1// SPDX-License-Identifier: GPL-2.0
2
3/* Copyright (c) 2012-2018, The Linux Foundation. All rights reserved.
4 * Copyright (C) 2019-2023 Linaro Ltd.
5 */
6
7#include <linux/types.h>
8#include <linux/device.h>
9#include <linux/slab.h>
10#include <linux/bitfield.h>
11#include <linux/if_rmnet.h>
12#include <linux/dma-direction.h>
13
14#include "gsi.h"
15#include "gsi_trans.h"
16#include "ipa.h"
17#include "ipa_data.h"
18#include "ipa_endpoint.h"
19#include "ipa_cmd.h"
20#include "ipa_mem.h"
21#include "ipa_modem.h"
22#include "ipa_table.h"
23#include "ipa_gsi.h"
24#include "ipa_power.h"
25
26/* Hardware is told about receive buffers once a "batch" has been queued */
27#define IPA_REPLENISH_BATCH	16		/* Must be non-zero */
28
29/* The amount of RX buffer space consumed by standard skb overhead */
30#define IPA_RX_BUFFER_OVERHEAD	(PAGE_SIZE - SKB_MAX_ORDER(NET_SKB_PAD, 0))
31
32/* Where to find the QMAP mux_id for a packet within modem-supplied metadata */
33#define IPA_ENDPOINT_QMAP_METADATA_MASK		0x000000ff /* host byte order */
34
35#define IPA_ENDPOINT_RESET_AGGR_RETRY_MAX	3
36
37/** enum ipa_status_opcode - IPA status opcode field hardware values */
38enum ipa_status_opcode {				/* *Not* a bitmask */
39	IPA_STATUS_OPCODE_PACKET		= 1,
40	IPA_STATUS_OPCODE_NEW_RULE_PACKET	= 2,
41	IPA_STATUS_OPCODE_DROPPED_PACKET	= 4,
42	IPA_STATUS_OPCODE_SUSPENDED_PACKET	= 8,
43	IPA_STATUS_OPCODE_LOG			= 16,
44	IPA_STATUS_OPCODE_DCMP			= 32,
45	IPA_STATUS_OPCODE_PACKET_2ND_PASS	= 64,
46};
47
48/** enum ipa_status_exception - IPA status exception field hardware values */
49enum ipa_status_exception {				/* *Not* a bitmask */
50	/* 0 means no exception */
51	IPA_STATUS_EXCEPTION_DEAGGR		= 1,
52	IPA_STATUS_EXCEPTION_IPTYPE		= 4,
53	IPA_STATUS_EXCEPTION_PACKET_LENGTH	= 8,
54	IPA_STATUS_EXCEPTION_FRAG_RULE_MISS	= 16,
55	IPA_STATUS_EXCEPTION_SW_FILTER		= 32,
56	IPA_STATUS_EXCEPTION_NAT		= 64,		/* IPv4 */
57	IPA_STATUS_EXCEPTION_IPV6_CONN_TRACK	= 64,		/* IPv6 */
58	IPA_STATUS_EXCEPTION_UC			= 128,
59	IPA_STATUS_EXCEPTION_INVALID_ENDPOINT	= 129,
60	IPA_STATUS_EXCEPTION_HEADER_INSERT	= 136,
61	IPA_STATUS_EXCEPTION_CHEKCSUM		= 229,
62};
63
64/** enum ipa_status_mask - IPA status mask field bitmask hardware values */
65enum ipa_status_mask {
66	IPA_STATUS_MASK_FRAG_PROCESS		= BIT(0),
67	IPA_STATUS_MASK_FILT_PROCESS		= BIT(1),
68	IPA_STATUS_MASK_NAT_PROCESS		= BIT(2),
69	IPA_STATUS_MASK_ROUTE_PROCESS		= BIT(3),
70	IPA_STATUS_MASK_TAG_VALID		= BIT(4),
71	IPA_STATUS_MASK_FRAGMENT		= BIT(5),
72	IPA_STATUS_MASK_FIRST_FRAGMENT		= BIT(6),
73	IPA_STATUS_MASK_V4			= BIT(7),
74	IPA_STATUS_MASK_CKSUM_PROCESS		= BIT(8),
75	IPA_STATUS_MASK_AGGR_PROCESS		= BIT(9),
76	IPA_STATUS_MASK_DEST_EOT		= BIT(10),
77	IPA_STATUS_MASK_DEAGGR_PROCESS		= BIT(11),
78	IPA_STATUS_MASK_DEAGG_FIRST		= BIT(12),
79	IPA_STATUS_MASK_SRC_EOT			= BIT(13),
80	IPA_STATUS_MASK_PREV_EOT		= BIT(14),
81	IPA_STATUS_MASK_BYTE_LIMIT		= BIT(15),
82};
83
84/* Special IPA filter/router rule field value indicating "rule miss" */
85#define IPA_STATUS_RULE_MISS	0x3ff	/* 10-bit filter/router rule fields */
86
87/** The IPA status nat_type field uses enum ipa_nat_type hardware values */
88
89/* enum ipa_status_field_id - IPA packet status structure field identifiers */
90enum ipa_status_field_id {
91	STATUS_OPCODE,			/* enum ipa_status_opcode */
92	STATUS_EXCEPTION,		/* enum ipa_status_exception */
93	STATUS_MASK,			/* enum ipa_status_mask (bitmask) */
94	STATUS_LENGTH,
95	STATUS_SRC_ENDPOINT,
96	STATUS_DST_ENDPOINT,
97	STATUS_METADATA,
98	STATUS_FILTER_LOCAL,		/* Boolean */
99	STATUS_FILTER_HASH,		/* Boolean */
100	STATUS_FILTER_GLOBAL,		/* Boolean */
101	STATUS_FILTER_RETAIN,		/* Boolean */
102	STATUS_FILTER_RULE_INDEX,
103	STATUS_ROUTER_LOCAL,		/* Boolean */
104	STATUS_ROUTER_HASH,		/* Boolean */
105	STATUS_UCP,			/* Boolean */
106	STATUS_ROUTER_TABLE,
107	STATUS_ROUTER_RULE_INDEX,
108	STATUS_NAT_HIT,			/* Boolean */
109	STATUS_NAT_INDEX,
110	STATUS_NAT_TYPE,		/* enum ipa_nat_type */
111	STATUS_TAG_LOW32,		/* Low-order 32 bits of 48-bit tag */
112	STATUS_TAG_HIGH16,		/* High-order 16 bits of 48-bit tag */
113	STATUS_SEQUENCE,
114	STATUS_TIME_OF_DAY,
115	STATUS_HEADER_LOCAL,		/* Boolean */
116	STATUS_HEADER_OFFSET,
117	STATUS_FRAG_HIT,		/* Boolean */
118	STATUS_FRAG_RULE_INDEX,
119};
120
121/* Size in bytes of an IPA packet status structure */
122#define IPA_STATUS_SIZE			sizeof(__le32[8])
123
124/* IPA status structure decoder; looks up field values for a structure */
125static u32 ipa_status_extract(struct ipa *ipa, const void *data,
126			      enum ipa_status_field_id field)
127{
128	enum ipa_version version = ipa->version;
129	const __le32 *word = data;
130
131	switch (field) {
132	case STATUS_OPCODE:
133		return le32_get_bits(word[0], GENMASK(7, 0));
134	case STATUS_EXCEPTION:
135		return le32_get_bits(word[0], GENMASK(15, 8));
136	case STATUS_MASK:
137		return le32_get_bits(word[0], GENMASK(31, 16));
138	case STATUS_LENGTH:
139		return le32_get_bits(word[1], GENMASK(15, 0));
140	case STATUS_SRC_ENDPOINT:
141		if (version < IPA_VERSION_5_0)
142			return le32_get_bits(word[1], GENMASK(20, 16));
143		return le32_get_bits(word[1], GENMASK(23, 16));
144	/* Status word 1, bits 21-23 are reserved (not IPA v5.0+) */
145	/* Status word 1, bits 24-26 are reserved (IPA v5.0+) */
146	case STATUS_DST_ENDPOINT:
147		if (version < IPA_VERSION_5_0)
148			return le32_get_bits(word[1], GENMASK(28, 24));
149		return le32_get_bits(word[7], GENMASK(23, 16));
150	/* Status word 1, bits 29-31 are reserved */
151	case STATUS_METADATA:
152		return le32_to_cpu(word[2]);
153	case STATUS_FILTER_LOCAL:
154		return le32_get_bits(word[3], GENMASK(0, 0));
155	case STATUS_FILTER_HASH:
156		return le32_get_bits(word[3], GENMASK(1, 1));
157	case STATUS_FILTER_GLOBAL:
158		return le32_get_bits(word[3], GENMASK(2, 2));
159	case STATUS_FILTER_RETAIN:
160		return le32_get_bits(word[3], GENMASK(3, 3));
161	case STATUS_FILTER_RULE_INDEX:
162		return le32_get_bits(word[3], GENMASK(13, 4));
163	/* ROUTER_TABLE is in word 3, bits 14-21 (IPA v5.0+) */
164	case STATUS_ROUTER_LOCAL:
165		if (version < IPA_VERSION_5_0)
166			return le32_get_bits(word[3], GENMASK(14, 14));
167		return le32_get_bits(word[1], GENMASK(27, 27));
168	case STATUS_ROUTER_HASH:
169		if (version < IPA_VERSION_5_0)
170			return le32_get_bits(word[3], GENMASK(15, 15));
171		return le32_get_bits(word[1], GENMASK(28, 28));
172	case STATUS_UCP:
173		if (version < IPA_VERSION_5_0)
174			return le32_get_bits(word[3], GENMASK(16, 16));
175		return le32_get_bits(word[7], GENMASK(31, 31));
176	case STATUS_ROUTER_TABLE:
177		if (version < IPA_VERSION_5_0)
178			return le32_get_bits(word[3], GENMASK(21, 17));
179		return le32_get_bits(word[3], GENMASK(21, 14));
180	case STATUS_ROUTER_RULE_INDEX:
181		return le32_get_bits(word[3], GENMASK(31, 22));
182	case STATUS_NAT_HIT:
183		return le32_get_bits(word[4], GENMASK(0, 0));
184	case STATUS_NAT_INDEX:
185		return le32_get_bits(word[4], GENMASK(13, 1));
186	case STATUS_NAT_TYPE:
187		return le32_get_bits(word[4], GENMASK(15, 14));
188	case STATUS_TAG_LOW32:
189		return le32_get_bits(word[4], GENMASK(31, 16)) |
190			(le32_get_bits(word[5], GENMASK(15, 0)) << 16);
191	case STATUS_TAG_HIGH16:
192		return le32_get_bits(word[5], GENMASK(31, 16));
193	case STATUS_SEQUENCE:
194		return le32_get_bits(word[6], GENMASK(7, 0));
195	case STATUS_TIME_OF_DAY:
196		return le32_get_bits(word[6], GENMASK(31, 8));
197	case STATUS_HEADER_LOCAL:
198		return le32_get_bits(word[7], GENMASK(0, 0));
199	case STATUS_HEADER_OFFSET:
200		return le32_get_bits(word[7], GENMASK(10, 1));
201	case STATUS_FRAG_HIT:
202		return le32_get_bits(word[7], GENMASK(11, 11));
203	case STATUS_FRAG_RULE_INDEX:
204		return le32_get_bits(word[7], GENMASK(15, 12));
205	/* Status word 7, bits 16-30 are reserved */
206	/* Status word 7, bit 31 is reserved (not IPA v5.0+) */
207	default:
208		WARN(true, "%s: bad field_id %u\n", __func__, field);
209		return 0;
210	}
211}
212
213/* Compute the aggregation size value to use for a given buffer size */
214static u32 ipa_aggr_size_kb(u32 rx_buffer_size, bool aggr_hard_limit)
215{
216	/* A hard aggregation limit will not be crossed; aggregation closes
217	 * if saving incoming data would cross the hard byte limit boundary.
