1// SPDX-License-Identifier: GPL-2.0-only
2/****************************************************************************
3 * Driver for Solarflare network controllers and boards
4 * Copyright 2005-2006 Fen Systems Ltd.
5 * Copyright 2006-2013 Solarflare Communications Inc.
6 */
7
8#include <linux/bitops.h>
9#include <linux/delay.h>
10#include <linux/interrupt.h>
11#include <linux/pci.h>
12#include <linux/module.h>
13#include <linux/seq_file.h>
14#include <linux/crc32.h>
15#include "net_driver.h"
16#include "bitfield.h"
17#include "efx.h"
18#include "rx_common.h"
19#include "tx_common.h"
20#include "nic.h"
21#include "farch_regs.h"
22#include "sriov.h"
23#include "siena_sriov.h"
24#include "io.h"
25#include "workarounds.h"
26
27/* Falcon-architecture (SFC9000-family) support */
28
29/**************************************************************************
30 *
31 * Configurable values
32 *
33 **************************************************************************
34 */
35
36/* This is set to 16 for a good reason.  In summary, if larger than
37 * 16, the descriptor cache holds more than a default socket
38 * buffer's worth of packets (for UDP we can only have at most one
39 * socket buffer's worth outstanding).  This combined with the fact
40 * that we only get 1 TX event per descriptor cache means the NIC
41 * goes idle.
42 */
43#define TX_DC_ENTRIES 16
44#define TX_DC_ENTRIES_ORDER 1
45
46#define RX_DC_ENTRIES 64
47#define RX_DC_ENTRIES_ORDER 3
48
49/* If EFX_MAX_INT_ERRORS internal errors occur within
50 * EFX_INT_ERROR_EXPIRE seconds, we consider the NIC broken and
51 * disable it.
52 */
53#define EFX_INT_ERROR_EXPIRE 3600
54#define EFX_MAX_INT_ERRORS 5
55
56/* Depth of RX flush request fifo */
57#define EFX_RX_FLUSH_COUNT 4
58
59/* Driver generated events */
60#define _EFX_CHANNEL_MAGIC_TEST		0x000101
61#define _EFX_CHANNEL_MAGIC_FILL		0x000102
62#define _EFX_CHANNEL_MAGIC_RX_DRAIN	0x000103
63#define _EFX_CHANNEL_MAGIC_TX_DRAIN	0x000104
64
65#define _EFX_CHANNEL_MAGIC(_code, _data)	((_code) << 8 | (_data))
66#define _EFX_CHANNEL_MAGIC_CODE(_magic)		((_magic) >> 8)
67
68#define EFX_CHANNEL_MAGIC_TEST(_channel)				\
69	_EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TEST, (_channel)->channel)
70#define EFX_CHANNEL_MAGIC_FILL(_rx_queue)				\
71	_EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_FILL,			\
72			   efx_rx_queue_index(_rx_queue))
73#define EFX_CHANNEL_MAGIC_RX_DRAIN(_rx_queue)				\
74	_EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_RX_DRAIN,			\
75			   efx_rx_queue_index(_rx_queue))
76#define EFX_CHANNEL_MAGIC_TX_DRAIN(_tx_queue)				\
77	_EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TX_DRAIN,			\
78			   (_tx_queue)->queue)
79
80static void efx_farch_magic_event(struct efx_channel *channel, u32 magic);
81
82/**************************************************************************
83 *
84 * Hardware access
85 *
86 **************************************************************************/
87
88static inline void efx_write_buf_tbl(struct efx_nic *efx, efx_qword_t *value,
89				     unsigned int index)
90{
91	efx_sram_writeq(efx, efx->membase + efx->type->buf_tbl_base,
92			value, index);
93}
94
95static bool efx_masked_compare_oword(const efx_oword_t *a, const efx_oword_t *b,
96				     const efx_oword_t *mask)
97{
98	return ((a->u64[0] ^ b->u64[0]) & mask->u64[0]) ||
99		((a->u64[1] ^ b->u64[1]) & mask->u64[1]);
100}
101
102int efx_farch_test_registers(struct efx_nic *efx,
103			     const struct efx_farch_register_test *regs,
104			     size_t n_regs)
105{
106	unsigned address = 0;
107	int i, j;
108	efx_oword_t mask, imask, original, reg, buf;
109
110	for (i = 0; i < n_regs; ++i) {
111		address = regs[i].address;
112		mask = imask = regs[i].mask;
113		EFX_INVERT_OWORD(imask);
114
115		efx_reado(efx, &original, address);
116
117		/* bit sweep on and off */
118		for (j = 0; j < 128; j++) {
119			if (!EFX_EXTRACT_OWORD32(mask, j, j))
120				continue;
121
122			/* Test this testable bit can be set in isolation */
123			EFX_AND_OWORD(reg, original, mask);
124			EFX_SET_OWORD32(reg, j, j, 1);
125
126			efx_writeo(efx, &reg, address);
127			efx_reado(efx, &buf, address);
128
129			if (efx_masked_compare_oword(&reg, &buf, &mask))
130				goto fail;
131
132			/* Test this testable bit can be cleared in isolation */
133			EFX_OR_OWORD(reg, original, mask);
134			EFX_SET_OWORD32(reg, j, j, 0);
135
136			efx_writeo(efx, &reg, address);
137			efx_reado(efx, &buf, address);
138
139			if (efx_masked_compare_oword(&reg, &buf, &mask))
140				goto fail;
141		}
142
143		efx_writeo(efx, &original, address);
144	}
145
146	return 0;
147
148fail:
149	netif_err(efx, hw, efx->net_dev,
150		  "wrote "EFX_OWORD_FMT" read "EFX_OWORD_FMT
151		  " at address 0x%x mask "EFX_OWORD_FMT"\n", EFX_OWORD_VAL(reg),
152		  EFX_OWORD_VAL(buf), address, EFX_OWORD_VAL(mask));
153	return -EIO;
154}
155
156/**************************************************************************
157 *
158 * Special buffer handling
159 * Special buffers are used for event queues and the TX and RX
160 * descriptor rings.
161 *
162 *************************************************************************/
163
164/*
165 * Initialise a special buffer
166 *
167 * This will define a buffer (previously allocated via
168 * efx_alloc_special_buffer()) in the buffer table, allowing
169 * it to be used for event queues, descriptor rings etc.
170 */
171static void
172efx_init_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
173{
174	efx_qword_t buf_desc;
175	unsigned int index;
176	dma_addr_t dma_addr;
177	int i;
178
179	EFX_WARN_ON_PARANOID(!buffer->buf.addr);
180
181	/* Write buffer descriptors to NIC */
182	for (i = 0; i < buffer->entries; i++) {
183		index = buffer->index + i;
184		dma_addr = buffer->buf.dma_addr + (i * EFX_BUF_SIZE);
185		netif_dbg(efx, probe, efx->net_dev,
186			  "mapping special buffer %d at %llx\n",
187			  index, (unsigned long long)dma_addr);
188		EFX_POPULATE_QWORD_3(buf_desc,
189				     FRF_AZ_BUF_ADR_REGION, 0,
190				     FRF_AZ_BUF_ADR_FBUF, dma_addr >> 12,
191				     FRF_AZ_BUF_OWNER_ID_FBUF, 0);
192		efx_write_buf_tbl(efx, &buf_desc, index);
193	}
194}
195
196/* Unmaps a buffer and clears the buffer table entries */
197static void
198efx_fini_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
199{
200	efx_oword_t buf_tbl_upd;
201	unsigned int start = buffer->index;
202	unsigned int end = (buffer->index + buffer->entries - 1);
203
204	if (!buffer->entries)
205		return;
206
207	netif_dbg(efx, hw, efx->net_dev, "unmapping special buffers %d-%d\n",
208		  buffer->index, buffer->index + buffer->entries - 1);
209
210	EFX_POPULATE_OWORD_4(buf_tbl_upd,
211			     FRF_AZ_BUF_UPD_CMD, 0,
212			     FRF_AZ_BUF_CLR_CMD, 1,
213			     FRF_AZ_BUF_CLR_END_ID, end,
214			     FRF_AZ_BUF_CLR_START_ID, start);
215	efx_writeo(efx, &buf_tbl_upd, FR_AZ_BUF_TBL_UPD);
216}
217
218/*
219 * Allocate a new special buffer
220 *
221 * This allocates memory for a new buffer, clears it and allocates a
222 * new buffer ID range.  It does not write into the buffer table.
223 *
224 * This call will allocate 4KB buffers, since 8KB buffers can't be
225 * used for event queues and descriptor rings.
226 */
227static int efx_alloc_special_buffer(struct efx_nic *efx,
228				    struct efx_special_buffer *buffer,
229				    unsigned int len)
230{
231#ifdef CONFIG_SFC_SIENA_SRIOV
232	struct siena_nic_data *nic_data = efx->nic_data;
233#endif
234	len = ALIGN(len, EFX_BUF_SIZE);
235
236	if (efx_siena_alloc_buffer(efx, &buffer->buf, len, GFP_KERNEL))
237		return -ENOMEM;
238	buffer->entries = len / EFX_BUF_SIZE;
239	BUG_ON(buffer->buf.dma_addr & (EFX_BUF_SIZE - 1));
240
241	/* Select new buffer ID */
242	buffer->index = efx->next_buffer_table;
243	efx->next_buffer_table += buffer->entries;
244#ifdef CONFIG_SFC_SIENA_SRIOV
245	BUG_ON(efx_siena_sriov_enabled(efx) &&
246	       nic_data->vf_buftbl_base < efx->next_buffer_table);
247#endif
248
249	netif_dbg(efx, probe, efx->net_dev,
250		  "allocating special buffers %d-%d at %llx+%x "
251		  "(virt %p phys %llx)\n", buffer->index,
252		  buffer->index + buffer->entries - 1,
253		  (u64)buffer->buf.dma_addr, len,
254		  buffer->buf.addr, (u64)virt_to_phys(buffer->buf.addr));
255
256	return 0;
257}
258
259static void
260efx_free_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
261{
262	if (!buffer->buf.addr)
263		return;
264
265	netif_dbg(efx, hw, efx->net_dev,
266		  "deallocating special buffers %d-%d at %llx+%x "
267		  "(virt %p phys %llx)\n", buffer->index,
268		  buffer->index + buffer->entries - 1,
269		  (u64)buffer->buf.dma_addr, buffer->buf.len,
270		  buffer->buf.addr, (u64)virt_to_phys(buffer->buf.addr));
271
272	efx_siena_free_buffer(efx, &buffer->buf);
273	buffer->entries = 0;
274}
275
276/**************************************************************************
277 *
278 * TX path
279 *
280 **************************************************************************/
281
282/* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
283static inline void efx_farch_notify_tx_desc(struct efx_tx_queue *tx_queue)
284{
285	unsigned write_ptr;
286	efx_dword_t reg;
287
288	write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
289	EFX_POPULATE_DWORD_1(reg, FRF_AZ_TX_DESC_WPTR_DWORD, write_ptr);
290	efx_writed_page(tx_queue->efx, &reg,
291			FR_AZ_TX_DESC_UPD_DWORD_P0, tx_queue->queue);
292}
293
294/* Write pointer and first descriptor for TX descriptor ring */
295static inline void efx_farch_push_tx_desc(struct efx_tx_queue *tx_queue,
296					  const efx_qword_t *txd)
297{
298	unsigned write_ptr;
299	efx_oword_t reg;
300
301	BUILD_BUG_ON(FRF_AZ_TX_DESC_LBN != 0);
302	BUILD_BUG_ON(FR_AA_TX_DESC_UPD_KER != FR_BZ_TX_DESC_UPD_P0);
303
304	write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
305	EFX_POPULATE_OWORD_2(reg, FRF_AZ_TX_DESC_PUSH_CMD, true,
306			     FRF_AZ_TX_DESC_WPTR, write_ptr);
307	reg.qword[0] = *txd;
308	efx_writeo_page(tx_queue->efx, &reg,
309			FR_BZ_TX_DESC_UPD_P0, tx_queue->queue);
310}
311
312
313/* For each entry inserted into the software descriptor ring, create a
314 * descriptor in the hardware TX descriptor ring (in host memory), and
315 * write a doorbell.
316 */
317void efx_farch_tx_write(struct efx_tx_queue *tx_queue)
318{
319	struct efx_tx_buffer *buffer;
320	efx_qword_t *txd;
321	unsigned write_ptr;
322	unsigned old_write_count = tx_queue->write_count;
323
324	tx_queue->xmit_pending = false;
325	if (unlikely(tx_queue->write_count == tx_queue->insert_count))
326		return;
327
328	do {
329		write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
330		buffer = &tx_queue->buffer[write_ptr];
331		txd = efx_tx_desc(tx_queue, write_ptr);
332		++tx_queue->write_count;
333
334		EFX_WARN_ON_ONCE_PARANOID(buffer->flags & EFX_TX_BUF_OPTION);
335
336		/* Create TX descriptor ring entry */
337		BUILD_BUG_ON(EFX_TX_BUF_CONT != 1);
338		EFX_POPULATE_QWORD_4(*txd,
339				     FSF_AZ_TX_KER_CONT,
340				     buffer->flags & EFX_TX_BUF_CONT,
341				     FSF_AZ_TX_KER_BYTE_COUNT, buffer->len,
342				     FSF_AZ_TX_KER_BUF_REGION, 0,
343				     FSF_AZ_TX_KER_BUF_ADDR, buffer->dma_addr);
344	} while (tx_queue->write_count != tx_queue->insert_count);
345
346	wmb(); /* Ensure descriptors are written before they are fetched */
347
348	if (efx_nic_may_push_tx_desc(tx_queue, old_write_count)) {
349		txd = efx_tx_desc(tx_queue,
350				  old_write_count & tx_queue->ptr_mask);
351		efx_farch_push_tx_desc(tx_queue, txd);
352		++tx_queue->pushes;
353	} else {
354		efx_farch_notify_tx_desc(tx_queue);
355	}
356}
357
358unsigned int efx_farch_tx_limit_len(struct efx_tx_queue *tx_queue,
359				    dma_addr_t dma_addr, unsigned int len)
360{
361	/* Don't cross 4K boundaries with descriptors. */
362	unsigned int limit = (~dma_addr & (EFX_PAGE_SIZE - 1)) + 1;
363
364	len = min(limit, len);
365
366	return len;
367}
368
369
370/* Allocate hardware resources for a TX queue */
371int efx_farch_tx_probe(struct efx_tx_queue *tx_queue)
372{
373	struct efx_nic *efx = tx_queue->efx;
374	unsigned entries;
375
376	tx_queue->type = ((tx_queue->label & 1) ? EFX_TXQ_TYPE_OUTER_CSUM : 0) |
377			 ((tx_queue->label & 2) ? EFX_TXQ_TYPE_HIGHPRI : 0);
378	entries = tx_queue->ptr_mask + 1;
379	return efx_alloc_special_buffer(efx, &tx_queue->txd,
380					entries * sizeof(efx_qword_t));
381}
382
383void efx_farch_tx_init(struct efx_tx_queue *tx_queue)
384{
385	int csum = tx_queue->type & EFX_TXQ_TYPE_OUTER_CSUM;
386	struct efx_nic *efx = tx_queue->efx;
387	efx_oword_t reg;
388
389	/* Pin TX descriptor ring */
390	efx_init_special_buffer(efx, &tx_queue->txd);
391
392	/* Push TX descriptor ring to card */
393	EFX_POPULATE_OWORD_10(reg,
394			      FRF_AZ_TX_DESCQ_EN, 1,
395			      FRF_AZ_TX_ISCSI_DDIG_EN, 0,
396			      FRF_AZ_TX_ISCSI_HDIG_EN, 0,
397			      FRF_AZ_TX_DESCQ_BUF_BASE_ID, tx_queue->txd.index,
398			      FRF_AZ_TX_DESCQ_EVQ_ID,
399			      tx_queue->channel->channel,
400			      FRF_AZ_TX_DESCQ_OWNER_ID, 0,
401			      FRF_AZ_TX_DESCQ_LABEL, tx_queue->label,
402			      FRF_AZ_TX_DESCQ_SIZE,
403			      __ffs(tx_queue->txd.entries),
404			      FRF_AZ_TX_DESCQ_TYPE, 0,
405			      FRF_BZ_TX_NON_IP_DROP_DIS, 1);
406
407	EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_IP_CHKSM_DIS, !csum);
408	EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_TCP_CHKSM_DIS, !csum);
409
410	efx_writeo_table(efx, &reg, efx->type->txd_ptr_tbl_base,
411			 tx_queue->queue);
412
413	EFX_POPULATE_OWORD_1(reg,
414			     FRF_BZ_TX_PACE,
415			     (tx_queue->type & EFX_TXQ_TYPE_HIGHPRI) ?
