1// SPDX-License-Identifier: GPL-2.0
2/*
3 * MDIO bus driver for the Xilinx Axi Ethernet device
4 *
5 * Copyright (c) 2009 Secret Lab Technologies, Ltd.
6 * Copyright (c) 2010 - 2011 Michal Simek <monstr@monstr.eu>
7 * Copyright (c) 2010 - 2011 PetaLogix
8 * Copyright (c) 2019 SED Systems, a division of Calian Ltd.
9 * Copyright (c) 2010 - 2012 Xilinx, Inc. All rights reserved.
10 */
11
12#include <linux/clk.h>
13#include <linux/of_address.h>
14#include <linux/of_mdio.h>
15#include <linux/jiffies.h>
16#include <linux/iopoll.h>
17
18#include "xilinx_axienet.h"
19
20#define DEFAULT_MDIO_FREQ	2500000 /* 2.5 MHz */
21#define DEFAULT_HOST_CLOCK	150000000 /* 150 MHz */
22
23/* Wait till MDIO interface is ready to accept a new transaction.*/
24static int axienet_mdio_wait_until_ready(struct axienet_local *lp)
25{
26	u32 val;
27
28	return readx_poll_timeout(axinet_ior_read_mcr, lp,
29				  val, val & XAE_MDIO_MCR_READY_MASK,
30				  1, 20000);
31}
32
33/* Enable the MDIO MDC. Called prior to a read/write operation */
34static void axienet_mdio_mdc_enable(struct axienet_local *lp)
35{
36	axienet_iow(lp, XAE_MDIO_MC_OFFSET,
37		    ((u32)lp->mii_clk_div | XAE_MDIO_MC_MDIOEN_MASK));
38}
39
40/* Disable the MDIO MDC. Called after a read/write operation*/
41static void axienet_mdio_mdc_disable(struct axienet_local *lp)
42{
43	u32 mc_reg;
44
45	mc_reg = axienet_ior(lp, XAE_MDIO_MC_OFFSET);
46	axienet_iow(lp, XAE_MDIO_MC_OFFSET,
47		    (mc_reg & ~XAE_MDIO_MC_MDIOEN_MASK));
48}
49
50/**
51 * axienet_mdio_read - MDIO interface read function
52 * @bus:	Pointer to mii bus structure
53 * @phy_id:	Address of the PHY device
54 * @reg:	PHY register to read
55 *
56 * Return:	The register contents on success, -ETIMEDOUT on a timeout
57 *
58 * Reads the contents of the requested register from the requested PHY
59 * address by first writing the details into MCR register. After a while
60 * the register MRD is read to obtain the PHY register content.
61 */
62static int axienet_mdio_read(struct mii_bus *bus, int phy_id, int reg)
63{
64	u32 rc;
65	int ret;
66	struct axienet_local *lp = bus->priv;
67
68	axienet_mdio_mdc_enable(lp);
69
70	ret = axienet_mdio_wait_until_ready(lp);
71	if (ret < 0) {
72		axienet_mdio_mdc_disable(lp);
73		return ret;
74	}
75
76	axienet_iow(lp, XAE_MDIO_MCR_OFFSET,
77		    (((phy_id << XAE_MDIO_MCR_PHYAD_SHIFT) &
78		      XAE_MDIO_MCR_PHYAD_MASK) |
79		     ((reg << XAE_MDIO_MCR_REGAD_SHIFT) &
80		      XAE_MDIO_MCR_REGAD_MASK) |
81		     XAE_MDIO_MCR_INITIATE_MASK |
82		     XAE_MDIO_MCR_OP_READ_MASK));
83
84	ret = axienet_mdio_wait_until_ready(lp);
85	if (ret < 0) {
86		axienet_mdio_mdc_disable(lp);
87		return ret;
88	}
89
90	rc = axienet_ior(lp, XAE_MDIO_MRD_OFFSET) & 0x0000FFFF;
91
92	dev_dbg(lp->dev, "axienet_mdio_read(phy_id=%i, reg=%x) == %x\n",
93		phy_id, reg, rc);
94
95	axienet_mdio_mdc_disable(lp);
96	return rc;
97}
98
99/**
100 * axienet_mdio_write - MDIO interface write function
101 * @bus:	Pointer to mii bus structure
102 * @phy_id:	Address of the PHY device
103 * @reg:	PHY register to write to
104 * @val:	Value to be written into the register
105 *
106 * Return:	0 on success, -ETIMEDOUT on a timeout
107 *
108 * Writes the value to the requested register by first writing the value
109 * into MWD register. The MCR register is then appropriately setup
110 * to finish the write operation.
