1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Driver for Microchip MRF24J40 802.15.4 Wireless-PAN Networking controller
4 *
5 * Copyright (C) 2012 Alan Ott <alan@signal11.us>
6 *                    Signal 11 Software
7 */
8
9#include <linux/spi/spi.h>
10#include <linux/interrupt.h>
11#include <linux/mod_devicetable.h>
12#include <linux/module.h>
13#include <linux/regmap.h>
14#include <linux/ieee802154.h>
15#include <linux/irq.h>
16#include <net/cfg802154.h>
17#include <net/mac802154.h>
18
19/* MRF24J40 Short Address Registers */
20#define REG_RXMCR	0x00  /* Receive MAC control */
21#define BIT_PROMI	BIT(0)
22#define BIT_ERRPKT	BIT(1)
23#define BIT_NOACKRSP	BIT(5)
24#define BIT_PANCOORD	BIT(3)
25
26#define REG_PANIDL	0x01  /* PAN ID (low) */
27#define REG_PANIDH	0x02  /* PAN ID (high) */
28#define REG_SADRL	0x03  /* Short address (low) */
29#define REG_SADRH	0x04  /* Short address (high) */
30#define REG_EADR0	0x05  /* Long address (low) (high is EADR7) */
31#define REG_EADR1	0x06
32#define REG_EADR2	0x07
33#define REG_EADR3	0x08
34#define REG_EADR4	0x09
35#define REG_EADR5	0x0A
36#define REG_EADR6	0x0B
37#define REG_EADR7	0x0C
38#define REG_RXFLUSH	0x0D
39#define REG_ORDER	0x10
40#define REG_TXMCR	0x11  /* Transmit MAC control */
41#define TXMCR_MIN_BE_SHIFT		3
42#define TXMCR_MIN_BE_MASK		0x18
43#define TXMCR_CSMA_RETRIES_SHIFT	0
44#define TXMCR_CSMA_RETRIES_MASK		0x07
45
46#define REG_ACKTMOUT	0x12
47#define REG_ESLOTG1	0x13
48#define REG_SYMTICKL	0x14
49#define REG_SYMTICKH	0x15
50#define REG_PACON0	0x16  /* Power Amplifier Control */
51#define REG_PACON1	0x17  /* Power Amplifier Control */
52#define REG_PACON2	0x18  /* Power Amplifier Control */
53#define REG_TXBCON0	0x1A
54#define REG_TXNCON	0x1B  /* Transmit Normal FIFO Control */
55#define BIT_TXNTRIG	BIT(0)
56#define BIT_TXNSECEN	BIT(1)
57#define BIT_TXNACKREQ	BIT(2)
58
59#define REG_TXG1CON	0x1C
60#define REG_TXG2CON	0x1D
61#define REG_ESLOTG23	0x1E
62#define REG_ESLOTG45	0x1F
63#define REG_ESLOTG67	0x20
64#define REG_TXPEND	0x21
65#define REG_WAKECON	0x22
66#define REG_FROMOFFSET	0x23
67#define REG_TXSTAT	0x24  /* TX MAC Status Register */
68#define REG_TXBCON1	0x25
69#define REG_GATECLK	0x26
70#define REG_TXTIME	0x27
71#define REG_HSYMTMRL	0x28
72#define REG_HSYMTMRH	0x29
73#define REG_SOFTRST	0x2A  /* Soft Reset */
74#define REG_SECCON0	0x2C
75#define REG_SECCON1	0x2D
76#define REG_TXSTBL	0x2E  /* TX Stabilization */
77#define REG_RXSR	0x30
78#define REG_INTSTAT	0x31  /* Interrupt Status */
79#define BIT_TXNIF	BIT(0)
80#define BIT_RXIF	BIT(3)
81#define BIT_SECIF	BIT(4)
82#define BIT_SECIGNORE	BIT(7)
83
84#define REG_INTCON	0x32  /* Interrupt Control */
85#define BIT_TXNIE	BIT(0)
86#define BIT_RXIE	BIT(3)
87#define BIT_SECIE	BIT(4)
88
89#define REG_GPIO	0x33  /* GPIO */
90#define REG_TRISGPIO	0x34  /* GPIO direction */
91#define REG_SLPACK	0x35
92#define REG_RFCTL	0x36  /* RF Control Mode Register */
93#define BIT_RFRST	BIT(2)
94
95#define REG_SECCR2	0x37
96#define REG_BBREG0	0x38
97#define REG_BBREG1	0x39  /* Baseband Registers */
98#define BIT_RXDECINV	BIT(2)
99
100#define REG_BBREG2	0x3A  /* */
101#define BBREG2_CCA_MODE_SHIFT	6
102#define BBREG2_CCA_MODE_MASK	0xc0
103
104#define REG_BBREG3	0x3B
105#define REG_BBREG4	0x3C
106#define REG_BBREG6	0x3E  /* */
107#define REG_CCAEDTH	0x3F  /* Energy Detection Threshold */
108
109/* MRF24J40 Long Address Registers */
110#define REG_RFCON0	0x200  /* RF Control Registers */
111#define RFCON0_CH_SHIFT	4
112#define RFCON0_CH_MASK	0xf0
113#define RFOPT_RECOMMEND	3
114
115#define REG_RFCON1	0x201
116#define REG_RFCON2	0x202
117#define REG_RFCON3	0x203
118
119#define TXPWRL_MASK	0xc0
120#define TXPWRL_SHIFT	6
121#define TXPWRL_30	0x3
122#define TXPWRL_20	0x2
123#define TXPWRL_10	0x1
124#define TXPWRL_0	0x0
125
126#define TXPWRS_MASK	0x38
127#define TXPWRS_SHIFT	3
128#define TXPWRS_6_3	0x7
129#define TXPWRS_4_9	0x6
130#define TXPWRS_3_7	0x5
131#define TXPWRS_2_8	0x4
132#define TXPWRS_1_9	0x3
133#define TXPWRS_1_2	0x2
134#define TXPWRS_0_5	0x1
135#define TXPWRS_0	0x0
136
137#define REG_RFCON5	0x205
138#define REG_RFCON6	0x206
139#define REG_RFCON7	0x207
140#define REG_RFCON8	0x208
141#define REG_SLPCAL0	0x209
142#define REG_SLPCAL1	0x20A
143#define REG_SLPCAL2	0x20B
144#define REG_RFSTATE	0x20F
145#define REG_RSSI	0x210
146#define REG_SLPCON0	0x211  /* Sleep Clock Control Registers */
147#define BIT_INTEDGE	BIT(1)
148
149#define REG_SLPCON1	0x220
150#define REG_WAKETIMEL	0x222  /* Wake-up Time Match Value Low */
151#define REG_WAKETIMEH	0x223  /* Wake-up Time Match Value High */
152#define REG_REMCNTL	0x224
153#define REG_REMCNTH	0x225
154#define REG_MAINCNT0	0x226
155#define REG_MAINCNT1	0x227
156#define REG_MAINCNT2	0x228
157#define REG_MAINCNT3	0x229
158#define REG_TESTMODE	0x22F  /* Test mode */
159#define REG_ASSOEAR0	0x230
160#define REG_ASSOEAR1	0x231
161#define REG_ASSOEAR2	0x232
162#define REG_ASSOEAR3	0x233
163#define REG_ASSOEAR4	0x234
164#define REG_ASSOEAR5	0x235
165#define REG_ASSOEAR6	0x236
