1// SPDX-License-Identifier: ISC
2/*
3 * Copyright (c) 2005-2011 Atheros Communications Inc.
4 * Copyright (c) 2011-2017 Qualcomm Atheros, Inc.
5 * Copyright (c) 2018 The Linux Foundation. All rights reserved.
6 * Copyright (c) 2022 Qualcomm Innovation Center, Inc. All rights reserved.
7 */
8
9#include "hif.h"
10#include "ce.h"
11#include "debug.h"
12
13/*
14 * Support for Copy Engine hardware, which is mainly used for
15 * communication between Host and Target over a PCIe interconnect.
16 */
17
18/*
19 * A single CopyEngine (CE) comprises two "rings":
20 *   a source ring
21 *   a destination ring
22 *
23 * Each ring consists of a number of descriptors which specify
24 * an address, length, and meta-data.
25 *
26 * Typically, one side of the PCIe/AHB/SNOC interconnect (Host or Target)
27 * controls one ring and the other side controls the other ring.
28 * The source side chooses when to initiate a transfer and it
29 * chooses what to send (buffer address, length). The destination
30 * side keeps a supply of "anonymous receive buffers" available and
31 * it handles incoming data as it arrives (when the destination
32 * receives an interrupt).
33 *
34 * The sender may send a simple buffer (address/length) or it may
35 * send a small list of buffers.  When a small list is sent, hardware
36 * "gathers" these and they end up in a single destination buffer
37 * with a single interrupt.
38 *
39 * There are several "contexts" managed by this layer -- more, it
40 * may seem -- than should be needed. These are provided mainly for
41 * maximum flexibility and especially to facilitate a simpler HIF
42 * implementation. There are per-CopyEngine recv, send, and watermark
43 * contexts. These are supplied by the caller when a recv, send,
44 * or watermark handler is established and they are echoed back to
45 * the caller when the respective callbacks are invoked. There is
46 * also a per-transfer context supplied by the caller when a buffer
47 * (or sendlist) is sent and when a buffer is enqueued for recv.
48 * These per-transfer contexts are echoed back to the caller when
49 * the buffer is sent/received.
50 */
51
52static inline u32 shadow_sr_wr_ind_addr(struct ath10k *ar,
53					struct ath10k_ce_pipe *ce_state)
54{
55	u32 ce_id = ce_state->id;
56	u32 addr = 0;
57
58	switch (ce_id) {
59	case 0:
60		addr = 0x00032000;
61		break;
62	case 3:
63		addr = 0x0003200C;
64		break;
65	case 4:
66		addr = 0x00032010;
67		break;
68	case 5:
69		addr = 0x00032014;
70		break;
71	case 7:
72		addr = 0x0003201C;
73		break;
74	default:
75		ath10k_warn(ar, "invalid CE id: %d", ce_id);
76		break;
77	}
78	return addr;
79}
80
81static inline unsigned int
82ath10k_set_ring_byte(unsigned int offset,
83		     struct ath10k_hw_ce_regs_addr_map *addr_map)
84{
85	return ((offset << addr_map->lsb) & addr_map->mask);
86}
87
88static inline u32 ath10k_ce_read32(struct ath10k *ar, u32 offset)
89{
90	struct ath10k_ce *ce = ath10k_ce_priv(ar);
91
92	return ce->bus_ops->read32(ar, offset);
93}
94
95static inline void ath10k_ce_write32(struct ath10k *ar, u32 offset, u32 value)
96{
97	struct ath10k_ce *ce = ath10k_ce_priv(ar);
98
99	ce->bus_ops->write32(ar, offset, value);
100}
101
102static inline void ath10k_ce_dest_ring_write_index_set(struct ath10k *ar,
103						       u32 ce_ctrl_addr,
104						       unsigned int n)
105{
106	ath10k_ce_write32(ar, ce_ctrl_addr +
107			  ar->hw_ce_regs->dst_wr_index_addr, n);
108}
109
110static inline u32 ath10k_ce_dest_ring_write_index_get(struct ath10k *ar,
111						      u32 ce_ctrl_addr)
112{
113	return ath10k_ce_read32(ar, ce_ctrl_addr +
114				ar->hw_ce_regs->dst_wr_index_addr);
115}
116
117static inline void ath10k_ce_src_ring_write_index_set(struct ath10k *ar,
118						      u32 ce_ctrl_addr,
119						      unsigned int n)
120{
121	ath10k_ce_write32(ar, ce_ctrl_addr +
122			  ar->hw_ce_regs->sr_wr_index_addr, n);
123}
124
125static inline u32 ath10k_ce_src_ring_write_index_get(struct ath10k *ar,
126						     u32 ce_ctrl_addr)
127{
128	return ath10k_ce_read32(ar, ce_ctrl_addr +
129				ar->hw_ce_regs->sr_wr_index_addr);
130}
131
132static inline u32 ath10k_ce_src_ring_read_index_from_ddr(struct ath10k *ar,
133							 u32 ce_id)
134{
135	struct ath10k_ce *ce = ath10k_ce_priv(ar);
136
137	return ce->vaddr_rri[ce_id] & CE_DDR_RRI_MASK;
138}
139
140static inline u32 ath10k_ce_src_ring_read_index_get(struct ath10k *ar,
141						    u32 ce_ctrl_addr)
142{
143	struct ath10k_ce *ce = ath10k_ce_priv(ar);
144	u32 ce_id = COPY_ENGINE_ID(ce_ctrl_addr);
145	struct ath10k_ce_pipe *ce_state = &ce->ce_states[ce_id];
146	u32 index;
147
148	if (ar->hw_params.rri_on_ddr &&
149	    (ce_state->attr_flags & CE_ATTR_DIS_INTR))
150		index = ath10k_ce_src_ring_read_index_from_ddr(ar, ce_id);
151	else
152		index = ath10k_ce_read32(ar, ce_ctrl_addr +
153					 ar->hw_ce_regs->current_srri_addr);
154
155	return index;
156}
157
158static inline void
159ath10k_ce_shadow_src_ring_write_index_set(struct ath10k *ar,
160					  struct ath10k_ce_pipe *ce_state,
161					  unsigned int value)
162{
163	ath10k_ce_write32(ar, shadow_sr_wr_ind_addr(ar, ce_state), value);
164}
165
166static inline void ath10k_ce_src_ring_base_addr_set(struct ath10k *ar,
167						    u32 ce_id,
168						    u64 addr)
169{
170	struct ath10k_ce *ce = ath10k_ce_priv(ar);
171	struct ath10k_ce_pipe *ce_state = &ce->ce_states[ce_id];
172	u32 ce_ctrl_addr = ath10k_ce_base_address(ar, ce_id);
173	u32 addr_lo = lower_32_bits(addr);
174
175	ath10k_ce_write32(ar, ce_ctrl_addr +
176			  ar->hw_ce_regs->sr_base_addr_lo, addr_lo);
177
178	if (ce_state->ops->ce_set_src_ring_base_addr_hi) {
179		ce_state->ops->ce_set_src_ring_base_addr_hi(ar, ce_ctrl_addr,
180							    addr);
181	}
182}
183
184static void ath10k_ce_set_src_ring_base_addr_hi(struct ath10k *ar,
185						u32 ce_ctrl_addr,
186						u64 addr)
187{
188	u32 addr_hi = upper_32_bits(addr) & CE_DESC_ADDR_HI_MASK;
189
190	ath10k_ce_write32(ar, ce_ctrl_addr +
191			  ar->hw_ce_regs->sr_base_addr_hi, addr_hi);
192}
193
194static inline void ath10k_ce_src_ring_size_set(struct ath10k *ar,
195					       u32 ce_ctrl_addr,
196					       unsigned int n)
197{
198	ath10k_ce_write32(ar, ce_ctrl_addr +
199			  ar->hw_ce_regs->sr_size_addr, n);
200}
201
202static inline void ath10k_ce_src_ring_dmax_set(struct ath10k *ar,
203					       u32 ce_ctrl_addr,
204					       unsigned int n)
205{
206	struct ath10k_hw_ce_ctrl1 *ctrl_regs = ar->hw_ce_regs->ctrl1_regs;
207
208	u32 ctrl1_addr = ath10k_ce_read32(ar, ce_ctrl_addr +
209					  ctrl_regs->addr);
210
211	ath10k_ce_write32(ar, ce_ctrl_addr + ctrl_regs->addr,
212			  (ctrl1_addr &  ~(ctrl_regs->dmax->mask)) |
213			  ath10k_set_ring_byte(n, ctrl_regs->dmax));
214}
215
216static inline void ath10k_ce_src_ring_byte_swap_set(struct ath10k *ar,
217						    u32 ce_ctrl_addr,
