1// SPDX-License-Identifier: GPL-2.0-only
2/****************************************************************************
3 * Driver for Solarflare network controllers and boards
4 * Copyright 2006-2012 Solarflare Communications Inc.
5 */
6/*
7 * Driver for AMCC QT202x SFP+ and XFP adapters; see www.amcc.com for details
8 */
9
10#include <linux/slab.h>
11#include <linux/timer.h>
12#include <linux/delay.h>
13#include "efx.h"
14#include "mdio_10g.h"
15#include "phy.h"
16#include "nic.h"
17
18#define QT202X_REQUIRED_DEVS (MDIO_DEVS_PCS |		\
19			      MDIO_DEVS_PMAPMD |	\
20			      MDIO_DEVS_PHYXS)
21
22#define QT202X_LOOPBACKS ((1 << LOOPBACK_PCS) |		\
23			  (1 << LOOPBACK_PMAPMD) |	\
24			  (1 << LOOPBACK_PHYXS_WS))
25
26/****************************************************************************/
27/* Quake-specific MDIO registers */
28#define MDIO_QUAKE_LED0_REG	(0xD006)
29
30/* QT2025C only */
31#define PCS_FW_HEARTBEAT_REG	0xd7ee
32#define PCS_FW_HEARTB_LBN	0
33#define PCS_FW_HEARTB_WIDTH	8
34#define PCS_FW_PRODUCT_CODE_1	0xd7f0
35#define PCS_FW_VERSION_1	0xd7f3
36#define PCS_FW_BUILD_1		0xd7f6
37#define PCS_UC8051_STATUS_REG	0xd7fd
38#define PCS_UC_STATUS_LBN	0
39#define PCS_UC_STATUS_WIDTH	8
40#define PCS_UC_STATUS_FW_SAVE	0x20
41#define PMA_PMD_MODE_REG	0xc301
42#define PMA_PMD_RXIN_SEL_LBN	6
43#define PMA_PMD_FTX_CTRL2_REG	0xc309
44#define PMA_PMD_FTX_STATIC_LBN	13
45#define PMA_PMD_VEND1_REG	0xc001
46#define PMA_PMD_VEND1_LBTXD_LBN	15
47#define PCS_VEND1_REG		0xc000
48#define PCS_VEND1_LBTXD_LBN	5
49
50void falcon_qt202x_set_led(struct ef4_nic *p, int led, int mode)
51{
52	int addr = MDIO_QUAKE_LED0_REG + led;
53	ef4_mdio_write(p, MDIO_MMD_PMAPMD, addr, mode);
54}
55
56struct qt202x_phy_data {
57	enum ef4_phy_mode phy_mode;
58	bool bug17190_in_bad_state;
59	unsigned long bug17190_timer;
60	u32 firmware_ver;
61};
62
63#define QT2022C2_MAX_RESET_TIME 500
64#define QT2022C2_RESET_WAIT 10
65
66#define QT2025C_MAX_HEARTB_TIME (5 * HZ)
67#define QT2025C_HEARTB_WAIT 100
68#define QT2025C_MAX_FWSTART_TIME (25 * HZ / 10)
69#define QT2025C_FWSTART_WAIT 100
70
71#define BUG17190_INTERVAL (2 * HZ)
72
73static int qt2025c_wait_heartbeat(struct ef4_nic *efx)
74{
75	unsigned long timeout = jiffies + QT2025C_MAX_HEARTB_TIME;
76	int reg, old_counter = 0;
77
78	/* Wait for firmware heartbeat to start */
79	for (;;) {
80		int counter;
81		reg = ef4_mdio_read(efx, MDIO_MMD_PCS, PCS_FW_HEARTBEAT_REG);
82		if (reg < 0)
83			return reg;
84		counter = ((reg >> PCS_FW_HEARTB_LBN) &
85			    ((1 << PCS_FW_HEARTB_WIDTH) - 1));
86		if (old_counter == 0)
87			old_counter = counter;
88		else if (counter != old_counter)
89			break;
90		if (time_after(jiffies, timeout)) {
91			/* Some cables have EEPROMs that conflict with the
92			 * PHY's on-board EEPROM so it cannot load firmware */
93			netif_err(efx, hw, efx->net_dev,
94				  "If an SFP+ direct attach cable is"
