1/* SPDX-License-Identifier: GPL-2.0-or-later */
2/*------------------------------------------------------------------------
3 . smc91x.h - macros for SMSC's 91C9x/91C1xx single-chip Ethernet device.
4 .
5 . Copyright (C) 1996 by Erik Stahlman
6 . Copyright (C) 2001 Standard Microsystems Corporation
7 .	Developed by Simple Network Magic Corporation
8 . Copyright (C) 2003 Monta Vista Software, Inc.
9 .	Unified SMC91x driver by Nicolas Pitre
10 .
11 .
12 . Information contained in this file was obtained from the LAN91C111
13 . manual from SMC.  To get a copy, if you really want one, you can find
14 . information under www.smsc.com.
15 .
16 . Authors
17 .	Erik Stahlman		<erik@vt.edu>
18 .	Daris A Nevil		<dnevil@snmc.com>
19 .	Nicolas Pitre 		<nico@fluxnic.net>
20 .
21 ---------------------------------------------------------------------------*/
22#ifndef _SMC91X_H_
23#define _SMC91X_H_
24
25#include <linux/dmaengine.h>
26#include <linux/smc91x.h>
27
28/*
29 * Any 16-bit access is performed with two 8-bit accesses if the hardware
30 * can't do it directly. Most registers are 16-bit so those are mandatory.
31 */
32#define SMC_outw_b(x, a, r)						\
33	do {								\
34		unsigned int __val16 = (x);				\
35		unsigned int __reg = (r);				\
36		SMC_outb(__val16, a, __reg);				\
37		SMC_outb(__val16 >> 8, a, __reg + (1 << SMC_IO_SHIFT));	\
38	} while (0)
39
40#define SMC_inw_b(a, r)							\
41	({								\
42		unsigned int __val16;					\
43		unsigned int __reg = r;					\
44		__val16  = SMC_inb(a, __reg);				\
45		__val16 |= SMC_inb(a, __reg + (1 << SMC_IO_SHIFT)) << 8; \
46		__val16;						\
47	})
48
49/*
50 * Define your architecture specific bus configuration parameters here.
51 */
52
53#if defined(CONFIG_ARM)
54
55#include <asm/mach-types.h>
56
57/* Now the bus width is specified in the platform data
58 * pretend here to support all I/O access types
59 */
60#define SMC_CAN_USE_8BIT	1
61#define SMC_CAN_USE_16BIT	1
62#define SMC_CAN_USE_32BIT	1
63#define SMC_NOWAIT		1
64
65#define SMC_IO_SHIFT		(lp->io_shift)
66
67#define SMC_inb(a, r)		readb((a) + (r))
68#define SMC_inw(a, r)							\
69	({								\
70		unsigned int __smc_r = r;				\
71		SMC_16BIT(lp) ? readw((a) + __smc_r) :			\
72		SMC_8BIT(lp) ? SMC_inw_b(a, __smc_r) :			\
73		({ BUG(); 0; });					\
74	})
75
76#define SMC_inl(a, r)		readl((a) + (r))
77#define SMC_outb(v, a, r)	writeb(v, (a) + (r))
78#define SMC_outw(lp, v, a, r)						\
79	do {								\
80		unsigned int __v = v, __smc_r = r;			\
81		if (SMC_16BIT(lp))					\
82			__SMC_outw(lp, __v, a, __smc_r);		\
83		else if (SMC_8BIT(lp))					\
84			SMC_outw_b(__v, a, __smc_r);			\
85		else							\
86			BUG();						\
87	} while (0)
88
89#define SMC_outl(v, a, r)	writel(v, (a) + (r))
90#define SMC_insb(a, r, p, l)	readsb((a) + (r), p, l)
91#define SMC_outsb(a, r, p, l)	writesb((a) + (r), p, l)
92#define SMC_insw(a, r, p, l)	readsw((a) + (r), p, l)
93#define SMC_outsw(a, r, p, l)	writesw((a) + (r), p, l)
94#define SMC_insl(a, r, p, l)	readsl((a) + (r), p, l)
95#define SMC_outsl(a, r, p, l)	writesl((a) + (r), p, l)
96#define SMC_IRQ_FLAGS		(-1)	/* from resource */
97
98/* We actually can't write halfwords properly if not word aligned */
99static inline void _SMC_outw_align4(u16 val, void __iomem *ioaddr, int reg,
100				    bool use_align4_workaround)
101{
102	if (use_align4_workaround) {
103		unsigned int v = val << 16;
104		v |= readl(ioaddr + (reg & ~2)) & 0xffff;
105		writel(v, ioaddr + (reg & ~2));
106	} else {
107		writew(val, ioaddr + reg);
108	}
109}
110
111#define __SMC_outw(lp, v, a, r)						\
112	_SMC_outw_align4((v), (a), (r),					\
113			 IS_BUILTIN(CONFIG_ARCH_PXA) && ((r) & 2) &&	\
114			 (lp)->cfg.pxa_u16_align4)
115
116
117#elif defined(CONFIG_ATARI)
118
119#define SMC_CAN_USE_8BIT        1
120#define SMC_CAN_USE_16BIT       1
121#define SMC_CAN_USE_32BIT       1
122#define SMC_NOWAIT              1
123
124#define SMC_inb(a, r)           readb((a) + (r))
125#define SMC_inw(a, r)           readw((a) + (r))
126#define SMC_inl(a, r)           readl((a) + (r))
