1// SPDX-License-Identifier: GPL-2.0-or-later
2/*      FarSync WAN driver for Linux (2.6.x kernel version)
3 *
4 *      Actually sync driver for X.21, V.35 and V.24 on FarSync T-series cards
5 *
6 *      Copyright (C) 2001-2004 FarSite Communications Ltd.
7 *      www.farsite.co.uk
8 *
9 *      Author:      R.J.Dunlop    <bob.dunlop@farsite.co.uk>
10 *      Maintainer:  Kevin Curtis  <kevin.curtis@farsite.co.uk>
11 */
12
13#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
15#include <linux/module.h>
16#include <linux/kernel.h>
17#include <linux/version.h>
18#include <linux/pci.h>
19#include <linux/sched.h>
20#include <linux/slab.h>
21#include <linux/ioport.h>
22#include <linux/init.h>
23#include <linux/interrupt.h>
24#include <linux/delay.h>
25#include <linux/if.h>
26#include <linux/hdlc.h>
27#include <asm/io.h>
28#include <linux/uaccess.h>
29
30#include "farsync.h"
31
32/*      Module info
33 */
34MODULE_AUTHOR("R.J.Dunlop <bob.dunlop@farsite.co.uk>");
35MODULE_DESCRIPTION("FarSync T-Series WAN driver. FarSite Communications Ltd.");
36MODULE_LICENSE("GPL");
37
38/*      Driver configuration and global parameters
39 *      ==========================================
40 */
41
42/*      Number of ports (per card) and cards supported
43 */
44#define FST_MAX_PORTS           4
45#define FST_MAX_CARDS           32
46
47/*      Default parameters for the link
48 */
49#define FST_TX_QUEUE_LEN        100	/* At 8Mbps a longer queue length is
50					 * useful
51					 */
52#define FST_TXQ_DEPTH           16	/* This one is for the buffering
53					 * of frames on the way down to the card
54					 * so that we can keep the card busy
55					 * and maximise throughput
56					 */
57#define FST_HIGH_WATER_MARK     12	/* Point at which we flow control
58					 * network layer
59					 */
60#define FST_LOW_WATER_MARK      8	/* Point at which we remove flow
61					 * control from network layer
62					 */
63#define FST_MAX_MTU             8000	/* Huge but possible */
64#define FST_DEF_MTU             1500	/* Common sane value */
65
66#define FST_TX_TIMEOUT          (2 * HZ)
67
68#ifdef ARPHRD_RAWHDLC
69#define ARPHRD_MYTYPE   ARPHRD_RAWHDLC	/* Raw frames */
70#else
71#define ARPHRD_MYTYPE   ARPHRD_HDLC	/* Cisco-HDLC (keepalives etc) */
72#endif
73
74/* Modules parameters and associated variables
75 */
76static int fst_txq_low = FST_LOW_WATER_MARK;
77static int fst_txq_high = FST_HIGH_WATER_MARK;
78static int fst_max_reads = 7;
79static int fst_excluded_cards;
80static int fst_excluded_list[FST_MAX_CARDS];
81
82module_param(fst_txq_low, int, 0);
83module_param(fst_txq_high, int, 0);
84module_param(fst_max_reads, int, 0);
85module_param(fst_excluded_cards, int, 0);
86module_param_array(fst_excluded_list, int, NULL, 0);
87
88/*      Card shared memory layout
89 *      =========================
90 */
91#pragma pack(1)
92
93/*      This information is derived in part from the FarSite FarSync Smc.h
94 *      file. Unfortunately various name clashes and the non-portability of the
95 *      bit field declarations in that file have meant that I have chosen to
96 *      recreate the information here.
97 *
98 *      The SMC (Shared Memory Configuration) has a version number that is
99 *      incremented every time there is a significant change. This number can
100 *      be used to check that we have not got out of step with the firmware
101 *      contained in the .CDE files.
102 */
103#define SMC_VERSION 24
104
105#define FST_MEMSIZE 0x100000	/* Size of card memory (1Mb) */
106
107#define SMC_BASE 0x00002000L	/* Base offset of the shared memory window main
108				 * configuration structure
109				 */
110#define BFM_BASE 0x00010000L	/* Base offset of the shared memory window DMA
111				 * buffers
112				 */
113
114#define LEN_TX_BUFFER 8192	/* Size of packet buffers */
115#define LEN_RX_BUFFER 8192
116
117#define LEN_SMALL_TX_BUFFER 256	/* Size of obsolete buffs used for DOS diags */
118#define LEN_SMALL_RX_BUFFER 256
119
120#define NUM_TX_BUFFER 2		/* Must be power of 2. Fixed by firmware */
121#define NUM_RX_BUFFER 8
122
123/* Interrupt retry time in milliseconds */
124#define INT_RETRY_TIME 2
125
126/*      The Am186CH/CC processors support a SmartDMA mode using circular pools
127 *      of buffer descriptors. The structure is almost identical to that used
128 *      in the LANCE Ethernet controllers. Details available as PDF from the
129 *      AMD web site: https://www.amd.com/products/epd/processors/\
130 *                    2.16bitcont/3.am186cxfa/a21914/21914.pdf
131 */
132struct txdesc {			/* Transmit descriptor */
133	volatile u16 ladr;	/* Low order address of packet. This is a
134				 * linear address in the Am186 memory space
135				 */
136	volatile u8 hadr;	/* High order address. Low 4 bits only, high 4
137				 * bits must be zero
138				 */
139	volatile u8 bits;	/* Status and config */
140	volatile u16 bcnt;	/* 2s complement of packet size in low 15 bits.
141				 * Transmit terminal count interrupt enable in
142				 * top bit.
143				 */
144	u16 unused;		/* Not used in Tx */
145};
146
147struct rxdesc {			/* Receive descriptor */
148	volatile u16 ladr;	/* Low order address of packet */
149	volatile u8 hadr;	/* High order address */
150	volatile u8 bits;	/* Status and config */
151	volatile u16 bcnt;	/* 2s complement of buffer size in low 15 bits.
152				 * Receive terminal count interrupt enable in
153				 * top bit.
154				 */
155	volatile u16 mcnt;	/* Message byte count (15 bits) */
156};
157
158/* Convert a length into the 15 bit 2's complement */
159/* #define cnv_bcnt(len)   (( ~(len) + 1 ) & 0x7FFF ) */
160/* Since we need to set the high bit to enable the completion interrupt this
161 * can be made a lot simpler
162 */
163#define cnv_bcnt(len)   (-(len))
164
165/* Status and config bits for the above */
166#define DMA_OWN         0x80	/* SmartDMA owns the descriptor */
167#define TX_STP          0x02	/* Tx: start of packet */
168#define TX_ENP          0x01	/* Tx: end of packet */
169#define RX_ERR          0x40	/* Rx: error (OR of next 4 bits) */
170#define RX_FRAM         0x20	/* Rx: framing error */
171#define RX_OFLO         0x10	/* Rx: overflow error */
172#define RX_CRC          0x08	/* Rx: CRC error */
173#define RX_HBUF         0x04	/* Rx: buffer error */
174#define RX_STP          0x02	/* Rx: start of packet */
175#define RX_ENP          0x01	/* Rx: end of packet */
176
177/* Interrupts from the card are caused by various events which are presented
178 * in a circular buffer as several events may be processed on one physical int
179 */
180#define MAX_CIRBUFF     32
181
182struct cirbuff {
183	u8 rdindex;		/* read, then increment and wrap */
184	u8 wrindex;		/* write, then increment and wrap */
185	u8 evntbuff[MAX_CIRBUFF];
186};
187
188/* Interrupt event codes.
189 * Where appropriate the two low order bits indicate the port number
190 */
191#define CTLA_CHG        0x18	/* Control signal changed */
192#define CTLB_CHG        0x19
193#define CTLC_CHG        0x1A
194#define CTLD_CHG        0x1B
195
196#define INIT_CPLT       0x20	/* Initialisation complete */
197#define INIT_FAIL       0x21	/* Initialisation failed */
198
199#define ABTA_SENT       0x24	/* Abort sent */
200#define ABTB_SENT       0x25
201#define ABTC_SENT       0x26
202#define ABTD_SENT       0x27
203
204#define TXA_UNDF        0x28	/* Transmission underflow */
205#define TXB_UNDF        0x29
206#define TXC_UNDF        0x2A
207#define TXD_UNDF        0x2B
208
209#define F56_INT         0x2C
210#define M32_INT         0x2D
211
212#define TE1_ALMA        0x30
213
214/* Port physical configuration. See farsync.h for field values */
215struct port_cfg {
216	u16 lineInterface;	/* Physical interface type */
217	u8 x25op;		/* Unused at present */
218	u8 internalClock;	/* 1 => internal clock, 0 => external */
219	u8 transparentMode;	/* 1 => on, 0 => off */
220	u8 invertClock;		/* 0 => normal, 1 => inverted */
221	u8 padBytes[6];		/* Padding */
222	u32 lineSpeed;		/* Speed in bps */
223};
224
225/* TE1 port physical configuration */
226struct su_config {
227	u32 dataRate;
228	u8 clocking;
229	u8 framing;
230	u8 structure;
231	u8 interface;
232	u8 coding;
233	u8 lineBuildOut;
234	u8 equalizer;
235	u8 transparentMode;
236	u8 loopMode;
237	u8 range;
238	u8 txBufferMode;
239	u8 rxBufferMode;
240	u8 startingSlot;
241	u8 losThreshold;
242	u8 enableIdleCode;
243	u8 idleCode;
244	u8 spare[44];
245};
246
247/* TE1 Status */
248struct su_status {
249	u32 receiveBufferDelay;
250	u32 framingErrorCount;
251	u32 codeViolationCount;
252	u32 crcErrorCount;
253	u32 lineAttenuation;
254	u8 portStarted;
255	u8 lossOfSignal;
256	u8 receiveRemoteAlarm;
257	u8 alarmIndicationSignal;
258	u8 spare[40];
259};
260
261/* Finally sling all the above together into the shared memory structure.
262 * Sorry it's a hodge podge of arrays, structures and unused bits, it's been
263 * evolving under NT for some time so I guess we're stuck with it.
264 * The structure starts at offset SMC_BASE.
265 * See farsync.h for some field values.
266 */
267struct fst_shared {
268	/* DMA descriptor rings */
269	struct rxdesc rxDescrRing[FST_MAX_PORTS][NUM_RX_BUFFER];
270	struct txdesc txDescrRing[FST_MAX_PORTS][NUM_TX_BUFFER];
271
272	/* Obsolete small buffers */
273	u8 smallRxBuffer[FST_MAX_PORTS][NUM_RX_BUFFER][LEN_SMALL_RX_BUFFER];
274	u8 smallTxBuffer[FST_MAX_PORTS][NUM_TX_BUFFER][LEN_SMALL_TX_BUFFER];
275
276	u8 taskStatus;		/* 0x00 => initialising, 0x01 => running,
277				 * 0xFF => halted
278				 */
279
280	u8 interruptHandshake;	/* Set to 0x01 by adapter to signal interrupt,
281				 * set to 0xEE by host to acknowledge interrupt
282				 */
283
284	u16 smcVersion;		/* Must match SMC_VERSION */
285
286	u32 smcFirmwareVersion;	/* 0xIIVVRRBB where II = product ID, VV = major
287				 * version, RR = revision and BB = build
288				 */
289
290	u16 txa_done;		/* Obsolete completion flags */
291	u16 rxa_done;
292	u16 txb_done;
293	u16 rxb_done;
294	u16 txc_done;
295	u16 rxc_done;
296	u16 txd_done;
297	u16 rxd_done;
298
299	u16 mailbox[4];		/* Diagnostics mailbox. Not used */
300
301	struct cirbuff interruptEvent;	/* interrupt causes */
302
303	u32 v24IpSts[FST_MAX_PORTS];	/* V.24 control input status */
304	u32 v24OpSts[FST_MAX_PORTS];	/* V.24 control output status */
305
306	struct port_cfg portConfig[FST_MAX_PORTS];
307
308	u16 clockStatus[FST_MAX_PORTS];	/* lsb: 0=> present, 1=> absent */
309
310	u16 cableStatus;	/* lsb: 0=> present, 1=> absent */
311
312	u16 txDescrIndex[FST_MAX_PORTS];	/* transmit descriptor ring index */
313	u16 rxDescrIndex[FST_MAX_PORTS];	/* receive descriptor ring index */
314
315	u16 portMailbox[FST_MAX_PORTS][2];	/* command, modifier */
316	u16 cardMailbox[4];	/* Not used */
317
318	/* Number of times the card thinks the host has
319	 * missed an interrupt by not acknowledging
320	 * within 2mS (I guess NT has problems)
321	 */
322	u32 interruptRetryCount;
323
324	/* Driver private data used as an ID. We'll not
325	 * use this as I'd rather keep such things
326	 * in main memory rather than on the PCI bus
327	 */
328	u32 portHandle[FST_MAX_PORTS];
329
330	/* Count of Tx underflows for stats */
331	u32 transmitBufferUnderflow[FST_MAX_PORTS];
332
333	/* Debounced V.24 control input status */
334	u32 v24DebouncedSts[FST_MAX_PORTS];
335
336	/* Adapter debounce timers. Don't touch */
337	u32 ctsTimer[FST_MAX_PORTS];
338	u32 ctsTimerRun[FST_MAX_PORTS];
339	u32 dcdTimer[FST_MAX_PORTS];
340	u32 dcdTimerRun[FST_MAX_PORTS];
341
342	u32 numberOfPorts;	/* Number of ports detected at startup */
343
344	u16 _reserved[64];
345
346	u16 cardMode;		/* Bit-mask to enable features:
347				 * Bit 0: 1 enables LED identify mode
348				 */
349
350	u16 portScheduleOffset;
351
352	struct su_config suConfig;	/* TE1 Bits */
353	struct su_status suStatus;
354
355	u32 endOfSmcSignature;	/* endOfSmcSignature MUST be the last member of
356				 * the structure and marks the end of shared
357				 * memory. Adapter code initializes it as
358				 * END_SIG.