218						    unsigned int n)
219{
220	struct ath10k_hw_ce_ctrl1 *ctrl_regs = ar->hw_ce_regs->ctrl1_regs;
221
222	u32 ctrl1_addr = ath10k_ce_read32(ar, ce_ctrl_addr +
223					  ctrl_regs->addr);
224
225	ath10k_ce_write32(ar, ce_ctrl_addr + ctrl_regs->addr,
226			  (ctrl1_addr & ~(ctrl_regs->src_ring->mask)) |
227			  ath10k_set_ring_byte(n, ctrl_regs->src_ring));
228}
229
230static inline void ath10k_ce_dest_ring_byte_swap_set(struct ath10k *ar,
231						     u32 ce_ctrl_addr,
232						     unsigned int n)
233{
234	struct ath10k_hw_ce_ctrl1 *ctrl_regs = ar->hw_ce_regs->ctrl1_regs;
235
236	u32 ctrl1_addr = ath10k_ce_read32(ar, ce_ctrl_addr +
237					  ctrl_regs->addr);
238
239	ath10k_ce_write32(ar, ce_ctrl_addr + ctrl_regs->addr,
240			  (ctrl1_addr & ~(ctrl_regs->dst_ring->mask)) |
241			  ath10k_set_ring_byte(n, ctrl_regs->dst_ring));
242}
243
244static inline
245	u32 ath10k_ce_dest_ring_read_index_from_ddr(struct ath10k *ar, u32 ce_id)
246{
247	struct ath10k_ce *ce = ath10k_ce_priv(ar);
248
249	return (ce->vaddr_rri[ce_id] >> CE_DDR_DRRI_SHIFT) &
250		CE_DDR_RRI_MASK;
251}
252
253static inline u32 ath10k_ce_dest_ring_read_index_get(struct ath10k *ar,
254						     u32 ce_ctrl_addr)
255{
256	struct ath10k_ce *ce = ath10k_ce_priv(ar);
257	u32 ce_id = COPY_ENGINE_ID(ce_ctrl_addr);
258	struct ath10k_ce_pipe *ce_state = &ce->ce_states[ce_id];
259	u32 index;
260
261	if (ar->hw_params.rri_on_ddr &&
262	    (ce_state->attr_flags & CE_ATTR_DIS_INTR))
263		index = ath10k_ce_dest_ring_read_index_from_ddr(ar, ce_id);
264	else
265		index = ath10k_ce_read32(ar, ce_ctrl_addr +
266					 ar->hw_ce_regs->current_drri_addr);
267
268	return index;
269}
270
271static inline void ath10k_ce_dest_ring_base_addr_set(struct ath10k *ar,
272						     u32 ce_id,
273						     u64 addr)
274{
275	struct ath10k_ce *ce = ath10k_ce_priv(ar);
276	struct ath10k_ce_pipe *ce_state = &ce->ce_states[ce_id];
277	u32 ce_ctrl_addr = ath10k_ce_base_address(ar, ce_id);
278	u32 addr_lo = lower_32_bits(addr);
279
280	ath10k_ce_write32(ar, ce_ctrl_addr +
281			  ar->hw_ce_regs->dr_base_addr_lo, addr_lo);
282
283	if (ce_state->ops->ce_set_dest_ring_base_addr_hi) {
284		ce_state->ops->ce_set_dest_ring_base_addr_hi(ar, ce_ctrl_addr,
285							     addr);
286	}
287}
288
289static void ath10k_ce_set_dest_ring_base_addr_hi(struct ath10k *ar,
290						 u32 ce_ctrl_addr,
291						 u64 addr)
292{
293	u32 addr_hi = upper_32_bits(addr) & CE_DESC_ADDR_HI_MASK;
294	u32 reg_value;
295
296	reg_value = ath10k_ce_read32(ar, ce_ctrl_addr +
297				     ar->hw_ce_regs->dr_base_addr_hi);
298	reg_value &= ~CE_DESC_ADDR_HI_MASK;
299	reg_value |= addr_hi;
300	ath10k_ce_write32(ar, ce_ctrl_addr +
301			  ar->hw_ce_regs->dr_base_addr_hi, reg_value);
302}
303
304static inline void ath10k_ce_dest_ring_size_set(struct ath10k *ar,
305						u32 ce_ctrl_addr,
306						unsigned int n)
307{
308	ath10k_ce_write32(ar, ce_ctrl_addr +
309			  ar->hw_ce_regs->dr_size_addr, n);
310}
311
312static inline void ath10k_ce_src_ring_highmark_set(struct ath10k *ar,
313						   u32 ce_ctrl_addr,
314						   unsigned int n)
315{
316	struct ath10k_hw_ce_dst_src_wm_regs *srcr_wm = ar->hw_ce_regs->wm_srcr;
317	u32 addr = ath10k_ce_read32(ar, ce_ctrl_addr + srcr_wm->addr);
318
319	ath10k_ce_write32(ar, ce_ctrl_addr + srcr_wm->addr,
320			  (addr & ~(srcr_wm->wm_high->mask)) |
321			  (ath10k_set_ring_byte(n, srcr_wm->wm_high)));
322}
323
324static inline void ath10k_ce_src_ring_lowmark_set(struct ath10k *ar,
325						  u32 ce_ctrl_addr,
326						  unsigned int n)
327{
328	struct ath10k_hw_ce_dst_src_wm_regs *srcr_wm = ar->hw_ce_regs->wm_srcr;
329	u32 addr = ath10k_ce_read32(ar, ce_ctrl_addr + srcr_wm->addr);
330
331	ath10k_ce_write32(ar, ce_ctrl_addr + srcr_wm->addr,
332			  (addr & ~(srcr_wm->wm_low->mask)) |
333			  (ath10k_set_ring_byte(n, srcr_wm->wm_low)));
334}
335
336static inline void ath10k_ce_dest_ring_highmark_set(struct ath10k *ar,
337						    u32 ce_ctrl_addr,
338						    unsigned int n)
339{
340	struct ath10k_hw_ce_dst_src_wm_regs *dstr_wm = ar->hw_ce_regs->wm_dstr;
341	u32 addr = ath10k_ce_read32(ar, ce_ctrl_addr + dstr_wm->addr);
342
343	ath10k_ce_write32(ar, ce_ctrl_addr + dstr_wm->addr,
344			  (addr & ~(dstr_wm->wm_high->mask)) |
345			  (ath10k_set_ring_byte(n, dstr_wm->wm_high)));
346}
347
348static inline void ath10k_ce_dest_ring_lowmark_set(struct ath10k *ar,
349						   u32 ce_ctrl_addr,
350						   unsigned int n)
351{
352	struct ath10k_hw_ce_dst_src_wm_regs *dstr_wm = ar->hw_ce_regs->wm_dstr;
353	u32 addr = ath10k_ce_read32(ar, ce_ctrl_addr + dstr_wm->addr);
354
355	ath10k_ce_write32(ar, ce_ctrl_addr + dstr_wm->addr,
356			  (addr & ~(dstr_wm->wm_low->mask)) |
357			  (ath10k_set_ring_byte(n, dstr_wm->wm_low)));
358}
359
360static inline void ath10k_ce_copy_complete_inter_enable(struct ath10k *ar,
361							u32 ce_ctrl_addr)
362{
363	struct ath10k_hw_ce_host_ie *host_ie = ar->hw_ce_regs->host_ie;
364
365	u32 host_ie_addr = ath10k_ce_read32(ar, ce_ctrl_addr +
366					    ar->hw_ce_regs->host_ie_addr);
367
368	ath10k_ce_write32(ar, ce_ctrl_addr + ar->hw_ce_regs->host_ie_addr,
369			  host_ie_addr | host_ie->copy_complete->mask);
370}
371
372static inline void ath10k_ce_copy_complete_intr_disable(struct ath10k *ar,
373							u32 ce_ctrl_addr)
374{
375	struct ath10k_hw_ce_host_ie *host_ie = ar->hw_ce_regs->host_ie;
376
377	u32 host_ie_addr = ath10k_ce_read32(ar, ce_ctrl_addr +
378					    ar->hw_ce_regs->host_ie_addr);
379
380	ath10k_ce_write32(ar, ce_ctrl_addr + ar->hw_ce_regs->host_ie_addr,
381			  host_ie_addr & ~(host_ie->copy_complete->mask));
382}
383
384static inline void ath10k_ce_watermark_intr_disable(struct ath10k *ar,
385						    u32 ce_ctrl_addr)
386{
387	struct ath10k_hw_ce_host_wm_regs *wm_regs = ar->hw_ce_regs->wm_regs;
388
389	u32 host_ie_addr = ath10k_ce_read32(ar, ce_ctrl_addr +
390					    ar->hw_ce_regs->host_ie_addr);
391
392	ath10k_ce_write32(ar, ce_ctrl_addr + ar->hw_ce_regs->host_ie_addr,
393			  host_ie_addr & ~(wm_regs->wm_mask));
394}
395
396static inline void ath10k_ce_error_intr_disable(struct ath10k *ar,
397						u32 ce_ctrl_addr)
398{
399	struct ath10k_hw_ce_misc_regs *misc_regs = ar->hw_ce_regs->misc_regs;
400
401	u32 misc_ie_addr = ath10k_ce_read32(ar,
402			ce_ctrl_addr + ar->hw_ce_regs->misc_ie_addr);
403
404	ath10k_ce_write32(ar,
405			  ce_ctrl_addr + ar->hw_ce_regs->misc_ie_addr,
406			  misc_ie_addr & ~(misc_regs->err_mask));
407}
408
409static inline void ath10k_ce_engine_int_status_clear(struct ath10k *ar,
410						     u32 ce_ctrl_addr,
411						     unsigned int mask)
412{
413	struct ath10k_hw_ce_host_wm_regs *wm_regs = ar->hw_ce_regs->wm_regs;
414
415	ath10k_ce_write32(ar, ce_ctrl_addr + wm_regs->addr, mask);
416}
417
418/*
419 * Guts of ath10k_ce_send.
420 * The caller takes responsibility for any needed locking.