416			     FFE_BZ_TX_PACE_OFF :
417			     FFE_BZ_TX_PACE_RESERVED);
418	efx_writeo_table(efx, &reg, FR_BZ_TX_PACE_TBL, tx_queue->queue);
419
420	tx_queue->tso_version = 1;
421}
422
423static void efx_farch_flush_tx_queue(struct efx_tx_queue *tx_queue)
424{
425	struct efx_nic *efx = tx_queue->efx;
426	efx_oword_t tx_flush_descq;
427
428	WARN_ON(atomic_read(&tx_queue->flush_outstanding));
429	atomic_set(&tx_queue->flush_outstanding, 1);
430
431	EFX_POPULATE_OWORD_2(tx_flush_descq,
432			     FRF_AZ_TX_FLUSH_DESCQ_CMD, 1,
433			     FRF_AZ_TX_FLUSH_DESCQ, tx_queue->queue);
434	efx_writeo(efx, &tx_flush_descq, FR_AZ_TX_FLUSH_DESCQ);
435}
436
437void efx_farch_tx_fini(struct efx_tx_queue *tx_queue)
438{
439	struct efx_nic *efx = tx_queue->efx;
440	efx_oword_t tx_desc_ptr;
441
442	/* Remove TX descriptor ring from card */
443	EFX_ZERO_OWORD(tx_desc_ptr);
444	efx_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
445			 tx_queue->queue);
446
447	/* Unpin TX descriptor ring */
448	efx_fini_special_buffer(efx, &tx_queue->txd);
449}
450
451/* Free buffers backing TX queue */
452void efx_farch_tx_remove(struct efx_tx_queue *tx_queue)
453{
454	efx_free_special_buffer(tx_queue->efx, &tx_queue->txd);
455}
456
457/**************************************************************************
458 *
459 * RX path
460 *
461 **************************************************************************/
462
463/* This creates an entry in the RX descriptor queue */
464static inline void
465efx_farch_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned index)
466{
467	struct efx_rx_buffer *rx_buf;
468	efx_qword_t *rxd;
469
470	rxd = efx_rx_desc(rx_queue, index);
471	rx_buf = efx_rx_buffer(rx_queue, index);
472	EFX_POPULATE_QWORD_3(*rxd,
473			     FSF_AZ_RX_KER_BUF_SIZE,
474			     rx_buf->len -
475			     rx_queue->efx->type->rx_buffer_padding,
476			     FSF_AZ_RX_KER_BUF_REGION, 0,
477			     FSF_AZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
478}
479
480/* This writes to the RX_DESC_WPTR register for the specified receive
481 * descriptor ring.
482 */
483void efx_farch_rx_write(struct efx_rx_queue *rx_queue)
484{
485	struct efx_nic *efx = rx_queue->efx;
486	efx_dword_t reg;
487	unsigned write_ptr;
488
489	while (rx_queue->notified_count != rx_queue->added_count) {
490		efx_farch_build_rx_desc(
491			rx_queue,
492			rx_queue->notified_count & rx_queue->ptr_mask);
493		++rx_queue->notified_count;
494	}
495
496	wmb();
497	write_ptr = rx_queue->added_count & rx_queue->ptr_mask;
498	EFX_POPULATE_DWORD_1(reg, FRF_AZ_RX_DESC_WPTR_DWORD, write_ptr);
499	efx_writed_page(efx, &reg, FR_AZ_RX_DESC_UPD_DWORD_P0,
500			efx_rx_queue_index(rx_queue));
501}
502
503int efx_farch_rx_probe(struct efx_rx_queue *rx_queue)
504{
505	struct efx_nic *efx = rx_queue->efx;
506	unsigned entries;
507
508	entries = rx_queue->ptr_mask + 1;
509	return efx_alloc_special_buffer(efx, &rx_queue->rxd,
510					entries * sizeof(efx_qword_t));
511}
512
513void efx_farch_rx_init(struct efx_rx_queue *rx_queue)
514{
515	efx_oword_t rx_desc_ptr;
516	struct efx_nic *efx = rx_queue->efx;
517	bool jumbo_en;
518
519	/* For kernel-mode queues in Siena, the JUMBO flag enables scatter. */
520	jumbo_en = efx->rx_scatter;
521
522	netif_dbg(efx, hw, efx->net_dev,
523		  "RX queue %d ring in special buffers %d-%d\n",
524		  efx_rx_queue_index(rx_queue), rx_queue->rxd.index,
525		  rx_queue->rxd.index + rx_queue->rxd.entries - 1);
526
527	rx_queue->scatter_n = 0;
528
529	/* Pin RX descriptor ring */
530	efx_init_special_buffer(efx, &rx_queue->rxd);
531
532	/* Push RX descriptor ring to card */
533	EFX_POPULATE_OWORD_10(rx_desc_ptr,
534			      FRF_AZ_RX_ISCSI_DDIG_EN, true,
535			      FRF_AZ_RX_ISCSI_HDIG_EN, true,
536			      FRF_AZ_RX_DESCQ_BUF_BASE_ID, rx_queue->rxd.index,
537			      FRF_AZ_RX_DESCQ_EVQ_ID,
538			      efx_rx_queue_channel(rx_queue)->channel,
539			      FRF_AZ_RX_DESCQ_OWNER_ID, 0,
540			      FRF_AZ_RX_DESCQ_LABEL,
541			      efx_rx_queue_index(rx_queue),
542			      FRF_AZ_RX_DESCQ_SIZE,
543			      __ffs(rx_queue->rxd.entries),
544			      FRF_AZ_RX_DESCQ_TYPE, 0 /* kernel queue */ ,
545			      FRF_AZ_RX_DESCQ_JUMBO, jumbo_en,
546			      FRF_AZ_RX_DESCQ_EN, 1);
547	efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
548			 efx_rx_queue_index(rx_queue));
549}
550
551static void efx_farch_flush_rx_queue(struct efx_rx_queue *rx_queue)
552{
553	struct efx_nic *efx = rx_queue->efx;
554	efx_oword_t rx_flush_descq;
555
556	EFX_POPULATE_OWORD_2(rx_flush_descq,
557			     FRF_AZ_RX_FLUSH_DESCQ_CMD, 1,
558			     FRF_AZ_RX_FLUSH_DESCQ,
559			     efx_rx_queue_index(rx_queue));
560	efx_writeo(efx, &rx_flush_descq, FR_AZ_RX_FLUSH_DESCQ);
561}
562
563void efx_farch_rx_fini(struct efx_rx_queue *rx_queue)
564{
565	efx_oword_t rx_desc_ptr;
566	struct efx_nic *efx = rx_queue->efx;
567
568	/* Remove RX descriptor ring from card */
569	EFX_ZERO_OWORD(rx_desc_ptr);
570	efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
571			 efx_rx_queue_index(rx_queue));
572
573	/* Unpin RX descriptor ring */
574	efx_fini_special_buffer(efx, &rx_queue->rxd);
575}
576
577/* Free buffers backing RX queue */
578void efx_farch_rx_remove(struct efx_rx_queue *rx_queue)
579{
580	efx_free_special_buffer(rx_queue->efx, &rx_queue->rxd);
581}
582
583/**************************************************************************
584 *
585 * Flush handling
586 *
587 **************************************************************************/
588
589/* efx_farch_flush_queues() must be woken up when all flushes are completed,
590 * or more RX flushes can be kicked off.
591 */
592static bool efx_farch_flush_wake(struct efx_nic *efx)
593{
594	/* Ensure that all updates are visible to efx_farch_flush_queues() */
595	smp_mb();
596
597	return (atomic_read(&efx->active_queues) == 0 ||
598		(atomic_read(&efx->rxq_flush_outstanding) < EFX_RX_FLUSH_COUNT
599		 && atomic_read(&efx->rxq_flush_pending) > 0));
600}
601
602static bool efx_check_tx_flush_complete(struct efx_nic *efx)
603{
604	bool i = true;
605	efx_oword_t txd_ptr_tbl;
606	struct efx_channel *channel;
607	struct efx_tx_queue *tx_queue;
608
609	efx_for_each_channel(channel, efx) {
610		efx_for_each_channel_tx_queue(tx_queue, channel) {
611			efx_reado_table(efx, &txd_ptr_tbl,
612					FR_BZ_TX_DESC_PTR_TBL, tx_queue->queue);
613			if (EFX_OWORD_FIELD(txd_ptr_tbl,
614					    FRF_AZ_TX_DESCQ_FLUSH) ||
615			    EFX_OWORD_FIELD(txd_ptr_tbl,
616					    FRF_AZ_TX_DESCQ_EN)) {
617				netif_dbg(efx, hw, efx->net_dev,
618					  "flush did not complete on TXQ %d\n",
619					  tx_queue->queue);
620				i = false;
621			} else if (atomic_cmpxchg(&tx_queue->flush_outstanding,
622						  1, 0)) {
623				/* The flush is complete, but we didn't
624				 * receive a flush completion event
625				 */
626				netif_dbg(efx, hw, efx->net_dev,
627					  "flush complete on TXQ %d, so drain "
628					  "the queue\n", tx_queue->queue);
629				/* Don't need to increment active_queues as it
630				 * has already been incremented for the queues
631				 * which did not drain
632				 */
633				efx_farch_magic_event(channel,
634						      EFX_CHANNEL_MAGIC_TX_DRAIN(
635							      tx_queue));
636			}
637		}
638	}
639
640	return i;
641}
642
643/* Flush all the transmit queues, and continue flushing receive queues until
644 * they're all flushed. Wait for the DRAIN events to be received so that there
645 * are no more RX and TX events left on any channel. */
646static int efx_farch_do_flush(struct efx_nic *efx)
647{
648	unsigned timeout = msecs_to_jiffies(5000); /* 5s for all flushes and drains */
649	struct efx_channel *channel;
650	struct efx_rx_queue *rx_queue;
651	struct efx_tx_queue *tx_queue;
652	int rc = 0;
653
654	efx_for_each_channel(channel, efx) {
655		efx_for_each_channel_tx_queue(tx_queue, channel) {
656			efx_farch_flush_tx_queue(tx_queue);
657		}
658		efx_for_each_channel_rx_queue(rx_queue, channel) {
659			rx_queue->flush_pending = true;
660			atomic_inc(&efx->rxq_flush_pending);
661		}
662	}
663
664	while (timeout && atomic_read(&efx->active_queues) > 0) {
665		/* If SRIOV is enabled, then offload receive queue flushing to
666		 * the firmware (though we will still have to poll for
667		 * completion). If that fails, fall back to the old scheme.
668		 */
669		if (efx_siena_sriov_enabled(efx)) {
670			rc = efx_siena_mcdi_flush_rxqs(efx);
671			if (!rc)
672				goto wait;
673		}
674
675		/* The hardware supports four concurrent rx flushes, each of
676		 * which may need to be retried if there is an outstanding
677		 * descriptor fetch
678		 */
679		efx_for_each_channel(channel, efx) {
680			efx_for_each_channel_rx_queue(rx_queue, channel) {
681				if (atomic_read(&efx->rxq_flush_outstanding) >=
682				    EFX_RX_FLUSH_COUNT)
683					break;
684
685				if (rx_queue->flush_pending) {
686					rx_queue->flush_pending = false;
687					atomic_dec(&efx->rxq_flush_pending);
688					atomic_inc(&efx->rxq_flush_outstanding);
689					efx_farch_flush_rx_queue(rx_queue);
690				}
691			}
692		}
693
694	wait:
695		timeout = wait_event_timeout(efx->flush_wq,
696					     efx_farch_flush_wake(efx),
697					     timeout);
698	}
699
700	if (atomic_read(&efx->active_queues) &&
701	    !efx_check_tx_flush_complete(efx)) {
702		netif_err(efx, hw, efx->net_dev, "failed to flush %d queues "
703			  "(rx %d+%d)\n", atomic_read(&efx->active_queues),
704			  atomic_read(&efx->rxq_flush_outstanding),
705			  atomic_read(&efx->rxq_flush_pending));
706		rc = -ETIMEDOUT;
707
708		atomic_set(&efx->active_queues, 0);
709		atomic_set(&efx->rxq_flush_pending, 0);
710		atomic_set(&efx->rxq_flush_outstanding, 0);
711	}
712
713	return rc;
714}
715
716int efx_farch_fini_dmaq(struct efx_nic *efx)
717{
718	struct efx_channel *channel;
719	struct efx_tx_queue *tx_queue;
720	struct efx_rx_queue *rx_queue;
721	int rc = 0;
722
723	/* Do not attempt to write to the NIC during EEH recovery */
724	if (efx->state != STATE_RECOVERY) {
725		/* Only perform flush if DMA is enabled */
726		if (efx->pci_dev->is_busmaster) {
727			efx->type->prepare_flush(efx);
728			rc = efx_farch_do_flush(efx);
729			efx->type->finish_flush(efx);
730		}
731
732		efx_for_each_channel(channel, efx) {
733			efx_for_each_channel_rx_queue(rx_queue, channel)
734				efx_farch_rx_fini(rx_queue);
735			efx_for_each_channel_tx_queue(tx_queue, channel)
736				efx_farch_tx_fini(tx_queue);
737		}
738	}
739
740	return rc;
741}
742
743/* Reset queue and flush accounting after FLR
744 *
745 * One possible cause of FLR recovery is that DMA may be failing (eg. if bus
746 * mastering was disabled), in which case we don't receive (RXQ) flush
747 * completion events.  This means that efx->rxq_flush_outstanding remained at 4
748 * after the FLR; also, efx->active_queues was non-zero (as no flush completion
749 * events were received, and we didn't go through efx_check_tx_flush_complete())
750 * If we don't fix this up, on the next call to efx_siena_realloc_channels() we
751 * won't flush any RX queues because efx->rxq_flush_outstanding is at the limit
752 * of 4 for batched flush requests; and the efx->active_queues gets messed up
753 * because we keep incrementing for the newly initialised queues, but it never
754 * went to zero previously.  Then we get a timeout every time we try to restart
755 * the queues, as it doesn't go back to zero when we should be flushing the
756 * queues.
757 */
758void efx_farch_finish_flr(struct efx_nic *efx)
759{
760	atomic_set(&efx->rxq_flush_pending, 0);
761	atomic_set(&efx->rxq_flush_outstanding, 0);
762	atomic_set(&efx->active_queues, 0);
763}
764
765
766/**************************************************************************
767 *
768 * Event queue processing
769 * Event queues are processed by per-channel tasklets.
770 *
771 **************************************************************************/
772
773/* Update a channel's event queue's read pointer (RPTR) register
774 *
775 * This writes the EVQ_RPTR_REG register for the specified channel's
776 * event queue.
777 */
778void efx_farch_ev_read_ack(struct efx_channel *channel)
779{
780	efx_dword_t reg;
781	struct efx_nic *efx = channel->efx;
782
783	EFX_POPULATE_DWORD_1(reg, FRF_AZ_EVQ_RPTR,
784			     channel->eventq_read_ptr & channel->eventq_mask);
785
786	/* For Falcon A1, EVQ_RPTR_KER is documented as having a step size
787	 * of 4 bytes, but it is really 16 bytes just like later revisions.