359				 */
360};
361
362/* endOfSmcSignature value */
363#define END_SIG                 0x12345678
364
365/* Mailbox values. (portMailbox) */
366#define NOP             0	/* No operation */
367#define ACK             1	/* Positive acknowledgement to PC driver */
368#define NAK             2	/* Negative acknowledgement to PC driver */
369#define STARTPORT       3	/* Start an HDLC port */
370#define STOPPORT        4	/* Stop an HDLC port */
371#define ABORTTX         5	/* Abort the transmitter for a port */
372#define SETV24O         6	/* Set V24 outputs */
373
374/* PLX Chip Register Offsets */
375#define CNTRL_9052      0x50	/* Control Register */
376#define CNTRL_9054      0x6c	/* Control Register */
377
378#define INTCSR_9052     0x4c	/* Interrupt control/status register */
379#define INTCSR_9054     0x68	/* Interrupt control/status register */
380
381/* 9054 DMA Registers */
382/* Note that we will be using DMA Channel 0 for copying rx data
383 * and Channel 1 for copying tx data
384 */
385#define DMAMODE0        0x80
386#define DMAPADR0        0x84
387#define DMALADR0        0x88
388#define DMASIZ0         0x8c
389#define DMADPR0         0x90
390#define DMAMODE1        0x94
391#define DMAPADR1        0x98
392#define DMALADR1        0x9c
393#define DMASIZ1         0xa0
394#define DMADPR1         0xa4
395#define DMACSR0         0xa8
396#define DMACSR1         0xa9
397#define DMAARB          0xac
398#define DMATHR          0xb0
399#define DMADAC0         0xb4
400#define DMADAC1         0xb8
401#define DMAMARBR        0xac
402
403#define FST_MIN_DMA_LEN 64
404#define FST_RX_DMA_INT  0x01
405#define FST_TX_DMA_INT  0x02
406#define FST_CARD_INT    0x04
407
408/* Larger buffers are positioned in memory at offset BFM_BASE */
409struct buf_window {
410	u8 txBuffer[FST_MAX_PORTS][NUM_TX_BUFFER][LEN_TX_BUFFER];
411	u8 rxBuffer[FST_MAX_PORTS][NUM_RX_BUFFER][LEN_RX_BUFFER];
412};
413
414/* Calculate offset of a buffer object within the shared memory window */
415#define BUF_OFFSET(X)   (BFM_BASE + offsetof(struct buf_window, X))
416
417#pragma pack()
418
419/*      Device driver private information
420 *      =================================
421 */
422/*      Per port (line or channel) information
423 */
424struct fst_port_info {
425	struct net_device *dev; /* Device struct - must be first */
426	struct fst_card_info *card;	/* Card we're associated with */
427	int index;		/* Port index on the card */
428	int hwif;		/* Line hardware (lineInterface copy) */
429	int run;		/* Port is running */
430	int mode;		/* Normal or FarSync raw */
431	int rxpos;		/* Next Rx buffer to use */
432	int txpos;		/* Next Tx buffer to use */
433	int txipos;		/* Next Tx buffer to check for free */
434	int start;		/* Indication of start/stop to network */
435	/* A sixteen entry transmit queue
436	 */
437	int txqs;		/* index to get next buffer to tx */
438	int txqe;		/* index to queue next packet */
439	struct sk_buff *txq[FST_TXQ_DEPTH];	/* The queue */
440	int rxqdepth;
441};
442
443/*      Per card information
444 */
445struct fst_card_info {
446	char __iomem *mem;	/* Card memory mapped to kernel space */
447	char __iomem *ctlmem;	/* Control memory for PCI cards */
448	unsigned int phys_mem;	/* Physical memory window address */
449	unsigned int phys_ctlmem;	/* Physical control memory address */
450	unsigned int irq;	/* Interrupt request line number */
451	unsigned int nports;	/* Number of serial ports */
452	unsigned int type;	/* Type index of card */
453	unsigned int state;	/* State of card */
454	spinlock_t card_lock;	/* Lock for SMP access */
455	unsigned short pci_conf;	/* PCI card config in I/O space */
456	/* Per port info */
457	struct fst_port_info ports[FST_MAX_PORTS];
458	struct pci_dev *device;	/* Information about the pci device */
459	int card_no;		/* Inst of the card on the system */
460	int family;		/* TxP or TxU */
461	int dmarx_in_progress;
462	int dmatx_in_progress;
463	unsigned long int_count;
464	unsigned long int_time_ave;
465	void *rx_dma_handle_host;
466	dma_addr_t rx_dma_handle_card;
467	void *tx_dma_handle_host;
468	dma_addr_t tx_dma_handle_card;
469	struct sk_buff *dma_skb_rx;
470	struct fst_port_info *dma_port_rx;
471	struct fst_port_info *dma_port_tx;
472	int dma_len_rx;
473	int dma_len_tx;
474	int dma_txpos;
475	int dma_rxpos;
476};
477
478/* Convert an HDLC device pointer into a port info pointer and similar */
479#define dev_to_port(D)  (dev_to_hdlc(D)->priv)
480#define port_to_dev(P)  ((P)->dev)
481
482/*      Shared memory window access macros
483 *
484 *      We have a nice memory based structure above, which could be directly
485 *      mapped on i386 but might not work on other architectures unless we use
486 *      the readb,w,l and writeb,w,l macros. Unfortunately these macros take
487 *      physical offsets so we have to convert. The only saving grace is that
488 *      this should all collapse back to a simple indirection eventually.
489 */
490#define WIN_OFFSET(X)   ((long)&(((struct fst_shared *)SMC_BASE)->X))
491
492#define FST_RDB(C, E)    (readb((C)->mem + WIN_OFFSET(E)))
493#define FST_RDW(C, E)    (readw((C)->mem + WIN_OFFSET(E)))
494#define FST_RDL(C, E)    (readl((C)->mem + WIN_OFFSET(E)))
495
496#define FST_WRB(C, E, B)  (writeb((B), (C)->mem + WIN_OFFSET(E)))
497#define FST_WRW(C, E, W)  (writew((W), (C)->mem + WIN_OFFSET(E)))
498#define FST_WRL(C, E, L)  (writel((L), (C)->mem + WIN_OFFSET(E)))
499
500/*      Debug support
501 */
502#if FST_DEBUG
503
504static int fst_debug_mask = { FST_DEBUG };
505
506/* Most common debug activity is to print something if the corresponding bit
507 * is set in the debug mask. Note: this uses a non-ANSI extension in GCC to
508 * support variable numbers of macro parameters. The inverted if prevents us
509 * eating someone else's else clause.
510 */
511#define dbg(F, fmt, args...)					\
512do {								\
513	if (fst_debug_mask & (F))				\
514		printk(KERN_DEBUG pr_fmt(fmt), ##args);		\
515} while (0)
516#else
517#define dbg(F, fmt, args...)					\
518do {								\
519	if (0)							\
520		printk(KERN_DEBUG pr_fmt(fmt), ##args);		\
521} while (0)
522#endif
523
524/*      PCI ID lookup table
525 */
526static const struct pci_device_id fst_pci_dev_id[] = {
527	{PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T2P, PCI_ANY_ID,
528	 PCI_ANY_ID, 0, 0, FST_TYPE_T2P},
529
530	{PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T4P, PCI_ANY_ID,
531	 PCI_ANY_ID, 0, 0, FST_TYPE_T4P},
532
533	{PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T1U, PCI_ANY_ID,
534	 PCI_ANY_ID, 0, 0, FST_TYPE_T1U},
535
536	{PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T2U, PCI_ANY_ID,
537	 PCI_ANY_ID, 0, 0, FST_TYPE_T2U},
538
539	{PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T4U, PCI_ANY_ID,
540	 PCI_ANY_ID, 0, 0, FST_TYPE_T4U},
541
542	{PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_TE1, PCI_ANY_ID,
543	 PCI_ANY_ID, 0, 0, FST_TYPE_TE1},
544
545	{PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_TE1C, PCI_ANY_ID,
546	 PCI_ANY_ID, 0, 0, FST_TYPE_TE1},
547	{0,}			/* End */
548};
549
550MODULE_DEVICE_TABLE(pci, fst_pci_dev_id);
551
552/*      Device Driver Work Queues
553 *
554 *      So that we don't spend too much time processing events in the
555 *      Interrupt Service routine, we will declare a work queue per Card
556 *      and make the ISR schedule a task in the queue for later execution.
557 *      In the 2.4 Kernel we used to use the immediate queue for BH's
558 *      Now that they are gone, tasklets seem to be much better than work
559 *      queues.
560 */
561
562static void do_bottom_half_tx(struct fst_card_info *card);
563static void do_bottom_half_rx(struct fst_card_info *card);
564static void fst_process_tx_work_q(struct tasklet_struct *unused);
565static void fst_process_int_work_q(struct tasklet_struct *unused);
566
567static DECLARE_TASKLET(fst_tx_task, fst_process_tx_work_q);
568static DECLARE_TASKLET(fst_int_task, fst_process_int_work_q);
569
570static struct fst_card_info *fst_card_array[FST_MAX_CARDS];
571static DEFINE_SPINLOCK(fst_work_q_lock);
572static u64 fst_work_txq;
573static u64 fst_work_intq;
574
575static void
576fst_q_work_item(u64 *queue, int card_index)
577{
578	unsigned long flags;
579	u64 mask;
580
581	/* Grab the queue exclusively
582	 */
583	spin_lock_irqsave(&fst_work_q_lock, flags);
584
585	/* Making an entry in the queue is simply a matter of setting
586	 * a bit for the card indicating that there is work to do in the
587	 * bottom half for the card.  Note the limitation of 64 cards.