127#define SMC_outb(v, a, r)       writeb(v, (a) + (r))
128#define SMC_outw(lp, v, a, r)   writew(v, (a) + (r))
129#define SMC_outl(v, a, r)       writel(v, (a) + (r))
130#define SMC_insw(a, r, p, l)    readsw((a) + (r), p, l)
131#define SMC_outsw(a, r, p, l)   writesw((a) + (r), p, l)
132#define SMC_insl(a, r, p, l)    readsl((a) + (r), p, l)
133#define SMC_outsl(a, r, p, l)   writesl((a) + (r), p, l)
134
135#define RPC_LSA_DEFAULT         RPC_LED_100_10
136#define RPC_LSB_DEFAULT         RPC_LED_TX_RX
137
138#elif defined(CONFIG_COLDFIRE)
139
140#define SMC_CAN_USE_8BIT	0
141#define SMC_CAN_USE_16BIT	1
142#define SMC_CAN_USE_32BIT	0
143#define SMC_NOWAIT		1
144
145static inline void mcf_insw(void *a, unsigned char *p, int l)
146{
147	u16 *wp = (u16 *) p;
148	while (l-- > 0)
149		*wp++ = readw(a);
150}
151
152static inline void mcf_outsw(void *a, unsigned char *p, int l)
153{
154	u16 *wp = (u16 *) p;
155	while (l-- > 0)
156		writew(*wp++, a);
157}
158
159#define SMC_inw(a, r)		_swapw(readw((a) + (r)))
160#define SMC_outw(lp, v, a, r)	writew(_swapw(v), (a) + (r))
161#define SMC_insw(a, r, p, l)	mcf_insw(a + r, p, l)
162#define SMC_outsw(a, r, p, l)	mcf_outsw(a + r, p, l)
163
164#define SMC_IRQ_FLAGS		0
165
166#else
167
168/*
169 * Default configuration
170 */
171
172#define SMC_CAN_USE_8BIT	1
173#define SMC_CAN_USE_16BIT	1
174#define SMC_CAN_USE_32BIT	1
175#define SMC_NOWAIT		1
176
177#define SMC_IO_SHIFT		(lp->io_shift)
178
179#define SMC_inb(a, r)		ioread8((a) + (r))
180#define SMC_inw(a, r)		ioread16((a) + (r))
181#define SMC_inl(a, r)		ioread32((a) + (r))
182#define SMC_outb(v, a, r)	iowrite8(v, (a) + (r))
183#define SMC_outw(lp, v, a, r)	iowrite16(v, (a) + (r))
184#define SMC_outl(v, a, r)	iowrite32(v, (a) + (r))
185#define SMC_insw(a, r, p, l)	ioread16_rep((a) + (r), p, l)
186#define SMC_outsw(a, r, p, l)	iowrite16_rep((a) + (r), p, l)
187#define SMC_insl(a, r, p, l)	ioread32_rep((a) + (r), p, l)
188#define SMC_outsl(a, r, p, l)	iowrite32_rep((a) + (r), p, l)
189
190#define RPC_LSA_DEFAULT		RPC_LED_100_10
191#define RPC_LSB_DEFAULT		RPC_LED_TX_RX
192
193#endif
194
195
196/* store this information for the driver.. */
197struct smc_local {
198	/*
199	 * If I have to wait until memory is available to send a
200	 * packet, I will store the skbuff here, until I get the
201	 * desired memory.  Then, I'll send it out and free it.
202	 */
203	struct sk_buff *pending_tx_skb;
204	struct tasklet_struct tx_task;
205
206	struct gpio_desc *power_gpio;
207	struct gpio_desc *reset_gpio;
208
209	/* version/revision of the SMC91x chip */
210	int	version;
211
212	/* Contains the current active transmission mode */
213	int	tcr_cur_mode;
214
215	/* Contains the current active receive mode */
216	int	rcr_cur_mode;
217
218	/* Contains the current active receive/phy mode */
219	int	rpc_cur_mode;
220	int	ctl_rfduplx;
221	int	ctl_rspeed;
222
223	u32	msg_enable;
224	u32	phy_type;
225	struct mii_if_info mii;
226
227	/* work queue */
228	struct work_struct phy_configure;
229	struct net_device *dev;
230	int	work_pending;
231
232	spinlock_t lock;
233
234#ifdef CONFIG_ARCH_PXA
235	/* DMA needs the physical address of the chip */
236	u_long physaddr;
237	struct device *device;
238#endif
239	struct dma_chan *dma_chan;
240	void __iomem *base;
241	void __iomem *datacs;
242
243	/* the low address lines on some platforms aren't connected... */
244	int	io_shift;
245	/* on some platforms a u16 write must be 4-bytes aligned */
246	bool	half_word_align4;
247
248	struct smc91x_platdata cfg;
249};
250
251#define SMC_8BIT(p)	((p)->cfg.flags & SMC91X_USE_8BIT)
252#define SMC_16BIT(p)	((p)->cfg.flags & SMC91X_USE_16BIT)
253#define SMC_32BIT(p)	((p)->cfg.flags & SMC91X_USE_32BIT)
254
255#ifdef CONFIG_ARCH_PXA
256/*
257 * Let's use the DMA engine on the XScale PXA2xx for RX packets. This is
258 * always happening in irq context so no need to worry about races.  TX is
259 * different and probably not worth it for that reason, and not as critical
260 * as RX which can overrun memory and lose packets.
