1// SPDX-License-Identifier: GPL-2.0
2
3/* Copyright (c) 2012-2018, The Linux Foundation. All rights reserved.
4 * Copyright (C) 2019-2022 Linaro Ltd.
5 */
6
7#include <linux/types.h>
8#include <linux/bits.h>
9#include <linux/bitfield.h>
10#include <linux/refcount.h>
11#include <linux/scatterlist.h>
12#include <linux/dma-direction.h>
13
14#include "gsi.h"
15#include "gsi_private.h"
16#include "gsi_trans.h"
17#include "ipa_gsi.h"
18#include "ipa_data.h"
19#include "ipa_cmd.h"
20
21/**
22 * DOC: GSI Transactions
23 *
24 * A GSI transaction abstracts the behavior of a GSI channel by representing
25 * everything about a related group of IPA operations in a single structure.
26 * (A "operation" in this sense is either a data transfer or an IPA immediate
27 * command.)  Most details of interaction with the GSI hardware are managed
28 * by the GSI transaction core, allowing users to simply describe operations
29 * to be performed.  When a transaction has completed a callback function
30 * (dependent on the type of endpoint associated with the channel) allows
31 * cleanup of resources associated with the transaction.
32 *
33 * To perform an operation (or set of them), a user of the GSI transaction
34 * interface allocates a transaction, indicating the number of TREs required
35 * (one per operation).  If sufficient TREs are available, they are reserved
36 * for use in the transaction and the allocation succeeds.  This way
37 * exhaustion of the available TREs in a channel ring is detected as early
38 * as possible.  Any other resources that might be needed to complete a
39 * transaction are also allocated when the transaction is allocated.
40 *
41 * Operations performed as part of a transaction are represented in an array
42 * of Linux scatterlist structures, allocated with the transaction.  These
43 * scatterlist structures are initialized by "adding" operations to the
44 * transaction.  If a buffer in an operation must be mapped for DMA, this is
45 * done at the time it is added to the transaction.  It is possible for a
46 * mapping error to occur when an operation is added.  In this case the
47 * transaction should simply be freed; this correctly releases resources
48 * associated with the transaction.
49 *
50 * Once all operations have been successfully added to a transaction, the
51 * transaction is committed.  Committing transfers ownership of the entire
52 * transaction to the GSI transaction core.  The GSI transaction code
53 * formats the content of the scatterlist array into the channel ring
54 * buffer and informs the hardware that new TREs are available to process.
55 *
56 * The last TRE in each transaction is marked to interrupt the AP when the
57 * GSI hardware has completed it.  Because transfers described by TREs are
58 * performed strictly in order, signaling the completion of just the last
59 * TRE in the transaction is sufficient to indicate the full transaction
60 * is complete.
61 *
62 * When a transaction is complete, ipa_gsi_trans_complete() is called by the
63 * GSI code into the IPA layer, allowing it to perform any final cleanup
64 * required before the transaction is freed.
65 */
66
67/* Hardware values representing a transfer element type */
68enum gsi_tre_type {
69	GSI_RE_XFER	= 0x2,
70	GSI_RE_IMMD_CMD	= 0x3,
71};
72
73/* An entry in a channel ring */
74struct gsi_tre {
75	__le64 addr;		/* DMA address */
76	__le16 len_opcode;	/* length in bytes or enum IPA_CMD_* */
77	__le16 reserved;
78	__le32 flags;		/* TRE_FLAGS_* */
79};
80
81/* gsi_tre->flags mask values (in CPU byte order) */
82#define TRE_FLAGS_CHAIN_FMASK	GENMASK(0, 0)
83#define TRE_FLAGS_IEOT_FMASK	GENMASK(9, 9)
84#define TRE_FLAGS_BEI_FMASK	GENMASK(10, 10)
85#define TRE_FLAGS_TYPE_FMASK	GENMASK(23, 16)
86
87int gsi_trans_pool_init(struct gsi_trans_pool *pool, size_t size, u32 count,
88			u32 max_alloc)
89{
90	size_t alloc_size;
91	void *virt;
92
93	if (!size)
94		return -EINVAL;
95	if (count < max_alloc)
96		return -EINVAL;
97	if (!max_alloc)
98		return -EINVAL;
99
100	/* By allocating a few extra entries in our pool (one less
101	 * than the maximum number that will be requested in a
102	 * single allocation), we can always satisfy requests without
103	 * ever worrying about straddling the end of the pool array.