166#define REG_ASSOEAR7	0x237
167#define REG_ASSOSAR0	0x238
168#define REG_ASSOSAR1	0x239
169#define REG_UNONCE0	0x240
170#define REG_UNONCE1	0x241
171#define REG_UNONCE2	0x242
172#define REG_UNONCE3	0x243
173#define REG_UNONCE4	0x244
174#define REG_UNONCE5	0x245
175#define REG_UNONCE6	0x246
176#define REG_UNONCE7	0x247
177#define REG_UNONCE8	0x248
178#define REG_UNONCE9	0x249
179#define REG_UNONCE10	0x24A
180#define REG_UNONCE11	0x24B
181#define REG_UNONCE12	0x24C
182#define REG_RX_FIFO	0x300  /* Receive FIFO */
183
184/* Device configuration: Only channels 11-26 on page 0 are supported. */
185#define MRF24J40_CHAN_MIN 11
186#define MRF24J40_CHAN_MAX 26
187#define CHANNEL_MASK (((u32)1 << (MRF24J40_CHAN_MAX + 1)) \
188		      - ((u32)1 << MRF24J40_CHAN_MIN))
189
190#define TX_FIFO_SIZE 128 /* From datasheet */
191#define RX_FIFO_SIZE 144 /* From datasheet */
192#define SET_CHANNEL_DELAY_US 192 /* From datasheet */
193
194enum mrf24j40_modules { MRF24J40, MRF24J40MA, MRF24J40MC };
195
196/* Device Private Data */
197struct mrf24j40 {
198	struct spi_device *spi;
199	struct ieee802154_hw *hw;
200
201	struct regmap *regmap_short;
202	struct regmap *regmap_long;
203
204	/* for writing txfifo */
205	struct spi_message tx_msg;
206	u8 tx_hdr_buf[2];
207	struct spi_transfer tx_hdr_trx;
208	u8 tx_len_buf[2];
209	struct spi_transfer tx_len_trx;
210	struct spi_transfer tx_buf_trx;
211	struct sk_buff *tx_skb;
212
213	/* post transmit message to send frame out  */
214	struct spi_message tx_post_msg;
215	u8 tx_post_buf[2];
216	struct spi_transfer tx_post_trx;
217
218	/* for protect/unprotect/read length rxfifo */
219	struct spi_message rx_msg;
220	u8 rx_buf[3];
221	struct spi_transfer rx_trx;
222
223	/* receive handling */
224	struct spi_message rx_buf_msg;
225	u8 rx_addr_buf[2];
226	struct spi_transfer rx_addr_trx;
227	u8 rx_lqi_buf[2];
228	struct spi_transfer rx_lqi_trx;
229	u8 rx_fifo_buf[RX_FIFO_SIZE];
230	struct spi_transfer rx_fifo_buf_trx;
231
232	/* isr handling for reading intstat */
233	struct spi_message irq_msg;
234	u8 irq_buf[2];
235	struct spi_transfer irq_trx;
236};
237
238/* regmap information for short address register access */
239#define MRF24J40_SHORT_WRITE	0x01
240#define MRF24J40_SHORT_READ	0x00
241#define MRF24J40_SHORT_NUMREGS	0x3F
242
243/* regmap information for long address register access */
244#define MRF24J40_LONG_ACCESS	0x80
245#define MRF24J40_LONG_NUMREGS	0x38F
246
247/* Read/Write SPI Commands for Short and Long Address registers. */
248#define MRF24J40_READSHORT(reg) ((reg) << 1)
249#define MRF24J40_WRITESHORT(reg) ((reg) << 1 | 1)
250#define MRF24J40_READLONG(reg) (1 << 15 | (reg) << 5)
251#define MRF24J40_WRITELONG(reg) (1 << 15 | (reg) << 5 | 1 << 4)
252
253/* The datasheet indicates the theoretical maximum for SCK to be 10MHz */
254#define MAX_SPI_SPEED_HZ 10000000
255
256#define printdev(X) (&X->spi->dev)
257
258static bool
259mrf24j40_short_reg_writeable(struct device *dev, unsigned int reg)
260{
261	switch (reg) {
262	case REG_RXMCR:
263	case REG_PANIDL:
264	case REG_PANIDH:
265	case REG_SADRL:
266	case REG_SADRH:
267	case REG_EADR0:
268	case REG_EADR1:
269	case REG_EADR2:
270	case REG_EADR3:
271	case REG_EADR4:
272	case REG_EADR5:
273	case REG_EADR6:
274	case REG_EADR7:
275	case REG_RXFLUSH:
276	case REG_ORDER:
277	case REG_TXMCR:
278	case REG_ACKTMOUT:
279	case REG_ESLOTG1:
280	case REG_SYMTICKL:
281	case REG_SYMTICKH:
282	case REG_PACON0:
283	case REG_PACON1:
284	case REG_PACON2:
285	case REG_TXBCON0:
286	case REG_TXNCON:
287	case REG_TXG1CON:
288	case REG_TXG2CON:
289	case REG_ESLOTG23:
290	case REG_ESLOTG45:
291	case REG_ESLOTG67:
292	case REG_TXPEND:
293	case REG_WAKECON:
294	case REG_FROMOFFSET:
295	case REG_TXBCON1:
296	case REG_GATECLK:
297	case REG_TXTIME:
298	case REG_HSYMTMRL:
299	case REG_HSYMTMRH:
300	case REG_SOFTRST:
301	case REG_SECCON0:
302	case REG_SECCON1:
303	case REG_TXSTBL:
304	case REG_RXSR:
305	case REG_INTCON:
306	case REG_TRISGPIO:
307	case REG_GPIO:
308	case REG_RFCTL:
309	case REG_SECCR2:
310	case REG_SLPACK:
311	case REG_BBREG0:
312	case REG_BBREG1:
313	case REG_BBREG2:
314	case REG_BBREG3:
315	case REG_BBREG4:
316	case REG_BBREG6:
317	case REG_CCAEDTH:
318		return true;
319	default:
320		return false;
321	}
322}
323
324static bool
325mrf24j40_short_reg_readable(struct device *dev, unsigned int reg)
326{
327	bool rc;
328
329	/* all writeable are also readable */
330	rc = mrf24j40_short_reg_writeable(dev, reg);
331	if (rc)
332		return rc;
333
334	/* readonly regs */
335	switch (reg) {
336	case REG_TXSTAT:
337	case REG_INTSTAT:
338		return true;
339	default:
340		return false;
341	}
342}
343
344static bool
345mrf24j40_short_reg_volatile(struct device *dev, unsigned int reg)
346{
347	/* can be changed during runtime */
348	switch (reg) {
349	case REG_TXSTAT:
350	case REG_INTSTAT:
351	case REG_RXFLUSH:
352	case REG_TXNCON:
353	case REG_SOFTRST:
354	case REG_RFCTL:
355	case REG_TXBCON0:
356	case REG_TXG1CON:
357	case REG_TXG2CON:
358	case REG_TXBCON1:
359	case REG_SECCON0:
360	case REG_RXSR:
361	case REG_SLPACK:
362	case REG_SECCR2:
363	case REG_BBREG6:
364	/* use them in spi_async and regmap so it's volatile */
365	case REG_BBREG1:
366		return true;
367	default:
368		return false;
369	}
370}
371
372static bool
373mrf24j40_short_reg_precious(struct device *dev, unsigned int reg)
374{
375	/* don't clear irq line on read */
376	switch (reg) {
377	case REG_INTSTAT:
378		return true;
379	default:
380		return false;
381	}
382}
383
384static const struct regmap_config mrf24j40_short_regmap = {
385	.name = "mrf24j40_short",
386	.reg_bits = 7,
387	.val_bits = 8,
388	.pad_bits = 1,
389	.write_flag_mask = MRF24J40_SHORT_WRITE,
390	.read_flag_mask = MRF24J40_SHORT_READ,
391	.cache_type = REGCACHE_MAPLE,
392	.max_register = MRF24J40_SHORT_NUMREGS,
393	.writeable_reg = mrf24j40_short_reg_writeable,
394	.readable_reg = mrf24j40_short_reg_readable,
395	.volatile_reg = mrf24j40_short_reg_volatile,
396	.precious_reg = mrf24j40_short_reg_precious,
397};
398
399static bool
400mrf24j40_long_reg_writeable(struct device *dev, unsigned int reg)
401{
402	switch (reg) {
403	case REG_RFCON0:
404	case REG_RFCON1:
405	case REG_RFCON2:
406	case REG_RFCON3:
407	case REG_RFCON5:
408	case REG_RFCON6:
409	case REG_RFCON7:
410	case REG_RFCON8:
411	case REG_SLPCAL2:
412	case REG_SLPCON0:
413	case REG_SLPCON1:
414	case REG_WAKETIMEL:
415	case REG_WAKETIMEH:
416	case REG_REMCNTL:
417	case REG_REMCNTH:
418	case REG_MAINCNT0:
419	case REG_MAINCNT1:
420	case REG_MAINCNT2:
421	case REG_MAINCNT3:
422	case REG_TESTMODE:
423	case REG_ASSOEAR0:
424	case REG_ASSOEAR1:
425	case REG_ASSOEAR2:
426	case REG_ASSOEAR3:
427	case REG_ASSOEAR4:
428	case REG_ASSOEAR5:
429	case REG_ASSOEAR6:
430	case REG_ASSOEAR7:
431	case REG_ASSOSAR0:
432	case REG_ASSOSAR1:
433	case REG_UNONCE0:
434	case REG_UNONCE1:
435	case REG_UNONCE2:
436	case REG_UNONCE3:
437	case REG_UNONCE4:
438	case REG_UNONCE5:
439	case REG_UNONCE6:
440	case REG_UNONCE7:
441	case REG_UNONCE8:
442	case REG_UNONCE9:
443	case REG_UNONCE10:
444	case REG_UNONCE11:
445	case REG_UNONCE12:
446		return true;
447	default:
448		return false;
449	}
450}
451
452static bool
453mrf24j40_long_reg_readable(struct device *dev, unsigned int reg)
454{
455	bool rc;
456
457	/* all writeable are also readable */
458	rc = mrf24j40_long_reg_writeable(dev, reg);
459	if (rc)
460		return rc;
461
462	/* readonly regs */
463	switch (reg) {
464	case REG_SLPCAL0:
465	case REG_SLPCAL1:
466	case REG_RFSTATE:
467	case REG_RSSI:
468		return true;
469	default:
470		return false;
471	}
472}
473
474static bool
475mrf24j40_long_reg_volatile(struct device *dev, unsigned int reg)
476{
477	/* can be changed during runtime */
478	switch (reg) {
479	case REG_SLPCAL0:
480	case REG_SLPCAL1:
481	case REG_SLPCAL2:
482	case REG_RFSTATE:
483	case REG_RSSI:
484	case REG_MAINCNT3:
485		return true;
486	default:
487		return false;
488	}
489}
490
491static const struct regmap_config mrf24j40_long_regmap = {
492	.name = "mrf24j40_long",
493	.reg_bits = 11,
494	.val_bits = 8,
495	.pad_bits = 5,
496	.write_flag_mask = MRF24J40_LONG_ACCESS,
497	.read_flag_mask = MRF24J40_LONG_ACCESS,
498	.cache_type = REGCACHE_MAPLE,
499	.max_register = MRF24J40_LONG_NUMREGS,
500	.writeable_reg = mrf24j40_long_reg_writeable,
501	.readable_reg = mrf24j40_long_reg_readable,
502	.volatile_reg = mrf24j40_long_reg_volatile,
503};
504
505static int mrf24j40_long_regmap_write(void *context, const void *data,
506				      size_t count)
507{
508	struct spi_device *spi = context;
509	u8 buf[3];
510
511	if (count > 3)
512		return -EINVAL;
513
514	/* regmap supports read/write mask only in frist byte
515	 * long write access need to set the 12th bit, so we
516	 * make special handling for write.
517	 */
518	memcpy(buf, data, count);
519	buf[1] |= (1 << 4);
520
521	return spi_write(spi, buf, count);
522}
523
524static int
525mrf24j40_long_regmap_read(void *context, const void *reg, size_t reg_size,
526			  void *val, size_t val_size)
527{
528	struct spi_device *spi = context;
529
530	return spi_write_then_read(spi, reg, reg_size, val, val_size);
531}
532
533static const struct regmap_bus mrf24j40_long_regmap_bus = {
534	.write = mrf24j40_long_regmap_write,
535	.read = mrf24j40_long_regmap_read,
536	.reg_format_endian_default = REGMAP_ENDIAN_BIG,
537	.val_format_endian_default = REGMAP_ENDIAN_BIG,
538};
539
540static void write_tx_buf_complete(void *context)
541{
542	struct mrf24j40 *devrec = context;
543	__le16 fc = ieee802154_get_fc_from_skb(devrec->tx_skb);
544	u8 val = BIT_TXNTRIG;
545	int ret;
546
547	if (ieee802154_is_secen(fc))
548		val |= BIT_TXNSECEN;
549
550	if (ieee802154_is_ackreq(fc))
551		val |= BIT_TXNACKREQ;
552
553	devrec->tx_post_msg.complete = NULL;
554	devrec->tx_post_buf[0] = MRF24J40_WRITESHORT(REG_TXNCON);
555	devrec->tx_post_buf[1] = val;
556
557	ret = spi_async(devrec->spi, &devrec->tx_post_msg);
558	if (ret)
559		dev_err(printdev(devrec), "SPI write Failed for transmit buf\n");
560}
561
