix gain stepping */
512	step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXGAIN_STEP, false);
513
514	/* Mix gain override */
515	mix = g_step->gos_param[0];
516
517	switch (mix) {
518	case 3:
519		ah->ah_gain.g_f_corr = step * 2;
520		break;
521	case 2:
522		ah->ah_gain.g_f_corr = (step - 5) * 2;
523		break;
524	case 1:
525		ah->ah_gain.g_f_corr = step;
526		break;
527	default:
528		ah->ah_gain.g_f_corr = 0;
529		break;
530	}
531
532	return ah->ah_gain.g_f_corr;
533}
534
535/**
536 * ath5k_hw_rf_check_gainf_readback() - Validate Gain_F feedback from detector
537 * @ah: The &struct ath5k_hw
538 *
539 * Check if current gain_F measurement is in the range of our
540 * power detector windows. If we get a measurement outside range
541 * we know it's not accurate (detectors can't measure anything outside
542 * their detection window) so we must ignore it.
543 *
544 * Returns true if readback was O.K. or false on failure
545 */
546static bool
547ath5k_hw_rf_check_gainf_readback(struct ath5k_hw *ah)
548{
549	const struct ath5k_rf_reg *rf_regs;
550	u32 step, mix_ovr, level[4];
551
552	if (ah->ah_rf_banks == NULL)
553		return false;
554
555	if (ah->ah_radio == AR5K_RF5111) {
556
557		rf_regs = rf_regs_5111;
558		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
559
560		step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_RFGAIN_STEP,
561			false);
562
563		level[0] = 0;
564		level[1] = (step == 63) ? 50 : step + 4;
565		level[2] = (step != 63) ? 64 : level[0];
566		level[3] = level[2] + 50;
567
568		ah->ah_gain.g_high = level[3] -
569			(step == 63 ? AR5K_GAIN_DYN_ADJUST_HI_MARGIN : -5);
570		ah->ah_gain.g_low = level[0] +
571			(step == 63 ? AR5K_GAIN_DYN_ADJUST_LO_MARGIN : 0);
572	} else {
573
574		rf_regs = rf_regs_5112;
575		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
576
577		mix_ovr = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR,
578			false);
579
580		level[0] = level[2] = 0;
581
582		if (mix_ovr == 1) {
583			level[1] = level[3] = 83;
584		} else {
585			level[1] = level[3] = 107;
586			ah->ah_gain.g_high = 55;
587		}
588	}
589
590	return (ah->ah_gain.g_current >= level[0] &&
591			ah->ah_gain.g_current <= level[1]) ||
592		(ah->ah_gain.g_current >= level[2] &&
593			ah->ah_gain.g_current <= level[3]);
594}
595
596/**
597 * ath5k_hw_rf_gainf_adjust() - Perform Gain_F adjustment
598 * @ah: The &struct ath5k_hw
599 *
600 * Choose the right target gain based on current gain
601 * and RF gain optimization ladder
602 */
603static s8
604ath5k_hw_rf_gainf_adjust(struct ath5k_hw *ah)
605{
606	const struct ath5k_gain_opt *go;
607	const struct ath5k_gain_opt_step *g_step;
608	int ret = 0;
609
610	switch (ah->ah_radio) {
611	case AR5K_RF5111:
612		go = &rfgain_opt_5111;
613		break;
614	case AR5K_RF5112:
615		go = &rfgain_opt_5112;
616		break;
617	default:
618		return 0;
619	}
620
621	g_step = &go->go_step[ah->ah_gain.g_step_idx];
622
623	if (ah->ah_gain.g_current >= ah->ah_gain.g_high) {
624
625		/* Reached maximum */
626		if (ah->ah_gain.g_step_idx == 0)
627			return -1;
628
629		for (ah->ah_gain.g_target = ah->ah_gain.g_current;
630				ah->ah_gain.g_target >=  ah->ah_gain.g_high &&
631				ah->ah_gain.g_step_idx > 0;
632				g_step = &go->go_step[ah->ah_gain.g_step_idx])
633			ah->ah_gain.g_target -= 2 *
634			    (go->go_step[--(ah->ah_gain.g_step_idx)].gos_gain -
635			    g_step->gos_gain);
636
637		ret = 1;
638		goto done;
639	}
640
641	if (ah->ah_gain.g_current <= ah->ah_gain.g_low) {
642
643		/* Reached minimum */
644		if (ah->ah_gain.g_step_idx == (go->go_steps_count - 1))
645			return -2;
646
647		for (ah->ah_gain.g_target = ah->ah_gain.g_current;
648				ah->ah_gain.g_target <= ah->ah_gain.g_low &&
649				ah->ah_gain.g_step_idx < go->go_steps_count - 1;
650				g_step = &go->go_step[ah->ah_gain.g_step_idx])
651			ah->ah_gain.g_target -= 2 *
652			    (go->go_step[++ah->ah_gain.g_step_idx].gos_gain -
653			    g_step->gos_gain);
654
655		ret = 2;
656		goto done;
657	}
658
659done:
660	ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
661		"ret %d, gain step %u, current gain %u, target gain %u\n",
662		ret, ah->ah_gain.g_step_idx, ah->ah_gain.g_current,
663		ah->ah_gain.g_target);
664
665	return ret;
666}
667
668/**
669 * ath5k_hw_gainf_calibrate() - Do a gain_F calibration
670 * @ah: The &struct ath5k_hw
671 *
672 * Main callback for thermal RF gain calibration engine
673 * Check for a new gain reading and schedule an adjustment
674 * if needed.
675 *
676 * Returns one of enum ath5k_rfgain codes
677 */
678enum ath5k_rfgain
679ath5k_hw_gainf_calibrate(struct ath5k_hw *ah)
680{
681	u32 data, type;
682	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
683
684	if (ah->ah_rf_banks == NULL ||
685	ah->ah_gain.g_state == AR5K_RFGAIN_INACTIVE)
686		return AR5K_RFGAIN_INACTIVE;
687
688	/* No check requested, either engine is inactive
689	 * or an adjustment is already requested */
690	if (ah->ah_gain.g_state != AR5K_RFGAIN_READ_REQUESTED)
691		goto done;
692
693	/* Read the PAPD (Peak to Average Power Detector)
694	 * register */
695	data = ath5k_hw_reg_read(ah, AR5K_PHY_PAPD_PROBE);
696
697	/* No probe is scheduled, read gain_F measurement */
698	if (!(data & AR5K_PHY_PAPD_PROBE_TX_NEXT)) {
699		ah->ah_gain.g_current = data >> AR5K_PHY_PAPD_PROBE_GAINF_S;
700		type = AR5K_REG_MS(data, AR5K_PHY_PAPD_PROBE_TYPE);
701
702		/* If tx packet is CCK correct the gain_F measurement
703		 * by cck ofdm gain delta */
704		if (type == AR5K_PHY_PAPD_PROBE_TYPE_CCK) {
705			if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A)
706				ah->ah_gain.g_current +=
707					ee->ee_cck_ofdm_gain_delta;
708			else
709				ah->ah_gain.g_current +=
710					AR5K_GAIN_CCK_PROBE_CORR;
711		}
712
713		/* Further correct gain_F measurement for
714		 * RF5112A radios */
715		if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
716			ath5k_hw_rf_gainf_corr(ah);
717			ah->ah_gain.g_current =
718				ah->ah_gain.g_current >= ah->ah_gain.g_f_corr ?
719				(ah->ah_gain.g_current - ah->ah_gain.g_f_corr) :
720				0;
721		}
722
723		/* Check if measurement is ok and if we need
724		 * to adjust gain, schedule a gain adjustment,
725		 * else switch back to the active state */
726		if (ath5k_hw_rf_check_gainf_readback(ah) &&
727		AR5K_GAIN_CHECK_ADJUST(&ah->ah_gain) &&
728		ath5k_hw_rf_gainf_adjust(ah)) {
729			ah->ah_gain.g_state = AR5K_RFGAIN_NEED_CHANGE;
730		} else {
731			ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
732		}
733	}
734
735done:
736	return ah->ah_gain.g_state;
737}
738
739/**
740 * ath5k_hw_rfgain_init() - Write initial RF gain settings to hw
741 * @ah: The &struct ath5k_hw
742 * @band: One of enum nl80211_band
743 *
744 * Write initial RF gain table to set the RF sensitivity.
745 *
746 * NOTE: This one works on all RF chips and has nothing to do
747 * with Gain_F calibration
748 */
749static int
750ath5k_hw_rfgain_init(struct ath5k_hw *ah, enum nl80211_band band)
751{
752	const struct ath5k_ini_rfgain *ath5k_rfg;
753	unsigned int i, size, index;
754
755	switch (ah->ah_radio) {
756	case AR5K_RF5111:
757		ath5k_rfg = rfgain_5111;
758		size = ARRAY_SIZE(rfgain_5111);
759		break;
760	case AR5K_RF5112:
761		ath5k_rfg = rfgain_5112;
762		size = ARRAY_SIZE(rfgain_5112);
763		break;
764	case AR5K_RF2413:
765		ath5k_rfg = rfgain_2413;
766		size = ARRAY_SIZE(rfgain_2413);
767		break;
768	case AR5K_RF2316:
769		ath5k_rfg = rfgain_2316;
770		size = ARRAY_SIZE(rfgain_2316);
771		break;
772	case AR5K_RF5413:
773		ath5k_rfg = rfgain_5413;
774		size = ARRAY_SIZE(rfgain_5413);
775		break;
776	case AR5K_RF2317:
777	case AR5K_RF2425:
778		ath5k_rfg = rfgain_2425;
779		size = ARRAY_SIZE(rfgain_2425);
780		break;
781	default:
782		return -EINVAL;
783	}
784
785	index = (band == NL80211_BAND_2GHZ) ? 1 : 0;
786
787	for (i = 0; i < size; i++) {
788		AR5K_REG_WAIT(i);
789		ath5k_hw_reg_write(ah, ath5k_rfg[i].rfg_value[index],
790			(u32)ath5k_rfg[i].rfg_register);
791	}
792
793	return 0;
794}
795
796
797/********************\
798* RF Registers setup *
799\********************/
800
801/**
802 * ath5k_hw_rfregs_init() - Initialize RF register settings
803 * @ah: The &struct ath5k_hw
804 * @channel: The &struct ieee80211_channel
805 * @mode: One of enum ath5k_driver_mode
806 *
807 * Setup RF registers by writing RF buffer on hw. For
808 * more infos on this, check out rfbuffer.h
809 */
810static int
811ath5k_hw_rfregs_init(struct ath5k_hw *ah,
812			struct ieee80211_channel *channel,
813			unsigned int mode)
814{
815	const struct ath5k_rf_reg *rf_regs;
816	const struct ath5k_ini_rfbuffer *ini_rfb;
817	const struct ath5k_gain_opt *go = NULL;
818	const struct ath5k_gain_opt_step *g_step;
819	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
820	u8 ee_mode = 0;
821	u32 *rfb;
822	int i, obdb = -1, bank = -1;
823
824	switch (ah->ah_radio) {
825	case AR5K_RF5111:
826		rf_regs = rf_regs_5111;
827		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
828		ini_rfb = rfb_5111;
829		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5111);
830		go = &rfgain_opt_5111;
831		break;
832	case AR5K_RF5112:
833		if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
834			rf_regs = rf_regs_5112a;
835			ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
836			ini_rfb = rfb_5112a;
837			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112a);
838		} else {
839			rf_regs = rf_regs_5112;
840			ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
841			ini_rfb = rfb_5112;
842			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112);
843		}
844		go = &rfgain_opt_5112;
845		break;
846	case AR5K_RF2413:
847		rf_regs = rf_regs_2413;
848		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2413);
849		ini_rfb = rfb_2413;
850		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2413);
851		break;
852	case AR5K_RF2316:
853		rf_regs = rf_regs_2316;
854		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2316);
855		ini_rfb = rfb_2316;
856		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2316);
857		break;
858	case AR5K_RF5413:
859		rf_regs = rf_regs_5413;
860		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5413);
861		ini_rfb = rfb_5413;
862		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5413);
863		break;
864	case AR5K_RF2317:
865		rf_regs = rf_regs_2425;
866		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
867		ini_rfb = rfb_2317;
868		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2317);
869		break;
870	case AR5K_RF2425:
871		rf_regs = rf_regs_2425;
872		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
873		if (ah->ah_mac_srev < AR5K_SREV_AR2417) {
874			ini_rfb = rfb_2425;
875			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2425);
876		} else {
877			ini_rfb = rfb_2417;
878			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2417);
879		}
880		break;
881	default:
882		return -EINVAL;
883	}
884
885	/* If it's the first time we set RF buffer, allocate
886	 * ah->ah_rf_banks based on ah->ah_rf_banks_size
887	 * we set above */
888	if (ah->ah_rf_banks == NULL) {
889		ah->ah_rf_banks = kmalloc_array(ah->ah_rf_banks_size,
890								sizeof(u32),
891								GFP_KERNEL);
892		if (ah->ah_rf_banks == NULL) {
893			ATH5K_ERR(ah, "out of memory\n");
894			return -ENOMEM;
895		}
896	}
897
898	/* Copy values to modify them */
899	rfb = ah->ah_rf_banks;
900
901	for (i = 0; i < ah->ah_rf_banks_size; i++) {
902		if (ini_rfb[i].rfb_bank >= AR5K_MAX_RF_BANKS) {
903			ATH5K_ERR(ah, "invalid bank\n");
904			return -EINVAL;
905		}
906
907		/* Bank changed, write down the offset */
908		if (bank != ini_rfb[i].rfb_bank) {
909			bank = ini_rfb[i].rfb_bank;
910			ah->ah_offset[bank] = i;
911		}
912
913		rfb[i] = ini_rfb[i].rfb_mode_data[mode];
914	}
915
916	/* Set Output and Driver bias current (OB/DB) */
917	if (channel->band == NL80211_BAND_2GHZ) {
918
919		if (channel->hw_value == AR5K_MODE_11B)
920			ee_mode = AR5K_EEPROM_MODE_11B;
921		else
922			ee_mode = AR5K_EEPROM_MODE_11G;
923
924		/* For RF511X/RF211X combination we
925		 * use b_OB and b_DB parameters stored
926		 * in eeprom on ee->ee_ob[ee_mode][0]
927		 *
928		 * For all other chips we use OB/DB for 2GHz
929		 * stored in the b/g modal section just like
930		 * 802.11a on ee->ee_ob[ee_mode][1] */
931		if ((ah->ah_radio == AR5K_RF5111) ||
932		(ah->ah_radio == AR5K_RF5112))
933			obdb = 0;
934		else
935			obdb = 1;
936
937		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
938						AR5K_RF_OB_2GHZ, true);
939
940		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
941						AR5K_RF_DB_2GHZ, true);
942
943	/* RF5111 always needs OB/DB for 5GHz, even if we use 2GHz */
944	} else if ((channel->band == NL80211_BAND_5GHZ) ||
945			(ah->ah_radio == AR5K_RF5111)) {
946
947		/* For 11a, Turbo and XR we need to choose
948		 * OB/DB based on frequency range */
949		ee_mode = AR5K_EEPROM_MODE_11A;
950		obdb =	 channel->center_freq >= 5725 ? 3 :
951			(channel->center_freq >= 5500 ? 2 :
952			(channel->center_freq >= 5260 ? 1 :
953			 (channel->center_freq > 4000 ? 0 : -1)));
954
955		if (obdb < 0)
956			return -EINVAL;
957
958		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
959						AR5K_RF_OB_5GHZ, true);
960
961		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
962						AR5K_RF_DB_5GHZ, true);
963	}
964
965	g_step = &go->go_step[ah->ah_gain.g_step_idx];
966
967	/* Set turbo mode (N/A on RF5413) */
968	if ((ah->ah_bwmode == AR5K_BWMODE_40MHZ) &&
969	(ah->ah_radio != AR5K_RF5413))
970		ath5k_hw_rfb_op(ah, rf_regs, 1, AR5K_RF_TURBO, false);
971
972	/* Bank Modifications (chip-specific) */
973	if (ah->ah_radio == AR5K_RF5111) {
974
975		/* Set gain_F settings according to current step */
976		if (channel->hw_value != AR5K_MODE_11B) {
977
978			AR5K_REG_WRITE_BITS(ah, AR5K_PHY_FRAME_CTL,
979					AR5K_PHY_FRAME_CTL_TX_CLIP,
980					g_step->gos_param[0]);
981
982			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
983							AR5K_RF_PWD_90, true);
984
985			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
986							AR5K_RF_PWD_84, true);
987
988			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
989						AR5K_RF_RFGAIN_SEL, true);
990
991			/* We programmed gain_F parameters, switch back
992			 * to active state */
993			ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
994
995		}
996
997		/* Bank 6/7 setup */
998
999		ath5k_hw_rfb_op(ah, rf_regs, !ee->ee_xpd[ee_mode],
1000						AR5K_RF_PWD_XPD, true);
1001
1002		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_x_gain[ee_mode],
1003						AR5K_RF_XPD_GAIN, true);
1004
1005		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
1006						AR5K_RF_GAIN_I, true);
1007
1008		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
1009						AR5K_RF_PLO_SEL, true);
1010
1011		/* Tweak power detectors for half/quarter rate support */
1012		if (ah->ah_bwmode == AR5K_BWMODE_5MHZ ||
1013		ah->ah_bwmode == AR5K_BWMODE_10MHZ) {
1014			u8 wait_i;
1015
1016			ath5k_hw_rfb_op(ah, rf_regs, 0x1f,
1017						AR5K_RF_WAIT_S, true);
1018
1019			wait_i = (ah->ah_bwmode == AR5K_BWMODE_5MHZ) ?