95				  " connected, please check that it complies"
96				  " with the SFP+ specification\n");
97			return -ETIMEDOUT;
98		}
99		msleep(QT2025C_HEARTB_WAIT);
100	}
101
102	return 0;
103}
104
105static int qt2025c_wait_fw_status_good(struct ef4_nic *efx)
106{
107	unsigned long timeout = jiffies + QT2025C_MAX_FWSTART_TIME;
108	int reg;
109
110	/* Wait for firmware status to look good */
111	for (;;) {
112		reg = ef4_mdio_read(efx, MDIO_MMD_PCS, PCS_UC8051_STATUS_REG);
113		if (reg < 0)
114			return reg;
115		if ((reg &
116		     ((1 << PCS_UC_STATUS_WIDTH) - 1) << PCS_UC_STATUS_LBN) >=
117		    PCS_UC_STATUS_FW_SAVE)
118			break;
119		if (time_after(jiffies, timeout))
120			return -ETIMEDOUT;
121		msleep(QT2025C_FWSTART_WAIT);
122	}
123
124	return 0;
125}
126
127static void qt2025c_restart_firmware(struct ef4_nic *efx)
128{
129	/* Restart microcontroller execution of firmware from RAM */
130	ef4_mdio_write(efx, 3, 0xe854, 0x00c0);
131	ef4_mdio_write(efx, 3, 0xe854, 0x0040);
132	msleep(50);
133}
134
135static int qt2025c_wait_reset(struct ef4_nic *efx)
136{
137	int rc;
138
139	rc = qt2025c_wait_heartbeat(efx);
140	if (rc != 0)
141		return rc;
142
143	rc = qt2025c_wait_fw_status_good(efx);
144	if (rc == -ETIMEDOUT) {
145		/* Bug 17689: occasionally heartbeat starts but firmware status
146		 * code never progresses beyond 0x00.  Try again, once, after
147		 * restarting execution of the firmware image. */
148		netif_dbg(efx, hw, efx->net_dev,
149			  "bashing QT2025C microcontroller\n");
150		qt2025c_restart_firmware(efx);
151		rc = qt2025c_wait_heartbeat(efx);
152		if (rc != 0)
153			return rc;
154		rc = qt2025c_wait_fw_status_good(efx);
155	}
156
157	return rc;
158}
159
160static void qt2025c_firmware_id(struct ef4_nic *efx)
161{
162	struct qt202x_phy_data *phy_data = efx->phy_data;
163	u8 firmware_id[9];
164	size_t i;
165
166	for (i = 0; i < sizeof(firmware_id); i++)
167		firmware_id[i] = ef4_mdio_read(efx, MDIO_MMD_PCS,
168					       PCS_FW_PRODUCT_CODE_1 + i);
169	netif_info(efx, probe, efx->net_dev,
170		   "QT2025C firmware %xr%d v%d.%d.%d.%d [20%02d-%02d-%02d]\n",
171		   (firmware_id[0] << 8) | firmware_id[1], firmware_id[2],
172		   firmware_id[3] >> 4, firmware_id[3] & 0xf,
173		   firmware_id[4], firmware_id[5],
174		   firmware_id[6], firmware_id[7], firmware_id[8]);
175	phy_data->firmware_ver = ((firmware_id[3] & 0xf0) << 20) |
176				 ((firmware_id[3] & 0x0f) << 16) |
177				 (firmware_id[4] << 8) | firmware_id[5];
178}
179
180static void qt2025c_bug17190_workaround(struct ef4_nic *efx)
181{
182	struct qt202x_phy_data *phy_data = efx->phy_data;
183
184	/* The PHY can get stuck in a state where it reports PHY_XS and PMA/PMD
185	 * layers up, but PCS down (no block_lock).  If we notice this state
186	 * persisting for a couple of seconds, we switch PMA/PMD loopback
187	 * briefly on and then off again, which is normally sufficient to
188	 * recover it.
