1/*-
2 * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
3 * Copyright (c) 2004-2005 Atheros Communications, Inc.
4 * Copyright (c) 2006 Devicescape Software, Inc.
5 * Copyright (c) 2007 Jiri Slaby <jirislaby@gmail.com>
6 * Copyright (c) 2007 Luis R. Rodriguez <mcgrof@winlab.rutgers.edu>
7 *
8 * All rights reserved.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer,
15 *    without modification.
16 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
17 *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
18 *    redistribution must be conditioned upon including a substantially
19 *    similar Disclaimer requirement for further binary redistribution.
20 * 3. Neither the names of the above-listed copyright holders nor the names
21 *    of any contributors may be used to endorse or promote products derived
22 *    from this software without specific prior written permission.
23 *
24 * Alternatively, this software may be distributed under the terms of the
25 * GNU General Public License ("GPL") version 2 as published by the Free
26 * Software Foundation.
27 *
28 * NO WARRANTY
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
32 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
33 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
34 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
35 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
36 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
37 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
38 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
39 * THE POSSIBILITY OF SUCH DAMAGES.
40 *
41 */
42
43#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
44
45#include <linux/module.h>
46#include <linux/delay.h>
47#include <linux/dma-mapping.h>
48#include <linux/hardirq.h>
49#include <linux/if.h>
50#include <linux/io.h>
51#include <linux/netdevice.h>
52#include <linux/cache.h>
53#include <linux/ethtool.h>
54#include <linux/uaccess.h>
55#include <linux/slab.h>
56#include <linux/etherdevice.h>
57#include <linux/nl80211.h>
58
59#include <net/cfg80211.h>
60#include <net/ieee80211_radiotap.h>
61
62#include <asm/unaligned.h>
63
64#include <net/mac80211.h>
65#include "base.h"
66#include "reg.h"
67#include "debug.h"
68#include "ani.h"
69#include "ath5k.h"
70#include "../regd.h"
71
72#define CREATE_TRACE_POINTS
73#include "trace.h"
74
75bool ath5k_modparam_nohwcrypt;
76module_param_named(nohwcrypt, ath5k_modparam_nohwcrypt, bool, 0444);
77MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
78
79static bool modparam_fastchanswitch;
80module_param_named(fastchanswitch, modparam_fastchanswitch, bool, 0444);
81MODULE_PARM_DESC(fastchanswitch, "Enable fast channel switching for AR2413/AR5413 radios.");
82
83static bool ath5k_modparam_no_hw_rfkill_switch;
84module_param_named(no_hw_rfkill_switch, ath5k_modparam_no_hw_rfkill_switch,
85		   bool, 0444);
86MODULE_PARM_DESC(no_hw_rfkill_switch, "Ignore the GPIO RFKill switch state");
87
88
89/* Module info */
90MODULE_AUTHOR("Jiri Slaby");
91MODULE_AUTHOR("Nick Kossifidis");
92MODULE_DESCRIPTION("Support for 5xxx series of Atheros 802.11 wireless LAN cards.");
93MODULE_LICENSE("Dual BSD/GPL");
94
95static int ath5k_init(struct ieee80211_hw *hw);
96static int ath5k_reset(struct ath5k_hw *ah, struct ieee80211_channel *chan,
97								bool skip_pcu);
98
99/* Known SREVs */
100static const struct ath5k_srev_name srev_names[] = {
101#ifdef CONFIG_ATH5K_AHB
102	{ "5312",	AR5K_VERSION_MAC,	AR5K_SREV_AR5312_R2 },
103	{ "5312",	AR5K_VERSION_MAC,	AR5K_SREV_AR5312_R7 },
104	{ "2313",	AR5K_VERSION_MAC,	AR5K_SREV_AR2313_R8 },
105	{ "2315",	AR5K_VERSION_MAC,	AR5K_SREV_AR2315_R6 },
106	{ "2315",	AR5K_VERSION_MAC,	AR5K_SREV_AR2315_R7 },
107	{ "2317",	AR5K_VERSION_MAC,	AR5K_SREV_AR2317_R1 },
108	{ "2317",	AR5K_VERSION_MAC,	AR5K_SREV_AR2317_R2 },
109#else
110	{ "5210",	AR5K_VERSION_MAC,	AR5K_SREV_AR5210 },
111	{ "5311",	AR5K_VERSION_MAC,	AR5K_SREV_AR5311 },
112	{ "5311A",	AR5K_VERSION_MAC,	AR5K_SREV_AR5311A },
113	{ "5311B",	AR5K_VERSION_MAC,	AR5K_SREV_AR5311B },
114	{ "5211",	AR5K_VERSION_MAC,	AR5K_SREV_AR5211 },
115	{ "5212",	AR5K_VERSION_MAC,	AR5K_SREV_AR5212 },
116	{ "5213",	AR5K_VERSION_MAC,	AR5K_SREV_AR5213 },
117	{ "5213A",	AR5K_VERSION_MAC,	AR5K_SREV_AR5213A },
118	{ "2413",	AR5K_VERSION_MAC,	AR5K_SREV_AR2413 },
119	{ "2414",	AR5K_VERSION_MAC,	AR5K_SREV_AR2414 },
120	{ "5424",	AR5K_VERSION_MAC,	AR5K_SREV_AR5424 },
121	{ "5413",	AR5K_VERSION_MAC,	AR5K_SREV_AR5413 },
122	{ "5414",	AR5K_VERSION_MAC,	AR5K_SREV_AR5414 },
123	{ "2415",	AR5K_VERSION_MAC,	AR5K_SREV_AR2415 },
124	{ "5416",	AR5K_VERSION_MAC,	AR5K_SREV_AR5416 },
125	{ "5418",	AR5K_VERSION_MAC,	AR5K_SREV_AR5418 },
126	{ "2425",	AR5K_VERSION_MAC,	AR5K_SREV_AR2425 },
127	{ "2417",	AR5K_VERSION_MAC,	AR5K_SREV_AR2417 },
128#endif
129	{ "xxxxx",	AR5K_VERSION_MAC,	AR5K_SREV_UNKNOWN },
130	{ "5110",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5110 },
131	{ "5111",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5111 },
132	{ "5111A",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5111A },
133	{ "2111",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2111 },
134	{ "5112",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5112 },
135	{ "5112A",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5112A },
136	{ "5112B",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5112B },
137	{ "2112",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2112 },
138	{ "2112A",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2112A },
139	{ "2112B",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2112B },
140	{ "2413",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2413 },
141	{ "5413",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5413 },
142	{ "5424",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5424 },
143	{ "5133",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5133 },
144#ifdef CONFIG_ATH5K_AHB
145	{ "2316",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2316 },
146	{ "2317",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2317 },
147#endif
148	{ "xxxxx",	AR5K_VERSION_RAD,	AR5K_SREV_UNKNOWN },
149};
150
151static const struct ieee80211_rate ath5k_rates[] = {
152	{ .bitrate = 10,
153	  .hw_value = ATH5K_RATE_CODE_1M, },
154	{ .bitrate = 20,
155	  .hw_value = ATH5K_RATE_CODE_2M,
156	  .hw_value_short = ATH5K_RATE_CODE_2M | AR5K_SET_SHORT_PREAMBLE,
157	  .flags = IEEE80211_RATE_SHORT_PREAMBLE },
158	{ .bitrate = 55,
159	  .hw_value = ATH5K_RATE_CODE_5_5M,
160	  .hw_value_short = ATH5K_RATE_CODE_5_5M | AR5K_SET_SHORT_PREAMBLE,
161	  .flags = IEEE80211_RATE_SHORT_PREAMBLE },
162	{ .bitrate = 110,
163	  .hw_value = ATH5K_RATE_CODE_11M,
164	  .hw_value_short = ATH5K_RATE_CODE_11M | AR5K_SET_SHORT_PREAMBLE,
165	  .flags = IEEE80211_RATE_SHORT_PREAMBLE },
166	{ .bitrate = 60,
167	  .hw_value = ATH5K_RATE_CODE_6M,
168	  .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
169		   IEEE80211_RATE_SUPPORTS_10MHZ },
170	{ .bitrate = 90,
171	  .hw_value = ATH5K_RATE_CODE_9M,
172	  .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
173		   IEEE80211_RATE_SUPPORTS_10MHZ },
174	{ .bitrate = 120,
175	  .hw_value = ATH5K_RATE_CODE_12M,
176	  .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
177		   IEEE80211_RATE_SUPPORTS_10MHZ },
178	{ .bitrate = 180,
179	  .hw_value = ATH5K_RATE_CODE_18M,
180	  .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
181		   IEEE80211_RATE_SUPPORTS_10MHZ },
182	{ .bitrate = 240,
183	  .hw_value = ATH5K_RATE_CODE_24M,
184	  .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
185		   IEEE80211_RATE_SUPPORTS_10MHZ },
186	{ .bitrate = 360,
187	  .hw_value = ATH5K_RATE_CODE_36M,
188	  .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
189		   IEEE80211_RATE_SUPPORTS_10MHZ },
190	{ .bitrate = 480,
191	  .hw_value = ATH5K_RATE_CODE_48M,
192	  .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
193		   IEEE80211_RATE_SUPPORTS_10MHZ },
194	{ .bitrate = 540,
195	  .hw_value = ATH5K_RATE_CODE_54M,
196	  .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
197		   IEEE80211_RATE_SUPPORTS_10MHZ },
198};
199
200static inline u64 ath5k_extend_tsf(struct ath5k_hw *ah, u32 rstamp)
201{
202	u64 tsf = ath5k_hw_get_tsf64(ah);
203
204	if ((tsf & 0x7fff) < rstamp)
205		tsf -= 0x8000;
206
207	return (tsf & ~0x7fff) | rstamp;
208}
209
210const char *
211ath5k_chip_name(enum ath5k_srev_type type, u_int16_t val)
212{
213	const char *name = "xxxxx";
214	unsigned int i;
215
216	for (i = 0; i < ARRAY_SIZE(srev_names); i++) {
217		if (srev_names[i].sr_type != type)
218			continue;
219
220		if ((val & 0xf0) == srev_names[i].sr_val)
221			name = srev_names[i].sr_name;
222
223		if ((val & 0xff) == srev_names[i].sr_val) {
224			name = srev_names[i].sr_name;
225			break;
226		}
227	}
228
229	return name;
230}
231static unsigned int ath5k_ioread32(void *hw_priv, u32 reg_offset)
232{
233	struct ath5k_hw *ah = hw_priv;
234	return ath5k_hw_reg_read(ah, reg_offset);
235}
236
237static void ath5k_iowrite32(void *hw_priv, u32 val, u32 reg_offset)
238{
239	struct ath5k_hw *ah = hw_priv;
240	ath5k_hw_reg_write(ah, val, reg_offset);
241}
242
243static const struct ath_ops ath5k_common_ops = {
244	.read = ath5k_ioread32,
245	.write = ath5k_iowrite32,
246};
247
248/***********************\
249* Driver Initialization *
250\***********************/
251
252static void ath5k_reg_notifier(struct wiphy *wiphy,
253			       struct regulatory_request *request)
254{
255	struct ieee80211_hw *hw = wiphy_to_ieee80211_hw(wiphy);
256	struct ath5k_hw *ah = hw->priv;
257	struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
258
259	ath_reg_notifier_apply(wiphy, request, regulatory);
260}
261
262/********************\
263* Channel/mode setup *
264\********************/
265
266/*
267 * Returns true for the channel numbers used.
268 */
269#ifdef CONFIG_ATH5K_TEST_CHANNELS
270static bool ath5k_is_standard_channel(short chan, enum nl80211_band band)
271{
272	return true;
273}
274
275#else
276static bool ath5k_is_standard_channel(short chan, enum nl80211_band band)
277{
278	if (band == NL80211_BAND_2GHZ && chan <= 14)
279		return true;
280
281	return	/* UNII 1,2 */
282		(((chan & 3) == 0 && chan >= 36 && chan <= 64) ||
283		/* midband */
284		((chan & 3) == 0 && chan >= 100 && chan <= 140) ||
285		/* UNII-3 */
286		((chan & 3) == 1 && chan >= 149 && chan <= 165) ||
287		/* 802.11j 5.030-5.080 GHz (20MHz) */
288		(chan == 8 || chan == 12 || chan == 16) ||
289		/* 802.11j 4.9GHz (20MHz) */
290		(chan == 184 || chan == 188 || chan == 192 || chan == 196));
291}
292#endif
293
294static unsigned int
295ath5k_setup_channels(struct ath5k_hw *ah, struct ieee80211_channel *channels,
296		unsigned int mode, unsigned int max)
297{
298	unsigned int count, size, freq, ch;
299	enum nl80211_band band;
300
301	switch (mode) {
302	case AR5K_MODE_11A:
303		/* 1..220, but 2GHz frequencies are filtered by check_channel */
304		size = 220;
305		band = NL80211_BAND_5GHZ;
306		break;
307	case AR5K_MODE_11B:
308	case AR5K_MODE_11G:
309		size = 26;
310		band = NL80211_BAND_2GHZ;
311		break;
312	default:
313		ATH5K_WARN(ah, "bad mode, not copying channels\n");
314		return 0;
315	}
316
317	count = 0;
318	for (ch = 1; ch <= size && count < max; ch++) {
319		freq = ieee80211_channel_to_frequency(ch, band);
320
321		if (freq == 0) /* mapping failed - not a standard channel */
322			continue;
323
324		/* Write channel info, needed for ath5k_channel_ok() */
325		channels[count].center_freq = freq;
326		channels[count].band = band;
327		channels[count].hw_value = mode;
328
329		/* Check if channel is supported by the chipset */
330		if (!ath5k_channel_ok(ah, &channels[count]))
331			continue;
332
333		if (!ath5k_is_standard_channel(ch, band))
334			continue;
335
336		count++;
337	}
338
339	return count;
340}
341
342static void
343ath5k_setup_rate_idx(struct ath5k_hw *ah, struct ieee80211_supported_band *b)
344{
345	u8 i;
346
347	for (i = 0; i < AR5K_MAX_RATES; i++)
348		ah->rate_idx[b->band][i] = -1;
349
350	for (i = 0; i < b->n_bitrates; i++) {
351		ah->rate_idx[b->band][b->bitrates[i].hw_value] = i;
352		if (b->bitrates[i].hw_value_short)
353			ah->rate_idx[b->band][b->bitrates[i].hw_value_short] = i;
354	}
355}
356
357static int
358ath5k_setup_bands(struct ieee80211_hw *hw)
359{
360	struct ath5k_hw *ah = hw->priv;
361	struct ieee80211_supported_band *sband;
362	int max_c, count_c = 0;
363	int i;
364
365	BUILD_BUG_ON(ARRAY_SIZE(ah->sbands) < NUM_NL80211_BANDS);
366	max_c = ARRAY_SIZE(ah->channels);
367
368	/* 2GHz band */
369	sband = &ah->sbands[NL80211_BAND_2GHZ];
370	sband->band = NL80211_BAND_2GHZ;
371	sband->bitrates = &ah->rates[NL80211_BAND_2GHZ][0];
372
373	if (test_bit(AR5K_MODE_11G, ah->ah_capabilities.cap_mode)) {
374		/* G mode */
375		memcpy(sband->bitrates, &ath5k_rates[0],
376		       sizeof(struct ieee80211_rate) * 12);
377		sband->n_bitrates = 12;
378
379		sband->channels = ah->channels;
380		sband->n_channels = ath5k_setup_channels(ah, sband->channels,
381					AR5K_MODE_11G, max_c);
382
383		hw->wiphy->bands[NL80211_BAND_2GHZ] = sband;
384		count_c = sband->n_channels;
385		max_c -= count_c;
386	} else if (test_bit(AR5K_MODE_11B, ah->ah_capabilities.cap_mode)) {
387		/* B mode */
388		memcpy(sband->bitrates, &ath5k_rates[0],
389		       sizeof(struct ieee80211_rate) * 4);
390		sband->n_bitrates = 4;
391
392		/* 5211 only supports B rates and uses 4bit rate codes
393		 * (e.g normally we have 0x1B for 1M, but on 5211 we have 0x0B)
394		 * fix them up here:
395		 */
396		if (ah->ah_version == AR5K_AR5211) {
397			for (i = 0; i < 4; i++) {
398				sband->bitrates[i].hw_value =
399					sband->bitrates[i].hw_value & 0xF;
400				sband->bitrates[i].hw_value_short =
401					sband->bitrates[i].hw_value_short & 0xF;
402			}
403		}
404
405		sband->channels = ah->channels;
406		sband->n_channels = ath5k_setup_channels(ah, sband->channels,
407					AR5K_MODE_11B, max_c);
408
409		hw->wiphy->bands[NL80211_BAND_2GHZ] = sband;
410		count_c = sband->n_channels;
411		max_c -= count_c;
412	}
413	ath5k_setup_rate_idx(ah, sband);
414
415	/* 5GHz band, A mode */
416	if (test_bit(AR5K_MODE_11A, ah->ah_capabilities.cap_mode)) {
417		sband = &ah->sbands[NL80211_BAND_5GHZ];
418		sband->band = NL80211_BAND_5GHZ;
419		sband->bitrates = &ah->rates[NL80211_BAND_5GHZ][0];
420
421		memcpy(sband->bitrates, &ath5k_rates[4],
422		       sizeof(struct ieee80211_rate) * 8);
423		sband->n_bitrates = 8;
424
425		sband->channels = &ah->channels[count_c];
426		sband->n_channels = ath5k_setup_channels(ah, sband->channels,
427					AR5K_MODE_11A, max_c);
428
429		hw->wiphy->bands[NL80211_BAND_5GHZ] = sband;
430	}
431	ath5k_setup_rate_idx(ah, sband);
432
433	ath5k_debug_dump_bands(ah);
434
435	return 0;
436}
437
438/*
439 * Set/change channels. We always reset the chip.