421 */
422static int _ath10k_ce_send_nolock(struct ath10k_ce_pipe *ce_state,
423				  void *per_transfer_context,
424				  dma_addr_t buffer,
425				  unsigned int nbytes,
426				  unsigned int transfer_id,
427				  unsigned int flags)
428{
429	struct ath10k *ar = ce_state->ar;
430	struct ath10k_ce_ring *src_ring = ce_state->src_ring;
431	struct ce_desc *desc, sdesc;
432	unsigned int nentries_mask = src_ring->nentries_mask;
433	unsigned int sw_index = src_ring->sw_index;
434	unsigned int write_index = src_ring->write_index;
435	u32 ctrl_addr = ce_state->ctrl_addr;
436	u32 desc_flags = 0;
437	int ret = 0;
438
439	if (nbytes > ce_state->src_sz_max)
440		ath10k_warn(ar, "%s: send more we can (nbytes: %d, max: %d)\n",
441			    __func__, nbytes, ce_state->src_sz_max);
442
443	if (unlikely(CE_RING_DELTA(nentries_mask,
444				   write_index, sw_index - 1) <= 0)) {
445		ret = -ENOSR;
446		goto exit;
447	}
448
449	desc = CE_SRC_RING_TO_DESC(src_ring->base_addr_owner_space,
450				   write_index);
451
452	desc_flags |= SM(transfer_id, CE_DESC_FLAGS_META_DATA);
453
454	if (flags & CE_SEND_FLAG_GATHER)
455		desc_flags |= CE_DESC_FLAGS_GATHER;
456	if (flags & CE_SEND_FLAG_BYTE_SWAP)
457		desc_flags |= CE_DESC_FLAGS_BYTE_SWAP;
458
459	sdesc.addr   = __cpu_to_le32(buffer);
460	sdesc.nbytes = __cpu_to_le16(nbytes);
461	sdesc.flags  = __cpu_to_le16(desc_flags);
462
463	*desc = sdesc;
464
465	src_ring->per_transfer_context[write_index] = per_transfer_context;
466
467	/* Update Source Ring Write Index */
468	write_index = CE_RING_IDX_INCR(nentries_mask, write_index);
469
470	/* WORKAROUND */
471	if (!(flags & CE_SEND_FLAG_GATHER))
472		ath10k_ce_src_ring_write_index_set(ar, ctrl_addr, write_index);
473
474	src_ring->write_index = write_index;
475exit:
476	return ret;
477}
478
479static int _ath10k_ce_send_nolock_64(struct ath10k_ce_pipe *ce_state,
480				     void *per_transfer_context,
481				     dma_addr_t buffer,
482				     unsigned int nbytes,
483				     unsigned int transfer_id,
484				     unsigned int flags)
485{
486	struct ath10k *ar = ce_state->ar;
487	struct ath10k_ce_ring *src_ring = ce_state->src_ring;
488	struct ce_desc_64 *desc, sdesc;
489	unsigned int nentries_mask = src_ring->nentries_mask;
490	unsigned int sw_index;
491	unsigned int write_index = src_ring->write_index;
492	u32 ctrl_addr = ce_state->ctrl_addr;
493	__le32 *addr;
494	u32 desc_flags = 0;
495	int ret = 0;
496
497	if (test_bit(ATH10K_FLAG_CRASH_FLUSH, &ar->dev_flags))
498		return -ESHUTDOWN;
499
500	if (nbytes > ce_state->src_sz_max)
501		ath10k_warn(ar, "%s: send more we can (nbytes: %d, max: %d)\n",
502			    __func__, nbytes, ce_state->src_sz_max);
503
504	if (ar->hw_params.rri_on_ddr)
505		sw_index = ath10k_ce_src_ring_read_index_from_ddr(ar, ce_state->id);
506	else
507		sw_index = src_ring->sw_index;
508
509	if (unlikely(CE_RING_DELTA(nentries_mask,
510				   write_index, sw_index - 1) <= 0)) {
511		ret = -ENOSR;
512		goto exit;
513	}
514
515	desc = CE_SRC_RING_TO_DESC_64(src_ring->base_addr_owner_space,
516				      write_index);
517
518	desc_flags |= SM(transfer_id, CE_DESC_FLAGS_META_DATA);
519
520	if (flags & CE_SEND_FLAG_GATHER)
521		desc_flags |= CE_DESC_FLAGS_GATHER;
522
523	if (flags & CE_SEND_FLAG_BYTE_SWAP)
524		desc_flags |= CE_DESC_FLAGS_BYTE_SWAP;
525
526	addr = (__le32 *)&sdesc.addr;
527
528	flags |= upper_32_bits(buffer) & CE_DESC_ADDR_HI_MASK;
529	addr[0] = __cpu_to_le32(buffer);
530	addr[1] = __cpu_to_le32(flags);
531	if (flags & CE_SEND_FLAG_GATHER)
532		addr[1] |= __cpu_to_le32(CE_WCN3990_DESC_FLAGS_GATHER);
533	else
534		addr[1] &= ~(__cpu_to_le32(CE_WCN3990_DESC_FLAGS_GATHER));
535
536	sdesc.nbytes = __cpu_to_le16(nbytes);
537	sdesc.flags  = __cpu_to_le16(desc_flags);
538
539	*desc = sdesc;
540
541	src_ring->per_transfer_context[write_index] = per_transfer_context;
542
543	/* Update Source Ring Write Index */
544	write_index = CE_RING_IDX_INCR(nentries_mask, write_index);
545
546	if (!(flags & CE_SEND_FLAG_GATHER)) {
547		if (ar->hw_params.shadow_reg_support)
548			ath10k_ce_shadow_src_ring_write_index_set(ar, ce_state,
549								  write_index);
550		else
551			ath10k_ce_src_ring_write_index_set(ar, ctrl_addr,
552							   write_index);
553	}
554
555	src_ring->write_index = write_index;
556exit:
557	return ret;
558}
559
560int ath10k_ce_send_nolock(struct ath10k_ce_pipe *ce_state,
561			  void *per_transfer_context,
562			  dma_addr_t buffer,
563			  unsigned int nbytes,
564			  unsigned int transfer_id,
565			  unsigned int flags)
566{
567	return ce_state->ops->ce_send_nolock(ce_state, per_transfer_context,
568				    buffer, nbytes, transfer_id, flags);
569}
570EXPORT_SYMBOL(ath10k_ce_send_nolock);
571
572void __ath10k_ce_send_revert(struct ath10k_ce_pipe *pipe)
573{
574	struct ath10k *ar = pipe->ar;
575	struct ath10k_ce *ce = ath10k_ce_priv(ar);
576	struct ath10k_ce_ring *src_ring = pipe->src_ring;
577	u32 ctrl_addr = pipe->ctrl_addr;
578
579	lockdep_assert_held(&ce->ce_lock);
580
581	/*
582	 * This function must be called only if there is an incomplete
583	 * scatter-gather transfer (before index register is updated)
584	 * that needs to be cleaned up.
585	 */
586	if (WARN_ON_ONCE(src_ring->write_index == src_ring->sw_index))
587		return;
588
589	if (WARN_ON_ONCE(src_ring->write_index ==
590			 ath10k_ce_src_ring_write_index_get(ar, ctrl_addr)))
591		return;
592
593	src_ring->write_index--;
594	src_ring->write_index &= src_ring->nentries_mask;
595
596	src_ring->per_transfer_context[src_ring->write_index] = NULL;
597}
598EXPORT_SYMBOL(__ath10k_ce_send_revert);
599
600int ath10k_ce_send(struct ath10k_ce_pipe *ce_state,
601		   void *per_transfer_context,
602		   dma_addr_t buffer,
603		   unsigned int nbytes,
604		   unsigned int transfer_id,
605		   unsigned int flags)
606{
607	struct ath10k *ar = ce_state->ar;
608	struct ath10k_ce *ce = ath10k_ce_priv(ar);
609	int ret;
610
611	spin_lock_bh(&ce->ce_lock);
612	ret = ath10k_ce_send_nolock(ce_state, per_transfer_context,
613				    buffer, nbytes, transfer_id, flags);
614	spin_unlock_bh(&ce->ce_lock);
615
616	return ret;
617}
618EXPORT_SYMBOL(ath10k_ce_send);
619
620int ath10k_ce_num_free_src_entries(struct ath10k_ce_pipe *pipe)
621{
622	struct ath10k *ar = pipe->ar;
623	struct ath10k_ce *ce = ath10k_ce_priv(ar);
624	int delta;
625
626	spin_lock_bh(&ce->ce_lock);
627	delta = CE_RING_DELTA(pipe->src_ring->nentries_mask,
628			      pipe->src_ring->write_index,
629			      pipe->src_ring->sw_index - 1);
630	spin_unlock_bh(&ce->ce_lock);
631
632	return delta;
633}
634EXPORT_SYMBOL(ath10k_ce_num_free_src_entries);
635
636int __ath10k_ce_rx_num_free_bufs(struct ath10k_ce_pipe *pipe)
637{
638	struct ath10k *ar = pipe->ar;
639	struct ath10k_ce *ce = ath10k_ce_priv(ar);
640	struct ath10k_ce_ring *dest_ring = pipe->dest_ring;
641	unsigned int nentries_mask = dest_ring->nentries_mask;
642	unsigned int write_index = dest_ring->write_index;
643	unsigned int sw_index = dest_ring->sw_index;
644
645	lockdep_assert_held(&ce->ce_lock);
646
647	return CE_RING_DELTA(nentries_mask, write_index, sw_index - 1);
648}
649EXPORT_SYMBOL(__ath10k_ce_rx_num_free_bufs);
650
651static int __ath10k_ce_rx_post_buf(struct ath10k_ce_pipe *pipe, void *ctx,
652				   dma_addr_t paddr)
653{
654	struct ath10k *ar = pipe->ar;
655	struct ath10k_ce *ce = ath10k_ce_priv(ar);
656	struct ath10k_ce_ring *dest_ring = pipe->dest_ring;
657	unsigned int nentries_mask = dest_ring->nentries_mask;
658	unsigned int write_index = dest_ring->write_index;
659	unsigned int sw_index = dest_ring->sw_index;
660	struct ce_desc *base = dest_ring->base_addr_owner_space;
661	struct ce_desc *desc = CE_DEST_RING_TO_DESC(base, write_index);
662	u32 ctrl_addr = pipe->ctrl_addr;
663
664	lockdep_assert_held(&ce->ce_lock);
665
666	if ((pipe->id != 5) &&
667	    CE_RING_DELTA(nentries_mask, write_index, sw_index - 1) == 0)
668		return -ENOSPC;
669
670	desc->addr = __cpu_to_le32(paddr);
671	desc->nbytes = 0;
672
673	dest_ring->per_transfer_context[write_index] = ctx;
674	write_index = CE_RING_IDX_INCR(nentries_mask, write_index);
675	ath10k_ce_dest_ring_write_index_set(ar, ctrl_addr, write_index);
676	dest_ring->write_index = write_index;
677
678	return 0;
679}
680
681static int __ath10k_ce_rx_post_buf_64(struct ath10k_ce_pipe *pipe,
682				      void *ctx,
683				      dma_addr_t paddr)
684{
685	struct ath10k *ar = pipe->ar;
686	struct ath10k_ce *ce = ath10k_ce_priv(ar);
687	struct ath10k_ce_ring *dest_ring = pipe->dest_ring;
688	unsigned int nentries_mask = dest_ring->nentries_mask;
689	unsigned int write_index = dest_ring->write_index;
690	unsigned int sw_index = dest_ring->sw_index;
691	struct ce_desc_64 *base = dest_ring->base_addr_owner_space;
692	struct ce_desc_64 *desc =
693			CE_DEST_RING_TO_DESC_64(base, write_index);
694	u32 ctrl_addr = pipe->ctrl_addr;
695
696	lockdep_assert_held(&ce->ce_lock);
697
698	if (CE_RING_DELTA(nentries_mask, write_index, sw_index - 1) == 0)
699		return -ENOSPC;
700
701	desc->addr = __cpu_to_le64(paddr);
702	desc->addr &= __cpu_to_le64(CE_DESC_ADDR_MASK);
703
704	desc->nbytes = 0;
705
706	dest_ring->per_transfer_context[write_index] = ctx;
707	write_index = CE_RING_IDX_INCR(nentries_mask, write_index);
708	ath10k_ce_dest_ring_write_index_set(ar, ctrl_addr, write_index);
709	dest_ring->write_index = write_index;
710
711	return 0;
712}
713
714void ath10k_ce_rx_update_write_idx(struct ath10k_ce_pipe *pipe, u32 nentries)
715{
716	struct ath10k *ar = pipe->ar;
717	struct ath10k_ce_ring *dest_ring = pipe->dest_ring;
718	unsigned int nentries_mask = dest_ring->nentries_mask;
719	unsigned int write_index = dest_ring->write_index;
720	u32 ctrl_addr = pipe->ctrl_addr;
721	u32 cur_write_idx = ath10k_ce_dest_ring_write_index_get(ar, ctrl_addr);
722
723	/* Prevent CE ring stuck issue that will occur when ring is full.