1020							0x1f : 0x10;
1021
1022			ath5k_hw_rfb_op(ah, rf_regs, wait_i,
1023						AR5K_RF_WAIT_I, true);
1024			ath5k_hw_rfb_op(ah, rf_regs, 3,
1025						AR5K_RF_MAX_TIME, true);
1026
1027		}
1028	}
1029
1030	if (ah->ah_radio == AR5K_RF5112) {
1031
1032		/* Set gain_F settings according to current step */
1033		if (channel->hw_value != AR5K_MODE_11B) {
1034
1035			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[0],
1036						AR5K_RF_MIXGAIN_OVR, true);
1037
1038			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
1039						AR5K_RF_PWD_138, true);
1040
1041			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
1042						AR5K_RF_PWD_137, true);
1043
1044			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
1045						AR5K_RF_PWD_136, true);
1046
1047			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[4],
1048						AR5K_RF_PWD_132, true);
1049
1050			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[5],
1051						AR5K_RF_PWD_131, true);
1052
1053			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[6],
1054						AR5K_RF_PWD_130, true);
1055
1056			/* We programmed gain_F parameters, switch back
1057			 * to active state */
1058			ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
1059		}
1060
1061		/* Bank 6/7 setup */
1062
1063		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
1064						AR5K_RF_XPD_SEL, true);
1065
1066		if (ah->ah_radio_5ghz_revision < AR5K_SREV_RAD_5112A) {
1067			/* Rev. 1 supports only one xpd */
1068			ath5k_hw_rfb_op(ah, rf_regs,
1069						ee->ee_x_gain[ee_mode],
1070						AR5K_RF_XPD_GAIN, true);
1071
1072		} else {
1073			u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
1074			if (ee->ee_pd_gains[ee_mode] > 1) {
1075				ath5k_hw_rfb_op(ah, rf_regs,
1076						pdg_curve_to_idx[0],
1077						AR5K_RF_PD_GAIN_LO, true);
1078				ath5k_hw_rfb_op(ah, rf_regs,
1079						pdg_curve_to_idx[1],
1080						AR5K_RF_PD_GAIN_HI, true);
1081			} else {
1082				ath5k_hw_rfb_op(ah, rf_regs,
1083						pdg_curve_to_idx[0],
1084						AR5K_RF_PD_GAIN_LO, true);
1085				ath5k_hw_rfb_op(ah, rf_regs,
1086						pdg_curve_to_idx[0],
1087						AR5K_RF_PD_GAIN_HI, true);
1088			}
1089
1090			/* Lower synth voltage on Rev 2 */
1091			if (ah->ah_radio == AR5K_RF5112 &&
1092			    (ah->ah_radio_5ghz_revision & AR5K_SREV_REV) > 0) {
1093				ath5k_hw_rfb_op(ah, rf_regs, 2,
1094						AR5K_RF_HIGH_VC_CP, true);
1095
1096				ath5k_hw_rfb_op(ah, rf_regs, 2,
1097						AR5K_RF_MID_VC_CP, true);
1098
1099				ath5k_hw_rfb_op(ah, rf_regs, 2,
1100						AR5K_RF_LOW_VC_CP, true);
1101
1102				ath5k_hw_rfb_op(ah, rf_regs, 2,
1103						AR5K_RF_PUSH_UP, true);
1104			}
1105
1106			/* Decrease power consumption on 5213+ BaseBand */
1107			if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) {
1108				ath5k_hw_rfb_op(ah, rf_regs, 1,
1109						AR5K_RF_PAD2GND, true);
1110
1111				ath5k_hw_rfb_op(ah, rf_regs, 1,
1112						AR5K_RF_XB2_LVL, true);
1113
1114				ath5k_hw_rfb_op(ah, rf_regs, 1,
1115						AR5K_RF_XB5_LVL, true);
1116
1117				ath5k_hw_rfb_op(ah, rf_regs, 1,
1118						AR5K_RF_PWD_167, true);
1119
1120				ath5k_hw_rfb_op(ah, rf_regs, 1,
1121						AR5K_RF_PWD_166, true);
1122			}
1123		}
1124
1125		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
1126						AR5K_RF_GAIN_I, true);
1127
1128		/* Tweak power detector for half/quarter rates */
1129		if (ah->ah_bwmode == AR5K_BWMODE_5MHZ ||
1130		ah->ah_bwmode == AR5K_BWMODE_10MHZ) {
1131			u8 pd_delay;
1132
1133			pd_delay = (ah->ah_bwmode == AR5K_BWMODE_5MHZ) ?
1134							0xf : 0x8;
1135
1136			ath5k_hw_rfb_op(ah, rf_regs, pd_delay,
1137						AR5K_RF_PD_PERIOD_A, true);
1138			ath5k_hw_rfb_op(ah, rf_regs, 0xf,
1139						AR5K_RF_PD_DELAY_A, true);
1140
1141		}
1142	}
1143
1144	if (ah->ah_radio == AR5K_RF5413 &&
1145	channel->band == NL80211_BAND_2GHZ) {
1146
1147		ath5k_hw_rfb_op(ah, rf_regs, 1, AR5K_RF_DERBY_CHAN_SEL_MODE,
1148									true);
1149
1150		/* Set optimum value for early revisions (on pci-e chips) */
1151		if (ah->ah_mac_srev >= AR5K_SREV_AR5424 &&
1152		ah->ah_mac_srev < AR5K_SREV_AR5413)
1153			ath5k_hw_rfb_op(ah, rf_regs, ath5k_hw_bitswap(6, 3),
1154						AR5K_RF_PWD_ICLOBUF_2G, true);
1155
1156	}
1157
1158	/* Write RF banks on hw */
1159	for (i = 0; i < ah->ah_rf_banks_size; i++) {
1160		AR5K_REG_WAIT(i);
1161		ath5k_hw_reg_write(ah, rfb[i], ini_rfb[i].rfb_ctrl_register);
1162	}
1163
1164	return 0;
1165}
1166
1167
1168/**************************\
1169  PHY/RF channel functions
1170\**************************/
1171
1172/**
1173 * ath5k_hw_rf5110_chan2athchan() - Convert channel freq on RF5110
1174 * @channel: The &struct ieee80211_channel
1175 *
1176 * Map channel frequency to IEEE channel number and convert it
1177 * to an internal channel value used by the RF5110 chipset.
1178 */
1179static u32
1180ath5k_hw_rf5110_chan2athchan(struct ieee80211_channel *channel)
1181{
1182	u32 athchan;
1183
1184	athchan = (ath5k_hw_bitswap(
1185			(ieee80211_frequency_to_channel(
1186				channel->center_freq) - 24) / 2, 5)
1187				<< 1) | (1 << 6) | 0x1;
1188	return athchan;
1189}
1190
1191/**
1192 * ath5k_hw_rf5110_channel() - Set channel frequency on RF5110
1193 * @ah: The &struct ath5k_hw
1194 * @channel: The &struct ieee80211_channel
1195 */
1196static int
1197ath5k_hw_rf5110_channel(struct ath5k_hw *ah,
1198		struct ieee80211_channel *channel)
1199{
1200	u32 data;
1201
1202	/*
1203	 * Set the channel and wait
1204	 */
1205	data = ath5k_hw_rf5110_chan2athchan(channel);
1206	ath5k_hw_reg_write(ah, data, AR5K_RF_BUFFER);
1207	ath5k_hw_reg_write(ah, 0, AR5K_RF_BUFFER_CONTROL_0);
1208	usleep_range(1000, 1500);
1209
1210	return 0;
1211}
1212
1213/**
1214 * ath5k_hw_rf5111_chan2athchan() - Handle 2GHz channels on RF5111/2111
1215 * @ieee: IEEE channel number
1216 * @athchan: The &struct ath5k_athchan_2ghz
1217 *
1218 * In order to enable the RF2111 frequency converter on RF5111/2111 setups
1219 * we need to add some offsets and extra flags to the data values we pass
1220 * on to the PHY. So for every 2GHz channel this function gets called
1221 * to do the conversion.
1222 */
1223static int
1224ath5k_hw_rf5111_chan2athchan(unsigned int ieee,
1225		struct ath5k_athchan_2ghz *athchan)
1226{
1227	int channel;
1228
1229	/* Cast this value to catch negative channel numbers (>= -19) */
1230	channel = (int)ieee;
1231
1232	/*
1233	 * Map 2GHz IEEE channel to 5GHz Atheros channel
1234	 */
1235	if (channel <= 13) {
1236		athchan->a2_athchan = 115 + channel;
1237		athchan->a2_flags = 0x46;
1238	} else if (channel == 14) {
1239		athchan->a2_athchan = 124;
1240		athchan->a2_flags = 0x44;
1241	} else if (channel >= 15 && channel <= 26) {
1242		athchan->a2_athchan = ((channel - 14) * 4) + 132;
1243		athchan->a2_flags = 0x46;
1244	} else
1245		return -EINVAL;
1246
1247	return 0;
1248}
1249
1250/**
1251 * ath5k_hw_rf5111_channel() - Set channel frequency on RF5111/2111
1252 * @ah: The &struct ath5k_hw
1253 * @channel: The &struct ieee80211_channel
1254 */
1255static int
1256ath5k_hw_rf5111_channel(struct ath5k_hw *ah,
1257		struct ieee80211_channel *channel)
1258{
1259	struct ath5k_athchan_2ghz ath5k_channel_2ghz;
1260	unsigned int ath5k_channel =
1261		ieee80211_frequency_to_channel(channel->center_freq);
1262	u32 data0, data1, clock;
1263	int ret;
1264
1265	/*
1266	 * Set the channel on the RF5111 radio
1267	 */
1268	data0 = data1 = 0;
1269
1270	if (channel->band == NL80211_BAND_2GHZ) {
1271		/* Map 2GHz channel to 5GHz Atheros channel ID */
1272		ret = ath5k_hw_rf5111_chan2athchan(
1273			ieee80211_frequency_to_channel(channel->center_freq),
1274			&ath5k_channel_2ghz);
1275		if (ret)
1276			return ret;
1277
1278		ath5k_channel = ath5k_channel_2ghz.a2_athchan;
1279		data0 = ((ath5k_hw_bitswap(ath5k_channel_2ghz.a2_flags, 8) & 0xff)
1280		    << 5) | (1 << 4);
1281	}
1282
1283	if (ath5k_channel < 145 || !(ath5k_channel & 1)) {
1284		clock = 1;
1285		data1 = ((ath5k_hw_bitswap(ath5k_channel - 24, 8) & 0xff) << 2) |
1286			(clock << 1) | (1 << 10) | 1;
1287	} else {
1288		clock = 0;
1289		data1 = ((ath5k_hw_bitswap((ath5k_channel - 24) / 2, 8) & 0xff)
1290			<< 2) | (clock << 1) | (1 << 10) | 1;
1291	}
1292
1293	ath5k_hw_reg_write(ah, (data1 & 0xff) | ((data0 & 0xff) << 8),
1294			AR5K_RF_BUFFER);
1295	ath5k_hw_reg_write(ah, ((data1 >> 8) & 0xff) | (data0 & 0xff00),
1296			AR5K_RF_BUFFER_CONTROL_3);
1297
1298	return 0;
1299}
1300
1301/**
1302 * ath5k_hw_rf5112_channel() - Set channel frequency on 5112 and newer
1303 * @ah: The &struct ath5k_hw
1304 * @channel: The &struct ieee80211_channel
1305 *
1306 * On RF5112/2112 and newer we don't need to do any conversion.
1307 * We pass the frequency value after a few modifications to the
1308 * chip directly.
1309 *
1310 * NOTE: Make sure channel frequency given is within our range or else
1311 * we might damage the chip ! Use ath5k_channel_ok before calling this one.
1312 */
1313static int
1314ath5k_hw_rf5112_channel(struct ath5k_hw *ah,
1315		struct ieee80211_channel *channel)
1316{
1317	u32 data, data0, data1, data2;
1318	u16 c;
1319
1320	data = data0 = data1 = data2 = 0;
1321	c = channel->center_freq;
1322
1323	/* My guess based on code:
1324	 * 2GHz RF has 2 synth modes, one with a Local Oscillator
1325	 * at 2224Hz and one with a LO at 2192Hz. IF is 1520Hz
1326	 * (3040/2). data0 is used to set the PLL divider and data1
1327	 * selects synth mode. */
1328	if (c < 4800) {
1329		/* Channel 14 and all frequencies with 2Hz spacing
1330		 * below/above (non-standard channels) */
1331		if (!((c - 2224) % 5)) {
1332			/* Same as (c - 2224) / 5 */
1333			data0 = ((2 * (c - 704)) - 3040) / 10;
1334			data1 = 1;
1335		/* Channel 1 and all frequencies with 5Hz spacing
1336		 * below/above (standard channels without channel 14) */
1337		} else if (!((c - 2192) % 5)) {
1338			/* Same as (c - 2192) / 5 */
1339			data0 = ((2 * (c - 672)) - 3040) / 10;
1340			data1 = 0;
1341		} else
1342			return -EINVAL;
1343
1344		data0 = ath5k_hw_bitswap((data0 << 2) & 0xff, 8);
1345	/* This is more complex, we have a single synthesizer with
1346	 * 4 reference clock settings (?) based on frequency spacing
1347	 * and set using data2. LO is at 4800Hz and data0 is again used
1348	 * to set some divider.
1349	 *
1350	 * NOTE: There is an old atheros presentation at Stanford
1351	 * that mentions a method called dual direct conversion
1352	 * with 1GHz sliding IF for RF5110. Maybe that's what we
1353	 * have here, or an updated version. */
1354	} else if ((c % 5) != 2 || c > 5435) {
1355		if (!(c % 20) && c >= 5120) {
1356			data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
1357			data2 = ath5k_hw_bitswap(3, 2);
1358		} else if (!(c % 10)) {
1359			data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
1360			data2 = ath5k_hw_bitswap(2, 2);
1361		} else if (!(c % 5)) {
1362			data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
1363			data2 = ath5k_hw_bitswap(1, 2);
1364		} else
1365			return -EINVAL;
1366	} else {
1367		data0 = ath5k_hw_bitswap((10 * (c - 2 - 4800)) / 25 + 1, 8);
1368		data2 = ath5k_hw_bitswap(0, 2);
1369	}
1370
1371	data = (data0 << 4) | (data1 << 1) | (data2 << 2) | 0x1001;
1372
1373	ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
1374	ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
1375
1376	return 0;
1377}
1378
1379/**
1380 * ath5k_hw_rf2425_channel() - Set channel frequency on RF2425
1381 * @ah: The &struct ath5k_hw
1382 * @channel: The &struct ieee80211_channel
1383 *
1384 * AR2425/2417 have a different 2GHz RF so code changes
1385 * a little bit from RF5112.
1386 */
1387static int
1388ath5k_hw_rf2425_channel(struct ath5k_hw *ah,
1389		struct ieee80211_channel *channel)
1390{
1391	u32 data, data0, data2;
1392	u16 c;
1393
1394	data = data0 = data2 = 0;
1395	c = channel->center_freq;
1396
1397	if (c < 4800) {
1398		data0 = ath5k_hw_bitswap((c - 2272), 8);
1399		data2 = 0;
1400	/* ? 5GHz ? */
1401	} else if ((c % 5) != 2 || c > 5435) {
1402		if (!(c % 20) && c < 5120)
1403			data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
1404		else if (!(c % 10))
1405			data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
1406		else if (!(c % 5))
1407			data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
1408		else
1409			return -EINVAL;
1410		data2 = ath5k_hw_bitswap(1, 2);
1411	} else {
1412		data0 = ath5k_hw_bitswap((10 * (c - 2 - 4800)) / 25 + 1, 8);
1413		data2 = ath5k_hw_bitswap(0, 2);
1414	}
1415
1416	data = (data0 << 4) | data2 << 2 | 0x1001;
1417
1418	ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
1419	ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
1420
1421	return 0;
1422}
1423
1424/**
1425 * ath5k_hw_channel() - Set a channel on the radio chip
1426 * @ah: The &struct ath5k_hw
1427 * @channel: The &struct ieee80211_channel
1428 *
1429 * This is the main function called to set a channel on the
1430 * radio chip based on the radio chip version.