588	 * That ought to be enough
589	 */
590	mask = (u64)1 << card_index;
591	*queue |= mask;
592	spin_unlock_irqrestore(&fst_work_q_lock, flags);
593}
594
595static void
596fst_process_tx_work_q(struct tasklet_struct *unused)
597{
598	unsigned long flags;
599	u64 work_txq;
600	int i;
601
602	/* Grab the queue exclusively
603	 */
604	dbg(DBG_TX, "fst_process_tx_work_q\n");
605	spin_lock_irqsave(&fst_work_q_lock, flags);
606	work_txq = fst_work_txq;
607	fst_work_txq = 0;
608	spin_unlock_irqrestore(&fst_work_q_lock, flags);
609
610	/* Call the bottom half for each card with work waiting
611	 */
612	for (i = 0; i < FST_MAX_CARDS; i++) {
613		if (work_txq & 0x01) {
614			if (fst_card_array[i]) {
615				dbg(DBG_TX, "Calling tx bh for card %d\n", i);
616				do_bottom_half_tx(fst_card_array[i]);
617			}
618		}
619		work_txq = work_txq >> 1;
620	}
621}
622
623static void
624fst_process_int_work_q(struct tasklet_struct *unused)
625{
626	unsigned long flags;
627	u64 work_intq;
628	int i;
629
630	/* Grab the queue exclusively
631	 */
632	dbg(DBG_INTR, "fst_process_int_work_q\n");
633	spin_lock_irqsave(&fst_work_q_lock, flags);
634	work_intq = fst_work_intq;
635	fst_work_intq = 0;
636	spin_unlock_irqrestore(&fst_work_q_lock, flags);
637
638	/* Call the bottom half for each card with work waiting
639	 */
640	for (i = 0; i < FST_MAX_CARDS; i++) {
641		if (work_intq & 0x01) {
642			if (fst_card_array[i]) {
643				dbg(DBG_INTR,
644				    "Calling rx & tx bh for card %d\n", i);
645				do_bottom_half_rx(fst_card_array[i]);
646				do_bottom_half_tx(fst_card_array[i]);
647			}
648		}
649		work_intq = work_intq >> 1;
650	}
651}
652
653/*      Card control functions
654 *      ======================
655 */
656/*      Place the processor in reset state
657 *
658 * Used to be a simple write to card control space but a glitch in the latest
659 * AMD Am186CH processor means that we now have to do it by asserting and de-
660 * asserting the PLX chip PCI Adapter Software Reset. Bit 30 in CNTRL register
661 * at offset 9052_CNTRL.  Note the updates for the TXU.
662 */
663static inline void
664fst_cpureset(struct fst_card_info *card)
665{
666	unsigned char interrupt_line_register;
667	unsigned int regval;
668
669	if (card->family == FST_FAMILY_TXU) {
670		if (pci_read_config_byte
671		    (card->device, PCI_INTERRUPT_LINE, &interrupt_line_register)) {
672			dbg(DBG_ASS,
673			    "Error in reading interrupt line register\n");
674		}
675		/* Assert PLX software reset and Am186 hardware reset
676		 * and then deassert the PLX software reset but 186 still in reset
677		 */
678		outw(0x440f, card->pci_conf + CNTRL_9054 + 2);
679		outw(0x040f, card->pci_conf + CNTRL_9054 + 2);
680		/* We are delaying here to allow the 9054 to reset itself
681		 */
682		usleep_range(10, 20);
683		outw(0x240f, card->pci_conf + CNTRL_9054 + 2);
684		/* We are delaying here to allow the 9054 to reload its eeprom
685		 */
686		usleep_range(10, 20);
687		outw(0x040f, card->pci_conf + CNTRL_9054 + 2);
688
689		if (pci_write_config_byte
690		    (card->device, PCI_INTERRUPT_LINE, interrupt_line_register)) {
691			dbg(DBG_ASS,
692			    "Error in writing interrupt line register\n");
693		}
694
695	} else {
696		regval = inl(card->pci_conf + CNTRL_9052);
697
698		outl(regval | 0x40000000, card->pci_conf + CNTRL_9052);
699		outl(regval & ~0x40000000, card->pci_conf + CNTRL_9052);
700	}
701}
702
703/*      Release the processor from reset
704 */
705static inline void
706fst_cpurelease(struct fst_card_info *card)
707{
708	if (card->family == FST_FAMILY_TXU) {
709		/* Force posted writes to complete
710		 */
711		(void)readb(card->mem);
712
713		/* Release LRESET DO = 1
714		 * Then release Local Hold, DO = 1
715		 */
716		outw(0x040e, card->pci_conf + CNTRL_9054 + 2);
717		outw(0x040f, card->pci_conf + CNTRL_9054 + 2);
718	} else {
719		(void)readb(card->ctlmem);
720	}
721}
722
723/*      Clear the cards interrupt flag
724 */
725static inline void
726fst_clear_intr(struct fst_card_info *card)
727{
728	if (card->family == FST_FAMILY_TXU) {
729		(void)readb(card->ctlmem);
730	} else {
731		/* Poke the appropriate PLX chip register (same as enabling interrupts)
732		 */
733		outw(0x0543, card->pci_conf + INTCSR_9052);
734	}
735}
736
737/*      Enable card interrupts
738 */
739static inline void
740fst_enable_intr(struct fst_card_info *card)
741{
742	if (card->family == FST_FAMILY_TXU)
743		outl(0x0f0c0900, card->pci_conf + INTCSR_9054);
744	else
745		outw(0x0543, card->pci_conf + INTCSR_9052);
746}
747
748/*      Disable card interrupts
749 */
750static inline void
751fst_disable_intr(struct fst_card_info *card)
752{
753	if (card->family == FST_FAMILY_TXU)
754		outl(0x00000000, card->pci_conf + INTCSR_9054);
755	else
756		outw(0x0000, card->pci_conf + INTCSR_9052);
757}
758
759/*      Process the result of trying to pass a received frame up the stack
760 */
761static void
762fst_process_rx_status(int rx_status, char *name)
763{
764	switch (rx_status) {
765	case NET_RX_SUCCESS:
766		{
767			/* Nothing to do here
768			 */
769			break;
770		}
771	case NET_RX_DROP:
772		{
773			dbg(DBG_ASS, "%s: Received packet dropped\n", name);
774			break;
775		}
776	}
777}
778
779/*      Initilaise DMA for PLX 9054
780 */
781static inline void
782fst_init_dma(struct fst_card_info *card)
783{
784	/* This is only required for the PLX 9054
785	 */
786	if (card->family == FST_FAMILY_TXU) {
787		pci_set_master(card->device);
788		outl(0x00020441, card->pci_conf + DMAMODE0);
789		outl(0x00020441, card->pci_conf + DMAMODE1);
790		outl(0x0, card->pci_conf + DMATHR);
791	}
792}
793
794/*      Tx dma complete interrupt
795 */
796static void
797fst_tx_dma_complete(struct fst_card_info *card, struct fst_port_info *port,
798		    int len, int txpos)
799{
800	struct net_device *dev = port_to_dev(port);
801
802	/* Everything is now set, just tell the card to go
803	 */
804	dbg(DBG_TX, "fst_tx_dma_complete\n");
805	FST_WRB(card, txDescrRing[port->index][txpos].bits,
806		DMA_OWN | TX_STP | TX_ENP);
807	dev->stats.tx_packets++;
808	dev->stats.tx_bytes += len;
809	netif_trans_update(dev);
810}
811
812/* Mark it for our own raw sockets interface
813 */
814static __be16 farsync_type_trans(struct sk_buff *skb, struct net_device *dev)
815{
816	skb->dev = dev;
817	skb_reset_mac_header(skb);
818	skb->pkt_type = PACKET_HOST;
819	return htons(ETH_P_CUST);
820}
821
822/*      Rx dma complete interrupt
823 */
824static void
825fst_rx_dma_complete(struct fst_card_info *card, struct fst_port_info *port,
826		    int len, struct sk_buff *skb, int rxp)
827{
828	struct net_device *dev = port_to_dev(port);
829	int pi;
830	int rx_status;
831
832	dbg(DBG_TX, "fst_rx_dma_complete\n");
833	pi = port->index;
834	skb_put_data(skb, card->rx_dma_handle_host, len);
835
836	/* Reset buffer descriptor */
837	FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
838
839	/* Update stats */
840	dev->stats.rx_packets++;
841	dev->stats.rx_bytes += len;
842
843	/* Push upstream */
844	dbg(DBG_RX, "Pushing the frame up the stack\n");
845	if (port->mode == FST_RAW)
846		skb->protocol = farsync_type_trans(skb, dev);
847	else
848		skb->protocol = hdlc_type_trans(skb, dev);
849	rx_status = netif_rx(skb);
850	fst_process_rx_status(rx_status, port_to_dev(port)->name);
851	if (rx_status == NET_RX_DROP)
852		dev->stats.rx_dropped++;
853}
854
855/*      Receive a frame through the DMA
856 */
857static inline void
858fst_rx_dma(struct fst_card_info *card, dma_addr_t dma, u32 mem, int len)
859{
860	/* This routine will setup the DMA and start it
861	 */
862
863	dbg(DBG_RX, "In fst_rx_dma %x %x %d\n", (u32)dma, mem, len);
864	if (card->dmarx_in_progress)
865		dbg(DBG_ASS, "In fst_rx_dma while dma in progress\n");
866
867	outl(dma, card->pci_conf + DMAPADR0);	/* Copy to here */
868	outl(mem, card->pci_conf + DMALADR0);	/* from here */
869	outl(len, card->pci_conf + DMASIZ0);	/* for this length */
870	outl(0x00000000c, card->pci_conf + DMADPR0);	/* In this direction */
871
872	/* We use the dmarx_in_progress flag to flag the channel as busy
873	 */
874	card->dmarx_in_progress = 1;
875	outb(0x03, card->pci_conf + DMACSR0);	/* Start the transfer */
876}
877
878/*      Send a frame through the DMA
879 */
880static inline void
881fst_tx_dma(struct fst_card_info *card, dma_addr_t dma, u32 mem, int len)
882{
883	/* This routine will setup the DMA and start it.
884	 */
885
886	dbg(DBG_TX, "In fst_tx_dma %x %x %d\n", (u32)dma, mem, len);
887	if (card->dmatx_in_progress)
888		dbg(DBG_ASS, "In fst_tx_dma while dma in progress\n");
889
890	outl(dma, card->pci_conf + DMAPADR1);	/* Copy from here */
891	outl(mem, card->pci_conf + DMALADR1);	/* to here */
892	outl(len, card->pci_conf + DMASIZ1);	/* for this length */
893	outl(0x000000004, card->pci_conf + DMADPR1);	/* In this direction */
894
895	/* We use the dmatx_in_progress to flag the channel as busy
896	 */
897	card->dmatx_in_progress = 1;
898	outb(0x03, card->pci_conf + DMACSR1);	/* Start the transfer */
899}
900
901/*      Issue a Mailbox command for a port.
902 *      Note we issue them on a fire and forget basis, not expecting to see an
903 *      error and not waiting for completion.