189	 */
190	if (efx->link_state.up ||
191	    !ef4_mdio_links_ok(efx, MDIO_DEVS_PMAPMD | MDIO_DEVS_PHYXS)) {
192		phy_data->bug17190_in_bad_state = false;
193		return;
194	}
195
196	if (!phy_data->bug17190_in_bad_state) {
197		phy_data->bug17190_in_bad_state = true;
198		phy_data->bug17190_timer = jiffies + BUG17190_INTERVAL;
199		return;
200	}
201
202	if (time_after_eq(jiffies, phy_data->bug17190_timer)) {
203		netif_dbg(efx, hw, efx->net_dev, "bashing QT2025C PMA/PMD\n");
204		ef4_mdio_set_flag(efx, MDIO_MMD_PMAPMD, MDIO_CTRL1,
205				  MDIO_PMA_CTRL1_LOOPBACK, true);
206		msleep(100);
207		ef4_mdio_set_flag(efx, MDIO_MMD_PMAPMD, MDIO_CTRL1,
208				  MDIO_PMA_CTRL1_LOOPBACK, false);
209		phy_data->bug17190_timer = jiffies + BUG17190_INTERVAL;
210	}
211}
212
213static int qt2025c_select_phy_mode(struct ef4_nic *efx)
214{
215	struct qt202x_phy_data *phy_data = efx->phy_data;
216	struct falcon_board *board = falcon_board(efx);
217	int reg, rc, i;
218	uint16_t phy_op_mode;
219
220	/* Only 2.0.1.0+ PHY firmware supports the more optimal SFP+
221	 * Self-Configure mode.  Don't attempt any switching if we encounter
222	 * older firmware. */
223	if (phy_data->firmware_ver < 0x02000100)
224		return 0;
225
226	/* In general we will get optimal behaviour in "SFP+ Self-Configure"
227	 * mode; however, that powers down most of the PHY when no module is
228	 * present, so we must use a different mode (any fixed mode will do)
229	 * to be sure that loopbacks will work. */
230	phy_op_mode = (efx->loopback_mode == LOOPBACK_NONE) ? 0x0038 : 0x0020;
231
232	/* Only change mode if really necessary */
233	reg = ef4_mdio_read(efx, 1, 0xc319);
234	if ((reg & 0x0038) == phy_op_mode)
235		return 0;
236	netif_dbg(efx, hw, efx->net_dev, "Switching PHY to mode 0x%04x\n",
237		  phy_op_mode);
238
239	/* This sequence replicates the register writes configured in the boot
240	 * EEPROM (including the differences between board revisions), except
241	 * that the operating mode is changed, and the PHY is prevented from
242	 * unnecessarily reloading the main firmware image again. */
243	ef4_mdio_write(efx, 1, 0xc300, 0x0000);
244	/* (Note: this portion of the boot EEPROM sequence, which bit-bashes 9
245	 * STOPs onto the firmware/module I2C bus to reset it, varies across
246	 * board revisions, as the bus is connected to different GPIO/LED
247	 * outputs on the PHY.) */
248	if (board->major == 0 && board->minor < 2) {
249		ef4_mdio_write(efx, 1, 0xc303, 0x4498);
250		for (i = 0; i < 9; i++) {
251			ef4_mdio_write(efx, 1, 0xc303, 0x4488);
252			ef4_mdio_write(efx, 1, 0xc303, 0x4480);
253			ef4_mdio_write(efx, 1, 0xc303, 0x4490);
254			ef4_mdio_write(efx, 1, 0xc303, 0x4498);
255		}
256	} else {
257		ef4_mdio_write(efx, 1, 0xc303, 0x0920);
258		ef4_mdio_write(efx, 1, 0xd008, 0x0004);
259		for (i = 0; i < 9; i++) {
260			ef4_mdio_write(efx, 1, 0xc303, 0x0900);
261			ef4_mdio_write(efx, 1, 0xd008, 0x0005);
262			ef4_mdio_write(efx, 1, 0xc303, 0x0920);
263			ef4_mdio_write(efx, 1, 0xd008, 0x0004);
264		}
265		ef4_mdio_write(efx, 1, 0xc303, 0x4900);
266	}
267	ef4_mdio_write(efx, 1, 0xc303, 0x4900);
268	ef4_mdio_write(efx, 1, 0xc302, 0x0004);
269	ef4_mdio_write(efx, 1, 0xc316, 0x0013);
270	ef4_mdio_write(efx, 1, 0xc318, 0x0054);
271	ef4_mdio_write(efx, 1, 0xc319, phy_op_mode);
