1// SPDX-License-Identifier: ISC
2/*
3 * Copyright (c) 2014-2017 Qualcomm Atheros, Inc.
4 * Copyright (c) 2022 Qualcomm Innovation Center, Inc. All rights reserved.
5 */
6
7#include <linux/types.h>
8#include <linux/bitops.h>
9#include <linux/bitfield.h>
10#include "core.h"
11#include "hw.h"
12#include "hif.h"
13#include "wmi-ops.h"
14#include "bmi.h"
15#include "rx_desc.h"
16
17const struct ath10k_hw_regs qca988x_regs = {
18	.rtc_soc_base_address		= 0x00004000,
19	.rtc_wmac_base_address		= 0x00005000,
20	.soc_core_base_address		= 0x00009000,
21	.wlan_mac_base_address		= 0x00020000,
22	.ce_wrapper_base_address	= 0x00057000,
23	.ce0_base_address		= 0x00057400,
24	.ce1_base_address		= 0x00057800,
25	.ce2_base_address		= 0x00057c00,
26	.ce3_base_address		= 0x00058000,
27	.ce4_base_address		= 0x00058400,
28	.ce5_base_address		= 0x00058800,
29	.ce6_base_address		= 0x00058c00,
30	.ce7_base_address		= 0x00059000,
31	.soc_reset_control_si0_rst_mask	= 0x00000001,
32	.soc_reset_control_ce_rst_mask	= 0x00040000,
33	.soc_chip_id_address		= 0x000000ec,
34	.scratch_3_address		= 0x00000030,
35	.fw_indicator_address		= 0x00009030,
36	.pcie_local_base_address	= 0x00080000,
37	.ce_wrap_intr_sum_host_msi_lsb	= 0x00000008,
38	.ce_wrap_intr_sum_host_msi_mask	= 0x0000ff00,
39	.pcie_intr_fw_mask		= 0x00000400,
40	.pcie_intr_ce_mask_all		= 0x0007f800,
41	.pcie_intr_clr_address		= 0x00000014,
42};
43
44const struct ath10k_hw_regs qca6174_regs = {
45	.rtc_soc_base_address			= 0x00000800,
46	.rtc_wmac_base_address			= 0x00001000,
47	.soc_core_base_address			= 0x0003a000,
48	.wlan_mac_base_address			= 0x00010000,
49	.ce_wrapper_base_address		= 0x00034000,
50	.ce0_base_address			= 0x00034400,
51	.ce1_base_address			= 0x00034800,
52	.ce2_base_address			= 0x00034c00,
53	.ce3_base_address			= 0x00035000,
54	.ce4_base_address			= 0x00035400,
55	.ce5_base_address			= 0x00035800,
56	.ce6_base_address			= 0x00035c00,
57	.ce7_base_address			= 0x00036000,
58	.soc_reset_control_si0_rst_mask		= 0x00000000,
59	.soc_reset_control_ce_rst_mask		= 0x00000001,
60	.soc_chip_id_address			= 0x000000f0,
61	.scratch_3_address			= 0x00000028,
62	.fw_indicator_address			= 0x0003a028,
63	.pcie_local_base_address		= 0x00080000,
64	.ce_wrap_intr_sum_host_msi_lsb		= 0x00000008,
65	.ce_wrap_intr_sum_host_msi_mask		= 0x0000ff00,
66	.pcie_intr_fw_mask			= 0x00000400,
67	.pcie_intr_ce_mask_all			= 0x0007f800,
68	.pcie_intr_clr_address			= 0x00000014,
69	.cpu_pll_init_address			= 0x00404020,
70	.cpu_speed_address			= 0x00404024,
71	.core_clk_div_address			= 0x00404028,
72};
73
74const struct ath10k_hw_regs qca99x0_regs = {
75	.rtc_soc_base_address			= 0x00080000,
76	.rtc_wmac_base_address			= 0x00000000,
77	.soc_core_base_address			= 0x00082000,
78	.wlan_mac_base_address			= 0x00030000,
79	.ce_wrapper_base_address		= 0x0004d000,
80	.ce0_base_address			= 0x0004a000,
81	.ce1_base_address			= 0x0004a400,
82	.ce2_base_address			= 0x0004a800,
83	.ce3_base_address			= 0x0004ac00,
84	.ce4_base_address			= 0x0004b000,
85	.ce5_base_address			= 0x0004b400,
86	.ce6_base_address			= 0x0004b800,
87	.ce7_base_address			= 0x0004bc00,
88	/* Note: qca99x0 supports up to 12 Copy Engines. Other than address of
89	 * CE0 and CE1 no other copy engine is directly referred in the code.
90	 * It is not really necessary to assign address for newly supported
91	 * CEs in this address table.
92	 *	Copy Engine		Address
93	 *	CE8			0x0004c000
94	 *	CE9			0x0004c400
95	 *	CE10			0x0004c800
96	 *	CE11			0x0004cc00
97	 */
98	.soc_reset_control_si0_rst_mask		= 0x00000001,
99	.soc_reset_control_ce_rst_mask		= 0x00000100,
100	.soc_chip_id_address			= 0x000000ec,
101	.scratch_3_address			= 0x00040050,
102	.fw_indicator_address			= 0x00040050,
103	.pcie_local_base_address		= 0x00000000,
104	.ce_wrap_intr_sum_host_msi_lsb		= 0x0000000c,
105	.ce_wrap_intr_sum_host_msi_mask		= 0x00fff000,
106	.pcie_intr_fw_mask			= 0x00100000,
107	.pcie_intr_ce_mask_all			= 0x000fff00,
108	.pcie_intr_clr_address			= 0x00000010,
109};
110
111const struct ath10k_hw_regs qca4019_regs = {
112	.rtc_soc_base_address                   = 0x00080000,
113	.soc_core_base_address                  = 0x00082000,
114	.wlan_mac_base_address                  = 0x00030000,
115	.ce_wrapper_base_address                = 0x0004d000,
116	.ce0_base_address                       = 0x0004a000,
117	.ce1_base_address                       = 0x0004a400,
118	.ce2_base_address                       = 0x0004a800,
119	.ce3_base_address                       = 0x0004ac00,
120	.ce4_base_address                       = 0x0004b000,
121	.ce5_base_address                       = 0x0004b400,
122	.ce6_base_address                       = 0x0004b800,
123	.ce7_base_address                       = 0x0004bc00,
124	/* qca4019 supports up to 12 copy engines. Since base address
125	 * of ce8 to ce11 are not directly referred in the code,
126	 * no need have them in separate members in this table.