218	 *
219	 * With a soft limit, aggregation closes *after* the size boundary
220	 * has been crossed.  In that case the limit must leave enough space
221	 * after that limit to receive a full MTU of data plus overhead.
222	 */
223	if (!aggr_hard_limit)
224		rx_buffer_size -= IPA_MTU + IPA_RX_BUFFER_OVERHEAD;
225
226	/* The byte limit is encoded as a number of kilobytes */
227
228	return rx_buffer_size / SZ_1K;
229}
230
231static bool ipa_endpoint_data_valid_one(struct ipa *ipa, u32 count,
232			    const struct ipa_gsi_endpoint_data *all_data,
233			    const struct ipa_gsi_endpoint_data *data)
234{
235	const struct ipa_gsi_endpoint_data *other_data;
236	enum ipa_endpoint_name other_name;
237	struct device *dev = ipa->dev;
238
239	if (ipa_gsi_endpoint_data_empty(data))
240		return true;
241
242	if (!data->toward_ipa) {
243		const struct ipa_endpoint_rx *rx_config;
244		const struct reg *reg;
245		u32 buffer_size;
246		u32 aggr_size;
247		u32 limit;
248
249		if (data->endpoint.filter_support) {
250			dev_err(dev, "filtering not supported for "
251					"RX endpoint %u\n",
252				data->endpoint_id);
253			return false;
254		}
255
256		/* Nothing more to check for non-AP RX */
257		if (data->ee_id != GSI_EE_AP)
258			return true;
259
260		rx_config = &data->endpoint.config.rx;
261
262		/* The buffer size must hold an MTU plus overhead */
263		buffer_size = rx_config->buffer_size;
264		limit = IPA_MTU + IPA_RX_BUFFER_OVERHEAD;
265		if (buffer_size < limit) {
266			dev_err(dev, "RX buffer size too small for RX endpoint %u (%u < %u)\n",
267				data->endpoint_id, buffer_size, limit);
268			return false;
269		}
270
271		if (!data->endpoint.config.aggregation) {
272			bool result = true;
273
274			/* No aggregation; check for bogus aggregation data */
275			if (rx_config->aggr_time_limit) {
276				dev_err(dev,
277					"time limit with no aggregation for RX endpoint %u\n",
278					data->endpoint_id);
279				result = false;
280			}
281
282			if (rx_config->aggr_hard_limit) {
283				dev_err(dev, "hard limit with no aggregation for RX endpoint %u\n",
284					data->endpoint_id);
285				result = false;
286			}
287
288			if (rx_config->aggr_close_eof) {
289				dev_err(dev, "close EOF with no aggregation for RX endpoint %u\n",
290					data->endpoint_id);
291				result = false;
292			}
293
294			return result;	/* Nothing more to check */
295		}
296
297		/* For an endpoint supporting receive aggregation, the byte
298		 * limit defines the point at which aggregation closes.  This
299		 * check ensures the receive buffer size doesn't result in a
300		 * limit that exceeds what's representable in the aggregation
301		 * byte limit field.
302		 */
303		aggr_size = ipa_aggr_size_kb(buffer_size - NET_SKB_PAD,
304					     rx_config->aggr_hard_limit);
305		reg = ipa_reg(ipa, ENDP_INIT_AGGR);
306
307		limit = reg_field_max(reg, BYTE_LIMIT);
308		if (aggr_size > limit) {
309			dev_err(dev, "aggregated size too large for RX endpoint %u (%u KB > %u KB)\n",
310				data->endpoint_id, aggr_size, limit);
311
312			return false;
313		}
314
315		return true;	/* Nothing more to check for RX */
316	}
317
318	/* Starting with IPA v4.5 sequencer replication is obsolete */
319	if (ipa->version >= IPA_VERSION_4_5) {
320		if (data->endpoint.config.tx.seq_rep_type) {
321			dev_err(dev, "no-zero seq_rep_type TX endpoint %u\n",
322				data->endpoint_id);
323			return false;
324		}
325	}
326
327	if (data->endpoint.config.status_enable) {
328		other_name = data->endpoint.config.tx.status_endpoint;
329		if (other_name >= count) {
330			dev_err(dev, "status endpoint name %u out of range "
331					"for endpoint %u\n",
332				other_name, data->endpoint_id);
333			return false;
334		}
335
336		/* Status endpoint must be defined... */
337		other_data = &all_data[other_name];
338		if (ipa_gsi_endpoint_data_empty(other_data)) {
339			dev_err(dev, "DMA endpoint name %u undefined "
340					"for endpoint %u\n",
341				other_name, data->endpoint_id);
342			return false;
343		}
344
345		/* ...and has to be an RX endpoint... */
346		if (other_data->toward_ipa) {
347			dev_err(dev,
348				"status endpoint for endpoint %u not RX\n",
349				data->endpoint_id);
350			return false;
351		}
352
353		/* ...and if it's to be an AP endpoint... */
354		if (other_data->ee_id == GSI_EE_AP) {
355			/* ...make sure it has status enabled. */
356			if (!other_data->endpoint.config.status_enable) {
357				dev_err(dev,
358					"status not enabled for endpoint %u\n",
359					other_data->endpoint_id);
360				return false;
361			}
362		}
363	}
364
365	if (data->endpoint.config.dma_mode) {
366		other_name = data->endpoint.config.dma_endpoint;
367		if (other_name >= count) {
368			dev_err(dev, "DMA endpoint name %u out of range "
369					"for endpoint %u\n",
370				other_name, data->endpoint_id);
371			return false;
372		}
373
374		other_data = &all_data[other_name];
375		if (ipa_gsi_endpoint_data_empty(other_data)) {
376			dev_err(dev, "DMA endpoint name %u undefined "
377					"for endpoint %u\n",
378				other_name, data->endpoint_id);
379			return false;
380		}
381	}
382
383	return true;
384}
385
386/* Validate endpoint configuration data.  Return max defined endpoint ID */
387static u32 ipa_endpoint_max(struct ipa *ipa, u32 count,
388			    const struct ipa_gsi_endpoint_data *data)
389{
390	const struct ipa_gsi_endpoint_data *dp = data;
391	struct device *dev = ipa->dev;
392	enum ipa_endpoint_name name;
393	u32 max;
394
395	if (count > IPA_ENDPOINT_COUNT) {
396		dev_err(dev, "too many endpoints specified (%u > %u)\n",
397			count, IPA_ENDPOINT_COUNT);
398		return 0;
399	}
400
401	/* Make sure needed endpoints have defined data */
402	if (ipa_gsi_endpoint_data_empty(&data[IPA_ENDPOINT_AP_COMMAND_TX])) {
403		dev_err(dev, "command TX endpoint not defined\n");
404		return 0;
405	}
406	if (ipa_gsi_endpoint_data_empty(&data[IPA_ENDPOINT_AP_LAN_RX])) {
407		dev_err(dev, "LAN RX endpoint not defined\n");
408		return 0;
409	}
410	if (ipa_gsi_endpoint_data_empty(&data[IPA_ENDPOINT_AP_MODEM_TX])) {
411		dev_err(dev, "AP->modem TX endpoint not defined\n");
412		return 0;
413	}
414	if (ipa_gsi_endpoint_data_empty(&data[IPA_ENDPOINT_AP_MODEM_RX])) {
415		dev_err(dev, "AP<-modem RX endpoint not defined\n");
416		return 0;
417	}
418
419	max = 0;
420	for (name = 0; name < count; name++, dp++) {
421		if (!ipa_endpoint_data_valid_one(ipa, count, data, dp))
422			return 0;
423		max = max_t(u32, max, dp->endpoint_id);
424	}
425
426	return max;
427}
428
429/* Allocate a transaction to use on a non-command endpoint */
430static struct gsi_trans *ipa_endpoint_trans_alloc(struct ipa_endpoint *endpoint,
431						  u32 tre_count)
432{
433	struct gsi *gsi = &endpoint->ipa->gsi;
434	u32 channel_id = endpoint->channel_id;
435	enum dma_data_direction direction;
436
437	direction = endpoint->toward_ipa ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
438
439	return gsi_channel_trans_alloc(gsi, channel_id, tre_count, direction);
440}
441
442/* suspend_delay represents suspend for RX, delay for TX endpoints.
443 * Note that suspend is not supported starting with IPA v4.0, and
444 * delay mode should not be used starting with IPA v4.2.
445 */
446static bool
447ipa_endpoint_init_ctrl(struct ipa_endpoint *endpoint, bool suspend_delay)
448{
449	struct ipa *ipa = endpoint->ipa;
450	const struct reg *reg;
451	u32 field_id;
452	u32 offset;
453	bool state;
454	u32 mask;
455	u32 val;
456
457	if (endpoint->toward_ipa)
458		WARN_ON(ipa->version >= IPA_VERSION_4_2);
459	else
460		WARN_ON(ipa->version >= IPA_VERSION_4_0);
461
462	reg = ipa_reg(ipa, ENDP_INIT_CTRL);
463	offset = reg_n_offset(reg, endpoint->endpoint_id);
464	val = ioread32(ipa->reg_virt + offset);
465
466	field_id = endpoint->toward_ipa ? ENDP_DELAY : ENDP_SUSPEND;
467	mask = reg_bit(reg, field_id);
468
469	state = !!(val & mask);
470
471	/* Don't bother if it's already in the requested state */
472	if (suspend_delay != state) {
473		val ^= mask;
474		iowrite32(val, ipa->reg_virt + offset);
475	}
476
477	return state;
478}
479
480/* We don't care what the previous state was for delay mode */
481static void
482ipa_endpoint_program_delay(struct ipa_endpoint *endpoint, bool enable)
483{
484	/* Delay mode should not be used for IPA v4.2+ */
485	WARN_ON(endpoint->ipa->version >= IPA_VERSION_4_2);
486	WARN_ON(!endpoint->toward_ipa);
487
488	(void)ipa_endpoint_init_ctrl(endpoint, enable);
489}
490
491static bool ipa_endpoint_aggr_active(struct ipa_endpoint *endpoint)
492{
493	u32 endpoint_id = endpoint->endpoint_id;
494	struct ipa *ipa = endpoint->ipa;
495	u32 unit = endpoint_id / 32;
496	const struct reg *reg;
497	u32 val;
498
499	WARN_ON(!test_bit(endpoint_id, ipa->available));
500
501	reg = ipa_reg(ipa, STATE_AGGR_ACTIVE);
502	val = ioread32(ipa->reg_virt + reg_n_offset(reg, unit));
503
504	return !!(val & BIT(endpoint_id % 32));
505}
506
507static void ipa_endpoint_force_close(struct ipa_endpoint *endpoint)
508{
509	u32 endpoint_id = endpoint->endpoint_id;
510	u32 mask = BIT(endpoint_id % 32);
511	struct ipa *ipa = endpoint->ipa;
512	u32 unit = endpoint_id / 32;
513	const struct reg *reg;
514
515	WARN_ON(!test_bit(endpoint_id, ipa->available));
516
517	reg = ipa_reg(ipa, AGGR_FORCE_CLOSE);
518	iowrite32(mask, ipa->reg_virt + reg_n_offset(reg, unit));
519}
520
521/**
522 * ipa_endpoint_suspend_aggr() - Emulate suspend interrupt
523 * @endpoint:	Endpoint on which to emulate a suspend
524 *
525 *  Emulate suspend IPA interrupt to unsuspend an endpoint suspended
526 *  with an open aggregation frame.  This is to work around a hardware
527 *  issue in IPA version 3.5.1 where the suspend interrupt will not be
528 *  generated when it should be.