904 */
905static void
906fst_issue_cmd(struct fst_port_info *port, unsigned short cmd)
907{
908	struct fst_card_info *card;
909	unsigned short mbval;
910	unsigned long flags;
911	int safety;
912
913	card = port->card;
914	spin_lock_irqsave(&card->card_lock, flags);
915	mbval = FST_RDW(card, portMailbox[port->index][0]);
916
917	safety = 0;
918	/* Wait for any previous command to complete */
919	while (mbval > NAK) {
920		spin_unlock_irqrestore(&card->card_lock, flags);
921		schedule_timeout_uninterruptible(1);
922		spin_lock_irqsave(&card->card_lock, flags);
923
924		if (++safety > 2000) {
925			pr_err("Mailbox safety timeout\n");
926			break;
927		}
928
929		mbval = FST_RDW(card, portMailbox[port->index][0]);
930	}
931	if (safety > 0)
932		dbg(DBG_CMD, "Mailbox clear after %d jiffies\n", safety);
933
934	if (mbval == NAK)
935		dbg(DBG_CMD, "issue_cmd: previous command was NAK'd\n");
936
937	FST_WRW(card, portMailbox[port->index][0], cmd);
938
939	if (cmd == ABORTTX || cmd == STARTPORT) {
940		port->txpos = 0;
941		port->txipos = 0;
942		port->start = 0;
943	}
944
945	spin_unlock_irqrestore(&card->card_lock, flags);
946}
947
948/*      Port output signals control
949 */
950static inline void
951fst_op_raise(struct fst_port_info *port, unsigned int outputs)
952{
953	outputs |= FST_RDL(port->card, v24OpSts[port->index]);
954	FST_WRL(port->card, v24OpSts[port->index], outputs);
955
956	if (port->run)
957		fst_issue_cmd(port, SETV24O);
958}
959
960static inline void
961fst_op_lower(struct fst_port_info *port, unsigned int outputs)
962{
963	outputs = ~outputs & FST_RDL(port->card, v24OpSts[port->index]);
964	FST_WRL(port->card, v24OpSts[port->index], outputs);
965
966	if (port->run)
967		fst_issue_cmd(port, SETV24O);
968}
969
970/*      Setup port Rx buffers
971 */
972static void
973fst_rx_config(struct fst_port_info *port)
974{
975	int i;
976	int pi;
977	unsigned int offset;
978	unsigned long flags;
979	struct fst_card_info *card;
980
981	pi = port->index;
982	card = port->card;
983	spin_lock_irqsave(&card->card_lock, flags);
984	for (i = 0; i < NUM_RX_BUFFER; i++) {
985		offset = BUF_OFFSET(rxBuffer[pi][i][0]);
986
987		FST_WRW(card, rxDescrRing[pi][i].ladr, (u16)offset);
988		FST_WRB(card, rxDescrRing[pi][i].hadr, (u8)(offset >> 16));
989		FST_WRW(card, rxDescrRing[pi][i].bcnt, cnv_bcnt(LEN_RX_BUFFER));
990		FST_WRW(card, rxDescrRing[pi][i].mcnt, LEN_RX_BUFFER);
991		FST_WRB(card, rxDescrRing[pi][i].bits, DMA_OWN);
992	}
993	port->rxpos = 0;
994	spin_unlock_irqrestore(&card->card_lock, flags);
995}
996
997/*      Setup port Tx buffers
998 */
999static void
1000fst_tx_config(struct fst_port_info *port)
1001{
1002	int i;
1003	int pi;
1004	unsigned int offset;
1005	unsigned long flags;
1006	struct fst_card_info *card;
1007
1008	pi = port->index;
1009	card = port->card;
1010	spin_lock_irqsave(&card->card_lock, flags);
1011	for (i = 0; i < NUM_TX_BUFFER; i++) {
1012		offset = BUF_OFFSET(txBuffer[pi][i][0]);
1013
1014		FST_WRW(card, txDescrRing[pi][i].ladr, (u16)offset);
1015		FST_WRB(card, txDescrRing[pi][i].hadr, (u8)(offset >> 16));
1016		FST_WRW(card, txDescrRing[pi][i].bcnt, 0);
1017		FST_WRB(card, txDescrRing[pi][i].bits, 0);
1018	}
1019	port->txpos = 0;
1020	port->txipos = 0;
1021	port->start = 0;
1022	spin_unlock_irqrestore(&card->card_lock, flags);
1023}
1024
1025/*      TE1 Alarm change interrupt event
1026 */
1027static void
1028fst_intr_te1_alarm(struct fst_card_info *card, struct fst_port_info *port)
1029{
1030	u8 los;
1031	u8 rra;
1032	u8 ais;
1033
1034	los = FST_RDB(card, suStatus.lossOfSignal);
1035	rra = FST_RDB(card, suStatus.receiveRemoteAlarm);
1036	ais = FST_RDB(card, suStatus.alarmIndicationSignal);
1037
1038	if (los) {
1039		/* Lost the link
1040		 */
1041		if (netif_carrier_ok(port_to_dev(port))) {
1042			dbg(DBG_INTR, "Net carrier off\n");
1043			netif_carrier_off(port_to_dev(port));
1044		}
1045	} else {
1046		/* Link available
1047		 */
1048		if (!netif_carrier_ok(port_to_dev(port))) {
1049			dbg(DBG_INTR, "Net carrier on\n");
1050			netif_carrier_on(port_to_dev(port));
1051		}
1052	}
1053
1054	if (los)
1055		dbg(DBG_INTR, "Assert LOS Alarm\n");
1056	else
1057		dbg(DBG_INTR, "De-assert LOS Alarm\n");
1058	if (rra)
1059		dbg(DBG_INTR, "Assert RRA Alarm\n");
1060	else
1061		dbg(DBG_INTR, "De-assert RRA Alarm\n");
1062
1063	if (ais)
1064		dbg(DBG_INTR, "Assert AIS Alarm\n");
1065	else
1066		dbg(DBG_INTR, "De-assert AIS Alarm\n");
1067}
1068
1069/*      Control signal change interrupt event
1070 */
1071static void
1072fst_intr_ctlchg(struct fst_card_info *card, struct fst_port_info *port)
1073{
1074	int signals;
1075
1076	signals = FST_RDL(card, v24DebouncedSts[port->index]);
1077
1078	if (signals & ((port->hwif == X21 || port->hwif == X21D)
1079		       ? IPSTS_INDICATE : IPSTS_DCD)) {
1080		if (!netif_carrier_ok(port_to_dev(port))) {
1081			dbg(DBG_INTR, "DCD active\n");
1082			netif_carrier_on(port_to_dev(port));
1083		}
1084	} else {
1085		if (netif_carrier_ok(port_to_dev(port))) {
1086			dbg(DBG_INTR, "DCD lost\n");
1087			netif_carrier_off(port_to_dev(port));
1088		}
1089	}
1090}
1091
1092/*      Log Rx Errors
1093 */
1094static void
1095fst_log_rx_error(struct fst_card_info *card, struct fst_port_info *port,
1096		 unsigned char dmabits, int rxp, unsigned short len)
1097{
1098	struct net_device *dev = port_to_dev(port);
1099
1100	/* Increment the appropriate error counter
1101	 */
1102	dev->stats.rx_errors++;
1103	if (dmabits & RX_OFLO) {
1104		dev->stats.rx_fifo_errors++;
1105		dbg(DBG_ASS, "Rx fifo error on card %d port %d buffer %d\n",
1106		    card->card_no, port->index, rxp);
1107	}
1108	if (dmabits & RX_CRC) {
1109		dev->stats.rx_crc_errors++;
1110		dbg(DBG_ASS, "Rx crc error on card %d port %d\n",
1111		    card->card_no, port->index);
1112	}
1113	if (dmabits & RX_FRAM) {
1114		dev->stats.rx_frame_errors++;
1115		dbg(DBG_ASS, "Rx frame error on card %d port %d\n",
1116		    card->card_no, port->index);
1117	}
1118	if (dmabits == (RX_STP | RX_ENP)) {
1119		dev->stats.rx_length_errors++;
1120		dbg(DBG_ASS, "Rx length error (%d) on card %d port %d\n",
1121		    len, card->card_no, port->index);
1122	}
1123}
1124
1125/*      Rx Error Recovery
1126 */
1127static void
1128fst_recover_rx_error(struct fst_card_info *card, struct fst_port_info *port,
1129		     unsigned char dmabits, int rxp, unsigned short len)
1130{
1131	int i;
1132	int pi;
1133
1134	pi = port->index;
1135	/* Discard buffer descriptors until we see the start of the
1136	 * next frame.  Note that for long frames this could be in
1137	 * a subsequent interrupt.
1138	 */
1139	i = 0;
1140	while ((dmabits & (DMA_OWN | RX_STP)) == 0) {
1141		FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
1142		rxp = (rxp + 1) % NUM_RX_BUFFER;
1143		if (++i > NUM_RX_BUFFER) {
1144			dbg(DBG_ASS, "intr_rx: Discarding more bufs"
1145			    " than we have\n");
1146			break;
1147		}
1148		dmabits = FST_RDB(card, rxDescrRing[pi][rxp].bits);
1149		dbg(DBG_ASS, "DMA Bits of next buffer was %x\n", dmabits);
1150	}
1151	dbg(DBG_ASS, "There were %d subsequent buffers in error\n", i);
1152
1153	/* Discard the terminal buffer */
1154	if (!(dmabits & DMA_OWN)) {
1155		FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
1156		rxp = (rxp + 1) % NUM_RX_BUFFER;
1157	}
1158	port->rxpos = rxp;
1159}
1160
1161/*      Rx complete interrupt
1162 */
1163static void
1164fst_intr_rx(struct fst_card_info *card, struct fst_port_info *port)
1165{
1166	unsigned char dmabits;
1167	int pi;
1168	int rxp;
1169	int rx_status;
1170	unsigned short len;
1171	struct sk_buff *skb;
1172	struct net_device *dev = port_to_dev(port);
1173
1174	/* Check we have a buffer to process */
1175	pi = port->index;
1176	rxp = port->rxpos;
1177	dmabits = FST_RDB(card, rxDescrRing[pi][rxp].bits);
1178	if (dmabits & DMA_OWN) {
1179		dbg(DBG_RX | DBG_INTR, "intr_rx: No buffer port %d pos %d\n",
1180		    pi, rxp);
1181		return;
1182	}
1183	if (card->dmarx_in_progress)
1184		return;
1185
1186	/* Get buffer length */
1187	len = FST_RDW(card, rxDescrRing[pi][rxp].mcnt);
1188	/* Discard the CRC */
1189	len -= 2;
1190	if (len == 0) {
1191		/* This seems to happen on the TE1 interface sometimes
1192		 * so throw the frame away and log the event.
1193		 */
1194		pr_err("Frame received with 0 length. Card %d Port %d\n",
1195		       card->card_no, port->index);
1196		/* Return descriptor to card */
1197		FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
1198
1199		rxp = (rxp + 1) % NUM_RX_BUFFER;
1200		port->rxpos = rxp;
1201		return;
1202	}
1203
1204	/* Check buffer length and for other errors. We insist on one packet
1205	 * in one buffer. This simplifies things greatly and since we've
1206	 * allocated 8K it shouldn't be a real world limitation
1207	 */
1208	dbg(DBG_RX, "intr_rx: %d,%d: flags %x len %d\n", pi, rxp, dmabits, len);
1209	if (dmabits != (RX_STP | RX_ENP) || len > LEN_RX_BUFFER - 2) {
1210		fst_log_rx_error(card, port, dmabits, rxp, len);
1211		fst_recover_rx_error(card, port, dmabits, rxp, len);
1212		return;
1213	}
1214
1215	/* Allocate SKB */
1216	skb = dev_alloc_skb(len);
1217	if (!skb) {
1218		dbg(DBG_RX, "intr_rx: can't allocate buffer\n");
1219
1220		dev->stats.rx_dropped++;
1221
1222		/* Return descriptor to card */
1223		FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
1224
1225		rxp = (rxp + 1) % NUM_RX_BUFFER;
1226		port->rxpos = rxp;
1227		return;
1228	}
1229
1230	/* We know the length we need to receive, len.
1231	 * It's not worth using the DMA for reads of less than
1232	 * FST_MIN_DMA_LEN
1233	 */
1234
1235	if (len < FST_MIN_DMA_LEN || card->family == FST_FAMILY_TXP) {
1236		memcpy_fromio(skb_put(skb, len),
1237			      card->mem + BUF_OFFSET(rxBuffer[pi][rxp][0]),
1238			      len);
1239
1240		/* Reset buffer descriptor */
1241		FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
1242
1243		/* Update stats */
1244		dev->stats.rx_packets++;
1245		dev->stats.rx_bytes += len;
1246
1247		/* Push upstream */
1248		dbg(DBG_RX, "Pushing frame up the stack\n");
1249		if (port->mode == FST_RAW)
1250			skb->protocol = farsync_type_trans(skb, dev);
1251		else
1252			skb->protocol = hdlc_type_trans(skb, dev);
1253		rx_status = netif_rx(skb);
1254		fst_process_rx_status(rx_status, port_to_dev(port)->name);
1255		if (rx_status == NET_RX_DROP)
1256			dev->stats.rx_dropped++;
1257	} else {
1258		card->dma_skb_rx = skb;
1259		card->dma_port_rx = port;
1260		card->dma_len_rx = len;
1261		card->dma_rxpos = rxp;
1262		fst_rx_dma(card, card->rx_dma_handle_card,
1263			   BUF_OFFSET(rxBuffer[pi][rxp][0]), len);
1264	}
1265	if (rxp != port->rxpos) {
1266		dbg(DBG_ASS, "About to increment rxpos by more than 1\n");
1267		dbg(DBG_ASS, "rxp = %d rxpos = %d\n", rxp, port->rxpos);
1268	}
1269	rxp = (rxp + 1) % NUM_RX_BUFFER;
1270	port->rxpos = rxp;
1271}
1272
1273/*      The bottom half to the ISR
1274 *
1275 */
1276
1277static void
1278do_bottom_half_tx(struct fst_card_info *card)
1279{
1280	struct fst_port_info *port;
1281	int pi;
1282	int txq_length;
1283	struct sk_buff *skb;
1284	unsigned long flags;
1285	struct net_device *dev;
1286
1287	/*  Find a free buffer for the transmit
1288	 *  Step through each port on this card
1289	 */
1290
1291	dbg(DBG_TX, "do_bottom_half_tx\n");
1292	for (pi = 0, port = card->ports; pi < card->nports; pi++, port++) {
1293		if (!port->run)
1294			continue;
1295
1296		dev = port_to_dev(port);
1297		while (!(FST_RDB(card, txDescrRing[pi][port->txpos].bits) &
1298			 DMA_OWN) &&
1299		       !(card->dmatx_in_progress)) {
1300			/* There doesn't seem to be a txdone event per-se
1301			 * We seem to have to deduce it, by checking the DMA_OWN
1302			 * bit on the next buffer we think we can use
1303			 */
1304			spin_lock_irqsave(&card->card_lock, flags);
1305			txq_length = port->txqe - port->txqs;
1306			if (txq_length < 0) {
1307				/* This is the case where one has wrapped and the
1308				 * maths gives us a negative number
1309				 */
1310				txq_length = txq_length + FST_TXQ_DEPTH;
1311			}
1312			spin_unlock_irqrestore(&card->card_lock, flags);
1313			if (txq_length > 0) {
1314				/* There is something to send
1315				 */
1316				spin_lock_irqsave(&card->card_lock, flags);
1317				skb = port->txq[port->txqs];
1318				port->txqs++;
1319				if (port->txqs == FST_TXQ_DEPTH)
1320					port->txqs = 0;
1321
1322				spin_unlock_irqrestore(&card->card_lock, flags);
1323				/* copy the data and set the required indicators on the
1324				 * card.