127	 *      Copy Engine             Address
128	 *      CE8                     0x0004c000
129	 *      CE9                     0x0004c400
130	 *      CE10                    0x0004c800
131	 *      CE11                    0x0004cc00
132	 */
133	.soc_reset_control_si0_rst_mask         = 0x00000001,
134	.soc_reset_control_ce_rst_mask          = 0x00000100,
135	.soc_chip_id_address                    = 0x000000ec,
136	.fw_indicator_address                   = 0x0004f00c,
137	.ce_wrap_intr_sum_host_msi_lsb          = 0x0000000c,
138	.ce_wrap_intr_sum_host_msi_mask         = 0x00fff000,
139	.pcie_intr_fw_mask                      = 0x00100000,
140	.pcie_intr_ce_mask_all                  = 0x000fff00,
141	.pcie_intr_clr_address                  = 0x00000010,
142};
143
144const struct ath10k_hw_values qca988x_values = {
145	.rtc_state_val_on		= 3,
146	.ce_count			= 8,
147	.msi_assign_ce_max		= 7,
148	.num_target_ce_config_wlan	= 7,
149	.ce_desc_meta_data_mask		= 0xFFFC,
150	.ce_desc_meta_data_lsb		= 2,
151};
152
153const struct ath10k_hw_values qca6174_values = {
154	.rtc_state_val_on		= 3,
155	.ce_count			= 8,
156	.msi_assign_ce_max		= 7,
157	.num_target_ce_config_wlan	= 7,
158	.ce_desc_meta_data_mask		= 0xFFFC,
159	.ce_desc_meta_data_lsb		= 2,
160	.rfkill_pin			= 16,
161	.rfkill_cfg			= 0,
162	.rfkill_on_level		= 1,
163};
164
165const struct ath10k_hw_values qca99x0_values = {
166	.rtc_state_val_on		= 7,
167	.ce_count			= 12,
168	.msi_assign_ce_max		= 12,
169	.num_target_ce_config_wlan	= 10,
170	.ce_desc_meta_data_mask		= 0xFFF0,
171	.ce_desc_meta_data_lsb		= 4,
172};
173
174const struct ath10k_hw_values qca9888_values = {
175	.rtc_state_val_on		= 3,
176	.ce_count			= 12,
177	.msi_assign_ce_max		= 12,
178	.num_target_ce_config_wlan	= 10,
179	.ce_desc_meta_data_mask		= 0xFFF0,
180	.ce_desc_meta_data_lsb		= 4,
181};
182
183const struct ath10k_hw_values qca4019_values = {
184	.ce_count                       = 12,
185	.num_target_ce_config_wlan      = 10,
186	.ce_desc_meta_data_mask         = 0xFFF0,
187	.ce_desc_meta_data_lsb          = 4,
188};
189
190const struct ath10k_hw_regs wcn3990_regs = {
191	.rtc_soc_base_address			= 0x00000000,
192	.rtc_wmac_base_address			= 0x00000000,
193	.soc_core_base_address			= 0x00000000,
194	.ce_wrapper_base_address		= 0x0024C000,
195	.ce0_base_address			= 0x00240000,
196	.ce1_base_address			= 0x00241000,
197	.ce2_base_address			= 0x00242000,
198	.ce3_base_address			= 0x00243000,
199	.ce4_base_address			= 0x00244000,
200	.ce5_base_address			= 0x00245000,
201	.ce6_base_address			= 0x00246000,
202	.ce7_base_address			= 0x00247000,
203	.ce8_base_address			= 0x00248000,
204	.ce9_base_address			= 0x00249000,
205	.ce10_base_address			= 0x0024A000,
206	.ce11_base_address			= 0x0024B000,
207	.soc_chip_id_address			= 0x000000f0,
208	.soc_reset_control_si0_rst_mask		= 0x00000001,
209	.soc_reset_control_ce_rst_mask		= 0x00000100,
210	.ce_wrap_intr_sum_host_msi_lsb		= 0x0000000c,
211	.ce_wrap_intr_sum_host_msi_mask		= 0x00fff000,
212	.pcie_intr_fw_mask			= 0x00100000,
213};
214
215static struct ath10k_hw_ce_regs_addr_map wcn3990_src_ring = {
216	.msb	= 0x00000010,
217	.lsb	= 0x00000010,
218	.mask	= GENMASK(17, 17),
219};
220
221static struct ath10k_hw_ce_regs_addr_map wcn3990_dst_ring = {
222	.msb	= 0x00000012,
223	.lsb	= 0x00000012,
224	.mask	= GENMASK(18, 18),
225};
226
227static struct ath10k_hw_ce_regs_addr_map wcn3990_dmax = {
228	.msb	= 0x00000000,
229	.lsb	= 0x00000000,
230	.mask	= GENMASK(15, 0),
231};
232
233static struct ath10k_hw_ce_ctrl1 wcn3990_ctrl1 = {
234	.addr		= 0x00000018,
235	.src_ring	= &wcn3990_src_ring,
236	.dst_ring	= &wcn3990_dst_ring,
237	.dmax		= &wcn3990_dmax,
238};
239
240static struct ath10k_hw_ce_regs_addr_map wcn3990_host_ie_cc = {
241	.mask	= GENMASK(0, 0),
242};
243
244static struct ath10k_hw_ce_host_ie wcn3990_host_ie = {
245	.copy_complete	= &wcn3990_host_ie_cc,
246};
247
248static struct ath10k_hw_ce_host_wm_regs wcn3990_wm_reg = {
249	.dstr_lmask	= 0x00000010,
250	.dstr_hmask	= 0x00000008,
251	.srcr_lmask	= 0x00000004,
252	.srcr_hmask	= 0x00000002,
253	.cc_mask	= 0x00000001,
254	.wm_mask	= 0x0000001E,
255	.addr		= 0x00000030,
256};
257
258static struct ath10k_hw_ce_misc_regs wcn3990_misc_reg = {
259	.axi_err	= 0x00000100,