440 * To accomplish this we must first cleanup any pending DMA,
441 * then restart stuff after a la  ath5k_init.
442 *
443 * Called with ah->lock.
444 */
445int
446ath5k_chan_set(struct ath5k_hw *ah, struct cfg80211_chan_def *chandef)
447{
448	ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
449		  "channel set, resetting (%u -> %u MHz)\n",
450		  ah->curchan->center_freq, chandef->chan->center_freq);
451
452	switch (chandef->width) {
453	case NL80211_CHAN_WIDTH_20:
454	case NL80211_CHAN_WIDTH_20_NOHT:
455		ah->ah_bwmode = AR5K_BWMODE_DEFAULT;
456		break;
457	case NL80211_CHAN_WIDTH_5:
458		ah->ah_bwmode = AR5K_BWMODE_5MHZ;
459		break;
460	case NL80211_CHAN_WIDTH_10:
461		ah->ah_bwmode = AR5K_BWMODE_10MHZ;
462		break;
463	default:
464		WARN_ON(1);
465		return -EINVAL;
466	}
467
468	/*
469	 * To switch channels clear any pending DMA operations;
470	 * wait long enough for the RX fifo to drain, reset the
471	 * hardware at the new frequency, and then re-enable
472	 * the relevant bits of the h/w.
473	 */
474	return ath5k_reset(ah, chandef->chan, true);
475}
476
477void ath5k_vif_iter(void *data, u8 *mac, struct ieee80211_vif *vif)
478{
479	struct ath5k_vif_iter_data *iter_data = data;
480	int i;
481	struct ath5k_vif *avf = (void *)vif->drv_priv;
482
483	if (iter_data->hw_macaddr)
484		for (i = 0; i < ETH_ALEN; i++)
485			iter_data->mask[i] &=
486				~(iter_data->hw_macaddr[i] ^ mac[i]);
487
488	if (!iter_data->found_active) {
489		iter_data->found_active = true;
490		memcpy(iter_data->active_mac, mac, ETH_ALEN);
491	}
492
493	if (iter_data->need_set_hw_addr && iter_data->hw_macaddr)
494		if (ether_addr_equal(iter_data->hw_macaddr, mac))
495			iter_data->need_set_hw_addr = false;
496
497	if (!iter_data->any_assoc) {
498		if (avf->assoc)
499			iter_data->any_assoc = true;
500	}
501
502	/* Calculate combined mode - when APs are active, operate in AP mode.
503	 * Otherwise use the mode of the new interface. This can currently
504	 * only deal with combinations of APs and STAs. Only one ad-hoc
505	 * interfaces is allowed.
506	 */
507	if (avf->opmode == NL80211_IFTYPE_AP)
508		iter_data->opmode = NL80211_IFTYPE_AP;
509	else {
510		if (avf->opmode == NL80211_IFTYPE_STATION)
511			iter_data->n_stas++;
512		if (iter_data->opmode == NL80211_IFTYPE_UNSPECIFIED)
513			iter_data->opmode = avf->opmode;
514	}
515}
516
517void
518ath5k_update_bssid_mask_and_opmode(struct ath5k_hw *ah,
519				   struct ieee80211_vif *vif)
520{
521	struct ath_common *common = ath5k_hw_common(ah);
522	struct ath5k_vif_iter_data iter_data;
523	u32 rfilt;
524
525	/*
526	 * Use the hardware MAC address as reference, the hardware uses it
527	 * together with the BSSID mask when matching addresses.
528	 */
529	iter_data.hw_macaddr = common->macaddr;
530	eth_broadcast_addr(iter_data.mask);
531	iter_data.found_active = false;
532	iter_data.need_set_hw_addr = true;
533	iter_data.opmode = NL80211_IFTYPE_UNSPECIFIED;
534	iter_data.n_stas = 0;
535
536	if (vif)
537		ath5k_vif_iter(&iter_data, vif->addr, vif);
538
539	/* Get list of all active MAC addresses */
540	ieee80211_iterate_active_interfaces_atomic(
541		ah->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
542		ath5k_vif_iter, &iter_data);
543	memcpy(ah->bssidmask, iter_data.mask, ETH_ALEN);
544
545	ah->opmode = iter_data.opmode;
546	if (ah->opmode == NL80211_IFTYPE_UNSPECIFIED)
547		/* Nothing active, default to station mode */
548		ah->opmode = NL80211_IFTYPE_STATION;
549
550	ath5k_hw_set_opmode(ah, ah->opmode);
551	ATH5K_DBG(ah, ATH5K_DEBUG_MODE, "mode setup opmode %d (%s)\n",
552		  ah->opmode, ath_opmode_to_string(ah->opmode));
553
554	if (iter_data.need_set_hw_addr && iter_data.found_active)
555		ath5k_hw_set_lladdr(ah, iter_data.active_mac);
556
557	if (ath5k_hw_hasbssidmask(ah))
558		ath5k_hw_set_bssid_mask(ah, ah->bssidmask);
559
560	/* Set up RX Filter */
561	if (iter_data.n_stas > 1) {
562		/* If you have multiple STA interfaces connected to
563		 * different APs, ARPs are not received (most of the time?)
564		 * Enabling PROMISC appears to fix that problem.
565		 */
566		ah->filter_flags |= AR5K_RX_FILTER_PROM;
567	}
568
569	rfilt = ah->filter_flags;
570	ath5k_hw_set_rx_filter(ah, rfilt);
571	ATH5K_DBG(ah, ATH5K_DEBUG_MODE, "RX filter 0x%x\n", rfilt);
572}
573
574static inline int
575ath5k_hw_to_driver_rix(struct ath5k_hw *ah, int hw_rix)
576{
577	int rix;
578
579	/* return base rate on errors */
580	if (WARN(hw_rix < 0 || hw_rix >= AR5K_MAX_RATES,
581			"hw_rix out of bounds: %x\n", hw_rix))
582		return 0;
583
584	rix = ah->rate_idx[ah->curchan->band][hw_rix];
585	if (WARN(rix < 0, "invalid hw_rix: %x\n", hw_rix))
586		rix = 0;
587
588	return rix;
589}
590
591/***************\
592* Buffers setup *
593\***************/
594
595static
596struct sk_buff *ath5k_rx_skb_alloc(struct ath5k_hw *ah, dma_addr_t *skb_addr)
597{
598	struct ath_common *common = ath5k_hw_common(ah);
599	struct sk_buff *skb;
600
601	/*
602	 * Allocate buffer with headroom_needed space for the
603	 * fake physical layer header at the start.
604	 */
605	skb = ath_rxbuf_alloc(common,
606			      common->rx_bufsize,
607			      GFP_ATOMIC);
608
609	if (!skb) {
610		ATH5K_ERR(ah, "can't alloc skbuff of size %u\n",
611				common->rx_bufsize);
612		return NULL;
613	}
614
615	*skb_addr = dma_map_single(ah->dev,
616				   skb->data, common->rx_bufsize,
617				   DMA_FROM_DEVICE);
618
619	if (unlikely(dma_mapping_error(ah->dev, *skb_addr))) {
620		ATH5K_ERR(ah, "%s: DMA mapping failed\n", __func__);
621		dev_kfree_skb(skb);
622		return NULL;
623	}
624	return skb;
625}
626
627static int
628ath5k_rxbuf_setup(struct ath5k_hw *ah, struct ath5k_buf *bf)
629{
630	struct sk_buff *skb = bf->skb;
631	struct ath5k_desc *ds;
632	int ret;
633
634	if (!skb) {
635		skb = ath5k_rx_skb_alloc(ah, &bf->skbaddr);
636		if (!skb)
637			return -ENOMEM;
638		bf->skb = skb;
639	}
640
641	/*
642	 * Setup descriptors.  For receive we always terminate
643	 * the descriptor list with a self-linked entry so we'll
644	 * not get overrun under high load (as can happen with a
645	 * 5212 when ANI processing enables PHY error frames).
646	 *
647	 * To ensure the last descriptor is self-linked we create
648	 * each descriptor as self-linked and add it to the end.  As
649	 * each additional descriptor is added the previous self-linked
650	 * entry is "fixed" naturally.  This should be safe even
651	 * if DMA is happening.  When processing RX interrupts we
652	 * never remove/process the last, self-linked, entry on the
653	 * descriptor list.  This ensures the hardware always has
654	 * someplace to write a new frame.
655	 */
656	ds = bf->desc;
657	ds->ds_link = bf->daddr;	/* link to self */
658	ds->ds_data = bf->skbaddr;
659	ret = ath5k_hw_setup_rx_desc(ah, ds, ah->common.rx_bufsize, 0);
660	if (ret) {
661		ATH5K_ERR(ah, "%s: could not setup RX desc\n", __func__);
662		return ret;
663	}
664
665	if (ah->rxlink != NULL)
666		*ah->rxlink = bf->daddr;
667	ah->rxlink = &ds->ds_link;
668	return 0;
669}
670
671static enum ath5k_pkt_type get_hw_packet_type(struct sk_buff *skb)
672{
673	struct ieee80211_hdr *hdr;
674	enum ath5k_pkt_type htype;
675	__le16 fc;
676
677	hdr = (struct ieee80211_hdr *)skb->data;
678	fc = hdr->frame_control;
679
680	if (ieee80211_is_beacon(fc))
681		htype = AR5K_PKT_TYPE_BEACON;
682	else if (ieee80211_is_probe_resp(fc))
683		htype = AR5K_PKT_TYPE_PROBE_RESP;
684	else if (ieee80211_is_atim(fc))
685		htype = AR5K_PKT_TYPE_ATIM;
686	else if (ieee80211_is_pspoll(fc))
687		htype = AR5K_PKT_TYPE_PSPOLL;
688	else
689		htype = AR5K_PKT_TYPE_NORMAL;
690
691	return htype;
692}
693
694static struct ieee80211_rate *
695ath5k_get_rate(const struct ieee80211_hw *hw,
696	       const struct ieee80211_tx_info *info,
697	       struct ath5k_buf *bf, int idx)
698{
699	/*
700	* convert a ieee80211_tx_rate RC-table entry to
701	* the respective ieee80211_rate struct
702	*/
703	if (bf->rates[idx].idx < 0) {
704		return NULL;
705	}
706
707	return &hw->wiphy->bands[info->band]->bitrates[ bf->rates[idx].idx ];
708}
709
710static u16
711ath5k_get_rate_hw_value(const struct ieee80211_hw *hw,
712			const struct ieee80211_tx_info *info,
713			struct ath5k_buf *bf, int idx)
714{
715	struct ieee80211_rate *rate;
716	u16 hw_rate;
717	u8 rc_flags;
718
719	rate = ath5k_get_rate(hw, info, bf, idx);
720	if (!rate)
721		return 0;
722
723	rc_flags = bf->rates[idx].flags;
724	hw_rate = (rc_flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE) ?