788	 */
789	efx_writed(efx, &reg,
790		   efx->type->evq_rptr_tbl_base +
791		   FR_BZ_EVQ_RPTR_STEP * channel->channel);
792}
793
794/* Use HW to insert a SW defined event */
795void efx_farch_generate_event(struct efx_nic *efx, unsigned int evq,
796			      efx_qword_t *event)
797{
798	efx_oword_t drv_ev_reg;
799
800	BUILD_BUG_ON(FRF_AZ_DRV_EV_DATA_LBN != 0 ||
801		     FRF_AZ_DRV_EV_DATA_WIDTH != 64);
802	drv_ev_reg.u32[0] = event->u32[0];
803	drv_ev_reg.u32[1] = event->u32[1];
804	drv_ev_reg.u32[2] = 0;
805	drv_ev_reg.u32[3] = 0;
806	EFX_SET_OWORD_FIELD(drv_ev_reg, FRF_AZ_DRV_EV_QID, evq);
807	efx_writeo(efx, &drv_ev_reg, FR_AZ_DRV_EV);
808}
809
810static void efx_farch_magic_event(struct efx_channel *channel, u32 magic)
811{
812	efx_qword_t event;
813
814	EFX_POPULATE_QWORD_2(event, FSF_AZ_EV_CODE,
815			     FSE_AZ_EV_CODE_DRV_GEN_EV,
816			     FSF_AZ_DRV_GEN_EV_MAGIC, magic);
817	efx_farch_generate_event(channel->efx, channel->channel, &event);
818}
819
820/* Handle a transmit completion event
821 *
822 * The NIC batches TX completion events; the message we receive is of
823 * the form "complete all TX events up to this index".
824 */
825static void
826efx_farch_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)
827{
828	unsigned int tx_ev_desc_ptr;
829	unsigned int tx_ev_q_label;
830	struct efx_tx_queue *tx_queue;
831	struct efx_nic *efx = channel->efx;
832
833	if (unlikely(READ_ONCE(efx->reset_pending)))
834		return;
835
836	if (likely(EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_COMP))) {
837		/* Transmit completion */
838		tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_DESC_PTR);
839		tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
840		tx_queue = channel->tx_queue +
841				(tx_ev_q_label % EFX_MAX_TXQ_PER_CHANNEL);
842		efx_siena_xmit_done(tx_queue, tx_ev_desc_ptr);
843	} else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_WQ_FF_FULL)) {
844		/* Rewrite the FIFO write pointer */
845		tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
846		tx_queue = channel->tx_queue +
847				(tx_ev_q_label % EFX_MAX_TXQ_PER_CHANNEL);
848
849		netif_tx_lock(efx->net_dev);
850		efx_farch_notify_tx_desc(tx_queue);
851		netif_tx_unlock(efx->net_dev);
852	} else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_PKT_ERR)) {
853		efx_siena_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
854	} else {
855		netif_err(efx, tx_err, efx->net_dev,
856			  "channel %d unexpected TX event "
857			  EFX_QWORD_FMT"\n", channel->channel,
858			  EFX_QWORD_VAL(*event));
859	}
860}
861
862/* Detect errors included in the rx_evt_pkt_ok bit. */
863static u16 efx_farch_handle_rx_not_ok(struct efx_rx_queue *rx_queue,
864				      const efx_qword_t *event)
865{
866	struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
867	struct efx_nic *efx = rx_queue->efx;
868	bool rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err;
869	bool rx_ev_tcp_udp_chksum_err, rx_ev_eth_crc_err;
870	bool rx_ev_frm_trunc, rx_ev_tobe_disc;
871	bool rx_ev_other_err, rx_ev_pause_frm;
872
873	rx_ev_tobe_disc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_TOBE_DISC);
874	rx_ev_buf_owner_id_err = EFX_QWORD_FIELD(*event,
875						 FSF_AZ_RX_EV_BUF_OWNER_ID_ERR);
876	rx_ev_ip_hdr_chksum_err = EFX_QWORD_FIELD(*event,
877						  FSF_AZ_RX_EV_IP_HDR_CHKSUM_ERR);
878	rx_ev_tcp_udp_chksum_err = EFX_QWORD_FIELD(*event,
879						   FSF_AZ_RX_EV_TCP_UDP_CHKSUM_ERR);
880	rx_ev_eth_crc_err = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_ETH_CRC_ERR);
881	rx_ev_frm_trunc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_FRM_TRUNC);
882	rx_ev_pause_frm = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PAUSE_FRM_ERR);
883
884	/* Every error apart from tobe_disc and pause_frm */
885	rx_ev_other_err = (rx_ev_tcp_udp_chksum_err |
886			   rx_ev_buf_owner_id_err | rx_ev_eth_crc_err |
887			   rx_ev_frm_trunc | rx_ev_ip_hdr_chksum_err);
888
889	/* Count errors that are not in MAC stats.  Ignore expected
890	 * checksum errors during self-test. */
891	if (rx_ev_frm_trunc)
892		++channel->n_rx_frm_trunc;
893	else if (rx_ev_tobe_disc)
894		++channel->n_rx_tobe_disc;
895	else if (!efx->loopback_selftest) {
896		if (rx_ev_ip_hdr_chksum_err)
897			++channel->n_rx_ip_hdr_chksum_err;
898		else if (rx_ev_tcp_udp_chksum_err)
899			++channel->n_rx_tcp_udp_chksum_err;
900	}
901
902	/* TOBE_DISC is expected on unicast mismatches; don't print out an
903	 * error message.  FRM_TRUNC indicates RXDP dropped the packet due
904	 * to a FIFO overflow.
905	 */
906#ifdef DEBUG
907	if (rx_ev_other_err && net_ratelimit()) {
908		netif_dbg(efx, rx_err, efx->net_dev,
909			  " RX queue %d unexpected RX event "
910			  EFX_QWORD_FMT "%s%s%s%s%s%s%s\n",
911			  efx_rx_queue_index(rx_queue), EFX_QWORD_VAL(*event),
912			  rx_ev_buf_owner_id_err ? " [OWNER_ID_ERR]" : "",
913			  rx_ev_ip_hdr_chksum_err ?
914			  " [IP_HDR_CHKSUM_ERR]" : "",
915			  rx_ev_tcp_udp_chksum_err ?
916			  " [TCP_UDP_CHKSUM_ERR]" : "",
917			  rx_ev_eth_crc_err ? " [ETH_CRC_ERR]" : "",
918			  rx_ev_frm_trunc ? " [FRM_TRUNC]" : "",
919			  rx_ev_tobe_disc ? " [TOBE_DISC]" : "",
920			  rx_ev_pause_frm ? " [PAUSE]" : "");
921	}
922#else
923	(void) rx_ev_other_err;
924#endif
925
926	if (efx->net_dev->features & NETIF_F_RXALL)
927		/* don't discard frame for CRC error */
928		rx_ev_eth_crc_err = false;
929
930	/* The frame must be discarded if any of these are true. */
931	return (rx_ev_eth_crc_err | rx_ev_frm_trunc |
932		rx_ev_tobe_disc | rx_ev_pause_frm) ?
933		EFX_RX_PKT_DISCARD : 0;
934}
935
936/* Handle receive events that are not in-order. Return true if this
937 * can be handled as a partial packet discard, false if it's more
938 * serious.
939 */
940static bool
941efx_farch_handle_rx_bad_index(struct efx_rx_queue *rx_queue, unsigned index)
942{
943	struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
944	struct efx_nic *efx = rx_queue->efx;
945	unsigned expected, dropped;
946
947	if (rx_queue->scatter_n &&
948	    index == ((rx_queue->removed_count + rx_queue->scatter_n - 1) &
949		      rx_queue->ptr_mask)) {
950		++channel->n_rx_nodesc_trunc;
951		return true;
952	}
953
954	expected = rx_queue->removed_count & rx_queue->ptr_mask;
955	dropped = (index - expected) & rx_queue->ptr_mask;
956	netif_info(efx, rx_err, efx->net_dev,
957		   "dropped %d events (index=%d expected=%d)\n",
958		   dropped, index, expected);
959
960	efx_siena_schedule_reset(efx, RESET_TYPE_DISABLE);
961	return false;
962}
963
964/* Handle a packet received event
965 *
966 * The NIC gives a "discard" flag if it's a unicast packet with the
967 * wrong destination address
968 * Also "is multicast" and "matches multicast filter" flags can be used to
969 * discard non-matching multicast packets.
970 */
971static void
972efx_farch_handle_rx_event(struct efx_channel *channel, const efx_qword_t *event)
973{
974	unsigned int rx_ev_desc_ptr, rx_ev_byte_cnt;
975	unsigned int rx_ev_hdr_type, rx_ev_mcast_pkt;
976	unsigned expected_ptr;
977	bool rx_ev_pkt_ok, rx_ev_sop, rx_ev_cont;
978	u16 flags;
979	struct efx_rx_queue *rx_queue;
980	struct efx_nic *efx = channel->efx;
981
982	if (unlikely(READ_ONCE(efx->reset_pending)))
983		return;
984
985	rx_ev_cont = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_JUMBO_CONT);
986	rx_ev_sop = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_SOP);
987	WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_Q_LABEL) !=
988		channel->channel);
989
990	rx_queue = efx_channel_get_rx_queue(channel);
991
992	rx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_DESC_PTR);
993	expected_ptr = ((rx_queue->removed_count + rx_queue->scatter_n) &
994			rx_queue->ptr_mask);
995
996	/* Check for partial drops and other errors */
997	if (unlikely(rx_ev_desc_ptr != expected_ptr) ||
998	    unlikely(rx_ev_sop != (rx_queue->scatter_n == 0))) {
999		if (rx_ev_desc_ptr != expected_ptr &&
1000		    !efx_farch_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr))
1001			return;
1002
1003		/* Discard all pending fragments */
1004		if (rx_queue->scatter_n) {
1005			efx_siena_rx_packet(
1006				rx_queue,
1007				rx_queue->removed_count & rx_queue->ptr_mask,
1008				rx_queue->scatter_n, 0, EFX_RX_PKT_DISCARD);
1009			rx_queue->removed_count += rx_queue->scatter_n;
1010			rx_queue->scatter_n = 0;
1011		}
1012
1013		/* Return if there is no new fragment */
1014		if (rx_ev_desc_ptr != expected_ptr)
1015			return;
1016
1017		/* Discard new fragment if not SOP */
1018		if (!rx_ev_sop) {
1019			efx_siena_rx_packet(
1020				rx_queue,
1021				rx_queue->removed_count & rx_queue->ptr_mask,
1022				1, 0, EFX_RX_PKT_DISCARD);
1023			++rx_queue->removed_count;
1024			return;
1025		}
1026	}
1027
1028	++rx_queue->scatter_n;
1029	if (rx_ev_cont)
1030		return;
1031
1032	rx_ev_byte_cnt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_BYTE_CNT);
1033	rx_ev_pkt_ok = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_OK);
1034	rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
1035
1036	if (likely(rx_ev_pkt_ok)) {
1037		/* If packet is marked as OK then we can rely on the
1038		 * hardware checksum and classification.
1039		 */
1040		flags = 0;
1041		switch (rx_ev_hdr_type) {
1042		case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_TCP:
1043			flags |= EFX_RX_PKT_TCP;
1044			fallthrough;
1045		case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_UDP:
1046			flags |= EFX_RX_PKT_CSUMMED;
1047			fallthrough;
1048		case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_OTHER:
1049		case FSE_AZ_RX_EV_HDR_TYPE_OTHER:
1050			break;
1051		}
1052	} else {
1053		flags = efx_farch_handle_rx_not_ok(rx_queue, event);
1054	}
1055
1056	/* Detect multicast packets that didn't match the filter */
1057	rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
1058	if (rx_ev_mcast_pkt) {
1059		unsigned int rx_ev_mcast_hash_match =
1060			EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_HASH_MATCH);
1061
1062		if (unlikely(!rx_ev_mcast_hash_match)) {
1063			++channel->n_rx_mcast_mismatch;
1064			flags |= EFX_RX_PKT_DISCARD;
1065		}
1066	}
1067
1068	channel->irq_mod_score += 2;
1069
1070	/* Handle received packet */
1071	efx_siena_rx_packet(rx_queue,
1072			    rx_queue->removed_count & rx_queue->ptr_mask,
1073			    rx_queue->scatter_n, rx_ev_byte_cnt, flags);
1074	rx_queue->removed_count += rx_queue->scatter_n;
1075	rx_queue->scatter_n = 0;
1076}
1077
1078/* If this flush done event corresponds to a &struct efx_tx_queue, then
1079 * send an %EFX_CHANNEL_MAGIC_TX_DRAIN event to drain the event queue
1080 * of all transmit completions.
1081 */
1082static void
1083efx_farch_handle_tx_flush_done(struct efx_nic *efx, efx_qword_t *event)
1084{
1085	struct efx_tx_queue *tx_queue;
1086	struct efx_channel *channel;
1087	int qid;
1088
1089	qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
1090	if (qid < EFX_MAX_TXQ_PER_CHANNEL * (efx->n_tx_channels + efx->n_extra_tx_channels)) {
1091		channel = efx_get_tx_channel(efx, qid / EFX_MAX_TXQ_PER_CHANNEL);
1092		tx_queue = channel->tx_queue + (qid % EFX_MAX_TXQ_PER_CHANNEL);
1093		if (atomic_cmpxchg(&tx_queue->flush_outstanding, 1, 0))
1094			efx_farch_magic_event(tx_queue->channel,
1095					      EFX_CHANNEL_MAGIC_TX_DRAIN(tx_queue));
1096	}
1097}
1098
1099/* If this flush done event corresponds to a &struct efx_rx_queue: If the flush
1100 * was successful then send an %EFX_CHANNEL_MAGIC_RX_DRAIN, otherwise add
1101 * the RX queue back to the mask of RX queues in need of flushing.
1102 */
1103static void
1104efx_farch_handle_rx_flush_done(struct efx_nic *efx, efx_qword_t *event)
1105{
1106	struct efx_channel *channel;
1107	struct efx_rx_queue *rx_queue;
1108	int qid;
1109	bool failed;
1110
1111	qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_DESCQ_ID);
1112	failed = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL);
1113	if (qid >= efx->n_channels)
1114		return;
1115	channel = efx_get_channel(efx, qid);
1116	if (!efx_channel_has_rx_queue(channel))
1117		return;
1118	rx_queue = efx_channel_get_rx_queue(channel);
1119
1120	if (failed) {
1121		netif_info(efx, hw, efx->net_dev,
1122			   "RXQ %d flush retry\n", qid);
1123		rx_queue->flush_pending = true;
1124		atomic_inc(&efx->rxq_flush_pending);
1125	} else {
1126		efx_farch_magic_event(efx_rx_queue_channel(rx_queue),
1127				      EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue));
1128	}
1129	atomic_dec(&efx->rxq_flush_outstanding);
1130	if (efx_farch_flush_wake(efx))
1131		wake_up(&efx->flush_wq);
1132}
1133
1134static void
1135efx_farch_handle_drain_event(struct efx_channel *channel)
1136{
1137	struct efx_nic *efx = channel->efx;
1138
1139	WARN_ON(atomic_read(&efx->active_queues) == 0);
1140	atomic_dec(&efx->active_queues);
1141	if (efx_farch_flush_wake(efx))
1142		wake_up(&efx->flush_wq);
1143}
1144
1145static void efx_farch_handle_generated_event(struct efx_channel *channel,
1146					     efx_qword_t *event)
1147{
1148	struct efx_nic *efx = channel->efx;
1149	struct efx_rx_queue *rx_queue =
1150		efx_channel_has_rx_queue(channel) ?
