1// SPDX-License-Identifier: GPL-2.0-only
2/****************************************************************************
3 * Driver for Solarflare network controllers and boards
4 * Copyright 2005-2006 Fen Systems Ltd.
5 * Copyright 2006-2013 Solarflare Communications Inc.
6 */
7
8#include <linux/bitops.h>
9#include <linux/delay.h>
10#include <linux/interrupt.h>
11#include <linux/pci.h>
12#include <linux/module.h>
13#include <linux/seq_file.h>
14#include <linux/crc32.h>
15#include "net_driver.h"
16#include "bitfield.h"
17#include "efx.h"
18#include "nic.h"
19#include "farch_regs.h"
20#include "io.h"
21#include "workarounds.h"
22
23/* Falcon-architecture (SFC4000) support */
24
25/**************************************************************************
26 *
27 * Configurable values
28 *
29 **************************************************************************
30 */
31
32/* This is set to 16 for a good reason.  In summary, if larger than
33 * 16, the descriptor cache holds more than a default socket
34 * buffer's worth of packets (for UDP we can only have at most one
35 * socket buffer's worth outstanding).  This combined with the fact
36 * that we only get 1 TX event per descriptor cache means the NIC
37 * goes idle.
38 */
39#define TX_DC_ENTRIES 16
40#define TX_DC_ENTRIES_ORDER 1
41
42#define RX_DC_ENTRIES 64
43#define RX_DC_ENTRIES_ORDER 3
44
45/* If EF4_MAX_INT_ERRORS internal errors occur within
46 * EF4_INT_ERROR_EXPIRE seconds, we consider the NIC broken and
47 * disable it.
48 */
49#define EF4_INT_ERROR_EXPIRE 3600
50#define EF4_MAX_INT_ERRORS 5
51
52/* Depth of RX flush request fifo */
53#define EF4_RX_FLUSH_COUNT 4
54
55/* Driver generated events */
56#define _EF4_CHANNEL_MAGIC_TEST		0x000101
57#define _EF4_CHANNEL_MAGIC_FILL		0x000102
58#define _EF4_CHANNEL_MAGIC_RX_DRAIN	0x000103
59#define _EF4_CHANNEL_MAGIC_TX_DRAIN	0x000104
60
61#define _EF4_CHANNEL_MAGIC(_code, _data)	((_code) << 8 | (_data))
62#define _EF4_CHANNEL_MAGIC_CODE(_magic)		((_magic) >> 8)
63
64#define EF4_CHANNEL_MAGIC_TEST(_channel)				\
65	_EF4_CHANNEL_MAGIC(_EF4_CHANNEL_MAGIC_TEST, (_channel)->channel)
66#define EF4_CHANNEL_MAGIC_FILL(_rx_queue)				\
67	_EF4_CHANNEL_MAGIC(_EF4_CHANNEL_MAGIC_FILL,			\
68			   ef4_rx_queue_index(_rx_queue))
69#define EF4_CHANNEL_MAGIC_RX_DRAIN(_rx_queue)				\
70	_EF4_CHANNEL_MAGIC(_EF4_CHANNEL_MAGIC_RX_DRAIN,			\
71			   ef4_rx_queue_index(_rx_queue))
72#define EF4_CHANNEL_MAGIC_TX_DRAIN(_tx_queue)				\
73	_EF4_CHANNEL_MAGIC(_EF4_CHANNEL_MAGIC_TX_DRAIN,			\
74			   (_tx_queue)->queue)
75
76static void ef4_farch_magic_event(struct ef4_channel *channel, u32 magic);
77
78/**************************************************************************
79 *
80 * Hardware access
81 *
82 **************************************************************************/
83
84static inline void ef4_write_buf_tbl(struct ef4_nic *efx, ef4_qword_t *value,
85				     unsigned int index)
86{
87	ef4_sram_writeq(efx, efx->membase + efx->type->buf_tbl_base,
88			value, index);
89}
90
91static bool ef4_masked_compare_oword(const ef4_oword_t *a, const ef4_oword_t *b,
92				     const ef4_oword_t *mask)
93{
94	return ((a->u64[0] ^ b->u64[0]) & mask->u64[0]) ||
95		((a->u64[1] ^ b->u64[1]) & mask->u64[1]);
96}
97
98int ef4_farch_test_registers(struct ef4_nic *efx,
99			     const struct ef4_farch_register_test *regs,
100			     size_t n_regs)
101{
102	unsigned address = 0;
103	int i, j;
104	ef4_oword_t mask, imask, original, reg, buf;
105
106	for (i = 0; i < n_regs; ++i) {
107		address = regs[i].address;