260	.dstr_add_err	= 0x00000200,
261	.srcr_len_err	= 0x00000100,
262	.dstr_mlen_vio	= 0x00000080,
263	.dstr_overflow	= 0x00000040,
264	.srcr_overflow	= 0x00000020,
265	.err_mask	= 0x000003E0,
266	.addr		= 0x00000038,
267};
268
269static struct ath10k_hw_ce_regs_addr_map wcn3990_src_wm_low = {
270	.msb	= 0x00000000,
271	.lsb	= 0x00000010,
272	.mask	= GENMASK(31, 16),
273};
274
275static struct ath10k_hw_ce_regs_addr_map wcn3990_src_wm_high = {
276	.msb	= 0x0000000f,
277	.lsb	= 0x00000000,
278	.mask	= GENMASK(15, 0),
279};
280
281static struct ath10k_hw_ce_dst_src_wm_regs wcn3990_wm_src_ring = {
282	.addr		= 0x0000004c,
283	.low_rst	= 0x00000000,
284	.high_rst	= 0x00000000,
285	.wm_low		= &wcn3990_src_wm_low,
286	.wm_high	= &wcn3990_src_wm_high,
287};
288
289static struct ath10k_hw_ce_regs_addr_map wcn3990_dst_wm_low = {
290	.lsb	= 0x00000010,
291	.mask	= GENMASK(31, 16),
292};
293
294static struct ath10k_hw_ce_regs_addr_map wcn3990_dst_wm_high = {
295	.msb	= 0x0000000f,
296	.lsb	= 0x00000000,
297	.mask	= GENMASK(15, 0),
298};
299
300static struct ath10k_hw_ce_dst_src_wm_regs wcn3990_wm_dst_ring = {
301	.addr		= 0x00000050,
302	.low_rst	= 0x00000000,
303	.high_rst	= 0x00000000,
304	.wm_low		= &wcn3990_dst_wm_low,
305	.wm_high	= &wcn3990_dst_wm_high,
306};
307
308static struct ath10k_hw_ce_ctrl1_upd wcn3990_ctrl1_upd = {
309	.shift = 19,
310	.mask = 0x00080000,
311	.enable = 0x00000000,
312};
313
314const struct ath10k_hw_ce_regs wcn3990_ce_regs = {
315	.sr_base_addr_lo	= 0x00000000,
316	.sr_base_addr_hi	= 0x00000004,
317	.sr_size_addr		= 0x00000008,
318	.dr_base_addr_lo	= 0x0000000c,
319	.dr_base_addr_hi	= 0x00000010,
320	.dr_size_addr		= 0x00000014,
321	.misc_ie_addr		= 0x00000034,
322	.sr_wr_index_addr	= 0x0000003c,
323	.dst_wr_index_addr	= 0x00000040,
324	.current_srri_addr	= 0x00000044,
325	.current_drri_addr	= 0x00000048,
326	.ce_rri_low		= 0x0024C004,
327	.ce_rri_high		= 0x0024C008,
328	.host_ie_addr		= 0x0000002c,
329	.ctrl1_regs		= &wcn3990_ctrl1,
330	.host_ie		= &wcn3990_host_ie,
331	.wm_regs		= &wcn3990_wm_reg,
332	.misc_regs		= &wcn3990_misc_reg,
333	.wm_srcr		= &wcn3990_wm_src_ring,
334	.wm_dstr		= &wcn3990_wm_dst_ring,
335	.upd			= &wcn3990_ctrl1_upd,
336};
337
338const struct ath10k_hw_values wcn3990_values = {
339	.rtc_state_val_on		= 5,
340	.ce_count			= 12,
341	.msi_assign_ce_max		= 12,
342	.num_target_ce_config_wlan	= 12,
343	.ce_desc_meta_data_mask		= 0xFFF0,
344	.ce_desc_meta_data_lsb		= 4,
345};
346
347static struct ath10k_hw_ce_regs_addr_map qcax_src_ring = {
348	.msb	= 0x00000010,
349	.lsb	= 0x00000010,
350	.mask	= GENMASK(16, 16),
351};
352
353static struct ath10k_hw_ce_regs_addr_map qcax_dst_ring = {
354	.msb	= 0x00000011,
355	.lsb	= 0x00000011,
356	.mask	= GENMASK(17, 17),
357};
358
359static struct ath10k_hw_ce_regs_addr_map qcax_dmax = {
360	.msb	= 0x0000000f,
361	.lsb	= 0x00000000,
362	.mask	= GENMASK(15, 0),
363};
364
365static struct ath10k_hw_ce_ctrl1 qcax_ctrl1 = {
366	.addr		= 0x00000010,
367	.hw_mask	= 0x0007ffff,
368	.sw_mask	= 0x0007ffff,
369	.hw_wr_mask	= 0x00000000,
370	.sw_wr_mask	= 0x0007ffff,
371	.reset_mask	= 0xffffffff,
372	.reset		= 0x00000080,
373	.src_ring	= &qcax_src_ring,
374	.dst_ring	= &qcax_dst_ring,
375	.dmax		= &qcax_dmax,
376};
377
378static struct ath10k_hw_ce_regs_addr_map qcax_cmd_halt_status = {
379	.msb	= 0x00000003,
380	.lsb	= 0x00000003,
381	.mask	= GENMASK(3, 3),
382};
383
384static struct ath10k_hw_ce_cmd_halt qcax_cmd_halt = {
385	.msb		= 0x00000000,
386	.mask		= GENMASK(0, 0),
387	.status_reset	= 0x00000000,
388	.status		= &qcax_cmd_halt_status,
389};
390
391static struct ath10k_hw_ce_regs_addr_map qcax_host_ie_cc = {
392	.msb	= 0x00000000,
393	.lsb	= 0x00000000,
394	.mask	= GENMASK(0, 0),
395};
396
397static struct ath10k_hw_ce_host_ie qcax_host_ie = {
398	.copy_complete_reset	= 0x00000000,
399	.copy_complete		= &qcax_host_ie_cc,
400};
401
402static struct ath10k_hw_ce_host_wm_regs qcax_wm_reg = {
403	.dstr_lmask	= 0x00000010,
404	.dstr_hmask	= 0x00000008,
405	.srcr_lmask	= 0x00000004,
406	.srcr_hmask	= 0x00000002,
407	.cc_mask	= 0x00000001,
408	.wm_mask	= 0x0000001E,
409	.addr		= 0x00000030,
410};
411
412static struct ath10k_hw_ce_misc_regs qcax_misc_reg = {
413	.axi_err	= 0x00000400,
414	.dstr_add_err	= 0x00000200,
415	.srcr_len_err	= 0x00000100,