272	ef4_mdio_write(efx, 1, 0xc31a, 0x0098);
273	ef4_mdio_write(efx, 3, 0x0026, 0x0e00);
274	ef4_mdio_write(efx, 3, 0x0027, 0x0013);
275	ef4_mdio_write(efx, 3, 0x0028, 0xa528);
276	ef4_mdio_write(efx, 1, 0xd006, 0x000a);
277	ef4_mdio_write(efx, 1, 0xd007, 0x0009);
278	ef4_mdio_write(efx, 1, 0xd008, 0x0004);
279	/* This additional write is not present in the boot EEPROM.  It
280	 * prevents the PHY's internal boot ROM doing another pointless (and
281	 * slow) reload of the firmware image (the microcontroller's code
282	 * memory is not affected by the microcontroller reset). */
283	ef4_mdio_write(efx, 1, 0xc317, 0x00ff);
284	/* PMA/PMD loopback sets RXIN to inverse polarity and the firmware
285	 * restart doesn't reset it. We need to do that ourselves. */
286	ef4_mdio_set_flag(efx, 1, PMA_PMD_MODE_REG,
287			  1 << PMA_PMD_RXIN_SEL_LBN, false);
288	ef4_mdio_write(efx, 1, 0xc300, 0x0002);
289	msleep(20);
290
291	/* Restart microcontroller execution of firmware from RAM */
292	qt2025c_restart_firmware(efx);
293
294	/* Wait for the microcontroller to be ready again */
295	rc = qt2025c_wait_reset(efx);
296	if (rc < 0) {
297		netif_err(efx, hw, efx->net_dev,
298			  "PHY microcontroller reset during mode switch "
299			  "timed out\n");
300		return rc;
301	}
302
303	return 0;
304}
305
306static int qt202x_reset_phy(struct ef4_nic *efx)
307{
308	int rc;
309
310	if (efx->phy_type == PHY_TYPE_QT2025C) {
311		/* Wait for the reset triggered by falcon_reset_hw()
312		 * to complete */
313		rc = qt2025c_wait_reset(efx);
314		if (rc < 0)
315			goto fail;
316	} else {
317		/* Reset the PHYXS MMD. This is documented as doing
318		 * a complete soft reset. */
319		rc = ef4_mdio_reset_mmd(efx, MDIO_MMD_PHYXS,
320					QT2022C2_MAX_RESET_TIME /
321					QT2022C2_RESET_WAIT,
322					QT2022C2_RESET_WAIT);
323		if (rc < 0)
324			goto fail;
325	}
326
327	/* Wait 250ms for the PHY to complete bootup */
328	msleep(250);
329
330	falcon_board(efx)->type->init_phy(efx);
331
332	return 0;
333
334 fail:
335	netif_err(efx, hw, efx->net_dev, "PHY reset timed out\n");
336	return rc;
337}
338
339static int qt202x_phy_probe(struct ef4_nic *efx)
340{
341	struct qt202x_phy_data *phy_data;
342
343	phy_data = kzalloc(sizeof(struct qt202x_phy_data), GFP_KERNEL);
344	if (!phy_data)
345		return -ENOMEM;
346	efx->phy_data = phy_data;
347	phy_data->phy_mode = efx->phy_mode;
348	phy_data->bug17190_in_bad_state = false;
349	phy_data->bug17190_timer = 0;
350
351	efx->mdio.mmds = QT202X_REQUIRED_DEVS;
352	efx->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22;
353	efx->loopback_modes = QT202X_LOOPBACKS | FALCON_XMAC_LOOPBACKS;
354	return 0;
355}
356
357static int qt202x_phy_init(struct ef4_nic *efx)
358{
359	u32 devid;
360	int rc;
361
362	rc = qt202x_reset_phy(efx);
363	if (rc) {
364		netif_err(efx, probe, efx->net_dev, "PHY init failed\n");
365		return rc;
366	}
367
368	devid = ef4_mdio_read_id(efx, MDIO_MMD_PHYXS);
369	netif_info(efx, probe, efx->net_dev,
370		   "PHY ID reg %x (OUI %06x model %02x revision %x)\n",
371		   devid, ef4_mdio_id_oui(devid), ef4_mdio_id_model(devid),
372		   ef4_mdio_id_rev(devid));
373
374	if (efx->phy_type == PHY_TYPE_QT2025C)
375		qt2025c_firmware_id(efx);
376
377	return 0;
378}
379
380static int qt202x_link_ok(struct ef4_nic *efx)