725		   rate->hw_value_short : rate->hw_value;
726
727	return hw_rate;
728}
729
730static bool ath5k_merge_ratetbl(struct ieee80211_sta *sta,
731				struct ath5k_buf *bf,
732				struct ieee80211_tx_info *tx_info)
733{
734	struct ieee80211_sta_rates *ratetbl;
735	u8 i;
736
737	if (!sta)
738		return false;
739
740	ratetbl = rcu_dereference(sta->rates);
741	if (!ratetbl)
742		return false;
743
744	if (tx_info->control.rates[0].idx < 0 ||
745	    tx_info->control.rates[0].count == 0)
746	{
747		i = 0;
748	} else {
749		bf->rates[0] = tx_info->control.rates[0];
750		i = 1;
751	}
752
753	for ( ; i < IEEE80211_TX_MAX_RATES; i++) {
754		bf->rates[i].idx = ratetbl->rate[i].idx;
755		bf->rates[i].flags = ratetbl->rate[i].flags;
756		if (tx_info->control.use_rts)
757			bf->rates[i].count = ratetbl->rate[i].count_rts;
758		else if (tx_info->control.use_cts_prot)
759			bf->rates[i].count = ratetbl->rate[i].count_cts;
760		else
761			bf->rates[i].count = ratetbl->rate[i].count;
762	}
763
764	return true;
765}
766
767static int
768ath5k_txbuf_setup(struct ath5k_hw *ah, struct ath5k_buf *bf,
769		  struct ath5k_txq *txq, int padsize,
770		  struct ieee80211_tx_control *control)
771{
772	struct ath5k_desc *ds = bf->desc;
773	struct sk_buff *skb = bf->skb;
774	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
775	unsigned int pktlen, flags, keyidx = AR5K_TXKEYIX_INVALID;
776	struct ieee80211_rate *rate;
777	struct ieee80211_sta *sta;
778	unsigned int mrr_rate[3], mrr_tries[3];
779	int i, ret;
780	u16 hw_rate;
781	u16 cts_rate = 0;
782	u16 duration = 0;
783	u8 rc_flags;
784
785	flags = AR5K_TXDESC_INTREQ | AR5K_TXDESC_CLRDMASK;
786
787	/* XXX endianness */
788	bf->skbaddr = dma_map_single(ah->dev, skb->data, skb->len,
789			DMA_TO_DEVICE);
790
791	if (dma_mapping_error(ah->dev, bf->skbaddr))
792		return -ENOSPC;
793
794	if (control)
795		sta = control->sta;
796	else
797		sta = NULL;
798
799	if (!ath5k_merge_ratetbl(sta, bf, info)) {
800		ieee80211_get_tx_rates(info->control.vif,
801				       sta, skb, bf->rates,
802				       ARRAY_SIZE(bf->rates));
803	}
804
805	rate = ath5k_get_rate(ah->hw, info, bf, 0);
806
807	if (!rate) {
808		ret = -EINVAL;
809		goto err_unmap;
810	}
811
812	if (info->flags & IEEE80211_TX_CTL_NO_ACK)
813		flags |= AR5K_TXDESC_NOACK;
814
815	rc_flags = bf->rates[0].flags;
816
817	hw_rate = ath5k_get_rate_hw_value(ah->hw, info, bf, 0);
818
819	pktlen = skb->len;
820
821	/* FIXME: If we are in g mode and rate is a CCK rate
822	 * subtract ah->ah_txpower.txp_cck_ofdm_pwr_delta
823	 * from tx power (value is in dB units already) */
824	if (info->control.hw_key) {
825		keyidx = info->control.hw_key->hw_key_idx;
826		pktlen += info->control.hw_key->icv_len;
827	}
828	if (rc_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
829		flags |= AR5K_TXDESC_RTSENA;
830		cts_rate = ieee80211_get_rts_cts_rate(ah->hw, info)->hw_value;
831		duration = le16_to_cpu(ieee80211_rts_duration(ah->hw,
832			info->control.vif, pktlen, info));
833	}
834	if (rc_flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
835		flags |= AR5K_TXDESC_CTSENA;
836		cts_rate = ieee80211_get_rts_cts_rate(ah->hw, info)->hw_value;
837		duration = le16_to_cpu(ieee80211_ctstoself_duration(ah->hw,
838			info->control.vif, pktlen, info));
839	}
840
841	ret = ah->ah_setup_tx_desc(ah, ds, pktlen,
842		ieee80211_get_hdrlen_from_skb(skb), padsize,
843		get_hw_packet_type(skb),
844		(ah->ah_txpower.txp_requested * 2),
845		hw_rate,
846		bf->rates[0].count, keyidx, ah->ah_tx_ant, flags,
847		cts_rate, duration);
848	if (ret)
849		goto err_unmap;
850
851	/* Set up MRR descriptor */
852	if (ah->ah_capabilities.cap_has_mrr_support) {
853		memset(mrr_rate, 0, sizeof(mrr_rate));
854		memset(mrr_tries, 0, sizeof(mrr_tries));
855
856		for (i = 0; i < 3; i++) {
857
858			rate = ath5k_get_rate(ah->hw, info, bf, i);
859			if (!rate)
860				break;
861
862			mrr_rate[i] = ath5k_get_rate_hw_value(ah->hw, info, bf, i);
863			mrr_tries[i] = bf->rates[i].count;
864		}
865
866		ath5k_hw_setup_mrr_tx_desc(ah, ds,
867			mrr_rate[0], mrr_tries[0],
868			mrr_rate[1], mrr_tries[1],
869			mrr_rate[2], mrr_tries[2]);
870	}
871
872	ds->ds_link = 0;
873	ds->ds_data = bf->skbaddr;
874
875	spin_lock_bh(&txq->lock);
876	list_add_tail(&bf->list, &txq->q);
877	txq->txq_len++;
878	if (txq->link == NULL) /* is this first packet? */
879		ath5k_hw_set_txdp(ah, txq->qnum, bf->daddr);
880	else /* no, so only link it */
881		*txq->link = bf->daddr;
882
883	txq->link = &ds->ds_link;
884	ath5k_hw_start_tx_dma(ah, txq->qnum);
885	spin_unlock_bh(&txq->lock);
886
887	return 0;
888err_unmap:
889	dma_unmap_single(ah->dev, bf->skbaddr, skb->len, DMA_TO_DEVICE);
890	return ret;
891}
892
893/*******************\
894* Descriptors setup *
895\*******************/
896
897static int
898ath5k_desc_alloc(struct ath5k_hw *ah)
899{
900	struct ath5k_desc *ds;
901	struct ath5k_buf *bf;
902	dma_addr_t da;
903	unsigned int i;
904	int ret;
905
906	/* allocate descriptors */
907	ah->desc_len = sizeof(struct ath5k_desc) *
908			(ATH_TXBUF + ATH_RXBUF + ATH_BCBUF + 1);
909
910	ah->desc = dma_alloc_coherent(ah->dev, ah->desc_len,
911				&ah->desc_daddr, GFP_KERNEL);
912	if (ah->desc == NULL) {
913		ATH5K_ERR(ah, "can't allocate descriptors\n");
914		ret = -ENOMEM;
915		goto err;
916	}
917	ds = ah->desc;
918	da = ah->desc_daddr;
919	ATH5K_DBG(ah, ATH5K_DEBUG_ANY, "DMA map: %p (%zu) -> %llx\n",
920		ds, ah->desc_len, (unsigned long long)ah->desc_daddr);
921
922	bf = kcalloc(1 + ATH_TXBUF + ATH_RXBUF + ATH_BCBUF,
923			sizeof(struct ath5k_buf), GFP_KERNEL);
924	if (bf == NULL) {
925		ATH5K_ERR(ah, "can't allocate bufptr\n");
926		ret = -ENOMEM;
927		goto err_free;
928	}
929	ah->bufptr = bf;
930
931	INIT_LIST_HEAD(&ah->rxbuf);
932	for (i = 0; i < ATH_RXBUF; i++, bf++, ds++, da += sizeof(*ds)) {
933		bf->desc = ds;
934		bf->daddr = da;
935		list_add_tail(&bf->list, &ah->rxbuf);
936	}
937
938	INIT_LIST_HEAD(&ah->txbuf);
939	ah->txbuf_len = ATH_TXBUF;
940	for (i = 0; i < ATH_TXBUF; i++, bf++, ds++, da += sizeof(*ds)) {
941		bf->desc = ds;
942		bf->daddr = da;
943		list_add_tail(&bf->list, &ah->txbuf);
944	}
945
946	/* beacon buffers */
947	INIT_LIST_HEAD(&ah->bcbuf);
948	for (i = 0; i < ATH_BCBUF; i++, bf++, ds++, da += sizeof(*ds)) {
949		bf->desc = ds;
950		bf->daddr = da;
951		list_add_tail(&bf->list, &ah->bcbuf);
952	}
953
954	return 0;
955err_free:
956	dma_free_coherent(ah->dev, ah->desc_len, ah->desc, ah->desc_daddr);
957err:
958	ah->desc = NULL;
959	return ret;
960}
961
962void
963ath5k_txbuf_free_skb(struct ath5k_hw *ah, struct ath5k_buf *bf)
964{
965	BUG_ON(!bf);
966	if (!bf->skb)
967		return;
968	dma_unmap_single(ah->dev, bf->skbaddr, bf->skb->len,
969			DMA_TO_DEVICE);
970	ieee80211_free_txskb(ah->hw, bf->skb);
971	bf->skb = NULL;
972	bf->skbaddr = 0;
973	bf->desc->ds_data = 0;
974}
975
976void
977ath5k_rxbuf_free_skb(struct ath5k_hw *ah, struct ath5k_buf *bf)
978{
979	struct ath_common *common = ath5k_hw_common(ah);
980
981	BUG_ON(!bf);
982	if (!bf->skb)
983		return;
984	dma_unmap_single(ah->dev, bf->skbaddr, common->rx_bufsize,
985			DMA_FROM_DEVICE);
986	dev_kfree_skb_any(bf->skb);
987	bf->skb = NULL;
988	bf->skbaddr = 0;
989	bf->desc->ds_data = 0;
990}
991
992static void
993ath5k_desc_free(struct ath5k_hw *ah)
994{
995	struct ath5k_buf *bf;
996
997	list_for_each_entry(bf, &ah->txbuf, list)
998		ath5k_txbuf_free_skb(ah, bf);
999	list_for_each_entry(bf, &ah->rxbuf, list)
1000		ath5k_rxbuf_free_skb(ah, bf);
1001	list_for_each_entry(bf, &ah->bcbuf, list)
1002		ath5k_txbuf_free_skb(ah, bf);
1003
1004	/* Free memory associated with all descriptors */
1005	dma_free_coherent(ah->dev, ah->desc_len, ah->desc, ah->desc_daddr);
1006	ah->desc = NULL;
1007	ah->desc_daddr = 0;
1008
1009	kfree(ah->bufptr);
1010	ah->bufptr = NULL;
1011}
1012
1013
1014/**************\
1015* Queues setup *
1016\**************/
1017
1018static struct ath5k_txq *
1019ath5k_txq_setup(struct ath5k_hw *ah,
1020		int qtype, int subtype)
1021{
1022	struct ath5k_txq *txq;
1023	struct ath5k_txq_info qi = {
1024		.tqi_subtype = subtype,
1025		/* XXX: default values not correct for B and XR channels,
1026		 * but who cares? */
1027		.tqi_aifs = AR5K_TUNE_AIFS,
1028		.tqi_cw_min = AR5K_TUNE_CWMIN,
1029		.tqi_cw_max = AR5K_TUNE_CWMAX
1030	};
1031	int qnum;
1032
1033	/*
1034	 * Enable interrupts only for EOL and DESC conditions.
1035	 * We mark tx descriptors to receive a DESC interrupt
1036	 * when a tx queue gets deep; otherwise we wait for the
1037	 * EOL to reap descriptors.  Note that this is done to
1038	 * reduce interrupt load and this only defers reaping
1039	 * descriptors, never transmitting frames.  Aside from
1040	 * reducing interrupts this also permits more concurrency.
1041	 * The only potential downside is if the tx queue backs
1042	 * up in which case the top half of the kernel may backup
1043	 * due to a lack of tx descriptors.
1044	 */
1045	qi.tqi_flags = AR5K_TXQ_FLAG_TXEOLINT_ENABLE |
1046				AR5K_TXQ_FLAG_TXDESCINT_ENABLE;
1047	qnum = ath5k_hw_setup_tx_queue(ah, qtype, &qi);
1048	if (qnum < 0) {
1049		/*
1050		 * NB: don't print a message, this happens
1051		 * normally on parts with too few tx queues
1052		 */
1053		return ERR_PTR(qnum);
1054	}
1055	txq = &ah->txqs[qnum];
1056	if (!txq->setup) {
1057		txq->qnum = qnum;
1058		txq->link = NULL;
1059		INIT_LIST_HEAD(&txq->q);
1060		spin_lock_init(&txq->lock);
1061		txq->setup = true;
1062		txq->txq_len = 0;
1063		txq->txq_max = ATH5K_TXQ_LEN_MAX;
1064		txq->txq_poll_mark = false;
1065		txq->txq_stuck = 0;
1066	}
1067	return &ah->txqs[qnum];
1068}
1069
1070static int
1071ath5k_beaconq_setup(struct ath5k_hw *ah)
1072{
1073	struct ath5k_txq_info qi = {
1074		/* XXX: default values not correct for B and XR channels,
1075		 * but who cares? */
1076		.tqi_aifs = AR5K_TUNE_AIFS,
1077		.tqi_cw_min = AR5K_TUNE_CWMIN,
1078		.tqi_cw_max = AR5K_TUNE_CWMAX,
1079		/* NB: for dynamic turbo, don't enable any other interrupts */
1080		.tqi_flags = AR5K_TXQ_FLAG_TXDESCINT_ENABLE
1081	};
1082
1083	return ath5k_hw_setup_tx_queue(ah, AR5K_TX_QUEUE_BEACON, &qi);
1084}
1085
1086static int
1087ath5k_beaconq_config(struct ath5k_hw *ah)
1088{
1089	struct ath5k_txq_info qi;
1090	int ret;
1091
1092	ret = ath5k_hw_get_tx_queueprops(ah, ah->bhalq, &qi);
1093	if (ret)
1094		goto err;
1095
1096	if (ah->opmode == NL80211_IFTYPE_AP ||
1097	    ah->opmode == NL80211_IFTYPE_MESH_POINT) {
1098		/*
1099		 * Always burst out beacon and CAB traffic
1100		 * (aifs = cwmin = cwmax = 0)
1101		 */
1102		qi.tqi_aifs = 0;
1103		qi.tqi_cw_min = 0;
1104		qi.tqi_cw_max = 0;
1105	} else if (ah->opmode == NL80211_IFTYPE_ADHOC) {
1106		/*
1107		 * Adhoc mode; backoff between 0 and (2 * cw_min).
1108		 */
1109		qi.tqi_aifs = 0;
1110		qi.tqi_cw_min = 0;
1111		qi.tqi_cw_max = 2 * AR5K_TUNE_CWMIN;
1112	}
1113
1114	ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
1115		"beacon queueprops tqi_aifs:%d tqi_cw_min:%d tqi_cw_max:%d\n",
1116		qi.tqi_aifs, qi.tqi_cw_min, qi.tqi_cw_max);
1117
1118	ret = ath5k_hw_set_tx_queueprops(ah, ah->bhalq, &qi);
1119	if (ret) {
1120		ATH5K_ERR(ah, "%s: unable to update parameters for beacon "
1121			"hardware queue!\n", __func__);
1122		goto err;
1123	}
1124	ret = ath5k_hw_reset_tx_queue(ah, ah->bhalq); /* push to h/w */
1125	if (ret)
1126		goto err;
1127
1128	/* reconfigure cabq with ready time to 80% of beacon_interval */
1129	ret = ath5k_hw_get_tx_queueprops(ah, AR5K_TX_QUEUE_ID_CAB, &qi);
1130	if (ret)
1131		goto err;
1132
1133	qi.tqi_ready_time = (ah->bintval * 80) / 100;
1134	ret = ath5k_hw_set_tx_queueprops(ah, AR5K_TX_QUEUE_ID_CAB, &qi);
1135	if (ret)
1136		goto err;
1137
1138	ret = ath5k_hw_reset_tx_queue(ah, AR5K_TX_QUEUE_ID_CAB);
1139err:
1140	return ret;
1141}
1142
1143/**
1144 * ath5k_drain_tx_buffs - Empty tx buffers
1145 *
1146 * @ah: The &struct ath5k_hw
1147 *
1148 * Empty tx buffers from all queues in preparation
1149 * of a reset or during shutdown.
1150 *
1151 * NB:	this assumes output has been stopped and
1152 *	we do not need to block ath5k_tx_tasklet
1153 */
1154static void
1155ath5k_drain_tx_buffs(struct ath5k_hw *ah)
1156{
1157	struct ath5k_txq *txq;
1158	struct ath5k_buf *bf, *bf0;
1159	int i;
1160
1161	for (i = 0; i < ARRAY_SIZE(ah->txqs); i++) {
1162		if (ah->txqs[i].setup) {
1163			txq = &ah->txqs[i];
1164			spin_lock_bh(&txq->lock);
1165			list_for_each_entry_safe(bf, bf0, &txq->q, list) {
1166				ath5k_debug_printtxbuf(ah, bf);
1167
1168				ath5k_txbuf_free_skb(ah, bf);
1169
1170				spin_lock(&ah->txbuflock);
1171				list_move_tail(&bf->list, &ah->txbuf);
1172				ah->txbuf_len++;
1173				txq->txq_len--;
1174				spin_unlock(&ah->txbuflock);
1175			}
1176			txq->link = NULL;
1177			txq->txq_poll_mark = false;
1178			spin_unlock_bh(&txq->lock);
1179		}
1180	}
1181}
1182
1183static void
1184ath5k_txq_release(struct ath5k_hw *ah)
1185{
1186	struct ath5k_txq *txq = ah->txqs;
1187	unsigned int i;
1188
1189	for (i = 0; i < ARRAY_SIZE(ah->txqs); i++, txq++)
1190		if (txq->setup) {
1191			ath5k_hw_release_tx_queue(ah, txq->qnum);
1192			txq->setup = false;
1193		}
1194}
1195
1196
1197/*************\
1198* RX Handling *
1199\*************/
1200
1201/*
1202 * Enable the receive h/w following a reset.