562/* This function relies on an undocumented write method. Once a write command
563   and address is set, as many bytes of data as desired can be clocked into
564   the device. The datasheet only shows setting one byte at a time. */
565static int write_tx_buf(struct mrf24j40 *devrec, u16 reg,
566			const u8 *data, size_t length)
567{
568	u16 cmd;
569	int ret;
570
571	/* Range check the length. 2 bytes are used for the length fields.*/
572	if (length > TX_FIFO_SIZE-2) {
573		dev_err(printdev(devrec), "write_tx_buf() was passed too large a buffer. Performing short write.\n");
574		length = TX_FIFO_SIZE-2;
575	}
576
577	cmd = MRF24J40_WRITELONG(reg);
578	devrec->tx_hdr_buf[0] = cmd >> 8 & 0xff;
579	devrec->tx_hdr_buf[1] = cmd & 0xff;
580	devrec->tx_len_buf[0] = 0x0; /* Header Length. Set to 0 for now. TODO */
581	devrec->tx_len_buf[1] = length; /* Total length */
582	devrec->tx_buf_trx.tx_buf = data;
583	devrec->tx_buf_trx.len = length;
584
585	ret = spi_async(devrec->spi, &devrec->tx_msg);
586	if (ret)
587		dev_err(printdev(devrec), "SPI write Failed for TX buf\n");
588
589	return ret;
590}
591
592static int mrf24j40_tx(struct ieee802154_hw *hw, struct sk_buff *skb)
593{
594	struct mrf24j40 *devrec = hw->priv;
595
596	dev_dbg(printdev(devrec), "tx packet of %d bytes\n", skb->len);
597	devrec->tx_skb = skb;
598
599	return write_tx_buf(devrec, 0x000, skb->data, skb->len);
600}
601
602static int mrf24j40_ed(struct ieee802154_hw *hw, u8 *level)
603{
604	/* TODO: */
605	pr_warn("mrf24j40: ed not implemented\n");
606	*level = 0;
607	return 0;
608}
609
610static int mrf24j40_start(struct ieee802154_hw *hw)
611{
612	struct mrf24j40 *devrec = hw->priv;
613
614	dev_dbg(printdev(devrec), "start\n");
615
616	/* Clear TXNIE and RXIE. Enable interrupts */
617	return regmap_update_bits(devrec->regmap_short, REG_INTCON,
618				  BIT_TXNIE | BIT_RXIE | BIT_SECIE, 0);
619}
620
621static void mrf24j40_stop(struct ieee802154_hw *hw)
622{
623	struct mrf24j40 *devrec = hw->priv;
624
625	dev_dbg(printdev(devrec), "stop\n");
626
627	/* Set TXNIE and RXIE. Disable Interrupts */
628	regmap_update_bits(devrec->regmap_short, REG_INTCON,
629			   BIT_TXNIE | BIT_RXIE, BIT_TXNIE | BIT_RXIE);
630}
631
632static int mrf24j40_set_channel(struct ieee802154_hw *hw, u8 page, u8 channel)
633{
634	struct mrf24j40 *devrec = hw->priv;
635	u8 val;
636	int ret;
637
638	dev_dbg(printdev(devrec), "Set Channel %d\n", channel);
639
640	WARN_ON(page != 0);
641	WARN_ON(channel < MRF24J40_CHAN_MIN);
642	WARN_ON(channel > MRF24J40_CHAN_MAX);
643
644	/* Set Channel TODO */
645	val = (channel - 11) << RFCON0_CH_SHIFT | RFOPT_RECOMMEND;
646	ret = regmap_update_bits(devrec->regmap_long, REG_RFCON0,
647				 RFCON0_CH_MASK, val);
648	if (ret)
649		return ret;
650
651	/* RF Reset */
652	ret = regmap_update_bits(devrec->regmap_short, REG_RFCTL, BIT_RFRST,
653				 BIT_RFRST);
654	if (ret)
655		return ret;
656
657	ret = regmap_update_bits(devrec->regmap_short, REG_RFCTL, BIT_RFRST, 0);
658	if (!ret)
659		udelay(SET_CHANNEL_DELAY_US); /* per datasheet */
660
661	return ret;
662}
663
664static int mrf24j40_filter(struct ieee802154_hw *hw,
665			   struct ieee802154_hw_addr_filt *filt,
666			   unsigned long changed)
667{
668	struct mrf24j40 *devrec = hw->priv;
669
670	dev_dbg(printdev(devrec), "filter\n");
671
672	if (changed & IEEE802154_AFILT_SADDR_CHANGED) {
673		/* Short Addr */
674		u8 addrh, addrl;
675
676		addrh = le16_to_cpu(filt->short_addr) >> 8 & 0xff;
677		addrl = le16_to_cpu(filt->short_addr) & 0xff;
678
679		regmap_write(devrec->regmap_short, REG_SADRH, addrh);
680		regmap_write(devrec->regmap_short, REG_SADRL, addrl);
681		dev_dbg(printdev(devrec),
682			"Set short addr to %04hx\n", filt->short_addr);
683	}
684
685	if (changed & IEEE802154_AFILT_IEEEADDR_CHANGED) {
686		/* Device Address */
687		u8 i, addr[8];
688
689		memcpy(addr, &filt->ieee_addr, 8);
690		for (i = 0; i < 8; i++)
691			regmap_write(devrec->regmap_short, REG_EADR0 + i,
692				     addr[i]);
693
694#ifdef DEBUG
695		pr_debug("Set long addr to: ");
696		for (i = 0; i < 8; i++)
697			pr_debug("%02hhx ", addr[7 - i]);
698		pr_debug("\n");
699#endif
700	}
701
702	if (changed & IEEE802154_AFILT_PANID_CHANGED) {
703		/* PAN ID */
704		u8 panidl, panidh;
705
706		panidh = le16_to_cpu(filt->pan_id) >> 8 & 0xff;
707		panidl = le16_to_cpu(filt->pan_id) & 0xff;
708		regmap_write(devrec->regmap_short, REG_PANIDH, panidh);
709		regmap_write(devrec->regmap_short, REG_PANIDL, panidl);
710
711		dev_dbg(printdev(devrec), "Set PANID to %04hx\n", filt->pan_id);
712	}
713
714	if (changed & IEEE802154_AFILT_PANC_CHANGED) {
715		/* Pan Coordinator */
716		u8 val;
717		int ret;
718
719		if (filt->pan_coord)
720			val = BIT_PANCOORD;
721		else
722			val = 0;
723		ret = regmap_update_bits(devrec->regmap_short, REG_RXMCR,
724					 BIT_PANCOORD, val);
725		if (ret)
726			return ret;
727
728		/* REG_SLOTTED is maintained as default (unslotted/CSMA-CA).
729		 * REG_ORDER is maintained as default (no beacon/superframe).
