1// SPDX-License-Identifier: GPL-2.0-only
2/****************************************************************************
3 * Driver for Solarflare network controllers and boards
4 * Copyright 2018 Solarflare Communications Inc.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11#include "net_driver.h"
12#include <linux/filter.h>
13#include <linux/module.h>
14#include <linux/netdevice.h>
15#include <net/gre.h>
16#include "efx_common.h"
17#include "efx_channels.h"
18#include "efx.h"
19#include "mcdi.h"
20#include "selftest.h"
21#include "rx_common.h"
22#include "tx_common.h"
23#include "nic.h"
24#include "mcdi_port_common.h"
25#include "io.h"
26#include "mcdi_pcol.h"
27
28static unsigned int debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
29			     NETIF_MSG_LINK | NETIF_MSG_IFDOWN |
30			     NETIF_MSG_IFUP | NETIF_MSG_RX_ERR |
31			     NETIF_MSG_TX_ERR | NETIF_MSG_HW);
32module_param(debug, uint, 0);
33MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value");
34
35/* This is the time (in jiffies) between invocations of the hardware
36 * monitor.
37 * On Falcon-based NICs, this will:
38 * - Check the on-board hardware monitor;
39 * - Poll the link state and reconfigure the hardware as necessary.
40 * On Siena-based NICs for power systems with EEH support, this will give EEH a
41 * chance to start.
42 */
43static unsigned int efx_monitor_interval = 1 * HZ;
44
45/* How often and how many times to poll for a reset while waiting for a
46 * BIST that another function started to complete.
47 */
48#define BIST_WAIT_DELAY_MS	100
49#define BIST_WAIT_DELAY_COUNT	100
50
51/* Default stats update time */
52#define STATS_PERIOD_MS_DEFAULT 1000
53
54static const unsigned int efx_reset_type_max = RESET_TYPE_MAX;
55static const char *const efx_reset_type_names[] = {
56	[RESET_TYPE_INVISIBLE]          = "INVISIBLE",
57	[RESET_TYPE_ALL]                = "ALL",
58	[RESET_TYPE_RECOVER_OR_ALL]     = "RECOVER_OR_ALL",
59	[RESET_TYPE_WORLD]              = "WORLD",
60	[RESET_TYPE_RECOVER_OR_DISABLE] = "RECOVER_OR_DISABLE",
61	[RESET_TYPE_DATAPATH]           = "DATAPATH",
62	[RESET_TYPE_MC_BIST]		= "MC_BIST",
63	[RESET_TYPE_DISABLE]            = "DISABLE",
64	[RESET_TYPE_TX_WATCHDOG]        = "TX_WATCHDOG",
65	[RESET_TYPE_INT_ERROR]          = "INT_ERROR",
66	[RESET_TYPE_DMA_ERROR]          = "DMA_ERROR",
67	[RESET_TYPE_TX_SKIP]            = "TX_SKIP",
68	[RESET_TYPE_MC_FAILURE]         = "MC_FAILURE",
69	[RESET_TYPE_MCDI_TIMEOUT]	= "MCDI_TIMEOUT (FLR)",
70};
71
72#define RESET_TYPE(type) \
73	STRING_TABLE_LOOKUP(type, efx_reset_type)
74
75/* Loopback mode names (see LOOPBACK_MODE()) */
76const unsigned int efx_siena_loopback_mode_max = LOOPBACK_MAX;
77const char *const efx_siena_loopback_mode_names[] = {
78	[LOOPBACK_NONE]		= "NONE",
79	[LOOPBACK_DATA]		= "DATAPATH",
80	[LOOPBACK_GMAC]		= "GMAC",
81	[LOOPBACK_XGMII]	= "XGMII",
82	[LOOPBACK_XGXS]		= "XGXS",
83	[LOOPBACK_XAUI]		= "XAUI",
84	[LOOPBACK_GMII]		= "GMII",
85	[LOOPBACK_SGMII]	= "SGMII",
86	[LOOPBACK_XGBR]		= "XGBR",
87	[LOOPBACK_XFI]		= "XFI",
88	[LOOPBACK_XAUI_FAR]	= "XAUI_FAR",
89	[LOOPBACK_GMII_FAR]	= "GMII_FAR",
90	[LOOPBACK_SGMII_FAR]	= "SGMII_FAR",
91	[LOOPBACK_XFI_FAR]	= "XFI_FAR",
92	[LOOPBACK_GPHY]		= "GPHY",
93	[LOOPBACK_PHYXS]	= "PHYXS",
94	[LOOPBACK_PCS]		= "PCS",
95	[LOOPBACK_PMAPMD]	= "PMA/PMD",
96	[LOOPBACK_XPORT]	= "XPORT",
97	[LOOPBACK_XGMII_WS]	= "XGMII_WS",
98	[LOOPBACK_XAUI_WS]	= "XAUI_WS",
99	[LOOPBACK_XAUI_WS_FAR]  = "XAUI_WS_FAR",
100	[LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR",
101	[LOOPBACK_GMII_WS]	= "GMII_WS",
102	[LOOPBACK_XFI_WS]	= "XFI_WS",
103	[LOOPBACK_XFI_WS_FAR]	= "XFI_WS_FAR",
104	[LOOPBACK_PHYXS_WS]	= "PHYXS_WS",
105};
106
107/* Reset workqueue. If any NIC has a hardware failure then a reset will be
108 * queued onto this work queue. This is not a per-nic work queue, because
109 * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
110 */
111static struct workqueue_struct *reset_workqueue;
112
113int efx_siena_create_reset_workqueue(void)
114{
115	reset_workqueue = create_singlethread_workqueue("sfc_siena_reset");
116	if (!reset_workqueue) {
117		printk(KERN_ERR "Failed to create reset workqueue\n");
118		return -ENOMEM;
119	}
120
121	return 0;
122}
123
124void efx_siena_queue_reset_work(struct efx_nic *efx)
125{
126	queue_work(reset_workqueue, &efx->reset_work);
127}
128
129void efx_siena_flush_reset_workqueue(struct efx_nic *efx)
130{
131	cancel_work_sync(&efx->reset_work);
132}
133
134void efx_siena_destroy_reset_workqueue(void)
135{
136	if (reset_workqueue) {
137		destroy_workqueue(reset_workqueue);
138		reset_workqueue = NULL;
139	}
140}
141
142/* We assume that efx->type->reconfigure_mac will always try to sync RX
143 * filters and therefore needs to read-lock the filter table against freeing
144 */
145void efx_siena_mac_reconfigure(struct efx_nic *efx, bool mtu_only)
146{
147	if (efx->type->reconfigure_mac) {
148		down_read(&efx->filter_sem);
149		efx->type->reconfigure_mac(efx, mtu_only);
150		up_read(&efx->filter_sem);
151	}
152}
153
154/* Asynchronous work item for changing MAC promiscuity and multicast
155 * hash.  Avoid a drain/rx_ingress enable by reconfiguring the current
156 * MAC directly.