261 */
262#include <linux/dma-mapping.h>
263
264#ifdef SMC_insl
265#undef SMC_insl
266#define SMC_insl(a, r, p, l) \
267	smc_pxa_dma_insl(a, lp, r, dev->dma, p, l)
268static inline void
269smc_pxa_dma_inpump(struct smc_local *lp, u_char *buf, int len)
270{
271	dma_addr_t dmabuf;
272	struct dma_async_tx_descriptor *tx;
273	dma_cookie_t cookie;
274	enum dma_status status;
275	struct dma_tx_state state;
276
277	dmabuf = dma_map_single(lp->device, buf, len, DMA_FROM_DEVICE);
278	tx = dmaengine_prep_slave_single(lp->dma_chan, dmabuf, len,
279					 DMA_DEV_TO_MEM, 0);
280	if (tx) {
281		cookie = dmaengine_submit(tx);
282		dma_async_issue_pending(lp->dma_chan);
283		do {
284			status = dmaengine_tx_status(lp->dma_chan, cookie,
285						     &state);
286			cpu_relax();
287		} while (status != DMA_COMPLETE && status != DMA_ERROR &&
288			 state.residue);
289		dmaengine_terminate_all(lp->dma_chan);
290	}
291	dma_unmap_single(lp->device, dmabuf, len, DMA_FROM_DEVICE);
292}
293
294static inline void
295smc_pxa_dma_insl(void __iomem *ioaddr, struct smc_local *lp, int reg, int dma,
296		 u_char *buf, int len)
297{
298	struct dma_slave_config	config;
299	int ret;
300
301	/* fallback if no DMA available */
302	if (!lp->dma_chan) {
303		readsl(ioaddr + reg, buf, len);
304		return;
305	}
306
307	/* 64 bit alignment is required for memory to memory DMA */
308	if ((long)buf & 4) {
309		*((u32 *)buf) = SMC_inl(ioaddr, reg);
310		buf += 4;
311		len--;
312	}
313
314	memset(&config, 0, sizeof(config));
315	config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
316	config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
317	config.src_addr = lp->physaddr + reg;
318	config.dst_addr = lp->physaddr + reg;
319	config.src_maxburst = 32;
320	config.dst_maxburst = 32;
321	ret = dmaengine_slave_config(lp->dma_chan, &config);
322	if (ret) {
323		dev_err(lp->device, "dma channel configuration failed: %d\n",
324			ret);
325		return;
326	}
327
328	len *= 4;
329	smc_pxa_dma_inpump(lp, buf, len);
330}
331#endif
332
333#ifdef SMC_insw
334#undef SMC_insw
335#define SMC_insw(a, r, p, l) \
336	smc_pxa_dma_insw(a, lp, r, dev->dma, p, l)
337static inline void
338smc_pxa_dma_insw(void __iomem *ioaddr, struct smc_local *lp, int reg, int dma,
339		 u_char *buf, int len)
340{
341	struct dma_slave_config	config;
342	int ret;
343
344	/* fallback if no DMA available */
345	if (!lp->dma_chan) {
346		readsw(ioaddr + reg, buf, len);
347		return;
348	}
349
350	/* 64 bit alignment is required for memory to memory DMA */
351	while ((long)buf & 6) {
352		*((u16 *)buf) = SMC_inw(ioaddr, reg);
353		buf += 2;
354		len--;
355	}
356
357	memset(&config, 0, sizeof(config));
358	config.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
359	config.dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
360	config.src_addr = lp->physaddr + reg;
361	config.dst_addr = lp->physaddr + reg;
362	config.src_maxburst = 32;
363	config.dst_maxburst = 32;
364	ret = dmaengine_slave_config(lp->dma_chan, &config);
365	if (ret) {
366		dev_err(lp->device, "dma channel configuration failed: %d\n",
367			ret);
368		return;
369	}
370
371	len *= 2;
372	smc_pxa_dma_inpump(lp, buf, len);
373}
374#endif
375
376#endif  /* CONFIG_ARCH_PXA */
377
378
379/*
380 * Everything a particular hardware setup needs should have been defined
381 * at this point.  Add stubs for the undefined cases, mainly to avoid
382 * compilation warnings since they'll be optimized away, or to prevent buggy
383 * use of them.
384 */
385
386#if ! SMC_CAN_USE_32BIT
387#define SMC_inl(ioaddr, reg)		({ BUG(); 0; })
388#define SMC_outl(x, ioaddr, reg)	BUG()
389#define SMC_insl(a, r, p, l)		BUG()
390#define SMC_outsl(a, r, p, l)		BUG()
391#endif
392
393#if !defined(SMC_insl) || !defined(SMC_outsl)
394#define SMC_insl(a, r, p, l)		BUG()
395#define SMC_outsl(a, r, p, l)		BUG()
396#endif
397
398#if ! SMC_CAN_USE_16BIT
399
400#define SMC_outw(lp, x, ioaddr, reg)	SMC_outw_b(x, ioaddr, reg)
401#define SMC_inw(ioaddr, reg)		SMC_inw_b(ioaddr, reg)
402#define SMC_insw(a, r, p, l)		BUG()
403#define SMC_outsw(a, r, p, l)		BUG()
404
405#endif
406
407#if !defined(SMC_insw) || !defined(SMC_outsw)
408#define SMC_insw(a, r, p, l)		BUG()
409#define SMC_outsw(a, r, p, l)		BUG()
410#endif
411
412#if ! SMC_CAN_USE_8BIT
413#undef SMC_inb
414#define SMC_inb(ioaddr, reg)		({ BUG(); 0; })
415#undef SMC_outb
416#define SMC_outb(x, ioaddr, reg)	BUG()
417#define SMC_insb(a, r, p, l)		BUG()
418#define SMC_outsb(a, r, p, l)		BUG()
419#endif
420
421#if !defined(SMC_insb) || !defined(SMC_outsb)
422#define SMC_insb(a, r, p, l)		BUG()
423#define SMC_outsb(a, r, p, l)		BUG()
424#endif
425
426#ifndef SMC_CAN_USE_DATACS
427#define SMC_CAN_USE_DATACS	0
428#endif
429
430#ifndef SMC_IO_SHIFT
431#define SMC_IO_SHIFT	0
432#endif
433
434#ifndef	SMC_IRQ_FLAGS
435#define	SMC_IRQ_FLAGS		IRQF_TRIGGER_RISING
436#endif
437
438#ifndef SMC_INTERRUPT_PREAMBLE
439#define SMC_INTERRUPT_PREAMBLE
440#endif
441
442
443/* Because of bank switching, the LAN91x uses only 16 I/O ports */
444#define SMC_IO_EXTENT	(16 << SMC_IO_SHIFT)
445#define SMC_DATA_EXTENT (4)
446
447/*
448 . Bank Select Register:
449 .
450 .		yyyy yyyy 0000 00xx
451 .		xx 		= bank number
452 .		yyyy yyyy	= 0x33, for identification purposes.