1325				 */
1326				FST_WRW(card, txDescrRing[pi][port->txpos].bcnt,
1327					cnv_bcnt(skb->len));
1328				if (skb->len < FST_MIN_DMA_LEN ||
1329				    card->family == FST_FAMILY_TXP) {
1330					/* Enqueue the packet with normal io */
1331					memcpy_toio(card->mem +
1332						    BUF_OFFSET(txBuffer[pi]
1333							       [port->
1334								txpos][0]),
1335						    skb->data, skb->len);
1336					FST_WRB(card,
1337						txDescrRing[pi][port->txpos].
1338						bits,
1339						DMA_OWN | TX_STP | TX_ENP);
1340					dev->stats.tx_packets++;
1341					dev->stats.tx_bytes += skb->len;
1342					netif_trans_update(dev);
1343				} else {
1344					/* Or do it through dma */
1345					memcpy(card->tx_dma_handle_host,
1346					       skb->data, skb->len);
1347					card->dma_port_tx = port;
1348					card->dma_len_tx = skb->len;
1349					card->dma_txpos = port->txpos;
1350					fst_tx_dma(card,
1351						   card->tx_dma_handle_card,
1352						   BUF_OFFSET(txBuffer[pi]
1353							      [port->txpos][0]),
1354						   skb->len);
1355				}
1356				if (++port->txpos >= NUM_TX_BUFFER)
1357					port->txpos = 0;
1358				/* If we have flow control on, can we now release it?
1359				 */
1360				if (port->start) {
1361					if (txq_length < fst_txq_low) {
1362						netif_wake_queue(port_to_dev
1363								 (port));
1364						port->start = 0;
1365					}
1366				}
1367				dev_kfree_skb(skb);
1368			} else {
1369				/* Nothing to send so break out of the while loop
1370				 */
1371				break;
1372			}
1373		}
1374	}
1375}
1376
1377static void
1378do_bottom_half_rx(struct fst_card_info *card)
1379{
1380	struct fst_port_info *port;
1381	int pi;
1382	int rx_count = 0;
1383
1384	/* Check for rx completions on all ports on this card */
1385	dbg(DBG_RX, "do_bottom_half_rx\n");
1386	for (pi = 0, port = card->ports; pi < card->nports; pi++, port++) {
1387		if (!port->run)
1388			continue;
1389
1390		while (!(FST_RDB(card, rxDescrRing[pi][port->rxpos].bits)
1391			 & DMA_OWN) && !(card->dmarx_in_progress)) {
1392			if (rx_count > fst_max_reads) {
1393				/* Don't spend forever in receive processing
1394				 * Schedule another event
1395				 */
1396				fst_q_work_item(&fst_work_intq, card->card_no);
1397				tasklet_schedule(&fst_int_task);
1398				break;	/* Leave the loop */
1399			}
1400			fst_intr_rx(card, port);
1401			rx_count++;
1402		}
1403	}
1404}
1405
1406/*      The interrupt service routine
1407 *      Dev_id is our fst_card_info pointer
1408 */
1409static irqreturn_t
1410fst_intr(int dummy, void *dev_id)
1411{
1412	struct fst_card_info *card = dev_id;
1413	struct fst_port_info *port;
1414	int rdidx;		/* Event buffer indices */
1415	int wridx;
1416	int event;		/* Actual event for processing */
1417	unsigned int dma_intcsr = 0;
1418	unsigned int do_card_interrupt;
1419	unsigned int int_retry_count;
1420
1421	/* Check to see if the interrupt was for this card
1422	 * return if not
1423	 * Note that the call to clear the interrupt is important
1424	 */
1425	dbg(DBG_INTR, "intr: %d %p\n", card->irq, card);
1426	if (card->state != FST_RUNNING) {
1427		pr_err("Interrupt received for card %d in a non running state (%d)\n",
1428		       card->card_no, card->state);
1429
1430		/* It is possible to really be running, i.e. we have re-loaded
1431		 * a running card
1432		 * Clear and reprime the interrupt source
1433		 */
1434		fst_clear_intr(card);
1435		return IRQ_HANDLED;
1436	}
1437
1438	/* Clear and reprime the interrupt source */
1439	fst_clear_intr(card);
1440
1441	/* Is the interrupt for this card (handshake == 1)
1442	 */
1443	do_card_interrupt = 0;
1444	if (FST_RDB(card, interruptHandshake) == 1) {
1445		do_card_interrupt += FST_CARD_INT;
1446		/* Set the software acknowledge */
1447		FST_WRB(card, interruptHandshake, 0xEE);
1448	}
1449	if (card->family == FST_FAMILY_TXU) {
1450		/* Is it a DMA Interrupt
1451		 */
1452		dma_intcsr = inl(card->pci_conf + INTCSR_9054);
1453		if (dma_intcsr & 0x00200000) {
1454			/* DMA Channel 0 (Rx transfer complete)
1455			 */
1456			dbg(DBG_RX, "DMA Rx xfer complete\n");
1457			outb(0x8, card->pci_conf + DMACSR0);
1458			fst_rx_dma_complete(card, card->dma_port_rx,
1459					    card->dma_len_rx, card->dma_skb_rx,
1460					    card->dma_rxpos);
1461			card->dmarx_in_progress = 0;
1462			do_card_interrupt += FST_RX_DMA_INT;
1463		}
1464		if (dma_intcsr & 0x00400000) {
1465			/* DMA Channel 1 (Tx transfer complete)
1466			 */
1467			dbg(DBG_TX, "DMA Tx xfer complete\n");
1468			outb(0x8, card->pci_conf + DMACSR1);
1469			fst_tx_dma_complete(card, card->dma_port_tx,
1470					    card->dma_len_tx, card->dma_txpos);
1471			card->dmatx_in_progress = 0;
1472			do_card_interrupt += FST_TX_DMA_INT;
1473		}
1474	}
1475
1476	/* Have we been missing Interrupts
1477	 */
1478	int_retry_count = FST_RDL(card, interruptRetryCount);
1479	if (int_retry_count) {
1480		dbg(DBG_ASS, "Card %d int_retry_count is  %d\n",
1481		    card->card_no, int_retry_count);
1482		FST_WRL(card, interruptRetryCount, 0);
1483	}
1484
1485	if (!do_card_interrupt)
1486		return IRQ_HANDLED;
1487
1488	/* Scehdule the bottom half of the ISR */
1489	fst_q_work_item(&fst_work_intq, card->card_no);
1490	tasklet_schedule(&fst_int_task);
1491
1492	/* Drain the event queue */
1493	rdidx = FST_RDB(card, interruptEvent.rdindex) & 0x1f;
1494	wridx = FST_RDB(card, interruptEvent.wrindex) & 0x1f;
1495	while (rdidx != wridx) {
1496		event = FST_RDB(card, interruptEvent.evntbuff[rdidx]);
1497		port = &card->ports[event & 0x03];
1498
1499		dbg(DBG_INTR, "Processing Interrupt event: %x\n", event);
1500
1501		switch (event) {
1502		case TE1_ALMA:
1503			dbg(DBG_INTR, "TE1 Alarm intr\n");
1504			if (port->run)
1505				fst_intr_te1_alarm(card, port);
1506			break;
1507
1508		case CTLA_CHG:
1509		case CTLB_CHG:
1510		case CTLC_CHG:
1511		case CTLD_CHG:
1512			if (port->run)
1513				fst_intr_ctlchg(card, port);
1514			break;
1515
1516		case ABTA_SENT:
1517		case ABTB_SENT:
1518		case ABTC_SENT:
1519		case ABTD_SENT:
1520			dbg(DBG_TX, "Abort complete port %d\n", port->index);
1521			break;
1522
1523		case TXA_UNDF:
1524		case TXB_UNDF:
1525		case TXC_UNDF:
1526		case TXD_UNDF:
1527			/* Difficult to see how we'd get this given that we
1528			 * always load up the entire packet for DMA.
1529			 */
1530			dbg(DBG_TX, "Tx underflow port %d\n", port->index);
1531			port_to_dev(port)->stats.tx_errors++;
1532			port_to_dev(port)->stats.tx_fifo_errors++;
1533			dbg(DBG_ASS, "Tx underflow on card %d port %d\n",
1534			    card->card_no, port->index);
1535			break;
1536
1537		case INIT_CPLT:
1538			dbg(DBG_INIT, "Card init OK intr\n");
1539			break;
1540
1541		case INIT_FAIL:
1542			dbg(DBG_INIT, "Card init FAILED intr\n");
1543			card->state = FST_IFAILED;
1544			break;
1545
1546		default:
1547			pr_err("intr: unknown card event %d. ignored\n", event);
1548			break;
1549		}
1550
1551		/* Bump and wrap the index */
1552		if (++rdidx >= MAX_CIRBUFF)
1553			rdidx = 0;
1554	}
1555	FST_WRB(card, interruptEvent.rdindex, rdidx);
1556	return IRQ_HANDLED;
1557}
1558
1559/*      Check that the shared memory configuration is one that we can handle
1560 *      and that some basic parameters are correct
1561 */
1562static void
1563check_started_ok(struct fst_card_info *card)
1564{
1565	int i;
1566
1567	/* Check structure version and end marker */
1568	if (FST_RDW(card, smcVersion) != SMC_VERSION) {
1569		pr_err("Bad shared memory version %d expected %d\n",
1570		       FST_RDW(card, smcVersion), SMC_VERSION);
1571		card->state = FST_BADVERSION;
1572		return;
1573	}
1574	if (FST_RDL(card, endOfSmcSignature) != END_SIG) {
1575		pr_err("Missing shared memory signature\n");
1576		card->state = FST_BADVERSION;
1577		return;
1578	}
1579	/* Firmware status flag, 0x00 = initialising, 0x01 = OK, 0xFF = fail */
1580	i = FST_RDB(card, taskStatus);
1581	if (i == 0x01) {
1582		card->state = FST_RUNNING;
1583	} else if (i == 0xFF) {
1584		pr_err("Firmware initialisation failed. Card halted\n");
1585		card->state = FST_HALTED;
1586		return;
1587	} else if (i != 0x00) {
1588		pr_err("Unknown firmware status 0x%x\n", i);
1589		card->state = FST_HALTED;
1590		return;
1591	}
1592
1593	/* Finally check the number of ports reported by firmware against the
1594	 * number we assumed at card detection. Should never happen with
1595	 * existing firmware etc so we just report it for the moment.
1596	 */
1597	if (FST_RDL(card, numberOfPorts) != card->nports) {
1598		pr_warn("Port count mismatch on card %d.  Firmware thinks %d we say %d\n",
1599			card->card_no,
1600			FST_RDL(card, numberOfPorts), card->nports);
1601	}
1602}
1603
1604static int
1605set_conf_from_info(struct fst_card_info *card, struct fst_port_info *port,
1606		   struct fstioc_info *info)
1607{
1608	int err;
1609	unsigned char my_framing;
1610
1611	/* Set things according to the user set valid flags
1612	 * Several of the old options have been invalidated/replaced by the
1613	 * generic hdlc package.