1431 */
1432static int
1433ath5k_hw_channel(struct ath5k_hw *ah,
1434		struct ieee80211_channel *channel)
1435{
1436	int ret;
1437	/*
1438	 * Check bounds supported by the PHY (we don't care about regulatory
1439	 * restrictions at this point).
1440	 */
1441	if (!ath5k_channel_ok(ah, channel)) {
1442		ATH5K_ERR(ah,
1443			"channel frequency (%u MHz) out of supported "
1444			"band range\n",
1445			channel->center_freq);
1446		return -EINVAL;
1447	}
1448
1449	/*
1450	 * Set the channel and wait
1451	 */
1452	switch (ah->ah_radio) {
1453	case AR5K_RF5110:
1454		ret = ath5k_hw_rf5110_channel(ah, channel);
1455		break;
1456	case AR5K_RF5111:
1457		ret = ath5k_hw_rf5111_channel(ah, channel);
1458		break;
1459	case AR5K_RF2317:
1460	case AR5K_RF2425:
1461		ret = ath5k_hw_rf2425_channel(ah, channel);
1462		break;
1463	default:
1464		ret = ath5k_hw_rf5112_channel(ah, channel);
1465		break;
1466	}
1467
1468	if (ret)
1469		return ret;
1470
1471	/* Set JAPAN setting for channel 14 */
1472	if (channel->center_freq == 2484) {
1473		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
1474				AR5K_PHY_CCKTXCTL_JAPAN);
1475	} else {
1476		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
1477				AR5K_PHY_CCKTXCTL_WORLD);
1478	}
1479
1480	ah->ah_current_channel = channel;
1481
1482	return 0;
1483}
1484
1485
1486/*****************\
1487  PHY calibration
1488\*****************/
1489
1490/**
1491 * DOC: PHY Calibration routines
1492 *
1493 * Noise floor calibration: When we tell the hardware to
1494 * perform a noise floor calibration by setting the
1495 * AR5K_PHY_AGCCTL_NF bit on AR5K_PHY_AGCCTL, it will periodically
1496 * sample-and-hold the minimum noise level seen at the antennas.
1497 * This value is then stored in a ring buffer of recently measured
1498 * noise floor values so we have a moving window of the last few
1499 * samples. The median of the values in the history is then loaded
1500 * into the hardware for its own use for RSSI and CCA measurements.
1501 * This type of calibration doesn't interfere with traffic.
1502 *
1503 * AGC calibration: When we tell the hardware to perform
1504 * an AGC (Automatic Gain Control) calibration by setting the
1505 * AR5K_PHY_AGCCTL_CAL, hw disconnects the antennas and does
1506 * a calibration on the DC offsets of ADCs. During this period
1507 * rx/tx gets disabled so we have to deal with it on the driver
1508 * part.
1509 *
1510 * I/Q calibration: When we tell the hardware to perform
1511 * an I/Q calibration, it tries to correct I/Q imbalance and
1512 * fix QAM constellation by sampling data from rxed frames.
1513 * It doesn't interfere with traffic.
1514 *
1515 * For more infos on AGC and I/Q calibration check out patent doc
1516 * #03/094463.
1517 */
1518
1519/**
1520 * ath5k_hw_read_measured_noise_floor() - Read measured NF from hw
1521 * @ah: The &struct ath5k_hw
1522 */
1523static s32
1524ath5k_hw_read_measured_noise_floor(struct ath5k_hw *ah)
1525{
1526	s32 val;
1527
1528	val = ath5k_hw_reg_read(ah, AR5K_PHY_NF);
1529	return sign_extend32(AR5K_REG_MS(val, AR5K_PHY_NF_MINCCA_PWR), 8);
1530}
1531
1532/**
1533 * ath5k_hw_init_nfcal_hist() - Initialize NF calibration history buffer
1534 * @ah: The &struct ath5k_hw
1535 */
1536void
1537ath5k_hw_init_nfcal_hist(struct ath5k_hw *ah)
1538{
1539	int i;
1540
1541	ah->ah_nfcal_hist.index = 0;
1542	for (i = 0; i < ATH5K_NF_CAL_HIST_MAX; i++)
1543		ah->ah_nfcal_hist.nfval[i] = AR5K_TUNE_CCA_MAX_GOOD_VALUE;
1544}
1545
1546/**
1547 * ath5k_hw_update_nfcal_hist() - Update NF calibration history buffer
1548 * @ah: The &struct ath5k_hw
1549 * @noise_floor: The NF we got from hw
1550 */
1551static void ath5k_hw_update_nfcal_hist(struct ath5k_hw *ah, s16 noise_floor)
1552{
1553	struct ath5k_nfcal_hist *hist = &ah->ah_nfcal_hist;
1554	hist->index = (hist->index + 1) & (ATH5K_NF_CAL_HIST_MAX - 1);
1555	hist->nfval[hist->index] = noise_floor;
1556}
1557
1558static int cmps16(const void *a, const void *b)
1559{
1560	return *(s16 *)a - *(s16 *)b;
1561}
1562
1563/**
1564 * ath5k_hw_get_median_noise_floor() - Get median NF from history buffer
1565 * @ah: The &struct ath5k_hw
1566 */
1567static s16
1568ath5k_hw_get_median_noise_floor(struct ath5k_hw *ah)
1569{
1570	s16 sorted_nfval[ATH5K_NF_CAL_HIST_MAX];
1571	int i;
1572
1573	memcpy(sorted_nfval, ah->ah_nfcal_hist.nfval, sizeof(sorted_nfval));
1574	sort(sorted_nfval, ATH5K_NF_CAL_HIST_MAX, sizeof(s16), cmps16, NULL);
1575	for (i = 0; i < ATH5K_NF_CAL_HIST_MAX; i++) {
1576		ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
1577			"cal %d:%d\n", i, sorted_nfval[i]);
1578	}
1579	return sorted_nfval[(ATH5K_NF_CAL_HIST_MAX - 1) / 2];
1580}
1581
1582/**
1583 * ath5k_hw_update_noise_floor() - Update NF on hardware
1584 * @ah: The &struct ath5k_hw
1585 *
1586 * This is the main function we call to perform a NF calibration,
1587 * it reads NF from hardware, calculates the median and updates
1588 * NF on hw.
1589 */
1590void
1591ath5k_hw_update_noise_floor(struct ath5k_hw *ah)
1592{
1593	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1594	u32 val;
1595	s16 nf, threshold;
1596	u8 ee_mode;
1597
1598	/* keep last value if calibration hasn't completed */
1599	if (ath5k_hw_reg_read(ah, AR5K_PHY_AGCCTL) & AR5K_PHY_AGCCTL_NF) {
1600		ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
1601			"NF did not complete in calibration window\n");
1602
1603		return;
1604	}
1605
1606	ah->ah_cal_mask |= AR5K_CALIBRATION_NF;
1607
1608	ee_mode = ath5k_eeprom_mode_from_channel(ah, ah->ah_current_channel);
1609
1610	/* completed NF calibration, test threshold */
1611	nf = ath5k_hw_read_measured_noise_floor(ah);
1612	threshold = ee->ee_noise_floor_thr[ee_mode];
1613
1614	if (nf > threshold) {
1615		ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
1616			"noise floor failure detected; "
1617			"read %d, threshold %d\n",
1618			nf, threshold);
1619
1620		nf = AR5K_TUNE_CCA_MAX_GOOD_VALUE;
1621	}
1622
1623	ath5k_hw_update_nfcal_hist(ah, nf);
1624	nf = ath5k_hw_get_median_noise_floor(ah);
1625
1626	/* load noise floor (in .5 dBm) so the hardware will use it */
1627	val = ath5k_hw_reg_read(ah, AR5K_PHY_NF) & ~AR5K_PHY_NF_M;
1628	val |= (nf * 2) & AR5K_PHY_NF_M;
1629	ath5k_hw_reg_write(ah, val, AR5K_PHY_NF);
1630
1631	AR5K_REG_MASKED_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_NF,
1632		~(AR5K_PHY_AGCCTL_NF_EN | AR5K_PHY_AGCCTL_NF_NOUPDATE));
1633
1634	ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_NF,
1635		0, false);
1636
1637	/*
1638	 * Load a high max CCA Power value (-50 dBm in .5 dBm units)
1639	 * so that we're not capped by the median we just loaded.
1640	 * This will be used as the initial value for the next noise
1641	 * floor calibration.
1642	 */
1643	val = (val & ~AR5K_PHY_NF_M) | ((-50 * 2) & AR5K_PHY_NF_M);
1644	ath5k_hw_reg_write(ah, val, AR5K_PHY_NF);
1645	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1646		AR5K_PHY_AGCCTL_NF_EN |
1647		AR5K_PHY_AGCCTL_NF_NOUPDATE |
1648		AR5K_PHY_AGCCTL_NF);
1649
1650	ah->ah_noise_floor = nf;
1651
1652	ah->ah_cal_mask &= ~AR5K_CALIBRATION_NF;
1653
1654	ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
1655		"noise floor calibrated: %d\n", nf);
1656}
1657
1658/**
1659 * ath5k_hw_rf5110_calibrate() - Perform a PHY calibration on RF5110
1660 * @ah: The &struct ath5k_hw
1661 * @channel: The &struct ieee80211_channel
1662 *
1663 * Do a complete PHY calibration (AGC + NF + I/Q) on RF5110
1664 */
1665static int
1666ath5k_hw_rf5110_calibrate(struct ath5k_hw *ah,
1667		struct ieee80211_channel *channel)
1668{
1669	u32 phy_sig, phy_agc, phy_sat, beacon;
1670	int ret;
1671
1672	if (!(ah->ah_cal_mask & AR5K_CALIBRATION_FULL))
1673		return 0;
1674
1675	/*
1676	 * Disable beacons and RX/TX queues, wait
1677	 */
1678	AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW_5210,
1679		AR5K_DIAG_SW_DIS_TX_5210 | AR5K_DIAG_SW_DIS_RX_5210);
1680	beacon = ath5k_hw_reg_read(ah, AR5K_BEACON_5210);
1681	ath5k_hw_reg_write(ah, beacon & ~AR5K_BEACON_ENABLE, AR5K_BEACON_5210);
1682
1683	usleep_range(2000, 2500);
1684
1685	/*
1686	 * Set the channel (with AGC turned off)
1687	 */
1688	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1689	udelay(10);
1690	ret = ath5k_hw_channel(ah, channel);
1691
1692	/*
1693	 * Activate PHY and wait
1694	 */
1695	ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT);
1696	usleep_range(1000, 1500);
1697
1698	AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1699
1700	if (ret)
1701		return ret;
1702
1703	/*
1704	 * Calibrate the radio chip
1705	 */
1706
1707	/* Remember normal state */
1708	phy_sig = ath5k_hw_reg_read(ah, AR5K_PHY_SIG);
1709	phy_agc = ath5k_hw_reg_read(ah, AR5K_PHY_AGCCOARSE);
1710	phy_sat = ath5k_hw_reg_read(ah, AR5K_PHY_ADCSAT);
1711
1712	/* Update radio registers */
1713	ath5k_hw_reg_write(ah, (phy_sig & ~(AR5K_PHY_SIG_FIRPWR)) |
1714		AR5K_REG_SM(-1, AR5K_PHY_SIG_FIRPWR), AR5K_PHY_SIG);
1715
1716	ath5k_hw_reg_write(ah, (phy_agc & ~(AR5K_PHY_AGCCOARSE_HI |
1717			AR5K_PHY_AGCCOARSE_LO)) |
1718		AR5K_REG_SM(-1, AR5K_PHY_AGCCOARSE_HI) |
1719		AR5K_REG_SM(-127, AR5K_PHY_AGCCOARSE_LO), AR5K_PHY_AGCCOARSE);
1720
1721	ath5k_hw_reg_write(ah, (phy_sat & ~(AR5K_PHY_ADCSAT_ICNT |
1722			AR5K_PHY_ADCSAT_THR)) |
1723		AR5K_REG_SM(2, AR5K_PHY_ADCSAT_ICNT) |
1724		AR5K_REG_SM(12, AR5K_PHY_ADCSAT_THR), AR5K_PHY_ADCSAT);
1725
1726	udelay(20);
1727
1728	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1729	udelay(10);
1730	ath5k_hw_reg_write(ah, AR5K_PHY_RFSTG_DISABLE, AR5K_PHY_RFSTG);
1731	AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1732
1733	usleep_range(1000, 1500);
1734
1735	/*
1736	 * Enable calibration and wait until completion
1737	 */
1738	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_CAL);
1739
1740	ret = ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
1741			AR5K_PHY_AGCCTL_CAL, 0, false);
1742
1743	/* Reset to normal state */
1744	ath5k_hw_reg_write(ah, phy_sig, AR5K_PHY_SIG);
1745	ath5k_hw_reg_write(ah, phy_agc, AR5K_PHY_AGCCOARSE);
1746	ath5k_hw_reg_write(ah, phy_sat, AR5K_PHY_ADCSAT);
1747
1748	if (ret) {
1749		ATH5K_ERR(ah, "calibration timeout (%uMHz)\n",
1750				channel->center_freq);
1751		return ret;
1752	}
1753
1754	/*
1755	 * Re-enable RX/TX and beacons
1756	 */
1757	AR5K_REG_DISABLE_BITS(ah, AR5K_DIAG_SW_5210,
1758		AR5K_DIAG_SW_DIS_TX_5210 | AR5K_DIAG_SW_DIS_RX_5210);
1759	ath5k_hw_reg_write(ah, beacon, AR5K_BEACON_5210);
1760
1761	return 0;
1762}
1763
1764/**
1765 * ath5k_hw_rf511x_iq_calibrate() - Perform I/Q calibration on RF5111 and newer
1766 * @ah: The &struct ath5k_hw
1767 */
1768static int
1769ath5k_hw_rf511x_iq_calibrate(struct ath5k_hw *ah)
1770{
1771	u32 i_pwr, q_pwr;
1772	s32 iq_corr, i_coff, i_coffd, q_coff, q_coffd;
1773	int i;
1774
1775	/* Skip if I/Q calibration is not needed or if it's still running */
1776	if (!ah->ah_iq_cal_needed)
1777		return -EINVAL;
1778	else if (ath5k_hw_reg_read(ah, AR5K_PHY_IQ) & AR5K_PHY_IQ_RUN) {
1779		ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_CALIBRATE,
1780				"I/Q calibration still running");
1781		return -EBUSY;
1782	}
1783
1784	/* Calibration has finished, get the results and re-run */
1785
1786	/* Work around for empty results which can apparently happen on 5212:
1787	 * Read registers up to 10 times until we get both i_pr and q_pwr */
1788	for (i = 0; i <= 10; i++) {
1789		iq_corr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_CORR);
1790		i_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_I);
1791		q_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_Q);
1792		ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_CALIBRATE,
1793			"iq_corr:%x i_pwr:%x q_pwr:%x", iq_corr, i_pwr, q_pwr);
1794		if (i_pwr && q_pwr)
1795			break;
1796	}
1797
1798	i_coffd = ((i_pwr >> 1) + (q_pwr >> 1)) >> 7;
1799
1800	if (ah->ah_version == AR5K_AR5211)
1801		q_coffd = q_pwr >> 6;
1802	else
1803		q_coffd = q_pwr >> 7;
1804
1805	/* In case i_coffd became zero, cancel calibration
1806	 * not only it's too small, it'll also result a divide
1807	 * by zero later on. */
1808	if (i_coffd == 0 || q_coffd < 2)
1809		return -ECANCELED;
1810
1811	/* Protect against loss of sign bits */
1812
1813	i_coff = (-iq_corr) / i_coffd;
1814	i_coff = clamp(i_coff, -32, 31); /* signed 6 bit */
1815
1816	if (ah->ah_version == AR5K_AR5211)
1817		q_coff = (i_pwr / q_coffd) - 64;
1818	else
1819		q_coff = (i_pwr / q_coffd) - 128;
1820	q_coff = clamp(q_coff, -16, 15); /* signed 5 bit */
1821
1822	ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_CALIBRATE,
1823			"new I:%d Q:%d (i_coffd:%x q_coffd:%x)",
1824			i_coff, q_coff, i_coffd, q_coffd);
1825
1826	/* Commit new I/Q values (set enable bit last to match HAL sources) */
1827	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_I_COFF, i_coff);
1828	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_Q_COFF, q_coff);
1829	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_ENABLE);
1830
1831	/* Re-enable calibration -if we don't we'll commit
1832	 * the same values again and again */
1833	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ,
1834			AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15);
1835	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_RUN);
1836
1837	return 0;
1838}
1839
1840/**
1841 * ath5k_hw_phy_calibrate() - Perform a PHY calibration
1842 * @ah: The &struct ath5k_hw
1843 * @channel: The &struct ieee80211_channel
1844 *
1845 * The main function we call from above to perform
1846 * a short or full PHY calibration based on RF chip
1847 * and current channel
1848 */
1849int
1850ath5k_hw_phy_calibrate(struct ath5k_hw *ah,
1851		struct ieee80211_channel *channel)
1852{
1853	int ret;
1854
1855	if (ah->ah_radio == AR5K_RF5110)
1856		return ath5k_hw_rf5110_calibrate(ah, channel);
1857
1858	ret = ath5k_hw_rf511x_iq_calibrate(ah);
1859	if (ret) {
1860		ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_CALIBRATE,
1861			"No I/Q correction performed (%uMHz)\n",
1862			channel->center_freq);
1863
1864		/* Happens all the time if there is not much
1865		 * traffic, consider it normal behaviour. */
1866		ret = 0;
1867	}
1868
1869	/* On full calibration request a PAPD probe for
1870	 * gainf calibration if needed */
1871	if ((ah->ah_cal_mask & AR5K_CALIBRATION_FULL) &&
1872	    (ah->ah_radio == AR5K_RF5111 ||
1873	     ah->ah_radio == AR5K_RF5112) &&
1874	    channel->hw_value != AR5K_MODE_11B)
1875		ath5k_hw_request_rfgain_probe(ah);
1876
1877	/* Update noise floor */