1203 */
1204static int
1205ath5k_rx_start(struct ath5k_hw *ah)
1206{
1207	struct ath_common *common = ath5k_hw_common(ah);
1208	struct ath5k_buf *bf;
1209	int ret;
1210
1211	common->rx_bufsize = roundup(IEEE80211_MAX_FRAME_LEN, common->cachelsz);
1212
1213	ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "cachelsz %u rx_bufsize %u\n",
1214		  common->cachelsz, common->rx_bufsize);
1215
1216	spin_lock_bh(&ah->rxbuflock);
1217	ah->rxlink = NULL;
1218	list_for_each_entry(bf, &ah->rxbuf, list) {
1219		ret = ath5k_rxbuf_setup(ah, bf);
1220		if (ret != 0) {
1221			spin_unlock_bh(&ah->rxbuflock);
1222			goto err;
1223		}
1224	}
1225	bf = list_first_entry(&ah->rxbuf, struct ath5k_buf, list);
1226	ath5k_hw_set_rxdp(ah, bf->daddr);
1227	spin_unlock_bh(&ah->rxbuflock);
1228
1229	ath5k_hw_start_rx_dma(ah);	/* enable recv descriptors */
1230	ath5k_update_bssid_mask_and_opmode(ah, NULL); /* set filters, etc. */
1231	ath5k_hw_start_rx_pcu(ah);	/* re-enable PCU/DMA engine */
1232
1233	return 0;
1234err:
1235	return ret;
1236}
1237
1238/*
1239 * Disable the receive logic on PCU (DRU)
1240 * In preparation for a shutdown.
1241 *
1242 * Note: Doesn't stop rx DMA, ath5k_hw_dma_stop
1243 * does.
1244 */
1245static void
1246ath5k_rx_stop(struct ath5k_hw *ah)
1247{
1248
1249	ath5k_hw_set_rx_filter(ah, 0);	/* clear recv filter */
1250	ath5k_hw_stop_rx_pcu(ah);	/* disable PCU */
1251
1252	ath5k_debug_printrxbuffs(ah);
1253}
1254
1255static unsigned int
1256ath5k_rx_decrypted(struct ath5k_hw *ah, struct sk_buff *skb,
1257		   struct ath5k_rx_status *rs)
1258{
1259	struct ath_common *common = ath5k_hw_common(ah);
1260	struct ieee80211_hdr *hdr = (void *)skb->data;
1261	unsigned int keyix, hlen;
1262
1263	if (!(rs->rs_status & AR5K_RXERR_DECRYPT) &&
1264			rs->rs_keyix != AR5K_RXKEYIX_INVALID)
1265		return RX_FLAG_DECRYPTED;
1266
1267	/* Apparently when a default key is used to decrypt the packet
1268	   the hw does not set the index used to decrypt.  In such cases
1269	   get the index from the packet. */
1270	hlen = ieee80211_hdrlen(hdr->frame_control);
1271	if (ieee80211_has_protected(hdr->frame_control) &&
1272	    !(rs->rs_status & AR5K_RXERR_DECRYPT) &&
1273	    skb->len >= hlen + 4) {
1274		keyix = skb->data[hlen + 3] >> 6;
1275
1276		if (test_bit(keyix, common->keymap))
1277			return RX_FLAG_DECRYPTED;
1278	}
1279
1280	return 0;
1281}
1282
1283
1284static void
1285ath5k_check_ibss_tsf(struct ath5k_hw *ah, struct sk_buff *skb,
1286		     struct ieee80211_rx_status *rxs)
1287{
1288	u64 tsf, bc_tstamp;
1289	u32 hw_tu;
1290	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *)skb->data;
1291
1292	if (le16_to_cpu(mgmt->u.beacon.capab_info) & WLAN_CAPABILITY_IBSS) {
1293		/*
1294		 * Received an IBSS beacon with the same BSSID. Hardware *must*
1295		 * have updated the local TSF. We have to work around various
1296		 * hardware bugs, though...
1297		 */
1298		tsf = ath5k_hw_get_tsf64(ah);
1299		bc_tstamp = le64_to_cpu(mgmt->u.beacon.timestamp);
1300		hw_tu = TSF_TO_TU(tsf);
1301
1302		ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
1303			"beacon %llx mactime %llx (diff %lld) tsf now %llx\n",
1304			(unsigned long long)bc_tstamp,
1305			(unsigned long long)rxs->mactime,
1306			(unsigned long long)(rxs->mactime - bc_tstamp),
1307			(unsigned long long)tsf);
1308
1309		/*
1310		 * Sometimes the HW will give us a wrong tstamp in the rx
1311		 * status, causing the timestamp extension to go wrong.
1312		 * (This seems to happen especially with beacon frames bigger
1313		 * than 78 byte (incl. FCS))
1314		 * But we know that the receive timestamp must be later than the
1315		 * timestamp of the beacon since HW must have synced to that.
1316		 *
1317		 * NOTE: here we assume mactime to be after the frame was
1318		 * received, not like mac80211 which defines it at the start.
1319		 */
1320		if (bc_tstamp > rxs->mactime) {
1321			ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
1322				"fixing mactime from %llx to %llx\n",
1323				(unsigned long long)rxs->mactime,
1324				(unsigned long long)tsf);
1325			rxs->mactime = tsf;
1326		}
1327
1328		/*
1329		 * Local TSF might have moved higher than our beacon timers,
1330		 * in that case we have to update them to continue sending
1331		 * beacons. This also takes care of synchronizing beacon sending
1332		 * times with other stations.
1333		 */
1334		if (hw_tu >= ah->nexttbtt)
1335			ath5k_beacon_update_timers(ah, bc_tstamp);
1336
1337		/* Check if the beacon timers are still correct, because a TSF
1338		 * update might have created a window between them - for a
1339		 * longer description see the comment of this function: */
1340		if (!ath5k_hw_check_beacon_timers(ah, ah->bintval)) {
1341			ath5k_beacon_update_timers(ah, bc_tstamp);
1342			ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
1343				"fixed beacon timers after beacon receive\n");
1344		}
1345	}
1346}
1347
1348/*
1349 * Compute padding position. skb must contain an IEEE 802.11 frame
1350 */
1351static int ath5k_common_padpos(struct sk_buff *skb)
1352{
1353	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1354	__le16 frame_control = hdr->frame_control;
1355	int padpos = 24;
1356
1357	if (ieee80211_has_a4(frame_control))
1358		padpos += ETH_ALEN;
1359
1360	if (ieee80211_is_data_qos(frame_control))
1361		padpos += IEEE80211_QOS_CTL_LEN;
1362
1363	return padpos;
1364}
1365
1366/*
1367 * This function expects an 802.11 frame and returns the number of
1368 * bytes added, or -1 if we don't have enough header room.
1369 */
1370static int ath5k_add_padding(struct sk_buff *skb)
1371{
1372	int padpos = ath5k_common_padpos(skb);
1373	int padsize = padpos & 3;
1374
1375	if (padsize && skb->len > padpos) {
1376
1377		if (skb_headroom(skb) < padsize)
1378			return -1;
1379
1380		skb_push(skb, padsize);
1381		memmove(skb->data, skb->data + padsize, padpos);
1382		return padsize;
1383	}
1384
1385	return 0;
1386}
1387
1388/*
1389 * The MAC header is padded to have 32-bit boundary if the
1390 * packet payload is non-zero. The general calculation for
1391 * padsize would take into account odd header lengths:
1392 * padsize = 4 - (hdrlen & 3); however, since only
1393 * even-length headers are used, padding can only be 0 or 2
1394 * bytes and we can optimize this a bit.  We must not try to
1395 * remove padding from short control frames that do not have a
1396 * payload.
1397 *
1398 * This function expects an 802.11 frame and returns the number of
1399 * bytes removed.
1400 */
1401static int ath5k_remove_padding(struct sk_buff *skb)
1402{
1403	int padpos = ath5k_common_padpos(skb);
1404	int padsize = padpos & 3;
1405
1406	if (padsize && skb->len >= padpos + padsize) {
1407		memmove(skb->data + padsize, skb->data, padpos);
1408		skb_pull(skb, padsize);
1409		return padsize;
1410	}
1411
1412	return 0;
1413}
1414
1415static void
1416ath5k_receive_frame(struct ath5k_hw *ah, struct sk_buff *skb,
1417		    struct ath5k_rx_status *rs)
1418{
1419	struct ieee80211_rx_status *rxs;
1420	struct ath_common *common = ath5k_hw_common(ah);
1421
1422	ath5k_remove_padding(skb);
1423
1424	rxs = IEEE80211_SKB_RXCB(skb);
1425
1426	rxs->flag = 0;
1427	if (unlikely(rs->rs_status & AR5K_RXERR_MIC))
1428		rxs->flag |= RX_FLAG_MMIC_ERROR;
1429	if (unlikely(rs->rs_status & AR5K_RXERR_CRC))
1430		rxs->flag |= RX_FLAG_FAILED_FCS_CRC;
1431
1432
1433	/*
1434	 * always extend the mac timestamp, since this information is
1435	 * also needed for proper IBSS merging.
1436	 *
1437	 * XXX: it might be too late to do it here, since rs_tstamp is
1438	 * 15bit only. that means TSF extension has to be done within
1439	 * 32768usec (about 32ms). it might be necessary to move this to
1440	 * the interrupt handler, like it is done in madwifi.
1441	 */
1442	rxs->mactime = ath5k_extend_tsf(ah, rs->rs_tstamp);
1443	rxs->flag |= RX_FLAG_MACTIME_END;
1444
1445	rxs->freq = ah->curchan->center_freq;
1446	rxs->band = ah->curchan->band;
1447
1448	rxs->signal = ah->ah_noise_floor + rs->rs_rssi;
1449
1450	rxs->antenna = rs->rs_antenna;
1451
1452	if (rs->rs_antenna > 0 && rs->rs_antenna < 5)
1453		ah->stats.antenna_rx[rs->rs_antenna]++;
1454	else
1455		ah->stats.antenna_rx[0]++; /* invalid */
1456
1457	rxs->rate_idx = ath5k_hw_to_driver_rix(ah, rs->rs_rate);
1458	rxs->flag |= ath5k_rx_decrypted(ah, skb, rs);
1459	switch (ah->ah_bwmode) {
1460	case AR5K_BWMODE_5MHZ:
1461		rxs->bw = RATE_INFO_BW_5;
1462		break;
1463	case AR5K_BWMODE_10MHZ:
1464		rxs->bw = RATE_INFO_BW_10;
1465		break;
1466	default:
1467		break;
1468	}
1469
1470	if (rs->rs_rate ==
1471	    ah->sbands[ah->curchan->band].bitrates[rxs->rate_idx].hw_value_short)
1472		rxs->enc_flags |= RX_ENC_FLAG_SHORTPRE;
1473
1474	trace_ath5k_rx(ah, skb);
1475
1476	if (ath_is_mybeacon(common, (struct ieee80211_hdr *)skb->data)) {
1477		ewma_beacon_rssi_add(&ah->ah_beacon_rssi_avg, rs->rs_rssi);
1478
1479		/* check beacons in IBSS mode */
1480		if (ah->opmode == NL80211_IFTYPE_ADHOC)
1481			ath5k_check_ibss_tsf(ah, skb, rxs);
1482	}
1483
1484	ieee80211_rx(ah->hw, skb);
1485}
1486
1487/** ath5k_frame_receive_ok() - Do we want to receive this frame or not?
1488 *
1489 * Check if we want to further process this frame or not. Also update
1490 * statistics. Return true if we want this frame, false if not.
1491 */
1492static bool
1493ath5k_receive_frame_ok(struct ath5k_hw *ah, struct ath5k_rx_status *rs)
1494{
1495	ah->stats.rx_all_count++;
1496	ah->stats.rx_bytes_count += rs->rs_datalen;
1497
1498	if (unlikely(rs->rs_status)) {
1499		unsigned int filters;
1500
1501		if (rs->rs_status & AR5K_RXERR_CRC)
1502			ah->stats.rxerr_crc++;
1503		if (rs->rs_status & AR5K_RXERR_FIFO)
1504			ah->stats.rxerr_fifo++;
1505		if (rs->rs_status & AR5K_RXERR_PHY) {
1506			ah->stats.rxerr_phy++;
1507			if (rs->rs_phyerr > 0 && rs->rs_phyerr < 32)
1508				ah->stats.rxerr_phy_code[rs->rs_phyerr]++;
1509
1510			/*
1511			 * Treat packets that underwent a CCK or OFDM reset as having a bad CRC.
1512			 * These restarts happen when the radio resynchronizes to a stronger frame
1513			 * while receiving a weaker frame. Here we receive the prefix of the weak
1514			 * frame. Since these are incomplete packets, mark their CRC as invalid.
1515			 */
1516			if (rs->rs_phyerr == AR5K_RX_PHY_ERROR_OFDM_RESTART ||
1517			    rs->rs_phyerr == AR5K_RX_PHY_ERROR_CCK_RESTART) {
1518				rs->rs_status |= AR5K_RXERR_CRC;
1519				rs->rs_status &= ~AR5K_RXERR_PHY;
1520			} else {
1521				return false;
1522			}
1523		}
1524		if (rs->rs_status & AR5K_RXERR_DECRYPT) {
1525			/*
1526			 * Decrypt error.  If the error occurred
1527			 * because there was no hardware key, then
1528			 * let the frame through so the upper layers
1529			 * can process it.  This is necessary for 5210
1530			 * parts which have no way to setup a ``clear''
1531			 * key cache entry.
1532			 *
1533			 * XXX do key cache faulting
1534			 */
1535			ah->stats.rxerr_decrypt++;
1536			if (rs->rs_keyix == AR5K_RXKEYIX_INVALID &&
1537			    !(rs->rs_status & AR5K_RXERR_CRC))
1538				return true;
1539		}
1540		if (rs->rs_status & AR5K_RXERR_MIC) {
1541			ah->stats.rxerr_mic++;
1542			return true;
1543		}
1544
1545		/*
1546		 * Reject any frames with non-crypto errors, and take into account the
1547		 * current FIF_* filters.
1548		 */
1549		filters = AR5K_RXERR_DECRYPT;
1550		if (ah->fif_filter_flags & FIF_FCSFAIL)
1551			filters |= AR5K_RXERR_CRC;
1552
1553		if (rs->rs_status & ~filters)
1554			return false;
1555	}
1556
1557	if (unlikely(rs->rs_more)) {
1558		ah->stats.rxerr_jumbo++;
1559		return false;
1560	}
1561	return true;
1562}
1563
1564static void
1565ath5k_set_current_imask(struct ath5k_hw *ah)
1566{
1567	enum ath5k_int imask;
1568	unsigned long flags;
1569
1570	if (test_bit(ATH_STAT_RESET, ah->status))
1571		return;
1572
1573	spin_lock_irqsave(&ah->irqlock, flags);
1574	imask = ah->imask;
1575	if (ah->rx_pending)
1576		imask &= ~AR5K_INT_RX_ALL;
1577	if (ah->tx_pending)
1578		imask &= ~AR5K_INT_TX_ALL;
1579	ath5k_hw_set_imr(ah, imask);
1580	spin_unlock_irqrestore(&ah->irqlock, flags);
1581}
1582
1583static void
1584ath5k_tasklet_rx(struct tasklet_struct *t)
1585{
1586	struct ath5k_rx_status rs = {};
1587	struct sk_buff *skb, *next_skb;
1588	dma_addr_t next_skb_addr;
1589	struct ath5k_hw *ah = from_tasklet(ah, t, rxtq);
1590	struct ath_common *common = ath5k_hw_common(ah);
1591	struct ath5k_buf *bf;
1592	struct ath5k_desc *ds;
1593	int ret;
1594
1595	spin_lock(&ah->rxbuflock);
1596	if (list_empty(&ah->rxbuf)) {
1597		ATH5K_WARN(ah, "empty rx buf pool\n");
1598		goto unlock;
1599	}
1600	do {
1601		bf = list_first_entry(&ah->rxbuf, struct ath5k_buf, list);
1602		BUG_ON(bf->skb == NULL);
1603		skb = bf->skb;
1604		ds = bf->desc;
1605
1606		/* bail if HW is still using self-linked descriptor */
1607		if (ath5k_hw_get_rxdp(ah) == bf->daddr)
1608			break;
1609
1610		ret = ah->ah_proc_rx_desc(ah, ds, &rs);
1611		if (unlikely(ret == -EINPROGRESS))
1612			break;
1613		else if (unlikely(ret)) {
1614			ATH5K_ERR(ah, "error in processing rx descriptor\n");
1615			ah->stats.rxerr_proc++;
1616			break;
1617		}
1618
1619		if (ath5k_receive_frame_ok(ah, &rs)) {
1620			next_skb = ath5k_rx_skb_alloc(ah, &next_skb_addr);
1621
1622			/*
1623			 * If we can't replace bf->skb with a new skb under
1624			 * memory pressure, just skip this packet
1625			 */
1626			if (!next_skb)
1627				goto next;
1628
1629			dma_unmap_single(ah->dev, bf->skbaddr,
1630					 common->rx_bufsize,
1631					 DMA_FROM_DEVICE);
1632
1633			skb_put(skb, rs.rs_datalen);
1634
1635			ath5k_receive_frame(ah, skb, &rs);
1636
1637			bf->skb = next_skb;
1638			bf->skbaddr = next_skb_addr;
1639		}
1640next:
1641		list_move_tail(&bf->list, &ah->rxbuf);
1642	} while (ath5k_rxbuf_setup(ah, bf) == 0);
1643unlock:
1644	spin_unlock(&ah->rxbuflock);
1645	ah->rx_pending = false;
1646	ath5k_set_current_imask(ah);
1647}
1648
1649
1650/*************\
1651* TX Handling *
1652\*************/
1653
1654void
1655ath5k_tx_queue(struct ieee80211_hw *hw, struct sk_buff *skb,
1656	       struct ath5k_txq *txq, struct ieee80211_tx_control *control)
1657{
1658	struct ath5k_hw *ah = hw->priv;
1659	struct ath5k_buf *bf;
1660	unsigned long flags;
1661	int padsize;
1662
1663	trace_ath5k_tx(ah, skb, txq);
1664
1665	/*
1666	 * The hardware expects the header padded to 4 byte boundaries.