730		 */
731
732		dev_dbg(printdev(devrec), "Set Pan Coord to %s\n",
733			filt->pan_coord ? "on" : "off");
734	}
735
736	return 0;
737}
738
739static void mrf24j40_handle_rx_read_buf_unlock(struct mrf24j40 *devrec)
740{
741	int ret;
742
743	/* Turn back on reception of packets off the air. */
744	devrec->rx_msg.complete = NULL;
745	devrec->rx_buf[0] = MRF24J40_WRITESHORT(REG_BBREG1);
746	devrec->rx_buf[1] = 0x00; /* CLR RXDECINV */
747	ret = spi_async(devrec->spi, &devrec->rx_msg);
748	if (ret)
749		dev_err(printdev(devrec), "failed to unlock rx buffer\n");
750}
751
752static void mrf24j40_handle_rx_read_buf_complete(void *context)
753{
754	struct mrf24j40 *devrec = context;
755	u8 len = devrec->rx_buf[2];
756	u8 rx_local_buf[RX_FIFO_SIZE];
757	struct sk_buff *skb;
758
759	memcpy(rx_local_buf, devrec->rx_fifo_buf, len);
760	mrf24j40_handle_rx_read_buf_unlock(devrec);
761
762	skb = dev_alloc_skb(IEEE802154_MTU);
763	if (!skb) {
764		dev_err(printdev(devrec), "failed to allocate skb\n");
765		return;
766	}
767
768	skb_put_data(skb, rx_local_buf, len);
769	ieee802154_rx_irqsafe(devrec->hw, skb, 0);
770
771#ifdef DEBUG
772	 print_hex_dump(KERN_DEBUG, "mrf24j40 rx: ", DUMP_PREFIX_OFFSET, 16, 1,
773			rx_local_buf, len, 0);
774	 pr_debug("mrf24j40 rx: lqi: %02hhx rssi: %02hhx\n",
775		  devrec->rx_lqi_buf[0], devrec->rx_lqi_buf[1]);
776#endif
777}
778
779static void mrf24j40_handle_rx_read_buf(void *context)
780{
781	struct mrf24j40 *devrec = context;
782	u16 cmd;
783	int ret;
784
785	/* if length is invalid read the full MTU */
786	if (!ieee802154_is_valid_psdu_len(devrec->rx_buf[2]))
787		devrec->rx_buf[2] = IEEE802154_MTU;
788
789	cmd = MRF24J40_READLONG(REG_RX_FIFO + 1);
790	devrec->rx_addr_buf[0] = cmd >> 8 & 0xff;
791	devrec->rx_addr_buf[1] = cmd & 0xff;
792	devrec->rx_fifo_buf_trx.len = devrec->rx_buf[2];
793	ret = spi_async(devrec->spi, &devrec->rx_buf_msg);
794	if (ret) {
795		dev_err(printdev(devrec), "failed to read rx buffer\n");
796		mrf24j40_handle_rx_read_buf_unlock(devrec);
797	}
798}
799
800static void mrf24j40_handle_rx_read_len(void *context)
801{
802	struct mrf24j40 *devrec = context;
803	u16 cmd;
804	int ret;
805
806	/* read the length of received frame */
807	devrec->rx_msg.complete = mrf24j40_handle_rx_read_buf;
808	devrec->rx_trx.len = 3;
809	cmd = MRF24J40_READLONG(REG_RX_FIFO);
810	devrec->rx_buf[0] = cmd >> 8 & 0xff;
811	devrec->rx_buf[1] = cmd & 0xff;
812
813	ret = spi_async(devrec->spi, &devrec->rx_msg);
814	if (ret) {
815		dev_err(printdev(devrec), "failed to read rx buffer length\n");
816		mrf24j40_handle_rx_read_buf_unlock(devrec);
817	}
818}
819
820static int mrf24j40_handle_rx(struct mrf24j40 *devrec)
821{
822	/* Turn off reception of packets off the air. This prevents the
823	 * device from overwriting the buffer while we're reading it.
824	 */
825	devrec->rx_msg.complete = mrf24j40_handle_rx_read_len;
826	devrec->rx_trx.len = 2;
827	devrec->rx_buf[0] = MRF24J40_WRITESHORT(REG_BBREG1);
828	devrec->rx_buf[1] = BIT_RXDECINV; /* SET RXDECINV */
829
830	return spi_async(devrec->spi, &devrec->rx_msg);
831}
832
833static int
834mrf24j40_csma_params(struct ieee802154_hw *hw, u8 min_be, u8 max_be,
835		     u8 retries)
836{
837	struct mrf24j40 *devrec = hw->priv;
838	u8 val;
839
840	/* min_be */
841	val = min_be << TXMCR_MIN_BE_SHIFT;
842	/* csma backoffs */
843	val |= retries << TXMCR_CSMA_RETRIES_SHIFT;
844
845	return regmap_update_bits(devrec->regmap_short, REG_TXMCR,
846				  TXMCR_MIN_BE_MASK | TXMCR_CSMA_RETRIES_MASK,
847				  val);
848}
849
850static int mrf24j40_set_cca_mode(struct ieee802154_hw *hw,
851				 const struct wpan_phy_cca *cca)
852{
853	struct mrf24j40 *devrec = hw->priv;
854	u8 val;
855
856	/* mapping 802.15.4 to driver spec */
857	switch (cca->mode) {
858	case NL802154_CCA_ENERGY:
859		val = 2;
860		break;
861	case NL802154_CCA_CARRIER:
862		val = 1;
863		break;
864	case NL802154_CCA_ENERGY_CARRIER:
865		switch (cca->opt) {
866		case NL802154_CCA_OPT_ENERGY_CARRIER_AND:
867			val = 3;
868			break;
869		default:
870			return -EINVAL;
871		}
872		break;
873	default:
874		return -EINVAL;
875	}
876
877	return regmap_update_bits(devrec->regmap_short, REG_BBREG2,
878				  BBREG2_CCA_MODE_MASK,
879				  val << BBREG2_CCA_MODE_SHIFT);
880}
881
882/* array for representing ed levels */
883static const s32 mrf24j40_ed_levels[] = {
884	-9000, -8900, -8800, -8700, -8600, -8500, -8400, -8300, -8200, -8100,
885	-8000, -7900, -7800, -7700, -7600, -7500, -7400, -7300, -7200, -7100,
886	-7000, -6900, -6800, -6700, -6600, -6500, -6400, -6300, -6200, -6100,
887	-6000, -5900, -5800, -5700, -5600, -5500, -5400, -5300, -5200, -5100,
888	-5000, -4900, -4800, -4700, -4600, -4500, -4400, -4300, -4200, -4100,
889	-4000, -3900, -3800, -3700, -3600, -3500
890};
891
892/* map ed levels to register value */
893static const s32 mrf24j40_ed_levels_map[][2] = {
894	{ -9000, 0 }, { -8900, 1 }, { -8800, 2 }, { -8700, 5 }, { -8600, 9 },
895	{ -8500, 13 }, { -8400, 18 }, { -8300, 23 }, { -8200, 27 },
896	{ -8100, 32 }, { -8000, 37 }, { -7900, 43 }, { -7800, 48 },