157 */
158static void efx_mac_work(struct work_struct *data)
159{
160	struct efx_nic *efx = container_of(data, struct efx_nic, mac_work);
161
162	mutex_lock(&efx->mac_lock);
163	if (efx->port_enabled)
164		efx_siena_mac_reconfigure(efx, false);
165	mutex_unlock(&efx->mac_lock);
166}
167
168int efx_siena_set_mac_address(struct net_device *net_dev, void *data)
169{
170	struct efx_nic *efx = netdev_priv(net_dev);
171	struct sockaddr *addr = data;
172	u8 *new_addr = addr->sa_data;
173	u8 old_addr[6];
174	int rc;
175
176	if (!is_valid_ether_addr(new_addr)) {
177		netif_err(efx, drv, efx->net_dev,
178			  "invalid ethernet MAC address requested: %pM\n",
179			  new_addr);
180		return -EADDRNOTAVAIL;
181	}
182
183	/* save old address */
184	ether_addr_copy(old_addr, net_dev->dev_addr);
185	eth_hw_addr_set(net_dev, new_addr);
186	if (efx->type->set_mac_address) {
187		rc = efx->type->set_mac_address(efx);
188		if (rc) {
189			eth_hw_addr_set(net_dev, old_addr);
190			return rc;
191		}
192	}
193
194	/* Reconfigure the MAC */
195	mutex_lock(&efx->mac_lock);
196	efx_siena_mac_reconfigure(efx, false);
197	mutex_unlock(&efx->mac_lock);
198
199	return 0;
200}
201
202/* Context: netif_addr_lock held, BHs disabled. */
203void efx_siena_set_rx_mode(struct net_device *net_dev)
204{
205	struct efx_nic *efx = netdev_priv(net_dev);
206
207	if (efx->port_enabled)
208		queue_work(efx->workqueue, &efx->mac_work);
209	/* Otherwise efx_start_port() will do this */
210}
211
212int efx_siena_set_features(struct net_device *net_dev, netdev_features_t data)
213{
214	struct efx_nic *efx = netdev_priv(net_dev);
215	int rc;
216
217	/* If disabling RX n-tuple filtering, clear existing filters */
218	if (net_dev->features & ~data & NETIF_F_NTUPLE) {
219		rc = efx->type->filter_clear_rx(efx, EFX_FILTER_PRI_MANUAL);
220		if (rc)
221			return rc;
222	}
223
224	/* If Rx VLAN filter is changed, update filters via mac_reconfigure.
225	 * If rx-fcs is changed, mac_reconfigure updates that too.
226	 */
227	if ((net_dev->features ^ data) & (NETIF_F_HW_VLAN_CTAG_FILTER |
228					  NETIF_F_RXFCS)) {
229		/* efx_siena_set_rx_mode() will schedule MAC work to update filters
230		 * when a new features are finally set in net_dev.
231		 */
232		efx_siena_set_rx_mode(net_dev);
233	}
234
235	return 0;
236}
237
238/* This ensures that the kernel is kept informed (via
239 * netif_carrier_on/off) of the link status, and also maintains the
240 * link status's stop on the port's TX queue.
241 */
242void efx_siena_link_status_changed(struct efx_nic *efx)
243{
244	struct efx_link_state *link_state = &efx->link_state;
245
246	/* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
247	 * that no events are triggered between unregister_netdev() and the
248	 * driver unloading. A more general condition is that NETDEV_CHANGE
249	 * can only be generated between NETDEV_UP and NETDEV_DOWN
250	 */
251	if (!netif_running(efx->net_dev))
252		return;
253
254	if (link_state->up != netif_carrier_ok(efx->net_dev)) {
255		efx->n_link_state_changes++;
256
257		if (link_state->up)
258			netif_carrier_on(efx->net_dev);
259		else
260			netif_carrier_off(efx->net_dev);
261	}
262
263	/* Status message for kernel log */
264	if (link_state->up)
265		netif_info(efx, link, efx->net_dev,
266			   "link up at %uMbps %s-duplex (MTU %d)\n",
267			   link_state->speed, link_state->fd ? "full" : "half",
268			   efx->net_dev->mtu);
269	else
270		netif_info(efx, link, efx->net_dev, "link down\n");
271}
272
273unsigned int efx_siena_xdp_max_mtu(struct efx_nic *efx)
274{
275	/* The maximum MTU that we can fit in a single page, allowing for
276	 * framing, overhead and XDP headroom + tailroom.
277	 */
278	int overhead = EFX_MAX_FRAME_LEN(0) + sizeof(struct efx_rx_page_state) +
279		       efx->rx_prefix_size + efx->type->rx_buffer_padding +
280		       efx->rx_ip_align + EFX_XDP_HEADROOM + EFX_XDP_TAILROOM;
281
282	return PAGE_SIZE - overhead;
283}
284
285/* Context: process, rtnl_lock() held. */
286int efx_siena_change_mtu(struct net_device *net_dev, int new_mtu)
287{
288	struct efx_nic *efx = netdev_priv(net_dev);
289	int rc;
290
291	rc = efx_check_disabled(efx);
292	if (rc)
293		return rc;
294
295	if (rtnl_dereference(efx->xdp_prog) &&
296	    new_mtu > efx_siena_xdp_max_mtu(efx)) {
297		netif_err(efx, drv, efx->net_dev,
298			  "Requested MTU of %d too big for XDP (max: %d)\n",
299			  new_mtu, efx_siena_xdp_max_mtu(efx));
300		return -EINVAL;
301	}
302
303	netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu);
304
305	efx_device_detach_sync(efx);
306	efx_siena_stop_all(efx);
307
308	mutex_lock(&efx->mac_lock);
309	net_dev->mtu = new_mtu;
310	efx_siena_mac_reconfigure(efx, true);
311	mutex_unlock(&efx->mac_lock);
312
313	efx_siena_start_all(efx);
314	efx_device_attach_if_not_resetting(efx);
315	return 0;
316}
317
318/**************************************************************************
319 *
320 * Hardware monitor
321 *
322 **************************************************************************/
323
324/* Run periodically off the general workqueue */
325static void efx_monitor(struct work_struct *data)
326{
327	struct efx_nic *efx = container_of(data, struct efx_nic,
328					   monitor_work.work);
329
330	netif_vdbg(efx, timer, efx->net_dev,
331		   "hardware monitor executing on CPU %d\n",
332		   raw_smp_processor_id());
333	BUG_ON(efx->type->monitor == NULL);
334
335	/* If the mac_lock is already held then it is likely a port
336	 * reconfiguration is already in place, which will likely do
337	 * most of the work of monitor() anyway.