724	 * Make sure that write index is 1 less than read index.
725	 */
726	if (((cur_write_idx + nentries) & nentries_mask) == dest_ring->sw_index)
727		nentries -= 1;
728
729	write_index = CE_RING_IDX_ADD(nentries_mask, write_index, nentries);
730	ath10k_ce_dest_ring_write_index_set(ar, ctrl_addr, write_index);
731	dest_ring->write_index = write_index;
732}
733EXPORT_SYMBOL(ath10k_ce_rx_update_write_idx);
734
735int ath10k_ce_rx_post_buf(struct ath10k_ce_pipe *pipe, void *ctx,
736			  dma_addr_t paddr)
737{
738	struct ath10k *ar = pipe->ar;
739	struct ath10k_ce *ce = ath10k_ce_priv(ar);
740	int ret;
741
742	spin_lock_bh(&ce->ce_lock);
743	ret = pipe->ops->ce_rx_post_buf(pipe, ctx, paddr);
744	spin_unlock_bh(&ce->ce_lock);
745
746	return ret;
747}
748EXPORT_SYMBOL(ath10k_ce_rx_post_buf);
749
750/*
751 * Guts of ath10k_ce_completed_recv_next.
752 * The caller takes responsibility for any necessary locking.
753 */
754static int
755	 _ath10k_ce_completed_recv_next_nolock(struct ath10k_ce_pipe *ce_state,
756					       void **per_transfer_contextp,
757					       unsigned int *nbytesp)
758{
759	struct ath10k_ce_ring *dest_ring = ce_state->dest_ring;
760	unsigned int nentries_mask = dest_ring->nentries_mask;
761	unsigned int sw_index = dest_ring->sw_index;
762
763	struct ce_desc *base = dest_ring->base_addr_owner_space;
764	struct ce_desc *desc = CE_DEST_RING_TO_DESC(base, sw_index);
765	struct ce_desc sdesc;
766	u16 nbytes;
767
768	/* Copy in one go for performance reasons */
769	sdesc = *desc;
770
771	nbytes = __le16_to_cpu(sdesc.nbytes);
772	if (nbytes == 0) {
773		/*
774		 * This closes a relatively unusual race where the Host
775		 * sees the updated DRRI before the update to the
776		 * corresponding descriptor has completed. We treat this
777		 * as a descriptor that is not yet done.
778		 */
779		return -EIO;
780	}
781
782	desc->nbytes = 0;
783
784	/* Return data from completed destination descriptor */
785	*nbytesp = nbytes;
786
787	if (per_transfer_contextp)
788		*per_transfer_contextp =
789			dest_ring->per_transfer_context[sw_index];
790
791	/* Copy engine 5 (HTT Rx) will reuse the same transfer context.
792	 * So update transfer context all CEs except CE5.
793	 */
794	if (ce_state->id != 5)
795		dest_ring->per_transfer_context[sw_index] = NULL;
796
797	/* Update sw_index */
798	sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
799	dest_ring->sw_index = sw_index;
800
801	return 0;
802}
803
804static int
805_ath10k_ce_completed_recv_next_nolock_64(struct ath10k_ce_pipe *ce_state,
806					 void **per_transfer_contextp,
807					 unsigned int *nbytesp)
808{
809	struct ath10k_ce_ring *dest_ring = ce_state->dest_ring;
810	unsigned int nentries_mask = dest_ring->nentries_mask;
811	unsigned int sw_index = dest_ring->sw_index;
812	struct ce_desc_64 *base = dest_ring->base_addr_owner_space;
813	struct ce_desc_64 *desc =
814		CE_DEST_RING_TO_DESC_64(base, sw_index);
815	struct ce_desc_64 sdesc;
816	u16 nbytes;
817
818	/* Copy in one go for performance reasons */
819	sdesc = *desc;
820
821	nbytes = __le16_to_cpu(sdesc.nbytes);
822	if (nbytes == 0) {
823		/* This closes a relatively unusual race where the Host
824		 * sees the updated DRRI before the update to the
825		 * corresponding descriptor has completed. We treat this
826		 * as a descriptor that is not yet done.
827		 */
828		return -EIO;
829	}
830
831	desc->nbytes = 0;
832
833	/* Return data from completed destination descriptor */
834	*nbytesp = nbytes;
835
836	if (per_transfer_contextp)
837		*per_transfer_contextp =
838			dest_ring->per_transfer_context[sw_index];
839
840	/* Copy engine 5 (HTT Rx) will reuse the same transfer context.
841	 * So update transfer context all CEs except CE5.
842	 */
843	if (ce_state->id != 5)
844		dest_ring->per_transfer_context[sw_index] = NULL;
845
846	/* Update sw_index */
847	sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
848	dest_ring->sw_index = sw_index;
849
850	return 0;
851}
852
853int ath10k_ce_completed_recv_next_nolock(struct ath10k_ce_pipe *ce_state,
854					 void **per_transfer_ctx,
855					 unsigned int *nbytesp)
856{
857	return ce_state->ops->ce_completed_recv_next_nolock(ce_state,
858							    per_transfer_ctx,
859							    nbytesp);
860}
861EXPORT_SYMBOL(ath10k_ce_completed_recv_next_nolock);
862
863int ath10k_ce_completed_recv_next(struct ath10k_ce_pipe *ce_state,
864				  void **per_transfer_contextp,
865				  unsigned int *nbytesp)
866{
867	struct ath10k *ar = ce_state->ar;
868	struct ath10k_ce *ce = ath10k_ce_priv(ar);
869	int ret;
870
871	spin_lock_bh(&ce->ce_lock);
872	ret = ce_state->ops->ce_completed_recv_next_nolock(ce_state,
873						   per_transfer_contextp,
874						   nbytesp);
875
876	spin_unlock_bh(&ce->ce_lock);
877
878	return ret;
879}
880EXPORT_SYMBOL(ath10k_ce_completed_recv_next);
881
882static int _ath10k_ce_revoke_recv_next(struct ath10k_ce_pipe *ce_state,
883				       void **per_transfer_contextp,
884				       dma_addr_t *bufferp)
885{
886	struct ath10k_ce_ring *dest_ring;
887	unsigned int nentries_mask;
888	unsigned int sw_index;
889	unsigned int write_index;
890	int ret;
891	struct ath10k *ar;
892	struct ath10k_ce *ce;
893
894	dest_ring = ce_state->dest_ring;
895
896	if (!dest_ring)
897		return -EIO;
898
899	ar = ce_state->ar;
900	ce = ath10k_ce_priv(ar);
901
902	spin_lock_bh(&ce->ce_lock);
903
904	nentries_mask = dest_ring->nentries_mask;
905	sw_index = dest_ring->sw_index;
906	write_index = dest_ring->write_index;
907	if (write_index != sw_index) {
908		struct ce_desc *base = dest_ring->base_addr_owner_space;
909		struct ce_desc *desc = CE_DEST_RING_TO_DESC(base, sw_index);
910
911		/* Return data from completed destination descriptor */
912		*bufferp = __le32_to_cpu(desc->addr);
913
914		if (per_transfer_contextp)
915			*per_transfer_contextp =
916				dest_ring->per_transfer_context[sw_index];
917
918		/* sanity */
919		dest_ring->per_transfer_context[sw_index] = NULL;
920		desc->nbytes = 0;
921
922		/* Update sw_index */
923		sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
924		dest_ring->sw_index = sw_index;
925		ret = 0;
926	} else {
927		ret = -EIO;
928	}
929
930	spin_unlock_bh(&ce->ce_lock);
931
932	return ret;
933}
934
935static int _ath10k_ce_revoke_recv_next_64(struct ath10k_ce_pipe *ce_state,
936					  void **per_transfer_contextp,
937					  dma_addr_t *bufferp)
938{
939	struct ath10k_ce_ring *dest_ring;
940	unsigned int nentries_mask;
941	unsigned int sw_index;
942	unsigned int write_index;
943	int ret;
944	struct ath10k *ar;
945	struct ath10k_ce *ce;
946
947	dest_ring = ce_state->dest_ring;
948
949	if (!dest_ring)
950		return -EIO;
951
952	ar = ce_state->ar;
953	ce = ath10k_ce_priv(ar);
954
955	spin_lock_bh(&ce->ce_lock);
956
957	nentries_mask = dest_ring->nentries_mask;
958	sw_index = dest_ring->sw_index;
959	write_index = dest_ring->write_index;
960	if (write_index != sw_index) {
961		struct ce_desc_64 *base = dest_ring->base_addr_owner_space;
962		struct ce_desc_64 *desc =
963			CE_DEST_RING_TO_DESC_64(base, sw_index);
964
965		/* Return data from completed destination descriptor */
966		*bufferp = __le64_to_cpu(desc->addr);
967
968		if (per_transfer_contextp)
969			*per_transfer_contextp =
970				dest_ring->per_transfer_context[sw_index];
971
972		/* sanity */
973		dest_ring->per_transfer_context[sw_index] = NULL;
974		desc->nbytes = 0;
975
976		/* Update sw_index */
977		sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
978		dest_ring->sw_index = sw_index;
979		ret = 0;
980	} else {
981		ret = -EIO;
982	}
983
984	spin_unlock_bh(&ce->ce_lock);
985
986	return ret;
987}
988
989int ath10k_ce_revoke_recv_next(struct ath10k_ce_pipe *ce_state,
990			       void **per_transfer_contextp,
991			       dma_addr_t *bufferp)
992{
993	return ce_state->ops->ce_revoke_recv_next(ce_state,
994						  per_transfer_contextp,
995						  bufferp);
996}
997EXPORT_SYMBOL(ath10k_ce_revoke_recv_next);
998
999/*
1000 * Guts of ath10k_ce_completed_send_next.
1001 * The caller takes responsibility for any necessary locking.
1002 */
1003static int _ath10k_ce_completed_send_next_nolock(struct ath10k_ce_pipe *ce_state,
1004						 void **per_transfer_contextp)
1005{
1006	struct ath10k_ce_ring *src_ring = ce_state->src_ring;
1007	u32 ctrl_addr = ce_state->ctrl_addr;
1008	struct ath10k *ar = ce_state->ar;
1009	unsigned int nentries_mask = src_ring->nentries_mask;
1010	unsigned int sw_index = src_ring->sw_index;
1011	unsigned int read_index;
1012	struct ce_desc *desc;
1013
1014	if (src_ring->hw_index == sw_index) {
1015		/*
1016		 * The SW completion index has caught up with the cached
1017		 * version of the HW completion index.