108		mask = imask = regs[i].mask;
109		EF4_INVERT_OWORD(imask);
110
111		ef4_reado(efx, &original, address);
112
113		/* bit sweep on and off */
114		for (j = 0; j < 128; j++) {
115			if (!EF4_EXTRACT_OWORD32(mask, j, j))
116				continue;
117
118			/* Test this testable bit can be set in isolation */
119			EF4_AND_OWORD(reg, original, mask);
120			EF4_SET_OWORD32(reg, j, j, 1);
121
122			ef4_writeo(efx, &reg, address);
123			ef4_reado(efx, &buf, address);
124
125			if (ef4_masked_compare_oword(&reg, &buf, &mask))
126				goto fail;
127
128			/* Test this testable bit can be cleared in isolation */
129			EF4_OR_OWORD(reg, original, mask);
130			EF4_SET_OWORD32(reg, j, j, 0);
131
132			ef4_writeo(efx, &reg, address);
133			ef4_reado(efx, &buf, address);
134
135			if (ef4_masked_compare_oword(&reg, &buf, &mask))
136				goto fail;
137		}
138
139		ef4_writeo(efx, &original, address);
140	}
141
142	return 0;
143
144fail:
145	netif_err(efx, hw, efx->net_dev,
146		  "wrote "EF4_OWORD_FMT" read "EF4_OWORD_FMT
147		  " at address 0x%x mask "EF4_OWORD_FMT"\n", EF4_OWORD_VAL(reg),
148		  EF4_OWORD_VAL(buf), address, EF4_OWORD_VAL(mask));
149	return -EIO;
150}
151
152/**************************************************************************
153 *
154 * Special buffer handling
155 * Special buffers are used for event queues and the TX and RX
156 * descriptor rings.
157 *
158 *************************************************************************/
159
160/*
161 * Initialise a special buffer
162 *
163 * This will define a buffer (previously allocated via
164 * ef4_alloc_special_buffer()) in the buffer table, allowing
165 * it to be used for event queues, descriptor rings etc.
166 */
167static void
168ef4_init_special_buffer(struct ef4_nic *efx, struct ef4_special_buffer *buffer)
169{
170	ef4_qword_t buf_desc;
171	unsigned int index;
172	dma_addr_t dma_addr;
173	int i;
174
175	EF4_BUG_ON_PARANOID(!buffer->buf.addr);
176
177	/* Write buffer descriptors to NIC */
178	for (i = 0; i < buffer->entries; i++) {
179		index = buffer->index + i;
180		dma_addr = buffer->buf.dma_addr + (i * EF4_BUF_SIZE);
181		netif_dbg(efx, probe, efx->net_dev,
182			  "mapping special buffer %d at %llx\n",
183			  index, (unsigned long long)dma_addr);
184		EF4_POPULATE_QWORD_3(buf_desc,
185				     FRF_AZ_BUF_ADR_REGION, 0,
186				     FRF_AZ_BUF_ADR_FBUF, dma_addr >> 12,
187				     FRF_AZ_BUF_OWNER_ID_FBUF, 0);
188		ef4_write_buf_tbl(efx, &buf_desc, index);
189	}
190}
191
192/* Unmaps a buffer and clears the buffer table entries */
193static void
194ef4_fini_special_buffer(struct ef4_nic *efx, struct ef4_special_buffer *buffer)
195{
196	ef4_oword_t buf_tbl_upd;
197	unsigned int start = buffer->index;
198	unsigned int end = (buffer->index + buffer->entries - 1);
199
200	if (!buffer->entries)
201		return;
202
203	netif_dbg(efx, hw, efx->net_dev, "unmapping special buffers %d-%d\n",
204		  buffer->index, buffer->index + buffer->entries - 1);
205
206	EF4_POPULATE_OWORD_4(buf_tbl_upd,
207			     FRF_AZ_BUF_UPD_CMD, 0,
208			     FRF_AZ_BUF_CLR_CMD, 1,
209			     FRF_AZ_BUF_CLR_END_ID, end,
210			     FRF_AZ_BUF_CLR_START_ID, start);
211	ef4_writeo(efx, &buf_tbl_upd, FR_AZ_BUF_TBL_UPD);
212}
213
214/*
215 * Allocate a new special buffer
216 *
217 * This allocates memory for a new buffer, clears it and allocates a
218 * new buffer ID range.  It does not write into the buffer table.
219 *
220 * This call will allocate 4KB buffers, since 8KB buffers can't be
221 * used for event queues and descriptor rings.