1614	 */
1615	err = 0;
1616	if (info->valid & FSTVAL_PROTO) {
1617		if (info->proto == FST_RAW)
1618			port->mode = FST_RAW;
1619		else
1620			port->mode = FST_GEN_HDLC;
1621	}
1622
1623	if (info->valid & FSTVAL_CABLE)
1624		err = -EINVAL;
1625
1626	if (info->valid & FSTVAL_SPEED)
1627		err = -EINVAL;
1628
1629	if (info->valid & FSTVAL_PHASE)
1630		FST_WRB(card, portConfig[port->index].invertClock,
1631			info->invertClock);
1632	if (info->valid & FSTVAL_MODE)
1633		FST_WRW(card, cardMode, info->cardMode);
1634	if (info->valid & FSTVAL_TE1) {
1635		FST_WRL(card, suConfig.dataRate, info->lineSpeed);
1636		FST_WRB(card, suConfig.clocking, info->clockSource);
1637		my_framing = FRAMING_E1;
1638		if (info->framing == E1)
1639			my_framing = FRAMING_E1;
1640		if (info->framing == T1)
1641			my_framing = FRAMING_T1;
1642		if (info->framing == J1)
1643			my_framing = FRAMING_J1;
1644		FST_WRB(card, suConfig.framing, my_framing);
1645		FST_WRB(card, suConfig.structure, info->structure);
1646		FST_WRB(card, suConfig.interface, info->interface);
1647		FST_WRB(card, suConfig.coding, info->coding);
1648		FST_WRB(card, suConfig.lineBuildOut, info->lineBuildOut);
1649		FST_WRB(card, suConfig.equalizer, info->equalizer);
1650		FST_WRB(card, suConfig.transparentMode, info->transparentMode);
1651		FST_WRB(card, suConfig.loopMode, info->loopMode);
1652		FST_WRB(card, suConfig.range, info->range);
1653		FST_WRB(card, suConfig.txBufferMode, info->txBufferMode);
1654		FST_WRB(card, suConfig.rxBufferMode, info->rxBufferMode);
1655		FST_WRB(card, suConfig.startingSlot, info->startingSlot);
1656		FST_WRB(card, suConfig.losThreshold, info->losThreshold);
1657		if (info->idleCode)
1658			FST_WRB(card, suConfig.enableIdleCode, 1);
1659		else
1660			FST_WRB(card, suConfig.enableIdleCode, 0);
1661		FST_WRB(card, suConfig.idleCode, info->idleCode);
1662#if FST_DEBUG
1663		if (info->valid & FSTVAL_TE1) {
1664			printk("Setting TE1 data\n");
1665			printk("Line Speed = %d\n", info->lineSpeed);
1666			printk("Start slot = %d\n", info->startingSlot);
1667			printk("Clock source = %d\n", info->clockSource);
1668			printk("Framing = %d\n", my_framing);
1669			printk("Structure = %d\n", info->structure);
1670			printk("interface = %d\n", info->interface);
1671			printk("Coding = %d\n", info->coding);
1672			printk("Line build out = %d\n", info->lineBuildOut);
1673			printk("Equaliser = %d\n", info->equalizer);
1674			printk("Transparent mode = %d\n",
1675			       info->transparentMode);
1676			printk("Loop mode = %d\n", info->loopMode);
1677			printk("Range = %d\n", info->range);
1678			printk("Tx Buffer mode = %d\n", info->txBufferMode);
1679			printk("Rx Buffer mode = %d\n", info->rxBufferMode);
1680			printk("LOS Threshold = %d\n", info->losThreshold);
1681			printk("Idle Code = %d\n", info->idleCode);
1682		}
1683#endif
1684	}
1685#if FST_DEBUG
1686	if (info->valid & FSTVAL_DEBUG)
1687		fst_debug_mask = info->debug;
1688#endif
1689
1690	return err;
1691}
1692
1693static void
1694gather_conf_info(struct fst_card_info *card, struct fst_port_info *port,
1695		 struct fstioc_info *info)
1696{
1697	int i;
1698
1699	memset(info, 0, sizeof(struct fstioc_info));
1700
1701	i = port->index;
1702	info->kernelVersion = LINUX_VERSION_CODE;
1703	info->nports = card->nports;
1704	info->type = card->type;
1705	info->state = card->state;
1706	info->proto = FST_GEN_HDLC;
1707	info->index = i;
1708#if FST_DEBUG
1709	info->debug = fst_debug_mask;
1710#endif
1711
1712	/* Only mark information as valid if card is running.
1713	 * Copy the data anyway in case it is useful for diagnostics
1714	 */
1715	info->valid = ((card->state == FST_RUNNING) ? FSTVAL_ALL : FSTVAL_CARD)
1716#if FST_DEBUG
1717	    | FSTVAL_DEBUG
1718#endif
1719	    ;
1720
1721	info->lineInterface = FST_RDW(card, portConfig[i].lineInterface);
1722	info->internalClock = FST_RDB(card, portConfig[i].internalClock);
1723	info->lineSpeed = FST_RDL(card, portConfig[i].lineSpeed);
1724	info->invertClock = FST_RDB(card, portConfig[i].invertClock);
1725	info->v24IpSts = FST_RDL(card, v24IpSts[i]);
1726	info->v24OpSts = FST_RDL(card, v24OpSts[i]);
1727	info->clockStatus = FST_RDW(card, clockStatus[i]);
1728	info->cableStatus = FST_RDW(card, cableStatus);
1729	info->cardMode = FST_RDW(card, cardMode);
1730	info->smcFirmwareVersion = FST_RDL(card, smcFirmwareVersion);
1731
1732	/* The T2U can report cable presence for both A or B
1733	 * in bits 0 and 1 of cableStatus.  See which port we are and
1734	 * do the mapping.
1735	 */
1736	if (card->family == FST_FAMILY_TXU) {
1737		if (port->index == 0) {
1738			/* Port A
1739			 */
1740			info->cableStatus = info->cableStatus & 1;
1741		} else {
1742			/* Port B
1743			 */
1744			info->cableStatus = info->cableStatus >> 1;
1745			info->cableStatus = info->cableStatus & 1;
1746		}
1747	}
1748	/* Some additional bits if we are TE1
1749	 */
1750	if (card->type == FST_TYPE_TE1) {
1751		info->lineSpeed = FST_RDL(card, suConfig.dataRate);
1752		info->clockSource = FST_RDB(card, suConfig.clocking);
1753		info->framing = FST_RDB(card, suConfig.framing);
1754		info->structure = FST_RDB(card, suConfig.structure);
1755		info->interface = FST_RDB(card, suConfig.interface);
1756		info->coding = FST_RDB(card, suConfig.coding);
1757		info->lineBuildOut = FST_RDB(card, suConfig.lineBuildOut);
1758		info->equalizer = FST_RDB(card, suConfig.equalizer);
1759		info->loopMode = FST_RDB(card, suConfig.loopMode);
1760		info->range = FST_RDB(card, suConfig.range);
1761		info->txBufferMode = FST_RDB(card, suConfig.txBufferMode);
1762		info->rxBufferMode = FST_RDB(card, suConfig.rxBufferMode);
1763		info->startingSlot = FST_RDB(card, suConfig.startingSlot);
1764		info->losThreshold = FST_RDB(card, suConfig.losThreshold);
1765		if (FST_RDB(card, suConfig.enableIdleCode))
1766			info->idleCode = FST_RDB(card, suConfig.idleCode);
1767		else
1768			info->idleCode = 0;
1769		info->receiveBufferDelay =
1770		    FST_RDL(card, suStatus.receiveBufferDelay);
1771		info->framingErrorCount =
1772		    FST_RDL(card, suStatus.framingErrorCount);
1773		info->codeViolationCount =
1774		    FST_RDL(card, suStatus.codeViolationCount);
1775		info->crcErrorCount = FST_RDL(card, suStatus.crcErrorCount);
1776		info->lineAttenuation = FST_RDL(card, suStatus.lineAttenuation);
1777		info->lossOfSignal = FST_RDB(card, suStatus.lossOfSignal);
1778		info->receiveRemoteAlarm =
1779		    FST_RDB(card, suStatus.receiveRemoteAlarm);
1780		info->alarmIndicationSignal =
1781		    FST_RDB(card, suStatus.alarmIndicationSignal);
1782	}
1783}
1784
1785static int
1786fst_set_iface(struct fst_card_info *card, struct fst_port_info *port,
1787	      struct if_settings *ifs)
1788{
1789	sync_serial_settings sync;
1790	int i;
1791
1792	if (ifs->size != sizeof(sync))
1793		return -ENOMEM;
1794
1795	if (copy_from_user(&sync, ifs->ifs_ifsu.sync, sizeof(sync)))
1796		return -EFAULT;
1797
1798	if (sync.loopback)
1799		return -EINVAL;
1800
1801	i = port->index;
1802
1803	switch (ifs->type) {
1804	case IF_IFACE_V35:
1805		FST_WRW(card, portConfig[i].lineInterface, V35);
1806		port->hwif = V35;
1807		break;
1808
1809	case IF_IFACE_V24:
1810		FST_WRW(card, portConfig[i].lineInterface, V24);
1811		port->hwif = V24;
1812		break;
1813
1814	case IF_IFACE_X21:
1815		FST_WRW(card, portConfig[i].lineInterface, X21);
1816		port->hwif = X21;
1817		break;
1818
1819	case IF_IFACE_X21D:
1820		FST_WRW(card, portConfig[i].lineInterface, X21D);
1821		port->hwif = X21D;
1822		break;
1823
1824	case IF_IFACE_T1:
1825		FST_WRW(card, portConfig[i].lineInterface, T1);
1826		port->hwif = T1;
1827		break;
1828
1829	case IF_IFACE_E1:
1830		FST_WRW(card, portConfig[i].lineInterface, E1);
1831		port->hwif = E1;
1832		break;
1833
1834	case IF_IFACE_SYNC_SERIAL:
1835		break;
1836
1837	default:
1838		return -EINVAL;
1839	}
1840
1841	switch (sync.clock_type) {
1842	case CLOCK_EXT:
1843		FST_WRB(card, portConfig[i].internalClock, EXTCLK);
1844		break;
1845
1846	case CLOCK_INT:
1847		FST_WRB(card, portConfig[i].internalClock, INTCLK);
1848		break;
1849
1850	default:
1851		return -EINVAL;
1852	}
1853	FST_WRL(card, portConfig[i].lineSpeed, sync.clock_rate);
1854	return 0;
1855}
1856
1857static int
1858fst_get_iface(struct fst_card_info *card, struct fst_port_info *port,
1859	      struct if_settings *ifs)
1860{
1861	sync_serial_settings sync;
1862	int i;
1863
1864	/* First check what line type is set, we'll default to reporting X.21
1865	 * if nothing is set as IF_IFACE_SYNC_SERIAL implies it can't be
1866	 * changed
1867	 */
1868	switch (port->hwif) {
1869	case E1:
1870		ifs->type = IF_IFACE_E1;
1871		break;
1872	case T1:
1873		ifs->type = IF_IFACE_T1;
1874		break;
1875	case V35:
1876		ifs->type = IF_IFACE_V35;
1877		break;
1878	case V24:
1879		ifs->type = IF_IFACE_V24;
1880		break;
1881	case X21D:
1882		ifs->type = IF_IFACE_X21D;
1883		break;
1884	case X21:
1885	default:
1886		ifs->type = IF_IFACE_X21;
1887		break;
1888	}
1889	if (!ifs->size)
1890		return 0;	/* only type requested */
1891
1892	if (ifs->size < sizeof(sync))
1893		return -ENOMEM;
1894
1895	i = port->index;
1896	memset(&sync, 0, sizeof(sync));
1897	sync.clock_rate = FST_RDL(card, portConfig[i].lineSpeed);
1898	/* Lucky card and linux use same encoding here */
1899	sync.clock_type = FST_RDB(card, portConfig[i].internalClock) ==
1900	    INTCLK ? CLOCK_INT : CLOCK_EXT;
1901	sync.loopback = 0;
1902
1903	if (copy_to_user(ifs->ifs_ifsu.sync, &sync, sizeof(sync)))
1904		return -EFAULT;
1905
1906	ifs->size = sizeof(sync);
1907	return 0;
1908}
1909
1910static int
1911fst_siocdevprivate(struct net_device *dev, struct ifreq *ifr, void __user *data, int cmd)
1912{
1913	struct fst_card_info *card;