1018		 * Update the cached HW completion index to see whether
1019		 * the SW has really caught up to the HW, or if the cached
1020		 * value of the HW index has become stale.
1021		 */
1022
1023		read_index = ath10k_ce_src_ring_read_index_get(ar, ctrl_addr);
1024		if (read_index == 0xffffffff)
1025			return -ENODEV;
1026
1027		read_index &= nentries_mask;
1028		src_ring->hw_index = read_index;
1029	}
1030
1031	if (ar->hw_params.rri_on_ddr)
1032		read_index = ath10k_ce_src_ring_read_index_get(ar, ctrl_addr);
1033	else
1034		read_index = src_ring->hw_index;
1035
1036	if (read_index == sw_index)
1037		return -EIO;
1038
1039	if (per_transfer_contextp)
1040		*per_transfer_contextp =
1041			src_ring->per_transfer_context[sw_index];
1042
1043	/* sanity */
1044	src_ring->per_transfer_context[sw_index] = NULL;
1045	desc = CE_SRC_RING_TO_DESC(src_ring->base_addr_owner_space,
1046				   sw_index);
1047	desc->nbytes = 0;
1048
1049	/* Update sw_index */
1050	sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
1051	src_ring->sw_index = sw_index;
1052
1053	return 0;
1054}
1055
1056static int _ath10k_ce_completed_send_next_nolock_64(struct ath10k_ce_pipe *ce_state,
1057						    void **per_transfer_contextp)
1058{
1059	struct ath10k_ce_ring *src_ring = ce_state->src_ring;
1060	u32 ctrl_addr = ce_state->ctrl_addr;
1061	struct ath10k *ar = ce_state->ar;
1062	unsigned int nentries_mask = src_ring->nentries_mask;
1063	unsigned int sw_index = src_ring->sw_index;
1064	unsigned int read_index;
1065	struct ce_desc_64 *desc;
1066
1067	if (src_ring->hw_index == sw_index) {
1068		/*
1069		 * The SW completion index has caught up with the cached
1070		 * version of the HW completion index.
1071		 * Update the cached HW completion index to see whether
1072		 * the SW has really caught up to the HW, or if the cached
1073		 * value of the HW index has become stale.
1074		 */
1075
1076		read_index = ath10k_ce_src_ring_read_index_get(ar, ctrl_addr);
1077		if (read_index == 0xffffffff)
1078			return -ENODEV;
1079
1080		read_index &= nentries_mask;
1081		src_ring->hw_index = read_index;
1082	}
1083
1084	if (ar->hw_params.rri_on_ddr)
1085		read_index = ath10k_ce_src_ring_read_index_get(ar, ctrl_addr);
1086	else
1087		read_index = src_ring->hw_index;
1088
1089	if (read_index == sw_index)
1090		return -EIO;
1091
1092	if (per_transfer_contextp)
1093		*per_transfer_contextp =
1094			src_ring->per_transfer_context[sw_index];
1095
1096	/* sanity */
1097	src_ring->per_transfer_context[sw_index] = NULL;
1098	desc = CE_SRC_RING_TO_DESC_64(src_ring->base_addr_owner_space,
1099				      sw_index);
1100	desc->nbytes = 0;
1101
1102	/* Update sw_index */
1103	sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
1104	src_ring->sw_index = sw_index;
1105
1106	return 0;
1107}
1108
1109int ath10k_ce_completed_send_next_nolock(struct ath10k_ce_pipe *ce_state,
1110					 void **per_transfer_contextp)
1111{
1112	return ce_state->ops->ce_completed_send_next_nolock(ce_state,
1113							    per_transfer_contextp);
1114}
1115EXPORT_SYMBOL(ath10k_ce_completed_send_next_nolock);
1116
1117static void ath10k_ce_extract_desc_data(struct ath10k *ar,
1118					struct ath10k_ce_ring *src_ring,
1119					u32 sw_index,
1120					dma_addr_t *bufferp,
1121					u32 *nbytesp,
1122					u32 *transfer_idp)
1123{
1124		struct ce_desc *base = src_ring->base_addr_owner_space;
1125		struct ce_desc *desc = CE_SRC_RING_TO_DESC(base, sw_index);
1126
1127		/* Return data from completed source descriptor */
1128		*bufferp = __le32_to_cpu(desc->addr);
1129		*nbytesp = __le16_to_cpu(desc->nbytes);
1130		*transfer_idp = MS(__le16_to_cpu(desc->flags),
1131				   CE_DESC_FLAGS_META_DATA);
1132}
1133
1134static void ath10k_ce_extract_desc_data_64(struct ath10k *ar,
1135					   struct ath10k_ce_ring *src_ring,
1136					   u32 sw_index,
1137					   dma_addr_t *bufferp,
1138					   u32 *nbytesp,
1139					   u32 *transfer_idp)
1140{
1141		struct ce_desc_64 *base = src_ring->base_addr_owner_space;
1142		struct ce_desc_64 *desc =
1143			CE_SRC_RING_TO_DESC_64(base, sw_index);
1144
1145		/* Return data from completed source descriptor */
1146		*bufferp = __le64_to_cpu(desc->addr);
1147		*nbytesp = __le16_to_cpu(desc->nbytes);
1148		*transfer_idp = MS(__le16_to_cpu(desc->flags),
1149				   CE_DESC_FLAGS_META_DATA);
1150}
1151
1152/* NB: Modeled after ath10k_ce_completed_send_next */
1153int ath10k_ce_cancel_send_next(struct ath10k_ce_pipe *ce_state,
1154			       void **per_transfer_contextp,
1155			       dma_addr_t *bufferp,
1156			       unsigned int *nbytesp,
1157			       unsigned int *transfer_idp)
1158{
1159	struct ath10k_ce_ring *src_ring;
1160	unsigned int nentries_mask;
1161	unsigned int sw_index;
1162	unsigned int write_index;
1163	int ret;
1164	struct ath10k *ar;
1165	struct ath10k_ce *ce;
1166
1167	src_ring = ce_state->src_ring;
1168
1169	if (!src_ring)
1170		return -EIO;
1171
1172	ar = ce_state->ar;
1173	ce = ath10k_ce_priv(ar);
1174
1175	spin_lock_bh(&ce->ce_lock);
1176
1177	nentries_mask = src_ring->nentries_mask;
1178	sw_index = src_ring->sw_index;
1179	write_index = src_ring->write_index;
1180
1181	if (write_index != sw_index) {
1182		ce_state->ops->ce_extract_desc_data(ar, src_ring, sw_index,
1183						    bufferp, nbytesp,
1184						    transfer_idp);
1185
1186		if (per_transfer_contextp)
1187			*per_transfer_contextp =
1188				src_ring->per_transfer_context[sw_index];
1189
1190		/* sanity */
1191		src_ring->per_transfer_context[sw_index] = NULL;
1192
1193		/* Update sw_index */
1194		sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
1195		src_ring->sw_index = sw_index;
1196		ret = 0;
1197	} else {
1198		ret = -EIO;
1199	}
1200
1201	spin_unlock_bh(&ce->ce_lock);
1202
1203	return ret;
1204}
1205EXPORT_SYMBOL(ath10k_ce_cancel_send_next);
1206
1207int ath10k_ce_completed_send_next(struct ath10k_ce_pipe *ce_state,
1208				  void **per_transfer_contextp)
1209{
1210	struct ath10k *ar = ce_state->ar;
1211	struct ath10k_ce *ce = ath10k_ce_priv(ar);
1212	int ret;
1213
1214	spin_lock_bh(&ce->ce_lock);
1215	ret = ath10k_ce_completed_send_next_nolock(ce_state,
1216						   per_transfer_contextp);
1217	spin_unlock_bh(&ce->ce_lock);
1218
1219	return ret;
1220}
1221EXPORT_SYMBOL(ath10k_ce_completed_send_next);
1222
1223/*
1224 * Guts of interrupt handler for per-engine interrupts on a particular CE.
1225 *
1226 * Invokes registered callbacks for recv_complete,
1227 * send_complete, and watermarks.
1228 */
1229void ath10k_ce_per_engine_service(struct ath10k *ar, unsigned int ce_id)
1230{
1231	struct ath10k_ce *ce = ath10k_ce_priv(ar);
1232	struct ath10k_ce_pipe *ce_state = &ce->ce_states[ce_id];
1233	struct ath10k_hw_ce_host_wm_regs *wm_regs = ar->hw_ce_regs->wm_regs;
1234	u32 ctrl_addr = ce_state->ctrl_addr;
1235
1236	/*
1237	 * Clear before handling
1238	 *
1239	 * Misc CE interrupts are not being handled, but still need
1240	 * to be cleared.
1241	 *
1242	 * NOTE: When the last copy engine interrupt is cleared the
1243	 * hardware will go to sleep.  Once this happens any access to
1244	 * the CE registers can cause a hardware fault.
1245	 */
1246	ath10k_ce_engine_int_status_clear(ar, ctrl_addr,
1247					  wm_regs->cc_mask | wm_regs->wm_mask);
1248
1249	if (ce_state->recv_cb)
1250		ce_state->recv_cb(ce_state);
1251
1252	if (ce_state->send_cb)
1253		ce_state->send_cb(ce_state);
1254}
1255EXPORT_SYMBOL(ath10k_ce_per_engine_service);
1256
1257/*
1258 * Handler for per-engine interrupts on ALL active CEs.
1259 * This is used in cases where the system is sharing a
1260 * single interrupt for all CEs
1261 */
1262
1263void ath10k_ce_per_engine_service_any(struct ath10k *ar)
1264{
1265	int ce_id;
1266	u32 intr_summary;
1267
1268	intr_summary = ath10k_ce_interrupt_summary(ar);
1269
1270	for (ce_id = 0; intr_summary && (ce_id < CE_COUNT); ce_id++) {
1271		if (intr_summary & (1 << ce_id))
1272			intr_summary &= ~(1 << ce_id);
1273		else
1274			/* no intr pending on this CE */
1275			continue;
1276
1277		ath10k_ce_per_engine_service(ar, ce_id);
1278	}
1279}
1280EXPORT_SYMBOL(ath10k_ce_per_engine_service_any);
1281
1282/*
1283 * Adjust interrupts for the copy complete handler.