1667	 * If this is not the case, we add the padding after the header.
1668	 */
1669	padsize = ath5k_add_padding(skb);
1670	if (padsize < 0) {
1671		ATH5K_ERR(ah, "tx hdrlen not %%4: not enough"
1672			  " headroom to pad");
1673		goto drop_packet;
1674	}
1675
1676	if (txq->txq_len >= txq->txq_max &&
1677	    txq->qnum <= AR5K_TX_QUEUE_ID_DATA_MAX)
1678		ieee80211_stop_queue(hw, txq->qnum);
1679
1680	spin_lock_irqsave(&ah->txbuflock, flags);
1681	if (list_empty(&ah->txbuf)) {
1682		ATH5K_ERR(ah, "no further txbuf available, dropping packet\n");
1683		spin_unlock_irqrestore(&ah->txbuflock, flags);
1684		ieee80211_stop_queues(hw);
1685		goto drop_packet;
1686	}
1687	bf = list_first_entry(&ah->txbuf, struct ath5k_buf, list);
1688	list_del(&bf->list);
1689	ah->txbuf_len--;
1690	if (list_empty(&ah->txbuf))
1691		ieee80211_stop_queues(hw);
1692	spin_unlock_irqrestore(&ah->txbuflock, flags);
1693
1694	bf->skb = skb;
1695
1696	if (ath5k_txbuf_setup(ah, bf, txq, padsize, control)) {
1697		bf->skb = NULL;
1698		spin_lock_irqsave(&ah->txbuflock, flags);
1699		list_add_tail(&bf->list, &ah->txbuf);
1700		ah->txbuf_len++;
1701		spin_unlock_irqrestore(&ah->txbuflock, flags);
1702		goto drop_packet;
1703	}
1704	return;
1705
1706drop_packet:
1707	ieee80211_free_txskb(hw, skb);
1708}
1709
1710static void
1711ath5k_tx_frame_completed(struct ath5k_hw *ah, struct sk_buff *skb,
1712			 struct ath5k_txq *txq, struct ath5k_tx_status *ts,
1713			 struct ath5k_buf *bf)
1714{
1715	struct ieee80211_tx_info *info;
1716	u8 tries[3];
1717	int i;
1718	int size = 0;
1719
1720	ah->stats.tx_all_count++;
1721	ah->stats.tx_bytes_count += skb->len;
1722	info = IEEE80211_SKB_CB(skb);
1723
1724	size = min_t(int, sizeof(info->status.rates), sizeof(bf->rates));
1725	memcpy(info->status.rates, bf->rates, size);
1726
1727	tries[0] = info->status.rates[0].count;
1728	tries[1] = info->status.rates[1].count;
1729	tries[2] = info->status.rates[2].count;
1730
1731	ieee80211_tx_info_clear_status(info);
1732
1733	for (i = 0; i < ts->ts_final_idx; i++) {
1734		struct ieee80211_tx_rate *r =
1735			&info->status.rates[i];
1736
1737		r->count = tries[i];
1738	}
1739
1740	info->status.rates[ts->ts_final_idx].count = ts->ts_final_retry;
1741	info->status.rates[ts->ts_final_idx + 1].idx = -1;
1742
1743	if (unlikely(ts->ts_status)) {
1744		ah->stats.ack_fail++;
1745		if (ts->ts_status & AR5K_TXERR_FILT) {
1746			info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
1747			ah->stats.txerr_filt++;
1748		}
1749		if (ts->ts_status & AR5K_TXERR_XRETRY)
1750			ah->stats.txerr_retry++;
1751		if (ts->ts_status & AR5K_TXERR_FIFO)
1752			ah->stats.txerr_fifo++;
1753	} else {
1754		info->flags |= IEEE80211_TX_STAT_ACK;
1755		info->status.ack_signal = ts->ts_rssi;
1756
1757		/* count the successful attempt as well */
1758		info->status.rates[ts->ts_final_idx].count++;
1759	}
1760
1761	/*
1762	* Remove MAC header padding before giving the frame
1763	* back to mac80211.
1764	*/
1765	ath5k_remove_padding(skb);
1766
1767	if (ts->ts_antenna > 0 && ts->ts_antenna < 5)
1768		ah->stats.antenna_tx[ts->ts_antenna]++;
1769	else
1770		ah->stats.antenna_tx[0]++; /* invalid */
1771
1772	trace_ath5k_tx_complete(ah, skb, txq, ts);
1773	ieee80211_tx_status_skb(ah->hw, skb);
1774}
1775
1776static void
1777ath5k_tx_processq(struct ath5k_hw *ah, struct ath5k_txq *txq)
1778{
1779	struct ath5k_tx_status ts = {};
1780	struct ath5k_buf *bf, *bf0;
1781	struct ath5k_desc *ds;
1782	struct sk_buff *skb;
1783	int ret;
1784
1785	spin_lock(&txq->lock);
1786	list_for_each_entry_safe(bf, bf0, &txq->q, list) {
1787
1788		txq->txq_poll_mark = false;
1789
1790		/* skb might already have been processed last time. */
1791		if (bf->skb != NULL) {
1792			ds = bf->desc;
1793
1794			ret = ah->ah_proc_tx_desc(ah, ds, &ts);
1795			if (unlikely(ret == -EINPROGRESS))
1796				break;
1797			else if (unlikely(ret)) {
1798				ATH5K_ERR(ah,
1799					"error %d while processing "
1800					"queue %u\n", ret, txq->qnum);
1801				break;
1802			}
1803
1804			skb = bf->skb;
1805			bf->skb = NULL;
1806
1807			dma_unmap_single(ah->dev, bf->skbaddr, skb->len,
1808					DMA_TO_DEVICE);
1809			ath5k_tx_frame_completed(ah, skb, txq, &ts, bf);
1810		}
1811
1812		/*
1813		 * It's possible that the hardware can say the buffer is
1814		 * completed when it hasn't yet loaded the ds_link from
1815		 * host memory and moved on.
1816		 * Always keep the last descriptor to avoid HW races...
1817		 */
1818		if (ath5k_hw_get_txdp(ah, txq->qnum) != bf->daddr) {
1819			spin_lock(&ah->txbuflock);
1820			list_move_tail(&bf->list, &ah->txbuf);
1821			ah->txbuf_len++;
1822			txq->txq_len--;
1823			spin_unlock(&ah->txbuflock);
1824		}
1825	}
1826	spin_unlock(&txq->lock);
1827	if (txq->txq_len < ATH5K_TXQ_LEN_LOW && txq->qnum < 4)
1828		ieee80211_wake_queue(ah->hw, txq->qnum);
1829}
1830
1831static void
1832ath5k_tasklet_tx(struct tasklet_struct *t)
1833{
1834	int i;
1835	struct ath5k_hw *ah = from_tasklet(ah, t, txtq);
1836
1837	for (i = 0; i < AR5K_NUM_TX_QUEUES; i++)
1838		if (ah->txqs[i].setup && (ah->ah_txq_isr_txok_all & BIT(i)))
1839			ath5k_tx_processq(ah, &ah->txqs[i]);
1840
1841	ah->tx_pending = false;
1842	ath5k_set_current_imask(ah);
1843}
1844
1845
1846/*****************\
1847* Beacon handling *
1848\*****************/
1849
1850/*
1851 * Setup the beacon frame for transmit.
1852 */
1853static int
1854ath5k_beacon_setup(struct ath5k_hw *ah, struct ath5k_buf *bf)
1855{
1856	struct sk_buff *skb = bf->skb;
1857	struct	ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1858	struct ath5k_desc *ds;
1859	int ret = 0;
1860	u8 antenna;
1861	u32 flags;
1862	const int padsize = 0;
1863
1864	bf->skbaddr = dma_map_single(ah->dev, skb->data, skb->len,
1865			DMA_TO_DEVICE);
1866	ATH5K_DBG(ah, ATH5K_DEBUG_BEACON, "skb %p [data %p len %u] "
1867			"skbaddr %llx\n", skb, skb->data, skb->len,
1868			(unsigned long long)bf->skbaddr);
1869
1870	if (dma_mapping_error(ah->dev, bf->skbaddr)) {
1871		ATH5K_ERR(ah, "beacon DMA mapping failed\n");
1872		dev_kfree_skb_any(skb);
1873		bf->skb = NULL;
1874		return -EIO;
1875	}
1876
1877	ds = bf->desc;
1878	antenna = ah->ah_tx_ant;
1879
1880	flags = AR5K_TXDESC_NOACK;
1881	if (ah->opmode == NL80211_IFTYPE_ADHOC && ath5k_hw_hasveol(ah)) {
1882		ds->ds_link = bf->daddr;	/* self-linked */
1883		flags |= AR5K_TXDESC_VEOL;
1884	} else
1885		ds->ds_link = 0;
1886
1887	/*
1888	 * If we use multiple antennas on AP and use
1889	 * the Sectored AP scenario, switch antenna every
1890	 * 4 beacons to make sure everybody hears our AP.
1891	 * When a client tries to associate, hw will keep
1892	 * track of the tx antenna to be used for this client
1893	 * automatically, based on ACKed packets.
1894	 *
1895	 * Note: AP still listens and transmits RTS on the
1896	 * default antenna which is supposed to be an omni.
1897	 *
1898	 * Note2: On sectored scenarios it's possible to have
1899	 * multiple antennas (1 omni -- the default -- and 14
1900	 * sectors), so if we choose to actually support this
1901	 * mode, we need to allow the user to set how many antennas
1902	 * we have and tweak the code below to send beacons
1903	 * on all of them.
1904	 */
1905	if (ah->ah_ant_mode == AR5K_ANTMODE_SECTOR_AP)
1906		antenna = ah->bsent & 4 ? 2 : 1;
1907
1908
1909	/* FIXME: If we are in g mode and rate is a CCK rate
1910	 * subtract ah->ah_txpower.txp_cck_ofdm_pwr_delta
1911	 * from tx power (value is in dB units already) */
1912	ds->ds_data = bf->skbaddr;
1913	ret = ah->ah_setup_tx_desc(ah, ds, skb->len,
1914			ieee80211_get_hdrlen_from_skb(skb), padsize,
1915			AR5K_PKT_TYPE_BEACON,
1916			(ah->ah_txpower.txp_requested * 2),
1917			ieee80211_get_tx_rate(ah->hw, info)->hw_value,
1918			1, AR5K_TXKEYIX_INVALID,
1919			antenna, flags, 0, 0);
1920	if (ret)
1921		goto err_unmap;
1922
1923	return 0;
1924err_unmap:
1925	dma_unmap_single(ah->dev, bf->skbaddr, skb->len, DMA_TO_DEVICE);
1926	return ret;
1927}
1928
1929/*
1930 * Updates the beacon that is sent by ath5k_beacon_send.  For adhoc,
1931 * this is called only once at config_bss time, for AP we do it every
1932 * SWBA interrupt so that the TIM will reflect buffered frames.
1933 *
1934 * Called with the beacon lock.
1935 */
1936int
1937ath5k_beacon_update(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
1938{
1939	int ret;
1940	struct ath5k_hw *ah = hw->priv;
1941	struct ath5k_vif *avf;
1942	struct sk_buff *skb;
1943
1944	if (WARN_ON(!vif)) {
1945		ret = -EINVAL;
1946		goto out;
1947	}
1948
1949	skb = ieee80211_beacon_get(hw, vif, 0);
1950
1951	if (!skb) {
1952		ret = -ENOMEM;
1953		goto out;
1954	}
1955
1956	avf = (void *)vif->drv_priv;
1957	ath5k_txbuf_free_skb(ah, avf->bbuf);
1958	avf->bbuf->skb = skb;
1959	ret = ath5k_beacon_setup(ah, avf->bbuf);
1960out:
1961	return ret;
1962}
1963
1964/*
1965 * Transmit a beacon frame at SWBA.  Dynamic updates to the
1966 * frame contents are done as needed and the slot time is
1967 * also adjusted based on current state.
1968 *
1969 * This is called from software irq context (beacontq tasklets)
1970 * or user context from ath5k_beacon_config.
1971 */
1972static void
1973ath5k_beacon_send(struct ath5k_hw *ah)
1974{
1975	struct ieee80211_vif *vif;
1976	struct ath5k_vif *avf;
1977	struct ath5k_buf *bf;
1978	struct sk_buff *skb;
1979	int err;
1980
1981	ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON, "in beacon_send\n");
1982
1983	/*
1984	 * Check if the previous beacon has gone out.  If
1985	 * not, don't try to post another: skip this
1986	 * period and wait for the next.  Missed beacons
1987	 * indicate a problem and should not occur.  If we
1988	 * miss too many consecutive beacons reset the device.
1989	 */
1990	if (unlikely(ath5k_hw_num_tx_pending(ah, ah->bhalq) != 0)) {
1991		ah->bmisscount++;
1992		ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
1993			"missed %u consecutive beacons\n", ah->bmisscount);
1994		if (ah->bmisscount > 10) {	/* NB: 10 is a guess */
1995			ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
1996				"stuck beacon time (%u missed)\n",
1997				ah->bmisscount);
1998			ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
1999				  "stuck beacon, resetting\n");
2000			ieee80211_queue_work(ah->hw, &ah->reset_work);
2001		}
2002		return;
2003	}
2004	if (unlikely(ah->bmisscount != 0)) {
2005		ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
2006			"resume beacon xmit after %u misses\n",
2007			ah->bmisscount);
2008		ah->bmisscount = 0;
2009	}
2010
2011	if ((ah->opmode == NL80211_IFTYPE_AP && ah->num_ap_vifs +
2012			ah->num_mesh_vifs > 1) ||
2013			ah->opmode == NL80211_IFTYPE_MESH_POINT) {
2014		u64 tsf = ath5k_hw_get_tsf64(ah);
2015		u32 tsftu = TSF_TO_TU(tsf);
2016		int slot = ((tsftu % ah->bintval) * ATH_BCBUF) / ah->bintval;
2017		vif = ah->bslot[(slot + 1) % ATH_BCBUF];
2018		ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
2019			"tsf %llx tsftu %x intval %u slot %u vif %p\n",
2020			(unsigned long long)tsf, tsftu, ah->bintval, slot, vif);
2021	} else /* only one interface */
2022		vif = ah->bslot[0];
2023
2024	if (!vif)
2025		return;
2026
2027	avf = (void *)vif->drv_priv;
2028	bf = avf->bbuf;
2029
2030	/*
2031	 * Stop any current dma and put the new frame on the queue.