453*/
454#define BANK_SELECT		(14 << SMC_IO_SHIFT)
455
456
457// Transmit Control Register
458/* BANK 0  */
459#define TCR_REG(lp) 	SMC_REG(lp, 0x0000, 0)
460#define TCR_ENABLE	0x0001	// When 1 we can transmit
461#define TCR_LOOP	0x0002	// Controls output pin LBK
462#define TCR_FORCOL	0x0004	// When 1 will force a collision
463#define TCR_PAD_EN	0x0080	// When 1 will pad tx frames < 64 bytes w/0
464#define TCR_NOCRC	0x0100	// When 1 will not append CRC to tx frames
465#define TCR_MON_CSN	0x0400	// When 1 tx monitors carrier
466#define TCR_FDUPLX    	0x0800  // When 1 enables full duplex operation
467#define TCR_STP_SQET	0x1000	// When 1 stops tx if Signal Quality Error
468#define TCR_EPH_LOOP	0x2000	// When 1 enables EPH block loopback
469#define TCR_SWFDUP	0x8000	// When 1 enables Switched Full Duplex mode
470
471#define TCR_CLEAR	0	/* do NOTHING */
472/* the default settings for the TCR register : */
473#define TCR_DEFAULT	(TCR_ENABLE | TCR_PAD_EN)
474
475
476// EPH Status Register
477/* BANK 0  */
478#define EPH_STATUS_REG(lp)	SMC_REG(lp, 0x0002, 0)
479#define ES_TX_SUC	0x0001	// Last TX was successful
480#define ES_SNGL_COL	0x0002	// Single collision detected for last tx
481#define ES_MUL_COL	0x0004	// Multiple collisions detected for last tx
482#define ES_LTX_MULT	0x0008	// Last tx was a multicast
483#define ES_16COL	0x0010	// 16 Collisions Reached
484#define ES_SQET		0x0020	// Signal Quality Error Test
485#define ES_LTXBRD	0x0040	// Last tx was a broadcast
486#define ES_TXDEFR	0x0080	// Transmit Deferred
487#define ES_LATCOL	0x0200	// Late collision detected on last tx
488#define ES_LOSTCARR	0x0400	// Lost Carrier Sense
489#define ES_EXC_DEF	0x0800	// Excessive Deferral
490#define ES_CTR_ROL	0x1000	// Counter Roll Over indication
491#define ES_LINK_OK	0x4000	// Driven by inverted value of nLNK pin
492#define ES_TXUNRN	0x8000	// Tx Underrun
493
494
495// Receive Control Register
496/* BANK 0  */
497#define RCR_REG(lp)		SMC_REG(lp, 0x0004, 0)
498#define RCR_RX_ABORT	0x0001	// Set if a rx frame was aborted
499#define RCR_PRMS	0x0002	// Enable promiscuous mode
500#define RCR_ALMUL	0x0004	// When set accepts all multicast frames
501#define RCR_RXEN	0x0100	// IFF this is set, we can receive packets
502#define RCR_STRIP_CRC	0x0200	// When set strips CRC from rx packets
503#define RCR_ABORT_ENB	0x0200	// When set will abort rx on collision
504#define RCR_FILT_CAR	0x0400	// When set filters leading 12 bit s of carrier
505#define RCR_SOFTRST	0x8000 	// resets the chip
506
507/* the normal settings for the RCR register : */
508#define RCR_DEFAULT	(RCR_STRIP_CRC | RCR_RXEN)
509#define RCR_CLEAR	0x0	// set it to a base state
510
511
512// Counter Register
513/* BANK 0  */
514#define COUNTER_REG(lp)	SMC_REG(lp, 0x0006, 0)
515
516
517// Memory Information Register
518/* BANK 0  */
519#define MIR_REG(lp)		SMC_REG(lp, 0x0008, 0)
520
521
522// Receive/Phy Control Register
523/* BANK 0  */
524#define RPC_REG(lp)		SMC_REG(lp, 0x000A, 0)
525#define RPC_SPEED	0x2000	// When 1 PHY is in 100Mbps mode.
526#define RPC_DPLX	0x1000	// When 1 PHY is in Full-Duplex Mode
527#define RPC_ANEG	0x0800	// When 1 PHY is in Auto-Negotiate Mode
528#define RPC_LSXA_SHFT	5	// Bits to shift LS2A,LS1A,LS0A to lsb
529#define RPC_LSXB_SHFT	2	// Bits to get LS2B,LS1B,LS0B to lsb
530
531#ifndef RPC_LSA_DEFAULT
532#define RPC_LSA_DEFAULT	RPC_LED_100
533#endif
534#ifndef RPC_LSB_DEFAULT
535#define RPC_LSB_DEFAULT RPC_LED_FD
536#endif
537
538#define RPC_DEFAULT (RPC_ANEG | RPC_SPEED | RPC_DPLX)
539
540
541/* Bank 0 0x0C is reserved */
542
543// Bank Select Register
544/* All Banks */
545#define BSR_REG		0x000E
546
547
548// Configuration Reg
549/* BANK 1 */
550#define CONFIG_REG(lp)	SMC_REG(lp, 0x0000,	1)
551#define CONFIG_EXT_PHY	0x0200	// 1=external MII, 0=internal Phy
552#define CONFIG_GPCNTRL	0x0400	// Inverse value drives pin nCNTRL
553#define CONFIG_NO_WAIT	0x1000	// When 1 no extra wait states on ISA bus
554#define CONFIG_EPH_POWER_EN 0x8000 // When 0 EPH is placed into low power mode.