381{
382	return ef4_mdio_links_ok(efx, QT202X_REQUIRED_DEVS);
383}
384
385static bool qt202x_phy_poll(struct ef4_nic *efx)
386{
387	bool was_up = efx->link_state.up;
388
389	efx->link_state.up = qt202x_link_ok(efx);
390	efx->link_state.speed = 10000;
391	efx->link_state.fd = true;
392	efx->link_state.fc = efx->wanted_fc;
393
394	if (efx->phy_type == PHY_TYPE_QT2025C)
395		qt2025c_bug17190_workaround(efx);
396
397	return efx->link_state.up != was_up;
398}
399
400static int qt202x_phy_reconfigure(struct ef4_nic *efx)
401{
402	struct qt202x_phy_data *phy_data = efx->phy_data;
403
404	if (efx->phy_type == PHY_TYPE_QT2025C) {
405		int rc = qt2025c_select_phy_mode(efx);
406		if (rc)
407			return rc;
408
409		/* There are several different register bits which can
410		 * disable TX (and save power) on direct-attach cables
411		 * or optical transceivers, varying somewhat between
412		 * firmware versions.  Only 'static mode' appears to
413		 * cover everything. */
414		mdio_set_flag(
415			&efx->mdio, efx->mdio.prtad, MDIO_MMD_PMAPMD,
416			PMA_PMD_FTX_CTRL2_REG, 1 << PMA_PMD_FTX_STATIC_LBN,
417			efx->phy_mode & PHY_MODE_TX_DISABLED ||
418			efx->phy_mode & PHY_MODE_LOW_POWER ||
419			efx->loopback_mode == LOOPBACK_PCS ||
420			efx->loopback_mode == LOOPBACK_PMAPMD);
421	} else {
422		/* Reset the PHY when moving from tx off to tx on */
423		if (!(efx->phy_mode & PHY_MODE_TX_DISABLED) &&
424		    (phy_data->phy_mode & PHY_MODE_TX_DISABLED))
425			qt202x_reset_phy(efx);
426
427		ef4_mdio_transmit_disable(efx);
428	}
429
430	ef4_mdio_phy_reconfigure(efx);
431
432	phy_data->phy_mode = efx->phy_mode;
433
434	return 0;
435}
436
437static void qt202x_phy_get_link_ksettings(struct ef4_nic *efx,
438					  struct ethtool_link_ksettings *cmd)
439{
440	mdio45_ethtool_ksettings_get(&efx->mdio, cmd);
441}
442
443static void qt202x_phy_remove(struct ef4_nic *efx)
444{
445	/* Free the context block */
446	kfree(efx->phy_data);
447	efx->phy_data = NULL;
448}
449
450static int qt202x_phy_get_module_info(struct ef4_nic *efx,
451				      struct ethtool_modinfo *modinfo)
452{
453	modinfo->type = ETH_MODULE_SFF_8079;
454	modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
455	return 0;
456}
457
458static int qt202x_phy_get_module_eeprom(struct ef4_nic *efx,
459					struct ethtool_eeprom *ee, u8 *data)
460{
461	int mmd, reg_base, rc, i;
462
463	if (efx->phy_type == PHY_TYPE_QT2025C) {
464		mmd = MDIO_MMD_PCS;
465		reg_base = 0xd000;
466	} else {
467		mmd = MDIO_MMD_PMAPMD;
468		reg_base = 0x8007;
469	}
470
471	for (i = 0; i < ee->len; i++) {
472		rc = ef4_mdio_read(efx, mmd, reg_base + ee->offset + i);
473		if (rc < 0)
474			return rc;
475		data[i] = rc;
476	}
477
478	return 0;
479}
480
481const struct ef4_phy_operations falcon_qt202x_phy_ops = {
482	.probe		 = qt202x_phy_probe,
483	.init		 = qt202x_phy_init,
484	.reconfigure	 = qt202x_phy_reconfigure,
485	.poll		 = qt202x_phy_poll,
486	.fini		 = ef4_port_dummy_op_void,
487	.remove		 = qt202x_phy_remove,
488	.get_link_ksettings = qt202x_phy_get_link_ksettings,
489	.set_link_ksettings = ef4_mdio_set_link_ksettings,
490	.test_alive	 = ef4_mdio_test_alive,
491	.get_module_eeprom = qt202x_phy_get_module_eeprom,
492	.get_module_info = qt202x_phy_get_module_info,
493};
494