338	 */
339	if (mutex_trylock(&efx->mac_lock)) {
340		if (efx->port_enabled && efx->type->monitor)
341			efx->type->monitor(efx);
342		mutex_unlock(&efx->mac_lock);
343	}
344
345	efx_siena_start_monitor(efx);
346}
347
348void efx_siena_start_monitor(struct efx_nic *efx)
349{
350	if (efx->type->monitor)
351		queue_delayed_work(efx->workqueue, &efx->monitor_work,
352				   efx_monitor_interval);
353}
354
355/**************************************************************************
356 *
357 * Event queue processing
358 *
359 *************************************************************************/
360
361/* Channels are shutdown and reinitialised whilst the NIC is running
362 * to propagate configuration changes (mtu, checksum offload), or
363 * to clear hardware error conditions
364 */
365static void efx_start_datapath(struct efx_nic *efx)
366{
367	netdev_features_t old_features = efx->net_dev->features;
368	bool old_rx_scatter = efx->rx_scatter;
369	size_t rx_buf_len;
370
371	/* Calculate the rx buffer allocation parameters required to
372	 * support the current MTU, including padding for header
373	 * alignment and overruns.
374	 */
375	efx->rx_dma_len = (efx->rx_prefix_size +
376			   EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
377			   efx->type->rx_buffer_padding);
378	rx_buf_len = (sizeof(struct efx_rx_page_state)   + EFX_XDP_HEADROOM +
379		      efx->rx_ip_align + efx->rx_dma_len + EFX_XDP_TAILROOM);
380
381	if (rx_buf_len <= PAGE_SIZE) {
382		efx->rx_scatter = efx->type->always_rx_scatter;
383		efx->rx_buffer_order = 0;
384	} else if (efx->type->can_rx_scatter) {
385		BUILD_BUG_ON(EFX_RX_USR_BUF_SIZE % L1_CACHE_BYTES);
386		BUILD_BUG_ON(sizeof(struct efx_rx_page_state) +
387			     2 * ALIGN(NET_IP_ALIGN + EFX_RX_USR_BUF_SIZE,
388				       EFX_RX_BUF_ALIGNMENT) >
389			     PAGE_SIZE);
390		efx->rx_scatter = true;
391		efx->rx_dma_len = EFX_RX_USR_BUF_SIZE;
392		efx->rx_buffer_order = 0;
393	} else {
394		efx->rx_scatter = false;
395		efx->rx_buffer_order = get_order(rx_buf_len);
396	}
397
398	efx_siena_rx_config_page_split(efx);
399	if (efx->rx_buffer_order)
400		netif_dbg(efx, drv, efx->net_dev,
401			  "RX buf len=%u; page order=%u batch=%u\n",
402			  efx->rx_dma_len, efx->rx_buffer_order,
403			  efx->rx_pages_per_batch);
404	else
405		netif_dbg(efx, drv, efx->net_dev,
406			  "RX buf len=%u step=%u bpp=%u; page batch=%u\n",
407			  efx->rx_dma_len, efx->rx_page_buf_step,
408			  efx->rx_bufs_per_page, efx->rx_pages_per_batch);
409
410	/* Restore previously fixed features in hw_features and remove
411	 * features which are fixed now
412	 */
413	efx->net_dev->hw_features |= efx->net_dev->features;
414	efx->net_dev->hw_features &= ~efx->fixed_features;
415	efx->net_dev->features |= efx->fixed_features;
416	if (efx->net_dev->features != old_features)
417		netdev_features_change(efx->net_dev);
418
419	/* RX filters may also have scatter-enabled flags */
420	if ((efx->rx_scatter != old_rx_scatter) &&
421	    efx->type->filter_update_rx_scatter)
422		efx->type->filter_update_rx_scatter(efx);
423
424	/* We must keep at least one descriptor in a TX ring empty.
425	 * We could avoid this when the queue size does not exactly
426	 * match the hardware ring size, but it's not that important.
427	 * Therefore we stop the queue when one more skb might fill
428	 * the ring completely.  We wake it when half way back to
429	 * empty.
430	 */
431	efx->txq_stop_thresh = efx->txq_entries - efx_siena_tx_max_skb_descs(efx);
432	efx->txq_wake_thresh = efx->txq_stop_thresh / 2;
433
434	/* Initialise the channels */
435	efx_siena_start_channels(efx);
436
437	efx_siena_ptp_start_datapath(efx);
438
439	if (netif_device_present(efx->net_dev))
440		netif_tx_wake_all_queues(efx->net_dev);
441}
442
443static void efx_stop_datapath(struct efx_nic *efx)
444{
445	EFX_ASSERT_RESET_SERIALISED(efx);
446	BUG_ON(efx->port_enabled);
447
448	efx_siena_ptp_stop_datapath(efx);
449
450	efx_siena_stop_channels(efx);
451}
452
453/**************************************************************************
454 *
455 * Port handling
456 *
457 **************************************************************************/
458
459/* Equivalent to efx_siena_link_set_advertising with all-zeroes, except does not
460 * force the Autoneg bit on.
461 */
462void efx_siena_link_clear_advertising(struct efx_nic *efx)
463{
464	bitmap_zero(efx->link_advertising, __ETHTOOL_LINK_MODE_MASK_NBITS);
465	efx->wanted_fc &= ~(EFX_FC_TX | EFX_FC_RX);
466}
467
468void efx_siena_link_set_wanted_fc(struct efx_nic *efx, u8 wanted_fc)
469{
470	efx->wanted_fc = wanted_fc;
471	if (efx->link_advertising[0]) {
472		if (wanted_fc & EFX_FC_RX)
473			efx->link_advertising[0] |= (ADVERTISED_Pause |
474						     ADVERTISED_Asym_Pause);
475		else
476			efx->link_advertising[0] &= ~(ADVERTISED_Pause |
477						      ADVERTISED_Asym_Pause);
478		if (wanted_fc & EFX_FC_TX)
479			efx->link_advertising[0] ^= ADVERTISED_Asym_Pause;
480	}
481}
482
483static void efx_start_port(struct efx_nic *efx)
484{
485	netif_dbg(efx, ifup, efx->net_dev, "start port\n");
486	BUG_ON(efx->port_enabled);
487
488	mutex_lock(&efx->mac_lock);
489	efx->port_enabled = true;
490
491	/* Ensure MAC ingress/egress is enabled */
492	efx_siena_mac_reconfigure(efx, false);
493
494	mutex_unlock(&efx->mac_lock);
495}
496
497/* Cancel work for MAC reconfiguration, periodic hardware monitoring
498 * and the async self-test, wait for them to finish and prevent them
499 * being scheduled again.  This doesn't cover online resets, which
500 * should only be cancelled when removing the device.