529 */
530static void ipa_endpoint_suspend_aggr(struct ipa_endpoint *endpoint)
531{
532	struct ipa *ipa = endpoint->ipa;
533
534	if (!endpoint->config.aggregation)
535		return;
536
537	/* Nothing to do if the endpoint doesn't have aggregation open */
538	if (!ipa_endpoint_aggr_active(endpoint))
539		return;
540
541	/* Force close aggregation */
542	ipa_endpoint_force_close(endpoint);
543
544	ipa_interrupt_simulate_suspend(ipa->interrupt);
545}
546
547/* Returns previous suspend state (true means suspend was enabled) */
548static bool
549ipa_endpoint_program_suspend(struct ipa_endpoint *endpoint, bool enable)
550{
551	bool suspended;
552
553	if (endpoint->ipa->version >= IPA_VERSION_4_0)
554		return enable;	/* For IPA v4.0+, no change made */
555
556	WARN_ON(endpoint->toward_ipa);
557
558	suspended = ipa_endpoint_init_ctrl(endpoint, enable);
559
560	/* A client suspended with an open aggregation frame will not
561	 * generate a SUSPEND IPA interrupt.  If enabling suspend, have
562	 * ipa_endpoint_suspend_aggr() handle this.
563	 */
564	if (enable && !suspended)
565		ipa_endpoint_suspend_aggr(endpoint);
566
567	return suspended;
568}
569
570/* Put all modem RX endpoints into suspend mode, and stop transmission
571 * on all modem TX endpoints.  Prior to IPA v4.2, endpoint DELAY mode is
572 * used for TX endpoints; starting with IPA v4.2 we use GSI channel flow
573 * control instead.
574 */
575void ipa_endpoint_modem_pause_all(struct ipa *ipa, bool enable)
576{
577	u32 endpoint_id = 0;
578
579	while (endpoint_id < ipa->endpoint_count) {
580		struct ipa_endpoint *endpoint = &ipa->endpoint[endpoint_id++];
581
582		if (endpoint->ee_id != GSI_EE_MODEM)
583			continue;
584
585		if (!endpoint->toward_ipa)
586			(void)ipa_endpoint_program_suspend(endpoint, enable);
587		else if (ipa->version < IPA_VERSION_4_2)
588			ipa_endpoint_program_delay(endpoint, enable);
589		else
590			gsi_modem_channel_flow_control(&ipa->gsi,
591						       endpoint->channel_id,
592						       enable);
593	}
594}
595
596/* Reset all modem endpoints to use the default exception endpoint */
597int ipa_endpoint_modem_exception_reset_all(struct ipa *ipa)
598{
599	struct gsi_trans *trans;
600	u32 endpoint_id;
601	u32 count;
602
603	/* We need one command per modem TX endpoint, plus the commands
604	 * that clear the pipeline.
605	 */
606	count = ipa->modem_tx_count + ipa_cmd_pipeline_clear_count();
607	trans = ipa_cmd_trans_alloc(ipa, count);
608	if (!trans) {
609		dev_err(ipa->dev,
610			"no transaction to reset modem exception endpoints\n");
611		return -EBUSY;
612	}
613
614	for_each_set_bit(endpoint_id, ipa->defined, ipa->endpoint_count) {
615		struct ipa_endpoint *endpoint;
616		const struct reg *reg;
617		u32 offset;
618
619		/* We only reset modem TX endpoints */
620		endpoint = &ipa->endpoint[endpoint_id];
621		if (!(endpoint->ee_id == GSI_EE_MODEM && endpoint->toward_ipa))
622			continue;
623
624		reg = ipa_reg(ipa, ENDP_STATUS);
625		offset = reg_n_offset(reg, endpoint_id);
626
627		/* Value written is 0, and all bits are updated.  That
628		 * means status is disabled on the endpoint, and as a
629		 * result all other fields in the register are ignored.
630		 */
631		ipa_cmd_register_write_add(trans, offset, 0, ~0, false);
632	}
633
634	ipa_cmd_pipeline_clear_add(trans);
635
636	gsi_trans_commit_wait(trans);
637
638	ipa_cmd_pipeline_clear_wait(ipa);
639
640	return 0;
641}
642
643static void ipa_endpoint_init_cfg(struct ipa_endpoint *endpoint)
644{
645	u32 endpoint_id = endpoint->endpoint_id;
646	struct ipa *ipa = endpoint->ipa;
647	enum ipa_cs_offload_en enabled;
648	const struct reg *reg;
649	u32 val = 0;
650
651	reg = ipa_reg(ipa, ENDP_INIT_CFG);
652	/* FRAG_OFFLOAD_EN is 0 */
653	if (endpoint->config.checksum) {
654		enum ipa_version version = ipa->version;
655
656		if (endpoint->toward_ipa) {
657			u32 off;
658
659			/* Checksum header offset is in 4-byte units */
660			off = sizeof(struct rmnet_map_header) / sizeof(u32);
661			val |= reg_encode(reg, CS_METADATA_HDR_OFFSET, off);
662
663			enabled = version < IPA_VERSION_4_5
664					? IPA_CS_OFFLOAD_UL
665					: IPA_CS_OFFLOAD_INLINE;
666		} else {
667			enabled = version < IPA_VERSION_4_5
668					? IPA_CS_OFFLOAD_DL
669					: IPA_CS_OFFLOAD_INLINE;
670		}
671	} else {
672		enabled = IPA_CS_OFFLOAD_NONE;
673	}
674	val |= reg_encode(reg, CS_OFFLOAD_EN, enabled);
675	/* CS_GEN_QMB_MASTER_SEL is 0 */
676
677	iowrite32(val, ipa->reg_virt + reg_n_offset(reg, endpoint_id));
678}
679
680static void ipa_endpoint_init_nat(struct ipa_endpoint *endpoint)
681{
682	u32 endpoint_id = endpoint->endpoint_id;
683	struct ipa *ipa = endpoint->ipa;
684	const struct reg *reg;
685	u32 val;
686
687	if (!endpoint->toward_ipa)
688		return;
689
690	reg = ipa_reg(ipa, ENDP_INIT_NAT);
691	val = reg_encode(reg, NAT_EN, IPA_NAT_TYPE_BYPASS);
692
693	iowrite32(val, ipa->reg_virt + reg_n_offset(reg, endpoint_id));
694}
695
696static u32
697ipa_qmap_header_size(enum ipa_version version, struct ipa_endpoint *endpoint)
698{
699	u32 header_size = sizeof(struct rmnet_map_header);
700
701	/* Without checksum offload, we just have the MAP header */
702	if (!endpoint->config.checksum)
703		return header_size;
704
705	if (version < IPA_VERSION_4_5) {
706		/* Checksum header inserted for AP TX endpoints only */
707		if (endpoint->toward_ipa)
708			header_size += sizeof(struct rmnet_map_ul_csum_header);
709	} else {
710		/* Checksum header is used in both directions */
711		header_size += sizeof(struct rmnet_map_v5_csum_header);
712	}
713
714	return header_size;
715}
716
717/* Encoded value for ENDP_INIT_HDR register HDR_LEN* field(s) */
718static u32 ipa_header_size_encode(enum ipa_version version,
719				  const struct reg *reg, u32 header_size)
720{
721	u32 field_max = reg_field_max(reg, HDR_LEN);
722	u32 val;
723
724	/* We know field_max can be used as a mask (2^n - 1) */
725	val = reg_encode(reg, HDR_LEN, header_size & field_max);
726	if (version < IPA_VERSION_4_5) {
727		WARN_ON(header_size > field_max);
728		return val;
729	}
730
731	/* IPA v4.5 adds a few more most-significant bits */
732	header_size >>= hweight32(field_max);
733	WARN_ON(header_size > reg_field_max(reg, HDR_LEN_MSB));
734	val |= reg_encode(reg, HDR_LEN_MSB, header_size);
735
736	return val;
737}
738
739/* Encoded value for ENDP_INIT_HDR register OFST_METADATA* field(s) */
740static u32 ipa_metadata_offset_encode(enum ipa_version version,
741				      const struct reg *reg, u32 offset)
742{
743	u32 field_max = reg_field_max(reg, HDR_OFST_METADATA);
744	u32 val;
745
746	/* We know field_max can be used as a mask (2^n - 1) */
747	val = reg_encode(reg, HDR_OFST_METADATA, offset);
748	if (version < IPA_VERSION_4_5) {
749		WARN_ON(offset > field_max);
750		return val;
751	}
752
753	/* IPA v4.5 adds a few more most-significant bits */
754	offset >>= hweight32(field_max);
755	WARN_ON(offset > reg_field_max(reg, HDR_OFST_METADATA_MSB));
756	val |= reg_encode(reg, HDR_OFST_METADATA_MSB, offset);
757
758	return val;
759}
760
761/**
762 * ipa_endpoint_init_hdr() - Initialize HDR endpoint configuration register
763 * @endpoint:	Endpoint pointer
764 *
765 * We program QMAP endpoints so each packet received is preceded by a QMAP
766 * header structure.  The QMAP header contains a 1-byte mux_id and 2-byte
767 * packet size field, and we have the IPA hardware populate both for each
768 * received packet.  The header is configured (in the HDR_EXT register)
769 * to use big endian format.
770 *
771 * The packet size is written into the QMAP header's pkt_len field.  That
772 * location is defined here using the HDR_OFST_PKT_SIZE field.
773 *
774 * The mux_id comes from a 4-byte metadata value supplied with each packet
775 * by the modem.  It is *not* a QMAP header, but it does contain the mux_id
776 * value that we want, in its low-order byte.  A bitmask defined in the
777 * endpoint's METADATA_MASK register defines which byte within the modem
778 * metadata contains the mux_id.  And the OFST_METADATA field programmed
779 * here indicates where the extracted byte should be placed within the QMAP
780 * header.