104	 * If there aren't enough entries starting at the free index,
105	 * we just allocate free entries from the beginning of the pool.
106	 */
107	alloc_size = size_mul(count + max_alloc - 1, size);
108	alloc_size = kmalloc_size_roundup(alloc_size);
109	virt = kzalloc(alloc_size, GFP_KERNEL);
110	if (!virt)
111		return -ENOMEM;
112
113	pool->base = virt;
114	/* If the allocator gave us any extra memory, use it */
115	pool->count = alloc_size / size;
116	pool->free = 0;
117	pool->max_alloc = max_alloc;
118	pool->size = size;
119	pool->addr = 0;		/* Only used for DMA pools */
120
121	return 0;
122}
123
124void gsi_trans_pool_exit(struct gsi_trans_pool *pool)
125{
126	kfree(pool->base);
127	memset(pool, 0, sizeof(*pool));
128}
129
130/* Home-grown DMA pool.  This way we can preallocate the pool, and guarantee
131 * allocations will succeed.  The immediate commands in a transaction can
132 * require up to max_alloc elements from the pool.  But we only allow
133 * allocation of a single element from a DMA pool at a time.
134 */
135int gsi_trans_pool_init_dma(struct device *dev, struct gsi_trans_pool *pool,
136			    size_t size, u32 count, u32 max_alloc)
137{
138	size_t total_size;
139	dma_addr_t addr;
140	void *virt;
141
142	if (!size)
143		return -EINVAL;
144	if (count < max_alloc)
145		return -EINVAL;
146	if (!max_alloc)
147		return -EINVAL;
148
149	/* Don't let allocations cross a power-of-two boundary */
150	size = __roundup_pow_of_two(size);
151	total_size = (count + max_alloc - 1) * size;
152
153	/* The allocator will give us a power-of-2 number of pages
154	 * sufficient to satisfy our request.  Round up our requested
155	 * size to avoid any unused space in the allocation.  This way
156	 * gsi_trans_pool_exit_dma() can assume the total allocated
157	 * size is exactly (count * size).
158	 */
159	total_size = PAGE_SIZE << get_order(total_size);
160
161	virt = dma_alloc_coherent(dev, total_size, &addr, GFP_KERNEL);
162	if (!virt)
163		return -ENOMEM;
164
165	pool->base = virt;
166	pool->count = total_size / size;
167	pool->free = 0;
168	pool->size = size;
169	pool->max_alloc = max_alloc;
170	pool->addr = addr;
171
172	return 0;
173}
174
175void gsi_trans_pool_exit_dma(struct device *dev, struct gsi_trans_pool *pool)
176{
177	size_t total_size = pool->count * pool->size;
178
179	dma_free_coherent(dev, total_size, pool->base, pool->addr);
180	memset(pool, 0, sizeof(*pool));
181}
182
183/* Return the byte offset of the next free entry in the pool */
184static u32 gsi_trans_pool_alloc_common(struct gsi_trans_pool *pool, u32 count)
185{
186	u32 offset;
187
188	WARN_ON(!count);
189	WARN_ON(count > pool->max_alloc);
190
191	/* Allocate from beginning if wrap would occur */
192	if (count > pool->count - pool->free)
193		pool->free = 0;
194
195	offset = pool->free * pool->size;
196	pool->free += count;
197	memset(pool->base + offset, 0, count * pool->size);
198
199	return offset;
200}
201
202/* Allocate a contiguous block of zeroed entries from a pool */
203void *gsi_trans_pool_alloc(struct gsi_trans_pool *pool, u32 count)
204{
205	return pool->base + gsi_trans_pool_alloc_common(pool, count);
206}
207
208/* Allocate a single zeroed entry from a DMA pool */
209void *gsi_trans_pool_alloc_dma(struct gsi_trans_pool *pool, dma_addr_t *addr)
210{
211	u32 offset = gsi_trans_pool_alloc_common(pool, 1);
212
213	*addr = pool->addr + offset;
214
215	return pool->base + offset;
216}
217
218/* Map a TRE ring entry index to the transaction it is associated with */
219static void gsi_trans_map(struct gsi_trans *trans, u32 index)