501 */
502static void efx_stop_port(struct efx_nic *efx)
503{
504	netif_dbg(efx, ifdown, efx->net_dev, "stop port\n");
505
506	EFX_ASSERT_RESET_SERIALISED(efx);
507
508	mutex_lock(&efx->mac_lock);
509	efx->port_enabled = false;
510	mutex_unlock(&efx->mac_lock);
511
512	/* Serialise against efx_set_multicast_list() */
513	netif_addr_lock_bh(efx->net_dev);
514	netif_addr_unlock_bh(efx->net_dev);
515
516	cancel_delayed_work_sync(&efx->monitor_work);
517	efx_siena_selftest_async_cancel(efx);
518	cancel_work_sync(&efx->mac_work);
519}
520
521/* If the interface is supposed to be running but is not, start
522 * the hardware and software data path, regular activity for the port
523 * (MAC statistics, link polling, etc.) and schedule the port to be
524 * reconfigured.  Interrupts must already be enabled.  This function
525 * is safe to call multiple times, so long as the NIC is not disabled.
526 * Requires the RTNL lock.
527 */
528void efx_siena_start_all(struct efx_nic *efx)
529{
530	EFX_ASSERT_RESET_SERIALISED(efx);
531	BUG_ON(efx->state == STATE_DISABLED);
532
533	/* Check that it is appropriate to restart the interface. All
534	 * of these flags are safe to read under just the rtnl lock
535	 */
536	if (efx->port_enabled || !netif_running(efx->net_dev) ||
537	    efx->reset_pending)
538		return;
539
540	efx_start_port(efx);
541	efx_start_datapath(efx);
542
543	/* Start the hardware monitor if there is one */
544	efx_siena_start_monitor(efx);
545
546	/* Link state detection is normally event-driven; we have
547	 * to poll now because we could have missed a change
548	 */
549	mutex_lock(&efx->mac_lock);
550	if (efx_siena_mcdi_phy_poll(efx))
551		efx_siena_link_status_changed(efx);
552	mutex_unlock(&efx->mac_lock);
553
554	if (efx->type->start_stats) {
555		efx->type->start_stats(efx);
556		efx->type->pull_stats(efx);
557		spin_lock_bh(&efx->stats_lock);
558		efx->type->update_stats(efx, NULL, NULL);
559		spin_unlock_bh(&efx->stats_lock);
560	}
561}
562
563/* Quiesce the hardware and software data path, and regular activity
564 * for the port without bringing the link down.  Safe to call multiple
565 * times with the NIC in almost any state, but interrupts should be
566 * enabled.  Requires the RTNL lock.
567 */
568void efx_siena_stop_all(struct efx_nic *efx)
569{
570	EFX_ASSERT_RESET_SERIALISED(efx);
571
572	/* port_enabled can be read safely under the rtnl lock */
573	if (!efx->port_enabled)
574		return;
575
576	if (efx->type->update_stats) {
577		/* update stats before we go down so we can accurately count
578		 * rx_nodesc_drops
579		 */
580		efx->type->pull_stats(efx);
581		spin_lock_bh(&efx->stats_lock);
582		efx->type->update_stats(efx, NULL, NULL);
583		spin_unlock_bh(&efx->stats_lock);
584		efx->type->stop_stats(efx);
585	}
586
587	efx_stop_port(efx);
588
589	/* Stop the kernel transmit interface.  This is only valid if
590	 * the device is stopped or detached; otherwise the watchdog
591	 * may fire immediately.
592	 */
593	WARN_ON(netif_running(efx->net_dev) &&
594		netif_device_present(efx->net_dev));
595	netif_tx_disable(efx->net_dev);
596
597	efx_stop_datapath(efx);
598}
599
600static size_t efx_siena_update_stats_atomic(struct efx_nic *efx, u64 *full_stats,
601					    struct rtnl_link_stats64 *core_stats)
602{
603	if (efx->type->update_stats_atomic)
604		return efx->type->update_stats_atomic(efx, full_stats, core_stats);
605	return efx->type->update_stats(efx, full_stats, core_stats);
606}
607
608/* Context: process, rcu_read_lock or RTNL held, non-blocking. */
609void efx_siena_net_stats(struct net_device *net_dev,
610			 struct rtnl_link_stats64 *stats)
611{
612	struct efx_nic *efx = netdev_priv(net_dev);
613
614	spin_lock_bh(&efx->stats_lock);
615	efx_siena_update_stats_atomic(efx, NULL, stats);
616	spin_unlock_bh(&efx->stats_lock);
617}
618
619/* Push loopback/power/transmit disable settings to the PHY, and reconfigure
620 * the MAC appropriately. All other PHY configuration changes are pushed
621 * through phy_op->set_settings(), and pushed asynchronously to the MAC
622 * through efx_monitor().
623 *
624 * Callers must hold the mac_lock
625 */
626int __efx_siena_reconfigure_port(struct efx_nic *efx)
627{
628	enum efx_phy_mode phy_mode;
629	int rc = 0;
630
631	WARN_ON(!mutex_is_locked(&efx->mac_lock));
632
633	/* Disable PHY transmit in mac level loopbacks */
634	phy_mode = efx->phy_mode;
635	if (LOOPBACK_INTERNAL(efx))
636		efx->phy_mode |= PHY_MODE_TX_DISABLED;
637	else
638		efx->phy_mode &= ~PHY_MODE_TX_DISABLED;
639
640	if (efx->type->reconfigure_port)
641		rc = efx->type->reconfigure_port(efx);
642
643	if (rc)
644		efx->phy_mode = phy_mode;
645
646	return rc;
647}
648
649/* Reinitialise the MAC to pick up new PHY settings, even if the port is
650 * disabled.
651 */
652int efx_siena_reconfigure_port(struct efx_nic *efx)
653{
654	int rc;
655
656	EFX_ASSERT_RESET_SERIALISED(efx);
657
658	mutex_lock(&efx->mac_lock);
659	rc = __efx_siena_reconfigure_port(efx);
660	mutex_unlock(&efx->mac_lock);
661
662	return rc;
663}
664
665/**************************************************************************
666 *
667 * Device reset and suspend
668 *
669 **************************************************************************/
670
671static void efx_wait_for_bist_end(struct efx_nic *efx)
672{
673	int i;
674
675	for (i = 0; i < BIST_WAIT_DELAY_COUNT; ++i) {
676		if (efx_siena_mcdi_poll_reboot(efx))
677			goto out;
678		msleep(BIST_WAIT_DELAY_MS);
679	}
680
681	netif_err(efx, drv, efx->net_dev, "Warning: No MC reboot after BIST mode\n");
682out:
683	/* Either way unset the BIST flag. If we found no reboot we probably
684	 * won't recover, but we should try.