111 */
112static int axienet_mdio_write(struct mii_bus *bus, int phy_id, int reg,
113			      u16 val)
114{
115	int ret;
116	struct axienet_local *lp = bus->priv;
117
118	dev_dbg(lp->dev, "axienet_mdio_write(phy_id=%i, reg=%x, val=%x)\n",
119		phy_id, reg, val);
120
121	axienet_mdio_mdc_enable(lp);
122
123	ret = axienet_mdio_wait_until_ready(lp);
124	if (ret < 0) {
125		axienet_mdio_mdc_disable(lp);
126		return ret;
127	}
128
129	axienet_iow(lp, XAE_MDIO_MWD_OFFSET, (u32)val);
130	axienet_iow(lp, XAE_MDIO_MCR_OFFSET,
131		    (((phy_id << XAE_MDIO_MCR_PHYAD_SHIFT) &
132		      XAE_MDIO_MCR_PHYAD_MASK) |
133		     ((reg << XAE_MDIO_MCR_REGAD_SHIFT) &
134		      XAE_MDIO_MCR_REGAD_MASK) |
135		     XAE_MDIO_MCR_INITIATE_MASK |
136		     XAE_MDIO_MCR_OP_WRITE_MASK));
137
138	ret = axienet_mdio_wait_until_ready(lp);
139	if (ret < 0) {
140		axienet_mdio_mdc_disable(lp);
141		return ret;
142	}
143	axienet_mdio_mdc_disable(lp);
144	return 0;
145}
146
147/**
148 * axienet_mdio_enable - MDIO hardware setup function
149 * @lp:		Pointer to axienet local data structure.
150 * @np:		Pointer to mdio device tree node.
151 *
152 * Return:	0 on success, -ETIMEDOUT on a timeout, -EOVERFLOW on a clock
153 *		divisor overflow.
154 *
155 * Sets up the MDIO interface by initializing the MDIO clock and enabling the
156 * MDIO interface in hardware.
157 **/
158static int axienet_mdio_enable(struct axienet_local *lp, struct device_node *np)
159{
160	u32 mdio_freq = DEFAULT_MDIO_FREQ;
161	u32 host_clock;
162	u32 clk_div;
163	int ret;
164
165	lp->mii_clk_div = 0;
166
167	if (lp->axi_clk) {
168		host_clock = clk_get_rate(lp->axi_clk);
169	} else {
170		struct device_node *np1;
171
172		/* Legacy fallback: detect CPU clock frequency and use as AXI
173		 * bus clock frequency. This only works on certain platforms.