781 */
782static void ipa_endpoint_init_hdr(struct ipa_endpoint *endpoint)
783{
784	u32 endpoint_id = endpoint->endpoint_id;
785	struct ipa *ipa = endpoint->ipa;
786	const struct reg *reg;
787	u32 val = 0;
788
789	reg = ipa_reg(ipa, ENDP_INIT_HDR);
790	if (endpoint->config.qmap) {
791		enum ipa_version version = ipa->version;
792		size_t header_size;
793
794		header_size = ipa_qmap_header_size(version, endpoint);
795		val = ipa_header_size_encode(version, reg, header_size);
796
797		/* Define how to fill fields in a received QMAP header */
798		if (!endpoint->toward_ipa) {
799			u32 off;     /* Field offset within header */
800
801			/* Where IPA will write the metadata value */
802			off = offsetof(struct rmnet_map_header, mux_id);
803			val |= ipa_metadata_offset_encode(version, reg, off);
804
805			/* Where IPA will write the length */
806			off = offsetof(struct rmnet_map_header, pkt_len);
807			/* Upper bits are stored in HDR_EXT with IPA v4.5 */
808			if (version >= IPA_VERSION_4_5)
809				off &= reg_field_max(reg, HDR_OFST_PKT_SIZE);
810
811			val |= reg_bit(reg, HDR_OFST_PKT_SIZE_VALID);
812			val |= reg_encode(reg, HDR_OFST_PKT_SIZE, off);
813		}
814		/* For QMAP TX, metadata offset is 0 (modem assumes this) */
815		val |= reg_bit(reg, HDR_OFST_METADATA_VALID);
816
817		/* HDR_ADDITIONAL_CONST_LEN is 0; (RX only) */
818		/* HDR_A5_MUX is 0 */
819		/* HDR_LEN_INC_DEAGG_HDR is 0 */
820		/* HDR_METADATA_REG_VALID is 0 (TX only, version < v4.5) */
821	}
822
823	iowrite32(val, ipa->reg_virt + reg_n_offset(reg, endpoint_id));
824}
825
826static void ipa_endpoint_init_hdr_ext(struct ipa_endpoint *endpoint)
827{
828	u32 pad_align = endpoint->config.rx.pad_align;
829	u32 endpoint_id = endpoint->endpoint_id;
830	struct ipa *ipa = endpoint->ipa;
831	const struct reg *reg;
832	u32 val = 0;
833
834	reg = ipa_reg(ipa, ENDP_INIT_HDR_EXT);
835	if (endpoint->config.qmap) {
836		/* We have a header, so we must specify its endianness */
837		val |= reg_bit(reg, HDR_ENDIANNESS);	/* big endian */
838
839		/* A QMAP header contains a 6 bit pad field at offset 0.
840		 * The RMNet driver assumes this field is meaningful in
841		 * packets it receives, and assumes the header's payload
842		 * length includes that padding.  The RMNet driver does
843		 * *not* pad packets it sends, however, so the pad field
844		 * (although 0) should be ignored.
845		 */
846		if (!endpoint->toward_ipa) {
847			val |= reg_bit(reg, HDR_TOTAL_LEN_OR_PAD_VALID);
848			/* HDR_TOTAL_LEN_OR_PAD is 0 (pad, not total_len) */
849			val |= reg_bit(reg, HDR_PAYLOAD_LEN_INC_PADDING);
850			/* HDR_TOTAL_LEN_OR_PAD_OFFSET is 0 */
851		}
852	}
853
854	/* HDR_PAYLOAD_LEN_INC_PADDING is 0 */
855	if (!endpoint->toward_ipa)
856		val |= reg_encode(reg, HDR_PAD_TO_ALIGNMENT, pad_align);
857
858	/* IPA v4.5 adds some most-significant bits to a few fields,
859	 * two of which are defined in the HDR (not HDR_EXT) register.
860	 */
861	if (ipa->version >= IPA_VERSION_4_5) {
862		/* HDR_TOTAL_LEN_OR_PAD_OFFSET is 0, so MSB is 0 */
863		if (endpoint->config.qmap && !endpoint->toward_ipa) {
864			u32 mask = reg_field_max(reg, HDR_OFST_PKT_SIZE);
865			u32 off;     /* Field offset within header */
866
867			off = offsetof(struct rmnet_map_header, pkt_len);
868			/* Low bits are in the ENDP_INIT_HDR register */
869			off >>= hweight32(mask);
870			val |= reg_encode(reg, HDR_OFST_PKT_SIZE_MSB, off);
871			/* HDR_ADDITIONAL_CONST_LEN is 0 so MSB is 0 */
872		}
873	}
874
875	iowrite32(val, ipa->reg_virt + reg_n_offset(reg, endpoint_id));
876}
877
878static void ipa_endpoint_init_hdr_metadata_mask(struct ipa_endpoint *endpoint)
879{
880	u32 endpoint_id = endpoint->endpoint_id;
881	struct ipa *ipa = endpoint->ipa;
882	const struct reg *reg;
883	u32 val = 0;
884	u32 offset;
885
886	if (endpoint->toward_ipa)
887		return;		/* Register not valid for TX endpoints */
888
889	reg = ipa_reg(ipa,  ENDP_INIT_HDR_METADATA_MASK);
890	offset = reg_n_offset(reg, endpoint_id);
891
892	/* Note that HDR_ENDIANNESS indicates big endian header fields */
893	if (endpoint->config.qmap)
894		val = (__force u32)cpu_to_be32(IPA_ENDPOINT_QMAP_METADATA_MASK);
895
896	iowrite32(val, ipa->reg_virt + offset);
897}
898
899static void ipa_endpoint_init_mode(struct ipa_endpoint *endpoint)
900{
901	struct ipa *ipa = endpoint->ipa;
902	const struct reg *reg;
903	u32 offset;
904	u32 val;
905
906	if (!endpoint->toward_ipa)
907		return;		/* Register not valid for RX endpoints */
908
909	reg = ipa_reg(ipa, ENDP_INIT_MODE);
910	if (endpoint->config.dma_mode) {
911		enum ipa_endpoint_name name = endpoint->config.dma_endpoint;
912		u32 dma_endpoint_id = ipa->name_map[name]->endpoint_id;
913
914		val = reg_encode(reg, ENDP_MODE, IPA_DMA);
915		val |= reg_encode(reg, DEST_PIPE_INDEX, dma_endpoint_id);
916	} else {
917		val = reg_encode(reg, ENDP_MODE, IPA_BASIC);
918	}
919	/* All other bits unspecified (and 0) */
920
921	offset = reg_n_offset(reg, endpoint->endpoint_id);
922	iowrite32(val, ipa->reg_virt + offset);
923}
924
925/* For IPA v4.5+, times are expressed using Qtime.  A time is represented
926 * at one of several available granularities, which are configured in
927 * ipa_qtime_config().  Three (or, starting with IPA v5.0, four) pulse
928 * generators are set up with different "tick" periods.  A Qtime value
929 * encodes a tick count along with an indication of a pulse generator
930 * (which has a fixed tick period).  Two pulse generators are always
931 * available to the AP; a third is available starting with IPA v5.0.
932 * This function determines which pulse generator most accurately
933 * represents the time period provided, and returns the tick count to
934 * use to represent that time.
935 */
936static u32
937ipa_qtime_val(struct ipa *ipa, u32 microseconds, u32 max, u32 *select)
938{
939	u32 which = 0;
940	u32 ticks;
941
942	/* Pulse generator 0 has 100 microsecond granularity */
943	ticks = DIV_ROUND_CLOSEST(microseconds, 100);
944	if (ticks <= max)
945		goto out;
946
947	/* Pulse generator 1 has millisecond granularity */
948	which = 1;
949	ticks = DIV_ROUND_CLOSEST(microseconds, 1000);
950	if (ticks <= max)
951		goto out;
952
953	if (ipa->version >= IPA_VERSION_5_0) {
954		/* Pulse generator 2 has 10 millisecond granularity */
955		which = 2;
956		ticks = DIV_ROUND_CLOSEST(microseconds, 100);
957	}
958	WARN_ON(ticks > max);
959out:
960	*select = which;
961
962	return ticks;
963}
964
965/* Encode the aggregation timer limit (microseconds) based on IPA version */
966static u32 aggr_time_limit_encode(struct ipa *ipa, const struct reg *reg,
967				  u32 microseconds)
968{
969	u32 ticks;
970	u32 max;
971
972	if (!microseconds)
973		return 0;	/* Nothing to compute if time limit is 0 */
974
975	max = reg_field_max(reg, TIME_LIMIT);
976	if (ipa->version >= IPA_VERSION_4_5) {
977		u32 select;
978
979		ticks = ipa_qtime_val(ipa, microseconds, max, &select);
980
981		return reg_encode(reg, AGGR_GRAN_SEL, select) |
982		       reg_encode(reg, TIME_LIMIT, ticks);
983	}
984
985	/* We program aggregation granularity in ipa_hardware_config() */
986	ticks = DIV_ROUND_CLOSEST(microseconds, IPA_AGGR_GRANULARITY);
987	WARN(ticks > max, "aggr_time_limit too large (%u > %u usec)\n",
988	     microseconds, max * IPA_AGGR_GRANULARITY);
989
990	return reg_encode(reg, TIME_LIMIT, ticks);
991}
992
993static void ipa_endpoint_init_aggr(struct ipa_endpoint *endpoint)
994{
995	u32 endpoint_id = endpoint->endpoint_id;
996	struct ipa *ipa = endpoint->ipa;
997	const struct reg *reg;
998	u32 val = 0;
999
1000	reg = ipa_reg(ipa, ENDP_INIT_AGGR);
1001	if (endpoint->config.aggregation) {
1002		if (!endpoint->toward_ipa) {
1003			const struct ipa_endpoint_rx *rx_config;
1004			u32 buffer_size;
1005			u32 limit;
1006
1007			rx_config = &endpoint->config.rx;
1008			val |= reg_encode(reg, AGGR_EN, IPA_ENABLE_AGGR);
1009			val |= reg_encode(reg, AGGR_TYPE, IPA_GENERIC);
1010
1011			buffer_size = rx_config->buffer_size;
1012			limit = ipa_aggr_size_kb(buffer_size - NET_SKB_PAD,
1013						 rx_config->aggr_hard_limit);
1014			val |= reg_encode(reg, BYTE_LIMIT, limit);
1015
1016			limit = rx_config->aggr_time_limit;
1017			val |= aggr_time_limit_encode(ipa, reg, limit);
1018
1019			/* AGGR_PKT_LIMIT is 0 (unlimited) */
1020
1021			if (rx_config->aggr_close_eof)
1022				val |= reg_bit(reg, SW_EOF_ACTIVE);
1023		} else {
1024			val |= reg_encode(reg, AGGR_EN, IPA_ENABLE_DEAGGR);
1025			val |= reg_encode(reg, AGGR_TYPE, IPA_QCMAP);
1026			/* other fields ignored */
1027		}
1028		/* AGGR_FORCE_CLOSE is 0 */
1029		/* AGGR_GRAN_SEL is 0 for IPA v4.5 */
1030	} else {
1031		val |= reg_encode(reg, AGGR_EN, IPA_BYPASS_AGGR);
1032		/* other fields ignored */
1033	}
1034
1035	iowrite32(val, ipa->reg_virt + reg_n_offset(reg, endpoint_id));
1036}
1037
1038/* The head-of-line blocking timer is defined as a tick count.  For
1039 * IPA version 4.5 the tick count is based on the Qtimer, which is
1040 * derived from the 19.2 MHz SoC XO clock.  For older IPA versions
1041 * each tick represents 128 cycles of the IPA core clock.
1042 *
1043 * Return the encoded value representing the timeout period provided
1044 * that should be written to the ENDP_INIT_HOL_BLOCK_TIMER register.