416	.dstr_mlen_vio	= 0x00000080,
417	.dstr_overflow	= 0x00000040,
418	.srcr_overflow	= 0x00000020,
419	.err_mask	= 0x000007E0,
420	.addr		= 0x00000038,
421};
422
423static struct ath10k_hw_ce_regs_addr_map qcax_src_wm_low = {
424	.msb    = 0x0000001f,
425	.lsb	= 0x00000010,
426	.mask	= GENMASK(31, 16),
427};
428
429static struct ath10k_hw_ce_regs_addr_map qcax_src_wm_high = {
430	.msb	= 0x0000000f,
431	.lsb	= 0x00000000,
432	.mask	= GENMASK(15, 0),
433};
434
435static struct ath10k_hw_ce_dst_src_wm_regs qcax_wm_src_ring = {
436	.addr		= 0x0000004c,
437	.low_rst	= 0x00000000,
438	.high_rst	= 0x00000000,
439	.wm_low		= &qcax_src_wm_low,
440	.wm_high        = &qcax_src_wm_high,
441};
442
443static struct ath10k_hw_ce_regs_addr_map qcax_dst_wm_low = {
444	.lsb	= 0x00000010,
445	.mask	= GENMASK(31, 16),
446};
447
448static struct ath10k_hw_ce_regs_addr_map qcax_dst_wm_high = {
449	.msb	= 0x0000000f,
450	.lsb	= 0x00000000,
451	.mask	= GENMASK(15, 0),
452};
453
454static struct ath10k_hw_ce_dst_src_wm_regs qcax_wm_dst_ring = {
455	.addr		= 0x00000050,
456	.low_rst	= 0x00000000,
457	.high_rst	= 0x00000000,
458	.wm_low		= &qcax_dst_wm_low,
459	.wm_high	= &qcax_dst_wm_high,
460};
461
462const struct ath10k_hw_ce_regs qcax_ce_regs = {
463	.sr_base_addr_lo	= 0x00000000,
464	.sr_size_addr		= 0x00000004,
465	.dr_base_addr_lo	= 0x00000008,
466	.dr_size_addr		= 0x0000000c,
467	.ce_cmd_addr		= 0x00000018,
468	.misc_ie_addr		= 0x00000034,
469	.sr_wr_index_addr	= 0x0000003c,
470	.dst_wr_index_addr	= 0x00000040,
471	.current_srri_addr	= 0x00000044,
472	.current_drri_addr	= 0x00000048,
473	.host_ie_addr		= 0x0000002c,
474	.ctrl1_regs		= &qcax_ctrl1,
475	.cmd_halt		= &qcax_cmd_halt,
476	.host_ie		= &qcax_host_ie,
477	.wm_regs		= &qcax_wm_reg,
478	.misc_regs		= &qcax_misc_reg,
479	.wm_srcr		= &qcax_wm_src_ring,
480	.wm_dstr                = &qcax_wm_dst_ring,
481};
482
483const struct ath10k_hw_clk_params qca6174_clk[ATH10K_HW_REFCLK_COUNT] = {
484	{
485		.refclk = 48000000,
486		.div = 0xe,
487		.rnfrac = 0x2aaa8,
488		.settle_time = 2400,
489		.refdiv = 0,
490		.outdiv = 1,
491	},
492	{
493		.refclk = 19200000,
494		.div = 0x24,
495		.rnfrac = 0x2aaa8,
496		.settle_time = 960,
497		.refdiv = 0,
498		.outdiv = 1,
499	},
500	{
501		.refclk = 24000000,
502		.div = 0x1d,
503		.rnfrac = 0x15551,
504		.settle_time = 1200,
505		.refdiv = 0,
506		.outdiv = 1,
507	},
508	{
509		.refclk = 26000000,
510		.div = 0x1b,
511		.rnfrac = 0x4ec4,
512		.settle_time = 1300,
513		.refdiv = 0,
514		.outdiv = 1,
515	},
516	{
517		.refclk = 37400000,
518		.div = 0x12,
519		.rnfrac = 0x34b49,
520		.settle_time = 1870,
521		.refdiv = 0,
522		.outdiv = 1,
523	},
524	{
525		.refclk = 38400000,
526		.div = 0x12,
527		.rnfrac = 0x15551,
528		.settle_time = 1920,
529		.refdiv = 0,
530		.outdiv = 1,
531	},
532	{
533		.refclk = 40000000,
534		.div = 0x12,
535		.rnfrac = 0x26665,
536		.settle_time = 2000,
537		.refdiv = 0,
538		.outdiv = 1,
539	},
540	{
541		.refclk = 52000000,
542		.div = 0x1b,
543		.rnfrac = 0x4ec4,
544		.settle_time = 2600,
545		.refdiv = 0,
546		.outdiv = 1,
547	},
548};
549
550void ath10k_hw_fill_survey_time(struct ath10k *ar, struct survey_info *survey,
551				u32 cc, u32 rcc, u32 cc_prev, u32 rcc_prev)
552{
553	u32 cc_fix = 0;
554	u32 rcc_fix = 0;
555	enum ath10k_hw_cc_wraparound_type wraparound_type;
556
557	survey->filled |= SURVEY_INFO_TIME |
558			  SURVEY_INFO_TIME_BUSY;
559
560	wraparound_type = ar->hw_params.cc_wraparound_type;
561
562	if (cc < cc_prev || rcc < rcc_prev) {
563		switch (wraparound_type) {
564		case ATH10K_HW_CC_WRAP_SHIFTED_ALL:
565			if (cc < cc_prev) {
566				cc_fix = 0x7fffffff;
567				survey->filled &= ~SURVEY_INFO_TIME_BUSY;
568			}
569			break;
570		case ATH10K_HW_CC_WRAP_SHIFTED_EACH:
571			if (cc < cc_prev)
572				cc_fix = 0x7fffffff;
573
574			if (rcc < rcc_prev)
575				rcc_fix = 0x7fffffff;
576			break;
577		case ATH10K_HW_CC_WRAP_DISABLED:
578			break;
579		}
580	}
581
582	cc -= cc_prev - cc_fix;
583	rcc -= rcc_prev - rcc_fix;
584
585	survey->time = CCNT_TO_MSEC(ar, cc);
586	survey->time_busy = CCNT_TO_MSEC(ar, rcc);
587}
588
589/* The firmware does not support setting the coverage class. Instead this
590 * function monitors and modifies the corresponding MAC registers.