1151		efx_channel_get_rx_queue(channel) : NULL;
1152	unsigned magic, code;
1153
1154	magic = EFX_QWORD_FIELD(*event, FSF_AZ_DRV_GEN_EV_MAGIC);
1155	code = _EFX_CHANNEL_MAGIC_CODE(magic);
1156
1157	if (magic == EFX_CHANNEL_MAGIC_TEST(channel)) {
1158		channel->event_test_cpu = raw_smp_processor_id();
1159	} else if (rx_queue && magic == EFX_CHANNEL_MAGIC_FILL(rx_queue)) {
1160		/* The queue must be empty, so we won't receive any rx
1161		 * events, so efx_process_channel() won't refill the
1162		 * queue. Refill it here */
1163		efx_siena_fast_push_rx_descriptors(rx_queue, true);
1164	} else if (rx_queue && magic == EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue)) {
1165		efx_farch_handle_drain_event(channel);
1166	} else if (code == _EFX_CHANNEL_MAGIC_TX_DRAIN) {
1167		efx_farch_handle_drain_event(channel);
1168	} else {
1169		netif_dbg(efx, hw, efx->net_dev, "channel %d received "
1170			  "generated event "EFX_QWORD_FMT"\n",
1171			  channel->channel, EFX_QWORD_VAL(*event));
1172	}
1173}
1174
1175static void
1176efx_farch_handle_driver_event(struct efx_channel *channel, efx_qword_t *event)
1177{
1178	struct efx_nic *efx = channel->efx;
1179	unsigned int ev_sub_code;
1180	unsigned int ev_sub_data;
1181
1182	ev_sub_code = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBCODE);
1183	ev_sub_data = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
1184
1185	switch (ev_sub_code) {
1186	case FSE_AZ_TX_DESCQ_FLS_DONE_EV:
1187		netif_vdbg(efx, hw, efx->net_dev, "channel %d TXQ %d flushed\n",
1188			   channel->channel, ev_sub_data);
1189		efx_farch_handle_tx_flush_done(efx, event);
1190#ifdef CONFIG_SFC_SIENA_SRIOV
1191		efx_siena_sriov_tx_flush_done(efx, event);
1192#endif
1193		break;
1194	case FSE_AZ_RX_DESCQ_FLS_DONE_EV:
1195		netif_vdbg(efx, hw, efx->net_dev, "channel %d RXQ %d flushed\n",
1196			   channel->channel, ev_sub_data);
1197		efx_farch_handle_rx_flush_done(efx, event);
1198#ifdef CONFIG_SFC_SIENA_SRIOV
1199		efx_siena_sriov_rx_flush_done(efx, event);
1200#endif
1201		break;
1202	case FSE_AZ_EVQ_INIT_DONE_EV:
1203		netif_dbg(efx, hw, efx->net_dev,
1204			  "channel %d EVQ %d initialised\n",
1205			  channel->channel, ev_sub_data);
1206		break;
1207	case FSE_AZ_SRM_UPD_DONE_EV:
1208		netif_vdbg(efx, hw, efx->net_dev,
1209			   "channel %d SRAM update done\n", channel->channel);
1210		break;
1211	case FSE_AZ_WAKE_UP_EV:
1212		netif_vdbg(efx, hw, efx->net_dev,
1213			   "channel %d RXQ %d wakeup event\n",
1214			   channel->channel, ev_sub_data);
1215		break;
1216	case FSE_AZ_TIMER_EV:
1217		netif_vdbg(efx, hw, efx->net_dev,
1218			   "channel %d RX queue %d timer expired\n",
1219			   channel->channel, ev_sub_data);
1220		break;
1221	case FSE_AA_RX_RECOVER_EV:
1222		netif_err(efx, rx_err, efx->net_dev,
1223			  "channel %d seen DRIVER RX_RESET event. "
1224			"Resetting.\n", channel->channel);
1225		atomic_inc(&efx->rx_reset);
1226		efx_siena_schedule_reset(efx, RESET_TYPE_DISABLE);
1227		break;
1228	case FSE_BZ_RX_DSC_ERROR_EV:
1229		if (ev_sub_data < EFX_VI_BASE) {
1230			netif_err(efx, rx_err, efx->net_dev,
1231				  "RX DMA Q %d reports descriptor fetch error."
1232				  " RX Q %d is disabled.\n", ev_sub_data,
1233				  ev_sub_data);
1234			efx_siena_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
1235		}
1236#ifdef CONFIG_SFC_SIENA_SRIOV
1237		else
1238			efx_siena_sriov_desc_fetch_err(efx, ev_sub_data);
1239#endif
1240		break;
1241	case FSE_BZ_TX_DSC_ERROR_EV:
1242		if (ev_sub_data < EFX_VI_BASE) {
1243			netif_err(efx, tx_err, efx->net_dev,
1244				  "TX DMA Q %d reports descriptor fetch error."
1245				  " TX Q %d is disabled.\n", ev_sub_data,
1246				  ev_sub_data);
1247			efx_siena_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
1248		}
1249#ifdef CONFIG_SFC_SIENA_SRIOV
1250		else
1251			efx_siena_sriov_desc_fetch_err(efx, ev_sub_data);
1252#endif
1253		break;
1254	default:
1255		netif_vdbg(efx, hw, efx->net_dev,
1256			   "channel %d unknown driver event code %d "
1257			   "data %04x\n", channel->channel, ev_sub_code,
1258			   ev_sub_data);
1259		break;
1260	}
1261}
1262
1263int efx_farch_ev_process(struct efx_channel *channel, int budget)
1264{
1265	struct efx_nic *efx = channel->efx;
1266	unsigned int read_ptr;
1267	efx_qword_t event, *p_event;
1268	int ev_code;
1269	int spent = 0;
1270
1271	if (budget <= 0)
1272		return spent;
1273
1274	read_ptr = channel->eventq_read_ptr;
1275
1276	for (;;) {
1277		p_event = efx_event(channel, read_ptr);
1278		event = *p_event;
1279
1280		if (!efx_event_present(&event))
1281			/* End of events */
1282			break;
1283
1284		netif_vdbg(channel->efx, intr, channel->efx->net_dev,
1285			   "channel %d event is "EFX_QWORD_FMT"\n",
1286			   channel->channel, EFX_QWORD_VAL(event));
1287
1288		/* Clear this event by marking it all ones */
1289		EFX_SET_QWORD(*p_event);
1290
1291		++read_ptr;
1292
1293		ev_code = EFX_QWORD_FIELD(event, FSF_AZ_EV_CODE);
1294
1295		switch (ev_code) {
1296		case FSE_AZ_EV_CODE_RX_EV:
1297			efx_farch_handle_rx_event(channel, &event);
1298			if (++spent == budget)
1299				goto out;
1300			break;
1301		case FSE_AZ_EV_CODE_TX_EV:
1302			efx_farch_handle_tx_event(channel, &event);
1303			break;
1304		case FSE_AZ_EV_CODE_DRV_GEN_EV:
1305			efx_farch_handle_generated_event(channel, &event);
1306			break;
1307		case FSE_AZ_EV_CODE_DRIVER_EV:
1308			efx_farch_handle_driver_event(channel, &event);
1309			break;
1310#ifdef CONFIG_SFC_SIENA_SRIOV
1311		case FSE_CZ_EV_CODE_USER_EV:
1312			efx_siena_sriov_event(channel, &event);
1313			break;
1314#endif
1315		case FSE_CZ_EV_CODE_MCDI_EV:
1316			efx_siena_mcdi_process_event(channel, &event);
1317			break;
1318		case FSE_AZ_EV_CODE_GLOBAL_EV:
1319			if (efx->type->handle_global_event &&
1320			    efx->type->handle_global_event(channel, &event))
1321				break;
1322			fallthrough;
1323		default:
1324			netif_err(channel->efx, hw, channel->efx->net_dev,
1325				  "channel %d unknown event type %d (data "
1326				  EFX_QWORD_FMT ")\n", channel->channel,
1327				  ev_code, EFX_QWORD_VAL(event));
1328		}
1329	}
1330
1331out:
1332	channel->eventq_read_ptr = read_ptr;
1333	return spent;
1334}
1335
1336/* Allocate buffer table entries for event queue */
1337int efx_farch_ev_probe(struct efx_channel *channel)
1338{
1339	struct efx_nic *efx = channel->efx;
1340	unsigned entries;
1341
1342	entries = channel->eventq_mask + 1;
1343	return efx_alloc_special_buffer(efx, &channel->eventq,
1344					entries * sizeof(efx_qword_t));
1345}
1346
1347int efx_farch_ev_init(struct efx_channel *channel)
1348{
1349	efx_oword_t reg;
1350	struct efx_nic *efx = channel->efx;
1351
1352	netif_dbg(efx, hw, efx->net_dev,
1353		  "channel %d event queue in special buffers %d-%d\n",
1354		  channel->channel, channel->eventq.index,
1355		  channel->eventq.index + channel->eventq.entries - 1);
1356
1357	EFX_POPULATE_OWORD_3(reg,
1358			     FRF_CZ_TIMER_Q_EN, 1,
1359			     FRF_CZ_HOST_NOTIFY_MODE, 0,
1360			     FRF_CZ_TIMER_MODE, FFE_CZ_TIMER_MODE_DIS);
1361	efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
1362
1363	/* Pin event queue buffer */
1364	efx_init_special_buffer(efx, &channel->eventq);
1365
1366	/* Fill event queue with all ones (i.e. empty events) */
1367	memset(channel->eventq.buf.addr, 0xff, channel->eventq.buf.len);
1368
1369	/* Push event queue to card */
1370	EFX_POPULATE_OWORD_3(reg,
1371			     FRF_AZ_EVQ_EN, 1,
1372			     FRF_AZ_EVQ_SIZE, __ffs(channel->eventq.entries),
1373			     FRF_AZ_EVQ_BUF_BASE_ID, channel->eventq.index);
1374	efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
1375			 channel->channel);
1376
1377	return 0;
1378}
1379
1380void efx_farch_ev_fini(struct efx_channel *channel)
1381{
1382	efx_oword_t reg;
1383	struct efx_nic *efx = channel->efx;
1384
1385	/* Remove event queue from card */
1386	EFX_ZERO_OWORD(reg);
1387	efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
1388			 channel->channel);
1389	efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
1390
1391	/* Unpin event queue */
1392	efx_fini_special_buffer(efx, &channel->eventq);
1393}
1394
1395/* Free buffers backing event queue */
1396void efx_farch_ev_remove(struct efx_channel *channel)
1397{
1398	efx_free_special_buffer(channel->efx, &channel->eventq);
1399}
1400
1401
1402void efx_farch_ev_test_generate(struct efx_channel *channel)
1403{
1404	efx_farch_magic_event(channel, EFX_CHANNEL_MAGIC_TEST(channel));
1405}
1406
1407void efx_farch_rx_defer_refill(struct efx_rx_queue *rx_queue)
1408{
1409	efx_farch_magic_event(efx_rx_queue_channel(rx_queue),
1410			      EFX_CHANNEL_MAGIC_FILL(rx_queue));
1411}
1412
1413/**************************************************************************
1414 *
1415 * Hardware interrupts
1416 * The hardware interrupt handler does very little work; all the event
1417 * queue processing is carried out by per-channel tasklets.
1418 *
1419 **************************************************************************/
1420
1421/* Enable/disable/generate interrupts */
1422static inline void efx_farch_interrupts(struct efx_nic *efx,
1423				      bool enabled, bool force)
1424{
1425	efx_oword_t int_en_reg_ker;
1426
1427	EFX_POPULATE_OWORD_3(int_en_reg_ker,
1428			     FRF_AZ_KER_INT_LEVE_SEL, efx->irq_level,
1429			     FRF_AZ_KER_INT_KER, force,
1430			     FRF_AZ_DRV_INT_EN_KER, enabled);
1431	efx_writeo(efx, &int_en_reg_ker, FR_AZ_INT_EN_KER);
1432}
1433
1434void efx_farch_irq_enable_master(struct efx_nic *efx)
1435{
1436	EFX_ZERO_OWORD(*((efx_oword_t *) efx->irq_status.addr));
1437	wmb(); /* Ensure interrupt vector is clear before interrupts enabled */
1438
1439	efx_farch_interrupts(efx, true, false);
1440}
1441
1442void efx_farch_irq_disable_master(struct efx_nic *efx)
1443{
1444	/* Disable interrupts */
1445	efx_farch_interrupts(efx, false, false);
1446}
1447
1448/* Generate a test interrupt
1449 * Interrupt must already have been enabled, otherwise nasty things
1450 * may happen.
1451 */
1452int efx_farch_irq_test_generate(struct efx_nic *efx)
1453{
1454	efx_farch_interrupts(efx, true, true);
1455	return 0;
1456}
1457
1458/* Process a fatal interrupt
1459 * Disable bus mastering ASAP and schedule a reset
1460 */
1461irqreturn_t efx_farch_fatal_interrupt(struct efx_nic *efx)
1462{
1463	efx_oword_t *int_ker = efx->irq_status.addr;
1464	efx_oword_t fatal_intr;
1465	int error, mem_perr;
1466
1467	efx_reado(efx, &fatal_intr, FR_AZ_FATAL_INTR_KER);
1468	error = EFX_OWORD_FIELD(fatal_intr, FRF_AZ_FATAL_INTR);
1469
1470	netif_err(efx, hw, efx->net_dev, "SYSTEM ERROR "EFX_OWORD_FMT" status "
1471		  EFX_OWORD_FMT ": %s\n", EFX_OWORD_VAL(*int_ker),
1472		  EFX_OWORD_VAL(fatal_intr),
1473		  error ? "disabling bus mastering" : "no recognised error");
1474
1475	/* If this is a memory parity error dump which blocks are offending */
1476	mem_perr = (EFX_OWORD_FIELD(fatal_intr, FRF_AZ_MEM_PERR_INT_KER) ||
1477		    EFX_OWORD_FIELD(fatal_intr, FRF_AZ_SRM_PERR_INT_KER));
1478	if (mem_perr) {
1479		efx_oword_t reg;
1480		efx_reado(efx, &reg, FR_AZ_MEM_STAT);
1481		netif_err(efx, hw, efx->net_dev,
1482			  "SYSTEM ERROR: memory parity error "EFX_OWORD_FMT"\n",
1483			  EFX_OWORD_VAL(reg));
1484	}
1485
1486	/* Disable both devices */
1487	pci_clear_master(efx->pci_dev);
1488	efx_farch_irq_disable_master(efx);
1489
1490	/* Count errors and reset or disable the NIC accordingly */
1491	if (efx->int_error_count == 0 ||
1492	    time_after(jiffies, efx->int_error_expire)) {
1493		efx->int_error_count = 0;
1494		efx->int_error_expire =
1495			jiffies + EFX_INT_ERROR_EXPIRE * HZ;
1496	}
1497	if (++efx->int_error_count < EFX_MAX_INT_ERRORS) {
1498		netif_err(efx, hw, efx->net_dev,
1499			  "SYSTEM ERROR - reset scheduled\n");
1500		efx_siena_schedule_reset(efx, RESET_TYPE_INT_ERROR);
1501	} else {
1502		netif_err(efx, hw, efx->net_dev,
1503			  "SYSTEM ERROR - max number of errors seen."
1504			  "NIC will be disabled\n");
1505		efx_siena_schedule_reset(efx, RESET_TYPE_DISABLE);
1506	}
1507
1508	return IRQ_HANDLED;
1509}
1510
1511/* Handle a legacy interrupt
1512 * Acknowledges the interrupt and schedule event queue processing.
1513 */
1514irqreturn_t efx_farch_legacy_interrupt(int irq, void *dev_id)
1515{
1516	struct efx_nic *efx = dev_id;
1517	bool soft_enabled = READ_ONCE(efx->irq_soft_enabled);
1518	efx_oword_t *int_ker = efx->irq_status.addr;
1519	irqreturn_t result = IRQ_NONE;
1520	struct efx_channel *channel;
1521	efx_dword_t reg;
1522	u32 queues;
1523	int syserr;
1524
1525	/* Read the ISR which also ACKs the interrupts */
1526	efx_readd(efx, &reg, FR_BZ_INT_ISR0);
1527	queues = EFX_EXTRACT_DWORD(reg, 0, 31);
1528
1529	/* Legacy interrupts are disabled too late by the EEH kernel
1530	 * code. Disable them earlier.
1531	 * If an EEH error occurred, the read will have returned all ones.