1878	if (!(ah->ah_cal_mask & AR5K_CALIBRATION_NF))
1879		ath5k_hw_update_noise_floor(ah);
1880
1881	return ret;
1882}
1883
1884
1885/***************************\
1886* Spur mitigation functions *
1887\***************************/
1888
1889/**
1890 * ath5k_hw_set_spur_mitigation_filter() - Configure SPUR filter
1891 * @ah: The &struct ath5k_hw
1892 * @channel: The &struct ieee80211_channel
1893 *
1894 * This function gets called during PHY initialization to
1895 * configure the spur filter for the given channel. Spur is noise
1896 * generated due to "reflection" effects, for more information on this
1897 * method check out patent US7643810
1898 */
1899static void
1900ath5k_hw_set_spur_mitigation_filter(struct ath5k_hw *ah,
1901				struct ieee80211_channel *channel)
1902{
1903	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1904	u32 mag_mask[4] = {0, 0, 0, 0};
1905	u32 pilot_mask[2] = {0, 0};
1906	/* Note: fbin values are scaled up by 2 */
1907	u16 spur_chan_fbin, chan_fbin, symbol_width, spur_detection_window;
1908	s32 spur_delta_phase, spur_freq_sigma_delta;
1909	s32 spur_offset, num_symbols_x16;
1910	u8 num_symbol_offsets, i, freq_band;
1911
1912	/* Convert current frequency to fbin value (the same way channels
1913	 * are stored on EEPROM, check out ath5k_eeprom_bin2freq) and scale
1914	 * up by 2 so we can compare it later */
1915	if (channel->band == NL80211_BAND_2GHZ) {
1916		chan_fbin = (channel->center_freq - 2300) * 10;
1917		freq_band = AR5K_EEPROM_BAND_2GHZ;
1918	} else {
1919		chan_fbin = (channel->center_freq - 4900) * 10;
1920		freq_band = AR5K_EEPROM_BAND_5GHZ;
1921	}
1922
1923	/* Check if any spur_chan_fbin from EEPROM is
1924	 * within our current channel's spur detection range */
1925	spur_chan_fbin = AR5K_EEPROM_NO_SPUR;
1926	spur_detection_window = AR5K_SPUR_CHAN_WIDTH;
1927	/* XXX: Half/Quarter channels ?*/
1928	if (ah->ah_bwmode == AR5K_BWMODE_40MHZ)
1929		spur_detection_window *= 2;
1930
1931	for (i = 0; i < AR5K_EEPROM_N_SPUR_CHANS; i++) {
1932		spur_chan_fbin = ee->ee_spur_chans[i][freq_band];
1933
1934		/* Note: mask cleans AR5K_EEPROM_NO_SPUR flag
1935		 * so it's zero if we got nothing from EEPROM */
1936		if (spur_chan_fbin == AR5K_EEPROM_NO_SPUR) {
1937			spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK;
1938			break;
1939		}
1940
1941		if ((chan_fbin - spur_detection_window <=
1942		(spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK)) &&
1943		(chan_fbin + spur_detection_window >=
1944		(spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK))) {
1945			spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK;
1946			break;
1947		}
1948	}
1949
1950	/* We need to enable spur filter for this channel */
1951	if (spur_chan_fbin) {
1952		spur_offset = spur_chan_fbin - chan_fbin;
1953		/*
1954		 * Calculate deltas:
1955		 * spur_freq_sigma_delta -> spur_offset / sample_freq << 21
1956		 * spur_delta_phase -> spur_offset / chip_freq << 11
1957		 * Note: Both values have 100Hz resolution
1958		 */
1959		switch (ah->ah_bwmode) {
1960		case AR5K_BWMODE_40MHZ:
1961			/* Both sample_freq and chip_freq are 80MHz */
1962			spur_delta_phase = (spur_offset << 16) / 25;
1963			spur_freq_sigma_delta = (spur_delta_phase >> 10);
1964			symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz * 2;
1965			break;
1966		case AR5K_BWMODE_10MHZ:
1967			/* Both sample_freq and chip_freq are 20MHz (?) */
1968			spur_delta_phase = (spur_offset << 18) / 25;
1969			spur_freq_sigma_delta = (spur_delta_phase >> 10);
1970			symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz / 2;
1971			break;
1972		case AR5K_BWMODE_5MHZ:
1973			/* Both sample_freq and chip_freq are 10MHz (?) */
1974			spur_delta_phase = (spur_offset << 19) / 25;
1975			spur_freq_sigma_delta = (spur_delta_phase >> 10);
1976			symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz / 4;
1977			break;
1978		default:
1979			if (channel->band == NL80211_BAND_5GHZ) {
1980				/* Both sample_freq and chip_freq are 40MHz */
1981				spur_delta_phase = (spur_offset << 17) / 25;
1982				spur_freq_sigma_delta =
1983						(spur_delta_phase >> 10);
1984				symbol_width =
1985					AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz;
1986			} else {
1987				/* sample_freq -> 40MHz chip_freq -> 44MHz
1988				 * (for b compatibility) */
1989				spur_delta_phase = (spur_offset << 17) / 25;
1990				spur_freq_sigma_delta =
1991						(spur_offset << 8) / 55;
1992				symbol_width =
1993					AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz;
1994			}
1995			break;
1996		}
1997
1998		/* Calculate pilot and magnitude masks */
1999
2000		/* Scale up spur_offset by 1000 to switch to 100HZ resolution
2001		 * and divide by symbol_width to find how many symbols we have
2002		 * Note: number of symbols is scaled up by 16 */
2003		num_symbols_x16 = ((spur_offset * 1000) << 4) / symbol_width;
2004
2005		/* Spur is on a symbol if num_symbols_x16 % 16 is zero */
2006		if (!(num_symbols_x16 & 0xF))
2007			/* _X_ */
2008			num_symbol_offsets = 3;
2009		else
2010			/* _xx_ */
2011			num_symbol_offsets = 4;
2012
2013		for (i = 0; i < num_symbol_offsets; i++) {
2014
2015			/* Calculate pilot mask */
2016			s32 curr_sym_off =
2017				(num_symbols_x16 / 16) + i + 25;
2018
2019			/* Pilot magnitude mask seems to be a way to
2020			 * declare the boundaries for our detection
2021			 * window or something, it's 2 for the middle
2022			 * value(s) where the symbol is expected to be
2023			 * and 1 on the boundary values */
2024			u8 plt_mag_map =
2025				(i == 0 || i == (num_symbol_offsets - 1))
2026								? 1 : 2;
2027
2028			if (curr_sym_off >= 0 && curr_sym_off <= 32) {
2029				if (curr_sym_off <= 25)
2030					pilot_mask[0] |= 1 << curr_sym_off;
2031				else if (curr_sym_off >= 27)
2032					pilot_mask[0] |= 1 << (curr_sym_off - 1);
2033			} else if (curr_sym_off >= 33 && curr_sym_off <= 52)
2034				pilot_mask[1] |= 1 << (curr_sym_off - 33);
2035
2036			/* Calculate magnitude mask (for viterbi decoder) */
2037			if (curr_sym_off >= -1 && curr_sym_off <= 14)
2038				mag_mask[0] |=
2039					plt_mag_map << (curr_sym_off + 1) * 2;
2040			else if (curr_sym_off >= 15 && curr_sym_off <= 30)
2041				mag_mask[1] |=
2042					plt_mag_map << (curr_sym_off - 15) * 2;
2043			else if (curr_sym_off >= 31 && curr_sym_off <= 46)
2044				mag_mask[2] |=
2045					plt_mag_map << (curr_sym_off - 31) * 2;
2046			else if (curr_sym_off >= 47 && curr_sym_off <= 53)
2047				mag_mask[3] |=
2048					plt_mag_map << (curr_sym_off - 47) * 2;
2049
2050		}
2051
2052		/* Write settings on hw to enable spur filter */
2053		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
2054					AR5K_PHY_BIN_MASK_CTL_RATE, 0xff);
2055		/* XXX: Self correlator also ? */
2056		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
2057					AR5K_PHY_IQ_PILOT_MASK_EN |
2058					AR5K_PHY_IQ_CHAN_MASK_EN |
2059					AR5K_PHY_IQ_SPUR_FILT_EN);
2060
2061		/* Set delta phase and freq sigma delta */
2062		ath5k_hw_reg_write(ah,
2063				AR5K_REG_SM(spur_delta_phase,
2064					AR5K_PHY_TIMING_11_SPUR_DELTA_PHASE) |
2065				AR5K_REG_SM(spur_freq_sigma_delta,
2066				AR5K_PHY_TIMING_11_SPUR_FREQ_SD) |
2067				AR5K_PHY_TIMING_11_USE_SPUR_IN_AGC,
2068				AR5K_PHY_TIMING_11);
2069
2070		/* Write pilot masks */
2071		ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_7);
2072		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8,
2073					AR5K_PHY_TIMING_8_PILOT_MASK_2,
2074					pilot_mask[1]);
2075
2076		ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_9);
2077		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10,
2078					AR5K_PHY_TIMING_10_PILOT_MASK_2,
2079					pilot_mask[1]);
2080
2081		/* Write magnitude masks */
2082		ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK_1);
2083		ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK_2);
2084		ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK_3);
2085		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
2086					AR5K_PHY_BIN_MASK_CTL_MASK_4,
2087					mag_mask[3]);
2088
2089		ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK2_1);
2090		ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK2_2);
2091		ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK2_3);
2092		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4,
2093					AR5K_PHY_BIN_MASK2_4_MASK_4,
2094					mag_mask[3]);
2095
2096	} else if (ath5k_hw_reg_read(ah, AR5K_PHY_IQ) &
2097	AR5K_PHY_IQ_SPUR_FILT_EN) {
2098		/* Clean up spur mitigation settings and disable filter */
2099		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
2100					AR5K_PHY_BIN_MASK_CTL_RATE, 0);
2101		AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_IQ,
2102					AR5K_PHY_IQ_PILOT_MASK_EN |
2103					AR5K_PHY_IQ_CHAN_MASK_EN |
2104					AR5K_PHY_IQ_SPUR_FILT_EN);
2105		ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_11);
2106
2107		/* Clear pilot masks */
2108		ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_7);
2109		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8,
2110					AR5K_PHY_TIMING_8_PILOT_MASK_2,
2111					0);
2112
2113		ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_9);
2114		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10,
2115					AR5K_PHY_TIMING_10_PILOT_MASK_2,
2116					0);
2117
2118		/* Clear magnitude masks */
2119		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_1);
2120		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_2);
2121		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_3);
2122		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
2123					AR5K_PHY_BIN_MASK_CTL_MASK_4,
2124					0);
2125
2126		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_1);
2127		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_2);
2128		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_3);
2129		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4,
2130					AR5K_PHY_BIN_MASK2_4_MASK_4,
2131					0);
2132	}
2133}
2134
2135
2136/*****************\
2137* Antenna control *
2138\*****************/
2139
2140/**
2141 * DOC: Antenna control
2142 *
2143 * Hw supports up to 14 antennas ! I haven't found any card that implements
2144 * that. The maximum number of antennas I've seen is up to 4 (2 for 2GHz and 2
2145 * for 5GHz). Antenna 1 (MAIN) should be omnidirectional, 2 (AUX)
2146 * omnidirectional or sectorial and antennas 3-14 sectorial (or directional).
2147 *
2148 * We can have a single antenna for RX and multiple antennas for TX.
2149 * RX antenna is our "default" antenna (usually antenna 1) set on
2150 * DEFAULT_ANTENNA register and TX antenna is set on each TX control descriptor
2151 * (0 for automatic selection, 1 - 14 antenna number).
2152 *
2153 * We can let hw do all the work doing fast antenna diversity for both
2154 * tx and rx or we can do things manually. Here are the options we have
2155 * (all are bits of STA_ID1 register):
2156 *
2157 * AR5K_STA_ID1_DEFAULT_ANTENNA -> When 0 is set as the TX antenna on TX
2158 * control descriptor, use the default antenna to transmit or else use the last
2159 * antenna on which we received an ACK.
2160 *
2161 * AR5K_STA_ID1_DESC_ANTENNA -> Update default antenna after each TX frame to
2162 * the antenna on which we got the ACK for that frame.
2163 *
2164 * AR5K_STA_ID1_RTS_DEF_ANTENNA -> Use default antenna for RTS or else use the
2165 * one on the TX descriptor.
2166 *
2167 * AR5K_STA_ID1_SELFGEN_DEF_ANT -> Use default antenna for self generated frames
2168 * (ACKs etc), or else use current antenna (the one we just used for TX).
2169 *
2170 * Using the above we support the following scenarios:
2171 *
2172 * AR5K_ANTMODE_DEFAULT -> Hw handles antenna diversity etc automatically
2173 *
2174 * AR5K_ANTMODE_FIXED_A	-> Only antenna A (MAIN) is present
2175 *
2176 * AR5K_ANTMODE_FIXED_B	-> Only antenna B (AUX) is present
2177 *
2178 * AR5K_ANTMODE_SINGLE_AP -> Sta locked on a single ap
2179 *
2180 * AR5K_ANTMODE_SECTOR_AP -> AP with tx antenna set on tx desc
2181 *
2182 * AR5K_ANTMODE_SECTOR_STA -> STA with tx antenna set on tx desc
2183 *
2184 * AR5K_ANTMODE_DEBUG Debug mode -A -> Rx, B-> Tx-
2185 *
2186 * Also note that when setting antenna to F on tx descriptor card inverts
2187 * current tx antenna.
2188 */
2189
2190/**
2191 * ath5k_hw_set_def_antenna() - Set default rx antenna on AR5211/5212 and newer
2192 * @ah: The &struct ath5k_hw
2193 * @ant: Antenna number
2194 */
2195static void
2196ath5k_hw_set_def_antenna(struct ath5k_hw *ah, u8 ant)
2197{
2198	if (ah->ah_version != AR5K_AR5210)
2199		ath5k_hw_reg_write(ah, ant & 0x7, AR5K_DEFAULT_ANTENNA);
2200}
2201
2202/**
2203 * ath5k_hw_set_fast_div() -  Enable/disable fast rx antenna diversity
2204 * @ah: The &struct ath5k_hw
2205 * @ee_mode: One of enum ath5k_driver_mode
2206 * @enable: True to enable, false to disable
2207 */
2208static void
2209ath5k_hw_set_fast_div(struct ath5k_hw *ah, u8 ee_mode, bool enable)
2210{
2211	switch (ee_mode) {
2212	case AR5K_EEPROM_MODE_11G:
2213		/* XXX: This is set to
2214		 * disabled on initvals !!! */
2215	case AR5K_EEPROM_MODE_11A:
2216		if (enable)
2217			AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGCCTL,
2218					AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
2219		else
2220			AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
2221					AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
2222		break;
2223	case AR5K_EEPROM_MODE_11B:
2224		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
2225					AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
2226		break;
2227	default:
2228		return;
2229	}
2230
2231	if (enable) {
2232		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART,
2233				AR5K_PHY_RESTART_DIV_GC, 4);
2234
2235		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV,
2236					AR5K_PHY_FAST_ANT_DIV_EN);
2237	} else {
2238		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART,
2239				AR5K_PHY_RESTART_DIV_GC, 0);
2240
2241		AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV,
2242					AR5K_PHY_FAST_ANT_DIV_EN);
2243	}
2244}
2245
2246/**
2247 * ath5k_hw_set_antenna_switch() - Set up antenna switch table
2248 * @ah: The &struct ath5k_hw
2249 * @ee_mode: One of enum ath5k_driver_mode
2250 *
2251 * Switch table comes from EEPROM and includes information on controlling
2252 * the 2 antenna RX attenuators
2253 */
2254void
2255ath5k_hw_set_antenna_switch(struct ath5k_hw *ah, u8 ee_mode)
2256{
2257	u8 ant0, ant1;
2258
2259	/*
2260	 * In case a fixed antenna was set as default
2261	 * use the same switch table twice.