220{
221	struct gsi_channel *channel = &trans->gsi->channel[trans->channel_id];
222
223	/* The completion event will indicate the last TRE used */
224	index += trans->used_count - 1;
225
226	/* Note: index *must* be used modulo the ring count here */
227	channel->trans_info.map[index % channel->tre_ring.count] = trans;
228}
229
230/* Return the transaction mapped to a given ring entry */
231struct gsi_trans *
232gsi_channel_trans_mapped(struct gsi_channel *channel, u32 index)
233{
234	/* Note: index *must* be used modulo the ring count here */
235	return channel->trans_info.map[index % channel->tre_ring.count];
236}
237
238/* Return the oldest completed transaction for a channel (or null) */
239struct gsi_trans *gsi_channel_trans_complete(struct gsi_channel *channel)
240{
241	struct gsi_trans_info *trans_info = &channel->trans_info;
242	u16 trans_id = trans_info->completed_id;
243
244	if (trans_id == trans_info->pending_id) {
245		gsi_channel_update(channel);
246		if (trans_id == trans_info->pending_id)
247			return NULL;
248	}
249
250	return &trans_info->trans[trans_id %= channel->tre_count];
251}
252
253/* Move a transaction from allocated to committed state */
254static void gsi_trans_move_committed(struct gsi_trans *trans)
255{
256	struct gsi_channel *channel = &trans->gsi->channel[trans->channel_id];
257	struct gsi_trans_info *trans_info = &channel->trans_info;
258
259	/* This allocated transaction is now committed */
260	trans_info->allocated_id++;
261}
262
263/* Move committed transactions to pending state */
264static void gsi_trans_move_pending(struct gsi_trans *trans)
265{
266	struct gsi_channel *channel = &trans->gsi->channel[trans->channel_id];
267	struct gsi_trans_info *trans_info = &channel->trans_info;
268	u16 trans_index = trans - &trans_info->trans[0];
269	u16 delta;
270
271	/* These committed transactions are now pending */
272	delta = trans_index - trans_info->committed_id + 1;
273	trans_info->committed_id += delta % channel->tre_count;
274}
275
276/* Move pending transactions to completed state */
277void gsi_trans_move_complete(struct gsi_trans *trans)
278{
279	struct gsi_channel *channel = &trans->gsi->channel[trans->channel_id];
280	struct gsi_trans_info *trans_info = &channel->trans_info;
281	u16 trans_index = trans - trans_info->trans;
282	u16 delta;
283
284	/* These pending transactions are now completed */
285	delta = trans_index - trans_info->pending_id + 1;
286	delta %= channel->tre_count;
287	trans_info->pending_id += delta;
288}
289
290/* Move a transaction from completed to polled state */
291void gsi_trans_move_polled(struct gsi_trans *trans)
292{
293	struct gsi_channel *channel = &trans->gsi->channel[trans->channel_id];
294	struct gsi_trans_info *trans_info = &channel->trans_info;
295
296	/* This completed transaction is now polled */
297	trans_info->completed_id++;
298}
299
300/* Reserve some number of TREs on a channel.  Returns true if successful */
301static bool
302gsi_trans_tre_reserve(struct gsi_trans_info *trans_info, u32 tre_count)
303{
304	int avail = atomic_read(&trans_info->tre_avail);
305	int new;
306
307	do {
308		new = avail - (int)tre_count;
309		if (unlikely(new < 0))
310			return false;
311	} while (!atomic_try_cmpxchg(&trans_info->tre_avail, &avail, new));
312
313	return true;
314}
315
316/* Release previously-reserved TRE entries to a channel */
317static void
318gsi_trans_tre_release(struct gsi_trans_info *trans_info, u32 tre_count)
319{
320	atomic_add(tre_count, &trans_info->tre_avail);
321}