1532	 */
1533	if (EFX_DWORD_IS_ALL_ONES(reg) && efx_siena_try_recovery(efx) &&
1534	    !efx->eeh_disabled_legacy_irq) {
1535		disable_irq_nosync(efx->legacy_irq);
1536		efx->eeh_disabled_legacy_irq = true;
1537	}
1538
1539	/* Handle non-event-queue sources */
1540	if (queues & (1U << efx->irq_level) && soft_enabled) {
1541		syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1542		if (unlikely(syserr))
1543			return efx_farch_fatal_interrupt(efx);
1544		efx->last_irq_cpu = raw_smp_processor_id();
1545	}
1546
1547	if (queues != 0) {
1548		efx->irq_zero_count = 0;
1549
1550		/* Schedule processing of any interrupting queues */
1551		if (likely(soft_enabled)) {
1552			efx_for_each_channel(channel, efx) {
1553				if (queues & 1)
1554					efx_schedule_channel_irq(channel);
1555				queues >>= 1;
1556			}
1557		}
1558		result = IRQ_HANDLED;
1559
1560	} else {
1561		efx_qword_t *event;
1562
1563		/* Legacy ISR read can return zero once (SF bug 15783) */
1564
1565		/* We can't return IRQ_HANDLED more than once on seeing ISR=0
1566		 * because this might be a shared interrupt. */
1567		if (efx->irq_zero_count++ == 0)
1568			result = IRQ_HANDLED;
1569
1570		/* Ensure we schedule or rearm all event queues */
1571		if (likely(soft_enabled)) {
1572			efx_for_each_channel(channel, efx) {
1573				event = efx_event(channel,
1574						  channel->eventq_read_ptr);
1575				if (efx_event_present(event))
1576					efx_schedule_channel_irq(channel);
1577				else
1578					efx_farch_ev_read_ack(channel);
1579			}
1580		}
1581	}
1582
1583	if (result == IRQ_HANDLED)
1584		netif_vdbg(efx, intr, efx->net_dev,
1585			   "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
1586			   irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
1587
1588	return result;
1589}
1590
1591/* Handle an MSI interrupt
1592 *
1593 * Handle an MSI hardware interrupt.  This routine schedules event
1594 * queue processing.  No interrupt acknowledgement cycle is necessary.
1595 * Also, we never need to check that the interrupt is for us, since
1596 * MSI interrupts cannot be shared.
1597 */
1598irqreturn_t efx_farch_msi_interrupt(int irq, void *dev_id)
1599{
1600	struct efx_msi_context *context = dev_id;
1601	struct efx_nic *efx = context->efx;
1602	efx_oword_t *int_ker = efx->irq_status.addr;
1603	int syserr;
1604
1605	netif_vdbg(efx, intr, efx->net_dev,
1606		   "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
1607		   irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
1608
1609	if (!likely(READ_ONCE(efx->irq_soft_enabled)))
1610		return IRQ_HANDLED;
1611
1612	/* Handle non-event-queue sources */
1613	if (context->index == efx->irq_level) {
1614		syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1615		if (unlikely(syserr))
1616			return efx_farch_fatal_interrupt(efx);
1617		efx->last_irq_cpu = raw_smp_processor_id();
1618	}
1619
1620	/* Schedule processing of the channel */
1621	efx_schedule_channel_irq(efx->channel[context->index]);
1622
1623	return IRQ_HANDLED;
1624}
1625
1626/* Setup RSS indirection table.
1627 * This maps from the hash value of the packet to RXQ
1628 */
1629void efx_farch_rx_push_indir_table(struct efx_nic *efx)
1630{
1631	size_t i = 0;
1632	efx_dword_t dword;
1633
1634	BUILD_BUG_ON(ARRAY_SIZE(efx->rss_context.rx_indir_table) !=
1635		     FR_BZ_RX_INDIRECTION_TBL_ROWS);
1636
1637	for (i = 0; i < FR_BZ_RX_INDIRECTION_TBL_ROWS; i++) {
1638		EFX_POPULATE_DWORD_1(dword, FRF_BZ_IT_QUEUE,
1639				     efx->rss_context.rx_indir_table[i]);
1640		efx_writed(efx, &dword,
1641			   FR_BZ_RX_INDIRECTION_TBL +
1642			   FR_BZ_RX_INDIRECTION_TBL_STEP * i);
1643	}
1644}
1645
1646void efx_farch_rx_pull_indir_table(struct efx_nic *efx)
1647{
1648	size_t i = 0;
1649	efx_dword_t dword;
1650
1651	BUILD_BUG_ON(ARRAY_SIZE(efx->rss_context.rx_indir_table) !=
1652		     FR_BZ_RX_INDIRECTION_TBL_ROWS);
1653
1654	for (i = 0; i < FR_BZ_RX_INDIRECTION_TBL_ROWS; i++) {
1655		efx_readd(efx, &dword,
1656			   FR_BZ_RX_INDIRECTION_TBL +
1657			   FR_BZ_RX_INDIRECTION_TBL_STEP * i);
1658		efx->rss_context.rx_indir_table[i] = EFX_DWORD_FIELD(dword, FRF_BZ_IT_QUEUE);
1659	}
1660}
1661
1662/* Looks at available SRAM resources and works out how many queues we
1663 * can support, and where things like descriptor caches should live.
1664 *
1665 * SRAM is split up as follows:
1666 * 0                          buftbl entries for channels
1667 * efx->vf_buftbl_base        buftbl entries for SR-IOV
1668 * efx->rx_dc_base            RX descriptor caches
1669 * efx->tx_dc_base            TX descriptor caches
1670 */
1671void efx_farch_dimension_resources(struct efx_nic *efx, unsigned sram_lim_qw)
1672{
1673	unsigned vi_count, total_tx_channels;
1674#ifdef CONFIG_SFC_SIENA_SRIOV
1675	struct siena_nic_data *nic_data;
1676	unsigned buftbl_min;
1677#endif
1678
1679	total_tx_channels = efx->n_tx_channels + efx->n_extra_tx_channels;
1680	vi_count = max(efx->n_channels, total_tx_channels * EFX_MAX_TXQ_PER_CHANNEL);
1681
1682#ifdef CONFIG_SFC_SIENA_SRIOV
1683	nic_data = efx->nic_data;
1684	/* Account for the buffer table entries backing the datapath channels
1685	 * and the descriptor caches for those channels.
1686	 */
1687	buftbl_min = ((efx->n_rx_channels * EFX_MAX_DMAQ_SIZE +
1688		       total_tx_channels * EFX_MAX_TXQ_PER_CHANNEL * EFX_MAX_DMAQ_SIZE +
1689		       efx->n_channels * EFX_MAX_EVQ_SIZE)
1690		      * sizeof(efx_qword_t) / EFX_BUF_SIZE);
1691	if (efx->type->sriov_wanted) {
1692		if (efx->type->sriov_wanted(efx)) {
1693			unsigned vi_dc_entries, buftbl_free;
1694			unsigned entries_per_vf, vf_limit;
1695
1696			nic_data->vf_buftbl_base = buftbl_min;
1697
1698			vi_dc_entries = RX_DC_ENTRIES + TX_DC_ENTRIES;
1699			vi_count = max(vi_count, EFX_VI_BASE);
1700			buftbl_free = (sram_lim_qw - buftbl_min -
1701				       vi_count * vi_dc_entries);
1702
1703			entries_per_vf = ((vi_dc_entries +
1704					   EFX_VF_BUFTBL_PER_VI) *
1705					  efx_vf_size(efx));
1706			vf_limit = min(buftbl_free / entries_per_vf,
1707				       (1024U - EFX_VI_BASE) >> efx->vi_scale);
1708
1709			if (efx->vf_count > vf_limit) {
1710				netif_err(efx, probe, efx->net_dev,
1711					  "Reducing VF count from from %d to %d\n",
1712					  efx->vf_count, vf_limit);
1713				efx->vf_count = vf_limit;
1714			}
1715			vi_count += efx->vf_count * efx_vf_size(efx);
1716		}
1717	}
1718#endif
1719
1720	efx->tx_dc_base = sram_lim_qw - vi_count * TX_DC_ENTRIES;
1721	efx->rx_dc_base = efx->tx_dc_base - vi_count * RX_DC_ENTRIES;
1722}
1723
1724u32 efx_farch_fpga_ver(struct efx_nic *efx)
1725{
1726	efx_oword_t altera_build;
1727	efx_reado(efx, &altera_build, FR_AZ_ALTERA_BUILD);
1728	return EFX_OWORD_FIELD(altera_build, FRF_AZ_ALTERA_BUILD_VER);
1729}
1730
1731void efx_farch_init_common(struct efx_nic *efx)
1732{
1733	efx_oword_t temp;
1734
1735	/* Set positions of descriptor caches in SRAM. */
1736	EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_TX_DC_BASE_ADR, efx->tx_dc_base);
1737	efx_writeo(efx, &temp, FR_AZ_SRM_TX_DC_CFG);
1738	EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_RX_DC_BASE_ADR, efx->rx_dc_base);
1739	efx_writeo(efx, &temp, FR_AZ_SRM_RX_DC_CFG);
1740
1741	/* Set TX descriptor cache size. */
1742	BUILD_BUG_ON(TX_DC_ENTRIES != (8 << TX_DC_ENTRIES_ORDER));
1743	EFX_POPULATE_OWORD_1(temp, FRF_AZ_TX_DC_SIZE, TX_DC_ENTRIES_ORDER);
1744	efx_writeo(efx, &temp, FR_AZ_TX_DC_CFG);
1745
1746	/* Set RX descriptor cache size.  Set low watermark to size-8, as
1747	 * this allows most efficient prefetching.
1748	 */
1749	BUILD_BUG_ON(RX_DC_ENTRIES != (8 << RX_DC_ENTRIES_ORDER));
1750	EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_SIZE, RX_DC_ENTRIES_ORDER);
1751	efx_writeo(efx, &temp, FR_AZ_RX_DC_CFG);
1752	EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_PF_LWM, RX_DC_ENTRIES - 8);
1753	efx_writeo(efx, &temp, FR_AZ_RX_DC_PF_WM);
1754
1755	/* Program INT_KER address */
1756	EFX_POPULATE_OWORD_2(temp,
1757			     FRF_AZ_NORM_INT_VEC_DIS_KER,
1758			     EFX_INT_MODE_USE_MSI(efx),
1759			     FRF_AZ_INT_ADR_KER, efx->irq_status.dma_addr);
1760	efx_writeo(efx, &temp, FR_AZ_INT_ADR_KER);
1761
1762	if (EFX_WORKAROUND_17213(efx) && !EFX_INT_MODE_USE_MSI(efx))
1763		/* Use an interrupt level unused by event queues */
1764		efx->irq_level = 0x1f;
1765	else
1766		/* Use a valid MSI-X vector */
1767		efx->irq_level = 0;
1768
1769	/* Enable all the genuinely fatal interrupts.  (They are still
1770	 * masked by the overall interrupt mask, controlled by
1771	 * falcon_interrupts()).
1772	 *
1773	 * Note: All other fatal interrupts are enabled
1774	 */
1775	EFX_POPULATE_OWORD_3(temp,
1776			     FRF_AZ_ILL_ADR_INT_KER_EN, 1,
1777			     FRF_AZ_RBUF_OWN_INT_KER_EN, 1,
1778			     FRF_AZ_TBUF_OWN_INT_KER_EN, 1);
1779	EFX_SET_OWORD_FIELD(temp, FRF_CZ_SRAM_PERR_INT_P_KER_EN, 1);
1780	EFX_INVERT_OWORD(temp);
1781	efx_writeo(efx, &temp, FR_AZ_FATAL_INTR_KER);
1782
1783	/* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be
1784	 * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q.
1785	 */
1786	efx_reado(efx, &temp, FR_AZ_TX_RESERVED);
1787	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER, 0xfe);
1788	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER_EN, 1);
1789	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_ONE_PKT_PER_Q, 1);
1790	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PUSH_EN, 1);
1791	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_DIS_NON_IP_EV, 1);
1792	/* Enable SW_EV to inherit in char driver - assume harmless here */
1793	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_SOFT_EVT_EN, 1);
1794	/* Prefetch threshold 2 => fetch when descriptor cache half empty */
1795	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_THRESHOLD, 2);
1796	/* Disable hardware watchdog which can misfire */
1797	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_WD_TMR, 0x3fffff);
1798	/* Squash TX of packets of 16 bytes or less */
1799	EFX_SET_OWORD_FIELD(temp, FRF_BZ_TX_FLUSH_MIN_LEN_EN, 1);
1800	efx_writeo(efx, &temp, FR_AZ_TX_RESERVED);
1801
1802	EFX_POPULATE_OWORD_4(temp,
1803			     /* Default values */
1804			     FRF_BZ_TX_PACE_SB_NOT_AF, 0x15,
1805			     FRF_BZ_TX_PACE_SB_AF, 0xb,
1806			     FRF_BZ_TX_PACE_FB_BASE, 0,
1807			     /* Allow large pace values in the fast bin. */
1808			     FRF_BZ_TX_PACE_BIN_TH,
1809			     FFE_BZ_TX_PACE_RESERVED);
1810	efx_writeo(efx, &temp, FR_BZ_TX_PACE);
1811}
1812
1813/**************************************************************************
1814 *
1815 * Filter tables
1816 *
1817 **************************************************************************
1818 */
1819
1820/* "Fudge factors" - difference between programmed value and actual depth.
1821 * Due to pipelined implementation we need to program H/W with a value that
1822 * is larger than the hop limit we want.
1823 */
1824#define EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD 3
1825#define EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL 1
1826
1827/* Hard maximum search limit.  Hardware will time-out beyond 200-something.
1828 * We also need to avoid infinite loops in efx_farch_filter_search() when the
1829 * table is full.