1045 */
1046static u32 hol_block_timer_encode(struct ipa *ipa, const struct reg *reg,
1047				  u32 microseconds)
1048{
1049	u32 width;
1050	u32 scale;
1051	u64 ticks;
1052	u64 rate;
1053	u32 high;
1054	u32 val;
1055
1056	if (!microseconds)
1057		return 0;	/* Nothing to compute if timer period is 0 */
1058
1059	if (ipa->version >= IPA_VERSION_4_5) {
1060		u32 max = reg_field_max(reg, TIMER_LIMIT);
1061		u32 select;
1062		u32 ticks;
1063
1064		ticks = ipa_qtime_val(ipa, microseconds, max, &select);
1065
1066		return reg_encode(reg, TIMER_GRAN_SEL, 1) |
1067		       reg_encode(reg, TIMER_LIMIT, ticks);
1068	}
1069
1070	/* Use 64 bit arithmetic to avoid overflow */
1071	rate = ipa_core_clock_rate(ipa);
1072	ticks = DIV_ROUND_CLOSEST(microseconds * rate, 128 * USEC_PER_SEC);
1073
1074	/* We still need the result to fit into the field */
1075	WARN_ON(ticks > reg_field_max(reg, TIMER_BASE_VALUE));
1076
1077	/* IPA v3.5.1 through v4.1 just record the tick count */
1078	if (ipa->version < IPA_VERSION_4_2)
1079		return reg_encode(reg, TIMER_BASE_VALUE, (u32)ticks);
1080
1081	/* For IPA v4.2, the tick count is represented by base and
1082	 * scale fields within the 32-bit timer register, where:
1083	 *     ticks = base << scale;
1084	 * The best precision is achieved when the base value is as
1085	 * large as possible.  Find the highest set bit in the tick
1086	 * count, and extract the number of bits in the base field
1087	 * such that high bit is included.
1088	 */
1089	high = fls(ticks);		/* 1..32 (or warning above) */
1090	width = hweight32(reg_fmask(reg, TIMER_BASE_VALUE));
1091	scale = high > width ? high - width : 0;
1092	if (scale) {
1093		/* If we're scaling, round up to get a closer result */
1094		ticks += 1 << (scale - 1);
1095		/* High bit was set, so rounding might have affected it */
1096		if (fls(ticks) != high)
1097			scale++;
1098	}
1099
1100	val = reg_encode(reg, TIMER_SCALE, scale);
1101	val |= reg_encode(reg, TIMER_BASE_VALUE, (u32)ticks >> scale);
1102
1103	return val;
1104}
1105
1106/* If microseconds is 0, timeout is immediate */
1107static void ipa_endpoint_init_hol_block_timer(struct ipa_endpoint *endpoint,
1108					      u32 microseconds)
1109{
1110	u32 endpoint_id = endpoint->endpoint_id;
1111	struct ipa *ipa = endpoint->ipa;
1112	const struct reg *reg;
1113	u32 val;
1114
1115	/* This should only be changed when HOL_BLOCK_EN is disabled */
1116	reg = ipa_reg(ipa, ENDP_INIT_HOL_BLOCK_TIMER);
1117	val = hol_block_timer_encode(ipa, reg, microseconds);
1118
1119	iowrite32(val, ipa->reg_virt + reg_n_offset(reg, endpoint_id));
1120}
1121
1122static void
1123ipa_endpoint_init_hol_block_en(struct ipa_endpoint *endpoint, bool enable)
1124{
1125	u32 endpoint_id = endpoint->endpoint_id;
1126	struct ipa *ipa = endpoint->ipa;
1127	const struct reg *reg;
1128	u32 offset;
1129	u32 val;
1130
1131	reg = ipa_reg(ipa, ENDP_INIT_HOL_BLOCK_EN);
1132	offset = reg_n_offset(reg, endpoint_id);
1133	val = enable ? reg_bit(reg, HOL_BLOCK_EN) : 0;
1134
1135	iowrite32(val, ipa->reg_virt + offset);
1136
1137	/* When enabling, the register must be written twice for IPA v4.5+ */
1138	if (enable && ipa->version >= IPA_VERSION_4_5)
1139		iowrite32(val, ipa->reg_virt + offset);
1140}
1141
1142/* Assumes HOL_BLOCK is in disabled state */
1143static void ipa_endpoint_init_hol_block_enable(struct ipa_endpoint *endpoint,
1144					       u32 microseconds)
1145{
1146	ipa_endpoint_init_hol_block_timer(endpoint, microseconds);
1147	ipa_endpoint_init_hol_block_en(endpoint, true);
1148}
1149
1150static void ipa_endpoint_init_hol_block_disable(struct ipa_endpoint *endpoint)
1151{
1152	ipa_endpoint_init_hol_block_en(endpoint, false);
1153}
1154
1155void ipa_endpoint_modem_hol_block_clear_all(struct ipa *ipa)
1156{
1157	u32 endpoint_id = 0;
1158
1159	while (endpoint_id < ipa->endpoint_count) {
1160		struct ipa_endpoint *endpoint = &ipa->endpoint[endpoint_id++];
1161
1162		if (endpoint->toward_ipa || endpoint->ee_id != GSI_EE_MODEM)
1163			continue;
1164
1165		ipa_endpoint_init_hol_block_disable(endpoint);
1166		ipa_endpoint_init_hol_block_enable(endpoint, 0);
1167	}
1168}
1169
1170static void ipa_endpoint_init_deaggr(struct ipa_endpoint *endpoint)
1171{
1172	u32 endpoint_id = endpoint->endpoint_id;
1173	struct ipa *ipa = endpoint->ipa;
1174	const struct reg *reg;
1175	u32 val = 0;
1176
1177	if (!endpoint->toward_ipa)
1178		return;		/* Register not valid for RX endpoints */
1179
1180	reg = ipa_reg(ipa, ENDP_INIT_DEAGGR);
1181	/* DEAGGR_HDR_LEN is 0 */
1182	/* PACKET_OFFSET_VALID is 0 */
1183	/* PACKET_OFFSET_LOCATION is ignored (not valid) */
1184	/* MAX_PACKET_LEN is 0 (not enforced) */
1185
1186	iowrite32(val, ipa->reg_virt + reg_n_offset(reg, endpoint_id));
1187}
1188
1189static void ipa_endpoint_init_rsrc_grp(struct ipa_endpoint *endpoint)
1190{
1191	u32 resource_group = endpoint->config.resource_group;
1192	u32 endpoint_id = endpoint->endpoint_id;
1193	struct ipa *ipa = endpoint->ipa;
1194	const struct reg *reg;
1195	u32 val;
1196
1197	reg = ipa_reg(ipa, ENDP_INIT_RSRC_GRP);
1198	val = reg_encode(reg, ENDP_RSRC_GRP, resource_group);
1199
1200	iowrite32(val, ipa->reg_virt + reg_n_offset(reg, endpoint_id));
1201}
1202
1203static void ipa_endpoint_init_seq(struct ipa_endpoint *endpoint)
1204{
1205	u32 endpoint_id = endpoint->endpoint_id;
1206	struct ipa *ipa = endpoint->ipa;
1207	const struct reg *reg;
1208	u32 val;
1209
1210	if (!endpoint->toward_ipa)
1211		return;		/* Register not valid for RX endpoints */
1212
1213	reg = ipa_reg(ipa, ENDP_INIT_SEQ);
1214
1215	/* Low-order byte configures primary packet processing */
1216	val = reg_encode(reg, SEQ_TYPE, endpoint->config.tx.seq_type);
1217
1218	/* Second byte (if supported) configures replicated packet processing */
1219	if (ipa->version < IPA_VERSION_4_5)
1220		val |= reg_encode(reg, SEQ_REP_TYPE,
1221				  endpoint->config.tx.seq_rep_type);
1222
1223	iowrite32(val, ipa->reg_virt + reg_n_offset(reg, endpoint_id));
1224}
1225
1226/**
1227 * ipa_endpoint_skb_tx() - Transmit a socket buffer
1228 * @endpoint:	Endpoint pointer
1229 * @skb:	Socket buffer to send
1230 *
1231 * Returns:	0 if successful, or a negative error code
1232 */
1233int ipa_endpoint_skb_tx(struct ipa_endpoint *endpoint, struct sk_buff *skb)
1234{
1235	struct gsi_trans *trans;
1236	u32 nr_frags;
1237	int ret;
1238
1239	/* Make sure source endpoint's TLV FIFO has enough entries to
1240	 * hold the linear portion of the skb and all its fragments.
1241	 * If not, see if we can linearize it before giving up.
1242	 */
1243	nr_frags = skb_shinfo(skb)->nr_frags;
1244	if (nr_frags > endpoint->skb_frag_max) {
1245		if (skb_linearize(skb))
1246			return -E2BIG;
1247		nr_frags = 0;
1248	}
1249
1250	trans = ipa_endpoint_trans_alloc(endpoint, 1 + nr_frags);
1251	if (!trans)
1252		return -EBUSY;
1253
1254	ret = gsi_trans_skb_add(trans, skb);
1255	if (ret)
1256		goto err_trans_free;
1257	trans->data = skb;	/* transaction owns skb now */
1258
1259	gsi_trans_commit(trans, !netdev_xmit_more());
1260
1261	return 0;
1262
1263err_trans_free:
1264	gsi_trans_free(trans);
1265
1266	return -ENOMEM;
1267}
1268
1269static void ipa_endpoint_status(struct ipa_endpoint *endpoint)
1270{
1271	u32 endpoint_id = endpoint->endpoint_id;
1272	struct ipa *ipa = endpoint->ipa;
1273	const struct reg *reg;
1274	u32 val = 0;
1275
1276	reg = ipa_reg(ipa, ENDP_STATUS);
1277	if (endpoint->config.status_enable) {
1278		val |= reg_bit(reg, STATUS_EN);
1279		if (endpoint->toward_ipa) {
1280			enum ipa_endpoint_name name;
1281			u32 status_endpoint_id;
1282
1283			name = endpoint->config.tx.status_endpoint;
1284			status_endpoint_id = ipa->name_map[name]->endpoint_id;
1285
1286			val |= reg_encode(reg, STATUS_ENDP, status_endpoint_id);
1287		}
1288		/* STATUS_LOCATION is 0, meaning IPA packet status
1289		 * precedes the packet (not present for IPA v4.5+)
1290		 */
1291		/* STATUS_PKT_SUPPRESS_FMASK is 0 (not present for v4.0+) */
1292	}
1293
1294	iowrite32(val, ipa->reg_virt + reg_n_offset(reg, endpoint_id));
1295}
1296
1297static int ipa_endpoint_replenish_one(struct ipa_endpoint *endpoint,
1298				      struct gsi_trans *trans)
1299{
1300	struct page *page;
1301	u32 buffer_size;
1302	u32 offset;
1303	u32 len;
1304	int ret;
1305
1306	buffer_size = endpoint->config.rx.buffer_size;
1307	page = dev_alloc_pages(get_order(buffer_size));
1308	if (!page)
1309		return -ENOMEM;
1310
1311	/* Offset the buffer to make space for skb headroom */
1312	offset = NET_SKB_PAD;
1313	len = buffer_size - offset;
1314
1315	ret = gsi_trans_page_add(trans, page, len, offset);
1316	if (ret)
1317		put_page(page);
1318	else
1319		trans->data = page;	/* transaction owns page now */
1320
1321	return ret;
1322}
1323
1324/**
1325 * ipa_endpoint_replenish() - Replenish endpoint receive buffers
1326 * @endpoint:	Endpoint to be replenished
1327 *
1328 * The IPA hardware can hold a fixed number of receive buffers for an RX
1329 * endpoint, based on the number of entries in the underlying channel ring
1330 * buffer.  If an endpoint's "backlog" is non-zero, it indicates how many
1331 * more receive buffers can be supplied to the hardware.  Replenishing for
1332 * an endpoint can be disabled, in which case buffers are not queued to
1333 * the hardware.