322
323/* Return true if no transactions are allocated, false otherwise */
324bool gsi_channel_trans_idle(struct gsi *gsi, u32 channel_id)
325{
326	u32 tre_max = gsi_channel_tre_max(gsi, channel_id);
327	struct gsi_trans_info *trans_info;
328
329	trans_info = &gsi->channel[channel_id].trans_info;
330
331	return atomic_read(&trans_info->tre_avail) == tre_max;
332}
333
334/* Allocate a GSI transaction on a channel */
335struct gsi_trans *gsi_channel_trans_alloc(struct gsi *gsi, u32 channel_id,
336					  u32 tre_count,
337					  enum dma_data_direction direction)
338{
339	struct gsi_channel *channel = &gsi->channel[channel_id];
340	struct gsi_trans_info *trans_info;
341	struct gsi_trans *trans;
342	u16 trans_index;
343
344	if (WARN_ON(tre_count > channel->trans_tre_max))
345		return NULL;
346
347	trans_info = &channel->trans_info;
348
349	/* If we can't reserve the TREs for the transaction, we're done */
350	if (!gsi_trans_tre_reserve(trans_info, tre_count))
351		return NULL;
352
353	trans_index = trans_info->free_id % channel->tre_count;
354	trans = &trans_info->trans[trans_index];
355	memset(trans, 0, sizeof(*trans));
356
357	/* Initialize non-zero fields in the transaction */
358	trans->gsi = gsi;
359	trans->channel_id = channel_id;
360	trans->rsvd_count = tre_count;
361	init_completion(&trans->completion);
362
363	/* Allocate the scatterlist */
364	trans->sgl = gsi_trans_pool_alloc(&trans_info->sg_pool, tre_count);
365	sg_init_marker(trans->sgl, tre_count);
366
367	trans->direction = direction;
368	refcount_set(&trans->refcount, 1);
369
370	/* This free transaction is now allocated */
371	trans_info->free_id++;
372
373	return trans;
374}
375
376/* Free a previously-allocated transaction */
377void gsi_trans_free(struct gsi_trans *trans)
378{
379	struct gsi_trans_info *trans_info;
380
381	if (!refcount_dec_and_test(&trans->refcount))
382		return;
383
384	/* Unused transactions are allocated but never committed, pending,
385	 * completed, or polled.
386	 */
387	trans_info = &trans->gsi->channel[trans->channel_id].trans_info;
388	if (!trans->used_count) {
389		trans_info->allocated_id++;
390		trans_info->committed_id++;
391		trans_info->pending_id++;
392		trans_info->completed_id++;
393	} else {
394		ipa_gsi_trans_release(trans);
395	}
396
397	/* This transaction is now free */
398	trans_info->polled_id++;
399
400	/* Releasing the reserved TREs implicitly frees the sgl[] and
401	 * (if present) info[] arrays, plus the transaction itself.
402	 */
403	gsi_trans_tre_release(trans_info, trans->rsvd_count);
404}
405
406/* Add an immediate command to a transaction */
407void gsi_trans_cmd_add(struct gsi_trans *trans, void *buf, u32 size,
408		       dma_addr_t addr, enum ipa_cmd_opcode opcode)
409{
410	u32 which = trans->used_count++;
411	struct scatterlist *sg;
412
413	WARN_ON(which >= trans->rsvd_count);
414
415	/* Commands are quite different from data transfer requests.
416	 * Their payloads come from a pool whose memory is allocated
417	 * using dma_alloc_coherent().  We therefore do *not* map them
418	 * for DMA (unlike what we do for pages and skbs).
419	 *
420	 * When a transaction completes, the SGL is normally unmapped.
421	 * A command transaction has direction DMA_NONE, which tells
422	 * gsi_trans_complete() to skip the unmapping step.
423	 *
424	 * The only things we use directly in a command scatter/gather
425	 * entry are the DMA address and length.  We still need the SG
426	 * table flags to be maintained though, so assign a NULL page
427	 * pointer for that purpose.