2262	 */
2263	if (ah->ah_ant_mode == AR5K_ANTMODE_FIXED_A)
2264		ant0 = ant1 = AR5K_ANT_SWTABLE_A;
2265	else if (ah->ah_ant_mode == AR5K_ANTMODE_FIXED_B)
2266		ant0 = ant1 = AR5K_ANT_SWTABLE_B;
2267	else {
2268		ant0 = AR5K_ANT_SWTABLE_A;
2269		ant1 = AR5K_ANT_SWTABLE_B;
2270	}
2271
2272	/* Set antenna idle switch table */
2273	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_ANT_CTL,
2274			AR5K_PHY_ANT_CTL_SWTABLE_IDLE,
2275			(ah->ah_ant_ctl[ee_mode][AR5K_ANT_CTL] |
2276			AR5K_PHY_ANT_CTL_TXRX_EN));
2277
2278	/* Set antenna switch tables */
2279	ath5k_hw_reg_write(ah, ah->ah_ant_ctl[ee_mode][ant0],
2280		AR5K_PHY_ANT_SWITCH_TABLE_0);
2281	ath5k_hw_reg_write(ah, ah->ah_ant_ctl[ee_mode][ant1],
2282		AR5K_PHY_ANT_SWITCH_TABLE_1);
2283}
2284
2285/**
2286 * ath5k_hw_set_antenna_mode() -  Set antenna operating mode
2287 * @ah: The &struct ath5k_hw
2288 * @ant_mode: One of enum ath5k_ant_mode
2289 */
2290void
2291ath5k_hw_set_antenna_mode(struct ath5k_hw *ah, u8 ant_mode)
2292{
2293	struct ieee80211_channel *channel = ah->ah_current_channel;
2294	bool use_def_for_tx, update_def_on_tx, use_def_for_rts, fast_div;
2295	bool use_def_for_sg;
2296	int ee_mode;
2297	u8 def_ant, tx_ant;
2298	u32 sta_id1 = 0;
2299
2300	/* if channel is not initialized yet we can't set the antennas
2301	 * so just store the mode. it will be set on the next reset */
2302	if (channel == NULL) {
2303		ah->ah_ant_mode = ant_mode;
2304		return;
2305	}
2306
2307	def_ant = ah->ah_def_ant;
2308
2309	ee_mode = ath5k_eeprom_mode_from_channel(ah, channel);
2310
2311	switch (ant_mode) {
2312	case AR5K_ANTMODE_DEFAULT:
2313		tx_ant = 0;
2314		use_def_for_tx = false;
2315		update_def_on_tx = false;
2316		use_def_for_rts = false;
2317		use_def_for_sg = false;
2318		fast_div = true;
2319		break;
2320	case AR5K_ANTMODE_FIXED_A:
2321		def_ant = 1;
2322		tx_ant = 1;
2323		use_def_for_tx = true;
2324		update_def_on_tx = false;
2325		use_def_for_rts = true;
2326		use_def_for_sg = true;
2327		fast_div = false;
2328		break;
2329	case AR5K_ANTMODE_FIXED_B:
2330		def_ant = 2;
2331		tx_ant = 2;
2332		use_def_for_tx = true;
2333		update_def_on_tx = false;
2334		use_def_for_rts = true;
2335		use_def_for_sg = true;
2336		fast_div = false;
2337		break;
2338	case AR5K_ANTMODE_SINGLE_AP:
2339		def_ant = 1;	/* updated on tx */
2340		tx_ant = 0;
2341		use_def_for_tx = true;
2342		update_def_on_tx = true;
2343		use_def_for_rts = true;
2344		use_def_for_sg = true;
2345		fast_div = true;
2346		break;
2347	case AR5K_ANTMODE_SECTOR_AP:
2348		tx_ant = 1;	/* variable */
2349		use_def_for_tx = false;
2350		update_def_on_tx = false;
2351		use_def_for_rts = true;
2352		use_def_for_sg = false;
2353		fast_div = false;
2354		break;
2355	case AR5K_ANTMODE_SECTOR_STA:
2356		tx_ant = 1;	/* variable */
2357		use_def_for_tx = true;
2358		update_def_on_tx = false;
2359		use_def_for_rts = true;
2360		use_def_for_sg = false;
2361		fast_div = true;
2362		break;
2363	case AR5K_ANTMODE_DEBUG:
2364		def_ant = 1;
2365		tx_ant = 2;
2366		use_def_for_tx = false;
2367		update_def_on_tx = false;
2368		use_def_for_rts = false;
2369		use_def_for_sg = false;
2370		fast_div = false;
2371		break;
2372	default:
2373		return;
2374	}
2375
2376	ah->ah_tx_ant = tx_ant;
2377	ah->ah_ant_mode = ant_mode;
2378	ah->ah_def_ant = def_ant;
2379
2380	sta_id1 |= use_def_for_tx ? AR5K_STA_ID1_DEFAULT_ANTENNA : 0;
2381	sta_id1 |= update_def_on_tx ? AR5K_STA_ID1_DESC_ANTENNA : 0;
2382	sta_id1 |= use_def_for_rts ? AR5K_STA_ID1_RTS_DEF_ANTENNA : 0;
2383	sta_id1 |= use_def_for_sg ? AR5K_STA_ID1_SELFGEN_DEF_ANT : 0;
2384
2385	AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, AR5K_STA_ID1_ANTENNA_SETTINGS);
2386
2387	if (sta_id1)
2388		AR5K_REG_ENABLE_BITS(ah, AR5K_STA_ID1, sta_id1);
2389
2390	ath5k_hw_set_antenna_switch(ah, ee_mode);
2391	/* Note: set diversity before default antenna
2392	 * because it won't work correctly */
2393	ath5k_hw_set_fast_div(ah, ee_mode, fast_div);
2394	ath5k_hw_set_def_antenna(ah, def_ant);
2395}
2396
2397
2398/****************\
2399* TX power setup *
2400\****************/
2401
2402/*
2403 * Helper functions
2404 */
2405
2406/**
2407 * ath5k_get_interpolated_value() - Get interpolated Y val between two points
2408 * @target: X value of the middle point
2409 * @x_left: X value of the left point
2410 * @x_right: X value of the right point
2411 * @y_left: Y value of the left point
2412 * @y_right: Y value of the right point
2413 */
2414static s16
2415ath5k_get_interpolated_value(s16 target, s16 x_left, s16 x_right,
2416					s16 y_left, s16 y_right)
2417{
2418	s16 ratio, result;
2419
2420	/* Avoid divide by zero and skip interpolation
2421	 * if we have the same point */
2422	if ((x_left == x_right) || (y_left == y_right))
2423		return y_left;
2424
2425	/*
2426	 * Since we use ints and not fps, we need to scale up in
2427	 * order to get a sane ratio value (or else we 'll eg. get
2428	 * always 1 instead of 1.25, 1.75 etc). We scale up by 100
2429	 * to have some accuracy both for 0.5 and 0.25 steps.
2430	 */
2431	ratio = ((100 * y_right - 100 * y_left) / (x_right - x_left));
2432
2433	/* Now scale down to be in range */
2434	result = y_left + (ratio * (target - x_left) / 100);
2435
2436	return result;
2437}
2438
2439/**
2440 * ath5k_get_linear_pcdac_min() - Find vertical boundary (min pwr) for the
2441 * linear PCDAC curve
2442 * @stepL: Left array with y values (pcdac steps)
2443 * @stepR: Right array with y values (pcdac steps)
2444 * @pwrL: Left array with x values (power steps)
2445 * @pwrR: Right array with x values (power steps)
2446 *
2447 * Since we have the top of the curve and we draw the line below
2448 * until we reach 1 (1 pcdac step) we need to know which point
2449 * (x value) that is so that we don't go below x axis and have negative
2450 * pcdac values when creating the curve, or fill the table with zeros.
2451 */
2452static s16
2453ath5k_get_linear_pcdac_min(const u8 *stepL, const u8 *stepR,
2454				const s16 *pwrL, const s16 *pwrR)
2455{
2456	s8 tmp;
2457	s16 min_pwrL, min_pwrR;
2458	s16 pwr_i;
2459
2460	/* Some vendors write the same pcdac value twice !!! */
2461	if (stepL[0] == stepL[1] || stepR[0] == stepR[1])
2462		return max(pwrL[0], pwrR[0]);
2463
2464	if (pwrL[0] == pwrL[1])
2465		min_pwrL = pwrL[0];
2466	else {
2467		pwr_i = pwrL[0];
2468		do {
2469			pwr_i--;
2470			tmp = (s8) ath5k_get_interpolated_value(pwr_i,
2471							pwrL[0], pwrL[1],
2472							stepL[0], stepL[1]);
2473		} while (tmp > 1);
2474
2475		min_pwrL = pwr_i;
2476	}
2477
2478	if (pwrR[0] == pwrR[1])
2479		min_pwrR = pwrR[0];
2480	else {
2481		pwr_i = pwrR[0];
2482		do {
2483			pwr_i--;
2484			tmp = (s8) ath5k_get_interpolated_value(pwr_i,
2485							pwrR[0], pwrR[1],
2486							stepR[0], stepR[1]);
2487		} while (tmp > 1);
2488
2489		min_pwrR = pwr_i;
2490	}
2491
2492	/* Keep the right boundary so that it works for both curves */
2493	return max(min_pwrL, min_pwrR);
2494}
2495
2496/**
2497 * ath5k_create_power_curve() - Create a Power to PDADC or PCDAC curve
2498 * @pmin: Minimum power value (xmin)
2499 * @pmax: Maximum power value (xmax)
2500 * @pwr: Array of power steps (x values)
2501 * @vpd: Array of matching PCDAC/PDADC steps (y values)
2502 * @num_points: Number of provided points
2503 * @vpd_table: Array to fill with the full PCDAC/PDADC values (y values)
2504 * @type: One of enum ath5k_powertable_type (eeprom.h)
2505 *
2506 * Interpolate (pwr,vpd) points to create a Power to PDADC or a
2507 * Power to PCDAC curve.
2508 *
2509 * Each curve has power on x axis (in 0.5dB units) and PCDAC/PDADC
2510 * steps (offsets) on y axis. Power can go up to 31.5dB and max
2511 * PCDAC/PDADC step for each curve is 64 but we can write more than
2512 * one curves on hw so we can go up to 128 (which is the max step we
2513 * can write on the final table).
2514 *
2515 * We write y values (PCDAC/PDADC steps) on hw.
2516 */
2517static void
2518ath5k_create_power_curve(s16 pmin, s16 pmax,
2519			const s16 *pwr, const u8 *vpd,
2520			u8 num_points,
2521			u8 *vpd_table, u8 type)
2522{
2523	u8 idx[2] = { 0, 1 };
2524	s16 pwr_i = 2 * pmin;
2525	int i;
2526
2527	if (num_points < 2)
2528		return;
2529
2530	/* We want the whole line, so adjust boundaries
2531	 * to cover the entire power range. Note that
2532	 * power values are already 0.25dB so no need
2533	 * to multiply pwr_i by 2 */
2534	if (type == AR5K_PWRTABLE_LINEAR_PCDAC) {
2535		pwr_i = pmin;
2536		pmin = 0;
2537		pmax = 63;
2538	}
2539
2540	/* Find surrounding turning points (TPs)
2541	 * and interpolate between them */
2542	for (i = 0; (i <= (u16) (pmax - pmin)) &&
2543	(i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
2544
2545		/* We passed the right TP, move to the next set of TPs
2546		 * if we pass the last TP, extrapolate above using the last
2547		 * two TPs for ratio */
2548		if ((pwr_i > pwr[idx[1]]) && (idx[1] < num_points - 1)) {
2549			idx[0]++;
2550			idx[1]++;
2551		}
2552
2553		vpd_table[i] = (u8) ath5k_get_interpolated_value(pwr_i,
2554						pwr[idx[0]], pwr[idx[1]],
2555						vpd[idx[0]], vpd[idx[1]]);
2556
2557		/* Increase by 0.5dB
2558		 * (0.25 dB units) */
2559		pwr_i += 2;
2560	}
2561}
2562
2563/**
2564 * ath5k_get_chan_pcal_surrounding_piers() - Get surrounding calibration piers
2565 * for a given channel.
2566 * @ah: The &struct ath5k_hw
2567 * @channel: The &struct ieee80211_channel
2568 * @pcinfo_l: The &struct ath5k_chan_pcal_info to put the left cal. pier
2569 * @pcinfo_r: The &struct ath5k_chan_pcal_info to put the right cal. pier
2570 *
2571 * Get the surrounding per-channel power calibration piers
2572 * for a given frequency so that we can interpolate between
2573 * them and come up with an appropriate dataset for our current
2574 * channel.
2575 */
2576static void
2577ath5k_get_chan_pcal_surrounding_piers(struct ath5k_hw *ah,
2578			struct ieee80211_channel *channel,
2579			struct ath5k_chan_pcal_info **pcinfo_l,
2580			struct ath5k_chan_pcal_info **pcinfo_r)
2581{
2582	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2583	struct ath5k_chan_pcal_info *pcinfo;
2584	u8 idx_l, idx_r;
2585	u8 mode, max, i;
2586	u32 target = channel->center_freq;
2587
2588	idx_l = 0;
2589	idx_r = 0;
2590
2591	switch (channel->hw_value) {
2592	case AR5K_EEPROM_MODE_11A:
2593		pcinfo = ee->ee_pwr_cal_a;
2594		mode = AR5K_EEPROM_MODE_11A;
2595		break;
2596	case AR5K_EEPROM_MODE_11B:
2597		pcinfo = ee->ee_pwr_cal_b;
2598		mode = AR5K_EEPROM_MODE_11B;
2599		break;
2600	case AR5K_EEPROM_MODE_11G:
2601	default:
2602		pcinfo = ee->ee_pwr_cal_g;
2603		mode = AR5K_EEPROM_MODE_11G;
2604		break;
2605	}
2606	max = ee->ee_n_piers[mode] - 1;
2607
2608	/* Frequency is below our calibrated
2609	 * range. Use the lowest power curve
2610	 * we have */
2611	if (target < pcinfo[0].freq) {
2612		idx_l = idx_r = 0;
2613		goto done;
2614	}
2615
2616	/* Frequency is above our calibrated
2617	 * range. Use the highest power curve
2618	 * we have */
2619	if (target > pcinfo[max].freq) {
2620		idx_l = idx_r = max;
2621		goto done;
2622	}
2623
2624	/* Frequency is inside our calibrated
2625	 * channel range. Pick the surrounding
2626	 * calibration piers so that we can
2627	 * interpolate */
2628	for (i = 0; i <= max; i++) {
2629
2630		/* Frequency matches one of our calibration
2631		 * piers, no need to interpolate, just use
2632		 * that calibration pier */
2633		if (pcinfo[i].freq == target) {
2634			idx_l = idx_r = i;
2635			goto done;
2636		}
2637
2638		/* We found a calibration pier that's above
2639		 * frequency, use this pier and the previous
2640		 * one to interpolate */
2641		if (target < pcinfo[i].freq) {
2642			idx_r = i;
2643			idx_l = idx_r - 1;
2644			goto done;
2645		}
2646	}
2647
2648done:
2649	*pcinfo_l = &pcinfo[idx_l];
2650	*pcinfo_r = &pcinfo[idx_r];
2651}
2652
2653/**
2654 * ath5k_get_rate_pcal_data() - Get the interpolated per-rate power
2655 * calibration data
2656 * @ah: The &struct ath5k_hw *ah,
2657 * @channel: The &struct ieee80211_channel
2658 * @rates: The &struct ath5k_rate_pcal_info to fill
2659 *
2660 * Get the surrounding per-rate power calibration data
2661 * for a given frequency and interpolate between power
2662 * values to set max target power supported by hw for
2663 * each rate on this frequency.