1334 */
1335static void ipa_endpoint_replenish(struct ipa_endpoint *endpoint)
1336{
1337	struct gsi_trans *trans;
1338
1339	if (!test_bit(IPA_REPLENISH_ENABLED, endpoint->replenish_flags))
1340		return;
1341
1342	/* Skip it if it's already active */
1343	if (test_and_set_bit(IPA_REPLENISH_ACTIVE, endpoint->replenish_flags))
1344		return;
1345
1346	while ((trans = ipa_endpoint_trans_alloc(endpoint, 1))) {
1347		bool doorbell;
1348
1349		if (ipa_endpoint_replenish_one(endpoint, trans))
1350			goto try_again_later;
1351
1352
1353		/* Ring the doorbell if we've got a full batch */
1354		doorbell = !(++endpoint->replenish_count % IPA_REPLENISH_BATCH);
1355		gsi_trans_commit(trans, doorbell);
1356	}
1357
1358	clear_bit(IPA_REPLENISH_ACTIVE, endpoint->replenish_flags);
1359
1360	return;
1361
1362try_again_later:
1363	gsi_trans_free(trans);
1364	clear_bit(IPA_REPLENISH_ACTIVE, endpoint->replenish_flags);
1365
1366	/* Whenever a receive buffer transaction completes we'll try to
1367	 * replenish again.  It's unlikely, but if we fail to supply even
1368	 * one buffer, nothing will trigger another replenish attempt.
1369	 * If the hardware has no receive buffers queued, schedule work to
1370	 * try replenishing again.
1371	 */
1372	if (gsi_channel_trans_idle(&endpoint->ipa->gsi, endpoint->channel_id))
1373		schedule_delayed_work(&endpoint->replenish_work,
1374				      msecs_to_jiffies(1));
1375}
1376
1377static void ipa_endpoint_replenish_enable(struct ipa_endpoint *endpoint)
1378{
1379	set_bit(IPA_REPLENISH_ENABLED, endpoint->replenish_flags);
1380
1381	/* Start replenishing if hardware currently has no buffers */
1382	if (gsi_channel_trans_idle(&endpoint->ipa->gsi, endpoint->channel_id))
1383		ipa_endpoint_replenish(endpoint);
1384}
1385
1386static void ipa_endpoint_replenish_disable(struct ipa_endpoint *endpoint)
1387{
1388	clear_bit(IPA_REPLENISH_ENABLED, endpoint->replenish_flags);
1389}
1390
1391static void ipa_endpoint_replenish_work(struct work_struct *work)
1392{
1393	struct delayed_work *dwork = to_delayed_work(work);
1394	struct ipa_endpoint *endpoint;
1395
1396	endpoint = container_of(dwork, struct ipa_endpoint, replenish_work);
1397
1398	ipa_endpoint_replenish(endpoint);
1399}
1400
1401static void ipa_endpoint_skb_copy(struct ipa_endpoint *endpoint,
1402				  void *data, u32 len, u32 extra)
1403{
1404	struct sk_buff *skb;
1405
1406	if (!endpoint->netdev)
1407		return;
1408
1409	skb = __dev_alloc_skb(len, GFP_ATOMIC);
1410	if (skb) {
1411		/* Copy the data into the socket buffer and receive it */
1412		skb_put(skb, len);
1413		memcpy(skb->data, data, len);
1414		skb->truesize += extra;
1415	}
1416
1417	ipa_modem_skb_rx(endpoint->netdev, skb);
1418}
1419
1420static bool ipa_endpoint_skb_build(struct ipa_endpoint *endpoint,
1421				   struct page *page, u32 len)
1422{
1423	u32 buffer_size = endpoint->config.rx.buffer_size;
1424	struct sk_buff *skb;
1425
1426	/* Nothing to do if there's no netdev */
1427	if (!endpoint->netdev)
1428		return false;
1429
1430	WARN_ON(len > SKB_WITH_OVERHEAD(buffer_size - NET_SKB_PAD));
1431
1432	skb = build_skb(page_address(page), buffer_size);
1433	if (skb) {
1434		/* Reserve the headroom and account for the data */
1435		skb_reserve(skb, NET_SKB_PAD);
1436		skb_put(skb, len);
1437	}
1438
1439	/* Receive the buffer (or record drop if unable to build it) */
1440	ipa_modem_skb_rx(endpoint->netdev, skb);
1441
1442	return skb != NULL;
1443}
1444
1445 /* The format of an IPA packet status structure is the same for several
1446  * status types (opcodes).  Other types aren't currently supported.
1447 */
1448static bool ipa_status_format_packet(enum ipa_status_opcode opcode)
1449{
1450	switch (opcode) {
1451	case IPA_STATUS_OPCODE_PACKET:
1452	case IPA_STATUS_OPCODE_DROPPED_PACKET:
1453	case IPA_STATUS_OPCODE_SUSPENDED_PACKET:
1454	case IPA_STATUS_OPCODE_PACKET_2ND_PASS:
1455		return true;
1456	default:
1457		return false;
1458	}
1459}
1460
1461static bool
1462ipa_endpoint_status_skip(struct ipa_endpoint *endpoint, const void *data)
1463{
1464	struct ipa *ipa = endpoint->ipa;
1465	enum ipa_status_opcode opcode;
1466	u32 endpoint_id;
1467
1468	opcode = ipa_status_extract(ipa, data, STATUS_OPCODE);
1469	if (!ipa_status_format_packet(opcode))
1470		return true;
1471
1472	endpoint_id = ipa_status_extract(ipa, data, STATUS_DST_ENDPOINT);
1473	if (endpoint_id != endpoint->endpoint_id)
1474		return true;
1475
1476	return false;	/* Don't skip this packet, process it */
1477}
1478
1479static bool
1480ipa_endpoint_status_tag_valid(struct ipa_endpoint *endpoint, const void *data)
1481{
1482	struct ipa_endpoint *command_endpoint;
1483	enum ipa_status_mask status_mask;
1484	struct ipa *ipa = endpoint->ipa;
1485	u32 endpoint_id;
1486
1487	status_mask = ipa_status_extract(ipa, data, STATUS_MASK);
1488	if (!status_mask)
1489		return false;	/* No valid tag */
1490
1491	/* The status contains a valid tag.  We know the packet was sent to
1492	 * this endpoint (already verified by ipa_endpoint_status_skip()).
1493	 * If the packet came from the AP->command TX endpoint we know
1494	 * this packet was sent as part of the pipeline clear process.
1495	 */
1496	endpoint_id = ipa_status_extract(ipa, data, STATUS_SRC_ENDPOINT);
1497	command_endpoint = ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX];
1498	if (endpoint_id == command_endpoint->endpoint_id) {
1499		complete(&ipa->completion);
1500	} else {
1501		dev_err(ipa->dev, "unexpected tagged packet from endpoint %u\n",
1502			endpoint_id);
1503	}
1504
1505	return true;
1506}
1507
1508/* Return whether the status indicates the packet should be dropped */
1509static bool
1510ipa_endpoint_status_drop(struct ipa_endpoint *endpoint, const void *data)
1511{
1512	enum ipa_status_exception exception;
1513	struct ipa *ipa = endpoint->ipa;
1514	u32 rule;
1515
1516	/* If the status indicates a tagged transfer, we'll drop the packet */
1517	if (ipa_endpoint_status_tag_valid(endpoint, data))
1518		return true;
1519
1520	/* Deaggregation exceptions we drop; all other types we consume */
1521	exception = ipa_status_extract(ipa, data, STATUS_EXCEPTION);
1522	if (exception)
1523		return exception == IPA_STATUS_EXCEPTION_DEAGGR;
1524
1525	/* Drop the packet if it fails to match a routing rule; otherwise no */
1526	rule = ipa_status_extract(ipa, data, STATUS_ROUTER_RULE_INDEX);
1527
1528	return rule == IPA_STATUS_RULE_MISS;
1529}
1530
1531static void ipa_endpoint_status_parse(struct ipa_endpoint *endpoint,
1532				      struct page *page, u32 total_len)
1533{
1534	u32 buffer_size = endpoint->config.rx.buffer_size;
1535	void *data = page_address(page) + NET_SKB_PAD;
1536	u32 unused = buffer_size - total_len;
1537	struct ipa *ipa = endpoint->ipa;
1538	struct device *dev = ipa->dev;
1539	u32 resid = total_len;
1540
1541	while (resid) {
1542		u32 length;
1543		u32 align;
1544		u32 len;
1545
1546		if (resid < IPA_STATUS_SIZE) {
1547			dev_err(dev,
1548				"short message (%u bytes < %zu byte status)\n",
1549				resid, IPA_STATUS_SIZE);
1550			break;
1551		}
1552
1553		/* Skip over status packets that lack packet data */
1554		length = ipa_status_extract(ipa, data, STATUS_LENGTH);
1555		if (!length || ipa_endpoint_status_skip(endpoint, data)) {
1556			data += IPA_STATUS_SIZE;
1557			resid -= IPA_STATUS_SIZE;
1558			continue;
1559		}
1560
1561		/* Compute the amount of buffer space consumed by the packet,
1562		 * including the status.  If the hardware is configured to
1563		 * pad packet data to an aligned boundary, account for that.
1564		 * And if checksum offload is enabled a trailer containing
1565		 * computed checksum information will be appended.
1566		 */
1567		align = endpoint->config.rx.pad_align ? : 1;
1568		len = IPA_STATUS_SIZE + ALIGN(length, align);
1569		if (endpoint->config.checksum)
1570			len += sizeof(struct rmnet_map_dl_csum_trailer);
1571
1572		if (!ipa_endpoint_status_drop(endpoint, data)) {
1573			void *data2;
1574			u32 extra;
1575
1576			/* Client receives only packet data (no status) */
1577			data2 = data + IPA_STATUS_SIZE;
1578
1579			/* Have the true size reflect the extra unused space in
1580			 * the original receive buffer.  Distribute the "cost"
1581			 * proportionately across all aggregated packets in the
1582			 * buffer.
1583			 */
1584			extra = DIV_ROUND_CLOSEST(unused * len, total_len);
1585			ipa_endpoint_skb_copy(endpoint, data2, length, extra);
1586		}
1587
1588		/* Consume status and the full packet it describes */
1589		data += len;
1590		resid -= len;
1591	}
1592}
1593
1594void ipa_endpoint_trans_complete(struct ipa_endpoint *endpoint,
1595				 struct gsi_trans *trans)
1596{
1597	struct page *page;
1598
1599	if (endpoint->toward_ipa)
1600		return;
1601
1602	if (trans->cancelled)
1603		goto done;
1604
1605	/* Parse or build a socket buffer using the actual received length */
1606	page = trans->data;
1607	if (endpoint->config.status_enable)
1608		ipa_endpoint_status_parse(endpoint, page, trans->len);
1609	else if (ipa_endpoint_skb_build(endpoint, page, trans->len))
1610		trans->data = NULL;	/* Pages have been consumed */
1611done:
1612	ipa_endpoint_replenish(endpoint);
1613}
1614
1615void ipa_endpoint_trans_release(struct ipa_endpoint *endpoint,
1616				struct gsi_trans *trans)
1617{
1618	if (endpoint->toward_ipa) {
1619		struct ipa *ipa = endpoint->ipa;
1620
1621		/* Nothing to do for command transactions */
1622		if (endpoint != ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]) {
1623			struct sk_buff *skb = trans->data;
1624
1625			if (skb)
1626				dev_kfree_skb_any(skb);
1627		}
1628	} else {
1629		struct page *page = trans->data;
1630
1631		if (page)
1632			put_page(page);
1633	}
1634}
1635
1636void ipa_endpoint_default_route_set(struct ipa *ipa, u32 endpoint_id)
1637{
1638	const struct reg *reg;
1639	u32 val;
1640
1641	reg = ipa_reg(ipa, ROUTE);
1642	/* ROUTE_DIS is 0 */
1643	val = reg_encode(reg, ROUTE_DEF_PIPE, endpoint_id);
1644	val |= reg_bit(reg, ROUTE_DEF_HDR_TABLE);
1645	/* ROUTE_DEF_HDR_OFST is 0 */
1646	val |= reg_encode(reg, ROUTE_FRAG_DEF_PIPE, endpoint_id);
1647	val |= reg_bit(reg, ROUTE_DEF_RETAIN_HDR);
1648
1649	iowrite32(val, ipa->reg_virt + reg_offset(reg));
1650}
1651
1652void ipa_endpoint_default_route_clear(struct ipa *ipa)
1653{
1654	ipa_endpoint_default_route_set(ipa, 0);
1655}
1656
1657/**
1658 * ipa_endpoint_reset_rx_aggr() - Reset RX endpoint with aggregation active
1659 * @endpoint:	Endpoint to be reset
1660 *
1661 * If aggregation is active on an RX endpoint when a reset is performed
1662 * on its underlying GSI channel, a special sequence of actions must be
1663 * taken to ensure the IPA pipeline is properly cleared.