897	{ -7700, 53 }, { -7600, 58 }, { -7500, 63 }, { -7400, 68 },
898	{ -7300, 73 }, { -7200, 78 }, { -7100, 83 }, { -7000, 89 },
899	{ -6900, 95 }, { -6800, 100 }, { -6700, 107 }, { -6600, 111 },
900	{ -6500, 117 }, { -6400, 121 }, { -6300, 125 }, { -6200, 129 },
901	{ -6100, 133 },	{ -6000, 138 }, { -5900, 143 }, { -5800, 148 },
902	{ -5700, 153 }, { -5600, 159 },	{ -5500, 165 }, { -5400, 170 },
903	{ -5300, 176 }, { -5200, 183 }, { -5100, 188 }, { -5000, 193 },
904	{ -4900, 198 }, { -4800, 203 }, { -4700, 207 }, { -4600, 212 },
905	{ -4500, 216 }, { -4400, 221 }, { -4300, 225 }, { -4200, 228 },
906	{ -4100, 233 }, { -4000, 239 }, { -3900, 245 }, { -3800, 250 },
907	{ -3700, 253 }, { -3600, 254 }, { -3500, 255 },
908};
909
910static int mrf24j40_set_cca_ed_level(struct ieee802154_hw *hw, s32 mbm)
911{
912	struct mrf24j40 *devrec = hw->priv;
913	int i;
914
915	for (i = 0; i < ARRAY_SIZE(mrf24j40_ed_levels_map); i++) {
916		if (mrf24j40_ed_levels_map[i][0] == mbm)
917			return regmap_write(devrec->regmap_short, REG_CCAEDTH,
918					    mrf24j40_ed_levels_map[i][1]);
919	}
920
921	return -EINVAL;
922}
923
924static const s32 mrf24j40ma_powers[] = {
925	0, -50, -120, -190, -280, -370, -490, -630, -1000, -1050, -1120, -1190,
926	-1280, -1370, -1490, -1630, -2000, -2050, -2120, -2190, -2280, -2370,
927	-2490, -2630, -3000, -3050, -3120, -3190, -3280, -3370, -3490, -3630,
928};
929
930static int mrf24j40_set_txpower(struct ieee802154_hw *hw, s32 mbm)
931{
932	struct mrf24j40 *devrec = hw->priv;
933	s32 small_scale;
934	u8 val;
935
936	if (0 >= mbm && mbm > -1000) {
937		val = TXPWRL_0 << TXPWRL_SHIFT;
938		small_scale = mbm;
939	} else if (-1000 >= mbm && mbm > -2000) {
940		val = TXPWRL_10 << TXPWRL_SHIFT;
941		small_scale = mbm + 1000;
942	} else if (-2000 >= mbm && mbm > -3000) {
943		val = TXPWRL_20 << TXPWRL_SHIFT;
944		small_scale = mbm + 2000;
945	} else if (-3000 >= mbm && mbm > -4000) {
946		val = TXPWRL_30 << TXPWRL_SHIFT;
947		small_scale = mbm + 3000;
948	} else {
949		return -EINVAL;
950	}
951
952	switch (small_scale) {
953	case 0:
954		val |= (TXPWRS_0 << TXPWRS_SHIFT);
955		break;
956	case -50:
957		val |= (TXPWRS_0_5 << TXPWRS_SHIFT);
958		break;
959	case -120:
960		val |= (TXPWRS_1_2 << TXPWRS_SHIFT);
961		break;
962	case -190:
963		val |= (TXPWRS_1_9 << TXPWRS_SHIFT);
964		break;
965	case -280:
966		val |= (TXPWRS_2_8 << TXPWRS_SHIFT);
967		break;
968	case -370:
969		val |= (TXPWRS_3_7 << TXPWRS_SHIFT);
970		break;
971	case -490:
972		val |= (TXPWRS_4_9 << TXPWRS_SHIFT);
973		break;
974	case -630:
975		val |= (TXPWRS_6_3 << TXPWRS_SHIFT);
976		break;
977	default:
978		return -EINVAL;
979	}
980
981	return regmap_update_bits(devrec->regmap_long, REG_RFCON3,
982				  TXPWRL_MASK | TXPWRS_MASK, val);
983}
984
985static int mrf24j40_set_promiscuous_mode(struct ieee802154_hw *hw, bool on)
986{
987	struct mrf24j40 *devrec = hw->priv;
988	int ret;
989
990	if (on) {
991		/* set PROMI, ERRPKT and NOACKRSP */
992		ret = regmap_update_bits(devrec->regmap_short, REG_RXMCR,
993					 BIT_PROMI | BIT_ERRPKT | BIT_NOACKRSP,
994					 BIT_PROMI | BIT_ERRPKT | BIT_NOACKRSP);
995	} else {
996		/* clear PROMI, ERRPKT and NOACKRSP */
997		ret = regmap_update_bits(devrec->regmap_short, REG_RXMCR,
998					 BIT_PROMI | BIT_ERRPKT | BIT_NOACKRSP,
999					 0);
1000	}
1001
1002	return ret;
1003}
1004
1005static const struct ieee802154_ops mrf24j40_ops = {
1006	.owner = THIS_MODULE,
1007	.xmit_async = mrf24j40_tx,
1008	.ed = mrf24j40_ed,
1009	.start = mrf24j40_start,
1010	.stop = mrf24j40_stop,
1011	.set_channel = mrf24j40_set_channel,
1012	.set_hw_addr_filt = mrf24j40_filter,
1013	.set_csma_params = mrf24j40_csma_params,
1014	.set_cca_mode = mrf24j40_set_cca_mode,
1015	.set_cca_ed_level = mrf24j40_set_cca_ed_level,
1016	.set_txpower = mrf24j40_set_txpower,
1017	.set_promiscuous_mode = mrf24j40_set_promiscuous_mode,
1018};
1019
1020static void mrf24j40_intstat_complete(void *context)
1021{
1022	struct mrf24j40 *devrec = context;
1023	u8 intstat = devrec->irq_buf[1];
1024
1025	enable_irq(devrec->spi->irq);
1026
1027	/* Ignore Rx security decryption */
1028	if (intstat & BIT_SECIF)
1029		regmap_write_async(devrec->regmap_short, REG_SECCON0,
1030				   BIT_SECIGNORE);
1031
1032	/* Check for TX complete */
1033	if (intstat & BIT_TXNIF)
1034		ieee802154_xmit_complete(devrec->hw, devrec->tx_skb, false);
1035
1036	/* Check for Rx */
1037	if (intstat & BIT_RXIF)
1038		mrf24j40_handle_rx(devrec);
1039}
1040
1041static irqreturn_t mrf24j40_isr(int irq, void *data)
1042{
1043	struct mrf24j40 *devrec = data;
1044	int ret;
1045
1046	disable_irq_nosync(irq);
1047
1048	devrec->irq_buf[0] = MRF24J40_READSHORT(REG_INTSTAT);
1049	devrec->irq_buf[1] = 0;
1050
1051	/* Read the interrupt status */
1052	ret = spi_async(devrec->spi, &devrec->irq_msg);
1053	if (ret) {
1054		enable_irq(irq);
1055		return IRQ_NONE;
1056	}
1057
1058	return IRQ_HANDLED;
1059}
1060
1061static int mrf24j40_hw_init(struct mrf24j40 *devrec)
1062{
1063	u32 irq_type;
1064	int ret;
1065
1066	/* Initialize the device.