428	 */
429	sg = &trans->sgl[which];
430	sg_assign_page(sg, NULL);
431	sg_dma_address(sg) = addr;
432	sg_dma_len(sg) = size;
433
434	trans->cmd_opcode[which] = opcode;
435}
436
437/* Add a page transfer to a transaction.  It will fill the only TRE. */
438int gsi_trans_page_add(struct gsi_trans *trans, struct page *page, u32 size,
439		       u32 offset)
440{
441	struct scatterlist *sg = &trans->sgl[0];
442	int ret;
443
444	if (WARN_ON(trans->rsvd_count != 1))
445		return -EINVAL;
446	if (WARN_ON(trans->used_count))
447		return -EINVAL;
448
449	sg_set_page(sg, page, size, offset);
450	ret = dma_map_sg(trans->gsi->dev, sg, 1, trans->direction);
451	if (!ret)
452		return -ENOMEM;
453
454	trans->used_count++;	/* Transaction now owns the (DMA mapped) page */
455
456	return 0;
457}
458
459/* Add an SKB transfer to a transaction.  No other TREs will be used. */
460int gsi_trans_skb_add(struct gsi_trans *trans, struct sk_buff *skb)
461{
462	struct scatterlist *sg = &trans->sgl[0];
463	u32 used_count;
464	int ret;
465
466	if (WARN_ON(trans->rsvd_count != 1))
467		return -EINVAL;
468	if (WARN_ON(trans->used_count))
469		return -EINVAL;
470
471	/* skb->len will not be 0 (checked early) */
472	ret = skb_to_sgvec(skb, sg, 0, skb->len);
473	if (ret < 0)
474		return ret;
475	used_count = ret;
476
477	ret = dma_map_sg(trans->gsi->dev, sg, used_count, trans->direction);
478	if (!ret)
479		return -ENOMEM;
480
481	/* Transaction now owns the (DMA mapped) skb */
482	trans->used_count += used_count;
483
484	return 0;
485}
486
487/* Compute the length/opcode value to use for a TRE */
488static __le16 gsi_tre_len_opcode(enum ipa_cmd_opcode opcode, u32 len)
489{
490	return opcode == IPA_CMD_NONE ? cpu_to_le16((u16)len)
491				      : cpu_to_le16((u16)opcode);
492}
493
494/* Compute the flags value to use for a given TRE */
495static __le32 gsi_tre_flags(bool last_tre, bool bei, enum ipa_cmd_opcode opcode)
496{
497	enum gsi_tre_type tre_type;
498	u32 tre_flags;
499
500	tre_type = opcode == IPA_CMD_NONE ? GSI_RE_XFER : GSI_RE_IMMD_CMD;
501	tre_flags = u32_encode_bits(tre_type, TRE_FLAGS_TYPE_FMASK);
502
503	/* Last TRE contains interrupt flags */
504	if (last_tre) {
505		/* All transactions end in a transfer completion interrupt */
506		tre_flags |= TRE_FLAGS_IEOT_FMASK;
507		/* Don't interrupt when outbound commands are acknowledged */
508		if (bei)
509			tre_flags |= TRE_FLAGS_BEI_FMASK;
510	} else {	/* All others indicate there's more to come */
511		tre_flags |= TRE_FLAGS_CHAIN_FMASK;
512	}
513
514	return cpu_to_le32(tre_flags);
515}
516
517static void gsi_trans_tre_fill(struct gsi_tre *dest_tre, dma_addr_t addr,
518			       u32 len, bool last_tre, bool bei,
519			       enum ipa_cmd_opcode opcode)
520{
521	struct gsi_tre tre;
522
523	tre.addr = cpu_to_le64(addr);
524	tre.len_opcode = gsi_tre_len_opcode(opcode, len);
525	tre.reserved = 0;
526	tre.flags = gsi_tre_flags(last_tre, bei, opcode);
527
528	/* ARM64 can write 16 bytes as a unit with a single instruction.
529	 * Doing the assignment this way is an attempt to make that happen.
530	 */
531	*dest_tre = tre;
532}
533
534/**
535 * __gsi_trans_commit() - Common GSI transaction commit code
536 * @trans:	Transaction to commit
537 * @ring_db:	Whether to tell the hardware about these queued transfers
538 *
539 * Formats channel ring TRE entries based on the content of the scatterlist.
540 * Maps a transaction pointer to the last ring entry used for the transaction,
541 * so it can be recovered when it completes.  Moves the transaction to
542 * pending state.  Finally, updates the channel ring pointer and optionally
543 * rings the doorbell.
544 */
545static void __gsi_trans_commit(struct gsi_trans *trans, bool ring_db)
546{
547	struct gsi_channel *channel = &trans->gsi->channel[trans->channel_id];
548	struct gsi_ring *tre_ring = &channel->tre_ring;
549	enum ipa_cmd_opcode opcode = IPA_CMD_NONE;
550	bool bei = channel->toward_ipa;
551	struct gsi_tre *dest_tre;
552	struct scatterlist *sg;
553	u32 byte_count = 0;
554	u8 *cmd_opcode;
555	u32 avail;
556	u32 i;
557
558	WARN_ON(!trans->used_count);
559
560	/* Consume the entries.  If we cross the end of the ring while
561	 * filling them we'll switch to the beginning to finish.