685	 */
686	efx->mc_bist_for_other_fn = false;
687}
688
689/* Try recovery mechanisms.
690 * For now only EEH is supported.
691 * Returns 0 if the recovery mechanisms are unsuccessful.
692 * Returns a non-zero value otherwise.
693 */
694int efx_siena_try_recovery(struct efx_nic *efx)
695{
696#ifdef CONFIG_EEH
697	/* A PCI error can occur and not be seen by EEH because nothing
698	 * happens on the PCI bus. In this case the driver may fail and
699	 * schedule a 'recover or reset', leading to this recovery handler.
700	 * Manually call the eeh failure check function.
701	 */
702	struct eeh_dev *eehdev = pci_dev_to_eeh_dev(efx->pci_dev);
703	if (eeh_dev_check_failure(eehdev)) {
704		/* The EEH mechanisms will handle the error and reset the
705		 * device if necessary.
706		 */
707		return 1;
708	}
709#endif
710	return 0;
711}
712
713/* Tears down the entire software state and most of the hardware state
714 * before reset.
715 */
716void efx_siena_reset_down(struct efx_nic *efx, enum reset_type method)
717{
718	EFX_ASSERT_RESET_SERIALISED(efx);
719
720	if (method == RESET_TYPE_MCDI_TIMEOUT)
721		efx->type->prepare_flr(efx);
722
723	efx_siena_stop_all(efx);
724	efx_siena_disable_interrupts(efx);
725
726	mutex_lock(&efx->mac_lock);
727	down_write(&efx->filter_sem);
728	mutex_lock(&efx->rss_lock);
729	efx->type->fini(efx);
730}
731
732/* Context: netif_tx_lock held, BHs disabled. */
733void efx_siena_watchdog(struct net_device *net_dev, unsigned int txqueue)
734{
735	struct efx_nic *efx = netdev_priv(net_dev);
736
737	netif_err(efx, tx_err, efx->net_dev,
738		  "TX stuck with port_enabled=%d: resetting channels\n",
739		  efx->port_enabled);
740
741	efx_siena_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
742}
743
744/* This function will always ensure that the locks acquired in
745 * efx_siena_reset_down() are released. A failure return code indicates
746 * that we were unable to reinitialise the hardware, and the
747 * driver should be disabled. If ok is false, then the rx and tx
748 * engines are not restarted, pending a RESET_DISABLE.
749 */
750int efx_siena_reset_up(struct efx_nic *efx, enum reset_type method, bool ok)
751{
752	int rc;
753
754	EFX_ASSERT_RESET_SERIALISED(efx);
755
756	if (method == RESET_TYPE_MCDI_TIMEOUT)
757		efx->type->finish_flr(efx);
758
759	/* Ensure that SRAM is initialised even if we're disabling the device */
760	rc = efx->type->init(efx);
761	if (rc) {
762		netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n");
763		goto fail;
764	}
765
766	if (!ok)
767		goto fail;
768
769	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE &&
770	    method != RESET_TYPE_DATAPATH) {
771		rc = efx_siena_mcdi_port_reconfigure(efx);
772		if (rc && rc != -EPERM)
773			netif_err(efx, drv, efx->net_dev,
774				  "could not restore PHY settings\n");
775	}
776
777	rc = efx_siena_enable_interrupts(efx);
778	if (rc)
779		goto fail;
780
781#ifdef CONFIG_SFC_SIENA_SRIOV
782	rc = efx->type->vswitching_restore(efx);
783	if (rc) /* not fatal; the PF will still work fine */
784		netif_warn(efx, probe, efx->net_dev,
785			   "failed to restore vswitching rc=%d;"
786			   " VFs may not function\n", rc);
787#endif
788
789	if (efx->type->rx_restore_rss_contexts)
790		efx->type->rx_restore_rss_contexts(efx);
791	mutex_unlock(&efx->rss_lock);
792	efx->type->filter_table_restore(efx);
793	up_write(&efx->filter_sem);
794	if (efx->type->sriov_reset)
795		efx->type->sriov_reset(efx);
796
797	mutex_unlock(&efx->mac_lock);
798
799	efx_siena_start_all(efx);
800
801	if (efx->type->udp_tnl_push_ports)
802		efx->type->udp_tnl_push_ports(efx);
803
804	return 0;
805
806fail:
807	efx->port_initialized = false;
808
809	mutex_unlock(&efx->rss_lock);
810	up_write(&efx->filter_sem);
811	mutex_unlock(&efx->mac_lock);
812
813	return rc;
814}
815
816/* Reset the NIC using the specified method.  Note that the reset may
817 * fail, in which case the card will be left in an unusable state.
818 *
819 * Caller must hold the rtnl_lock.
820 */
821int efx_siena_reset(struct efx_nic *efx, enum reset_type method)
822{
823	int rc, rc2 = 0;
824	bool disabled;
825
826	netif_info(efx, drv, efx->net_dev, "resetting (%s)\n",
827		   RESET_TYPE(method));
828
829	efx_device_detach_sync(efx);
830	/* efx_siena_reset_down() grabs locks that prevent recovery on EF100.
831	 * EF100 reset is handled in the efx_nic_type callback below.
832	 */
833	if (efx_nic_rev(efx) != EFX_REV_EF100)
834		efx_siena_reset_down(efx, method);
835
836	rc = efx->type->reset(efx, method);
837	if (rc) {
838		netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n");
839		goto out;
840	}
841
842	/* Clear flags for the scopes we covered.  We assume the NIC and
843	 * driver are now quiescent so that there is no race here.
844	 */
845	if (method < RESET_TYPE_MAX_METHOD)
846		efx->reset_pending &= -(1 << (method + 1));
847	else /* it doesn't fit into the well-ordered scope hierarchy */
848		__clear_bit(method, &efx->reset_pending);
849
850	/* Reinitialise bus-mastering, which may have been turned off before
851	 * the reset was scheduled. This is still appropriate, even in the
852	 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
853	 * can respond to requests.
854	 */
855	pci_set_master(efx->pci_dev);
856
857out:
858	/* Leave device stopped if necessary */
859	disabled = rc ||
860		method == RESET_TYPE_DISABLE ||
861		method == RESET_TYPE_RECOVER_OR_DISABLE;
862	if (efx_nic_rev(efx) != EFX_REV_EF100)
863		rc2 = efx_siena_reset_up(efx, method, !disabled);
864	if (rc2) {
865		disabled = true;
866		if (!rc)
867			rc = rc2;
868	}
869
870	if (disabled) {
871		dev_close(efx->net_dev);
872		netif_err(efx, drv, efx->net_dev, "has been disabled\n");
873		efx->state = STATE_DISABLED;
874	} else {
875		netif_dbg(efx, drv, efx->net_dev, "reset complete\n");
876		efx_device_attach_if_not_resetting(efx);
877	}
878	return rc;
879}
880
881/* The worker thread exists so that code that cannot sleep can
882 * schedule a reset for later.