1067		From datasheet section 3.2: Initialization. */
1068	ret = regmap_write(devrec->regmap_short, REG_SOFTRST, 0x07);
1069	if (ret)
1070		goto err_ret;
1071
1072	ret = regmap_write(devrec->regmap_short, REG_PACON2, 0x98);
1073	if (ret)
1074		goto err_ret;
1075
1076	ret = regmap_write(devrec->regmap_short, REG_TXSTBL, 0x95);
1077	if (ret)
1078		goto err_ret;
1079
1080	ret = regmap_write(devrec->regmap_long, REG_RFCON0, 0x03);
1081	if (ret)
1082		goto err_ret;
1083
1084	ret = regmap_write(devrec->regmap_long, REG_RFCON1, 0x01);
1085	if (ret)
1086		goto err_ret;
1087
1088	ret = regmap_write(devrec->regmap_long, REG_RFCON2, 0x80);
1089	if (ret)
1090		goto err_ret;
1091
1092	ret = regmap_write(devrec->regmap_long, REG_RFCON6, 0x90);
1093	if (ret)
1094		goto err_ret;
1095
1096	ret = regmap_write(devrec->regmap_long, REG_RFCON7, 0x80);
1097	if (ret)
1098		goto err_ret;
1099
1100	ret = regmap_write(devrec->regmap_long, REG_RFCON8, 0x10);
1101	if (ret)
1102		goto err_ret;
1103
1104	ret = regmap_write(devrec->regmap_long, REG_SLPCON1, 0x21);
1105	if (ret)
1106		goto err_ret;
1107
1108	ret = regmap_write(devrec->regmap_short, REG_BBREG2, 0x80);
1109	if (ret)
1110		goto err_ret;
1111
1112	ret = regmap_write(devrec->regmap_short, REG_CCAEDTH, 0x60);
1113	if (ret)
1114		goto err_ret;
1115
1116	ret = regmap_write(devrec->regmap_short, REG_BBREG6, 0x40);
1117	if (ret)
1118		goto err_ret;
1119
1120	ret = regmap_write(devrec->regmap_short, REG_RFCTL, 0x04);
1121	if (ret)
1122		goto err_ret;
1123
1124	ret = regmap_write(devrec->regmap_short, REG_RFCTL, 0x0);
1125	if (ret)
1126		goto err_ret;
1127
1128	udelay(192);
1129
1130	/* Set RX Mode. RXMCR<1:0>: 0x0 normal, 0x1 promisc, 0x2 error */
1131	ret = regmap_update_bits(devrec->regmap_short, REG_RXMCR, 0x03, 0x00);
1132	if (ret)
1133		goto err_ret;
1134
1135	if (spi_get_device_id(devrec->spi)->driver_data == MRF24J40MC) {
1136		/* Enable external amplifier.
1137		 * From MRF24J40MC datasheet section 1.3: Operation.
1138		 */
1139		regmap_update_bits(devrec->regmap_long, REG_TESTMODE, 0x07,
1140				   0x07);
1141
1142		/* Set GPIO3 as output. */
1143		regmap_update_bits(devrec->regmap_short, REG_TRISGPIO, 0x08,
1144				   0x08);
1145
1146		/* Set GPIO3 HIGH to enable U5 voltage regulator */
1147		regmap_update_bits(devrec->regmap_short, REG_GPIO, 0x08, 0x08);
1148
1149		/* Reduce TX pwr to meet FCC requirements.
1150		 * From MRF24J40MC datasheet section 3.1.1
1151		 */
1152		regmap_write(devrec->regmap_long, REG_RFCON3, 0x28);
1153	}
1154
1155	irq_type = irq_get_trigger_type(devrec->spi->irq);
1156	if (irq_type == IRQ_TYPE_EDGE_RISING ||
1157	    irq_type == IRQ_TYPE_EDGE_FALLING)
1158		dev_warn(&devrec->spi->dev,
1159			 "Using edge triggered irq's are not recommended, because it can cause races and result in a non-functional driver!\n");
1160	switch (irq_type) {
1161	case IRQ_TYPE_EDGE_RISING:
1162	case IRQ_TYPE_LEVEL_HIGH:
1163		/* set interrupt polarity to rising */
1164		ret = regmap_update_bits(devrec->regmap_long, REG_SLPCON0,
1165					 BIT_INTEDGE, BIT_INTEDGE);
1166		if (ret)
1167			goto err_ret;
1168		break;
1169	default:
1170		/* default is falling edge */
1171		break;
1172	}
1173
1174	return 0;
1175
1176err_ret:
1177	return ret;
1178}
1179
1180static void
1181mrf24j40_setup_tx_spi_messages(struct mrf24j40 *devrec)
1182{
1183	spi_message_init(&devrec->tx_msg);
1184	devrec->tx_msg.context = devrec;
1185	devrec->tx_msg.complete = write_tx_buf_complete;
1186	devrec->tx_hdr_trx.len = 2;
1187	devrec->tx_hdr_trx.tx_buf = devrec->tx_hdr_buf;
1188	spi_message_add_tail(&devrec->tx_hdr_trx, &devrec->tx_msg);
1189	devrec->tx_len_trx.len = 2;
1190	devrec->tx_len_trx.tx_buf = devrec->tx_len_buf;
1191	spi_message_add_tail(&devrec->tx_len_trx, &devrec->tx_msg);
1192	spi_message_add_tail(&devrec->tx_buf_trx, &devrec->tx_msg);
1193
1194	spi_message_init(&devrec->tx_post_msg);
1195	devrec->tx_post_msg.context = devrec;
1196	devrec->tx_post_trx.len = 2;
1197	devrec->tx_post_trx.tx_buf = devrec->tx_post_buf;
1198	spi_message_add_tail(&devrec->tx_post_trx, &devrec->tx_post_msg);
1199}
1200
1201static void
1202mrf24j40_setup_rx_spi_messages(struct mrf24j40 *devrec)
1203{
1204	spi_message_init(&devrec->rx_msg);
1205	devrec->rx_msg.context = devrec;
1206	devrec->rx_trx.len = 2;
1207	devrec->rx_trx.tx_buf = devrec->rx_buf;
1208	devrec->rx_trx.rx_buf = devrec->rx_buf;
1209	spi_message_add_tail(&devrec->rx_trx, &devrec->rx_msg);
1210
1211	spi_message_init(&devrec->rx_buf_msg);
1212	devrec->rx_buf_msg.context = devrec;
1213	devrec->rx_buf_msg.complete = mrf24j40_handle_rx_read_buf_complete;
1214	devrec->rx_addr_trx.len = 2;
1215	devrec->rx_addr_trx.tx_buf = devrec->rx_addr_buf;
1216	spi_message_add_tail(&devrec->rx_addr_trx, &devrec->rx_buf_msg);
1217	devrec->rx_fifo_buf_trx.rx_buf = devrec->rx_fifo_buf;
1218	spi_message_add_tail(&devrec->rx_fifo_buf_trx, &devrec->rx_buf_msg);
1219	devrec->rx_lqi_trx.len = 2;
1220	devrec->rx_lqi_trx.rx_buf = devrec->rx_lqi_buf;
1221	spi_message_add_tail(&devrec->rx_lqi_trx, &devrec->rx_buf_msg);
1222}
1223
1224static void
1225mrf24j40_setup_irq_spi_messages(struct mrf24j40 *devrec)
1226{
1227	spi_message_init(&devrec->irq_msg);
1228	devrec->irq_msg.context = devrec;
1229	devrec->irq_msg.complete = mrf24j40_intstat_complete;
1230	devrec->irq_trx.len = 2;
1231	devrec->irq_trx.tx_buf = devrec->irq_buf;
1232	devrec->irq_trx.rx_buf = devrec->irq_buf;
1233	spi_message_add_tail(&devrec->irq_trx, &devrec->irq_msg);
1234}
1235
1236static void  mrf24j40_phy_setup(struct mrf24j40 *devrec)
1237{
1238	ieee802154_random_extended_addr(&devrec->hw->phy->perm_extended_addr);
1239	devrec->hw->phy->current_channel = 11;
1240
1241	/* mrf24j40 supports max_minbe 0 - 3 */
1242	devrec->hw->phy->supported.max_minbe = 3;
1243	/* datasheet doesn't say anything about max_be, but we have min_be
1244	 * So we assume the max_be default.