1914	struct fst_port_info *port;
1915	struct fstioc_write wrthdr;
1916	struct fstioc_info info;
1917	unsigned long flags;
1918	void *buf;
1919
1920	dbg(DBG_IOCTL, "ioctl: %x, %p\n", cmd, data);
1921
1922	port = dev_to_port(dev);
1923	card = port->card;
1924
1925	if (!capable(CAP_NET_ADMIN))
1926		return -EPERM;
1927
1928	switch (cmd) {
1929	case FSTCPURESET:
1930		fst_cpureset(card);
1931		card->state = FST_RESET;
1932		return 0;
1933
1934	case FSTCPURELEASE:
1935		fst_cpurelease(card);
1936		card->state = FST_STARTING;
1937		return 0;
1938
1939	case FSTWRITE:		/* Code write (download) */
1940
1941		/* First copy in the header with the length and offset of data
1942		 * to write
1943		 */
1944		if (!data)
1945			return -EINVAL;
1946
1947		if (copy_from_user(&wrthdr, data, sizeof(struct fstioc_write)))
1948			return -EFAULT;
1949
1950		/* Sanity check the parameters. We don't support partial writes
1951		 * when going over the top
1952		 */
1953		if (wrthdr.size > FST_MEMSIZE || wrthdr.offset > FST_MEMSIZE ||
1954		    wrthdr.size + wrthdr.offset > FST_MEMSIZE)
1955			return -ENXIO;
1956
1957		/* Now copy the data to the card. */
1958
1959		buf = memdup_user(data + sizeof(struct fstioc_write),
1960				  wrthdr.size);
1961		if (IS_ERR(buf))
1962			return PTR_ERR(buf);
1963
1964		memcpy_toio(card->mem + wrthdr.offset, buf, wrthdr.size);
1965		kfree(buf);
1966
1967		/* Writes to the memory of a card in the reset state constitute
1968		 * a download
1969		 */
1970		if (card->state == FST_RESET)
1971			card->state = FST_DOWNLOAD;
1972
1973		return 0;
1974
1975	case FSTGETCONF:
1976
1977		/* If card has just been started check the shared memory config
1978		 * version and marker
1979		 */
1980		if (card->state == FST_STARTING) {
1981			check_started_ok(card);
1982
1983			/* If everything checked out enable card interrupts */
1984			if (card->state == FST_RUNNING) {
1985				spin_lock_irqsave(&card->card_lock, flags);
1986				fst_enable_intr(card);
1987				FST_WRB(card, interruptHandshake, 0xEE);
1988				spin_unlock_irqrestore(&card->card_lock, flags);
1989			}
1990		}
1991
1992		if (!data)
1993			return -EINVAL;
1994
1995		gather_conf_info(card, port, &info);
1996
1997		if (copy_to_user(data, &info, sizeof(info)))
1998			return -EFAULT;
1999
2000		return 0;
2001
2002	case FSTSETCONF:
2003		/* Most of the settings have been moved to the generic ioctls
2004		 * this just covers debug and board ident now
2005		 */
2006
2007		if (card->state != FST_RUNNING) {
2008			pr_err("Attempt to configure card %d in non-running state (%d)\n",
2009			       card->card_no, card->state);
2010			return -EIO;
2011		}
2012		if (copy_from_user(&info, data, sizeof(info)))
2013			return -EFAULT;
2014
2015		return set_conf_from_info(card, port, &info);
2016	default:
2017		return -EINVAL;
2018	}
2019}
2020
2021static int
2022fst_ioctl(struct net_device *dev, struct if_settings *ifs)
2023{
2024	struct fst_card_info *card;
2025	struct fst_port_info *port;
2026
2027	dbg(DBG_IOCTL, "SIOCDEVPRIVATE, %x\n", ifs->type);
2028
2029	port = dev_to_port(dev);
2030	card = port->card;
2031
2032	if (!capable(CAP_NET_ADMIN))
2033		return -EPERM;
2034
2035	switch (ifs->type) {
2036	case IF_GET_IFACE:
2037		return fst_get_iface(card, port, ifs);
2038
2039	case IF_IFACE_SYNC_SERIAL:
2040	case IF_IFACE_V35:
2041	case IF_IFACE_V24:
2042	case IF_IFACE_X21:
2043	case IF_IFACE_X21D:
2044	case IF_IFACE_T1:
2045	case IF_IFACE_E1:
2046		return fst_set_iface(card, port, ifs);
2047
2048	case IF_PROTO_RAW:
2049		port->mode = FST_RAW;
2050		return 0;
2051
2052	case IF_GET_PROTO:
2053		if (port->mode == FST_RAW) {
2054			ifs->type = IF_PROTO_RAW;
2055			return 0;
2056		}
2057		return hdlc_ioctl(dev, ifs);
2058
2059	default:
2060		port->mode = FST_GEN_HDLC;
2061		dbg(DBG_IOCTL, "Passing this type to hdlc %x\n",
2062		    ifs->type);
2063		return hdlc_ioctl(dev, ifs);
2064	}
2065}
2066
2067static void
2068fst_openport(struct fst_port_info *port)
2069{
2070	int signals;
2071
2072	/* Only init things if card is actually running. This allows open to
2073	 * succeed for downloads etc.
2074	 */
2075	if (port->card->state == FST_RUNNING) {
2076		if (port->run) {
2077			dbg(DBG_OPEN, "open: found port already running\n");
2078
2079			fst_issue_cmd(port, STOPPORT);
2080			port->run = 0;
2081		}
2082
2083		fst_rx_config(port);
2084		fst_tx_config(port);
2085		fst_op_raise(port, OPSTS_RTS | OPSTS_DTR);
2086
2087		fst_issue_cmd(port, STARTPORT);
2088		port->run = 1;
2089
2090		signals = FST_RDL(port->card, v24DebouncedSts[port->index]);
2091		if (signals & ((port->hwif == X21 || port->hwif == X21D)
2092			       ? IPSTS_INDICATE : IPSTS_DCD))
2093			netif_carrier_on(port_to_dev(port));
2094		else
2095			netif_carrier_off(port_to_dev(port));
2096
2097		port->txqe = 0;
2098		port->txqs = 0;
2099	}
2100}
2101
2102static void
2103fst_closeport(struct fst_port_info *port)
2104{
2105	if (port->card->state == FST_RUNNING) {
2106		if (port->run) {
2107			port->run = 0;
2108			fst_op_lower(port, OPSTS_RTS | OPSTS_DTR);
2109
2110			fst_issue_cmd(port, STOPPORT);
2111		} else {
2112			dbg(DBG_OPEN, "close: port not running\n");
2113		}
2114	}
2115}
2116
2117static int
2118fst_open(struct net_device *dev)
2119{
2120	int err;
2121	struct fst_port_info *port;
2122
2123	port = dev_to_port(dev);
2124	if (!try_module_get(THIS_MODULE))
2125		return -EBUSY;
2126
2127	if (port->mode != FST_RAW) {
2128		err = hdlc_open(dev);
2129		if (err) {
2130			module_put(THIS_MODULE);
2131			return err;
2132		}
2133	}
2134
2135	fst_openport(port);
2136	netif_wake_queue(dev);
2137	return 0;
2138}
2139
2140static int
2141fst_close(struct net_device *dev)
2142{
2143	struct fst_port_info *port;
2144	struct fst_card_info *card;
2145	unsigned char tx_dma_done;
2146	unsigned char rx_dma_done;
2147
2148	port = dev_to_port(dev);
2149	card = port->card;
2150
2151	tx_dma_done = inb(card->pci_conf + DMACSR1);
2152	rx_dma_done = inb(card->pci_conf + DMACSR0);
2153	dbg(DBG_OPEN,
2154	    "Port Close: tx_dma_in_progress = %d (%x) rx_dma_in_progress = %d (%x)\n",
2155	    card->dmatx_in_progress, tx_dma_done, card->dmarx_in_progress,
2156	    rx_dma_done);
2157
2158	netif_stop_queue(dev);
2159	fst_closeport(dev_to_port(dev));
2160	if (port->mode != FST_RAW)
2161		hdlc_close(dev);
2162
2163	module_put(THIS_MODULE);
2164	return 0;
2165}
2166
2167static int
2168fst_attach(struct net_device *dev, unsigned short encoding, unsigned short parity)
2169{
2170	/* Setting currently fixed in FarSync card so we check and forget
2171	 */
2172	if (encoding != ENCODING_NRZ || parity != PARITY_CRC16_PR1_CCITT)
2173		return -EINVAL;
2174	return 0;
2175}
2176
2177static void
2178fst_tx_timeout(struct net_device *dev, unsigned int txqueue)
2179{
2180	struct fst_port_info *port;
2181	struct fst_card_info *card;
2182
2183	port = dev_to_port(dev);
2184	card = port->card;
2185	dev->stats.tx_errors++;
2186	dev->stats.tx_aborted_errors++;
2187	dbg(DBG_ASS, "Tx timeout card %d port %d\n",
2188	    card->card_no, port->index);
2189	fst_issue_cmd(port, ABORTTX);
2190
2191	netif_trans_update(dev);
2192	netif_wake_queue(dev);
2193	port->start = 0;
2194}
2195
2196static netdev_tx_t
2197fst_start_xmit(struct sk_buff *skb, struct net_device *dev)
2198{
2199	struct fst_card_info *card;
2200	struct fst_port_info *port;
2201	unsigned long flags;
2202	int txq_length;
2203
2204	port = dev_to_port(dev);
2205	card = port->card;
2206	dbg(DBG_TX, "fst_start_xmit: length = %d\n", skb->len);
2207
2208	/* Drop packet with error if we don't have carrier */
2209	if (!netif_carrier_ok(dev)) {
2210		dev_kfree_skb(skb);
2211		dev->stats.tx_errors++;
2212		dev->stats.tx_carrier_errors++;
2213		dbg(DBG_ASS,
2214		    "Tried to transmit but no carrier on card %d port %d\n",
2215		    card->card_no, port->index);
2216		return NETDEV_TX_OK;
2217	}
2218
2219	/* Drop it if it's too big! MTU failure ? */
2220	if (skb->len > LEN_TX_BUFFER) {
2221		dbg(DBG_ASS, "Packet too large %d vs %d\n", skb->len,
2222		    LEN_TX_BUFFER);
2223		dev_kfree_skb(skb);
2224		dev->stats.tx_errors++;
2225		return NETDEV_TX_OK;
2226	}
2227
2228	/* We are always going to queue the packet
2229	 * so that the bottom half is the only place we tx from
2230	 * Check there is room in the port txq
2231	 */
2232	spin_lock_irqsave(&card->card_lock, flags);
2233	txq_length = port->txqe - port->txqs;
2234	if (txq_length < 0) {
2235		/* This is the case where the next free has wrapped but the
2236		 * last used hasn't
2237		 */
2238		txq_length = txq_length + FST_TXQ_DEPTH;
2239	}
2240	spin_unlock_irqrestore(&card->card_lock, flags);
2241	if (txq_length > fst_txq_high) {
2242		/* We have got enough buffers in the pipeline.  Ask the network
2243		 * layer to stop sending frames down
2244		 */
2245		netif_stop_queue(dev);
2246		port->start = 1;	/* I'm using this to signal stop sent up */
2247	}
2248
2249	if (txq_length == FST_TXQ_DEPTH - 1) {
2250		/* This shouldn't have happened but such is life
2251		 */
2252		dev_kfree_skb(skb);
2253		dev->stats.tx_errors++;
2254		dbg(DBG_ASS, "Tx queue overflow card %d port %d\n",
2255		    card->card_no, port->index);
2256		return NETDEV_TX_OK;
2257	}
2258
2259	/* queue the buffer
2260	 */
2261	spin_lock_irqsave(&card->card_lock, flags);
2262	port->txq[port->txqe] = skb;
2263	port->txqe++;
2264	if (port->txqe == FST_TXQ_DEPTH)
2265		port->txqe = 0;
2266	spin_unlock_irqrestore(&card->card_lock, flags);
2267
2268	/* Scehdule the bottom half which now does transmit processing */
2269	fst_q_work_item(&fst_work_txq, card->card_no);
2270	tasklet_schedule(&fst_tx_task);
2271
2272	return NETDEV_TX_OK;
2273}
2274
2275/*      Card setup having checked hardware resources.