562	 * If there is no info array we're doing a simple data
563	 * transfer request, whose opcode is IPA_CMD_NONE.
564	 */
565	cmd_opcode = channel->command ? &trans->cmd_opcode[0] : NULL;
566	avail = tre_ring->count - tre_ring->index % tre_ring->count;
567	dest_tre = gsi_ring_virt(tre_ring, tre_ring->index);
568	for_each_sg(trans->sgl, sg, trans->used_count, i) {
569		bool last_tre = i == trans->used_count - 1;
570		dma_addr_t addr = sg_dma_address(sg);
571		u32 len = sg_dma_len(sg);
572
573		byte_count += len;
574		if (!avail--)
575			dest_tre = gsi_ring_virt(tre_ring, 0);
576		if (cmd_opcode)
577			opcode = *cmd_opcode++;
578
579		gsi_trans_tre_fill(dest_tre, addr, len, last_tre, bei, opcode);
580		dest_tre++;
581	}
582	/* Associate the TRE with the transaction */
583	gsi_trans_map(trans, tre_ring->index);
584
585	tre_ring->index += trans->used_count;
586
587	trans->len = byte_count;
588	if (channel->toward_ipa)
589		gsi_trans_tx_committed(trans);
590
591	gsi_trans_move_committed(trans);
592
593	/* Ring doorbell if requested, or if all TREs are allocated */
594	if (ring_db || !atomic_read(&channel->trans_info.tre_avail)) {
595		/* Report what we're handing off to hardware for TX channels */
596		if (channel->toward_ipa)
597			gsi_trans_tx_queued(trans);
598		gsi_trans_move_pending(trans);
599		gsi_channel_doorbell(channel);
600	}
601}
602
603/* Commit a GSI transaction */
604void gsi_trans_commit(struct gsi_trans *trans, bool ring_db)
605{
606	if (trans->used_count)
607		__gsi_trans_commit(trans, ring_db);
608	else
609		gsi_trans_free(trans);
610}
611
612/* Commit a GSI transaction and wait for it to complete */
613void gsi_trans_commit_wait(struct gsi_trans *trans)
614{
615	if (!trans->used_count)
616		goto out_trans_free;
617
618	refcount_inc(&trans->refcount);
619
620	__gsi_trans_commit(trans, true);
621
622	wait_for_completion(&trans->completion);
623
624out_trans_free:
625	gsi_trans_free(trans);
626}
627
628/* Process the completion of a transaction; called while polling */
629void gsi_trans_complete(struct gsi_trans *trans)
630{
631	/* If the entire SGL was mapped when added, unmap it now */
632	if (trans->direction != DMA_NONE)
633		dma_unmap_sg(trans->gsi->dev, trans->sgl, trans->used_count,
634			     trans->direction);
635
636	ipa_gsi_trans_complete(trans);
637
638	complete(&trans->completion);
639
640	gsi_trans_free(trans);
641}
642
643/* Cancel a channel's pending transactions */
644void gsi_channel_trans_cancel_pending(struct gsi_channel *channel)
645{
646	struct gsi_trans_info *trans_info = &channel->trans_info;
647	u16 trans_id = trans_info->pending_id;
648
649	/* channel->gsi->mutex is held by caller */
650
651	/* If there are no pending transactions, we're done */
652	if (trans_id == trans_info->committed_id)
653		return;
654
655	/* Mark all pending transactions cancelled */
656	do {
657		struct gsi_trans *trans;
658
659		trans = &trans_info->trans[trans_id % channel->tre_count];
660		trans->cancelled = true;
661	} while (++trans_id != trans_info->committed_id);
662
663	/* All pending transactions are now completed */
664	trans_info->pending_id = trans_info->committed_id;
665
666	/* Schedule NAPI polling to complete the cancelled transactions */
667	napi_schedule(&channel->napi);
668}
669
670/* Issue a command to read a single byte from a channel */
671int gsi_trans_read_byte(struct gsi *gsi, u32 channel_id, dma_addr_t addr)
672{
673	struct gsi_channel *channel = &gsi->channel[channel_id];
674	struct gsi_ring *tre_ring = &channel->tre_ring;
675	struct gsi_trans_info *trans_info;
676	struct gsi_tre *dest_tre;
677
678	trans_info = &channel->trans_info;
679
680	/* First reserve the TRE, if possible */
681	if (!gsi_trans_tre_reserve(trans_info, 1))