1664 *
1665 * Return:	0 if successful, or a negative error code
1666 */
1667static int ipa_endpoint_reset_rx_aggr(struct ipa_endpoint *endpoint)
1668{
1669	struct ipa *ipa = endpoint->ipa;
1670	struct device *dev = ipa->dev;
1671	struct gsi *gsi = &ipa->gsi;
1672	bool suspended = false;
1673	dma_addr_t addr;
1674	u32 retries;
1675	u32 len = 1;
1676	void *virt;
1677	int ret;
1678
1679	virt = kzalloc(len, GFP_KERNEL);
1680	if (!virt)
1681		return -ENOMEM;
1682
1683	addr = dma_map_single(dev, virt, len, DMA_FROM_DEVICE);
1684	if (dma_mapping_error(dev, addr)) {
1685		ret = -ENOMEM;
1686		goto out_kfree;
1687	}
1688
1689	/* Force close aggregation before issuing the reset */
1690	ipa_endpoint_force_close(endpoint);
1691
1692	/* Reset and reconfigure the channel with the doorbell engine
1693	 * disabled.  Then poll until we know aggregation is no longer
1694	 * active.  We'll re-enable the doorbell (if appropriate) when
1695	 * we reset again below.
1696	 */
1697	gsi_channel_reset(gsi, endpoint->channel_id, false);
1698
1699	/* Make sure the channel isn't suspended */
1700	suspended = ipa_endpoint_program_suspend(endpoint, false);
1701
1702	/* Start channel and do a 1 byte read */
1703	ret = gsi_channel_start(gsi, endpoint->channel_id);
1704	if (ret)
1705		goto out_suspend_again;
1706
1707	ret = gsi_trans_read_byte(gsi, endpoint->channel_id, addr);
1708	if (ret)
1709		goto err_endpoint_stop;
1710
1711	/* Wait for aggregation to be closed on the channel */
1712	retries = IPA_ENDPOINT_RESET_AGGR_RETRY_MAX;
1713	do {
1714		if (!ipa_endpoint_aggr_active(endpoint))
1715			break;
1716		usleep_range(USEC_PER_MSEC, 2 * USEC_PER_MSEC);
1717	} while (retries--);
1718
1719	/* Check one last time */
1720	if (ipa_endpoint_aggr_active(endpoint))
1721		dev_err(dev, "endpoint %u still active during reset\n",
1722			endpoint->endpoint_id);
1723
1724	gsi_trans_read_byte_done(gsi, endpoint->channel_id);
1725
1726	ret = gsi_channel_stop(gsi, endpoint->channel_id);
1727	if (ret)
1728		goto out_suspend_again;
1729
1730	/* Finally, reset and reconfigure the channel again (re-enabling
1731	 * the doorbell engine if appropriate).  Sleep for 1 millisecond to
1732	 * complete the channel reset sequence.  Finish by suspending the
1733	 * channel again (if necessary).
1734	 */
1735	gsi_channel_reset(gsi, endpoint->channel_id, true);
1736
1737	usleep_range(USEC_PER_MSEC, 2 * USEC_PER_MSEC);
1738
1739	goto out_suspend_again;
1740
1741err_endpoint_stop:
1742	(void)gsi_channel_stop(gsi, endpoint->channel_id);
1743out_suspend_again:
1744	if (suspended)
1745		(void)ipa_endpoint_program_suspend(endpoint, true);
1746	dma_unmap_single(dev, addr, len, DMA_FROM_DEVICE);
1747out_kfree:
1748	kfree(virt);
1749
1750	return ret;
1751}
1752
1753static void ipa_endpoint_reset(struct ipa_endpoint *endpoint)
1754{
1755	u32 channel_id = endpoint->channel_id;
1756	struct ipa *ipa = endpoint->ipa;
1757	bool special;
1758	int ret = 0;
1759
1760	/* On IPA v3.5.1, if an RX endpoint is reset while aggregation
1761	 * is active, we need to handle things specially to recover.
1762	 * All other cases just need to reset the underlying GSI channel.
1763	 */
1764	special = ipa->version < IPA_VERSION_4_0 && !endpoint->toward_ipa &&
1765			endpoint->config.aggregation;
1766	if (special && ipa_endpoint_aggr_active(endpoint))
1767		ret = ipa_endpoint_reset_rx_aggr(endpoint);
1768	else
1769		gsi_channel_reset(&ipa->gsi, channel_id, true);
1770
1771	if (ret)
1772		dev_err(ipa->dev,
1773			"error %d resetting channel %u for endpoint %u\n",
1774			ret, endpoint->channel_id, endpoint->endpoint_id);
1775}
1776
1777static void ipa_endpoint_program(struct ipa_endpoint *endpoint)
1778{
1779	if (endpoint->toward_ipa) {
1780		/* Newer versions of IPA use GSI channel flow control
1781		 * instead of endpoint DELAY mode to prevent sending data.
1782		 * Flow control is disabled for newly-allocated channels,
1783		 * and we can assume flow control is not (ever) enabled
1784		 * for AP TX channels.
1785		 */
1786		if (endpoint->ipa->version < IPA_VERSION_4_2)
1787			ipa_endpoint_program_delay(endpoint, false);
1788	} else {
1789		/* Ensure suspend mode is off on all AP RX endpoints */
1790		(void)ipa_endpoint_program_suspend(endpoint, false);
1791	}
1792	ipa_endpoint_init_cfg(endpoint);
1793	ipa_endpoint_init_nat(endpoint);
1794	ipa_endpoint_init_hdr(endpoint);
1795	ipa_endpoint_init_hdr_ext(endpoint);
1796	ipa_endpoint_init_hdr_metadata_mask(endpoint);
1797	ipa_endpoint_init_mode(endpoint);
1798	ipa_endpoint_init_aggr(endpoint);
1799	if (!endpoint->toward_ipa) {
1800		if (endpoint->config.rx.holb_drop)
1801			ipa_endpoint_init_hol_block_enable(endpoint, 0);
1802		else
1803			ipa_endpoint_init_hol_block_disable(endpoint);
1804	}
1805	ipa_endpoint_init_deaggr(endpoint);
1806	ipa_endpoint_init_rsrc_grp(endpoint);
1807	ipa_endpoint_init_seq(endpoint);
1808	ipa_endpoint_status(endpoint);
1809}
1810
1811int ipa_endpoint_enable_one(struct ipa_endpoint *endpoint)
1812{
1813	u32 endpoint_id = endpoint->endpoint_id;
1814	struct ipa *ipa = endpoint->ipa;
1815	struct gsi *gsi = &ipa->gsi;
1816	int ret;
1817
1818	ret = gsi_channel_start(gsi, endpoint->channel_id);
1819	if (ret) {
1820		dev_err(ipa->dev,
1821			"error %d starting %cX channel %u for endpoint %u\n",
1822			ret, endpoint->toward_ipa ? 'T' : 'R',
1823			endpoint->channel_id, endpoint_id);
1824		return ret;
1825	}
1826
1827	if (!endpoint->toward_ipa) {
1828		ipa_interrupt_suspend_enable(ipa->interrupt, endpoint_id);
1829		ipa_endpoint_replenish_enable(endpoint);
1830	}
1831
1832	__set_bit(endpoint_id, ipa->enabled);
1833
1834	return 0;
1835}
1836
1837void ipa_endpoint_disable_one(struct ipa_endpoint *endpoint)
1838{
1839	u32 endpoint_id = endpoint->endpoint_id;
1840	struct ipa *ipa = endpoint->ipa;
1841	struct gsi *gsi = &ipa->gsi;
1842	int ret;
1843
1844	if (!test_bit(endpoint_id, ipa->enabled))
1845		return;
1846
1847	__clear_bit(endpoint_id, endpoint->ipa->enabled);
1848
1849	if (!endpoint->toward_ipa) {
1850		ipa_endpoint_replenish_disable(endpoint);
1851		ipa_interrupt_suspend_disable(ipa->interrupt, endpoint_id);
1852	}
1853
1854	/* Note that if stop fails, the channel's state is not well-defined */
1855	ret = gsi_channel_stop(gsi, endpoint->channel_id);
1856	if (ret)
1857		dev_err(ipa->dev, "error %d attempting to stop endpoint %u\n",
1858			ret, endpoint_id);
1859}
1860
1861void ipa_endpoint_suspend_one(struct ipa_endpoint *endpoint)
1862{
1863	struct device *dev = endpoint->ipa->dev;
1864	struct gsi *gsi = &endpoint->ipa->gsi;
1865	int ret;
1866
1867	if (!test_bit(endpoint->endpoint_id, endpoint->ipa->enabled))
1868		return;
1869
1870	if (!endpoint->toward_ipa) {
1871		ipa_endpoint_replenish_disable(endpoint);
1872		(void)ipa_endpoint_program_suspend(endpoint, true);
1873	}
1874
1875	ret = gsi_channel_suspend(gsi, endpoint->channel_id);
1876	if (ret)
1877		dev_err(dev, "error %d suspending channel %u\n", ret,
1878			endpoint->channel_id);
1879}
1880
1881void ipa_endpoint_resume_one(struct ipa_endpoint *endpoint)
1882{
1883	struct device *dev = endpoint->ipa->dev;
1884	struct gsi *gsi = &endpoint->ipa->gsi;
1885	int ret;
1886
1887	if (!test_bit(endpoint->endpoint_id, endpoint->ipa->enabled))
1888		return;
1889
1890	if (!endpoint->toward_ipa)
1891		(void)ipa_endpoint_program_suspend(endpoint, false);
1892
1893	ret = gsi_channel_resume(gsi, endpoint->channel_id);
1894	if (ret)
1895		dev_err(dev, "error %d resuming channel %u\n", ret,
1896			endpoint->channel_id);
1897	else if (!endpoint->toward_ipa)
1898		ipa_endpoint_replenish_enable(endpoint);
1899}
1900
1901void ipa_endpoint_suspend(struct ipa *ipa)
1902{
1903	if (!ipa->setup_complete)
1904		return;
1905
1906	if (ipa->modem_netdev)
1907		ipa_modem_suspend(ipa->modem_netdev);
1908
1909	ipa_endpoint_suspend_one(ipa->name_map[IPA_ENDPOINT_AP_LAN_RX]);
1910	ipa_endpoint_suspend_one(ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]);
1911}
1912
1913void ipa_endpoint_resume(struct ipa *ipa)
1914{
1915	if (!ipa->setup_complete)
1916		return;
1917
1918	ipa_endpoint_resume_one(ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]);
1919	ipa_endpoint_resume_one(ipa->name_map[IPA_ENDPOINT_AP_LAN_RX]);
1920
1921	if (ipa->modem_netdev)
1922		ipa_modem_resume(ipa->modem_netdev);
1923}
1924
1925static void ipa_endpoint_setup_one(struct ipa_endpoint *endpoint)
1926{
1927	struct gsi *gsi = &endpoint->ipa->gsi;
1928	u32 channel_id = endpoint->channel_id;
1929
1930	/* Only AP endpoints get set up */
1931	if (endpoint->ee_id != GSI_EE_AP)
1932		return;
1933
1934	endpoint->skb_frag_max = gsi->channel[channel_id].trans_tre_max - 1;
1935	if (!endpoint->toward_ipa) {
1936		/* RX transactions require a single TRE, so the maximum
1937		 * backlog is the same as the maximum outstanding TREs.