591 */
592static void ath10k_hw_qca988x_set_coverage_class(struct ath10k *ar,
593						 s16 value)
594{
595	u32 slottime_reg;
596	u32 slottime;
597	u32 timeout_reg;
598	u32 ack_timeout;
599	u32 cts_timeout;
600	u32 phyclk_reg;
601	u32 phyclk;
602	u64 fw_dbglog_mask;
603	u32 fw_dbglog_level;
604
605	mutex_lock(&ar->conf_mutex);
606
607	/* Only modify registers if the core is started. */
608	if ((ar->state != ATH10K_STATE_ON) &&
609	    (ar->state != ATH10K_STATE_RESTARTED)) {
610		spin_lock_bh(&ar->data_lock);
611		/* Store config value for when radio boots up */
612		ar->fw_coverage.coverage_class = value;
613		spin_unlock_bh(&ar->data_lock);
614		goto unlock;
615	}
616
617	/* Retrieve the current values of the two registers that need to be
618	 * adjusted.
619	 */
620	slottime_reg = ath10k_hif_read32(ar, WLAN_MAC_BASE_ADDRESS +
621					     WAVE1_PCU_GBL_IFS_SLOT);
622	timeout_reg = ath10k_hif_read32(ar, WLAN_MAC_BASE_ADDRESS +
623					    WAVE1_PCU_ACK_CTS_TIMEOUT);
624	phyclk_reg = ath10k_hif_read32(ar, WLAN_MAC_BASE_ADDRESS +
625					   WAVE1_PHYCLK);
626	phyclk = MS(phyclk_reg, WAVE1_PHYCLK_USEC) + 1;
627
628	if (value < 0)
629		value = ar->fw_coverage.coverage_class;
630
631	/* Break out if the coverage class and registers have the expected
632	 * value.
633	 */
634	if (value == ar->fw_coverage.coverage_class &&
635	    slottime_reg == ar->fw_coverage.reg_slottime_conf &&
636	    timeout_reg == ar->fw_coverage.reg_ack_cts_timeout_conf &&
637	    phyclk_reg == ar->fw_coverage.reg_phyclk)
638		goto unlock;
639
640	/* Store new initial register values from the firmware. */
641	if (slottime_reg != ar->fw_coverage.reg_slottime_conf)
642		ar->fw_coverage.reg_slottime_orig = slottime_reg;
643	if (timeout_reg != ar->fw_coverage.reg_ack_cts_timeout_conf)
644		ar->fw_coverage.reg_ack_cts_timeout_orig = timeout_reg;
645	ar->fw_coverage.reg_phyclk = phyclk_reg;
646
647	/* Calculate new value based on the (original) firmware calculation. */
648	slottime_reg = ar->fw_coverage.reg_slottime_orig;
649	timeout_reg = ar->fw_coverage.reg_ack_cts_timeout_orig;
650
651	/* Do some sanity checks on the slottime register. */
652	if (slottime_reg % phyclk) {
653		ath10k_warn(ar,
654			    "failed to set coverage class: expected integer microsecond value in register\n");
655
656		goto store_regs;
657	}
658
659	slottime = MS(slottime_reg, WAVE1_PCU_GBL_IFS_SLOT);
660	slottime = slottime / phyclk;
661	if (slottime != 9 && slottime != 20) {
662		ath10k_warn(ar,
663			    "failed to set coverage class: expected slot time of 9 or 20us in HW register. It is %uus.\n",
664			    slottime);
665
666		goto store_regs;
667	}
668
669	/* Recalculate the register values by adding the additional propagation
670	 * delay (3us per coverage class).
671	 */
672
673	slottime = MS(slottime_reg, WAVE1_PCU_GBL_IFS_SLOT);
674	slottime += value * 3 * phyclk;
675	slottime = min_t(u32, slottime, WAVE1_PCU_GBL_IFS_SLOT_MAX);
676	slottime = SM(slottime, WAVE1_PCU_GBL_IFS_SLOT);
677	slottime_reg = (slottime_reg & ~WAVE1_PCU_GBL_IFS_SLOT_MASK) | slottime;
678
679	/* Update ack timeout (lower halfword). */
680	ack_timeout = MS(timeout_reg, WAVE1_PCU_ACK_CTS_TIMEOUT_ACK);
681	ack_timeout += 3 * value * phyclk;
682	ack_timeout = min_t(u32, ack_timeout, WAVE1_PCU_ACK_CTS_TIMEOUT_MAX);
683	ack_timeout = SM(ack_timeout, WAVE1_PCU_ACK_CTS_TIMEOUT_ACK);
684
685	/* Update cts timeout (upper halfword). */
686	cts_timeout = MS(timeout_reg, WAVE1_PCU_ACK_CTS_TIMEOUT_CTS);
687	cts_timeout += 3 * value * phyclk;
688	cts_timeout = min_t(u32, cts_timeout, WAVE1_PCU_ACK_CTS_TIMEOUT_MAX);
689	cts_timeout = SM(cts_timeout, WAVE1_PCU_ACK_CTS_TIMEOUT_CTS);
690
691	timeout_reg = ack_timeout | cts_timeout;
692
693	ath10k_hif_write32(ar,
694			   WLAN_MAC_BASE_ADDRESS + WAVE1_PCU_GBL_IFS_SLOT,
695			   slottime_reg);
696	ath10k_hif_write32(ar,
697			   WLAN_MAC_BASE_ADDRESS + WAVE1_PCU_ACK_CTS_TIMEOUT,
698			   timeout_reg);
699
700	/* Ensure we have a debug level of WARN set for the case that the
701	 * coverage class is larger than 0. This is important as we need to
702	 * set the registers again if the firmware does an internal reset and
703	 * this way we will be notified of the event.