1284 * If it's needed for either send or recv, then unmask
1285 * this interrupt; otherwise, mask it.
1286 *
1287 * Called with ce_lock held.
1288 */
1289static void ath10k_ce_per_engine_handler_adjust(struct ath10k_ce_pipe *ce_state)
1290{
1291	u32 ctrl_addr = ce_state->ctrl_addr;
1292	struct ath10k *ar = ce_state->ar;
1293	bool disable_copy_compl_intr = ce_state->attr_flags & CE_ATTR_DIS_INTR;
1294
1295	if ((!disable_copy_compl_intr) &&
1296	    (ce_state->send_cb || ce_state->recv_cb))
1297		ath10k_ce_copy_complete_inter_enable(ar, ctrl_addr);
1298	else
1299		ath10k_ce_copy_complete_intr_disable(ar, ctrl_addr);
1300
1301	ath10k_ce_watermark_intr_disable(ar, ctrl_addr);
1302}
1303
1304void ath10k_ce_disable_interrupt(struct ath10k *ar, int ce_id)
1305{
1306	struct ath10k_ce *ce = ath10k_ce_priv(ar);
1307	struct ath10k_ce_pipe *ce_state;
1308	u32 ctrl_addr;
1309
1310	ce_state  = &ce->ce_states[ce_id];
1311	if (ce_state->attr_flags & CE_ATTR_POLL)
1312		return;
1313
1314	ctrl_addr = ath10k_ce_base_address(ar, ce_id);
1315
1316	ath10k_ce_copy_complete_intr_disable(ar, ctrl_addr);
1317	ath10k_ce_error_intr_disable(ar, ctrl_addr);
1318	ath10k_ce_watermark_intr_disable(ar, ctrl_addr);
1319}
1320EXPORT_SYMBOL(ath10k_ce_disable_interrupt);
1321
1322void ath10k_ce_disable_interrupts(struct ath10k *ar)
1323{
1324	int ce_id;
1325
1326	for (ce_id = 0; ce_id < CE_COUNT; ce_id++)
1327		ath10k_ce_disable_interrupt(ar, ce_id);
1328}
1329EXPORT_SYMBOL(ath10k_ce_disable_interrupts);
1330
1331void ath10k_ce_enable_interrupt(struct ath10k *ar, int ce_id)
1332{
1333	struct ath10k_ce *ce = ath10k_ce_priv(ar);
1334	struct ath10k_ce_pipe *ce_state;
1335
1336	ce_state  = &ce->ce_states[ce_id];
1337	if (ce_state->attr_flags & CE_ATTR_POLL)
1338		return;
1339
1340	ath10k_ce_per_engine_handler_adjust(ce_state);
1341}
1342EXPORT_SYMBOL(ath10k_ce_enable_interrupt);
1343
1344void ath10k_ce_enable_interrupts(struct ath10k *ar)
1345{
1346	int ce_id;
1347
1348	/* Enable interrupts for copy engine that
1349	 * are not using polling mode.
1350	 */
1351	for (ce_id = 0; ce_id < CE_COUNT; ce_id++)
1352		ath10k_ce_enable_interrupt(ar, ce_id);
1353}
1354EXPORT_SYMBOL(ath10k_ce_enable_interrupts);
1355
1356static int ath10k_ce_init_src_ring(struct ath10k *ar,
1357				   unsigned int ce_id,
1358				   const struct ce_attr *attr)
1359{
1360	struct ath10k_ce *ce = ath10k_ce_priv(ar);
1361	struct ath10k_ce_pipe *ce_state = &ce->ce_states[ce_id];
1362	struct ath10k_ce_ring *src_ring = ce_state->src_ring;
1363	u32 nentries, ctrl_addr = ath10k_ce_base_address(ar, ce_id);
1364
1365	nentries = roundup_pow_of_two(attr->src_nentries);
1366
1367	if (ar->hw_params.target_64bit)
1368		memset(src_ring->base_addr_owner_space, 0,
1369		       nentries * sizeof(struct ce_desc_64));
1370	else
1371		memset(src_ring->base_addr_owner_space, 0,
1372		       nentries * sizeof(struct ce_desc));
1373
1374	src_ring->sw_index = ath10k_ce_src_ring_read_index_get(ar, ctrl_addr);
1375	src_ring->sw_index &= src_ring->nentries_mask;
1376	src_ring->hw_index = src_ring->sw_index;
1377
1378	src_ring->write_index =
1379		ath10k_ce_src_ring_write_index_get(ar, ctrl_addr);
1380	src_ring->write_index &= src_ring->nentries_mask;
1381
1382	ath10k_ce_src_ring_base_addr_set(ar, ce_id,
1383					 src_ring->base_addr_ce_space);
1384	ath10k_ce_src_ring_size_set(ar, ctrl_addr, nentries);
1385	ath10k_ce_src_ring_dmax_set(ar, ctrl_addr, attr->src_sz_max);
1386	ath10k_ce_src_ring_byte_swap_set(ar, ctrl_addr, 0);
1387	ath10k_ce_src_ring_lowmark_set(ar, ctrl_addr, 0);
1388	ath10k_ce_src_ring_highmark_set(ar, ctrl_addr, nentries);
1389
1390	ath10k_dbg(ar, ATH10K_DBG_BOOT,
1391		   "boot init ce src ring id %d entries %d base_addr %pK\n",
1392		   ce_id, nentries, src_ring->base_addr_owner_space);
1393
1394	return 0;
1395}
1396
1397static int ath10k_ce_init_dest_ring(struct ath10k *ar,
1398				    unsigned int ce_id,
1399				    const struct ce_attr *attr)
1400{
1401	struct ath10k_ce *ce = ath10k_ce_priv(ar);
1402	struct ath10k_ce_pipe *ce_state = &ce->ce_states[ce_id];
1403	struct ath10k_ce_ring *dest_ring = ce_state->dest_ring;
1404	u32 nentries, ctrl_addr = ath10k_ce_base_address(ar, ce_id);
1405
1406	nentries = roundup_pow_of_two(attr->dest_nentries);
1407
1408	if (ar->hw_params.target_64bit)
1409		memset(dest_ring->base_addr_owner_space, 0,
1410		       nentries * sizeof(struct ce_desc_64));
1411	else
1412		memset(dest_ring->base_addr_owner_space, 0,
1413		       nentries * sizeof(struct ce_desc));
1414
1415	dest_ring->sw_index = ath10k_ce_dest_ring_read_index_get(ar, ctrl_addr);
1416	dest_ring->sw_index &= dest_ring->nentries_mask;
1417	dest_ring->write_index =
1418		ath10k_ce_dest_ring_write_index_get(ar, ctrl_addr);
1419	dest_ring->write_index &= dest_ring->nentries_mask;
1420
1421	ath10k_ce_dest_ring_base_addr_set(ar, ce_id,
1422					  dest_ring->base_addr_ce_space);
1423	ath10k_ce_dest_ring_size_set(ar, ctrl_addr, nentries);
1424	ath10k_ce_dest_ring_byte_swap_set(ar, ctrl_addr, 0);
1425	ath10k_ce_dest_ring_lowmark_set(ar, ctrl_addr, 0);
1426	ath10k_ce_dest_ring_highmark_set(ar, ctrl_addr, nentries);
1427
1428	ath10k_dbg(ar, ATH10K_DBG_BOOT,
1429		   "boot ce dest ring id %d entries %d base_addr %pK\n",
1430		   ce_id, nentries, dest_ring->base_addr_owner_space);
1431
1432	return 0;
1433}
1434
1435static int ath10k_ce_alloc_shadow_base(struct ath10k *ar,
1436				       struct ath10k_ce_ring *src_ring,
1437				       u32 nentries)
1438{
1439	src_ring->shadow_base_unaligned = kcalloc(nentries,
1440						  sizeof(struct ce_desc_64),
1441						  GFP_KERNEL);
1442	if (!src_ring->shadow_base_unaligned)
1443		return -ENOMEM;
1444
1445	src_ring->shadow_base = (struct ce_desc_64 *)
1446			PTR_ALIGN(src_ring->shadow_base_unaligned,
1447				  CE_DESC_RING_ALIGN);
1448	return 0;
1449}
1450
1451static struct ath10k_ce_ring *
1452ath10k_ce_alloc_src_ring(struct ath10k *ar, unsigned int ce_id,
1453			 const struct ce_attr *attr)
1454{
1455	struct ath10k_ce_ring *src_ring;
1456	u32 nentries = attr->src_nentries;
1457	dma_addr_t base_addr;
1458	int ret;
1459
1460	nentries = roundup_pow_of_two(nentries);
1461
1462	src_ring = kzalloc(struct_size(src_ring, per_transfer_context,
1463				       nentries), GFP_KERNEL);
1464	if (src_ring == NULL)
1465		return ERR_PTR(-ENOMEM);
1466
1467	src_ring->nentries = nentries;
1468	src_ring->nentries_mask = nentries - 1;
1469
1470	/*
1471	 * Legacy platforms that do not support cache
1472	 * coherent DMA are unsupported
1473	 */
1474	src_ring->base_addr_owner_space_unaligned =
1475		dma_alloc_coherent(ar->dev,
1476				   (nentries * sizeof(struct ce_desc) +
1477				    CE_DESC_RING_ALIGN),
1478				   &base_addr, GFP_KERNEL);
1479	if (!src_ring->base_addr_owner_space_unaligned) {
1480		kfree(src_ring);
1481		return ERR_PTR(-ENOMEM);
1482	}
1483
1484	src_ring->base_addr_ce_space_unaligned = base_addr;
1485
1486	src_ring->base_addr_owner_space =
1487			PTR_ALIGN(src_ring->base_addr_owner_space_unaligned,
1488				  CE_DESC_RING_ALIGN);
1489	src_ring->base_addr_ce_space =
1490			ALIGN(src_ring->base_addr_ce_space_unaligned,
1491			      CE_DESC_RING_ALIGN);
1492
1493	if (ar->hw_params.shadow_reg_support) {
1494		ret = ath10k_ce_alloc_shadow_base(ar, src_ring, nentries);
1495		if (ret) {
1496			dma_free_coherent(ar->dev,
1497					  (nentries * sizeof(struct ce_desc) +
1498					   CE_DESC_RING_ALIGN),
1499					  src_ring->base_addr_owner_space_unaligned,
1500					  base_addr);
1501			kfree(src_ring);
1502			return ERR_PTR(ret);
1503		}