2032	 * This should never fail since we check above that no frames
2033	 * are still pending on the queue.
2034	 */
2035	if (unlikely(ath5k_hw_stop_beacon_queue(ah, ah->bhalq))) {
2036		ATH5K_WARN(ah, "beacon queue %u didn't start/stop ?\n", ah->bhalq);
2037		/* NB: hw still stops DMA, so proceed */
2038	}
2039
2040	/* refresh the beacon for AP or MESH mode */
2041	if (ah->opmode == NL80211_IFTYPE_AP ||
2042	    ah->opmode == NL80211_IFTYPE_MESH_POINT) {
2043		err = ath5k_beacon_update(ah->hw, vif);
2044		if (err)
2045			return;
2046	}
2047
2048	if (unlikely(bf->skb == NULL || ah->opmode == NL80211_IFTYPE_STATION ||
2049		     ah->opmode == NL80211_IFTYPE_MONITOR)) {
2050		ATH5K_WARN(ah, "bf=%p bf_skb=%p\n", bf, bf->skb);
2051		return;
2052	}
2053
2054	trace_ath5k_tx(ah, bf->skb, &ah->txqs[ah->bhalq]);
2055
2056	ath5k_hw_set_txdp(ah, ah->bhalq, bf->daddr);
2057	ath5k_hw_start_tx_dma(ah, ah->bhalq);
2058	ATH5K_DBG(ah, ATH5K_DEBUG_BEACON, "TXDP[%u] = %llx (%p)\n",
2059		ah->bhalq, (unsigned long long)bf->daddr, bf->desc);
2060
2061	skb = ieee80211_get_buffered_bc(ah->hw, vif);
2062	while (skb) {
2063		ath5k_tx_queue(ah->hw, skb, ah->cabq, NULL);
2064
2065		if (ah->cabq->txq_len >= ah->cabq->txq_max)
2066			break;
2067
2068		skb = ieee80211_get_buffered_bc(ah->hw, vif);
2069	}
2070
2071	ah->bsent++;
2072}
2073
2074/**
2075 * ath5k_beacon_update_timers - update beacon timers
2076 *
2077 * @ah: struct ath5k_hw pointer we are operating on
2078 * @bc_tsf: the timestamp of the beacon. 0 to reset the TSF. -1 to perform a
2079 *          beacon timer update based on the current HW TSF.
2080 *
2081 * Calculate the next target beacon transmit time (TBTT) based on the timestamp
2082 * of a received beacon or the current local hardware TSF and write it to the
2083 * beacon timer registers.
2084 *
2085 * This is called in a variety of situations, e.g. when a beacon is received,
2086 * when a TSF update has been detected, but also when an new IBSS is created or
2087 * when we otherwise know we have to update the timers, but we keep it in this
2088 * function to have it all together in one place.
2089 */
2090void
2091ath5k_beacon_update_timers(struct ath5k_hw *ah, u64 bc_tsf)
2092{
2093	u32 nexttbtt, intval, hw_tu, bc_tu;
2094	u64 hw_tsf;
2095
2096	intval = ah->bintval & AR5K_BEACON_PERIOD;
2097	if (ah->opmode == NL80211_IFTYPE_AP && ah->num_ap_vifs
2098		+ ah->num_mesh_vifs > 1) {
2099		intval /= ATH_BCBUF;	/* staggered multi-bss beacons */
2100		if (intval < 15)
2101			ATH5K_WARN(ah, "intval %u is too low, min 15\n",
2102				   intval);
2103	}
2104	if (WARN_ON(!intval))
2105		return;
2106
2107	/* beacon TSF converted to TU */
2108	bc_tu = TSF_TO_TU(bc_tsf);
2109
2110	/* current TSF converted to TU */
2111	hw_tsf = ath5k_hw_get_tsf64(ah);
2112	hw_tu = TSF_TO_TU(hw_tsf);
2113
2114#define FUDGE (AR5K_TUNE_SW_BEACON_RESP + 3)
2115	/* We use FUDGE to make sure the next TBTT is ahead of the current TU.
2116	 * Since we later subtract AR5K_TUNE_SW_BEACON_RESP (10) in the timer
2117	 * configuration we need to make sure it is bigger than that. */
2118
2119	if (bc_tsf == -1) {
2120		/*
2121		 * no beacons received, called internally.
2122		 * just need to refresh timers based on HW TSF.
2123		 */
2124		nexttbtt = roundup(hw_tu + FUDGE, intval);
2125	} else if (bc_tsf == 0) {
2126		/*
2127		 * no beacon received, probably called by ath5k_reset_tsf().
2128		 * reset TSF to start with 0.
2129		 */
2130		nexttbtt = intval;
2131		intval |= AR5K_BEACON_RESET_TSF;
2132	} else if (bc_tsf > hw_tsf) {
2133		/*
2134		 * beacon received, SW merge happened but HW TSF not yet updated.
2135		 * not possible to reconfigure timers yet, but next time we
2136		 * receive a beacon with the same BSSID, the hardware will
2137		 * automatically update the TSF and then we need to reconfigure
2138		 * the timers.
2139		 */
2140		ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2141			"need to wait for HW TSF sync\n");
2142		return;
2143	} else {
2144		/*
2145		 * most important case for beacon synchronization between STA.
2146		 *
2147		 * beacon received and HW TSF has been already updated by HW.
2148		 * update next TBTT based on the TSF of the beacon, but make
2149		 * sure it is ahead of our local TSF timer.
2150		 */
2151		nexttbtt = bc_tu + roundup(hw_tu + FUDGE - bc_tu, intval);
2152	}
2153#undef FUDGE
2154
2155	ah->nexttbtt = nexttbtt;
2156
2157	intval |= AR5K_BEACON_ENA;
2158	ath5k_hw_init_beacon_timers(ah, nexttbtt, intval);
2159
2160	/*
2161	 * debugging output last in order to preserve the time critical aspect
2162	 * of this function
2163	 */
2164	if (bc_tsf == -1)
2165		ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2166			"reconfigured timers based on HW TSF\n");
2167	else if (bc_tsf == 0)
2168		ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2169			"reset HW TSF and timers\n");
2170	else
2171		ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2172			"updated timers based on beacon TSF\n");
2173
2174	ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2175			  "bc_tsf %llx hw_tsf %llx bc_tu %u hw_tu %u nexttbtt %u\n",
2176			  (unsigned long long) bc_tsf,
2177			  (unsigned long long) hw_tsf, bc_tu, hw_tu, nexttbtt);
2178	ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON, "intval %u %s %s\n",
2179		intval & AR5K_BEACON_PERIOD,
2180		intval & AR5K_BEACON_ENA ? "AR5K_BEACON_ENA" : "",
2181		intval & AR5K_BEACON_RESET_TSF ? "AR5K_BEACON_RESET_TSF" : "");
2182}
2183
2184/**
2185 * ath5k_beacon_config - Configure the beacon queues and interrupts
2186 *
2187 * @ah: struct ath5k_hw pointer we are operating on
2188 *
2189 * In IBSS mode we use a self-linked tx descriptor if possible. We enable SWBA
2190 * interrupts to detect TSF updates only.
2191 */
2192void
2193ath5k_beacon_config(struct ath5k_hw *ah)
2194{
2195	spin_lock_bh(&ah->block);
2196	ah->bmisscount = 0;
2197	ah->imask &= ~(AR5K_INT_BMISS | AR5K_INT_SWBA);
2198
2199	if (ah->enable_beacon) {
2200		/*
2201		 * In IBSS mode we use a self-linked tx descriptor and let the
2202		 * hardware send the beacons automatically. We have to load it
2203		 * only once here.
2204		 * We use the SWBA interrupt only to keep track of the beacon
2205		 * timers in order to detect automatic TSF updates.
2206		 */
2207		ath5k_beaconq_config(ah);
2208
2209		ah->imask |= AR5K_INT_SWBA;
2210
2211		if (ah->opmode == NL80211_IFTYPE_ADHOC) {
2212			if (ath5k_hw_hasveol(ah))
2213				ath5k_beacon_send(ah);
2214		} else
2215			ath5k_beacon_update_timers(ah, -1);
2216	} else {
2217		ath5k_hw_stop_beacon_queue(ah, ah->bhalq);
2218	}
2219
2220	ath5k_hw_set_imr(ah, ah->imask);
2221	spin_unlock_bh(&ah->block);
2222}
2223
2224static void ath5k_tasklet_beacon(struct tasklet_struct *t)
2225{
2226	struct ath5k_hw *ah = from_tasklet(ah, t, beacontq);
2227
2228	/*
2229	 * Software beacon alert--time to send a beacon.
2230	 *
2231	 * In IBSS mode we use this interrupt just to
2232	 * keep track of the next TBTT (target beacon
2233	 * transmission time) in order to detect whether
2234	 * automatic TSF updates happened.
2235	 */
2236	if (ah->opmode == NL80211_IFTYPE_ADHOC) {
2237		/* XXX: only if VEOL supported */
2238		u64 tsf = ath5k_hw_get_tsf64(ah);
2239		ah->nexttbtt += ah->bintval;
2240		ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
2241				"SWBA nexttbtt: %x hw_tu: %x "
2242				"TSF: %llx\n",
2243				ah->nexttbtt,
2244				TSF_TO_TU(tsf),
2245				(unsigned long long) tsf);
2246	} else {
2247		spin_lock(&ah->block);
2248		ath5k_beacon_send(ah);
2249		spin_unlock(&ah->block);
2250	}
2251}
2252
2253
2254/********************\
2255* Interrupt handling *
2256\********************/
2257
2258static void
2259ath5k_intr_calibration_poll(struct ath5k_hw *ah)
2260{
2261	if (time_is_before_eq_jiffies(ah->ah_cal_next_ani) &&
2262	   !(ah->ah_cal_mask & AR5K_CALIBRATION_FULL) &&
2263	   !(ah->ah_cal_mask & AR5K_CALIBRATION_SHORT)) {
2264
2265		/* Run ANI only when calibration is not active */
2266
2267		ah->ah_cal_next_ani = jiffies +
2268			msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_ANI);
2269		tasklet_schedule(&ah->ani_tasklet);
2270
2271	} else if (time_is_before_eq_jiffies(ah->ah_cal_next_short) &&
2272		!(ah->ah_cal_mask & AR5K_CALIBRATION_FULL) &&
2273		!(ah->ah_cal_mask & AR5K_CALIBRATION_SHORT)) {
2274
2275		/* Run calibration only when another calibration
2276		 * is not running.
2277		 *
2278		 * Note: This is for both full/short calibration,
2279		 * if it's time for a full one, ath5k_calibrate_work will deal
2280		 * with it. */
2281
2282		ah->ah_cal_next_short = jiffies +
2283			msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_SHORT);
2284		ieee80211_queue_work(ah->hw, &ah->calib_work);
2285	}
2286	/* we could use SWI to generate enough interrupts to meet our
2287	 * calibration interval requirements, if necessary:
2288	 * AR5K_REG_ENABLE_BITS(ah, AR5K_CR, AR5K_CR_SWI); */
2289}
2290
2291static void
2292ath5k_schedule_rx(struct ath5k_hw *ah)
2293{
2294	ah->rx_pending = true;
2295	tasklet_schedule(&ah->rxtq);
2296}
2297
2298static void
2299ath5k_schedule_tx(struct ath5k_hw *ah)
2300{
2301	ah->tx_pending = true;
2302	tasklet_schedule(&ah->txtq);
2303}
2304
2305static irqreturn_t
2306ath5k_intr(int irq, void *dev_id)
2307{
2308	struct ath5k_hw *ah = dev_id;
2309	enum ath5k_int status;
2310	unsigned int counter = 1000;
2311
2312
2313	/*
2314	 * If hw is not ready (or detached) and we get an
2315	 * interrupt, or if we have no interrupts pending
2316	 * (that means it's not for us) skip it.
2317	 *
2318	 * NOTE: Group 0/1 PCI interface registers are not
2319	 * supported on WiSOCs, so we can't check for pending
2320	 * interrupts (ISR belongs to another register group
2321	 * so we are ok).
2322	 */
2323	if (unlikely(test_bit(ATH_STAT_INVALID, ah->status) ||
2324			((ath5k_get_bus_type(ah) != ATH_AHB) &&
2325			!ath5k_hw_is_intr_pending(ah))))
2326		return IRQ_NONE;
2327
2328	/** Main loop **/
2329	do {
2330		ath5k_hw_get_isr(ah, &status);	/* NB: clears IRQ too */
2331
2332		ATH5K_DBG(ah, ATH5K_DEBUG_INTR, "status 0x%x/0x%x\n",
2333				status, ah->imask);
2334
2335		/*
2336		 * Fatal hw error -> Log and reset
2337		 *
2338		 * Fatal errors are unrecoverable so we have to
2339		 * reset the card. These errors include bus and
2340		 * dma errors.
2341		 */
2342		if (unlikely(status & AR5K_INT_FATAL)) {
2343
2344			ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2345				  "fatal int, resetting\n");
2346			ieee80211_queue_work(ah->hw, &ah->reset_work);
2347
2348		/*
2349		 * RX Overrun -> Count and reset if needed
2350		 *
2351		 * Receive buffers are full. Either the bus is busy or
2352		 * the CPU is not fast enough to process all received
2353		 * frames.
2354		 */
2355		} else if (unlikely(status & AR5K_INT_RXORN)) {
2356
2357			/*
2358			 * Older chipsets need a reset to come out of this
2359			 * condition, but we treat it as RX for newer chips.
2360			 * We don't know exactly which versions need a reset
2361			 * this guess is copied from the HAL.
2362			 */
2363			ah->stats.rxorn_intr++;
2364
2365			if (ah->ah_mac_srev < AR5K_SREV_AR5212) {
2366				ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2367					  "rx overrun, resetting\n");
2368				ieee80211_queue_work(ah->hw, &ah->reset_work);
2369			} else
2370				ath5k_schedule_rx(ah);
2371
2372		} else {
2373
2374			/* Software Beacon Alert -> Schedule beacon tasklet */
2375			if (status & AR5K_INT_SWBA)
2376				tasklet_hi_schedule(&ah->beacontq);
2377
2378			/*
2379			 * No more RX descriptors -> Just count
2380			 *
2381			 * NB: the hardware should re-read the link when
2382			 *     RXE bit is written, but it doesn't work at
2383			 *     least on older hardware revs.
2384			 */
2385			if (status & AR5K_INT_RXEOL)
2386				ah->stats.rxeol_intr++;
2387
2388
2389			/* TX Underrun -> Bump tx trigger level */
2390			if (status & AR5K_INT_TXURN)
2391				ath5k_hw_update_tx_triglevel(ah, true);
2392
2393			/* RX -> Schedule rx tasklet */
2394			if (status & (AR5K_INT_RXOK | AR5K_INT_RXERR))
2395				ath5k_schedule_rx(ah);
2396
2397			/* TX -> Schedule tx tasklet */
2398			if (status & (AR5K_INT_TXOK
2399					| AR5K_INT_TXDESC
2400					| AR5K_INT_TXERR
2401					| AR5K_INT_TXEOL))
2402				ath5k_schedule_tx(ah);
2403
2404			/* Missed beacon -> TODO
2405			if (status & AR5K_INT_BMISS)
2406			*/
2407
2408			/* MIB event -> Update counters and notify ANI */
2409			if (status & AR5K_INT_MIB) {
2410				ah->stats.mib_intr++;
2411				ath5k_hw_update_mib_counters(ah);
2412				ath5k_ani_mib_intr(ah);
2413			}
2414
2415			/* GPIO -> Notify RFKill layer */
2416			if (status & AR5K_INT_GPIO)
2417				tasklet_schedule(&ah->rf_kill.toggleq);
2418
2419		}
2420
2421		if (ath5k_get_bus_type(ah) == ATH_AHB)
2422			break;
2423
2424	} while (ath5k_hw_is_intr_pending(ah) && --counter > 0);
2425
2426	/*
2427	 * Until we handle rx/tx interrupts mask them on IMR
2428	 *
2429	 * NOTE: ah->(rx/tx)_pending are set when scheduling the tasklets
2430	 * and unset after we 've handled the interrupts.