883 */
884static void efx_reset_work(struct work_struct *data)
885{
886	struct efx_nic *efx = container_of(data, struct efx_nic, reset_work);
887	unsigned long pending;
888	enum reset_type method;
889
890	pending = READ_ONCE(efx->reset_pending);
891	method = fls(pending) - 1;
892
893	if (method == RESET_TYPE_MC_BIST)
894		efx_wait_for_bist_end(efx);
895
896	if ((method == RESET_TYPE_RECOVER_OR_DISABLE ||
897	     method == RESET_TYPE_RECOVER_OR_ALL) &&
898	    efx_siena_try_recovery(efx))
899		return;
900
901	if (!pending)
902		return;
903
904	rtnl_lock();
905
906	/* We checked the state in efx_siena_schedule_reset() but it may
907	 * have changed by now.  Now that we have the RTNL lock,
908	 * it cannot change again.
909	 */
910	if (efx->state == STATE_READY)
911		(void)efx_siena_reset(efx, method);
912
913	rtnl_unlock();
914}
915
916void efx_siena_schedule_reset(struct efx_nic *efx, enum reset_type type)
917{
918	enum reset_type method;
919
920	if (efx->state == STATE_RECOVERY) {
921		netif_dbg(efx, drv, efx->net_dev,
922			  "recovering: skip scheduling %s reset\n",
923			  RESET_TYPE(type));
924		return;
925	}
926
927	switch (type) {
928	case RESET_TYPE_INVISIBLE:
929	case RESET_TYPE_ALL:
930	case RESET_TYPE_RECOVER_OR_ALL:
931	case RESET_TYPE_WORLD:
932	case RESET_TYPE_DISABLE:
933	case RESET_TYPE_RECOVER_OR_DISABLE:
934	case RESET_TYPE_DATAPATH:
935	case RESET_TYPE_MC_BIST:
936	case RESET_TYPE_MCDI_TIMEOUT:
937		method = type;
938		netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n",
939			  RESET_TYPE(method));
940		break;
941	default:
942		method = efx->type->map_reset_reason(type);
943		netif_dbg(efx, drv, efx->net_dev,
944			  "scheduling %s reset for %s\n",
945			  RESET_TYPE(method), RESET_TYPE(type));
946		break;
947	}
948
949	set_bit(method, &efx->reset_pending);
950	smp_mb(); /* ensure we change reset_pending before checking state */
951
952	/* If we're not READY then just leave the flags set as the cue
953	 * to abort probing or reschedule the reset later.
954	 */
955	if (READ_ONCE(efx->state) != STATE_READY)
956		return;
957
958	/* efx_process_channel() will no longer read events once a
959	 * reset is scheduled. So switch back to poll'd MCDI completions.
960	 */
961	efx_siena_mcdi_mode_poll(efx);
962
963	efx_siena_queue_reset_work(efx);
964}
965
966/**************************************************************************
967 *
968 * Dummy NIC operations
969 *
970 * Can be used for some unimplemented operations
971 * Needed so all function pointers are valid and do not have to be tested
972 * before use
973 *
974 **************************************************************************/
975int efx_siena_port_dummy_op_int(struct efx_nic *efx)
976{
977	return 0;
978}
979
980void efx_siena_port_dummy_op_void(struct efx_nic *efx) {}
981
982/**************************************************************************
983 *
984 * Data housekeeping
985 *
986 **************************************************************************/
987
988/* This zeroes out and then fills in the invariants in a struct
989 * efx_nic (including all sub-structures).
990 */
991int efx_siena_init_struct(struct efx_nic *efx,
992			  struct pci_dev *pci_dev, struct net_device *net_dev)
993{
994	int rc = -ENOMEM;
995
996	/* Initialise common structures */
997	INIT_LIST_HEAD(&efx->node);
998	INIT_LIST_HEAD(&efx->secondary_list);
999	spin_lock_init(&efx->biu_lock);
1000#ifdef CONFIG_SFC_SIENA_MTD
1001	INIT_LIST_HEAD(&efx->mtd_list);
1002#endif
1003	INIT_WORK(&efx->reset_work, efx_reset_work);
1004	INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
1005	efx_siena_selftest_async_init(efx);
1006	efx->pci_dev = pci_dev;
1007	efx->msg_enable = debug;
1008	efx->state = STATE_UNINIT;
1009	strscpy(efx->name, pci_name(pci_dev), sizeof(efx->name));
1010
1011	efx->net_dev = net_dev;
1012	efx->rx_prefix_size = efx->type->rx_prefix_size;
1013	efx->rx_ip_align =
1014		NET_IP_ALIGN ? (efx->rx_prefix_size + NET_IP_ALIGN) % 4 : 0;
1015	efx->rx_packet_hash_offset =
1016		efx->type->rx_hash_offset - efx->type->rx_prefix_size;
1017	efx->rx_packet_ts_offset =
1018		efx->type->rx_ts_offset - efx->type->rx_prefix_size;
1019	INIT_LIST_HEAD(&efx->rss_context.list);
1020	efx->rss_context.context_id = EFX_MCDI_RSS_CONTEXT_INVALID;
1021	mutex_init(&efx->rss_lock);
1022	efx->vport_id = EVB_PORT_ID_ASSIGNED;
1023	spin_lock_init(&efx->stats_lock);
1024	efx->vi_stride = EFX_DEFAULT_VI_STRIDE;
1025	efx->num_mac_stats = MC_CMD_MAC_NSTATS;
1026	BUILD_BUG_ON(MC_CMD_MAC_NSTATS - 1 != MC_CMD_MAC_GENERATION_END);
1027	mutex_init(&efx->mac_lock);
1028	init_rwsem(&efx->filter_sem);
1029#ifdef CONFIG_RFS_ACCEL
1030	mutex_init(&efx->rps_mutex);
1031	spin_lock_init(&efx->rps_hash_lock);
1032	/* Failure to allocate is not fatal, but may degrade ARFS performance */
1033	efx->rps_hash_table = kcalloc(EFX_ARFS_HASH_TABLE_SIZE,
1034				      sizeof(*efx->rps_hash_table), GFP_KERNEL);
1035#endif
1036	efx->mdio.dev = net_dev;
1037	INIT_WORK(&efx->mac_work, efx_mac_work);
1038	init_waitqueue_head(&efx->flush_wq);
1039
1040	efx->tx_queues_per_channel = 1;
1041	efx->rxq_entries = EFX_DEFAULT_DMAQ_SIZE;
1042	efx->txq_entries = EFX_DEFAULT_DMAQ_SIZE;
1043
1044	efx->mem_bar = UINT_MAX;
1045
1046	rc = efx_siena_init_channels(efx);
1047	if (rc)
1048		goto fail;
1049
1050	/* Would be good to use the net_dev name, but we're too early */