1504	}
1505
1506	return src_ring;
1507}
1508
1509static struct ath10k_ce_ring *
1510ath10k_ce_alloc_src_ring_64(struct ath10k *ar, unsigned int ce_id,
1511			    const struct ce_attr *attr)
1512{
1513	struct ath10k_ce_ring *src_ring;
1514	u32 nentries = attr->src_nentries;
1515	dma_addr_t base_addr;
1516	int ret;
1517
1518	nentries = roundup_pow_of_two(nentries);
1519
1520	src_ring = kzalloc(struct_size(src_ring, per_transfer_context,
1521				       nentries), GFP_KERNEL);
1522	if (!src_ring)
1523		return ERR_PTR(-ENOMEM);
1524
1525	src_ring->nentries = nentries;
1526	src_ring->nentries_mask = nentries - 1;
1527
1528	/* Legacy platforms that do not support cache
1529	 * coherent DMA are unsupported
1530	 */
1531	src_ring->base_addr_owner_space_unaligned =
1532		dma_alloc_coherent(ar->dev,
1533				   (nentries * sizeof(struct ce_desc_64) +
1534				    CE_DESC_RING_ALIGN),
1535				   &base_addr, GFP_KERNEL);
1536	if (!src_ring->base_addr_owner_space_unaligned) {
1537		kfree(src_ring);
1538		return ERR_PTR(-ENOMEM);
1539	}
1540
1541	src_ring->base_addr_ce_space_unaligned = base_addr;
1542
1543	src_ring->base_addr_owner_space =
1544			PTR_ALIGN(src_ring->base_addr_owner_space_unaligned,
1545				  CE_DESC_RING_ALIGN);
1546	src_ring->base_addr_ce_space =
1547			ALIGN(src_ring->base_addr_ce_space_unaligned,
1548			      CE_DESC_RING_ALIGN);
1549
1550	if (ar->hw_params.shadow_reg_support) {
1551		ret = ath10k_ce_alloc_shadow_base(ar, src_ring, nentries);
1552		if (ret) {
1553			dma_free_coherent(ar->dev,
1554					  (nentries * sizeof(struct ce_desc_64) +
1555					   CE_DESC_RING_ALIGN),
1556					  src_ring->base_addr_owner_space_unaligned,
1557					  base_addr);
1558			kfree(src_ring);
1559			return ERR_PTR(ret);
1560		}
1561	}
1562
1563	return src_ring;
1564}
1565
1566static struct ath10k_ce_ring *
1567ath10k_ce_alloc_dest_ring(struct ath10k *ar, unsigned int ce_id,
1568			  const struct ce_attr *attr)
1569{
1570	struct ath10k_ce_ring *dest_ring;
1571	u32 nentries;
1572	dma_addr_t base_addr;
1573
1574	nentries = roundup_pow_of_two(attr->dest_nentries);
1575
1576	dest_ring = kzalloc(struct_size(dest_ring, per_transfer_context,
1577					nentries), GFP_KERNEL);
1578	if (dest_ring == NULL)
1579		return ERR_PTR(-ENOMEM);
1580
1581	dest_ring->nentries = nentries;
1582	dest_ring->nentries_mask = nentries - 1;
1583
1584	/*
1585	 * Legacy platforms that do not support cache
1586	 * coherent DMA are unsupported
1587	 */
1588	dest_ring->base_addr_owner_space_unaligned =
1589		dma_alloc_coherent(ar->dev,
1590				   (nentries * sizeof(struct ce_desc) +
1591				    CE_DESC_RING_ALIGN),
1592				   &base_addr, GFP_KERNEL);
1593	if (!dest_ring->base_addr_owner_space_unaligned) {
1594		kfree(dest_ring);
1595		return ERR_PTR(-ENOMEM);
1596	}
1597
1598	dest_ring->base_addr_ce_space_unaligned = base_addr;
1599
1600	dest_ring->base_addr_owner_space =
1601			PTR_ALIGN(dest_ring->base_addr_owner_space_unaligned,
1602				  CE_DESC_RING_ALIGN);
1603	dest_ring->base_addr_ce_space =
1604				ALIGN(dest_ring->base_addr_ce_space_unaligned,
1605				      CE_DESC_RING_ALIGN);
1606
1607	return dest_ring;
1608}
1609
1610static struct ath10k_ce_ring *
1611ath10k_ce_alloc_dest_ring_64(struct ath10k *ar, unsigned int ce_id,
1612			     const struct ce_attr *attr)
1613{
1614	struct ath10k_ce_ring *dest_ring;
1615	u32 nentries;
1616	dma_addr_t base_addr;
1617
1618	nentries = roundup_pow_of_two(attr->dest_nentries);
1619
1620	dest_ring = kzalloc(struct_size(dest_ring, per_transfer_context,
1621					nentries), GFP_KERNEL);
1622	if (!dest_ring)
1623		return ERR_PTR(-ENOMEM);
1624
1625	dest_ring->nentries = nentries;
1626	dest_ring->nentries_mask = nentries - 1;
1627
1628	/* Legacy platforms that do not support cache
1629	 * coherent DMA are unsupported
1630	 */
1631	dest_ring->base_addr_owner_space_unaligned =
1632		dma_alloc_coherent(ar->dev,
1633				   (nentries * sizeof(struct ce_desc_64) +
1634				    CE_DESC_RING_ALIGN),
1635				   &base_addr, GFP_KERNEL);
1636	if (!dest_ring->base_addr_owner_space_unaligned) {
1637		kfree(dest_ring);
1638		return ERR_PTR(-ENOMEM);
1639	}
1640
1641	dest_ring->base_addr_ce_space_unaligned = base_addr;
1642
1643	/* Correctly initialize memory to 0 to prevent garbage
1644	 * data crashing system when download firmware
1645	 */
1646	dest_ring->base_addr_owner_space =
1647			PTR_ALIGN(dest_ring->base_addr_owner_space_unaligned,
1648				  CE_DESC_RING_ALIGN);
1649	dest_ring->base_addr_ce_space =
1650			ALIGN(dest_ring->base_addr_ce_space_unaligned,
1651			      CE_DESC_RING_ALIGN);
1652
1653	return dest_ring;
1654}
1655
1656/*
1657 * Initialize a Copy Engine based on caller-supplied attributes.
1658 * This may be called once to initialize both source and destination
1659 * rings or it may be called twice for separate source and destination
1660 * initialization. It may be that only one side or the other is
1661 * initialized by software/firmware.
1662 */
1663int ath10k_ce_init_pipe(struct ath10k *ar, unsigned int ce_id,
1664			const struct ce_attr *attr)
1665{
1666	int ret;
1667
1668	if (attr->src_nentries) {
1669		ret = ath10k_ce_init_src_ring(ar, ce_id, attr);
1670		if (ret) {
1671			ath10k_err(ar, "Failed to initialize CE src ring for ID: %d (%d)\n",
1672				   ce_id, ret);
1673			return ret;
1674		}
1675	}
1676
1677	if (attr->dest_nentries) {
1678		ret = ath10k_ce_init_dest_ring(ar, ce_id, attr);
1679		if (ret) {
1680			ath10k_err(ar, "Failed to initialize CE dest ring for ID: %d (%d)\n",
1681				   ce_id, ret);
1682			return ret;
1683		}
1684	}
1685
1686	return 0;
1687}
1688EXPORT_SYMBOL(ath10k_ce_init_pipe);
1689
1690static void ath10k_ce_deinit_src_ring(struct ath10k *ar, unsigned int ce_id)
1691{
1692	u32 ctrl_addr = ath10k_ce_base_address(ar, ce_id);
1693
1694	ath10k_ce_src_ring_base_addr_set(ar, ce_id, 0);
1695	ath10k_ce_src_ring_size_set(ar, ctrl_addr, 0);
1696	ath10k_ce_src_ring_dmax_set(ar, ctrl_addr, 0);
1697	ath10k_ce_src_ring_highmark_set(ar, ctrl_addr, 0);
1698}
1699
1700static void ath10k_ce_deinit_dest_ring(struct ath10k *ar, unsigned int ce_id)
1701{
1702	u32 ctrl_addr = ath10k_ce_base_address(ar, ce_id);
1703
1704	ath10k_ce_dest_ring_base_addr_set(ar, ce_id, 0);
1705	ath10k_ce_dest_ring_size_set(ar, ctrl_addr, 0);
1706	ath10k_ce_dest_ring_highmark_set(ar, ctrl_addr, 0);
1707}
1708
1709void ath10k_ce_deinit_pipe(struct ath10k *ar, unsigned int ce_id)
1710{
1711	ath10k_ce_deinit_src_ring(ar, ce_id);
1712	ath10k_ce_deinit_dest_ring(ar, ce_id);
1713}
1714EXPORT_SYMBOL(ath10k_ce_deinit_pipe);
1715
1716static void _ath10k_ce_free_pipe(struct ath10k *ar, int ce_id)
1717{
1718	struct ath10k_ce *ce = ath10k_ce_priv(ar);
1719	struct ath10k_ce_pipe *ce_state = &ce->ce_states[ce_id];
1720
1721	if (ce_state->src_ring) {
1722		if (ar->hw_params.shadow_reg_support)
1723			kfree(ce_state->src_ring->shadow_base_unaligned);
1724		dma_free_coherent(ar->dev,
1725				  (ce_state->src_ring->nentries *
1726				   sizeof(struct ce_desc) +
1727				   CE_DESC_RING_ALIGN),
1728				  ce_state->src_ring->base_addr_owner_space,
1729				  ce_state->src_ring->base_addr_ce_space);
1730		kfree(ce_state->src_ring);
1731	}
1732
1733	if (ce_state->dest_ring) {
1734		dma_free_coherent(ar->dev,
1735				  (ce_state->dest_ring->nentries *
1736				   sizeof(struct ce_desc) +
1737				   CE_DESC_RING_ALIGN),
1738				  ce_state->dest_ring->base_addr_owner_space,
1739				  ce_state->dest_ring->base_addr_ce_space);
1740		kfree(ce_state->dest_ring);
1741	}
1742
1743	ce_state->src_ring = NULL;