2664 */
2665static void
2666ath5k_get_rate_pcal_data(struct ath5k_hw *ah,
2667			struct ieee80211_channel *channel,
2668			struct ath5k_rate_pcal_info *rates)
2669{
2670	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2671	struct ath5k_rate_pcal_info *rpinfo;
2672	u8 idx_l, idx_r;
2673	u8 mode, max, i;
2674	u32 target = channel->center_freq;
2675
2676	idx_l = 0;
2677	idx_r = 0;
2678
2679	switch (channel->hw_value) {
2680	case AR5K_MODE_11A:
2681		rpinfo = ee->ee_rate_tpwr_a;
2682		mode = AR5K_EEPROM_MODE_11A;
2683		break;
2684	case AR5K_MODE_11B:
2685		rpinfo = ee->ee_rate_tpwr_b;
2686		mode = AR5K_EEPROM_MODE_11B;
2687		break;
2688	case AR5K_MODE_11G:
2689	default:
2690		rpinfo = ee->ee_rate_tpwr_g;
2691		mode = AR5K_EEPROM_MODE_11G;
2692		break;
2693	}
2694	max = ee->ee_rate_target_pwr_num[mode] - 1;
2695
2696	/* Get the surrounding calibration
2697	 * piers - same as above */
2698	if (target < rpinfo[0].freq) {
2699		idx_l = idx_r = 0;
2700		goto done;
2701	}
2702
2703	if (target > rpinfo[max].freq) {
2704		idx_l = idx_r = max;
2705		goto done;
2706	}
2707
2708	for (i = 0; i <= max; i++) {
2709
2710		if (rpinfo[i].freq == target) {
2711			idx_l = idx_r = i;
2712			goto done;
2713		}
2714
2715		if (target < rpinfo[i].freq) {
2716			idx_r = i;
2717			idx_l = idx_r - 1;
2718			goto done;
2719		}
2720	}
2721
2722done:
2723	/* Now interpolate power value, based on the frequency */
2724	rates->freq = target;
2725
2726	rates->target_power_6to24 =
2727		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2728					rpinfo[idx_r].freq,
2729					rpinfo[idx_l].target_power_6to24,
2730					rpinfo[idx_r].target_power_6to24);
2731
2732	rates->target_power_36 =
2733		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2734					rpinfo[idx_r].freq,
2735					rpinfo[idx_l].target_power_36,
2736					rpinfo[idx_r].target_power_36);
2737
2738	rates->target_power_48 =
2739		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2740					rpinfo[idx_r].freq,
2741					rpinfo[idx_l].target_power_48,
2742					rpinfo[idx_r].target_power_48);
2743
2744	rates->target_power_54 =
2745		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2746					rpinfo[idx_r].freq,
2747					rpinfo[idx_l].target_power_54,
2748					rpinfo[idx_r].target_power_54);
2749}
2750
2751/**
2752 * ath5k_get_max_ctl_power() - Get max edge power for a given frequency
2753 * @ah: the &struct ath5k_hw
2754 * @channel: The &struct ieee80211_channel
2755 *
2756 * Get the max edge power for this channel if
2757 * we have such data from EEPROM's Conformance Test
2758 * Limits (CTL), and limit max power if needed.
2759 */
2760static void
2761ath5k_get_max_ctl_power(struct ath5k_hw *ah,
2762			struct ieee80211_channel *channel)
2763{
2764	struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
2765	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2766	struct ath5k_edge_power *rep = ee->ee_ctl_pwr;
2767	u8 *ctl_val = ee->ee_ctl;
2768	s16 max_chan_pwr = ah->ah_txpower.txp_max_pwr / 4;
2769	s16 edge_pwr = 0;
2770	u8 rep_idx;
2771	u8 i, ctl_mode;
2772	u8 ctl_idx = 0xFF;
2773	u32 target = channel->center_freq;
2774
2775	ctl_mode = ath_regd_get_band_ctl(regulatory, channel->band);
2776
2777	switch (channel->hw_value) {
2778	case AR5K_MODE_11A:
2779		if (ah->ah_bwmode == AR5K_BWMODE_40MHZ)
2780			ctl_mode |= AR5K_CTL_TURBO;
2781		else
2782			ctl_mode |= AR5K_CTL_11A;
2783		break;
2784	case AR5K_MODE_11G:
2785		if (ah->ah_bwmode == AR5K_BWMODE_40MHZ)
2786			ctl_mode |= AR5K_CTL_TURBOG;
2787		else
2788			ctl_mode |= AR5K_CTL_11G;
2789		break;
2790	case AR5K_MODE_11B:
2791		ctl_mode |= AR5K_CTL_11B;
2792		break;
2793	default:
2794		return;
2795	}
2796
2797	for (i = 0; i < ee->ee_ctls; i++) {
2798		if (ctl_val[i] == ctl_mode) {
2799			ctl_idx = i;
2800			break;
2801		}
2802	}
2803
2804	/* If we have a CTL dataset available grab it and find the
2805	 * edge power for our frequency */
2806	if (ctl_idx == 0xFF)
2807		return;
2808
2809	/* Edge powers are sorted by frequency from lower
2810	 * to higher. Each CTL corresponds to 8 edge power
2811	 * measurements. */
2812	rep_idx = ctl_idx * AR5K_EEPROM_N_EDGES;
2813
2814	/* Don't do boundaries check because we
2815	 * might have more that one bands defined
2816	 * for this mode */
2817
2818	/* Get the edge power that's closer to our
2819	 * frequency */
2820	for (i = 0; i < AR5K_EEPROM_N_EDGES; i++) {
2821		rep_idx += i;
2822		if (target <= rep[rep_idx].freq)
2823			edge_pwr = (s16) rep[rep_idx].edge;
2824	}
2825
2826	if (edge_pwr)
2827		ah->ah_txpower.txp_max_pwr = 4 * min(edge_pwr, max_chan_pwr);
2828}
2829
2830
2831/*
2832 * Power to PCDAC table functions
2833 */
2834
2835/**
2836 * DOC: Power to PCDAC table functions
2837 *
2838 * For RF5111 we have an XPD -eXternal Power Detector- curve
2839 * for each calibrated channel. Each curve has 0,5dB Power steps
2840 * on x axis and PCDAC steps (offsets) on y axis and looks like an
2841 * exponential function. To recreate the curve we read 11 points
2842 * from eeprom (eeprom.c) and interpolate here.
2843 *
2844 * For RF5112 we have 4 XPD -eXternal Power Detector- curves
2845 * for each calibrated channel on 0, -6, -12 and -18dBm but we only
2846 * use the higher (3) and the lower (0) curves. Each curve again has 0.5dB
2847 * power steps on x axis and PCDAC steps on y axis and looks like a
2848 * linear function. To recreate the curve and pass the power values
2849 * on hw, we get 4 points for xpd 0 (lower gain -> max power)
2850 * and 3 points for xpd 3 (higher gain -> lower power) from eeprom (eeprom.c)
2851 * and interpolate here.
2852 *
2853 * For a given channel we get the calibrated points (piers) for it or
2854 * -if we don't have calibration data for this specific channel- from the
2855 * available surrounding channels we have calibration data for, after we do a
2856 * linear interpolation between them. Then since we have our calibrated points
2857 * for this channel, we do again a linear interpolation between them to get the
2858 * whole curve.
2859 *
2860 * We finally write the Y values of the curve(s) (the PCDAC values) on hw
2861 */
2862
2863/**
2864 * ath5k_fill_pwr_to_pcdac_table() - Fill Power to PCDAC table on RF5111
2865 * @ah: The &struct ath5k_hw
2866 * @table_min: Minimum power (x min)
2867 * @table_max: Maximum power (x max)
2868 *
2869 * No further processing is needed for RF5111, the only thing we have to
2870 * do is fill the values below and above calibration range since eeprom data
2871 * may not cover the entire PCDAC table.
2872 */
2873static void
2874ath5k_fill_pwr_to_pcdac_table(struct ath5k_hw *ah, s16* table_min,
2875							s16 *table_max)
2876{
2877	u8	*pcdac_out = ah->ah_txpower.txp_pd_table;
2878	u8	*pcdac_tmp = ah->ah_txpower.tmpL[0];
2879	u8	pcdac_0, pcdac_n, pcdac_i, pwr_idx, i;
2880	s16	min_pwr, max_pwr;
2881
2882	/* Get table boundaries */
2883	min_pwr = table_min[0];
2884	pcdac_0 = pcdac_tmp[0];
2885
2886	max_pwr = table_max[0];
2887	pcdac_n = pcdac_tmp[table_max[0] - table_min[0]];
2888
2889	/* Extrapolate below minimum using pcdac_0 */
2890	pcdac_i = 0;
2891	for (i = 0; i < min_pwr; i++)
2892		pcdac_out[pcdac_i++] = pcdac_0;
2893
2894	/* Copy values from pcdac_tmp */
2895	pwr_idx = min_pwr;
2896	for (i = 0; pwr_idx <= max_pwr &&
2897		    pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE; i++) {
2898		pcdac_out[pcdac_i++] = pcdac_tmp[i];
2899		pwr_idx++;
2900	}
2901
2902	/* Extrapolate above maximum */
2903	while (pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE)
2904		pcdac_out[pcdac_i++] = pcdac_n;
2905
2906}
2907
2908/**
2909 * ath5k_combine_linear_pcdac_curves() - Combine available PCDAC Curves
2910 * @ah: The &struct ath5k_hw
2911 * @table_min: Minimum power (x min)
2912 * @table_max: Maximum power (x max)
2913 * @pdcurves: Number of pd curves
2914 *
2915 * Combine available XPD Curves and fill Linear Power to PCDAC table on RF5112
2916 * RFX112 can have up to 2 curves (one for low txpower range and one for
2917 * higher txpower range). We need to put them both on pcdac_out and place
2918 * them in the correct location. In case we only have one curve available
2919 * just fit it on pcdac_out (it's supposed to cover the entire range of
2920 * available pwr levels since it's always the higher power curve). Extrapolate
2921 * below and above final table if needed.
2922 */
2923static void
2924ath5k_combine_linear_pcdac_curves(struct ath5k_hw *ah, s16* table_min,
2925						s16 *table_max, u8 pdcurves)
2926{
2927	u8	*pcdac_out = ah->ah_txpower.txp_pd_table;
2928	u8	*pcdac_low_pwr;
2929	u8	*pcdac_high_pwr;
2930	u8	*pcdac_tmp;
2931	u8	pwr;
2932	s16	max_pwr_idx;
2933	s16	min_pwr_idx;
2934	s16	mid_pwr_idx = 0;
2935	/* Edge flag turns on the 7nth bit on the PCDAC
2936	 * to declare the higher power curve (force values
2937	 * to be greater than 64). If we only have one curve
2938	 * we don't need to set this, if we have 2 curves and
2939	 * fill the table backwards this can also be used to
2940	 * switch from higher power curve to lower power curve */
2941	u8	edge_flag;
2942	int	i;
2943
2944	/* When we have only one curve available
2945	 * that's the higher power curve. If we have
2946	 * two curves the first is the high power curve
2947	 * and the next is the low power curve. */
2948	if (pdcurves > 1) {
2949		pcdac_low_pwr = ah->ah_txpower.tmpL[1];
2950		pcdac_high_pwr = ah->ah_txpower.tmpL[0];
2951		mid_pwr_idx = table_max[1] - table_min[1] - 1;
2952		max_pwr_idx = (table_max[0] - table_min[0]) / 2;
2953
2954		/* If table size goes beyond 31.5dB, keep the
2955		 * upper 31.5dB range when setting tx power.
2956		 * Note: 126 = 31.5 dB in quarter dB steps */
2957		if (table_max[0] - table_min[1] > 126)
2958			min_pwr_idx = table_max[0] - 126;
2959		else
2960			min_pwr_idx = table_min[1];
2961
2962		/* Since we fill table backwards
2963		 * start from high power curve */
2964		pcdac_tmp = pcdac_high_pwr;
2965
2966		edge_flag = 0x40;
2967	} else {
2968		pcdac_low_pwr = ah->ah_txpower.tmpL[1]; /* Zeroed */
2969		pcdac_high_pwr = ah->ah_txpower.tmpL[0];
2970		min_pwr_idx = table_min[0];
2971		max_pwr_idx = (table_max[0] - table_min[0]) / 2;
2972		pcdac_tmp = pcdac_high_pwr;
2973		edge_flag = 0;
2974	}
2975
2976	/* This is used when setting tx power*/
2977	ah->ah_txpower.txp_min_idx = min_pwr_idx / 2;
2978
2979	/* Fill Power to PCDAC table backwards */
2980	pwr = max_pwr_idx;
2981	for (i = 63; i >= 0; i--) {
2982		/* Entering lower power range, reset
2983		 * edge flag and set pcdac_tmp to lower
2984		 * power curve.*/
2985		if (edge_flag == 0x40 &&
2986		(2 * pwr <= (table_max[1] - table_min[0]) || pwr == 0)) {
2987			edge_flag = 0x00;
2988			pcdac_tmp = pcdac_low_pwr;
2989			pwr = mid_pwr_idx / 2;
2990		}
2991
2992		/* Don't go below 1, extrapolate below if we have
2993		 * already switched to the lower power curve -or
2994		 * we only have one curve and edge_flag is zero
2995		 * anyway */
2996		if (pcdac_tmp[pwr] < 1 && (edge_flag == 0x00)) {
2997			while (i >= 0) {
2998				pcdac_out[i] = pcdac_out[i + 1];
2999				i--;
3000			}
3001			break;
3002		}
3003
3004		pcdac_out[i] = pcdac_tmp[pwr] | edge_flag;
3005
3006		/* Extrapolate above if pcdac is greater than
3007		 * 126 -this can happen because we OR pcdac_out
3008		 * value with edge_flag on high power curve */
3009		if (pcdac_out[i] > 126)
3010			pcdac_out[i] = 126;
3011
3012		/* Decrease by a 0.5dB step */
3013		pwr--;
3014	}
3015}
3016
3017/**
3018 * ath5k_write_pcdac_table() - Write the PCDAC values on hw
3019 * @ah: The &struct ath5k_hw
3020 */
3021static void
3022ath5k_write_pcdac_table(struct ath5k_hw *ah)
3023{
3024	u8	*pcdac_out = ah->ah_txpower.txp_pd_table;
3025	int	i;
3026
3027	/*
3028	 * Write TX power values
3029	 */
3030	for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
3031		ath5k_hw_reg_write(ah,
3032			(((pcdac_out[2 * i + 0] << 8 | 0xff) & 0xffff) << 0) |
3033			(((pcdac_out[2 * i + 1] << 8 | 0xff) & 0xffff) << 16),
3034			AR5K_PHY_PCDAC_TXPOWER(i));
3035	}
3036}
3037
3038
3039/*
3040 * Power to PDADC table functions
3041 */
3042
3043/**
3044 * DOC: Power to PDADC table functions
3045 *
3046 * For RF2413 and later we have a Power to PDADC table (Power Detector)
3047 * instead of a PCDAC (Power Control) and 4 pd gain curves for each
3048 * calibrated channel. Each curve has power on x axis in 0.5 db steps and
3049 * PDADC steps on y axis and looks like an exponential function like the
3050 * RF5111 curve.
3051 *
3052 * To recreate the curves we read the points from eeprom (eeprom.c)
3053 * and interpolate here. Note that in most cases only 2 (higher and lower)
3054 * curves are used (like RF5112) but vendors have the opportunity to include
3055 * all 4 curves on eeprom. The final curve (higher power) has an extra
3056 * point for better accuracy like RF5112.
3057 *
3058 * The process is similar to what we do above for RF5111/5112
3059 */
3060
3061/**
3062 * ath5k_combine_pwr_to_pdadc_curves() - Combine the various PDADC curves
3063 * @ah: The &struct ath5k_hw
3064 * @pwr_min: Minimum power (x min)
3065 * @pwr_max: Maximum power (x max)
3066 * @pdcurves: Number of available curves
3067 *
3068 * Combine the various pd curves and create the final Power to PDADC table
3069 * We can have up to 4 pd curves, we need to do a similar process
3070 * as we do for RF5112. This time we don't have an edge_flag but we
3071 * set the gain boundaries on a separate register.
3072 */
3073static void
3074ath5k_combine_pwr_to_pdadc_curves(struct ath5k_hw *ah,
3075			s16 *pwr_min, s16 *pwr_max, u8 pdcurves)
3076{
3077	u8 gain_boundaries[AR5K_EEPROM_N_PD_GAINS];
3078	u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
3079	u8 *pdadc_tmp;
3080	s16 pdadc_0;
3081	u8 pdadc_i, pdadc_n, pwr_step, pdg, max_idx, table_size;
3082	u8 pd_gain_overlap;
3083
3084	/* Note: Register value is initialized on initvals
3085	 * there is no feedback from hw.