1830 */
1831#define EFX_FARCH_FILTER_CTL_SRCH_MAX 200
1832
1833/* Don't try very hard to find space for performance hints, as this is
1834 * counter-productive. */
1835#define EFX_FARCH_FILTER_CTL_SRCH_HINT_MAX 5
1836
1837enum efx_farch_filter_type {
1838	EFX_FARCH_FILTER_TCP_FULL = 0,
1839	EFX_FARCH_FILTER_TCP_WILD,
1840	EFX_FARCH_FILTER_UDP_FULL,
1841	EFX_FARCH_FILTER_UDP_WILD,
1842	EFX_FARCH_FILTER_MAC_FULL = 4,
1843	EFX_FARCH_FILTER_MAC_WILD,
1844	EFX_FARCH_FILTER_UC_DEF = 8,
1845	EFX_FARCH_FILTER_MC_DEF,
1846	EFX_FARCH_FILTER_TYPE_COUNT,		/* number of specific types */
1847};
1848
1849enum efx_farch_filter_table_id {
1850	EFX_FARCH_FILTER_TABLE_RX_IP = 0,
1851	EFX_FARCH_FILTER_TABLE_RX_MAC,
1852	EFX_FARCH_FILTER_TABLE_RX_DEF,
1853	EFX_FARCH_FILTER_TABLE_TX_MAC,
1854	EFX_FARCH_FILTER_TABLE_COUNT,
1855};
1856
1857enum efx_farch_filter_index {
1858	EFX_FARCH_FILTER_INDEX_UC_DEF,
1859	EFX_FARCH_FILTER_INDEX_MC_DEF,
1860	EFX_FARCH_FILTER_SIZE_RX_DEF,
1861};
1862
1863struct efx_farch_filter_spec {
1864	u8	type:4;
1865	u8	priority:4;
1866	u8	flags;
1867	u16	dmaq_id;
1868	u32	data[3];
1869};
1870
1871struct efx_farch_filter_table {
1872	enum efx_farch_filter_table_id id;
1873	u32		offset;		/* address of table relative to BAR */
1874	unsigned	size;		/* number of entries */
1875	unsigned	step;		/* step between entries */
1876	unsigned	used;		/* number currently used */
1877	unsigned long	*used_bitmap;
1878	struct efx_farch_filter_spec *spec;
1879	unsigned	search_limit[EFX_FARCH_FILTER_TYPE_COUNT];
1880};
1881
1882struct efx_farch_filter_state {
1883	struct rw_semaphore lock; /* Protects table contents */
1884	struct efx_farch_filter_table table[EFX_FARCH_FILTER_TABLE_COUNT];
1885};
1886
1887static void
1888efx_farch_filter_table_clear_entry(struct efx_nic *efx,
1889				   struct efx_farch_filter_table *table,
1890				   unsigned int filter_idx);
1891
1892/* The filter hash function is LFSR polynomial x^16 + x^3 + 1 of a 32-bit
1893 * key derived from the n-tuple.  The initial LFSR state is 0xffff. */
1894static u16 efx_farch_filter_hash(u32 key)
1895{
1896	u16 tmp;
1897
1898	/* First 16 rounds */
1899	tmp = 0x1fff ^ key >> 16;
1900	tmp = tmp ^ tmp >> 3 ^ tmp >> 6;
1901	tmp = tmp ^ tmp >> 9;
1902	/* Last 16 rounds */
1903	tmp = tmp ^ tmp << 13 ^ key;
1904	tmp = tmp ^ tmp >> 3 ^ tmp >> 6;
1905	return tmp ^ tmp >> 9;
1906}
1907
1908/* To allow for hash collisions, filter search continues at these
1909 * increments from the first possible entry selected by the hash. */
1910static u16 efx_farch_filter_increment(u32 key)
1911{
1912	return key * 2 - 1;
1913}
1914
1915static enum efx_farch_filter_table_id
1916efx_farch_filter_spec_table_id(const struct efx_farch_filter_spec *spec)
1917{
1918	BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
1919		     (EFX_FARCH_FILTER_TCP_FULL >> 2));
1920	BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
1921		     (EFX_FARCH_FILTER_TCP_WILD >> 2));
1922	BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
1923		     (EFX_FARCH_FILTER_UDP_FULL >> 2));
1924	BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
1925		     (EFX_FARCH_FILTER_UDP_WILD >> 2));
1926	BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_MAC !=
1927		     (EFX_FARCH_FILTER_MAC_FULL >> 2));
1928	BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_MAC !=
1929		     (EFX_FARCH_FILTER_MAC_WILD >> 2));
1930	BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_TX_MAC !=
1931		     EFX_FARCH_FILTER_TABLE_RX_MAC + 2);
1932	return (spec->type >> 2) + ((spec->flags & EFX_FILTER_FLAG_TX) ? 2 : 0);
1933}
1934
1935static void efx_farch_filter_push_rx_config(struct efx_nic *efx)
1936{
1937	struct efx_farch_filter_state *state = efx->filter_state;
1938	struct efx_farch_filter_table *table;
1939	efx_oword_t filter_ctl;
1940
1941	efx_reado(efx, &filter_ctl, FR_BZ_RX_FILTER_CTL);
1942
1943	table = &state->table[EFX_FARCH_FILTER_TABLE_RX_IP];
1944	EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_TCP_FULL_SRCH_LIMIT,
1945			    table->search_limit[EFX_FARCH_FILTER_TCP_FULL] +
1946			    EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
1947	EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_TCP_WILD_SRCH_LIMIT,
1948			    table->search_limit[EFX_FARCH_FILTER_TCP_WILD] +
1949			    EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
1950	EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_UDP_FULL_SRCH_LIMIT,
1951			    table->search_limit[EFX_FARCH_FILTER_UDP_FULL] +
1952			    EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
1953	EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_UDP_WILD_SRCH_LIMIT,
1954			    table->search_limit[EFX_FARCH_FILTER_UDP_WILD] +
1955			    EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
1956
1957	table = &state->table[EFX_FARCH_FILTER_TABLE_RX_MAC];
1958	if (table->size) {
1959		EFX_SET_OWORD_FIELD(
1960			filter_ctl, FRF_CZ_ETHERNET_FULL_SEARCH_LIMIT,
1961			table->search_limit[EFX_FARCH_FILTER_MAC_FULL] +
1962			EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
1963		EFX_SET_OWORD_FIELD(
1964			filter_ctl, FRF_CZ_ETHERNET_WILDCARD_SEARCH_LIMIT,
1965			table->search_limit[EFX_FARCH_FILTER_MAC_WILD] +
1966			EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
1967	}
1968
1969	table = &state->table[EFX_FARCH_FILTER_TABLE_RX_DEF];
1970	if (table->size) {
1971		EFX_SET_OWORD_FIELD(
1972			filter_ctl, FRF_CZ_UNICAST_NOMATCH_Q_ID,
1973			table->spec[EFX_FARCH_FILTER_INDEX_UC_DEF].dmaq_id);
1974		EFX_SET_OWORD_FIELD(
1975			filter_ctl, FRF_CZ_UNICAST_NOMATCH_RSS_ENABLED,
1976			!!(table->spec[EFX_FARCH_FILTER_INDEX_UC_DEF].flags &
1977			   EFX_FILTER_FLAG_RX_RSS));
1978		EFX_SET_OWORD_FIELD(
1979			filter_ctl, FRF_CZ_MULTICAST_NOMATCH_Q_ID,
1980			table->spec[EFX_FARCH_FILTER_INDEX_MC_DEF].dmaq_id);
1981		EFX_SET_OWORD_FIELD(
1982			filter_ctl, FRF_CZ_MULTICAST_NOMATCH_RSS_ENABLED,
1983			!!(table->spec[EFX_FARCH_FILTER_INDEX_MC_DEF].flags &
1984			   EFX_FILTER_FLAG_RX_RSS));
1985
1986		/* There is a single bit to enable RX scatter for all
1987		 * unmatched packets.  Only set it if scatter is
1988		 * enabled in both filter specs.
1989		 */
1990		EFX_SET_OWORD_FIELD(
1991			filter_ctl, FRF_BZ_SCATTER_ENBL_NO_MATCH_Q,
1992			!!(table->spec[EFX_FARCH_FILTER_INDEX_UC_DEF].flags &
1993			   table->spec[EFX_FARCH_FILTER_INDEX_MC_DEF].flags &
1994			   EFX_FILTER_FLAG_RX_SCATTER));
1995	} else {
1996		/* We don't expose 'default' filters because unmatched
1997		 * packets always go to the queue number found in the
1998		 * RSS table.  But we still need to set the RX scatter
1999		 * bit here.
2000		 */
2001		EFX_SET_OWORD_FIELD(
2002			filter_ctl, FRF_BZ_SCATTER_ENBL_NO_MATCH_Q,
2003			efx->rx_scatter);
2004	}
2005
2006	efx_writeo(efx, &filter_ctl, FR_BZ_RX_FILTER_CTL);
2007}
2008
2009static void efx_farch_filter_push_tx_limits(struct efx_nic *efx)
2010{
2011	struct efx_farch_filter_state *state = efx->filter_state;
2012	struct efx_farch_filter_table *table;
2013	efx_oword_t tx_cfg;
2014
2015	efx_reado(efx, &tx_cfg, FR_AZ_TX_CFG);
2016
2017	table = &state->table[EFX_FARCH_FILTER_TABLE_TX_MAC];
2018	if (table->size) {
2019		EFX_SET_OWORD_FIELD(
2020			tx_cfg, FRF_CZ_TX_ETH_FILTER_FULL_SEARCH_RANGE,
2021			table->search_limit[EFX_FARCH_FILTER_MAC_FULL] +
2022			EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
2023		EFX_SET_OWORD_FIELD(
2024			tx_cfg, FRF_CZ_TX_ETH_FILTER_WILD_SEARCH_RANGE,
2025			table->search_limit[EFX_FARCH_FILTER_MAC_WILD] +
2026			EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
2027	}
2028
2029	efx_writeo(efx, &tx_cfg, FR_AZ_TX_CFG);
2030}
2031
2032static int
2033efx_farch_filter_from_gen_spec(struct efx_farch_filter_spec *spec,
2034			       const struct efx_filter_spec *gen_spec)
2035{
2036	bool is_full = false;
2037
2038	if ((gen_spec->flags & EFX_FILTER_FLAG_RX_RSS) && gen_spec->rss_context)
2039		return -EINVAL;
2040
2041	spec->priority = gen_spec->priority;
2042	spec->flags = gen_spec->flags;
2043	spec->dmaq_id = gen_spec->dmaq_id;
2044
2045	switch (gen_spec->match_flags) {
2046	case (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_IP_PROTO |
2047	      EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT |
2048	      EFX_FILTER_MATCH_REM_HOST | EFX_FILTER_MATCH_REM_PORT):
2049		is_full = true;
2050		fallthrough;
2051	case (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_IP_PROTO |
2052	      EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT): {
2053		__be32 rhost, host1, host2;
2054		__be16 rport, port1, port2;
2055
2056		EFX_WARN_ON_PARANOID(!(gen_spec->flags & EFX_FILTER_FLAG_RX));
2057
2058		if (gen_spec->ether_type != htons(ETH_P_IP))
2059			return -EPROTONOSUPPORT;
2060		if (gen_spec->loc_port == 0 ||
2061		    (is_full && gen_spec->rem_port == 0))
2062			return -EADDRNOTAVAIL;
2063		switch (gen_spec->ip_proto) {
2064		case IPPROTO_TCP:
2065			spec->type = (is_full ? EFX_FARCH_FILTER_TCP_FULL :
2066				      EFX_FARCH_FILTER_TCP_WILD);
2067			break;
2068		case IPPROTO_UDP:
2069			spec->type = (is_full ? EFX_FARCH_FILTER_UDP_FULL :
2070				      EFX_FARCH_FILTER_UDP_WILD);
2071			break;
2072		default:
2073			return -EPROTONOSUPPORT;
2074		}
2075
2076		/* Filter is constructed in terms of source and destination,
2077		 * with the odd wrinkle that the ports are swapped in a UDP
2078		 * wildcard filter.  We need to convert from local and remote
2079		 * (= zero for wildcard) addresses.
2080		 */
2081		rhost = is_full ? gen_spec->rem_host[0] : 0;
2082		rport = is_full ? gen_spec->rem_port : 0;
2083		host1 = rhost;
2084		host2 = gen_spec->loc_host[0];
2085		if (!is_full && gen_spec->ip_proto == IPPROTO_UDP) {
2086			port1 = gen_spec->loc_port;
2087			port2 = rport;
2088		} else {
2089			port1 = rport;
2090			port2 = gen_spec->loc_port;
2091		}
2092		spec->data[0] = ntohl(host1) << 16 | ntohs(port1);
2093		spec->data[1] = ntohs(port2) << 16 | ntohl(host1) >> 16;
2094		spec->data[2] = ntohl(host2);
2095
2096		break;
2097	}
2098
2099	case EFX_FILTER_MATCH_LOC_MAC | EFX_FILTER_MATCH_OUTER_VID:
2100		is_full = true;
2101		fallthrough;
2102	case EFX_FILTER_MATCH_LOC_MAC:
2103		spec->type = (is_full ? EFX_FARCH_FILTER_MAC_FULL :
2104			      EFX_FARCH_FILTER_MAC_WILD);
2105		spec->data[0] = is_full ? ntohs(gen_spec->outer_vid) : 0;
2106		spec->data[1] = (gen_spec->loc_mac[2] << 24 |
2107				 gen_spec->loc_mac[3] << 16 |
2108				 gen_spec->loc_mac[4] << 8 |
2109				 gen_spec->loc_mac[5]);
2110		spec->data[2] = (gen_spec->loc_mac[0] << 8 |
2111				 gen_spec->loc_mac[1]);
2112		break;
2113
2114	case EFX_FILTER_MATCH_LOC_MAC_IG:
2115		spec->type = (is_multicast_ether_addr(gen_spec->loc_mac) ?
2116			      EFX_FARCH_FILTER_MC_DEF :
2117			      EFX_FARCH_FILTER_UC_DEF);
2118		memset(spec->data, 0, sizeof(spec->data)); /* ensure equality */
2119		break;
2120
2121	default:
2122		return -EPROTONOSUPPORT;
2123	}
2124
2125	return 0;
2126}
2127
2128static void
2129efx_farch_filter_to_gen_spec(struct efx_filter_spec *gen_spec,
2130			     const struct efx_farch_filter_spec *spec)
2131{
2132	bool is_full = false;
2133
2134	/* *gen_spec should be completely initialised, to be consistent
2135	 * with efx_filter_init_{rx,tx}() and in case we want to copy
2136	 * it back to userland.
2137	 */
2138	memset(gen_spec, 0, sizeof(*gen_spec));
2139
2140	gen_spec->priority = spec->priority;
2141	gen_spec->flags = spec->flags;
2142	gen_spec->dmaq_id = spec->dmaq_id;
2143
2144	switch (spec->type) {
2145	case EFX_FARCH_FILTER_TCP_FULL:
2146	case EFX_FARCH_FILTER_UDP_FULL:
2147		is_full = true;
2148		fallthrough;
2149	case EFX_FARCH_FILTER_TCP_WILD:
2150	case EFX_FARCH_FILTER_UDP_WILD: {
2151		__be32 host1, host2;
2152		__be16 port1, port2;
2153
2154		gen_spec->match_flags =
2155			EFX_FILTER_MATCH_ETHER_TYPE |
2156			EFX_FILTER_MATCH_IP_PROTO |
2157			EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT;
2158		if (is_full)
2159			gen_spec->match_flags |= (EFX_FILTER_MATCH_REM_HOST |
2160						  EFX_FILTER_MATCH_REM_PORT);
2161		gen_spec->ether_type = htons(ETH_P_IP);
2162		gen_spec->ip_proto =
2163			(spec->type == EFX_FARCH_FILTER_TCP_FULL ||
2164			 spec->type == EFX_FARCH_FILTER_TCP_WILD) ?
2165			IPPROTO_TCP : IPPROTO_UDP;
2166
2167		host1 = htonl(spec->data[0] >> 16 | spec->data[1] << 16);
2168		port1 = htons(spec->data[0]);
2169		host2 = htonl(spec->data[2]);
2170		port2 = htons(spec->data[1] >> 16);
2171		if (spec->flags & EFX_FILTER_FLAG_TX) {
2172			gen_spec->loc_host[0] = host1;
2173			gen_spec->rem_host[0] = host2;
2174		} else {
2175			gen_spec->loc_host[0] = host2;
2176			gen_spec->rem_host[0] = host1;
2177		}
2178		if (!!(gen_spec->flags & EFX_FILTER_FLAG_TX) ^
2179		    (!is_full && gen_spec->ip_proto == IPPROTO_UDP)) {
2180			gen_spec->loc_port = port1;
2181			gen_spec->rem_port = port2;
2182		} else {
2183			gen_spec->loc_port = port2;
2184			gen_spec->rem_port = port1;
2185		}
2186
2187		break;
2188	}
2189
2190	case EFX_FARCH_FILTER_MAC_FULL:
2191		is_full = true;
2192		fallthrough;
2193	case EFX_FARCH_FILTER_MAC_WILD:
2194		gen_spec->match_flags = EFX_FILTER_MATCH_LOC_MAC;
2195		if (is_full)
2196			gen_spec->match_flags |= EFX_FILTER_MATCH_OUTER_VID;
2197		gen_spec->loc_mac[0] = spec->data[2] >> 8;
2198		gen_spec->loc_mac[1] = spec->data[2];
2199		gen_spec->loc_mac[2] = spec->data[1] >> 24;
2200		gen_spec->loc_mac[3] = spec->data[1] >> 16;
2201		gen_spec->loc_mac[4] = spec->data[1] >> 8;
2202		gen_spec->loc_mac[5] = spec->data[1];
2203		gen_spec->outer_vid = htons(spec->data[0]);
2204		break;
2205
2206	case EFX_FARCH_FILTER_UC_DEF:
2207	case EFX_FARCH_FILTER_MC_DEF:
2208		gen_spec->match_flags = EFX_FILTER_MATCH_LOC_MAC_IG;
2209		gen_spec->loc_mac[0] = spec->type == EFX_FARCH_FILTER_MC_DEF;
2210		break;
2211
2212	default:
2213		WARN_ON(1);
2214		break;
2215	}
2216}
2217
2218static void
2219efx_farch_filter_init_rx_auto(struct efx_nic *efx,
2220			      struct efx_farch_filter_spec *spec)
2221{
2222	/* If there's only one channel then disable RSS for non VF
2223	 * traffic, thereby allowing VFs to use RSS when the PF can't.