555
556// Default is powered-up, Internal Phy, Wait States, and pin nCNTRL=low
557#define CONFIG_DEFAULT	(CONFIG_EPH_POWER_EN)
558
559
560// Base Address Register
561/* BANK 1 */
562#define BASE_REG(lp)	SMC_REG(lp, 0x0002, 1)
563
564
565// Individual Address Registers
566/* BANK 1 */
567#define ADDR0_REG(lp)	SMC_REG(lp, 0x0004, 1)
568#define ADDR1_REG(lp)	SMC_REG(lp, 0x0006, 1)
569#define ADDR2_REG(lp)	SMC_REG(lp, 0x0008, 1)
570
571
572// General Purpose Register
573/* BANK 1 */
574#define GP_REG(lp)		SMC_REG(lp, 0x000A, 1)
575
576
577// Control Register
578/* BANK 1 */
579#define CTL_REG(lp)		SMC_REG(lp, 0x000C, 1)
580#define CTL_RCV_BAD	0x4000 // When 1 bad CRC packets are received
581#define CTL_AUTO_RELEASE 0x0800 // When 1 tx pages are released automatically
582#define CTL_LE_ENABLE	0x0080 // When 1 enables Link Error interrupt
583#define CTL_CR_ENABLE	0x0040 // When 1 enables Counter Rollover interrupt
584#define CTL_TE_ENABLE	0x0020 // When 1 enables Transmit Error interrupt
585#define CTL_EEPROM_SELECT 0x0004 // Controls EEPROM reload & store
586#define CTL_RELOAD	0x0002 // When set reads EEPROM into registers
587#define CTL_STORE	0x0001 // When set stores registers into EEPROM
588
589
590// MMU Command Register
591/* BANK 2 */
592#define MMU_CMD_REG(lp)	SMC_REG(lp, 0x0000, 2)
593#define MC_BUSY		1	// When 1 the last release has not completed
594#define MC_NOP		(0<<5)	// No Op
595#define MC_ALLOC	(1<<5) 	// OR with number of 256 byte packets
596#define MC_RESET	(2<<5)	// Reset MMU to initial state
597#define MC_REMOVE	(3<<5) 	// Remove the current rx packet
598#define MC_RELEASE  	(4<<5) 	// Remove and release the current rx packet
599#define MC_FREEPKT  	(5<<5) 	// Release packet in PNR register
600#define MC_ENQUEUE	(6<<5)	// Enqueue the packet for transmit
601#define MC_RSTTXFIFO	(7<<5)	// Reset the TX FIFOs
602
603
604// Packet Number Register
605/* BANK 2 */
606#define PN_REG(lp)		SMC_REG(lp, 0x0002, 2)
607
608
609// Allocation Result Register
610/* BANK 2 */
611#define AR_REG(lp)		SMC_REG(lp, 0x0003, 2)
612#define AR_FAILED	0x80	// Alocation Failed
613
614
615// TX FIFO Ports Register
616/* BANK 2 */
617#define TXFIFO_REG(lp)	SMC_REG(lp, 0x0004, 2)
618#define TXFIFO_TEMPTY	0x80	// TX FIFO Empty
619
620// RX FIFO Ports Register
621/* BANK 2 */
622#define RXFIFO_REG(lp)	SMC_REG(lp, 0x0005, 2)
623#define RXFIFO_REMPTY	0x80	// RX FIFO Empty
624
625#define FIFO_REG(lp)	SMC_REG(lp, 0x0004, 2)
626
627// Pointer Register
628/* BANK 2 */
629#define PTR_REG(lp)		SMC_REG(lp, 0x0006, 2)
630#define PTR_RCV		0x8000 // 1=Receive area, 0=Transmit area
631#define PTR_AUTOINC 	0x4000 // Auto increment the pointer on each access
632#define PTR_READ	0x2000 // When 1 the operation is a read
633
634
635// Data Register
636/* BANK 2 */
637#define DATA_REG(lp)	SMC_REG(lp, 0x0008, 2)
638
639
640// Interrupt Status/Acknowledge Register
641/* BANK 2 */
642#define INT_REG(lp)		SMC_REG(lp, 0x000C, 2)
643
644
645// Interrupt Mask Register
646/* BANK 2 */
647#define IM_REG(lp)		SMC_REG(lp, 0x000D, 2)
648#define IM_MDINT	0x80 // PHY MI Register 18 Interrupt
649#define IM_ERCV_INT	0x40 // Early Receive Interrupt
650#define IM_EPH_INT	0x20 // Set by Ethernet Protocol Handler section
651#define IM_RX_OVRN_INT	0x10 // Set by Receiver Overruns
652#define IM_ALLOC_INT	0x08 // Set when allocation request is completed
653#define IM_TX_EMPTY_INT	0x04 // Set if the TX FIFO goes empty
654#define IM_TX_INT	0x02 // Transmit Interrupt
655#define IM_RCV_INT	0x01 // Receive Interrupt
656
657
658// Multicast Table Registers
659/* BANK 3 */
660#define MCAST_REG1(lp)	SMC_REG(lp, 0x0000, 3)
661#define MCAST_REG2(lp)	SMC_REG(lp, 0x0002, 3)
662#define MCAST_REG3(lp)	SMC_REG(lp, 0x0004, 3)
663#define MCAST_REG4(lp)	SMC_REG(lp, 0x0006, 3)
664
665
666// Management Interface Register (MII)
667/* BANK 3 */
668#define MII_REG(lp)		SMC_REG(lp, 0x0008, 3)
669#define MII_MSK_CRS100	0x4000 // Disables CRS100 detection during tx half dup
670#define MII_MDOE	0x0008 // MII Output Enable
671#define MII_MCLK	0x0004 // MII Clock, pin MDCLK
672#define MII_MDI		0x0002 // MII Input, pin MDI
673#define MII_MDO		0x0001 // MII Output, pin MDO
674
675
676// Revision Register
677/* BANK 3 */
678/* ( hi: chip id   low: rev # ) */
679#define REV_REG(lp)		SMC_REG(lp, 0x000A, 3)
680
681
682// Early RCV Register
683/* BANK 3 */
684/* this is NOT on SMC9192 */
685#define ERCV_REG(lp)	SMC_REG(lp, 0x000C, 3)
686#define ERCV_RCV_DISCRD	0x0080 // When 1 discards a packet being received
687#define ERCV_THRESHOLD	0x001F // ERCV Threshold Mask
688
689
690// External Register
691/* BANK 7 */
692#define EXT_REG(lp)		SMC_REG(lp, 0x0000, 7)
693
694
695#define CHIP_9192	3
696#define CHIP_9194	4
697#define CHIP_9195	5
698#define CHIP_9196	6
699#define CHIP_91100	7
700#define CHIP_91100FD	8
701#define CHIP_91111FD	9
702
703static const char * chip_ids[ 16 ] =  {
704	NULL, NULL, NULL,
705	/* 3 */ "SMC91C90/91C92",
706	/* 4 */ "SMC91C94",
707	/* 5 */ "SMC91C95",
708	/* 6 */ "SMC91C96",
709	/* 7 */ "SMC91C100",
710	/* 8 */ "SMC91C100FD",
711	/* 9 */ "SMC91C11xFD",
712	NULL, NULL, NULL,
713	NULL, NULL, NULL};
714
715
716/*
717 . Receive status bits
718*/
719#define RS_ALGNERR	0x8000
720#define RS_BRODCAST	0x4000
721#define RS_BADCRC	0x2000
722#define RS_ODDFRAME	0x1000
723#define RS_TOOLONG	0x0800
724#define RS_TOOSHORT	0x0400
725#define RS_MULTICAST	0x0001
726#define RS_ERRORS	(RS_ALGNERR | RS_BADCRC | RS_TOOLONG | RS_TOOSHORT)
727
728
729/*
730 * PHY IDs
731 *  LAN83C183 == LAN91C111 Internal PHY
732 */
733#define PHY_LAN83C183	0x0016f840
734#define PHY_LAN83C180	0x02821c50
735
736/*
737 * PHY Register Addresses (LAN91C111 Internal PHY)
738 *
739 * Generic PHY registers can be found in <linux/mii.h>
740 *
741 * These phy registers are specific to our on-board phy.