682		return -EBUSY;
683
684	/* Now fill the reserved TRE and tell the hardware */
685
686	dest_tre = gsi_ring_virt(tre_ring, tre_ring->index);
687	gsi_trans_tre_fill(dest_tre, addr, 1, true, false, IPA_CMD_NONE);
688
689	tre_ring->index++;
690	gsi_channel_doorbell(channel);
691
692	return 0;
693}
694
695/* Mark a gsi_trans_read_byte() request done */
696void gsi_trans_read_byte_done(struct gsi *gsi, u32 channel_id)
697{
698	struct gsi_channel *channel = &gsi->channel[channel_id];
699
700	gsi_trans_tre_release(&channel->trans_info, 1);
701}
702
703/* Initialize a channel's GSI transaction info */
704int gsi_channel_trans_init(struct gsi *gsi, u32 channel_id)
705{
706	struct gsi_channel *channel = &gsi->channel[channel_id];
707	u32 tre_count = channel->tre_count;
708	struct gsi_trans_info *trans_info;
709	u32 tre_max;
710	int ret;
711
712	/* Ensure the size of a channel element is what's expected */
713	BUILD_BUG_ON(sizeof(struct gsi_tre) != GSI_RING_ELEMENT_SIZE);
714
715	trans_info = &channel->trans_info;
716
717	/* The tre_avail field is what ultimately limits the number of
718	 * outstanding transactions and their resources.  A transaction
719	 * allocation succeeds only if the TREs available are sufficient
720	 * for what the transaction might need.
721	 */
722	tre_max = gsi_channel_tre_max(channel->gsi, channel_id);
723	atomic_set(&trans_info->tre_avail, tre_max);
724
725	/* We can't use more TREs than the number available in the ring.
726	 * This limits the number of transactions that can be outstanding.
727	 * Worst case is one TRE per transaction (but we actually limit
728	 * it to something a little less than that).  By allocating a
729	 * power-of-two number of transactions we can use an index
730	 * modulo that number to determine the next one that's free.
731	 * Transactions are allocated one at a time.
732	 */
733	trans_info->trans = kcalloc(tre_count, sizeof(*trans_info->trans),
734				    GFP_KERNEL);
735	if (!trans_info->trans)
736		return -ENOMEM;
737	trans_info->free_id = 0;	/* all modulo channel->tre_count */
738	trans_info->allocated_id = 0;
739	trans_info->committed_id = 0;
740	trans_info->pending_id = 0;
741	trans_info->completed_id = 0;
742	trans_info->polled_id = 0;
743
744	/* A completion event contains a pointer to the TRE that caused
745	 * the event (which will be the last one used by the transaction).
746	 * Each entry in this map records the transaction associated
747	 * with a corresponding completed TRE.
748	 */
749	trans_info->map = kcalloc(tre_count, sizeof(*trans_info->map),
750				  GFP_KERNEL);
751	if (!trans_info->map) {
752		ret = -ENOMEM;
753		goto err_trans_free;
754	}
755
756	/* A transaction uses a scatterlist array to represent the data
757	 * transfers implemented by the transaction.  Each scatterlist
758	 * element is used to fill a single TRE when the transaction is
759	 * committed.  So we need as many scatterlist elements as the
760	 * maximum number of TREs that can be outstanding.
761	 */
762	ret = gsi_trans_pool_init(&trans_info->sg_pool,
763				  sizeof(struct scatterlist),
764				  tre_max, channel->trans_tre_max);
765	if (ret)
766		goto err_map_free;
767
768
769	return 0;
770
771err_map_free:
772	kfree(trans_info->map);
773err_trans_free:
774	kfree(trans_info->trans);
775
776	dev_err(gsi->dev, "error %d initializing channel %u transactions\n",
777		ret, channel_id);
778
779	return ret;
780}
781
782/* Inverse of gsi_channel_trans_init() */
783void gsi_channel_trans_exit(struct gsi_channel *channel)
784{
785	struct gsi_trans_info *trans_info = &channel->trans_info;
786
787	gsi_trans_pool_exit(&trans_info->sg_pool);
788	kfree(trans_info->trans);
789	kfree(trans_info->map);
790}
791