2224	 */
2225	spec->priority = EFX_FILTER_PRI_AUTO;
2226	spec->flags = (EFX_FILTER_FLAG_RX |
2227		       (efx_rss_enabled(efx) ? EFX_FILTER_FLAG_RX_RSS : 0) |
2228		       (efx->rx_scatter ? EFX_FILTER_FLAG_RX_SCATTER : 0));
2229	spec->dmaq_id = 0;
2230}
2231
2232/* Build a filter entry and return its n-tuple key. */
2233static u32 efx_farch_filter_build(efx_oword_t *filter,
2234				  struct efx_farch_filter_spec *spec)
2235{
2236	u32 data3;
2237
2238	switch (efx_farch_filter_spec_table_id(spec)) {
2239	case EFX_FARCH_FILTER_TABLE_RX_IP: {
2240		bool is_udp = (spec->type == EFX_FARCH_FILTER_UDP_FULL ||
2241			       spec->type == EFX_FARCH_FILTER_UDP_WILD);
2242		EFX_POPULATE_OWORD_7(
2243			*filter,
2244			FRF_BZ_RSS_EN,
2245			!!(spec->flags & EFX_FILTER_FLAG_RX_RSS),
2246			FRF_BZ_SCATTER_EN,
2247			!!(spec->flags & EFX_FILTER_FLAG_RX_SCATTER),
2248			FRF_BZ_TCP_UDP, is_udp,
2249			FRF_BZ_RXQ_ID, spec->dmaq_id,
2250			EFX_DWORD_2, spec->data[2],
2251			EFX_DWORD_1, spec->data[1],
2252			EFX_DWORD_0, spec->data[0]);
2253		data3 = is_udp;
2254		break;
2255	}
2256
2257	case EFX_FARCH_FILTER_TABLE_RX_MAC: {
2258		bool is_wild = spec->type == EFX_FARCH_FILTER_MAC_WILD;
2259		EFX_POPULATE_OWORD_7(
2260			*filter,
2261			FRF_CZ_RMFT_RSS_EN,
2262			!!(spec->flags & EFX_FILTER_FLAG_RX_RSS),
2263			FRF_CZ_RMFT_SCATTER_EN,
2264			!!(spec->flags & EFX_FILTER_FLAG_RX_SCATTER),
2265			FRF_CZ_RMFT_RXQ_ID, spec->dmaq_id,
2266			FRF_CZ_RMFT_WILDCARD_MATCH, is_wild,
2267			FRF_CZ_RMFT_DEST_MAC_HI, spec->data[2],
2268			FRF_CZ_RMFT_DEST_MAC_LO, spec->data[1],
2269			FRF_CZ_RMFT_VLAN_ID, spec->data[0]);
2270		data3 = is_wild;
2271		break;
2272	}
2273
2274	case EFX_FARCH_FILTER_TABLE_TX_MAC: {
2275		bool is_wild = spec->type == EFX_FARCH_FILTER_MAC_WILD;
2276		EFX_POPULATE_OWORD_5(*filter,
2277				     FRF_CZ_TMFT_TXQ_ID, spec->dmaq_id,
2278				     FRF_CZ_TMFT_WILDCARD_MATCH, is_wild,
2279				     FRF_CZ_TMFT_SRC_MAC_HI, spec->data[2],
2280				     FRF_CZ_TMFT_SRC_MAC_LO, spec->data[1],
2281				     FRF_CZ_TMFT_VLAN_ID, spec->data[0]);
2282		data3 = is_wild | spec->dmaq_id << 1;
2283		break;
2284	}
2285
2286	default:
2287		BUG();
2288	}
2289
2290	return spec->data[0] ^ spec->data[1] ^ spec->data[2] ^ data3;
2291}
2292
2293static bool efx_farch_filter_equal(const struct efx_farch_filter_spec *left,
2294				   const struct efx_farch_filter_spec *right)
2295{
2296	if (left->type != right->type ||
2297	    memcmp(left->data, right->data, sizeof(left->data)))
2298		return false;
2299
2300	if (left->flags & EFX_FILTER_FLAG_TX &&
2301	    left->dmaq_id != right->dmaq_id)
2302		return false;
2303
2304	return true;
2305}
2306
2307/*
2308 * Construct/deconstruct external filter IDs.  At least the RX filter
2309 * IDs must be ordered by matching priority, for RX NFC semantics.
2310 *
2311 * Deconstruction needs to be robust against invalid IDs so that
2312 * efx_filter_remove_id_safe() and efx_filter_get_filter_safe() can
2313 * accept user-provided IDs.
2314 */
2315
2316#define EFX_FARCH_FILTER_MATCH_PRI_COUNT	5
2317
2318static const u8 efx_farch_filter_type_match_pri[EFX_FARCH_FILTER_TYPE_COUNT] = {
2319	[EFX_FARCH_FILTER_TCP_FULL]	= 0,
2320	[EFX_FARCH_FILTER_UDP_FULL]	= 0,
2321	[EFX_FARCH_FILTER_TCP_WILD]	= 1,
2322	[EFX_FARCH_FILTER_UDP_WILD]	= 1,
2323	[EFX_FARCH_FILTER_MAC_FULL]	= 2,
2324	[EFX_FARCH_FILTER_MAC_WILD]	= 3,
2325	[EFX_FARCH_FILTER_UC_DEF]	= 4,
2326	[EFX_FARCH_FILTER_MC_DEF]	= 4,
2327};
2328
2329static const enum efx_farch_filter_table_id efx_farch_filter_range_table[] = {
2330	EFX_FARCH_FILTER_TABLE_RX_IP,	/* RX match pri 0 */
2331	EFX_FARCH_FILTER_TABLE_RX_IP,
2332	EFX_FARCH_FILTER_TABLE_RX_MAC,
2333	EFX_FARCH_FILTER_TABLE_RX_MAC,
2334	EFX_FARCH_FILTER_TABLE_RX_DEF,	/* RX match pri 4 */
2335	EFX_FARCH_FILTER_TABLE_TX_MAC,	/* TX match pri 0 */
2336	EFX_FARCH_FILTER_TABLE_TX_MAC,	/* TX match pri 1 */
2337};
2338
2339#define EFX_FARCH_FILTER_INDEX_WIDTH 13
2340#define EFX_FARCH_FILTER_INDEX_MASK ((1 << EFX_FARCH_FILTER_INDEX_WIDTH) - 1)
2341
2342static inline u32
2343efx_farch_filter_make_id(const struct efx_farch_filter_spec *spec,
2344			 unsigned int index)
2345{
2346	unsigned int range;
2347
2348	range = efx_farch_filter_type_match_pri[spec->type];
2349	if (!(spec->flags & EFX_FILTER_FLAG_RX))
2350		range += EFX_FARCH_FILTER_MATCH_PRI_COUNT;
2351
2352	return range << EFX_FARCH_FILTER_INDEX_WIDTH | index;
2353}
2354
2355static inline enum efx_farch_filter_table_id
2356efx_farch_filter_id_table_id(u32 id)
2357{
2358	unsigned int range = id >> EFX_FARCH_FILTER_INDEX_WIDTH;
2359
2360	if (range < ARRAY_SIZE(efx_farch_filter_range_table))
2361		return efx_farch_filter_range_table[range];
2362	else
2363		return EFX_FARCH_FILTER_TABLE_COUNT; /* invalid */
2364}
2365
2366static inline unsigned int efx_farch_filter_id_index(u32 id)
2367{
2368	return id & EFX_FARCH_FILTER_INDEX_MASK;
2369}
2370
2371u32 efx_farch_filter_get_rx_id_limit(struct efx_nic *efx)
2372{
2373	struct efx_farch_filter_state *state = efx->filter_state;
2374	unsigned int range = EFX_FARCH_FILTER_MATCH_PRI_COUNT - 1;
2375	enum efx_farch_filter_table_id table_id;
2376
2377	do {
2378		table_id = efx_farch_filter_range_table[range];
2379		if (state->table[table_id].size != 0)
2380			return range << EFX_FARCH_FILTER_INDEX_WIDTH |
2381				state->table[table_id].size;
2382	} while (range--);
2383
2384	return 0;
2385}
2386
2387s32 efx_farch_filter_insert(struct efx_nic *efx,
2388			    struct efx_filter_spec *gen_spec,
2389			    bool replace_equal)
2390{
2391	struct efx_farch_filter_state *state = efx->filter_state;
2392	struct efx_farch_filter_table *table;
2393	struct efx_farch_filter_spec spec;
2394	efx_oword_t filter;
2395	int rep_index, ins_index;
2396	unsigned int depth = 0;
2397	int rc;
2398
2399	rc = efx_farch_filter_from_gen_spec(&spec, gen_spec);
2400	if (rc)
2401		return rc;
2402
2403	down_write(&state->lock);
2404
2405	table = &state->table[efx_farch_filter_spec_table_id(&spec)];
2406	if (table->size == 0) {
2407		rc = -EINVAL;
2408		goto out_unlock;
2409	}
2410
2411	netif_vdbg(efx, hw, efx->net_dev,
2412		   "%s: type %d search_limit=%d", __func__, spec.type,
2413		   table->search_limit[spec.type]);
2414
2415	if (table->id == EFX_FARCH_FILTER_TABLE_RX_DEF) {
2416		/* One filter spec per type */
2417		BUILD_BUG_ON(EFX_FARCH_FILTER_INDEX_UC_DEF != 0);
2418		BUILD_BUG_ON(EFX_FARCH_FILTER_INDEX_MC_DEF !=
2419			     EFX_FARCH_FILTER_MC_DEF - EFX_FARCH_FILTER_UC_DEF);
2420		rep_index = spec.type - EFX_FARCH_FILTER_UC_DEF;
2421		ins_index = rep_index;
2422	} else {
2423		/* Search concurrently for
2424		 * (1) a filter to be replaced (rep_index): any filter
2425		 *     with the same match values, up to the current
2426		 *     search depth for this type, and
2427		 * (2) the insertion point (ins_index): (1) or any
2428		 *     free slot before it or up to the maximum search
2429		 *     depth for this priority
2430		 * We fail if we cannot find (2).
2431		 *
2432		 * We can stop once either
2433		 * (a) we find (1), in which case we have definitely
2434		 *     found (2) as well; or
2435		 * (b) we have searched exhaustively for (1), and have
2436		 *     either found (2) or searched exhaustively for it
2437		 */
2438		u32 key = efx_farch_filter_build(&filter, &spec);
2439		unsigned int hash = efx_farch_filter_hash(key);
2440		unsigned int incr = efx_farch_filter_increment(key);
2441		unsigned int max_rep_depth = table->search_limit[spec.type];
2442		unsigned int max_ins_depth =
2443			spec.priority <= EFX_FILTER_PRI_HINT ?
2444			EFX_FARCH_FILTER_CTL_SRCH_HINT_MAX :
2445			EFX_FARCH_FILTER_CTL_SRCH_MAX;
2446		unsigned int i = hash & (table->size - 1);
2447
2448		ins_index = -1;
2449		depth = 1;
2450
2451		for (;;) {
2452			if (!test_bit(i, table->used_bitmap)) {
2453				if (ins_index < 0)
2454					ins_index = i;
2455			} else if (efx_farch_filter_equal(&spec,
2456							  &table->spec[i])) {
2457				/* Case (a) */
2458				if (ins_index < 0)
2459					ins_index = i;
2460				rep_index = i;
2461				break;
2462			}
2463
2464			if (depth >= max_rep_depth &&
2465			    (ins_index >= 0 || depth >= max_ins_depth)) {
2466				/* Case (b) */
2467				if (ins_index < 0) {
2468					rc = -EBUSY;
2469					goto out_unlock;
2470				}
2471				rep_index = -1;
2472				break;
2473			}
2474
2475			i = (i + incr) & (table->size - 1);
2476			++depth;
2477		}
2478	}
2479
2480	/* If we found a filter to be replaced, check whether we
2481	 * should do so
2482	 */
2483	if (rep_index >= 0) {
2484		struct efx_farch_filter_spec *saved_spec =
2485			&table->spec[rep_index];
2486
2487		if (spec.priority == saved_spec->priority && !replace_equal) {
2488			rc = -EEXIST;
2489			goto out_unlock;
2490		}
2491		if (spec.priority < saved_spec->priority) {
2492			rc = -EPERM;
2493			goto out_unlock;
2494		}
2495		if (saved_spec->priority == EFX_FILTER_PRI_AUTO ||
2496		    saved_spec->flags & EFX_FILTER_FLAG_RX_OVER_AUTO)
2497			spec.flags |= EFX_FILTER_FLAG_RX_OVER_AUTO;
2498	}
2499
2500	/* Insert the filter */
2501	if (ins_index != rep_index) {
2502		__set_bit(ins_index, table->used_bitmap);
2503		++table->used;
2504	}
2505	table->spec[ins_index] = spec;
2506
2507	if (table->id == EFX_FARCH_FILTER_TABLE_RX_DEF) {
2508		efx_farch_filter_push_rx_config(efx);
2509	} else {
2510		if (table->search_limit[spec.type] < depth) {
2511			table->search_limit[spec.type] = depth;
2512			if (spec.flags & EFX_FILTER_FLAG_TX)
2513				efx_farch_filter_push_tx_limits(efx);
2514			else
2515				efx_farch_filter_push_rx_config(efx);
2516		}
2517
2518		efx_writeo(efx, &filter,
2519			   table->offset + table->step * ins_index);
2520
2521		/* If we were able to replace a filter by inserting
2522		 * at a lower depth, clear the replaced filter
2523		 */
2524		if (ins_index != rep_index && rep_index >= 0)
2525			efx_farch_filter_table_clear_entry(efx, table,
2526							   rep_index);
2527	}
2528
2529	netif_vdbg(efx, hw, efx->net_dev,
2530		   "%s: filter type %d index %d rxq %u set",
2531		   __func__, spec.type, ins_index, spec.dmaq_id);
2532	rc = efx_farch_filter_make_id(&spec, ins_index);
2533
2534out_unlock:
2535	up_write(&state->lock);
2536	return rc;
2537}
2538
2539static void
2540efx_farch_filter_table_clear_entry(struct efx_nic *efx,
2541				   struct efx_farch_filter_table *table,
2542				   unsigned int filter_idx)
2543{
2544	static efx_oword_t filter;
2545
2546	EFX_WARN_ON_PARANOID(!test_bit(filter_idx, table->used_bitmap));
2547	BUG_ON(table->offset == 0); /* can't clear MAC default filters */
2548
2549	__clear_bit(filter_idx, table->used_bitmap);
2550	--table->used;
2551	memset(&table->spec[filter_idx], 0, sizeof(table->spec[0]));
2552
2553	efx_writeo(efx, &filter, table->offset + table->step * filter_idx);
2554
2555	/* If this filter required a greater search depth than
2556	 * any other, the search limit for its type can now be
2557	 * decreased.  However, it is hard to determine that
2558	 * unless the table has become completely empty - in
2559	 * which case, all its search limits can be set to 0.