3086	 * XXX: What about pd_gain_overlap from EEPROM ? */
3087	pd_gain_overlap = (u8) ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG5) &
3088		AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP;
3089
3090	/* Create final PDADC table */
3091	for (pdg = 0, pdadc_i = 0; pdg < pdcurves; pdg++) {
3092		pdadc_tmp = ah->ah_txpower.tmpL[pdg];
3093
3094		if (pdg == pdcurves - 1)
3095			/* 2 dB boundary stretch for last
3096			 * (higher power) curve */
3097			gain_boundaries[pdg] = pwr_max[pdg] + 4;
3098		else
3099			/* Set gain boundary in the middle
3100			 * between this curve and the next one */
3101			gain_boundaries[pdg] =
3102				(pwr_max[pdg] + pwr_min[pdg + 1]) / 2;
3103
3104		/* Sanity check in case our 2 db stretch got out of
3105		 * range. */
3106		if (gain_boundaries[pdg] > AR5K_TUNE_MAX_TXPOWER)
3107			gain_boundaries[pdg] = AR5K_TUNE_MAX_TXPOWER;
3108
3109		/* For the first curve (lower power)
3110		 * start from 0 dB */
3111		if (pdg == 0)
3112			pdadc_0 = 0;
3113		else
3114			/* For the other curves use the gain overlap */
3115			pdadc_0 = (gain_boundaries[pdg - 1] - pwr_min[pdg]) -
3116							pd_gain_overlap;
3117
3118		/* Force each power step to be at least 0.5 dB */
3119		if ((pdadc_tmp[1] - pdadc_tmp[0]) > 1)
3120			pwr_step = pdadc_tmp[1] - pdadc_tmp[0];
3121		else
3122			pwr_step = 1;
3123
3124		/* If pdadc_0 is negative, we need to extrapolate
3125		 * below this pdgain by a number of pwr_steps */
3126		while ((pdadc_0 < 0) && (pdadc_i < 128)) {
3127			s16 tmp = pdadc_tmp[0] + pdadc_0 * pwr_step;
3128			pdadc_out[pdadc_i++] = (tmp < 0) ? 0 : (u8) tmp;
3129			pdadc_0++;
3130		}
3131
3132		/* Set last pwr level, using gain boundaries */
3133		pdadc_n = gain_boundaries[pdg] + pd_gain_overlap - pwr_min[pdg];
3134		/* Limit it to be inside pwr range */
3135		table_size = pwr_max[pdg] - pwr_min[pdg];
3136		max_idx = min(pdadc_n, table_size);
3137
3138		/* Fill pdadc_out table */
3139		while (pdadc_0 < max_idx && pdadc_i < 128)
3140			pdadc_out[pdadc_i++] = pdadc_tmp[pdadc_0++];
3141
3142		/* Need to extrapolate above this pdgain? */
3143		if (pdadc_n <= max_idx)
3144			continue;
3145
3146		/* Force each power step to be at least 0.5 dB */
3147		if ((pdadc_tmp[table_size - 1] - pdadc_tmp[table_size - 2]) > 1)
3148			pwr_step = pdadc_tmp[table_size - 1] -
3149						pdadc_tmp[table_size - 2];
3150		else
3151			pwr_step = 1;
3152
3153		/* Extrapolate above */
3154		while ((pdadc_0 < (s16) pdadc_n) &&
3155		(pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2)) {
3156			s16 tmp = pdadc_tmp[table_size - 1] +
3157					(pdadc_0 - max_idx) * pwr_step;
3158			pdadc_out[pdadc_i++] = (tmp > 127) ? 127 : (u8) tmp;
3159			pdadc_0++;
3160		}
3161	}
3162
3163	while (pdg < AR5K_EEPROM_N_PD_GAINS) {
3164		gain_boundaries[pdg] = gain_boundaries[pdg - 1];
3165		pdg++;
3166	}
3167
3168	while (pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2) {
3169		pdadc_out[pdadc_i] = pdadc_out[pdadc_i - 1];
3170		pdadc_i++;
3171	}
3172
3173	/* Set gain boundaries */
3174	ath5k_hw_reg_write(ah,
3175		AR5K_REG_SM(pd_gain_overlap,
3176			AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP) |
3177		AR5K_REG_SM(gain_boundaries[0],
3178			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_1) |
3179		AR5K_REG_SM(gain_boundaries[1],
3180			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_2) |
3181		AR5K_REG_SM(gain_boundaries[2],
3182			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_3) |
3183		AR5K_REG_SM(gain_boundaries[3],
3184			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_4),
3185		AR5K_PHY_TPC_RG5);
3186
3187	/* Used for setting rate power table */
3188	ah->ah_txpower.txp_min_idx = pwr_min[0];
3189
3190}
3191
3192/**
3193 * ath5k_write_pwr_to_pdadc_table() - Write the PDADC values on hw
3194 * @ah: The &struct ath5k_hw
3195 * @ee_mode: One of enum ath5k_driver_mode
3196 */
3197static void
3198ath5k_write_pwr_to_pdadc_table(struct ath5k_hw *ah, u8 ee_mode)
3199{
3200	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
3201	u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
3202	u8 *pdg_to_idx = ee->ee_pdc_to_idx[ee_mode];
3203	u8 pdcurves = ee->ee_pd_gains[ee_mode];
3204	u32 reg;
3205	u8 i;
3206
3207	/* Select the right pdgain curves */
3208
3209	/* Clear current settings */
3210	reg = ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG1);
3211	reg &= ~(AR5K_PHY_TPC_RG1_PDGAIN_1 |
3212		AR5K_PHY_TPC_RG1_PDGAIN_2 |
3213		AR5K_PHY_TPC_RG1_PDGAIN_3 |
3214		AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
3215
3216	/*
3217	 * Use pd_gains curve from eeprom
3218	 *
3219	 * This overrides the default setting from initvals
3220	 * in case some vendors (e.g. Zcomax) don't use the default
3221	 * curves. If we don't honor their settings we 'll get a
3222	 * 5dB (1 * gain overlap ?) drop.
3223	 */
3224	reg |= AR5K_REG_SM(pdcurves, AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
3225
3226	switch (pdcurves) {
3227	case 3:
3228		reg |= AR5K_REG_SM(pdg_to_idx[2], AR5K_PHY_TPC_RG1_PDGAIN_3);
3229		fallthrough;
3230	case 2:
3231		reg |= AR5K_REG_SM(pdg_to_idx[1], AR5K_PHY_TPC_RG1_PDGAIN_2);
3232		fallthrough;
3233	case 1:
3234		reg |= AR5K_REG_SM(pdg_to_idx[0], AR5K_PHY_TPC_RG1_PDGAIN_1);
3235		break;
3236	}
3237	ath5k_hw_reg_write(ah, reg, AR5K_PHY_TPC_RG1);
3238
3239	/*
3240	 * Write TX power values
3241	 */
3242	for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
3243		u32 val = get_unaligned_le32(&pdadc_out[4 * i]);
3244		ath5k_hw_reg_write(ah, val, AR5K_PHY_PDADC_TXPOWER(i));
3245	}
3246}
3247
3248
3249/*
3250 * Common code for PCDAC/PDADC tables
3251 */
3252
3253/**
3254 * ath5k_setup_channel_powertable() - Set up power table for this channel
3255 * @ah: The &struct ath5k_hw
3256 * @channel: The &struct ieee80211_channel
3257 * @ee_mode: One of enum ath5k_driver_mode
3258 * @type: One of enum ath5k_powertable_type (eeprom.h)
3259 *
3260 * This is the main function that uses all of the above
3261 * to set PCDAC/PDADC table on hw for the current channel.
3262 * This table is used for tx power calibration on the baseband,
3263 * without it we get weird tx power levels and in some cases
3264 * distorted spectral mask
3265 */
3266static int
3267ath5k_setup_channel_powertable(struct ath5k_hw *ah,
3268			struct ieee80211_channel *channel,
3269			u8 ee_mode, u8 type)
3270{
3271	struct ath5k_pdgain_info *pdg_L, *pdg_R;
3272	struct ath5k_chan_pcal_info *pcinfo_L;
3273	struct ath5k_chan_pcal_info *pcinfo_R;
3274	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
3275	u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
3276	s16 table_min[AR5K_EEPROM_N_PD_GAINS];
3277	s16 table_max[AR5K_EEPROM_N_PD_GAINS];
3278	u8 *tmpL;
3279	u8 *tmpR;
3280	u32 target = channel->center_freq;
3281	int pdg, i;
3282
3283	/* Get surrounding freq piers for this channel */
3284	ath5k_get_chan_pcal_surrounding_piers(ah, channel,
3285						&pcinfo_L,
3286						&pcinfo_R);
3287
3288	/* Loop over pd gain curves on
3289	 * surrounding freq piers by index */
3290	for (pdg = 0; pdg < ee->ee_pd_gains[ee_mode]; pdg++) {
3291
3292		/* Fill curves in reverse order
3293		 * from lower power (max gain)
3294		 * to higher power. Use curve -> idx
3295		 * backmapping we did on eeprom init */
3296		u8 idx = pdg_curve_to_idx[pdg];
3297
3298		/* Grab the needed curves by index */
3299		pdg_L = &pcinfo_L->pd_curves[idx];
3300		pdg_R = &pcinfo_R->pd_curves[idx];
3301
3302		/* Initialize the temp tables */
3303		tmpL = ah->ah_txpower.tmpL[pdg];
3304		tmpR = ah->ah_txpower.tmpR[pdg];
3305
3306		/* Set curve's x boundaries and create
3307		 * curves so that they cover the same
3308		 * range (if we don't do that one table
3309		 * will have values on some range and the
3310		 * other one won't have any so interpolation
3311		 * will fail) */
3312		table_min[pdg] = min(pdg_L->pd_pwr[0],
3313					pdg_R->pd_pwr[0]) / 2;
3314
3315		table_max[pdg] = max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
3316				pdg_R->pd_pwr[pdg_R->pd_points - 1]) / 2;
3317
3318		/* Now create the curves on surrounding channels
3319		 * and interpolate if needed to get the final
3320		 * curve for this gain on this channel */
3321		switch (type) {
3322		case AR5K_PWRTABLE_LINEAR_PCDAC:
3323			/* Override min/max so that we don't loose
3324			 * accuracy (don't divide by 2) */
3325			table_min[pdg] = min(pdg_L->pd_pwr[0],
3326						pdg_R->pd_pwr[0]);
3327
3328			table_max[pdg] =
3329				max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
3330					pdg_R->pd_pwr[pdg_R->pd_points - 1]);
3331
3332			/* Override minimum so that we don't get
3333			 * out of bounds while extrapolating
3334			 * below. Don't do this when we have 2
3335			 * curves and we are on the high power curve
3336			 * because table_min is ok in this case */
3337			if (!(ee->ee_pd_gains[ee_mode] > 1 && pdg == 0)) {
3338
3339				table_min[pdg] =
3340					ath5k_get_linear_pcdac_min(pdg_L->pd_step,
3341								pdg_R->pd_step,
3342								pdg_L->pd_pwr,
3343								pdg_R->pd_pwr);
3344
3345				/* Don't go too low because we will
3346				 * miss the upper part of the curve.
3347				 * Note: 126 = 31.5dB (max power supported)
3348				 * in 0.25dB units */
3349				if (table_max[pdg] - table_min[pdg] > 126)
3350					table_min[pdg] = table_max[pdg] - 126;
3351			}
3352
3353			fallthrough;
3354		case AR5K_PWRTABLE_PWR_TO_PCDAC:
3355		case AR5K_PWRTABLE_PWR_TO_PDADC:
3356
3357			ath5k_create_power_curve(table_min[pdg],
3358						table_max[pdg],
3359						pdg_L->pd_pwr,
3360						pdg_L->pd_step,
3361						pdg_L->pd_points, tmpL, type);
3362
3363			/* We are in a calibration
3364			 * pier, no need to interpolate
3365			 * between freq piers */
3366			if (pcinfo_L == pcinfo_R)
3367				continue;
3368
3369			ath5k_create_power_curve(table_min[pdg],
3370						table_max[pdg],
3371						pdg_R->pd_pwr,
3372						pdg_R->pd_step,
3373						pdg_R->pd_points, tmpR, type);
3374			break;
3375		default:
3376			return -EINVAL;
3377		}
3378
3379		/* Interpolate between curves
3380		 * of surrounding freq piers to
3381		 * get the final curve for this
3382		 * pd gain. Re-use tmpL for interpolation
3383		 * output */
3384		for (i = 0; (i < (u16) (table_max[pdg] - table_min[pdg])) &&
3385		(i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
3386			tmpL[i] = (u8) ath5k_get_interpolated_value(target,
3387							(s16) pcinfo_L->freq,
3388							(s16) pcinfo_R->freq,
3389							(s16) tmpL[i],
3390							(s16) tmpR[i]);
3391		}
3392	}
3393
3394	/* Now we have a set of curves for this
3395	 * channel on tmpL (x range is table_max - table_min
3396	 * and y values are tmpL[pdg][]) sorted in the same
3397	 * order as EEPROM (because we've used the backmapping).
3398	 * So for RF5112 it's from higher power to lower power
3399	 * and for RF2413 it's from lower power to higher power.
3400	 * For RF5111 we only have one curve. */
3401
3402	/* Fill min and max power levels for this
3403	 * channel by interpolating the values on
3404	 * surrounding channels to complete the dataset */
3405	ah->ah_txpower.txp_min_pwr = ath5k_get_interpolated_value(target,
3406					(s16) pcinfo_L->freq,
3407					(s16) pcinfo_R->freq,
3408					pcinfo_L->min_pwr, pcinfo_R->min_pwr);
3409
3410	ah->ah_txpower.txp_max_pwr = ath5k_get_interpolated_value(target,
3411					(s16) pcinfo_L->freq,
3412					(s16) pcinfo_R->freq,
3413					pcinfo_L->max_pwr, pcinfo_R->max_pwr);
3414
3415	/* Fill PCDAC/PDADC table */
3416	switch (type) {
3417	case AR5K_PWRTABLE_LINEAR_PCDAC:
3418		/* For RF5112 we can have one or two curves
3419		 * and each curve covers a certain power lvl
3420		 * range so we need to do some more processing */
3421		ath5k_combine_linear_pcdac_curves(ah, table_min, table_max,
3422						ee->ee_pd_gains[ee_mode]);
3423
3424		/* Set txp.offset so that we can
3425		 * match max power value with max
3426		 * table index */
3427		ah->ah_txpower.txp_offset = 64 - (table_max[0] / 2);
3428		break;
3429	case AR5K_PWRTABLE_PWR_TO_PCDAC:
3430		/* We are done for RF5111 since it has only
3431		 * one curve, just fit the curve on the table */
3432		ath5k_fill_pwr_to_pcdac_table(ah, table_min, table_max);
3433
3434		/* No rate powertable adjustment for RF5111 */
3435		ah->ah_txpower.txp_min_idx = 0;
3436		ah->ah_txpower.txp_offset = 0;
3437		break;
3438	case AR5K_PWRTABLE_PWR_TO_PDADC:
3439		/* Set PDADC boundaries and fill
3440		 * final PDADC table */
3441		ath5k_combine_pwr_to_pdadc_curves(ah, table_min, table_max,
3442						ee->ee_pd_gains[ee_mode]);
3443
3444		/* Set txp.offset, note that table_min
3445		 * can be negative */
3446		ah->ah_txpower.txp_offset = table_min[0];
3447		break;
3448	default:
3449		return -EINVAL;
3450	}
3451
3452	ah->ah_txpower.txp_setup = true;
3453
3454	return 0;
3455}
3456
3457/**
3458 * ath5k_write_channel_powertable() - Set power table for current channel on hw
3459 * @ah: The &struct ath5k_hw
3460 * @ee_mode: One of enum ath5k_driver_mode
3461 * @type: One of enum ath5k_powertable_type (eeprom.h)
3462 */
3463static void
3464ath5k_write_channel_powertable(struct ath5k_hw *ah, u8 ee_mode, u8 type)
3465{
3466	if (type == AR5K_PWRTABLE_PWR_TO_PDADC)
3467		ath5k_write_pwr_to_pdadc_table(ah, ee_mode);
3468	else
3469		ath5k_write_pcdac_table(ah);
3470}
3471
3472
3473/**
3474 * DOC: Per-rate tx power setting
3475 *
3476 * This is the code that sets the desired tx power limit (below
3477 * maximum) on hw for each rate (we also have TPC that sets
3478 * power per packet type). We do that by providing an index on the
3479 * PCDAC/PDADC table we set up above, for each rate.
3480 *
3481 * For now we only limit txpower based on maximum tx power
3482 * supported by hw (what's inside rate_info) + conformance test
3483 * limits. We need to limit this even more, based on regulatory domain
3484 * etc to be safe. Normally this is done from above so we don't care
3485 * here, all we care is that the tx power we set will be O.K.
3486 * for the hw (e.g. won't create noise on PA etc).