1938		 */
1939		clear_bit(IPA_REPLENISH_ENABLED, endpoint->replenish_flags);
1940		clear_bit(IPA_REPLENISH_ACTIVE, endpoint->replenish_flags);
1941		INIT_DELAYED_WORK(&endpoint->replenish_work,
1942				  ipa_endpoint_replenish_work);
1943	}
1944
1945	ipa_endpoint_program(endpoint);
1946
1947	__set_bit(endpoint->endpoint_id, endpoint->ipa->set_up);
1948}
1949
1950static void ipa_endpoint_teardown_one(struct ipa_endpoint *endpoint)
1951{
1952	__clear_bit(endpoint->endpoint_id, endpoint->ipa->set_up);
1953
1954	if (!endpoint->toward_ipa)
1955		cancel_delayed_work_sync(&endpoint->replenish_work);
1956
1957	ipa_endpoint_reset(endpoint);
1958}
1959
1960void ipa_endpoint_setup(struct ipa *ipa)
1961{
1962	u32 endpoint_id;
1963
1964	for_each_set_bit(endpoint_id, ipa->defined, ipa->endpoint_count)
1965		ipa_endpoint_setup_one(&ipa->endpoint[endpoint_id]);
1966}
1967
1968void ipa_endpoint_teardown(struct ipa *ipa)
1969{
1970	u32 endpoint_id;
1971
1972	for_each_set_bit(endpoint_id, ipa->set_up, ipa->endpoint_count)
1973		ipa_endpoint_teardown_one(&ipa->endpoint[endpoint_id]);
1974}
1975
1976void ipa_endpoint_deconfig(struct ipa *ipa)
1977{
1978	ipa->available_count = 0;
1979	bitmap_free(ipa->available);
1980	ipa->available = NULL;
1981}
1982
1983int ipa_endpoint_config(struct ipa *ipa)
1984{
1985	struct device *dev = ipa->dev;
1986	const struct reg *reg;
1987	u32 endpoint_id;
1988	u32 hw_limit;
1989	u32 tx_count;
1990	u32 rx_count;
1991	u32 rx_base;
1992	u32 limit;
1993	u32 val;
1994
1995	/* Prior to IPA v3.5, the FLAVOR_0 register was not supported.
1996	 * Furthermore, the endpoints were not grouped such that TX
1997	 * endpoint numbers started with 0 and RX endpoints had numbers
1998	 * higher than all TX endpoints, so we can't do the simple
1999	 * direction check used for newer hardware below.
2000	 *
2001	 * For hardware that doesn't support the FLAVOR_0 register,
2002	 * just set the available mask to support any endpoint, and
2003	 * assume the configuration is valid.
2004	 */
2005	if (ipa->version < IPA_VERSION_3_5) {
2006		ipa->available = bitmap_zalloc(IPA_ENDPOINT_MAX, GFP_KERNEL);
2007		if (!ipa->available)
2008			return -ENOMEM;
2009		ipa->available_count = IPA_ENDPOINT_MAX;
2010
2011		bitmap_set(ipa->available, 0, IPA_ENDPOINT_MAX);
2012
2013		return 0;
2014	}
2015
2016	/* Find out about the endpoints supplied by the hardware, and ensure
2017	 * the highest one doesn't exceed the number supported by software.
2018	 */
2019	reg = ipa_reg(ipa, FLAVOR_0);
2020	val = ioread32(ipa->reg_virt + reg_offset(reg));
2021
2022	/* Our RX is an IPA producer; our TX is an IPA consumer. */
2023	tx_count = reg_decode(reg, MAX_CONS_PIPES, val);
2024	rx_count = reg_decode(reg, MAX_PROD_PIPES, val);
2025	rx_base = reg_decode(reg, PROD_LOWEST, val);
2026
2027	limit = rx_base + rx_count;
2028	if (limit > IPA_ENDPOINT_MAX) {
2029		dev_err(dev, "too many endpoints, %u > %u\n",
2030			limit, IPA_ENDPOINT_MAX);
2031		return -EINVAL;
2032	}
2033
2034	/* Until IPA v5.0, the max endpoint ID was 32 */
2035	hw_limit = ipa->version < IPA_VERSION_5_0 ? 32 : U8_MAX + 1;
2036	if (limit > hw_limit) {
2037		dev_err(dev, "unexpected endpoint count, %u > %u\n",
2038			limit, hw_limit);
2039		return -EINVAL;
2040	}
2041
2042	/* Allocate and initialize the available endpoint bitmap */
2043	ipa->available = bitmap_zalloc(limit, GFP_KERNEL);
2044	if (!ipa->available)
2045		return -ENOMEM;
2046	ipa->available_count = limit;
2047
2048	/* Mark all supported RX and TX endpoints as available */
2049	bitmap_set(ipa->available, 0, tx_count);
2050	bitmap_set(ipa->available, rx_base, rx_count);
2051
2052	for_each_set_bit(endpoint_id, ipa->defined, ipa->endpoint_count) {
2053		struct ipa_endpoint *endpoint;
2054
2055		if (endpoint_id >= limit) {
2056			dev_err(dev, "invalid endpoint id, %u > %u\n",
2057				endpoint_id, limit - 1);
2058			goto err_free_bitmap;
2059		}
2060
2061		if (!test_bit(endpoint_id, ipa->available)) {
2062			dev_err(dev, "unavailable endpoint id %u\n",
2063				endpoint_id);
2064			goto err_free_bitmap;
2065		}
2066
2067		/* Make sure it's pointing in the right direction */
2068		endpoint = &ipa->endpoint[endpoint_id];
2069		if (endpoint->toward_ipa) {
2070			if (endpoint_id < tx_count)
2071				continue;
2072		} else if (endpoint_id >= rx_base) {
2073			continue;
2074		}
2075
2076		dev_err(dev, "endpoint id %u wrong direction\n", endpoint_id);
2077		goto err_free_bitmap;
2078	}
2079
2080	return 0;
2081
2082err_free_bitmap:
2083	ipa_endpoint_deconfig(ipa);
2084
2085	return -EINVAL;
2086}
2087
2088static void ipa_endpoint_init_one(struct ipa *ipa, enum ipa_endpoint_name name,
2089				  const struct ipa_gsi_endpoint_data *data)
2090{
2091	struct ipa_endpoint *endpoint;
2092
2093	endpoint = &ipa->endpoint[data->endpoint_id];
2094
2095	if (data->ee_id == GSI_EE_AP)
2096		ipa->channel_map[data->channel_id] = endpoint;
2097	ipa->name_map[name] = endpoint;
2098
2099	endpoint->ipa = ipa;
2100	endpoint->ee_id = data->ee_id;
2101	endpoint->channel_id = data->channel_id;
2102	endpoint->endpoint_id = data->endpoint_id;
2103	endpoint->toward_ipa = data->toward_ipa;
2104	endpoint->config = data->endpoint.config;
2105
2106	__set_bit(endpoint->endpoint_id, ipa->defined);
2107}
2108
2109static void ipa_endpoint_exit_one(struct ipa_endpoint *endpoint)
2110{
2111	__clear_bit(endpoint->endpoint_id, endpoint->ipa->defined);
2112
2113	memset(endpoint, 0, sizeof(*endpoint));
2114}
2115
2116void ipa_endpoint_exit(struct ipa *ipa)
2117{
2118	u32 endpoint_id;
2119
2120	ipa->filtered = 0;
2121
2122	for_each_set_bit(endpoint_id, ipa->defined, ipa->endpoint_count)
2123		ipa_endpoint_exit_one(&ipa->endpoint[endpoint_id]);
2124
2125	bitmap_free(ipa->enabled);
2126	ipa->enabled = NULL;
2127	bitmap_free(ipa->set_up);
2128	ipa->set_up = NULL;
2129	bitmap_free(ipa->defined);
2130	ipa->defined = NULL;
2131
2132	memset(ipa->name_map, 0, sizeof(ipa->name_map));
2133	memset(ipa->channel_map, 0, sizeof(ipa->channel_map));
2134}
2135
2136/* Returns a bitmask of endpoints that support filtering, or 0 on error */
2137int ipa_endpoint_init(struct ipa *ipa, u32 count,
2138		      const struct ipa_gsi_endpoint_data *data)
2139{
2140	enum ipa_endpoint_name name;
2141	u32 filtered;
2142
2143	BUILD_BUG_ON(!IPA_REPLENISH_BATCH);
2144
2145	/* Number of endpoints is one more than the maximum ID */
2146	ipa->endpoint_count = ipa_endpoint_max(ipa, count, data) + 1;
2147	if (!ipa->endpoint_count)
2148		return -EINVAL;
2149
2150	/* Initialize endpoint state bitmaps */
2151	ipa->defined = bitmap_zalloc(ipa->endpoint_count, GFP_KERNEL);
2152	if (!ipa->defined)
2153		return -ENOMEM;
2154
2155	ipa->set_up = bitmap_zalloc(ipa->endpoint_count, GFP_KERNEL);
2156	if (!ipa->set_up)
2157		goto err_free_defined;
2158
2159	ipa->enabled = bitmap_zalloc(ipa->endpoint_count, GFP_KERNEL);
2160	if (!ipa->enabled)
2161		goto err_free_set_up;
2162
2163	filtered = 0;
2164	for (name = 0; name < count; name++, data++) {
2165		if (ipa_gsi_endpoint_data_empty(data))
2166			continue;	/* Skip over empty slots */
2167
2168		ipa_endpoint_init_one(ipa, name, data);
2169
2170		if (data->endpoint.filter_support)
2171			filtered |= BIT(data->endpoint_id);
2172		if (data->ee_id == GSI_EE_MODEM && data->toward_ipa)
2173			ipa->modem_tx_count++;
2174	}
2175
2176	/* Make sure the set of filtered endpoints is valid */
2177	if (!ipa_filtered_valid(ipa, filtered)) {
2178		ipa_endpoint_exit(ipa);
2179
2180		return -EINVAL;
2181	}
2182
2183	ipa->filtered = filtered;
2184
2185	return 0;
2186
2187err_free_set_up:
2188	bitmap_free(ipa->set_up);
2189	ipa->set_up = NULL;
2190err_free_defined:
2191	bitmap_free(ipa->defined);
2192	ipa->defined = NULL;
2193
2194	return -ENOMEM;
2195}
2196