742 */
743
744// PHY Configuration Register 1
745#define PHY_CFG1_REG		0x10
746#define PHY_CFG1_LNKDIS		0x8000	// 1=Rx Link Detect Function disabled
747#define PHY_CFG1_XMTDIS		0x4000	// 1=TP Transmitter Disabled
748#define PHY_CFG1_XMTPDN		0x2000	// 1=TP Transmitter Powered Down
749#define PHY_CFG1_BYPSCR		0x0400	// 1=Bypass scrambler/descrambler
750#define PHY_CFG1_UNSCDS		0x0200	// 1=Unscramble Idle Reception Disable
751#define PHY_CFG1_EQLZR		0x0100	// 1=Rx Equalizer Disabled
752#define PHY_CFG1_CABLE		0x0080	// 1=STP(150ohm), 0=UTP(100ohm)
753#define PHY_CFG1_RLVL0		0x0040	// 1=Rx Squelch level reduced by 4.5db
754#define PHY_CFG1_TLVL_SHIFT	2	// Transmit Output Level Adjust
755#define PHY_CFG1_TLVL_MASK	0x003C
756#define PHY_CFG1_TRF_MASK	0x0003	// Transmitter Rise/Fall time
757
758
759// PHY Configuration Register 2
760#define PHY_CFG2_REG		0x11
761#define PHY_CFG2_APOLDIS	0x0020	// 1=Auto Polarity Correction disabled
762#define PHY_CFG2_JABDIS		0x0010	// 1=Jabber disabled
763#define PHY_CFG2_MREG		0x0008	// 1=Multiple register access (MII mgt)
764#define PHY_CFG2_INTMDIO	0x0004	// 1=Interrupt signaled with MDIO pulseo
765
766// PHY Status Output (and Interrupt status) Register
767#define PHY_INT_REG		0x12	// Status Output (Interrupt Status)
768#define PHY_INT_INT		0x8000	// 1=bits have changed since last read
769#define PHY_INT_LNKFAIL		0x4000	// 1=Link Not detected
770#define PHY_INT_LOSSSYNC	0x2000	// 1=Descrambler has lost sync
771#define PHY_INT_CWRD		0x1000	// 1=Invalid 4B5B code detected on rx
772#define PHY_INT_SSD		0x0800	// 1=No Start Of Stream detected on rx
773#define PHY_INT_ESD		0x0400	// 1=No End Of Stream detected on rx
774#define PHY_INT_RPOL		0x0200	// 1=Reverse Polarity detected
775#define PHY_INT_JAB		0x0100	// 1=Jabber detected
776#define PHY_INT_SPDDET		0x0080	// 1=100Base-TX mode, 0=10Base-T mode
777#define PHY_INT_DPLXDET		0x0040	// 1=Device in Full Duplex
778
779// PHY Interrupt/Status Mask Register
780#define PHY_MASK_REG		0x13	// Interrupt Mask
781// Uses the same bit definitions as PHY_INT_REG
782
783
784/*
785 * SMC91C96 ethernet config and status registers.
786 * These are in the "attribute" space.
787 */
788#define ECOR			0x8000
789#define ECOR_RESET		0x80
790#define ECOR_LEVEL_IRQ		0x40
791#define ECOR_WR_ATTRIB		0x04
792#define ECOR_ENABLE		0x01
793
794#define ECSR			0x8002
795#define ECSR_IOIS8		0x20
796#define ECSR_PWRDWN		0x04
797#define ECSR_INT		0x02
798
799#define ATTRIB_SIZE		((64*1024) << SMC_IO_SHIFT)
800
801
802/*
803 * Macros to abstract register access according to the data bus
804 * capabilities.  Please use those and not the in/out primitives.
805 * Note: the following macros do *not* select the bank -- this must
806 * be done separately as needed in the main code.  The SMC_REG() macro
807 * only uses the bank argument for debugging purposes (when enabled).
808 *
809 * Note: despite inline functions being safer, everything leading to this
810 * should preferably be macros to let BUG() display the line number in
811 * the core source code since we're interested in the top call site
812 * not in any inline function location.
813 */
814
815#if SMC_DEBUG > 0
816#define SMC_REG(lp, reg, bank)					\
817	({								\
818		int __b = SMC_CURRENT_BANK(lp);			\
819		if (unlikely((__b & ~0xf0) != (0x3300 | bank))) {	\
820			pr_err("%s: bank reg screwed (0x%04x)\n",	\
821			       CARDNAME, __b);				\
822			BUG();						\
823		}							\
824		reg<<SMC_IO_SHIFT;					\
825	})
826#else
827#define SMC_REG(lp, reg, bank)	(reg<<SMC_IO_SHIFT)
828#endif
829
830/*
831 * Hack Alert: Some setups just can't write 8 or 16 bits reliably when not
832 * aligned to a 32 bit boundary.  I tell you that does exist!
833 * Fortunately the affected register accesses can be easily worked around
834 * since we can write zeroes to the preceding 16 bits without adverse
835 * effects and use a 32-bit access.
836 *
837 * Enforce it on any 32-bit capable setup for now.