704	 */
705	fw_dbglog_mask = ath10k_debug_get_fw_dbglog_mask(ar);
706	fw_dbglog_level = ath10k_debug_get_fw_dbglog_level(ar);
707
708	if (value > 0) {
709		if (fw_dbglog_level > ATH10K_DBGLOG_LEVEL_WARN)
710			fw_dbglog_level = ATH10K_DBGLOG_LEVEL_WARN;
711		fw_dbglog_mask = ~0;
712	}
713
714	ath10k_wmi_dbglog_cfg(ar, fw_dbglog_mask, fw_dbglog_level);
715
716store_regs:
717	/* After an error we will not retry setting the coverage class. */
718	spin_lock_bh(&ar->data_lock);
719	ar->fw_coverage.coverage_class = value;
720	spin_unlock_bh(&ar->data_lock);
721
722	ar->fw_coverage.reg_slottime_conf = slottime_reg;
723	ar->fw_coverage.reg_ack_cts_timeout_conf = timeout_reg;
724
725unlock:
726	mutex_unlock(&ar->conf_mutex);
727}
728
729/**
730 * ath10k_hw_qca6174_enable_pll_clock() - enable the qca6174 hw pll clock
731 * @ar: the ath10k blob
732 *
733 * This function is very hardware specific, the clock initialization
734 * steps is very sensitive and could lead to unknown crash, so they
735 * should be done in sequence.
736 *
737 * *** Be aware if you planned to refactor them. ***
738 *
739 * Return: 0 if successfully enable the pll, otherwise EINVAL
740 */
741static int ath10k_hw_qca6174_enable_pll_clock(struct ath10k *ar)
742{
743	int ret, wait_limit;
744	u32 clk_div_addr, pll_init_addr, speed_addr;
745	u32 addr, reg_val, mem_val;
746	struct ath10k_hw_params *hw;
747	const struct ath10k_hw_clk_params *hw_clk;
748
749	hw = &ar->hw_params;
750
751	if (ar->regs->core_clk_div_address == 0 ||
752	    ar->regs->cpu_pll_init_address == 0 ||
753	    ar->regs->cpu_speed_address == 0)
754		return -EINVAL;
755
756	clk_div_addr = ar->regs->core_clk_div_address;
757	pll_init_addr = ar->regs->cpu_pll_init_address;
758	speed_addr = ar->regs->cpu_speed_address;
759
760	/* Read efuse register to find out the right hw clock configuration */
761	addr = (RTC_SOC_BASE_ADDRESS | EFUSE_OFFSET);
762	ret = ath10k_bmi_read_soc_reg(ar, addr, &reg_val);
763	if (ret)
764		return -EINVAL;
765
766	/* sanitize if the hw refclk index is out of the boundary */
767	if (MS(reg_val, EFUSE_XTAL_SEL) > ATH10K_HW_REFCLK_COUNT)
768		return -EINVAL;
769
770	hw_clk = &hw->hw_clk[MS(reg_val, EFUSE_XTAL_SEL)];
771
772	/* Set the rnfrac and outdiv params to bb_pll register */
773	addr = (RTC_SOC_BASE_ADDRESS | BB_PLL_CONFIG_OFFSET);
774	ret = ath10k_bmi_read_soc_reg(ar, addr, &reg_val);
775	if (ret)
776		return -EINVAL;
777
778	reg_val &= ~(BB_PLL_CONFIG_FRAC_MASK | BB_PLL_CONFIG_OUTDIV_MASK);
779	reg_val |= (SM(hw_clk->rnfrac, BB_PLL_CONFIG_FRAC) |
780		    SM(hw_clk->outdiv, BB_PLL_CONFIG_OUTDIV));
781	ret = ath10k_bmi_write_soc_reg(ar, addr, reg_val);
782	if (ret)
783		return -EINVAL;
784
785	/* Set the correct settle time value to pll_settle register */
786	addr = (RTC_WMAC_BASE_ADDRESS | WLAN_PLL_SETTLE_OFFSET);
787	ret = ath10k_bmi_read_soc_reg(ar, addr, &reg_val);
788	if (ret)
789		return -EINVAL;
790
791	reg_val &= ~WLAN_PLL_SETTLE_TIME_MASK;
792	reg_val |= SM(hw_clk->settle_time, WLAN_PLL_SETTLE_TIME);
793	ret = ath10k_bmi_write_soc_reg(ar, addr, reg_val);
794	if (ret)
795		return -EINVAL;
796
797	/* Set the clock_ctrl div to core_clk_ctrl register */
798	addr = (RTC_SOC_BASE_ADDRESS | SOC_CORE_CLK_CTRL_OFFSET);
799	ret = ath10k_bmi_read_soc_reg(ar, addr, &reg_val);
800	if (ret)
801		return -EINVAL;
802
803	reg_val &= ~SOC_CORE_CLK_CTRL_DIV_MASK;
804	reg_val |= SM(1, SOC_CORE_CLK_CTRL_DIV);
805	ret = ath10k_bmi_write_soc_reg(ar, addr, reg_val);
806	if (ret)
807		return -EINVAL;
808
809	/* Set the clock_div register */
810	mem_val = 1;
811	ret = ath10k_bmi_write_memory(ar, clk_div_addr, &mem_val,
812				      sizeof(mem_val));
813	if (ret)
814		return -EINVAL;
815
816	/* Configure the pll_control register */
817	addr = (RTC_WMAC_BASE_ADDRESS | WLAN_PLL_CONTROL_OFFSET);
818	ret = ath10k_bmi_read_soc_reg(ar, addr, &reg_val);
819	if (ret)
820		return -EINVAL;
821
822	reg_val |= (SM(hw_clk->refdiv, WLAN_PLL_CONTROL_REFDIV) |
823		    SM(hw_clk->div, WLAN_PLL_CONTROL_DIV) |
824		    SM(1, WLAN_PLL_CONTROL_NOPWD));
825	ret = ath10k_bmi_write_soc_reg(ar, addr, reg_val);
826	if (ret)
827		return -EINVAL;
828
829	/* busy wait (max 1s) the rtc_sync status register indicate ready */
830	wait_limit = 100000;
831	addr = (RTC_WMAC_BASE_ADDRESS | RTC_SYNC_STATUS_OFFSET);
832	do {
833		ret = ath10k_bmi_read_soc_reg(ar, addr, &reg_val);
834		if (ret)
835			return -EINVAL;
836
837		if (!MS(reg_val, RTC_SYNC_STATUS_PLL_CHANGING))
838			break;
839
840		wait_limit--;
841		udelay(10);
842
843	} while (wait_limit > 0);
844
845	if (MS(reg_val, RTC_SYNC_STATUS_PLL_CHANGING))
846		return -EINVAL;
847
848	/* Unset the pll_bypass in pll_control register */
849	addr = (RTC_WMAC_BASE_ADDRESS | WLAN_PLL_CONTROL_OFFSET);
850	ret = ath10k_bmi_read_soc_reg(ar, addr, &reg_val);
851	if (ret)
852		return -EINVAL;
853
854	reg_val &= ~WLAN_PLL_CONTROL_BYPASS_MASK;
855	reg_val |= SM(0, WLAN_PLL_CONTROL_BYPASS);
856	ret = ath10k_bmi_write_soc_reg(ar, addr, reg_val);
857	if (ret)
858		return -EINVAL;