1051	snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
1052		 pci_name(pci_dev));
1053	efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
1054	if (!efx->workqueue) {
1055		rc = -ENOMEM;
1056		goto fail;
1057	}
1058
1059	return 0;
1060
1061fail:
1062	efx_siena_fini_struct(efx);
1063	return rc;
1064}
1065
1066void efx_siena_fini_struct(struct efx_nic *efx)
1067{
1068#ifdef CONFIG_RFS_ACCEL
1069	kfree(efx->rps_hash_table);
1070#endif
1071
1072	efx_siena_fini_channels(efx);
1073
1074	kfree(efx->vpd_sn);
1075
1076	if (efx->workqueue) {
1077		destroy_workqueue(efx->workqueue);
1078		efx->workqueue = NULL;
1079	}
1080}
1081
1082/* This configures the PCI device to enable I/O and DMA. */
1083int efx_siena_init_io(struct efx_nic *efx, int bar, dma_addr_t dma_mask,
1084		      unsigned int mem_map_size)
1085{
1086	struct pci_dev *pci_dev = efx->pci_dev;
1087	int rc;
1088
1089	efx->mem_bar = UINT_MAX;
1090
1091	netif_dbg(efx, probe, efx->net_dev, "initialising I/O bar=%d\n", bar);
1092
1093	rc = pci_enable_device(pci_dev);
1094	if (rc) {
1095		netif_err(efx, probe, efx->net_dev,
1096			  "failed to enable PCI device\n");
1097		goto fail1;
1098	}
1099
1100	pci_set_master(pci_dev);
1101
1102	rc = dma_set_mask_and_coherent(&pci_dev->dev, dma_mask);
1103	if (rc) {
1104		netif_err(efx, probe, efx->net_dev,
1105			  "could not find a suitable DMA mask\n");
1106		goto fail2;
1107	}
1108	netif_dbg(efx, probe, efx->net_dev,
1109		  "using DMA mask %llx\n", (unsigned long long)dma_mask);
1110
1111	efx->membase_phys = pci_resource_start(efx->pci_dev, bar);
1112	if (!efx->membase_phys) {
1113		netif_err(efx, probe, efx->net_dev,
1114			  "ERROR: No BAR%d mapping from the BIOS. "
1115			  "Try pci=realloc on the kernel command line\n", bar);
1116		rc = -ENODEV;
1117		goto fail3;
1118	}
1119
1120	rc = pci_request_region(pci_dev, bar, "sfc");
1121	if (rc) {
1122		netif_err(efx, probe, efx->net_dev,
1123			  "request for memory BAR[%d] failed\n", bar);
1124		rc = -EIO;
1125		goto fail3;
1126	}
1127	efx->mem_bar = bar;
1128	efx->membase = ioremap(efx->membase_phys, mem_map_size);
1129	if (!efx->membase) {
1130		netif_err(efx, probe, efx->net_dev,
1131			  "could not map memory BAR[%d] at %llx+%x\n", bar,
1132			  (unsigned long long)efx->membase_phys, mem_map_size);
1133		rc = -ENOMEM;
1134		goto fail4;
1135	}
1136	netif_dbg(efx, probe, efx->net_dev,
1137		  "memory BAR[%d] at %llx+%x (virtual %p)\n", bar,
1138		  (unsigned long long)efx->membase_phys, mem_map_size,
1139		  efx->membase);
1140
1141	return 0;
1142
1143fail4:
1144	pci_release_region(efx->pci_dev, bar);
1145fail3:
1146	efx->membase_phys = 0;
1147fail2:
1148	pci_disable_device(efx->pci_dev);
1149fail1:
1150	return rc;
1151}
1152
1153void efx_siena_fini_io(struct efx_nic *efx)
1154{
1155	netif_dbg(efx, drv, efx->net_dev, "shutting down I/O\n");
1156
1157	if (efx->membase) {
1158		iounmap(efx->membase);
1159		efx->membase = NULL;
1160	}
1161
1162	if (efx->membase_phys) {
1163		pci_release_region(efx->pci_dev, efx->mem_bar);
1164		efx->membase_phys = 0;
1165		efx->mem_bar = UINT_MAX;
1166	}
1167
1168	/* Don't disable bus-mastering if VFs are assigned */
1169	if (!pci_vfs_assigned(efx->pci_dev))
1170		pci_disable_device(efx->pci_dev);
1171}
1172
1173#ifdef CONFIG_SFC_SIENA_MCDI_LOGGING
1174static ssize_t mcdi_logging_show(struct device *dev,
1175				 struct device_attribute *attr,
1176				 char *buf)
1177{
1178	struct efx_nic *efx = dev_get_drvdata(dev);
1179	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
1180
1181	return sysfs_emit(buf, "%d\n", mcdi->logging_enabled);
1182}
1183
1184static ssize_t mcdi_logging_store(struct device *dev,
1185				  struct device_attribute *attr,
1186				  const char *buf, size_t count)
1187{
1188	struct efx_nic *efx = dev_get_drvdata(dev);
1189	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
1190	bool enable = count > 0 && *buf != '0';
1191
1192	mcdi->logging_enabled = enable;
1193	return count;
1194}
1195
1196static DEVICE_ATTR_RW(mcdi_logging);
1197
1198void efx_siena_init_mcdi_logging(struct efx_nic *efx)
1199{
1200	int rc = device_create_file(&efx->pci_dev->dev, &dev_attr_mcdi_logging);
1201
1202	if (rc) {
1203		netif_warn(efx, drv, efx->net_dev,
1204			   "failed to init net dev attributes\n");
1205	}
1206}
1207
1208void efx_siena_fini_mcdi_logging(struct efx_nic *efx)
1209{
1210	device_remove_file(&efx->pci_dev->dev, &dev_attr_mcdi_logging);
1211}
1212#endif
1213
1214/* A PCI error affecting this device was detected.
1215 * At this point MMIO and DMA may be disabled.
1216 * Stop the software path and request a slot reset.
1217 */
1218static pci_ers_result_t efx_io_error_detected(struct pci_dev *pdev,
1219					      pci_channel_state_t state)
1220{
1221	pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
1222	struct efx_nic *efx = pci_get_drvdata(pdev);
1223
1224	if (state == pci_channel_io_perm_failure)
1225		return PCI_ERS_RESULT_DISCONNECT;
1226
1227	rtnl_lock();
1228
1229	if (efx->state != STATE_DISABLED) {
1230		efx->state = STATE_RECOVERY;
1231		efx->reset_pending = 0;
1232
1233		efx_device_detach_sync(efx);
1234
1235		efx_siena_stop_all(efx);
1236		efx_siena_disable_interrupts(efx);
1237
1238		status = PCI_ERS_RESULT_NEED_RESET;
1239	} else {
1240		/* If the interface is disabled we don't want to do anything
1241		 * with it.