838 */
839#define SMC_MUST_ALIGN_WRITE(lp)	SMC_32BIT(lp)
840
841#define SMC_GET_PN(lp)						\
842	(SMC_8BIT(lp)	? (SMC_inb(ioaddr, PN_REG(lp)))	\
843				: (SMC_inw(ioaddr, PN_REG(lp)) & 0xFF))
844
845#define SMC_SET_PN(lp, x)						\
846	do {								\
847		if (SMC_MUST_ALIGN_WRITE(lp))				\
848			SMC_outl((x)<<16, ioaddr, SMC_REG(lp, 0, 2));	\
849		else if (SMC_8BIT(lp))				\
850			SMC_outb(x, ioaddr, PN_REG(lp));		\
851		else							\
852			SMC_outw(lp, x, ioaddr, PN_REG(lp));		\
853	} while (0)
854
855#define SMC_GET_AR(lp)						\
856	(SMC_8BIT(lp)	? (SMC_inb(ioaddr, AR_REG(lp)))	\
857				: (SMC_inw(ioaddr, PN_REG(lp)) >> 8))
858
859#define SMC_GET_TXFIFO(lp)						\
860	(SMC_8BIT(lp)	? (SMC_inb(ioaddr, TXFIFO_REG(lp)))	\
861				: (SMC_inw(ioaddr, TXFIFO_REG(lp)) & 0xFF))
862
863#define SMC_GET_RXFIFO(lp)						\
864	(SMC_8BIT(lp)	? (SMC_inb(ioaddr, RXFIFO_REG(lp)))	\
865				: (SMC_inw(ioaddr, TXFIFO_REG(lp)) >> 8))
866
867#define SMC_GET_INT(lp)						\
868	(SMC_8BIT(lp)	? (SMC_inb(ioaddr, INT_REG(lp)))	\
869				: (SMC_inw(ioaddr, INT_REG(lp)) & 0xFF))
870
871#define SMC_ACK_INT(lp, x)						\
872	do {								\
873		if (SMC_8BIT(lp))					\
874			SMC_outb(x, ioaddr, INT_REG(lp));		\
875		else {							\
876			unsigned long __flags;				\
877			int __mask;					\
878			local_irq_save(__flags);			\
879			__mask = SMC_inw(ioaddr, INT_REG(lp)) & ~0xff; \
880			SMC_outw(lp, __mask | (x), ioaddr, INT_REG(lp)); \
881			local_irq_restore(__flags);			\
882		}							\
883	} while (0)
884
885#define SMC_GET_INT_MASK(lp)						\
886	(SMC_8BIT(lp)	? (SMC_inb(ioaddr, IM_REG(lp)))	\
887				: (SMC_inw(ioaddr, INT_REG(lp)) >> 8))
888
889#define SMC_SET_INT_MASK(lp, x)					\
890	do {								\
891		if (SMC_8BIT(lp))					\
892			SMC_outb(x, ioaddr, IM_REG(lp));		\
893		else							\
894			SMC_outw(lp, (x) << 8, ioaddr, INT_REG(lp));	\
895	} while (0)
896
897#define SMC_CURRENT_BANK(lp)	SMC_inw(ioaddr, BANK_SELECT)
898
899#define SMC_SELECT_BANK(lp, x)					\
900	do {								\
901		if (SMC_MUST_ALIGN_WRITE(lp))				\
902			SMC_outl((x)<<16, ioaddr, 12<<SMC_IO_SHIFT);	\
903		else							\
904			SMC_outw(lp, x, ioaddr, BANK_SELECT);		\
905	} while (0)
906
907#define SMC_GET_BASE(lp)		SMC_inw(ioaddr, BASE_REG(lp))
908
909#define SMC_SET_BASE(lp, x)	SMC_outw(lp, x, ioaddr, BASE_REG(lp))
910
911#define SMC_GET_CONFIG(lp)	SMC_inw(ioaddr, CONFIG_REG(lp))
912
913#define SMC_SET_CONFIG(lp, x)	SMC_outw(lp, x, ioaddr, CONFIG_REG(lp))
914
915#define SMC_GET_COUNTER(lp)	SMC_inw(ioaddr, COUNTER_REG(lp))
916
917#define SMC_GET_CTL(lp)		SMC_inw(ioaddr, CTL_REG(lp))
918
919#define SMC_SET_CTL(lp, x)	SMC_outw(lp, x, ioaddr, CTL_REG(lp))
920
921#define SMC_GET_MII(lp)		SMC_inw(ioaddr, MII_REG(lp))
922
923#define SMC_GET_GP(lp)		SMC_inw(ioaddr, GP_REG(lp))
924
925#define SMC_SET_GP(lp, x)						\
926	do {								\
927		if (SMC_MUST_ALIGN_WRITE(lp))				\
928			SMC_outl((x)<<16, ioaddr, SMC_REG(lp, 8, 1));	\
929		else							\
930			SMC_outw(lp, x, ioaddr, GP_REG(lp));		\
931	} while (0)
932
933#define SMC_SET_MII(lp, x)	SMC_outw(lp, x, ioaddr, MII_REG(lp))
934
935#define SMC_GET_MIR(lp)		SMC_inw(ioaddr, MIR_REG(lp))
936
937#define SMC_SET_MIR(lp, x)	SMC_outw(lp, x, ioaddr, MIR_REG(lp))
938
939#define SMC_GET_MMU_CMD(lp)	SMC_inw(ioaddr, MMU_CMD_REG(lp))
940
941#define SMC_SET_MMU_CMD(lp, x)	SMC_outw(lp, x, ioaddr, MMU_CMD_REG(lp))
942
943#define SMC_GET_FIFO(lp)	SMC_inw(ioaddr, FIFO_REG(lp))
944
945#define SMC_GET_PTR(lp)		SMC_inw(ioaddr, PTR_REG(lp))
946
947#define SMC_SET_PTR(lp, x)						\
948	do {								\
949		if (SMC_MUST_ALIGN_WRITE(lp))				\
950			SMC_outl((x)<<16, ioaddr, SMC_REG(lp, 4, 2));	\
951		else							\
952			SMC_outw(lp, x, ioaddr, PTR_REG(lp));		\
953	} while (0)
954
955#define SMC_GET_EPH_STATUS(lp)	SMC_inw(ioaddr, EPH_STATUS_REG(lp))
956
957#define SMC_GET_RCR(lp)		SMC_inw(ioaddr, RCR_REG(lp))
958
959#define SMC_SET_RCR(lp, x)		SMC_outw(lp, x, ioaddr, RCR_REG(lp))
960
961#define SMC_GET_REV(lp)		SMC_inw(ioaddr, REV_REG(lp))
962
963#define SMC_GET_RPC(lp)		SMC_inw(ioaddr, RPC_REG(lp))
964
965#define SMC_SET_RPC(lp, x)						\
966	do {								\
967		if (SMC_MUST_ALIGN_WRITE(lp))				\
968			SMC_outl((x)<<16, ioaddr, SMC_REG(lp, 8, 0));	\
969		else							\