2431	 */
2432	if (ah->rx_pending || ah->tx_pending)
2433		ath5k_set_current_imask(ah);
2434
2435	if (unlikely(!counter))
2436		ATH5K_WARN(ah, "too many interrupts, giving up for now\n");
2437
2438	/* Fire up calibration poll */
2439	ath5k_intr_calibration_poll(ah);
2440
2441	return IRQ_HANDLED;
2442}
2443
2444/*
2445 * Periodically recalibrate the PHY to account
2446 * for temperature/environment changes.
2447 */
2448static void
2449ath5k_calibrate_work(struct work_struct *work)
2450{
2451	struct ath5k_hw *ah = container_of(work, struct ath5k_hw,
2452		calib_work);
2453
2454	/* Should we run a full calibration ? */
2455	if (time_is_before_eq_jiffies(ah->ah_cal_next_full)) {
2456
2457		ah->ah_cal_next_full = jiffies +
2458			msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_FULL);
2459		ah->ah_cal_mask |= AR5K_CALIBRATION_FULL;
2460
2461		ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
2462				"running full calibration\n");
2463
2464		if (ath5k_hw_gainf_calibrate(ah) == AR5K_RFGAIN_NEED_CHANGE) {
2465			/*
2466			 * Rfgain is out of bounds, reset the chip
2467			 * to load new gain values.
2468			 */
2469			ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2470					"got new rfgain, resetting\n");
2471			ieee80211_queue_work(ah->hw, &ah->reset_work);
2472		}
2473	} else
2474		ah->ah_cal_mask |= AR5K_CALIBRATION_SHORT;
2475
2476
2477	ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE, "channel %u/%x\n",
2478		ieee80211_frequency_to_channel(ah->curchan->center_freq),
2479		ah->curchan->hw_value);
2480
2481	if (ath5k_hw_phy_calibrate(ah, ah->curchan))
2482		ATH5K_ERR(ah, "calibration of channel %u failed\n",
2483			ieee80211_frequency_to_channel(
2484				ah->curchan->center_freq));
2485
2486	/* Clear calibration flags */
2487	if (ah->ah_cal_mask & AR5K_CALIBRATION_FULL)
2488		ah->ah_cal_mask &= ~AR5K_CALIBRATION_FULL;
2489	else if (ah->ah_cal_mask & AR5K_CALIBRATION_SHORT)
2490		ah->ah_cal_mask &= ~AR5K_CALIBRATION_SHORT;
2491}
2492
2493
2494static void
2495ath5k_tasklet_ani(struct tasklet_struct *t)
2496{
2497	struct ath5k_hw *ah = from_tasklet(ah, t, ani_tasklet);
2498
2499	ah->ah_cal_mask |= AR5K_CALIBRATION_ANI;
2500	ath5k_ani_calibration(ah);
2501	ah->ah_cal_mask &= ~AR5K_CALIBRATION_ANI;
2502}
2503
2504
2505static void
2506ath5k_tx_complete_poll_work(struct work_struct *work)
2507{
2508	struct ath5k_hw *ah = container_of(work, struct ath5k_hw,
2509			tx_complete_work.work);
2510	struct ath5k_txq *txq;
2511	int i;
2512	bool needreset = false;
2513
2514	if (!test_bit(ATH_STAT_STARTED, ah->status))
2515		return;
2516
2517	mutex_lock(&ah->lock);
2518
2519	for (i = 0; i < ARRAY_SIZE(ah->txqs); i++) {
2520		if (ah->txqs[i].setup) {
2521			txq = &ah->txqs[i];
2522			spin_lock_bh(&txq->lock);
2523			if (txq->txq_len > 1) {
2524				if (txq->txq_poll_mark) {
2525					ATH5K_DBG(ah, ATH5K_DEBUG_XMIT,
2526						  "TX queue stuck %d\n",
2527						  txq->qnum);
2528					needreset = true;
2529					txq->txq_stuck++;
2530					spin_unlock_bh(&txq->lock);
2531					break;
2532				} else {
2533					txq->txq_poll_mark = true;
2534				}
2535			}
2536			spin_unlock_bh(&txq->lock);
2537		}
2538	}
2539
2540	if (needreset) {
2541		ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2542			  "TX queues stuck, resetting\n");
2543		ath5k_reset(ah, NULL, true);
2544	}
2545
2546	mutex_unlock(&ah->lock);
2547
2548	ieee80211_queue_delayed_work(ah->hw, &ah->tx_complete_work,
2549		msecs_to_jiffies(ATH5K_TX_COMPLETE_POLL_INT));
2550}
2551
2552
2553/*************************\
2554* Initialization routines *
2555\*************************/
2556
2557static const struct ieee80211_iface_limit if_limits[] = {
2558	{ .max = 2048,	.types = BIT(NL80211_IFTYPE_STATION) },
2559	{ .max = 4,	.types =
2560#ifdef CONFIG_MAC80211_MESH
2561				 BIT(NL80211_IFTYPE_MESH_POINT) |
2562#endif
2563				 BIT(NL80211_IFTYPE_AP) },
2564};
2565
2566static const struct ieee80211_iface_combination if_comb = {
2567	.limits = if_limits,
2568	.n_limits = ARRAY_SIZE(if_limits),
2569	.max_interfaces = 2048,
2570	.num_different_channels = 1,
2571};
2572
2573int
2574ath5k_init_ah(struct ath5k_hw *ah, const struct ath_bus_ops *bus_ops)
2575{
2576	struct ieee80211_hw *hw = ah->hw;
2577	struct ath_common *common;
2578	int ret;
2579	int csz;
2580
2581	/* Initialize driver private data */
2582	SET_IEEE80211_DEV(hw, ah->dev);
2583	ieee80211_hw_set(hw, SUPPORTS_RC_TABLE);
2584	ieee80211_hw_set(hw, REPORTS_TX_ACK_STATUS);
2585	ieee80211_hw_set(hw, MFP_CAPABLE);
2586	ieee80211_hw_set(hw, SIGNAL_DBM);
2587	ieee80211_hw_set(hw, RX_INCLUDES_FCS);
2588	ieee80211_hw_set(hw, HOST_BROADCAST_PS_BUFFERING);
2589
2590	hw->wiphy->interface_modes =
2591		BIT(NL80211_IFTYPE_AP) |
2592		BIT(NL80211_IFTYPE_STATION) |
2593		BIT(NL80211_IFTYPE_ADHOC) |
2594		BIT(NL80211_IFTYPE_MESH_POINT);
2595
2596	hw->wiphy->iface_combinations = &if_comb;
2597	hw->wiphy->n_iface_combinations = 1;
2598
2599	/* SW support for IBSS_RSN is provided by mac80211 */
2600	hw->wiphy->flags |= WIPHY_FLAG_IBSS_RSN;
2601
2602	hw->wiphy->flags |= WIPHY_FLAG_SUPPORTS_5_10_MHZ;
2603
2604	/* both antennas can be configured as RX or TX */
2605	hw->wiphy->available_antennas_tx = 0x3;
2606	hw->wiphy->available_antennas_rx = 0x3;
2607
2608	hw->extra_tx_headroom = 2;
2609
2610	wiphy_ext_feature_set(hw->wiphy, NL80211_EXT_FEATURE_CQM_RSSI_LIST);
2611
2612	/*
2613	 * Mark the device as detached to avoid processing
2614	 * interrupts until setup is complete.
2615	 */
2616	__set_bit(ATH_STAT_INVALID, ah->status);
2617
2618	ah->opmode = NL80211_IFTYPE_STATION;
2619	ah->bintval = 1000;
2620	mutex_init(&ah->lock);
2621	spin_lock_init(&ah->rxbuflock);
2622	spin_lock_init(&ah->txbuflock);
2623	spin_lock_init(&ah->block);
2624	spin_lock_init(&ah->irqlock);
2625
2626	/* Setup interrupt handler */
2627	ret = request_irq(ah->irq, ath5k_intr, IRQF_SHARED, "ath", ah);
2628	if (ret) {
2629		ATH5K_ERR(ah, "request_irq failed\n");
2630		goto err;
2631	}
2632
2633	common = ath5k_hw_common(ah);
2634	common->ops = &ath5k_common_ops;
2635	common->bus_ops = bus_ops;
2636	common->ah = ah;
2637	common->hw = hw;
2638	common->priv = ah;
2639	common->clockrate = 40;
2640
2641	/*
2642	 * Cache line size is used to size and align various
2643	 * structures used to communicate with the hardware.
2644	 */
2645	ath5k_read_cachesize(common, &csz);
2646	common->cachelsz = csz << 2; /* convert to bytes */
2647
2648	spin_lock_init(&common->cc_lock);
2649
2650	/* Initialize device */
2651	ret = ath5k_hw_init(ah);
2652	if (ret)
2653		goto err_irq;
2654
2655	/* Set up multi-rate retry capabilities */
2656	if (ah->ah_capabilities.cap_has_mrr_support) {
2657		hw->max_rates = 4;
2658		hw->max_rate_tries = max(AR5K_INIT_RETRY_SHORT,
2659					 AR5K_INIT_RETRY_LONG);
2660	}
2661
2662	hw->vif_data_size = sizeof(struct ath5k_vif);
2663
2664	/* Finish private driver data initialization */
2665	ret = ath5k_init(hw);
2666	if (ret)
2667		goto err_ah;
2668
2669	ATH5K_INFO(ah, "Atheros AR%s chip found (MAC: 0x%x, PHY: 0x%x)\n",
2670			ath5k_chip_name(AR5K_VERSION_MAC, ah->ah_mac_srev),
2671					ah->ah_mac_srev,
2672					ah->ah_phy_revision);
2673
2674	if (!ah->ah_single_chip) {
2675		/* Single chip radio (!RF5111) */
2676		if (ah->ah_radio_5ghz_revision &&
2677			!ah->ah_radio_2ghz_revision) {
2678			/* No 5GHz support -> report 2GHz radio */
2679			if (!test_bit(AR5K_MODE_11A,
2680				ah->ah_capabilities.cap_mode)) {
2681				ATH5K_INFO(ah, "RF%s 2GHz radio found (0x%x)\n",
2682					ath5k_chip_name(AR5K_VERSION_RAD,
2683						ah->ah_radio_5ghz_revision),
2684						ah->ah_radio_5ghz_revision);
2685			/* No 2GHz support (5110 and some
2686			 * 5GHz only cards) -> report 5GHz radio */
2687			} else if (!test_bit(AR5K_MODE_11B,
2688				ah->ah_capabilities.cap_mode)) {
2689				ATH5K_INFO(ah, "RF%s 5GHz radio found (0x%x)\n",
2690					ath5k_chip_name(AR5K_VERSION_RAD,
2691						ah->ah_radio_5ghz_revision),
2692						ah->ah_radio_5ghz_revision);
2693			/* Multiband radio */
2694			} else {
2695				ATH5K_INFO(ah, "RF%s multiband radio found"
2696					" (0x%x)\n",
2697					ath5k_chip_name(AR5K_VERSION_RAD,
2698						ah->ah_radio_5ghz_revision),
2699						ah->ah_radio_5ghz_revision);
2700			}
2701		}
2702		/* Multi chip radio (RF5111 - RF2111) ->
2703		 * report both 2GHz/5GHz radios */
2704		else if (ah->ah_radio_5ghz_revision &&
2705				ah->ah_radio_2ghz_revision) {
2706			ATH5K_INFO(ah, "RF%s 5GHz radio found (0x%x)\n",
2707				ath5k_chip_name(AR5K_VERSION_RAD,
2708					ah->ah_radio_5ghz_revision),
2709					ah->ah_radio_5ghz_revision);
2710			ATH5K_INFO(ah, "RF%s 2GHz radio found (0x%x)\n",
2711				ath5k_chip_name(AR5K_VERSION_RAD,
2712					ah->ah_radio_2ghz_revision),
2713					ah->ah_radio_2ghz_revision);
2714		}
2715	}
2716
2717	ath5k_debug_init_device(ah);
2718
2719	/* ready to process interrupts */
2720	__clear_bit(ATH_STAT_INVALID, ah->status);
2721
2722	return 0;
2723err_ah:
2724	ath5k_hw_deinit(ah);
2725err_irq:
2726	free_irq(ah->irq, ah);
2727err:
2728	return ret;
2729}
2730
2731static int
2732ath5k_stop_locked(struct ath5k_hw *ah)
2733{
2734
2735	ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "invalid %u\n",
2736			test_bit(ATH_STAT_INVALID, ah->status));
2737
2738	/*
2739	 * Shutdown the hardware and driver:
2740	 *    stop output from above
2741	 *    disable interrupts
2742	 *    turn off timers
2743	 *    turn off the radio
2744	 *    clear transmit machinery
2745	 *    clear receive machinery
2746	 *    drain and release tx queues
2747	 *    reclaim beacon resources
2748	 *    power down hardware
2749	 *
2750	 * Note that some of this work is not possible if the
2751	 * hardware is gone (invalid).
2752	 */
2753	ieee80211_stop_queues(ah->hw);
2754
2755	if (!test_bit(ATH_STAT_INVALID, ah->status)) {
2756		ath5k_led_off(ah);
2757		ath5k_hw_set_imr(ah, 0);
2758		synchronize_irq(ah->irq);
2759		ath5k_rx_stop(ah);
2760		ath5k_hw_dma_stop(ah);
2761		ath5k_drain_tx_buffs(ah);
2762		ath5k_hw_phy_disable(ah);
2763	}
2764
2765	return 0;
2766}
2767
2768int ath5k_start(struct ieee80211_hw *hw)
2769{
2770	struct ath5k_hw *ah = hw->priv;
2771	struct ath_common *common = ath5k_hw_common(ah);
2772	int ret, i;
2773
2774	mutex_lock(&ah->lock);
2775
2776	ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "mode %d\n", ah->opmode);
2777
2778	/*
2779	 * Stop anything previously setup.  This is safe
2780	 * no matter this is the first time through or not.
2781	 */
2782	ath5k_stop_locked(ah);
2783
2784	/*
2785	 * The basic interface to setting the hardware in a good
2786	 * state is ``reset''.  On return the hardware is known to
2787	 * be powered up and with interrupts disabled.  This must
2788	 * be followed by initialization of the appropriate bits
2789	 * and then setup of the interrupt mask.
2790	 */
2791	ah->curchan = ah->hw->conf.chandef.chan;
2792	ah->imask = AR5K_INT_RXOK
2793		| AR5K_INT_RXERR
2794		| AR5K_INT_RXEOL
2795		| AR5K_INT_RXORN
2796		| AR5K_INT_TXDESC
2797		| AR5K_INT_TXEOL
2798		| AR5K_INT_FATAL
2799		| AR5K_INT_GLOBAL
2800		| AR5K_INT_MIB;
2801
2802	ret = ath5k_reset(ah, NULL, false);
2803	if (ret)
2804		goto done;
2805
2806	if (!ath5k_modparam_no_hw_rfkill_switch)
2807		ath5k_rfkill_hw_start(ah);
2808
2809	/*
2810	 * Reset the key cache since some parts do not reset the
2811	 * contents on initial power up or resume from suspend.