1744	ce_state->dest_ring = NULL;
1745}
1746
1747static void _ath10k_ce_free_pipe_64(struct ath10k *ar, int ce_id)
1748{
1749	struct ath10k_ce *ce = ath10k_ce_priv(ar);
1750	struct ath10k_ce_pipe *ce_state = &ce->ce_states[ce_id];
1751
1752	if (ce_state->src_ring) {
1753		if (ar->hw_params.shadow_reg_support)
1754			kfree(ce_state->src_ring->shadow_base_unaligned);
1755		dma_free_coherent(ar->dev,
1756				  (ce_state->src_ring->nentries *
1757				   sizeof(struct ce_desc_64) +
1758				   CE_DESC_RING_ALIGN),
1759				  ce_state->src_ring->base_addr_owner_space,
1760				  ce_state->src_ring->base_addr_ce_space);
1761		kfree(ce_state->src_ring);
1762	}
1763
1764	if (ce_state->dest_ring) {
1765		dma_free_coherent(ar->dev,
1766				  (ce_state->dest_ring->nentries *
1767				   sizeof(struct ce_desc_64) +
1768				   CE_DESC_RING_ALIGN),
1769				  ce_state->dest_ring->base_addr_owner_space,
1770				  ce_state->dest_ring->base_addr_ce_space);
1771		kfree(ce_state->dest_ring);
1772	}
1773
1774	ce_state->src_ring = NULL;
1775	ce_state->dest_ring = NULL;
1776}
1777
1778void ath10k_ce_free_pipe(struct ath10k *ar, int ce_id)
1779{
1780	struct ath10k_ce *ce = ath10k_ce_priv(ar);
1781	struct ath10k_ce_pipe *ce_state = &ce->ce_states[ce_id];
1782
1783	ce_state->ops->ce_free_pipe(ar, ce_id);
1784}
1785EXPORT_SYMBOL(ath10k_ce_free_pipe);
1786
1787void ath10k_ce_dump_registers(struct ath10k *ar,
1788			      struct ath10k_fw_crash_data *crash_data)
1789{
1790	struct ath10k_ce *ce = ath10k_ce_priv(ar);
1791	struct ath10k_ce_crash_data ce_data;
1792	u32 addr, id;
1793
1794	lockdep_assert_held(&ar->dump_mutex);
1795
1796	ath10k_err(ar, "Copy Engine register dump:\n");
1797
1798	spin_lock_bh(&ce->ce_lock);
1799	for (id = 0; id < CE_COUNT; id++) {
1800		addr = ath10k_ce_base_address(ar, id);
1801		ce_data.base_addr = cpu_to_le32(addr);
1802
1803		ce_data.src_wr_idx =
1804			cpu_to_le32(ath10k_ce_src_ring_write_index_get(ar, addr));
1805		ce_data.src_r_idx =
1806			cpu_to_le32(ath10k_ce_src_ring_read_index_get(ar, addr));
1807		ce_data.dst_wr_idx =
1808			cpu_to_le32(ath10k_ce_dest_ring_write_index_get(ar, addr));
1809		ce_data.dst_r_idx =
1810			cpu_to_le32(ath10k_ce_dest_ring_read_index_get(ar, addr));
1811
1812		if (crash_data)
1813			crash_data->ce_crash_data[id] = ce_data;
1814
1815		ath10k_err(ar, "[%02d]: 0x%08x %3u %3u %3u %3u", id,
1816			   le32_to_cpu(ce_data.base_addr),
1817			   le32_to_cpu(ce_data.src_wr_idx),
1818			   le32_to_cpu(ce_data.src_r_idx),
1819			   le32_to_cpu(ce_data.dst_wr_idx),
1820			   le32_to_cpu(ce_data.dst_r_idx));
1821	}
1822
1823	spin_unlock_bh(&ce->ce_lock);
1824}
1825EXPORT_SYMBOL(ath10k_ce_dump_registers);
1826
1827static const struct ath10k_ce_ops ce_ops = {
1828	.ce_alloc_src_ring = ath10k_ce_alloc_src_ring,
1829	.ce_alloc_dst_ring = ath10k_ce_alloc_dest_ring,
1830	.ce_rx_post_buf = __ath10k_ce_rx_post_buf,
1831	.ce_completed_recv_next_nolock = _ath10k_ce_completed_recv_next_nolock,
1832	.ce_revoke_recv_next = _ath10k_ce_revoke_recv_next,
1833	.ce_extract_desc_data = ath10k_ce_extract_desc_data,
1834	.ce_free_pipe = _ath10k_ce_free_pipe,
1835	.ce_send_nolock = _ath10k_ce_send_nolock,
1836	.ce_set_src_ring_base_addr_hi = NULL,
1837	.ce_set_dest_ring_base_addr_hi = NULL,
1838	.ce_completed_send_next_nolock = _ath10k_ce_completed_send_next_nolock,
1839};
1840
1841static const struct ath10k_ce_ops ce_64_ops = {
1842	.ce_alloc_src_ring = ath10k_ce_alloc_src_ring_64,
1843	.ce_alloc_dst_ring = ath10k_ce_alloc_dest_ring_64,
1844	.ce_rx_post_buf = __ath10k_ce_rx_post_buf_64,
1845	.ce_completed_recv_next_nolock =
1846				_ath10k_ce_completed_recv_next_nolock_64,
1847	.ce_revoke_recv_next = _ath10k_ce_revoke_recv_next_64,
1848	.ce_extract_desc_data = ath10k_ce_extract_desc_data_64,
1849	.ce_free_pipe = _ath10k_ce_free_pipe_64,
1850	.ce_send_nolock = _ath10k_ce_send_nolock_64,
1851	.ce_set_src_ring_base_addr_hi = ath10k_ce_set_src_ring_base_addr_hi,
1852	.ce_set_dest_ring_base_addr_hi = ath10k_ce_set_dest_ring_base_addr_hi,
1853	.ce_completed_send_next_nolock = _ath10k_ce_completed_send_next_nolock_64,
1854};
1855
1856static void ath10k_ce_set_ops(struct ath10k *ar,
1857			      struct ath10k_ce_pipe *ce_state)
1858{
1859	switch (ar->hw_rev) {
1860	case ATH10K_HW_WCN3990:
1861		ce_state->ops = &ce_64_ops;
1862		break;
1863	default:
1864		ce_state->ops = &ce_ops;
1865		break;
1866	}
1867}
1868
1869int ath10k_ce_alloc_pipe(struct ath10k *ar, int ce_id,
1870			 const struct ce_attr *attr)
1871{
1872	struct ath10k_ce *ce = ath10k_ce_priv(ar);
1873	struct ath10k_ce_pipe *ce_state = &ce->ce_states[ce_id];
1874	int ret;
1875
1876	ath10k_ce_set_ops(ar, ce_state);
1877	/* Make sure there's enough CE ringbuffer entries for HTT TX to avoid
1878	 * additional TX locking checks.
1879	 *
1880	 * For the lack of a better place do the check here.
1881	 */
1882	BUILD_BUG_ON(2 * TARGET_NUM_MSDU_DESC >
1883		     (CE_HTT_H2T_MSG_SRC_NENTRIES - 1));
1884	BUILD_BUG_ON(2 * TARGET_10_4_NUM_MSDU_DESC_PFC >
1885		     (CE_HTT_H2T_MSG_SRC_NENTRIES - 1));
1886	BUILD_BUG_ON(2 * TARGET_TLV_NUM_MSDU_DESC >
1887		     (CE_HTT_H2T_MSG_SRC_NENTRIES - 1));
1888
1889	ce_state->ar = ar;
1890	ce_state->id = ce_id;
1891	ce_state->ctrl_addr = ath10k_ce_base_address(ar, ce_id);
1892	ce_state->attr_flags = attr->flags;
1893	ce_state->src_sz_max = attr->src_sz_max;
1894
1895	if (attr->src_nentries)
1896		ce_state->send_cb = attr->send_cb;
1897
1898	if (attr->dest_nentries)
1899		ce_state->recv_cb = attr->recv_cb;
1900
1901	if (attr->src_nentries) {
1902		ce_state->src_ring =
1903			ce_state->ops->ce_alloc_src_ring(ar, ce_id, attr);
1904		if (IS_ERR(ce_state->src_ring)) {
1905			ret = PTR_ERR(ce_state->src_ring);
1906			ath10k_err(ar, "failed to alloc CE src ring %d: %d\n",
1907				   ce_id, ret);
1908			ce_state->src_ring = NULL;
1909			return ret;
1910		}
1911	}
1912
1913	if (attr->dest_nentries) {
1914		ce_state->dest_ring = ce_state->ops->ce_alloc_dst_ring(ar,
1915									ce_id,
1916									attr);
1917		if (IS_ERR(ce_state->dest_ring)) {
1918			ret = PTR_ERR(ce_state->dest_ring);
1919			ath10k_err(ar, "failed to alloc CE dest ring %d: %d\n",
1920				   ce_id, ret);
1921			ce_state->dest_ring = NULL;
1922			return ret;
1923		}
1924	}
1925
1926	return 0;
1927}
1928EXPORT_SYMBOL(ath10k_ce_alloc_pipe);
1929
1930void ath10k_ce_alloc_rri(struct ath10k *ar)
1931{
1932	int i;
1933	u32 value;
1934	u32 ctrl1_regs;
1935	u32 ce_base_addr;
1936	struct ath10k_ce *ce = ath10k_ce_priv(ar);
1937
1938	ce->vaddr_rri = dma_alloc_coherent(ar->dev,
1939					   (CE_COUNT * sizeof(u32)),
1940					   &ce->paddr_rri, GFP_KERNEL);
1941
1942	if (!ce->vaddr_rri)
1943		return;
1944
1945	ath10k_ce_write32(ar, ar->hw_ce_regs->ce_rri_low,
1946			  lower_32_bits(ce->paddr_rri));
1947	ath10k_ce_write32(ar, ar->hw_ce_regs->ce_rri_high,
1948			  (upper_32_bits(ce->paddr_rri) &
1949			  CE_DESC_ADDR_HI_MASK));
1950
1951	for (i = 0; i < CE_COUNT; i++) {
1952		ctrl1_regs = ar->hw_ce_regs->ctrl1_regs->addr;
1953		ce_base_addr = ath10k_ce_base_address(ar, i);
1954		value = ath10k_ce_read32(ar, ce_base_addr + ctrl1_regs);
1955		value |= ar->hw_ce_regs->upd->mask;
1956		ath10k_ce_write32(ar, ce_base_addr + ctrl1_regs, value);
1957	}
1958}
1959EXPORT_SYMBOL(ath10k_ce_alloc_rri);
1960
1961void ath10k_ce_free_rri(struct ath10k *ar)
1962{
1963	struct ath10k_ce *ce = ath10k_ce_priv(ar);
1964
1965	dma_free_coherent(ar->dev, (CE_COUNT * sizeof(u32)),
1966			  ce->vaddr_rri,
1967			  ce->paddr_rri);
1968}
1969EXPORT_SYMBOL(ath10k_ce_free_rri);
1970