3487 *
3488 * Rate power table contains indices to PCDAC/PDADC table (0.5dB steps -
3489 * x values) and is indexed as follows:
3490 * rates[0] - rates[7] -> OFDM rates
3491 * rates[8] - rates[14] -> CCK rates
3492 * rates[15] -> XR rates (they all have the same power)
3493 */
3494
3495/**
3496 * ath5k_setup_rate_powertable() - Set up rate power table for a given tx power
3497 * @ah: The &struct ath5k_hw
3498 * @max_pwr: The maximum tx power requested in 0.5dB steps
3499 * @rate_info: The &struct ath5k_rate_pcal_info to fill
3500 * @ee_mode: One of enum ath5k_driver_mode
3501 */
3502static void
3503ath5k_setup_rate_powertable(struct ath5k_hw *ah, u16 max_pwr,
3504			struct ath5k_rate_pcal_info *rate_info,
3505			u8 ee_mode)
3506{
3507	unsigned int i;
3508	u16 *rates;
3509	s16 rate_idx_scaled = 0;
3510
3511	/* max_pwr is power level we got from driver/user in 0.5dB
3512	 * units, switch to 0.25dB units so we can compare */
3513	max_pwr *= 2;
3514	max_pwr = min(max_pwr, (u16) ah->ah_txpower.txp_max_pwr) / 2;
3515
3516	/* apply rate limits */
3517	rates = ah->ah_txpower.txp_rates_power_table;
3518
3519	/* OFDM rates 6 to 24Mb/s */
3520	for (i = 0; i < 5; i++)
3521		rates[i] = min(max_pwr, rate_info->target_power_6to24);
3522
3523	/* Rest OFDM rates */
3524	rates[5] = min(rates[0], rate_info->target_power_36);
3525	rates[6] = min(rates[0], rate_info->target_power_48);
3526	rates[7] = min(rates[0], rate_info->target_power_54);
3527
3528	/* CCK rates */
3529	/* 1L */
3530	rates[8] = min(rates[0], rate_info->target_power_6to24);
3531	/* 2L */
3532	rates[9] = min(rates[0], rate_info->target_power_36);
3533	/* 2S */
3534	rates[10] = min(rates[0], rate_info->target_power_36);
3535	/* 5L */
3536	rates[11] = min(rates[0], rate_info->target_power_48);
3537	/* 5S */
3538	rates[12] = min(rates[0], rate_info->target_power_48);
3539	/* 11L */
3540	rates[13] = min(rates[0], rate_info->target_power_54);
3541	/* 11S */
3542	rates[14] = min(rates[0], rate_info->target_power_54);
3543
3544	/* XR rates */
3545	rates[15] = min(rates[0], rate_info->target_power_6to24);
3546
3547	/* CCK rates have different peak to average ratio
3548	 * so we have to tweak their power so that gainf
3549	 * correction works ok. For this we use OFDM to
3550	 * CCK delta from eeprom */
3551	if ((ee_mode == AR5K_EEPROM_MODE_11G) &&
3552	(ah->ah_phy_revision < AR5K_SREV_PHY_5212A))
3553		for (i = 8; i <= 15; i++)
3554			rates[i] -= ah->ah_txpower.txp_cck_ofdm_gainf_delta;
3555
3556	/* Save min/max and current tx power for this channel
3557	 * in 0.25dB units.
3558	 *
3559	 * Note: We use rates[0] for current tx power because
3560	 * it covers most of the rates, in most cases. It's our
3561	 * tx power limit and what the user expects to see. */
3562	ah->ah_txpower.txp_min_pwr = 2 * rates[7];
3563	ah->ah_txpower.txp_cur_pwr = 2 * rates[0];
3564
3565	/* Set max txpower for correct OFDM operation on all rates
3566	 * -that is the txpower for 54Mbit-, it's used for the PAPD
3567	 * gain probe and it's in 0.5dB units */
3568	ah->ah_txpower.txp_ofdm = rates[7];
3569
3570	/* Now that we have all rates setup use table offset to
3571	 * match the power range set by user with the power indices
3572	 * on PCDAC/PDADC table */
3573	for (i = 0; i < 16; i++) {
3574		rate_idx_scaled = rates[i] + ah->ah_txpower.txp_offset;
3575		/* Don't get out of bounds */
3576		if (rate_idx_scaled > 63)
3577			rate_idx_scaled = 63;
3578		if (rate_idx_scaled < 0)
3579			rate_idx_scaled = 0;
3580		rates[i] = rate_idx_scaled;
3581	}
3582}
3583
3584
3585/**
3586 * ath5k_hw_txpower() - Set transmission power limit for a given channel
3587 * @ah: The &struct ath5k_hw
3588 * @channel: The &struct ieee80211_channel
3589 * @txpower: Requested tx power in 0.5dB steps
3590 *
3591 * Combines all of the above to set the requested tx power limit
3592 * on hw.
3593 */
3594static int
3595ath5k_hw_txpower(struct ath5k_hw *ah, struct ieee80211_channel *channel,
3596		 u8 txpower)
3597{
3598	struct ath5k_rate_pcal_info rate_info;
3599	struct ieee80211_channel *curr_channel = ah->ah_current_channel;
3600	int ee_mode;
3601	u8 type;
3602	int ret;
3603
3604	if (txpower > AR5K_TUNE_MAX_TXPOWER) {
3605		ATH5K_ERR(ah, "invalid tx power: %u\n", txpower);
3606		return -EINVAL;
3607	}
3608
3609	ee_mode = ath5k_eeprom_mode_from_channel(ah, channel);
3610
3611	/* Initialize TX power table */
3612	switch (ah->ah_radio) {
3613	case AR5K_RF5110:
3614		/* TODO */
3615		return 0;
3616	case AR5K_RF5111:
3617		type = AR5K_PWRTABLE_PWR_TO_PCDAC;
3618		break;
3619	case AR5K_RF5112:
3620		type = AR5K_PWRTABLE_LINEAR_PCDAC;
3621		break;
3622	case AR5K_RF2413:
3623	case AR5K_RF5413:
3624	case AR5K_RF2316:
3625	case AR5K_RF2317:
3626	case AR5K_RF2425:
3627		type = AR5K_PWRTABLE_PWR_TO_PDADC;
3628		break;
3629	default:
3630		return -EINVAL;
3631	}
3632
3633	/*
3634	 * If we don't change channel/mode skip tx powertable calculation
3635	 * and use the cached one.
3636	 */
3637	if (!ah->ah_txpower.txp_setup ||
3638	    (channel->hw_value != curr_channel->hw_value) ||
3639	    (channel->center_freq != curr_channel->center_freq)) {
3640		/* Reset TX power values but preserve requested
3641		 * tx power from above */
3642		int requested_txpower = ah->ah_txpower.txp_requested;
3643
3644		memset(&ah->ah_txpower, 0, sizeof(ah->ah_txpower));
3645
3646		/* Restore TPC setting and requested tx power */
3647		ah->ah_txpower.txp_tpc = AR5K_TUNE_TPC_TXPOWER;
3648
3649		ah->ah_txpower.txp_requested = requested_txpower;
3650
3651		/* Calculate the powertable */
3652		ret = ath5k_setup_channel_powertable(ah, channel,
3653							ee_mode, type);
3654		if (ret)
3655			return ret;
3656	}
3657
3658	/* Write table on hw */
3659	ath5k_write_channel_powertable(ah, ee_mode, type);
3660
3661	/* Limit max power if we have a CTL available */
3662	ath5k_get_max_ctl_power(ah, channel);
3663
3664	/* FIXME: Antenna reduction stuff */
3665
3666	/* FIXME: Limit power on turbo modes */
3667
3668	/* FIXME: TPC scale reduction */
3669
3670	/* Get surrounding channels for per-rate power table
3671	 * calibration */
3672	ath5k_get_rate_pcal_data(ah, channel, &rate_info);
3673
3674	/* Setup rate power table */
3675	ath5k_setup_rate_powertable(ah, txpower, &rate_info, ee_mode);
3676
3677	/* Write rate power table on hw */
3678	ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(3, 24) |
3679		AR5K_TXPOWER_OFDM(2, 16) | AR5K_TXPOWER_OFDM(1, 8) |
3680		AR5K_TXPOWER_OFDM(0, 0), AR5K_PHY_TXPOWER_RATE1);
3681
3682	ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(7, 24) |
3683		AR5K_TXPOWER_OFDM(6, 16) | AR5K_TXPOWER_OFDM(5, 8) |
3684		AR5K_TXPOWER_OFDM(4, 0), AR5K_PHY_TXPOWER_RATE2);
3685
3686	ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(10, 24) |
3687		AR5K_TXPOWER_CCK(9, 16) | AR5K_TXPOWER_CCK(15, 8) |
3688		AR5K_TXPOWER_CCK(8, 0), AR5K_PHY_TXPOWER_RATE3);
3689
3690	ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(14, 24) |
3691		AR5K_TXPOWER_CCK(13, 16) | AR5K_TXPOWER_CCK(12, 8) |
3692		AR5K_TXPOWER_CCK(11, 0), AR5K_PHY_TXPOWER_RATE4);
3693
3694	/* FIXME: TPC support */
3695	if (ah->ah_txpower.txp_tpc) {
3696		ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX_TPC_ENABLE |
3697			AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX);
3698
3699		ath5k_hw_reg_write(ah,
3700			AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_ACK) |
3701			AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CTS) |
3702			AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CHIRP),
3703			AR5K_TPC);
3704	} else {
3705		ath5k_hw_reg_write(ah, AR5K_TUNE_MAX_TXPOWER,
3706			AR5K_PHY_TXPOWER_RATE_MAX);
3707	}
3708
3709	return 0;
3710}
3711
3712/**
3713 * ath5k_hw_set_txpower_limit() - Set txpower limit for the current channel
3714 * @ah: The &struct ath5k_hw
3715 * @txpower: The requested tx power limit in 0.5dB steps
3716 *
3717 * This function provides access to ath5k_hw_txpower to the driver in
3718 * case user or an application changes it while PHY is running.
3719 */
3720int
3721ath5k_hw_set_txpower_limit(struct ath5k_hw *ah, u8 txpower)
3722{
3723	ATH5K_DBG(ah, ATH5K_DEBUG_TXPOWER,
3724		"changing txpower to %d\n", txpower);
3725
3726	return ath5k_hw_txpower(ah, ah->ah_current_channel, txpower);
3727}
3728
3729
3730/*************\
3731 Init function
3732\*************/
3733
3734/**
3735 * ath5k_hw_phy_init() - Initialize PHY
3736 * @ah: The &struct ath5k_hw
3737 * @channel: The @struct ieee80211_channel
3738 * @mode: One of enum ath5k_driver_mode
3739 * @fast: Try a fast channel switch instead
3740 *
3741 * This is the main function used during reset to initialize PHY
3742 * or do a fast channel change if possible.
3743 *
3744 * NOTE: Do not call this one from the driver, it assumes PHY is in a
3745 * warm reset state !
3746 */
3747int
3748ath5k_hw_phy_init(struct ath5k_hw *ah, struct ieee80211_channel *channel,
3749		      u8 mode, bool fast)
3750{
3751	struct ieee80211_channel *curr_channel;
3752	int ret, i;
3753	u32 phy_tst1;
3754	ret = 0;
3755
3756	/*
3757	 * Sanity check for fast flag
3758	 * Don't try fast channel change when changing modulation
3759	 * mode/band. We check for chip compatibility on
3760	 * ath5k_hw_reset.
3761	 */
3762	curr_channel = ah->ah_current_channel;
3763	if (fast && (channel->hw_value != curr_channel->hw_value))
3764		return -EINVAL;
3765
3766	/*
3767	 * On fast channel change we only set the synth parameters
3768	 * while PHY is running, enable calibration and skip the rest.
3769	 */
3770	if (fast) {
3771		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_RFBUS_REQ,
3772				    AR5K_PHY_RFBUS_REQ_REQUEST);
3773		for (i = 0; i < 100; i++) {
3774			if (ath5k_hw_reg_read(ah, AR5K_PHY_RFBUS_GRANT))
3775				break;
3776			udelay(5);
3777		}
3778		/* Failed */
3779		if (i >= 100)
3780			return -EIO;
3781
3782		/* Set channel and wait for synth */
3783		ret = ath5k_hw_channel(ah, channel);
3784		if (ret)
3785			return ret;
3786
3787		ath5k_hw_wait_for_synth(ah, channel);
3788	}
3789
3790	/*
3791	 * Set TX power
3792	 *
3793	 * Note: We need to do that before we set
3794	 * RF buffer settings on 5211/5212+ so that we
3795	 * properly set curve indices.
3796	 */
3797	ret = ath5k_hw_txpower(ah, channel, ah->ah_txpower.txp_requested ?
3798					ah->ah_txpower.txp_requested * 2 :
3799					AR5K_TUNE_MAX_TXPOWER);
3800	if (ret)
3801		return ret;
3802
3803	/* Write OFDM timings on 5212*/
3804	if (ah->ah_version == AR5K_AR5212 &&
3805		channel->hw_value != AR5K_MODE_11B) {
3806
3807		ret = ath5k_hw_write_ofdm_timings(ah, channel);
3808		if (ret)
3809			return ret;
3810
3811		/* Spur info is available only from EEPROM versions
3812		 * greater than 5.3, but the EEPROM routines will use
3813		 * static values for older versions */
3814		if (ah->ah_mac_srev >= AR5K_SREV_AR5424)
3815			ath5k_hw_set_spur_mitigation_filter(ah,
3816							    channel);
3817	}
3818
3819	/* If we used fast channel switching
3820	 * we are done, release RF bus and
3821	 * fire up NF calibration.
3822	 *
3823	 * Note: Only NF calibration due to
3824	 * channel change, not AGC calibration
3825	 * since AGC is still running !
3826	 */
3827	if (fast) {
3828		/*
3829		 * Release RF Bus grant
3830		 */
3831		AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_RFBUS_REQ,
3832				    AR5K_PHY_RFBUS_REQ_REQUEST);
3833
3834		/*
3835		 * Start NF calibration
3836		 */
3837		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
3838					AR5K_PHY_AGCCTL_NF);
3839
3840		return ret;
3841	}
3842
3843	/*
3844	 * For 5210 we do all initialization using
3845	 * initvals, so we don't have to modify
3846	 * any settings (5210 also only supports
3847	 * a/aturbo modes)
3848	 */
3849	if (ah->ah_version != AR5K_AR5210) {
3850
3851		/*
3852		 * Write initial RF gain settings
3853		 * This should work for both 5111/5112
3854		 */
3855		ret = ath5k_hw_rfgain_init(ah, channel->band);
3856		if (ret)
3857			return ret;
3858
3859		usleep_range(1000, 1500);
3860
3861		/*
3862		 * Write RF buffer
3863		 */
3864		ret = ath5k_hw_rfregs_init(ah, channel, mode);
3865		if (ret)
3866			return ret;
3867
3868		/*Enable/disable 802.11b mode on 5111
3869		(enable 2111 frequency converter + CCK)*/
3870		if (ah->ah_radio == AR5K_RF5111) {
3871			if (mode == AR5K_MODE_11B)
3872				AR5K_REG_ENABLE_BITS(ah, AR5K_TXCFG,
3873				    AR5K_TXCFG_B_MODE);
3874			else
3875				AR5K_REG_DISABLE_BITS(ah, AR5K_TXCFG,
3876				    AR5K_TXCFG_B_MODE);
3877		}
3878
3879	} else if (ah->ah_version == AR5K_AR5210) {
3880		usleep_range(1000, 1500);
3881		/* Disable phy and wait */
3882		ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);
3883		usleep_range(1000, 1500);
3884	}
3885
3886	/* Set channel on PHY */
3887	ret = ath5k_hw_channel(ah, channel);
3888	if (ret)
3889		return ret;
3890
3891	/*
3892	 * Enable the PHY and wait until completion
3893	 * This includes BaseBand and Synthesizer
3894	 * activation.
3895	 */
3896	ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT);
3897
3898	ath5k_hw_wait_for_synth(ah, channel);
3899
3900	/*
3901	 * Perform ADC test to see if baseband is ready
3902	 * Set tx hold and check adc test register
3903	 */
3904	phy_tst1 = ath5k_hw_reg_read(ah, AR5K_PHY_TST1);
3905	ath5k_hw_reg_write(ah, AR5K_PHY_TST1_TXHOLD, AR5K_PHY_TST1);
3906	for (i = 0; i <= 20; i++) {
3907		if (!(ath5k_hw_reg_read(ah, AR5K_PHY_ADC_TEST) & 0x10))
3908			break;
3909		usleep_range(200, 250);
3910	}
3911	ath5k_hw_reg_write(ah, phy_tst1, AR5K_PHY_TST1);
3912
3913	/*
3914	 * Start automatic gain control calibration
3915	 *
3916	 * During AGC calibration RX path is re-routed to
3917	 * a power detector so we don't receive anything.
3918	 *
3919	 * This method is used to calibrate some static offsets
3920	 * used together with on-the fly I/Q calibration (the
3921	 * one performed via ath5k_hw_phy_calibrate), which doesn't
3922	 * interrupt rx path.
3923	 *
3924	 * While rx path is re-routed to the power detector we also
3925	 * start a noise floor calibration to measure the
3926	 * card's noise floor (the noise we measure when we are not
3927	 * transmitting or receiving anything).
3928	 *
3929	 * If we are in a noisy environment, AGC calibration may time
3930	 * out and/or noise floor calibration might timeout.
3931	 */
3932	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
3933				AR5K_PHY_AGCCTL_CAL | AR5K_PHY_AGCCTL_NF);
3934
3935	/* At the same time start I/Q calibration for QAM constellation
3936	 * -no need for CCK- */
3937	ah->ah_iq_cal_needed = false;
3938	if (!(mode == AR5K_MODE_11B)) {
3939		ah->ah_iq_cal_needed = true;
3940		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ,
3941				AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15);
3942		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
3943				AR5K_PHY_IQ_RUN);
3944	}
3945
3946	/* Wait for gain calibration to finish (we check for I/Q calibration
3947	 * during ath5k_phy_calibrate) */
3948	if (ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
3949			AR5K_PHY_AGCCTL_CAL, 0, false)) {
3950		ATH5K_ERR(ah, "gain calibration timeout (%uMHz)\n",
3951			channel->center_freq);
3952	}
3953
3954	/* Restore antenna mode */
3955	ath5k_hw_set_antenna_mode(ah, ah->ah_ant_mode);
3956
3957	return ret;
3958}
3959