2276 *      Should be pretty bizarre if we get an error here (kernel memory
2277 *      exhaustion is one possibility). If we do see a problem we report it
2278 *      via a printk and leave the corresponding interface and all that follow
2279 *      disabled.
2280 */
2281static char *type_strings[] = {
2282	"no hardware",		/* Should never be seen */
2283	"FarSync T2P",
2284	"FarSync T4P",
2285	"FarSync T1U",
2286	"FarSync T2U",
2287	"FarSync T4U",
2288	"FarSync TE1"
2289};
2290
2291static int
2292fst_init_card(struct fst_card_info *card)
2293{
2294	int i;
2295	int err;
2296
2297	/* We're working on a number of ports based on the card ID. If the
2298	 * firmware detects something different later (should never happen)
2299	 * we'll have to revise it in some way then.
2300	 */
2301	for (i = 0; i < card->nports; i++) {
2302		err = register_hdlc_device(card->ports[i].dev);
2303		if (err < 0) {
2304			pr_err("Cannot register HDLC device for port %d (errno %d)\n",
2305			       i, -err);
2306			while (i--)
2307				unregister_hdlc_device(card->ports[i].dev);
2308			return err;
2309		}
2310	}
2311
2312	pr_info("%s-%s: %s IRQ%d, %d ports\n",
2313		port_to_dev(&card->ports[0])->name,
2314		port_to_dev(&card->ports[card->nports - 1])->name,
2315		type_strings[card->type], card->irq, card->nports);
2316	return 0;
2317}
2318
2319static const struct net_device_ops fst_ops = {
2320	.ndo_open       = fst_open,
2321	.ndo_stop       = fst_close,
2322	.ndo_start_xmit = hdlc_start_xmit,
2323	.ndo_siocwandev	= fst_ioctl,
2324	.ndo_siocdevprivate = fst_siocdevprivate,
2325	.ndo_tx_timeout = fst_tx_timeout,
2326};
2327
2328/*      Initialise card when detected.
2329 *      Returns 0 to indicate success, or errno otherwise.
2330 */
2331static int
2332fst_add_one(struct pci_dev *pdev, const struct pci_device_id *ent)
2333{
2334	static int no_of_cards_added;
2335	struct fst_card_info *card;
2336	int err = 0;
2337	int i;
2338
2339	printk_once(KERN_INFO
2340		    pr_fmt("FarSync WAN driver " FST_USER_VERSION
2341			   " (c) 2001-2004 FarSite Communications Ltd.\n"));
2342#if FST_DEBUG
2343	dbg(DBG_ASS, "The value of debug mask is %x\n", fst_debug_mask);
2344#endif
2345	/* We are going to be clever and allow certain cards not to be
2346	 * configured.  An exclude list can be provided in /etc/modules.conf
2347	 */
2348	if (fst_excluded_cards != 0) {
2349		/* There are cards to exclude
2350		 *
2351		 */
2352		for (i = 0; i < fst_excluded_cards; i++) {
2353			if (pdev->devfn >> 3 == fst_excluded_list[i]) {
2354				pr_info("FarSync PCI device %d not assigned\n",
2355					(pdev->devfn) >> 3);
2356				return -EBUSY;
2357			}
2358		}
2359	}
2360
2361	/* Allocate driver private data */
2362	card = kzalloc(sizeof(struct fst_card_info), GFP_KERNEL);
2363	if (!card)
2364		return -ENOMEM;
2365
2366	/* Try to enable the device */
2367	err = pci_enable_device(pdev);
2368	if (err) {
2369		pr_err("Failed to enable card. Err %d\n", -err);
2370		goto enable_fail;
2371	}
2372
2373	err = pci_request_regions(pdev, "FarSync");
2374	if (err) {
2375		pr_err("Failed to allocate regions. Err %d\n", -err);
2376		goto regions_fail;
2377	}
2378
2379	/* Get virtual addresses of memory regions */
2380	card->pci_conf = pci_resource_start(pdev, 1);
2381	card->phys_mem = pci_resource_start(pdev, 2);
2382	card->phys_ctlmem = pci_resource_start(pdev, 3);
2383	card->mem = ioremap(card->phys_mem, FST_MEMSIZE);
2384	if (!card->mem) {
2385		pr_err("Physical memory remap failed\n");
2386		err = -ENODEV;
2387		goto ioremap_physmem_fail;
2388	}
2389	card->ctlmem = ioremap(card->phys_ctlmem, 0x10);
2390	if (!card->ctlmem) {
2391		pr_err("Control memory remap failed\n");
2392		err = -ENODEV;
2393		goto ioremap_ctlmem_fail;
2394	}
2395	dbg(DBG_PCI, "kernel mem %p, ctlmem %p\n", card->mem, card->ctlmem);
2396
2397	/* Register the interrupt handler */
2398	if (request_irq(pdev->irq, fst_intr, IRQF_SHARED, FST_DEV_NAME, card)) {
2399		pr_err("Unable to register interrupt %d\n", card->irq);
2400		err = -ENODEV;
2401		goto irq_fail;
2402	}
2403
2404	/* Record info we need */
2405	card->irq = pdev->irq;
2406	card->type = ent->driver_data;
2407	card->family = ((ent->driver_data == FST_TYPE_T2P) ||
2408			(ent->driver_data == FST_TYPE_T4P))
2409	    ? FST_FAMILY_TXP : FST_FAMILY_TXU;
2410	if (ent->driver_data == FST_TYPE_T1U ||
2411	    ent->driver_data == FST_TYPE_TE1)
2412		card->nports = 1;
2413	else
2414		card->nports = ((ent->driver_data == FST_TYPE_T2P) ||
2415				(ent->driver_data == FST_TYPE_T2U)) ? 2 : 4;
2416
2417	card->state = FST_UNINIT;
2418	spin_lock_init(&card->card_lock);
2419
2420	for (i = 0; i < card->nports; i++) {
2421		struct net_device *dev = alloc_hdlcdev(&card->ports[i]);
2422		hdlc_device *hdlc;
2423
2424		if (!dev) {
2425			while (i--)
2426				free_netdev(card->ports[i].dev);
2427			pr_err("FarSync: out of memory\n");
2428			err = -ENOMEM;
2429			goto hdlcdev_fail;
2430		}
2431		card->ports[i].dev    = dev;
2432		card->ports[i].card   = card;
2433		card->ports[i].index  = i;
2434		card->ports[i].run    = 0;
2435
2436		hdlc = dev_to_hdlc(dev);
2437
2438		/* Fill in the net device info */
2439		/* Since this is a PCI setup this is purely
2440		 * informational. Give them the buffer addresses
2441		 * and basic card I/O.
2442		 */
2443		dev->mem_start   = card->phys_mem
2444				+ BUF_OFFSET(txBuffer[i][0][0]);
2445		dev->mem_end     = card->phys_mem
2446				+ BUF_OFFSET(txBuffer[i][NUM_TX_BUFFER - 1][LEN_RX_BUFFER - 1]);
2447		dev->base_addr   = card->pci_conf;
2448		dev->irq         = card->irq;
2449
2450		dev->netdev_ops = &fst_ops;
2451		dev->tx_queue_len = FST_TX_QUEUE_LEN;
2452		dev->watchdog_timeo = FST_TX_TIMEOUT;
2453		hdlc->attach = fst_attach;
2454		hdlc->xmit   = fst_start_xmit;
2455	}
2456
2457	card->device = pdev;
2458
2459	dbg(DBG_PCI, "type %d nports %d irq %d\n", card->type,
2460	    card->nports, card->irq);
2461	dbg(DBG_PCI, "conf %04x mem %08x ctlmem %08x\n",
2462	    card->pci_conf, card->phys_mem, card->phys_ctlmem);
2463
2464	/* Reset the card's processor */
2465	fst_cpureset(card);
2466	card->state = FST_RESET;
2467
2468	/* Initialise DMA (if required) */
2469	fst_init_dma(card);
2470
2471	/* Record driver data for later use */
2472	pci_set_drvdata(pdev, card);
2473
2474	/* Remainder of card setup */
2475	if (no_of_cards_added >= FST_MAX_CARDS) {
2476		pr_err("FarSync: too many cards\n");
2477		err = -ENOMEM;
2478		goto card_array_fail;
2479	}
2480	fst_card_array[no_of_cards_added] = card;
2481	card->card_no = no_of_cards_added++;	/* Record instance and bump it */
2482	err = fst_init_card(card);
2483	if (err)
2484		goto init_card_fail;
2485	if (card->family == FST_FAMILY_TXU) {
2486		/* Allocate a dma buffer for transmit and receives
2487		 */
2488		card->rx_dma_handle_host =
2489		    dma_alloc_coherent(&card->device->dev, FST_MAX_MTU,
2490				       &card->rx_dma_handle_card, GFP_KERNEL);
2491		if (!card->rx_dma_handle_host) {
2492			pr_err("Could not allocate rx dma buffer\n");
2493			err = -ENOMEM;
2494			goto rx_dma_fail;
2495		}
2496		card->tx_dma_handle_host =
2497		    dma_alloc_coherent(&card->device->dev, FST_MAX_MTU,
2498				       &card->tx_dma_handle_card, GFP_KERNEL);
2499		if (!card->tx_dma_handle_host) {
2500			pr_err("Could not allocate tx dma buffer\n");
2501			err = -ENOMEM;
2502			goto tx_dma_fail;
2503		}
2504	}
2505	return 0;		/* Success */
2506
2507tx_dma_fail:
2508	dma_free_coherent(&card->device->dev, FST_MAX_MTU,
2509			  card->rx_dma_handle_host, card->rx_dma_handle_card);
2510rx_dma_fail:
2511	fst_disable_intr(card);
2512	for (i = 0 ; i < card->nports ; i++)
2513		unregister_hdlc_device(card->ports[i].dev);
2514init_card_fail:
2515	fst_card_array[card->card_no] = NULL;
2516card_array_fail:
2517	for (i = 0 ; i < card->nports ; i++)
2518		free_netdev(card->ports[i].dev);
2519hdlcdev_fail:
2520	free_irq(card->irq, card);
2521irq_fail:
2522	iounmap(card->ctlmem);
2523ioremap_ctlmem_fail:
2524	iounmap(card->mem);
2525ioremap_physmem_fail:
2526	pci_release_regions(pdev);
2527regions_fail:
2528	pci_disable_device(pdev);
2529enable_fail:
2530	kfree(card);
2531	return err;
2532}
2533
2534/*      Cleanup and close down a card
2535 */
2536static void
2537fst_remove_one(struct pci_dev *pdev)
2538{
2539	struct fst_card_info *card;
2540	int i;
2541
2542	card = pci_get_drvdata(pdev);
2543
2544	for (i = 0; i < card->nports; i++) {
2545		struct net_device *dev = port_to_dev(&card->ports[i]);
2546
2547		unregister_hdlc_device(dev);
2548		free_netdev(dev);
2549	}
2550
2551	fst_disable_intr(card);
2552	free_irq(card->irq, card);
2553
2554	iounmap(card->ctlmem);
2555	iounmap(card->mem);
2556	pci_release_regions(pdev);
2557	if (card->family == FST_FAMILY_TXU) {
2558		/* Free dma buffers
2559		 */
2560		dma_free_coherent(&card->device->dev, FST_MAX_MTU,
2561				  card->rx_dma_handle_host,
2562				  card->rx_dma_handle_card);
2563		dma_free_coherent(&card->device->dev, FST_MAX_MTU,
2564				  card->tx_dma_handle_host,
2565				  card->tx_dma_handle_card);
2566	}
2567	fst_card_array[card->card_no] = NULL;
2568	kfree(card);
2569}
2570
2571static struct pci_driver fst_driver = {
2572	.name		= FST_NAME,
2573	.id_table	= fst_pci_dev_id,
2574	.probe		= fst_add_one,
2575	.remove		= fst_remove_one,
2576};
2577
2578static int __init
2579fst_init(void)
2580{
2581	int i;
2582
2583	for (i = 0; i < FST_MAX_CARDS; i++)
2584		fst_card_array[i] = NULL;
2585	return pci_register_driver(&fst_driver);
2586}
2587
2588static void __exit
2589fst_cleanup_module(void)
2590{
2591	pr_info("FarSync WAN driver unloading\n");
2592	pci_unregister_driver(&fst_driver);
2593}
2594
2595module_init(fst_init);
2596module_exit(fst_cleanup_module);
2597