1245	 */
1246	devrec->hw->phy->supported.min_maxbe = 5;
1247	devrec->hw->phy->supported.max_maxbe = 5;
1248
1249	devrec->hw->phy->cca.mode = NL802154_CCA_CARRIER;
1250	devrec->hw->phy->supported.cca_modes = BIT(NL802154_CCA_ENERGY) |
1251					       BIT(NL802154_CCA_CARRIER) |
1252					       BIT(NL802154_CCA_ENERGY_CARRIER);
1253	devrec->hw->phy->supported.cca_opts = BIT(NL802154_CCA_OPT_ENERGY_CARRIER_AND);
1254
1255	devrec->hw->phy->cca_ed_level = -6900;
1256	devrec->hw->phy->supported.cca_ed_levels = mrf24j40_ed_levels;
1257	devrec->hw->phy->supported.cca_ed_levels_size = ARRAY_SIZE(mrf24j40_ed_levels);
1258
1259	switch (spi_get_device_id(devrec->spi)->driver_data) {
1260	case MRF24J40:
1261	case MRF24J40MA:
1262		devrec->hw->phy->supported.tx_powers = mrf24j40ma_powers;
1263		devrec->hw->phy->supported.tx_powers_size = ARRAY_SIZE(mrf24j40ma_powers);
1264		devrec->hw->phy->flags |= WPAN_PHY_FLAG_TXPOWER;
1265		break;
1266	default:
1267		break;
1268	}
1269}
1270
1271static int mrf24j40_probe(struct spi_device *spi)
1272{
1273	int ret = -ENOMEM, irq_type;
1274	struct ieee802154_hw *hw;
1275	struct mrf24j40 *devrec;
1276
1277	dev_info(&spi->dev, "probe(). IRQ: %d\n", spi->irq);
1278
1279	/* Register with the 802154 subsystem */
1280
1281	hw = ieee802154_alloc_hw(sizeof(*devrec), &mrf24j40_ops);
1282	if (!hw)
1283		goto err_ret;
1284
1285	devrec = hw->priv;
1286	devrec->spi = spi;
1287	spi_set_drvdata(spi, devrec);
1288	devrec->hw = hw;
1289	devrec->hw->parent = &spi->dev;
1290	devrec->hw->phy->supported.channels[0] = CHANNEL_MASK;
1291	devrec->hw->flags = IEEE802154_HW_TX_OMIT_CKSUM | IEEE802154_HW_AFILT |
1292			    IEEE802154_HW_CSMA_PARAMS |
1293			    IEEE802154_HW_PROMISCUOUS;
1294
1295	devrec->hw->phy->flags = WPAN_PHY_FLAG_CCA_MODE |
1296				 WPAN_PHY_FLAG_CCA_ED_LEVEL;
1297
1298	mrf24j40_setup_tx_spi_messages(devrec);
1299	mrf24j40_setup_rx_spi_messages(devrec);
1300	mrf24j40_setup_irq_spi_messages(devrec);
1301
1302	devrec->regmap_short = devm_regmap_init_spi(spi,
1303						    &mrf24j40_short_regmap);
1304	if (IS_ERR(devrec->regmap_short)) {
1305		ret = PTR_ERR(devrec->regmap_short);
1306		dev_err(&spi->dev, "Failed to allocate short register map: %d\n",
1307			ret);
1308		goto err_register_device;
1309	}
1310
1311	devrec->regmap_long = devm_regmap_init(&spi->dev,
1312					       &mrf24j40_long_regmap_bus,
1313					       spi, &mrf24j40_long_regmap);
1314	if (IS_ERR(devrec->regmap_long)) {
1315		ret = PTR_ERR(devrec->regmap_long);
1316		dev_err(&spi->dev, "Failed to allocate long register map: %d\n",
1317			ret);
1318		goto err_register_device;
1319	}
1320
1321	if (spi->max_speed_hz > MAX_SPI_SPEED_HZ) {
1322		dev_warn(&spi->dev, "spi clock above possible maximum: %d",
1323			 MAX_SPI_SPEED_HZ);
1324		ret = -EINVAL;
1325		goto err_register_device;
1326	}
1327
1328	ret = mrf24j40_hw_init(devrec);
1329	if (ret)
1330		goto err_register_device;
1331
1332	mrf24j40_phy_setup(devrec);
1333
1334	/* request IRQF_TRIGGER_LOW as fallback default */
1335	irq_type = irq_get_trigger_type(spi->irq);
1336	if (!irq_type)
1337		irq_type = IRQF_TRIGGER_LOW;
1338
1339	ret = devm_request_irq(&spi->dev, spi->irq, mrf24j40_isr,
1340			       irq_type, dev_name(&spi->dev), devrec);
1341	if (ret) {
1342		dev_err(printdev(devrec), "Unable to get IRQ");
1343		goto err_register_device;
1344	}
1345
1346	dev_dbg(printdev(devrec), "registered mrf24j40\n");
1347	ret = ieee802154_register_hw(devrec->hw);
1348	if (ret)
1349		goto err_register_device;
1350
1351	return 0;
1352
1353err_register_device:
1354	ieee802154_free_hw(devrec->hw);
1355err_ret:
1356	return ret;
1357}
1358
1359static void mrf24j40_remove(struct spi_device *spi)
1360{
1361	struct mrf24j40 *devrec = spi_get_drvdata(spi);
1362
1363	dev_dbg(printdev(devrec), "remove\n");
1364
1365	ieee802154_unregister_hw(devrec->hw);
1366	ieee802154_free_hw(devrec->hw);
1367	/* TODO: Will ieee802154_free_device() wait until ->xmit() is
1368	 * complete? */
1369}
1370
1371static const struct of_device_id mrf24j40_of_match[] = {
1372	{ .compatible = "microchip,mrf24j40", .data = (void *)MRF24J40 },
1373	{ .compatible = "microchip,mrf24j40ma", .data = (void *)MRF24J40MA },
1374	{ .compatible = "microchip,mrf24j40mc", .data = (void *)MRF24J40MC },
1375	{ },
1376};
1377MODULE_DEVICE_TABLE(of, mrf24j40_of_match);
1378
1379static const struct spi_device_id mrf24j40_ids[] = {
1380	{ "mrf24j40", MRF24J40 },
1381	{ "mrf24j40ma", MRF24J40MA },
1382	{ "mrf24j40mc", MRF24J40MC },
1383	{ },
1384};
1385MODULE_DEVICE_TABLE(spi, mrf24j40_ids);
1386
1387static struct spi_driver mrf24j40_driver = {
1388	.driver = {
1389		.of_match_table = mrf24j40_of_match,
1390		.name = "mrf24j40",
1391	},
1392	.id_table = mrf24j40_ids,
1393	.probe = mrf24j40_probe,
1394	.remove = mrf24j40_remove,
1395};
1396
1397module_spi_driver(mrf24j40_driver);
1398
1399MODULE_LICENSE("GPL");
1400MODULE_AUTHOR("Alan Ott");
1401MODULE_DESCRIPTION("MRF24J40 SPI 802.15.4 Controller Driver");
1402