859
860	/* busy wait (max 1s) the rtc_sync status register indicate ready */
861	wait_limit = 100000;
862	addr = (RTC_WMAC_BASE_ADDRESS | RTC_SYNC_STATUS_OFFSET);
863	do {
864		ret = ath10k_bmi_read_soc_reg(ar, addr, &reg_val);
865		if (ret)
866			return -EINVAL;
867
868		if (!MS(reg_val, RTC_SYNC_STATUS_PLL_CHANGING))
869			break;
870
871		wait_limit--;
872		udelay(10);
873
874	} while (wait_limit > 0);
875
876	if (MS(reg_val, RTC_SYNC_STATUS_PLL_CHANGING))
877		return -EINVAL;
878
879	/* Enable the hardware cpu clock register */
880	addr = (RTC_SOC_BASE_ADDRESS | SOC_CPU_CLOCK_OFFSET);
881	ret = ath10k_bmi_read_soc_reg(ar, addr, &reg_val);
882	if (ret)
883		return -EINVAL;
884
885	reg_val &= ~SOC_CPU_CLOCK_STANDARD_MASK;
886	reg_val |= SM(1, SOC_CPU_CLOCK_STANDARD);
887	ret = ath10k_bmi_write_soc_reg(ar, addr, reg_val);
888	if (ret)
889		return -EINVAL;
890
891	/* unset the nopwd from pll_control register */
892	addr = (RTC_WMAC_BASE_ADDRESS | WLAN_PLL_CONTROL_OFFSET);
893	ret = ath10k_bmi_read_soc_reg(ar, addr, &reg_val);
894	if (ret)
895		return -EINVAL;
896
897	reg_val &= ~WLAN_PLL_CONTROL_NOPWD_MASK;
898	ret = ath10k_bmi_write_soc_reg(ar, addr, reg_val);
899	if (ret)
900		return -EINVAL;
901
902	/* enable the pll_init register */
903	mem_val = 1;
904	ret = ath10k_bmi_write_memory(ar, pll_init_addr, &mem_val,
905				      sizeof(mem_val));
906	if (ret)
907		return -EINVAL;
908
909	/* set the target clock frequency to speed register */
910	ret = ath10k_bmi_write_memory(ar, speed_addr, &hw->target_cpu_freq,
911				      sizeof(hw->target_cpu_freq));
912	if (ret)
913		return -EINVAL;
914
915	return 0;
916}
917
918/* Program CPU_ADDR_MSB to allow different memory
919 * region access.
920 */
921static void ath10k_hw_map_target_mem(struct ath10k *ar, u32 msb)
922{
923	u32 address = SOC_CORE_BASE_ADDRESS + FW_RAM_CONFIG_ADDRESS;
924
925	ath10k_hif_write32(ar, address, msb);
926}
927
928/* 1. Write to memory region of target, such as IRAM and DRAM.
929 * 2. Target address( 0 ~ 00100000 & 0x00400000~0x00500000)
930 *    can be written directly. See ath10k_pci_targ_cpu_to_ce_addr() too.
931 * 3. In order to access the region other than the above,
932 *    we need to set the value of register CPU_ADDR_MSB.
933 * 4. Target memory access space is limited to 1M size. If the size is larger
934 *    than 1M, need to split it and program CPU_ADDR_MSB accordingly.
935 */
936static int ath10k_hw_diag_segment_msb_download(struct ath10k *ar,
937					       const void *buffer,
938					       u32 address,
939					       u32 length)
940{
941	u32 addr = address & REGION_ACCESS_SIZE_MASK;
942	int ret, remain_size, size;
943	const u8 *buf;
944
945	ath10k_hw_map_target_mem(ar, CPU_ADDR_MSB_REGION_VAL(address));
946
947	if (addr + length > REGION_ACCESS_SIZE_LIMIT) {
948		size = REGION_ACCESS_SIZE_LIMIT - addr;
949		remain_size = length - size;
950
951		ret = ath10k_hif_diag_write(ar, address, buffer, size);
952		if (ret) {
953			ath10k_warn(ar,
954				    "failed to download the first %d bytes segment to address:0x%x: %d\n",
955				    size, address, ret);
956			goto done;
957		}
958
959		/* Change msb to the next memory region*/
960		ath10k_hw_map_target_mem(ar,
961					 CPU_ADDR_MSB_REGION_VAL(address) + 1);
962		buf = buffer +  size;
963		ret = ath10k_hif_diag_write(ar,
964					    address & ~REGION_ACCESS_SIZE_MASK,
965					    buf, remain_size);
966		if (ret) {
967			ath10k_warn(ar,
968				    "failed to download the second %d bytes segment to address:0x%x: %d\n",
969				    remain_size,
970				    address & ~REGION_ACCESS_SIZE_MASK,
971				    ret);
972			goto done;
973		}
974	} else {
975		ret = ath10k_hif_diag_write(ar, address, buffer, length);
976		if (ret) {
977			ath10k_warn(ar,
978				    "failed to download the only %d bytes segment to address:0x%x: %d\n",
979				    length, address, ret);
980			goto done;
981		}
982	}
983
984done:
985	/* Change msb to DRAM */
986	ath10k_hw_map_target_mem(ar,
987				 CPU_ADDR_MSB_REGION_VAL(DRAM_BASE_ADDRESS));
988	return ret;
989}
990
991static int ath10k_hw_diag_segment_download(struct ath10k *ar,
992					   const void *buffer,
993					   u32 address,
994					   u32 length)
995{
996	if (address >= DRAM_BASE_ADDRESS + REGION_ACCESS_SIZE_LIMIT)
997		/* Needs to change MSB for memory write */
998		return ath10k_hw_diag_segment_msb_download(ar, buffer,
999							   address, length);
1000	else
1001		return ath10k_hif_diag_write(ar, address, buffer, length);
1002}
1003
1004int ath10k_hw_diag_fast_download(struct ath10k *ar,
1005				 u32 address,
1006				 const void *buffer,
1007				 u32 length)
1008{
1009	const u8 *buf = buffer;
1010	bool sgmt_end = false;
1011	u32 base_addr = 0;
1012	u32 base_len = 0;
1013	u32 left = 0;
1014	struct bmi_segmented_file_header *hdr;
1015	struct bmi_segmented_metadata *metadata;
1016	int ret = 0;
1017
1018	if (length < sizeof(*hdr))
1019		return -EINVAL;
1020
1021	/* check firmware header. If it has no correct magic number
1022	 * or it's compressed, returns error.