174		 */
175		np1 = of_find_node_by_name(NULL, "cpu");
176		if (!np1) {
177			netdev_warn(lp->ndev, "Could not find CPU device node.\n");
178			host_clock = DEFAULT_HOST_CLOCK;
179		} else {
180			int ret = of_property_read_u32(np1, "clock-frequency",
181						       &host_clock);
182			if (ret) {
183				netdev_warn(lp->ndev, "CPU clock-frequency property not found.\n");
184				host_clock = DEFAULT_HOST_CLOCK;
185			}
186			of_node_put(np1);
187		}
188		netdev_info(lp->ndev, "Setting assumed host clock to %u\n",
189			    host_clock);
190	}
191
192	if (np)
193		of_property_read_u32(np, "clock-frequency", &mdio_freq);
194	if (mdio_freq != DEFAULT_MDIO_FREQ)
195		netdev_info(lp->ndev, "Setting non-standard mdio bus frequency to %u Hz\n",
196			    mdio_freq);
197
198	/* clk_div can be calculated by deriving it from the equation:
199	 * fMDIO = fHOST / ((1 + clk_div) * 2)
200	 *
201	 * Where fMDIO <= 2500000, so we get:
202	 * fHOST / ((1 + clk_div) * 2) <= 2500000
203	 *
204	 * Then we get:
205	 * 1 / ((1 + clk_div) * 2) <= (2500000 / fHOST)
206	 *
207	 * Then we get:
208	 * 1 / (1 + clk_div) <= ((2500000 * 2) / fHOST)
209	 *
210	 * Then we get:
211	 * 1 / (1 + clk_div) <= (5000000 / fHOST)
212	 *
213	 * So:
214	 * (1 + clk_div) >= (fHOST / 5000000)
215	 *
216	 * And finally:
217	 * clk_div >= (fHOST / 5000000) - 1
218	 *
219	 * fHOST can be read from the flattened device tree as property
220	 * "clock-frequency" from the CPU
221	 */
222
223	clk_div = (host_clock / (mdio_freq * 2)) - 1;
224	/* If there is any remainder from the division of
225	 * fHOST / (mdio_freq * 2), then we need to add
226	 * 1 to the clock divisor or we will surely be
227	 * above the requested frequency
228	 */
229	if (host_clock % (mdio_freq * 2))
230		clk_div++;
231
232	/* Check for overflow of mii_clk_div */
233	if (clk_div & ~XAE_MDIO_MC_CLOCK_DIVIDE_MAX) {
234		netdev_warn(lp->ndev, "MDIO clock divisor overflow\n");
235		return -EOVERFLOW;
236	}
237	lp->mii_clk_div = (u8)clk_div;
238
239	netdev_dbg(lp->ndev,
240		   "Setting MDIO clock divisor to %u/%u Hz host clock.\n",
241		   lp->mii_clk_div, host_clock);
242
243	axienet_mdio_mdc_enable(lp);
244
245	ret = axienet_mdio_wait_until_ready(lp);
246	if (ret)
247		axienet_mdio_mdc_disable(lp);
248
249	return ret;
250}
251
252/**
253 * axienet_mdio_setup - MDIO setup function
254 * @lp:		Pointer to axienet local data structure.
255 *
256 * Return:	0 on success, -ETIMEDOUT on a timeout, -EOVERFLOW on a clock
257 *		divisor overflow, -ENOMEM when mdiobus_alloc (to allocate
258 *		memory for mii bus structure) fails.
259 *
260 * Sets up the MDIO interface by initializing the MDIO clock.
261 * Register the MDIO interface.
262 **/
263int axienet_mdio_setup(struct axienet_local *lp)
264{
265	struct device_node *mdio_node;
266	struct mii_bus *bus;
267	int ret;
268
269	bus = mdiobus_alloc();
270	if (!bus)
271		return -ENOMEM;
272
273	snprintf(bus->id, MII_BUS_ID_SIZE, "axienet-%.8llx",
274		 (unsigned long long)lp->regs_start);
275
276	bus->priv = lp;
277	bus->name = "Xilinx Axi Ethernet MDIO";
278	bus->read = axienet_mdio_read;
279	bus->write = axienet_mdio_write;
280	bus->parent = lp->dev;
281	lp->mii_bus = bus;
282
283	mdio_node = of_get_child_by_name(lp->dev->of_node, "mdio");
284	ret = axienet_mdio_enable(lp, mdio_node);
285	if (ret < 0)
286		goto unregister;
287	ret = of_mdiobus_register(bus, mdio_node);
288	if (ret)
289		goto unregister_mdio_enabled;
290	of_node_put(mdio_node);
291	axienet_mdio_mdc_disable(lp);
292	return 0;
293
294unregister_mdio_enabled:
295	axienet_mdio_mdc_disable(lp);
296unregister:
297	of_node_put(mdio_node);
298	mdiobus_free(bus);
299	lp->mii_bus = NULL;
300	return ret;
301}
302
303/**
304 * axienet_mdio_teardown - MDIO remove function
305 * @lp:		Pointer to axienet local data structure.
306 *
307 * Unregisters the MDIO and frees any associate memory for mii bus.
308 */
309void axienet_mdio_teardown(struct axienet_local *lp)
310{
311	mdiobus_unregister(lp->mii_bus);
312	mdiobus_free(lp->mii_bus);
313	lp->mii_bus = NULL;
314}
315