970			SMC_outw(lp, x, ioaddr, RPC_REG(lp));		\
971	} while (0)
972
973#define SMC_GET_TCR(lp)		SMC_inw(ioaddr, TCR_REG(lp))
974
975#define SMC_SET_TCR(lp, x)	SMC_outw(lp, x, ioaddr, TCR_REG(lp))
976
977#ifndef SMC_GET_MAC_ADDR
978#define SMC_GET_MAC_ADDR(lp, addr)					\
979	do {								\
980		unsigned int __v;					\
981		__v = SMC_inw(ioaddr, ADDR0_REG(lp));			\
982		addr[0] = __v; addr[1] = __v >> 8;			\
983		__v = SMC_inw(ioaddr, ADDR1_REG(lp));			\
984		addr[2] = __v; addr[3] = __v >> 8;			\
985		__v = SMC_inw(ioaddr, ADDR2_REG(lp));			\
986		addr[4] = __v; addr[5] = __v >> 8;			\
987	} while (0)
988#endif
989
990#define SMC_SET_MAC_ADDR(lp, addr)					\
991	do {								\
992		SMC_outw(lp, addr[0] | (addr[1] << 8), ioaddr, ADDR0_REG(lp)); \
993		SMC_outw(lp, addr[2] | (addr[3] << 8), ioaddr, ADDR1_REG(lp)); \
994		SMC_outw(lp, addr[4] | (addr[5] << 8), ioaddr, ADDR2_REG(lp)); \
995	} while (0)
996
997#define SMC_SET_MCAST(lp, x)						\
998	do {								\
999		const unsigned char *mt = (x);				\
1000		SMC_outw(lp, mt[0] | (mt[1] << 8), ioaddr, MCAST_REG1(lp)); \
1001		SMC_outw(lp, mt[2] | (mt[3] << 8), ioaddr, MCAST_REG2(lp)); \
1002		SMC_outw(lp, mt[4] | (mt[5] << 8), ioaddr, MCAST_REG3(lp)); \
1003		SMC_outw(lp, mt[6] | (mt[7] << 8), ioaddr, MCAST_REG4(lp)); \
1004	} while (0)
1005
1006#define SMC_PUT_PKT_HDR(lp, status, length)				\
1007	do {								\
1008		if (SMC_32BIT(lp))					\
1009			SMC_outl((status) | (length)<<16, ioaddr,	\
1010				 DATA_REG(lp));			\
1011		else {							\
1012			SMC_outw(lp, status, ioaddr, DATA_REG(lp));	\
1013			SMC_outw(lp, length, ioaddr, DATA_REG(lp));	\
1014		}							\
1015	} while (0)
1016
1017#define SMC_GET_PKT_HDR(lp, status, length)				\
1018	do {								\
1019		if (SMC_32BIT(lp)) {				\
1020			unsigned int __val = SMC_inl(ioaddr, DATA_REG(lp)); \
1021			(status) = __val & 0xffff;			\
1022			(length) = __val >> 16;				\
1023		} else {						\
1024			(status) = SMC_inw(ioaddr, DATA_REG(lp));	\
1025			(length) = SMC_inw(ioaddr, DATA_REG(lp));	\
1026		}							\
1027	} while (0)
1028
1029#define SMC_PUSH_DATA(lp, p, l)					\
1030	do {								\
1031		if (SMC_32BIT(lp)) {				\
1032			void *__ptr = (p);				\
1033			int __len = (l);				\
1034			void __iomem *__ioaddr = ioaddr;		\
1035			if (__len >= 2 && (unsigned long)__ptr & 2) {	\
1036				__len -= 2;				\
1037				SMC_outsw(ioaddr, DATA_REG(lp), __ptr, 1); \
1038				__ptr += 2;				\
1039			}						\
1040			if (SMC_CAN_USE_DATACS && lp->datacs)		\
1041				__ioaddr = lp->datacs;			\
1042			SMC_outsl(__ioaddr, DATA_REG(lp), __ptr, __len>>2); \
1043			if (__len & 2) {				\
1044				__ptr += (__len & ~3);			\
1045				SMC_outsw(ioaddr, DATA_REG(lp), __ptr, 1); \
1046			}						\
1047		} else if (SMC_16BIT(lp))				\
1048			SMC_outsw(ioaddr, DATA_REG(lp), p, (l) >> 1);	\
1049		else if (SMC_8BIT(lp))				\
1050			SMC_outsb(ioaddr, DATA_REG(lp), p, l);	\
1051	} while (0)
1052
1053#define SMC_PULL_DATA(lp, p, l)					\
1054	do {								\
1055		if (SMC_32BIT(lp)) {				\
1056			void *__ptr = (p);				\
1057			int __len = (l);				\
1058			void __iomem *__ioaddr = ioaddr;		\
1059			if ((unsigned long)__ptr & 2) {			\
1060				/*					\
1061				 * We want 32bit alignment here.	\
1062				 * Since some buses perform a full	\
1063				 * 32bit fetch even for 16bit data	\
1064				 * we can't use SMC_inw() here.		\
1065				 * Back both source (on-chip) and	\
1066				 * destination pointers of 2 bytes.	\
1067				 * This is possible since the call to	\
1068				 * SMC_GET_PKT_HDR() already advanced	\
1069				 * the source pointer of 4 bytes, and	\
1070				 * the skb_reserve(skb, 2) advanced	\
1071				 * the destination pointer of 2 bytes.	\
1072				 */					\
1073				__ptr -= 2;				\
1074				__len += 2;				\
1075				SMC_SET_PTR(lp,			\
1076					2|PTR_READ|PTR_RCV|PTR_AUTOINC); \
1077			}						\
1078			if (SMC_CAN_USE_DATACS && lp->datacs)		\
1079				__ioaddr = lp->datacs;			\
1080			__len += 2;					\
1081			SMC_insl(__ioaddr, DATA_REG(lp), __ptr, __len>>2); \
1082		} else if (SMC_16BIT(lp))				\
1083			SMC_insw(ioaddr, DATA_REG(lp), p, (l) >> 1);	\
1084		else if (SMC_8BIT(lp))				\
1085			SMC_insb(ioaddr, DATA_REG(lp), p, l);		\
1086	} while (0)
1087
1088#endif  /* _SMC91X_H_ */
1089