2812	 */
2813	for (i = 0; i < common->keymax; i++)
2814		ath_hw_keyreset(common, (u16) i);
2815
2816	/* Use higher rates for acks instead of base
2817	 * rate */
2818	ah->ah_ack_bitrate_high = true;
2819
2820	for (i = 0; i < ARRAY_SIZE(ah->bslot); i++)
2821		ah->bslot[i] = NULL;
2822
2823	ret = 0;
2824done:
2825	mutex_unlock(&ah->lock);
2826
2827	set_bit(ATH_STAT_STARTED, ah->status);
2828	ieee80211_queue_delayed_work(ah->hw, &ah->tx_complete_work,
2829			msecs_to_jiffies(ATH5K_TX_COMPLETE_POLL_INT));
2830
2831	return ret;
2832}
2833
2834static void ath5k_stop_tasklets(struct ath5k_hw *ah)
2835{
2836	ah->rx_pending = false;
2837	ah->tx_pending = false;
2838	tasklet_kill(&ah->rxtq);
2839	tasklet_kill(&ah->txtq);
2840	tasklet_kill(&ah->beacontq);
2841	tasklet_kill(&ah->ani_tasklet);
2842}
2843
2844/*
2845 * Stop the device, grabbing the top-level lock to protect
2846 * against concurrent entry through ath5k_init (which can happen
2847 * if another thread does a system call and the thread doing the
2848 * stop is preempted).
2849 */
2850void ath5k_stop(struct ieee80211_hw *hw)
2851{
2852	struct ath5k_hw *ah = hw->priv;
2853	int ret;
2854
2855	mutex_lock(&ah->lock);
2856	ret = ath5k_stop_locked(ah);
2857	if (ret == 0 && !test_bit(ATH_STAT_INVALID, ah->status)) {
2858		/*
2859		 * Don't set the card in full sleep mode!
2860		 *
2861		 * a) When the device is in this state it must be carefully
2862		 * woken up or references to registers in the PCI clock
2863		 * domain may freeze the bus (and system).  This varies
2864		 * by chip and is mostly an issue with newer parts
2865		 * (madwifi sources mentioned srev >= 0x78) that go to
2866		 * sleep more quickly.
2867		 *
2868		 * b) On older chips full sleep results a weird behaviour
2869		 * during wakeup. I tested various cards with srev < 0x78
2870		 * and they don't wake up after module reload, a second
2871		 * module reload is needed to bring the card up again.
2872		 *
2873		 * Until we figure out what's going on don't enable
2874		 * full chip reset on any chip (this is what Legacy HAL
2875		 * and Sam's HAL do anyway). Instead Perform a full reset
2876		 * on the device (same as initial state after attach) and
2877		 * leave it idle (keep MAC/BB on warm reset) */
2878		ret = ath5k_hw_on_hold(ah);
2879
2880		ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2881				"putting device to sleep\n");
2882	}
2883
2884	mutex_unlock(&ah->lock);
2885
2886	ath5k_stop_tasklets(ah);
2887
2888	clear_bit(ATH_STAT_STARTED, ah->status);
2889	cancel_delayed_work_sync(&ah->tx_complete_work);
2890
2891	if (!ath5k_modparam_no_hw_rfkill_switch)
2892		ath5k_rfkill_hw_stop(ah);
2893}
2894
2895/*
2896 * Reset the hardware.  If chan is not NULL, then also pause rx/tx
2897 * and change to the given channel.
2898 *
2899 * This should be called with ah->lock.
2900 */
2901static int
2902ath5k_reset(struct ath5k_hw *ah, struct ieee80211_channel *chan,
2903							bool skip_pcu)
2904{
2905	struct ath_common *common = ath5k_hw_common(ah);
2906	int ret, ani_mode;
2907	bool fast = chan && modparam_fastchanswitch ? 1 : 0;
2908
2909	ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "resetting\n");
2910
2911	__set_bit(ATH_STAT_RESET, ah->status);
2912
2913	ath5k_hw_set_imr(ah, 0);
2914	synchronize_irq(ah->irq);
2915	ath5k_stop_tasklets(ah);
2916
2917	/* Save ani mode and disable ANI during
2918	 * reset. If we don't we might get false
2919	 * PHY error interrupts. */
2920	ani_mode = ah->ani_state.ani_mode;
2921	ath5k_ani_init(ah, ATH5K_ANI_MODE_OFF);
2922
2923	/* We are going to empty hw queues
2924	 * so we should also free any remaining
2925	 * tx buffers */
2926	ath5k_drain_tx_buffs(ah);
2927
2928	/* Stop PCU */
2929	ath5k_hw_stop_rx_pcu(ah);
2930
2931	/* Stop DMA
2932	 *
2933	 * Note: If DMA didn't stop continue
2934	 * since only a reset will fix it.
2935	 */
2936	ret = ath5k_hw_dma_stop(ah);
2937
2938	/* RF Bus grant won't work if we have pending
2939	 * frames
2940	 */
2941	if (ret && fast) {
2942		ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2943			  "DMA didn't stop, falling back to normal reset\n");
2944		fast = false;
2945	}
2946
2947	if (chan)
2948		ah->curchan = chan;
2949
2950	ret = ath5k_hw_reset(ah, ah->opmode, ah->curchan, fast, skip_pcu);
2951	if (ret) {
2952		ATH5K_ERR(ah, "can't reset hardware (%d)\n", ret);
2953		goto err;
2954	}
2955
2956	ret = ath5k_rx_start(ah);
2957	if (ret) {
2958		ATH5K_ERR(ah, "can't start recv logic\n");
2959		goto err;
2960	}
2961
2962	ath5k_ani_init(ah, ani_mode);
2963
2964	/*
2965	 * Set calibration intervals
2966	 *
2967	 * Note: We don't need to run calibration imediately
2968	 * since some initial calibration is done on reset
2969	 * even for fast channel switching. Also on scanning
2970	 * this will get set again and again and it won't get
2971	 * executed unless we connect somewhere and spend some
2972	 * time on the channel (that's what calibration needs
2973	 * anyway to be accurate).
2974	 */
2975	ah->ah_cal_next_full = jiffies +
2976		msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_FULL);
2977	ah->ah_cal_next_ani = jiffies +
2978		msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_ANI);
2979	ah->ah_cal_next_short = jiffies +
2980		msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_SHORT);
2981
2982	ewma_beacon_rssi_init(&ah->ah_beacon_rssi_avg);
2983
2984	/* clear survey data and cycle counters */
2985	memset(&ah->survey, 0, sizeof(ah->survey));
2986	spin_lock_bh(&common->cc_lock);
2987	ath_hw_cycle_counters_update(common);
2988	memset(&common->cc_survey, 0, sizeof(common->cc_survey));
2989	memset(&common->cc_ani, 0, sizeof(common->cc_ani));
2990	spin_unlock_bh(&common->cc_lock);
2991
2992	/*
2993	 * Change channels and update the h/w rate map if we're switching;
2994	 * e.g. 11a to 11b/g.
2995	 *
2996	 * We may be doing a reset in response to an ioctl that changes the
2997	 * channel so update any state that might change as a result.
2998	 *
2999	 * XXX needed?
3000	 */
3001/*	ath5k_chan_change(ah, c); */
3002
3003	__clear_bit(ATH_STAT_RESET, ah->status);
3004
3005	ath5k_beacon_config(ah);
3006	/* intrs are enabled by ath5k_beacon_config */
3007
3008	ieee80211_wake_queues(ah->hw);
3009
3010	return 0;
3011err:
3012	return ret;
3013}
3014
3015static void ath5k_reset_work(struct work_struct *work)
3016{
3017	struct ath5k_hw *ah = container_of(work, struct ath5k_hw,
3018		reset_work);
3019
3020	mutex_lock(&ah->lock);
3021	ath5k_reset(ah, NULL, true);
3022	mutex_unlock(&ah->lock);
3023}
3024
3025static int
3026ath5k_init(struct ieee80211_hw *hw)
3027{
3028
3029	struct ath5k_hw *ah = hw->priv;
3030	struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
3031	struct ath5k_txq *txq;
3032	u8 mac[ETH_ALEN] = {};
3033	int ret;
3034
3035
3036	/*
3037	 * Collect the channel list.  The 802.11 layer
3038	 * is responsible for filtering this list based
3039	 * on settings like the phy mode and regulatory
3040	 * domain restrictions.
3041	 */
3042	ret = ath5k_setup_bands(hw);
3043	if (ret) {
3044		ATH5K_ERR(ah, "can't get channels\n");
3045		goto err;
3046	}
3047
3048	/*
3049	 * Allocate tx+rx descriptors and populate the lists.
3050	 */
3051	ret = ath5k_desc_alloc(ah);
3052	if (ret) {
3053		ATH5K_ERR(ah, "can't allocate descriptors\n");
3054		goto err;
3055	}
3056
3057	/*
3058	 * Allocate hardware transmit queues: one queue for
3059	 * beacon frames and one data queue for each QoS
3060	 * priority.  Note that hw functions handle resetting
3061	 * these queues at the needed time.
3062	 */
3063	ret = ath5k_beaconq_setup(ah);
3064	if (ret < 0) {
3065		ATH5K_ERR(ah, "can't setup a beacon xmit queue\n");
3066		goto err_desc;
3067	}
3068	ah->bhalq = ret;
3069	ah->cabq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_CAB, 0);
3070	if (IS_ERR(ah->cabq)) {
3071		ATH5K_ERR(ah, "can't setup cab queue\n");
3072		ret = PTR_ERR(ah->cabq);
3073		goto err_bhal;
3074	}
3075
3076	/* 5211 and 5212 usually support 10 queues but we better rely on the
3077	 * capability information */
3078	if (ah->ah_capabilities.cap_queues.q_tx_num >= 6) {
3079		/* This order matches mac80211's queue priority, so we can
3080		* directly use the mac80211 queue number without any mapping */
3081		txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_VO);
3082		if (IS_ERR(txq)) {
3083			ATH5K_ERR(ah, "can't setup xmit queue\n");
3084			ret = PTR_ERR(txq);
3085			goto err_queues;
3086		}
3087		txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_VI);
3088		if (IS_ERR(txq)) {
3089			ATH5K_ERR(ah, "can't setup xmit queue\n");
3090			ret = PTR_ERR(txq);
3091			goto err_queues;
3092		}
3093		txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BE);
3094		if (IS_ERR(txq)) {
3095			ATH5K_ERR(ah, "can't setup xmit queue\n");
3096			ret = PTR_ERR(txq);
3097			goto err_queues;
3098		}
3099		txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BK);
3100		if (IS_ERR(txq)) {
3101			ATH5K_ERR(ah, "can't setup xmit queue\n");
3102			ret = PTR_ERR(txq);
3103			goto err_queues;
3104		}
3105		hw->queues = 4;
3106	} else {
3107		/* older hardware (5210) can only support one data queue */
3108		txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BE);
3109		if (IS_ERR(txq)) {
3110			ATH5K_ERR(ah, "can't setup xmit queue\n");
3111			ret = PTR_ERR(txq);
3112			goto err_queues;
3113		}
3114		hw->queues = 1;
3115	}
3116
3117	tasklet_setup(&ah->rxtq, ath5k_tasklet_rx);
3118	tasklet_setup(&ah->txtq, ath5k_tasklet_tx);
3119	tasklet_setup(&ah->beacontq, ath5k_tasklet_beacon);
3120	tasklet_setup(&ah->ani_tasklet, ath5k_tasklet_ani);
3121
3122	INIT_WORK(&ah->reset_work, ath5k_reset_work);
3123	INIT_WORK(&ah->calib_work, ath5k_calibrate_work);
3124	INIT_DELAYED_WORK(&ah->tx_complete_work, ath5k_tx_complete_poll_work);
3125
3126	ret = ath5k_hw_common(ah)->bus_ops->eeprom_read_mac(ah, mac);
3127	if (ret) {
3128		ATH5K_ERR(ah, "unable to read address from EEPROM\n");
3129		goto err_queues;
3130	}
3131
3132	SET_IEEE80211_PERM_ADDR(hw, mac);
3133	/* All MAC address bits matter for ACKs */
3134	ath5k_update_bssid_mask_and_opmode(ah, NULL);
3135
3136	regulatory->current_rd = ah->ah_capabilities.cap_eeprom.ee_regdomain;
3137	ret = ath_regd_init(regulatory, hw->wiphy, ath5k_reg_notifier);
3138	if (ret) {
3139		ATH5K_ERR(ah, "can't initialize regulatory system\n");
3140		goto err_queues;
3141	}
3142
3143	ret = ieee80211_register_hw(hw);
3144	if (ret) {
3145		ATH5K_ERR(ah, "can't register ieee80211 hw\n");
3146		goto err_queues;
3147	}
3148
3149	if (!ath_is_world_regd(regulatory))
3150		regulatory_hint(hw->wiphy, regulatory->alpha2);
3151
3152	ath5k_init_leds(ah);
3153
3154	ath5k_sysfs_register(ah);
3155
3156	return 0;
3157err_queues:
3158	ath5k_txq_release(ah);
3159err_bhal:
3160	ath5k_hw_release_tx_queue(ah, ah->bhalq);
3161err_desc:
3162	ath5k_desc_free(ah);
3163err:
3164	return ret;
3165}
3166
3167void
3168ath5k_deinit_ah(struct ath5k_hw *ah)
3169{
3170	struct ieee80211_hw *hw = ah->hw;
3171
3172	/*
3173	 * NB: the order of these is important:
3174	 * o call the 802.11 layer before detaching ath5k_hw to
3175	 *   ensure callbacks into the driver to delete global
3176	 *   key cache entries can be handled
3177	 * o reclaim the tx queue data structures after calling
3178	 *   the 802.11 layer as we'll get called back to reclaim
3179	 *   node state and potentially want to use them
3180	 * o to cleanup the tx queues the hal is called, so detach
3181	 *   it last
3182	 * XXX: ??? detach ath5k_hw ???
3183	 * Other than that, it's straightforward...
3184	 */
3185	ieee80211_unregister_hw(hw);
3186	ath5k_desc_free(ah);
3187	ath5k_txq_release(ah);
3188	ath5k_hw_release_tx_queue(ah, ah->bhalq);
3189	ath5k_unregister_leds(ah);
3190
3191	ath5k_sysfs_unregister(ah);
3192	/*
3193	 * NB: can't reclaim these until after ieee80211_ifdetach
3194	 * returns because we'll get called back to reclaim node
3195	 * state and potentially want to use them.
3196	 */
3197	ath5k_hw_deinit(ah);
3198	free_irq(ah->irq, ah);
3199}
3200
3201bool
3202ath5k_any_vif_assoc(struct ath5k_hw *ah)
3203{
3204	struct ath5k_vif_iter_data iter_data;
3205	iter_data.hw_macaddr = NULL;
3206	iter_data.any_assoc = false;
3207	iter_data.need_set_hw_addr = false;
3208	iter_data.found_active = true;
3209
3210	ieee80211_iterate_active_interfaces_atomic(
3211		ah->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
3212		ath5k_vif_iter, &iter_data);
3213	return iter_data.any_assoc;
3214}
3215
3216void
3217ath5k_set_beacon_filter(struct ieee80211_hw *hw, bool enable)
3218{
3219	struct ath5k_hw *ah = hw->priv;
3220	u32 rfilt;
3221	rfilt = ath5k_hw_get_rx_filter(ah);
3222	if (enable)
3223		rfilt |= AR5K_RX_FILTER_BEACON;
3224	else
3225		rfilt &= ~AR5K_RX_FILTER_BEACON;
3226	ath5k_hw_set_rx_filter(ah, rfilt);
3227	ah->filter_flags = rfilt;
3228}
3229
3230void _ath5k_printk(const struct ath5k_hw *ah, const char *level,
3231		   const char *fmt, ...)
3232{
3233	struct va_format vaf;
3234	va_list args;
3235
3236	va_start(args, fmt);
3237
3238	vaf.fmt = fmt;
3239	vaf.va = &args;
3240
3241	if (ah && ah->hw)
3242		printk("%s" pr_fmt("%s: %pV"),
3243		       level, wiphy_name(ah->hw->wiphy), &vaf);
3244	else
3245		printk("%s" pr_fmt("%pV"), level, &vaf);
3246
3247	va_end(args);
3248}
3249