2560	 */
2561	if (unlikely(table->used == 0)) {
2562		memset(table->search_limit, 0, sizeof(table->search_limit));
2563		if (table->id == EFX_FARCH_FILTER_TABLE_TX_MAC)
2564			efx_farch_filter_push_tx_limits(efx);
2565		else
2566			efx_farch_filter_push_rx_config(efx);
2567	}
2568}
2569
2570static int efx_farch_filter_remove(struct efx_nic *efx,
2571				   struct efx_farch_filter_table *table,
2572				   unsigned int filter_idx,
2573				   enum efx_filter_priority priority)
2574{
2575	struct efx_farch_filter_spec *spec = &table->spec[filter_idx];
2576
2577	if (!test_bit(filter_idx, table->used_bitmap) ||
2578	    spec->priority != priority)
2579		return -ENOENT;
2580
2581	if (spec->flags & EFX_FILTER_FLAG_RX_OVER_AUTO) {
2582		efx_farch_filter_init_rx_auto(efx, spec);
2583		efx_farch_filter_push_rx_config(efx);
2584	} else {
2585		efx_farch_filter_table_clear_entry(efx, table, filter_idx);
2586	}
2587
2588	return 0;
2589}
2590
2591int efx_farch_filter_remove_safe(struct efx_nic *efx,
2592				 enum efx_filter_priority priority,
2593				 u32 filter_id)
2594{
2595	struct efx_farch_filter_state *state = efx->filter_state;
2596	enum efx_farch_filter_table_id table_id;
2597	struct efx_farch_filter_table *table;
2598	unsigned int filter_idx;
2599	int rc;
2600
2601	table_id = efx_farch_filter_id_table_id(filter_id);
2602	if ((unsigned int)table_id >= EFX_FARCH_FILTER_TABLE_COUNT)
2603		return -ENOENT;
2604	table = &state->table[table_id];
2605
2606	filter_idx = efx_farch_filter_id_index(filter_id);
2607	if (filter_idx >= table->size)
2608		return -ENOENT;
2609	down_write(&state->lock);
2610
2611	rc = efx_farch_filter_remove(efx, table, filter_idx, priority);
2612	up_write(&state->lock);
2613
2614	return rc;
2615}
2616
2617int efx_farch_filter_get_safe(struct efx_nic *efx,
2618			      enum efx_filter_priority priority,
2619			      u32 filter_id, struct efx_filter_spec *spec_buf)
2620{
2621	struct efx_farch_filter_state *state = efx->filter_state;
2622	enum efx_farch_filter_table_id table_id;
2623	struct efx_farch_filter_table *table;
2624	struct efx_farch_filter_spec *spec;
2625	unsigned int filter_idx;
2626	int rc = -ENOENT;
2627
2628	down_read(&state->lock);
2629
2630	table_id = efx_farch_filter_id_table_id(filter_id);
2631	if ((unsigned int)table_id >= EFX_FARCH_FILTER_TABLE_COUNT)
2632		goto out_unlock;
2633	table = &state->table[table_id];
2634
2635	filter_idx = efx_farch_filter_id_index(filter_id);
2636	if (filter_idx >= table->size)
2637		goto out_unlock;
2638	spec = &table->spec[filter_idx];
2639
2640	if (test_bit(filter_idx, table->used_bitmap) &&
2641	    spec->priority == priority) {
2642		efx_farch_filter_to_gen_spec(spec_buf, spec);
2643		rc = 0;
2644	}
2645
2646out_unlock:
2647	up_read(&state->lock);
2648	return rc;
2649}
2650
2651static void
2652efx_farch_filter_table_clear(struct efx_nic *efx,
2653			     enum efx_farch_filter_table_id table_id,
2654			     enum efx_filter_priority priority)
2655{
2656	struct efx_farch_filter_state *state = efx->filter_state;
2657	struct efx_farch_filter_table *table = &state->table[table_id];
2658	unsigned int filter_idx;
2659
2660	down_write(&state->lock);
2661	for (filter_idx = 0; filter_idx < table->size; ++filter_idx) {
2662		if (table->spec[filter_idx].priority != EFX_FILTER_PRI_AUTO)
2663			efx_farch_filter_remove(efx, table,
2664						filter_idx, priority);
2665	}
2666	up_write(&state->lock);
2667}
2668
2669int efx_farch_filter_clear_rx(struct efx_nic *efx,
2670			       enum efx_filter_priority priority)
2671{
2672	efx_farch_filter_table_clear(efx, EFX_FARCH_FILTER_TABLE_RX_IP,
2673				     priority);
2674	efx_farch_filter_table_clear(efx, EFX_FARCH_FILTER_TABLE_RX_MAC,
2675				     priority);
2676	efx_farch_filter_table_clear(efx, EFX_FARCH_FILTER_TABLE_RX_DEF,
2677				     priority);
2678	return 0;
2679}
2680
2681u32 efx_farch_filter_count_rx_used(struct efx_nic *efx,
2682				   enum efx_filter_priority priority)
2683{
2684	struct efx_farch_filter_state *state = efx->filter_state;
2685	enum efx_farch_filter_table_id table_id;
2686	struct efx_farch_filter_table *table;
2687	unsigned int filter_idx;
2688	u32 count = 0;
2689
2690	down_read(&state->lock);
2691
2692	for (table_id = EFX_FARCH_FILTER_TABLE_RX_IP;
2693	     table_id <= EFX_FARCH_FILTER_TABLE_RX_DEF;
2694	     table_id++) {
2695		table = &state->table[table_id];
2696		for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2697			if (test_bit(filter_idx, table->used_bitmap) &&
2698			    table->spec[filter_idx].priority == priority)
2699				++count;
2700		}
2701	}
2702
2703	up_read(&state->lock);
2704
2705	return count;
2706}
2707
2708s32 efx_farch_filter_get_rx_ids(struct efx_nic *efx,
2709				enum efx_filter_priority priority,
2710				u32 *buf, u32 size)
2711{
2712	struct efx_farch_filter_state *state = efx->filter_state;
2713	enum efx_farch_filter_table_id table_id;
2714	struct efx_farch_filter_table *table;
2715	unsigned int filter_idx;
2716	s32 count = 0;
2717
2718	down_read(&state->lock);
2719
2720	for (table_id = EFX_FARCH_FILTER_TABLE_RX_IP;
2721	     table_id <= EFX_FARCH_FILTER_TABLE_RX_DEF;
2722	     table_id++) {
2723		table = &state->table[table_id];
2724		for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2725			if (test_bit(filter_idx, table->used_bitmap) &&
2726			    table->spec[filter_idx].priority == priority) {
2727				if (count == size) {
2728					count = -EMSGSIZE;
2729					goto out;
2730				}
2731				buf[count++] = efx_farch_filter_make_id(
2732					&table->spec[filter_idx], filter_idx);
2733			}
2734		}
2735	}
2736out:
2737	up_read(&state->lock);
2738
2739	return count;
2740}
2741
2742/* Restore filter stater after reset */
2743void efx_farch_filter_table_restore(struct efx_nic *efx)
2744{
2745	struct efx_farch_filter_state *state = efx->filter_state;
2746	enum efx_farch_filter_table_id table_id;
2747	struct efx_farch_filter_table *table;
2748	efx_oword_t filter;
2749	unsigned int filter_idx;
2750
2751	down_write(&state->lock);
2752
2753	for (table_id = 0; table_id < EFX_FARCH_FILTER_TABLE_COUNT; table_id++) {
2754		table = &state->table[table_id];
2755
2756		/* Check whether this is a regular register table */
2757		if (table->step == 0)
2758			continue;
2759
2760		for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2761			if (!test_bit(filter_idx, table->used_bitmap))
2762				continue;
2763			efx_farch_filter_build(&filter, &table->spec[filter_idx]);
2764			efx_writeo(efx, &filter,
2765				   table->offset + table->step * filter_idx);
2766		}
2767	}
2768
2769	efx_farch_filter_push_rx_config(efx);
2770	efx_farch_filter_push_tx_limits(efx);
2771
2772	up_write(&state->lock);
2773}
2774
2775void efx_farch_filter_table_remove(struct efx_nic *efx)
2776{
2777	struct efx_farch_filter_state *state = efx->filter_state;
2778	enum efx_farch_filter_table_id table_id;
2779
2780	for (table_id = 0; table_id < EFX_FARCH_FILTER_TABLE_COUNT; table_id++) {
2781		bitmap_free(state->table[table_id].used_bitmap);
2782		vfree(state->table[table_id].spec);
2783	}
2784	kfree(state);
2785}
2786
2787int efx_farch_filter_table_probe(struct efx_nic *efx)
2788{
2789	struct efx_farch_filter_state *state;
2790	struct efx_farch_filter_table *table;
2791	unsigned table_id;
2792
2793	state = kzalloc(sizeof(struct efx_farch_filter_state), GFP_KERNEL);
2794	if (!state)
2795		return -ENOMEM;
2796	efx->filter_state = state;
2797	init_rwsem(&state->lock);
2798
2799	table = &state->table[EFX_FARCH_FILTER_TABLE_RX_IP];
2800	table->id = EFX_FARCH_FILTER_TABLE_RX_IP;
2801	table->offset = FR_BZ_RX_FILTER_TBL0;
2802	table->size = FR_BZ_RX_FILTER_TBL0_ROWS;
2803	table->step = FR_BZ_RX_FILTER_TBL0_STEP;
2804
2805	table = &state->table[EFX_FARCH_FILTER_TABLE_RX_MAC];
2806	table->id = EFX_FARCH_FILTER_TABLE_RX_MAC;
2807	table->offset = FR_CZ_RX_MAC_FILTER_TBL0;
2808	table->size = FR_CZ_RX_MAC_FILTER_TBL0_ROWS;
2809	table->step = FR_CZ_RX_MAC_FILTER_TBL0_STEP;
2810
2811	table = &state->table[EFX_FARCH_FILTER_TABLE_RX_DEF];
2812	table->id = EFX_FARCH_FILTER_TABLE_RX_DEF;
2813	table->size = EFX_FARCH_FILTER_SIZE_RX_DEF;
2814
2815	table = &state->table[EFX_FARCH_FILTER_TABLE_TX_MAC];
2816	table->id = EFX_FARCH_FILTER_TABLE_TX_MAC;
2817	table->offset = FR_CZ_TX_MAC_FILTER_TBL0;
2818	table->size = FR_CZ_TX_MAC_FILTER_TBL0_ROWS;
2819	table->step = FR_CZ_TX_MAC_FILTER_TBL0_STEP;
2820
2821	for (table_id = 0; table_id < EFX_FARCH_FILTER_TABLE_COUNT; table_id++) {
2822		table = &state->table[table_id];
2823		if (table->size == 0)
2824			continue;
2825		table->used_bitmap = bitmap_zalloc(table->size, GFP_KERNEL);
2826		if (!table->used_bitmap)
2827			goto fail;
2828		table->spec = vzalloc(array_size(sizeof(*table->spec),
2829						 table->size));
2830		if (!table->spec)
2831			goto fail;
2832	}
2833
2834	table = &state->table[EFX_FARCH_FILTER_TABLE_RX_DEF];
2835	if (table->size) {
2836		/* RX default filters must always exist */
2837		struct efx_farch_filter_spec *spec;
2838		unsigned i;
2839
2840		for (i = 0; i < EFX_FARCH_FILTER_SIZE_RX_DEF; i++) {
2841			spec = &table->spec[i];
2842			spec->type = EFX_FARCH_FILTER_UC_DEF + i;
2843			efx_farch_filter_init_rx_auto(efx, spec);
2844			__set_bit(i, table->used_bitmap);
2845		}
2846	}
2847
2848	efx_farch_filter_push_rx_config(efx);
2849
2850	return 0;
2851
2852fail:
2853	efx_farch_filter_table_remove(efx);
2854	return -ENOMEM;
2855}
2856
2857/* Update scatter enable flags for filters pointing to our own RX queues */
2858void efx_farch_filter_update_rx_scatter(struct efx_nic *efx)
2859{
2860	struct efx_farch_filter_state *state = efx->filter_state;
2861	enum efx_farch_filter_table_id table_id;
2862	struct efx_farch_filter_table *table;
2863	efx_oword_t filter;
2864	unsigned int filter_idx;
2865
2866	down_write(&state->lock);
2867
2868	for (table_id = EFX_FARCH_FILTER_TABLE_RX_IP;
2869	     table_id <= EFX_FARCH_FILTER_TABLE_RX_DEF;
2870	     table_id++) {
2871		table = &state->table[table_id];
2872
2873		for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2874			if (!test_bit(filter_idx, table->used_bitmap) ||
2875			    table->spec[filter_idx].dmaq_id >=
2876			    efx->n_rx_channels)
2877				continue;
2878
2879			if (efx->rx_scatter)
2880				table->spec[filter_idx].flags |=
2881					EFX_FILTER_FLAG_RX_SCATTER;
2882			else
2883				table->spec[filter_idx].flags &=
2884					~EFX_FILTER_FLAG_RX_SCATTER;
2885
2886			if (table_id == EFX_FARCH_FILTER_TABLE_RX_DEF)
2887				/* Pushed by efx_farch_filter_push_rx_config() */
2888				continue;
2889
2890			efx_farch_filter_build(&filter, &table->spec[filter_idx]);
2891			efx_writeo(efx, &filter,
2892				   table->offset + table->step * filter_idx);
2893		}
2894	}
2895
2896	efx_farch_filter_push_rx_config(efx);
2897
2898	up_write(&state->lock);
2899}
2900
2901#ifdef CONFIG_RFS_ACCEL
2902
2903bool efx_farch_filter_rfs_expire_one(struct efx_nic *efx, u32 flow_id,
2904				     unsigned int index)
2905{
2906	struct efx_farch_filter_state *state = efx->filter_state;
2907	struct efx_farch_filter_table *table;
2908	bool ret = false, force = false;
2909	u16 arfs_id;
2910
2911	down_write(&state->lock);
2912	spin_lock_bh(&efx->rps_hash_lock);
2913	table = &state->table[EFX_FARCH_FILTER_TABLE_RX_IP];
2914	if (test_bit(index, table->used_bitmap) &&
2915	    table->spec[index].priority == EFX_FILTER_PRI_HINT) {
2916		struct efx_arfs_rule *rule = NULL;
2917		struct efx_filter_spec spec;
2918
2919		efx_farch_filter_to_gen_spec(&spec, &table->spec[index]);
2920		if (!efx->rps_hash_table) {
2921			/* In the absence of the table, we always returned 0 to
2922			 * ARFS, so use the same to query it.
2923			 */
2924			arfs_id = 0;
2925		} else {
2926			rule = efx_siena_rps_hash_find(efx, &spec);
2927			if (!rule) {
2928				/* ARFS table doesn't know of this filter, remove it */
2929				force = true;
2930			} else {
2931				arfs_id = rule->arfs_id;
2932				if (!efx_siena_rps_check_rule(rule, index,
2933							      &force))
2934					goto out_unlock;
2935			}
2936		}
2937		if (force || rps_may_expire_flow(efx->net_dev, spec.dmaq_id,
2938						 flow_id, arfs_id)) {
2939			if (rule)
2940				rule->filter_id = EFX_ARFS_FILTER_ID_REMOVING;
2941			efx_siena_rps_hash_del(efx, &spec);
2942			efx_farch_filter_table_clear_entry(efx, table, index);
2943			ret = true;
2944		}
2945	}
2946out_unlock:
2947	spin_unlock_bh(&efx->rps_hash_lock);
2948	up_write(&state->lock);
2949	return ret;
2950}
2951
2952#endif /* CONFIG_RFS_ACCEL */
2953
2954void efx_farch_filter_sync_rx_mode(struct efx_nic *efx)
2955{
2956	struct net_device *net_dev = efx->net_dev;
2957	struct netdev_hw_addr *ha;
2958	union efx_multicast_hash *mc_hash = &efx->multicast_hash;
2959	u32 crc;
2960	int bit;
2961
2962	if (!efx_dev_registered(efx))
2963		return;
2964
2965	netif_addr_lock_bh(net_dev);
2966
2967	efx->unicast_filter = !(net_dev->flags & IFF_PROMISC);
2968
2969	/* Build multicast hash table */
2970	if (net_dev->flags & (IFF_PROMISC | IFF_ALLMULTI)) {
2971		memset(mc_hash, 0xff, sizeof(*mc_hash));
2972	} else {
2973		memset(mc_hash, 0x00, sizeof(*mc_hash));
2974		netdev_for_each_mc_addr(ha, net_dev) {
2975			crc = ether_crc_le(ETH_ALEN, ha->addr);
2976			bit = crc & (EFX_MCAST_HASH_ENTRIES - 1);
2977			__set_bit_le(bit, mc_hash);
2978		}
2979
2980		/* Broadcast packets go through the multicast hash filter.
2981		 * ether_crc_le() of the broadcast address is 0xbe2612ff
2982		 * so we always add bit 0xff to the mask.
2983		 */
2984		__set_bit_le(0xff, mc_hash);
2985	}
2986
2987	netif_addr_unlock_bh(net_dev);
2988}
2989