1242		 */
1243		status = PCI_ERS_RESULT_RECOVERED;
1244	}
1245
1246	rtnl_unlock();
1247
1248	pci_disable_device(pdev);
1249
1250	return status;
1251}
1252
1253/* Fake a successful reset, which will be performed later in efx_io_resume. */
1254static pci_ers_result_t efx_io_slot_reset(struct pci_dev *pdev)
1255{
1256	struct efx_nic *efx = pci_get_drvdata(pdev);
1257	pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
1258
1259	if (pci_enable_device(pdev)) {
1260		netif_err(efx, hw, efx->net_dev,
1261			  "Cannot re-enable PCI device after reset.\n");
1262		status =  PCI_ERS_RESULT_DISCONNECT;
1263	}
1264
1265	return status;
1266}
1267
1268/* Perform the actual reset and resume I/O operations. */
1269static void efx_io_resume(struct pci_dev *pdev)
1270{
1271	struct efx_nic *efx = pci_get_drvdata(pdev);
1272	int rc;
1273
1274	rtnl_lock();
1275
1276	if (efx->state == STATE_DISABLED)
1277		goto out;
1278
1279	rc = efx_siena_reset(efx, RESET_TYPE_ALL);
1280	if (rc) {
1281		netif_err(efx, hw, efx->net_dev,
1282			  "efx_siena_reset failed after PCI error (%d)\n", rc);
1283	} else {
1284		efx->state = STATE_READY;
1285		netif_dbg(efx, hw, efx->net_dev,
1286			  "Done resetting and resuming IO after PCI error.\n");
1287	}
1288
1289out:
1290	rtnl_unlock();
1291}
1292
1293/* For simplicity and reliability, we always require a slot reset and try to
1294 * reset the hardware when a pci error affecting the device is detected.
1295 * We leave both the link_reset and mmio_enabled callback unimplemented:
1296 * with our request for slot reset the mmio_enabled callback will never be
1297 * called, and the link_reset callback is not used by AER or EEH mechanisms.
1298 */
1299const struct pci_error_handlers efx_siena_err_handlers = {
1300	.error_detected = efx_io_error_detected,
1301	.slot_reset	= efx_io_slot_reset,
1302	.resume		= efx_io_resume,
1303};
1304
1305/* Determine whether the NIC will be able to handle TX offloads for a given
1306 * encapsulated packet.
1307 */
1308static bool efx_can_encap_offloads(struct efx_nic *efx, struct sk_buff *skb)
1309{
1310	struct gre_base_hdr *greh;
1311	__be16 dst_port;
1312	u8 ipproto;
1313
1314	/* Does the NIC support encap offloads?
1315	 * If not, we should never get here, because we shouldn't have
1316	 * advertised encap offload feature flags in the first place.
1317	 */
1318	if (WARN_ON_ONCE(!efx->type->udp_tnl_has_port))
1319		return false;
1320
1321	/* Determine encapsulation protocol in use */
1322	switch (skb->protocol) {
1323	case htons(ETH_P_IP):
1324		ipproto = ip_hdr(skb)->protocol;
1325		break;
1326	case htons(ETH_P_IPV6):
1327		/* If there are extension headers, this will cause us to
1328		 * think we can't offload something that we maybe could have.
1329		 */
1330		ipproto = ipv6_hdr(skb)->nexthdr;
1331		break;
1332	default:
1333		/* Not IP, so can't offload it */
1334		return false;
1335	}
1336	switch (ipproto) {
1337	case IPPROTO_GRE:
1338		/* We support NVGRE but not IP over GRE or random gretaps.
1339		 * Specifically, the NIC will accept GRE as encapsulated if
1340		 * the inner protocol is Ethernet, but only handle it
1341		 * correctly if the GRE header is 8 bytes long.  Moreover,
1342		 * it will not update the Checksum or Sequence Number fields
1343		 * if they are present.  (The Routing Present flag,
1344		 * GRE_ROUTING, cannot be set else the header would be more
1345		 * than 8 bytes long; so we don't have to worry about it.)
1346		 */
1347		if (skb->inner_protocol_type != ENCAP_TYPE_ETHER)
1348			return false;
1349		if (ntohs(skb->inner_protocol) != ETH_P_TEB)
1350			return false;
1351		if (skb_inner_mac_header(skb) - skb_transport_header(skb) != 8)
1352			return false;
1353		greh = (struct gre_base_hdr *)skb_transport_header(skb);
1354		return !(greh->flags & (GRE_CSUM | GRE_SEQ));
1355	case IPPROTO_UDP:
1356		/* If the port is registered for a UDP tunnel, we assume the
1357		 * packet is for that tunnel, and the NIC will handle it as
1358		 * such.  If not, the NIC won't know what to do with it.
1359		 */
1360		dst_port = udp_hdr(skb)->dest;
1361		return efx->type->udp_tnl_has_port(efx, dst_port);
1362	default:
1363		return false;
1364	}
1365}
1366
1367netdev_features_t efx_siena_features_check(struct sk_buff *skb,
1368					   struct net_device *dev,
1369					   netdev_features_t features)
1370{
1371	struct efx_nic *efx = netdev_priv(dev);
1372
1373	if (skb->encapsulation) {
1374		if (features & NETIF_F_GSO_MASK)
1375			/* Hardware can only do TSO with at most 208 bytes
1376			 * of headers.
1377			 */
1378			if (skb_inner_transport_offset(skb) >
1379			    EFX_TSO2_MAX_HDRLEN)
1380				features &= ~(NETIF_F_GSO_MASK);
1381		if (features & (NETIF_F_GSO_MASK | NETIF_F_CSUM_MASK))
1382			if (!efx_can_encap_offloads(efx, skb))
1383				features &= ~(NETIF_F_GSO_MASK |
1384					      NETIF_F_CSUM_MASK);
1385	}
1386	return features;
1387}
1388
1389int efx_siena_get_phys_port_id(struct net_device *net_dev,
1390			       struct netdev_phys_item_id *ppid)
1391{
1392	struct efx_nic *efx = netdev_priv(net_dev);
1393
1394	if (efx->type->get_phys_port_id)
1395		return efx->type->get_phys_port_id(efx, ppid);
1396	else
1397		return -EOPNOTSUPP;
1398}
1399
1400int efx_siena_get_phys_port_name(struct net_device *net_dev,
1401				 char *name, size_t len)
1402{
1403	struct efx_nic *efx = netdev_priv(net_dev);
1404
1405	if (snprintf(name, len, "p%u", efx->port_num) >= len)
1406		return -EINVAL;
1407	return 0;
1408}
1409