1023	 */
1024	hdr = (struct bmi_segmented_file_header *)buf;
1025	if (__le32_to_cpu(hdr->magic_num) != BMI_SGMTFILE_MAGIC_NUM) {
1026		ath10k_dbg(ar, ATH10K_DBG_BOOT,
1027			   "Not a supported firmware, magic_num:0x%x\n",
1028			   hdr->magic_num);
1029		return -EINVAL;
1030	}
1031
1032	if (hdr->file_flags != 0) {
1033		ath10k_dbg(ar, ATH10K_DBG_BOOT,
1034			   "Not a supported firmware, file_flags:0x%x\n",
1035			   hdr->file_flags);
1036		return -EINVAL;
1037	}
1038
1039	metadata = (struct bmi_segmented_metadata *)hdr->data;
1040	left = length - sizeof(*hdr);
1041
1042	while (left > 0) {
1043		if (left < sizeof(*metadata)) {
1044			ath10k_warn(ar, "firmware segment is truncated: %d\n",
1045				    left);
1046			ret = -EINVAL;
1047			break;
1048		}
1049		base_addr = __le32_to_cpu(metadata->addr);
1050		base_len = __le32_to_cpu(metadata->length);
1051		buf = metadata->data;
1052		left -= sizeof(*metadata);
1053
1054		switch (base_len) {
1055		case BMI_SGMTFILE_BEGINADDR:
1056			/* base_addr is the start address to run */
1057			ret = ath10k_bmi_set_start(ar, base_addr);
1058			base_len = 0;
1059			break;
1060		case BMI_SGMTFILE_DONE:
1061			/* no more segment */
1062			base_len = 0;
1063			sgmt_end = true;
1064			ret = 0;
1065			break;
1066		case BMI_SGMTFILE_BDDATA:
1067		case BMI_SGMTFILE_EXEC:
1068			ath10k_warn(ar,
1069				    "firmware has unsupported segment:%d\n",
1070				    base_len);
1071			ret = -EINVAL;
1072			break;
1073		default:
1074			if (base_len > left) {
1075				/* sanity check */
1076				ath10k_warn(ar,
1077					    "firmware has invalid segment length, %d > %d\n",
1078					    base_len, left);
1079				ret = -EINVAL;
1080				break;
1081			}
1082
1083			ret = ath10k_hw_diag_segment_download(ar,
1084							      buf,
1085							      base_addr,
1086							      base_len);
1087
1088			if (ret)
1089				ath10k_warn(ar,
1090					    "failed to download firmware via diag interface:%d\n",
1091					    ret);
1092			break;
1093		}
1094
1095		if (ret || sgmt_end)
1096			break;
1097
1098		metadata = (struct bmi_segmented_metadata *)(buf + base_len);
1099		left -= base_len;
1100	}
1101
1102	if (ret == 0)
1103		ath10k_dbg(ar, ATH10K_DBG_BOOT,
1104			   "boot firmware fast diag download successfully.\n");
1105	return ret;
1106}
1107
1108static int ath10k_htt_tx_rssi_enable(struct htt_resp *resp)
1109{
1110	return (resp->data_tx_completion.flags2 & HTT_TX_CMPL_FLAG_DATA_RSSI);
1111}
1112
1113static int ath10k_htt_tx_rssi_enable_wcn3990(struct htt_resp *resp)
1114{
1115	return (resp->data_tx_completion.flags2 &
1116		HTT_TX_DATA_RSSI_ENABLE_WCN3990);
1117}
1118
1119static int ath10k_get_htt_tx_data_rssi_pad(struct htt_resp *resp)
1120{
1121	struct htt_data_tx_completion_ext extd;
1122	int pad_bytes = 0;
1123
1124	if (resp->data_tx_completion.flags2 & HTT_TX_DATA_APPEND_RETRIES)
1125		pad_bytes += sizeof(extd.a_retries) /
1126			     sizeof(extd.msdus_rssi[0]);
1127
1128	if (resp->data_tx_completion.flags2 & HTT_TX_DATA_APPEND_TIMESTAMP)
1129		pad_bytes += sizeof(extd.t_stamp) / sizeof(extd.msdus_rssi[0]);
1130
1131	return pad_bytes;
1132}
1133
1134const struct ath10k_hw_ops qca988x_ops = {
1135	.set_coverage_class = ath10k_hw_qca988x_set_coverage_class,
1136	.is_rssi_enable = ath10k_htt_tx_rssi_enable,
1137};
1138
1139const struct ath10k_hw_ops qca99x0_ops = {
1140	.is_rssi_enable = ath10k_htt_tx_rssi_enable,
1141};
1142
1143const struct ath10k_hw_ops qca6174_ops = {
1144	.set_coverage_class = ath10k_hw_qca988x_set_coverage_class,
1145	.enable_pll_clk = ath10k_hw_qca6174_enable_pll_clock,
1146	.is_rssi_enable = ath10k_htt_tx_rssi_enable,
1147};
1148
1149const struct ath10k_hw_ops qca6174_sdio_ops = {
1150	.enable_pll_clk = ath10k_hw_qca6174_enable_pll_clock,
1151};
1152
1153const struct ath10k_hw_ops wcn3990_ops = {
1154	.tx_data_rssi_pad_bytes = ath10k_get_htt_tx_data_rssi_pad,
1155	.is_rssi_enable = ath10k_htt_tx_rssi_enable_wcn3990,
1156};
1157