222 */
223static int ef4_alloc_special_buffer(struct ef4_nic *efx,
224				    struct ef4_special_buffer *buffer,
225				    unsigned int len)
226{
227	len = ALIGN(len, EF4_BUF_SIZE);
228
229	if (ef4_nic_alloc_buffer(efx, &buffer->buf, len, GFP_KERNEL))
230		return -ENOMEM;
231	buffer->entries = len / EF4_BUF_SIZE;
232	BUG_ON(buffer->buf.dma_addr & (EF4_BUF_SIZE - 1));
233
234	/* Select new buffer ID */
235	buffer->index = efx->next_buffer_table;
236	efx->next_buffer_table += buffer->entries;
237
238	netif_dbg(efx, probe, efx->net_dev,
239		  "allocating special buffers %d-%d at %llx+%x "
240		  "(virt %p phys %llx)\n", buffer->index,
241		  buffer->index + buffer->entries - 1,
242		  (u64)buffer->buf.dma_addr, len,
243		  buffer->buf.addr, (u64)virt_to_phys(buffer->buf.addr));
244
245	return 0;
246}
247
248static void
249ef4_free_special_buffer(struct ef4_nic *efx, struct ef4_special_buffer *buffer)
250{
251	if (!buffer->buf.addr)
252		return;
253
254	netif_dbg(efx, hw, efx->net_dev,
255		  "deallocating special buffers %d-%d at %llx+%x "
256		  "(virt %p phys %llx)\n", buffer->index,
257		  buffer->index + buffer->entries - 1,
258		  (u64)buffer->buf.dma_addr, buffer->buf.len,
259		  buffer->buf.addr, (u64)virt_to_phys(buffer->buf.addr));
260
261	ef4_nic_free_buffer(efx, &buffer->buf);
262	buffer->entries = 0;
263}
264
265/**************************************************************************
266 *
267 * TX path
268 *
269 **************************************************************************/
270
271/* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
272static inline void ef4_farch_notify_tx_desc(struct ef4_tx_queue *tx_queue)
273{
274	unsigned write_ptr;
275	ef4_dword_t reg;
276
277	write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
278	EF4_POPULATE_DWORD_1(reg, FRF_AZ_TX_DESC_WPTR_DWORD, write_ptr);
279	ef4_writed_page(tx_queue->efx, &reg,
280			FR_AZ_TX_DESC_UPD_DWORD_P0, tx_queue->queue);
281}
282
283/* Write pointer and first descriptor for TX descriptor ring */
284static inline void ef4_farch_push_tx_desc(struct ef4_tx_queue *tx_queue,
285					  const ef4_qword_t *txd)
286{
287	unsigned write_ptr;
288	ef4_oword_t reg;
289
290	BUILD_BUG_ON(FRF_AZ_TX_DESC_LBN != 0);
291	BUILD_BUG_ON(FR_AA_TX_DESC_UPD_KER != FR_BZ_TX_DESC_UPD_P0);
292
293	write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
294	EF4_POPULATE_OWORD_2(reg, FRF_AZ_TX_DESC_PUSH_CMD, true,
295			     FRF_AZ_TX_DESC_WPTR, write_ptr);
296	reg.qword[0] = *txd;
297	ef4_writeo_page(tx_queue->efx, &reg,
298			FR_BZ_TX_DESC_UPD_P0, tx_queue->queue);
299}
300
301
302/* For each entry inserted into the software descriptor ring, create a
303 * descriptor in the hardware TX descriptor ring (in host memory), and
304 * write a doorbell.
305 */
306void ef4_farch_tx_write(struct ef4_tx_queue *tx_queue)
307{
308	struct ef4_tx_buffer *buffer;
309	ef4_qword_t *txd;
310	unsigned write_ptr;
311	unsigned old_write_count = tx_queue->write_count;
312
313	tx_queue->xmit_more_available = false;
314	if (unlikely(tx_queue->write_count == tx_queue->insert_count))
315		return;
316
317	do {
318		write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
319		buffer = &tx_queue->buffer[write_ptr];
320		txd = ef4_tx_desc(tx_queue, write_ptr);
321		++tx_queue->write_count;
322
323		EF4_BUG_ON_PARANOID(buffer->flags & EF4_TX_BUF_OPTION);
324
325		/* Create TX descriptor ring entry */
326		BUILD_BUG_ON(EF4_TX_BUF_CONT != 1);
327		EF4_POPULATE_QWORD_4(*txd,
328				     FSF_AZ_TX_KER_CONT,
329				     buffer->flags & EF4_TX_BUF_CONT,
330				     FSF_AZ_TX_KER_BYTE_COUNT, buffer->len,
331				     FSF_AZ_TX_KER_BUF_REGION, 0,
332				     FSF_AZ_TX_KER_BUF_ADDR, buffer->dma_addr);
333	} while (tx_queue->write_count != tx_queue->insert_count);
334
335	wmb(); /* Ensure descriptors are written before they are fetched */
336
337	if (ef4_nic_may_push_tx_desc(tx_queue, old_write_count)) {
338		txd = ef4_tx_desc(tx_queue,
339				  old_write_count & tx_queue->ptr_mask);
340		ef4_farch_push_tx_desc(tx_queue, txd);
341		++tx_queue->pushes;
342	} else {
343		ef4_farch_notify_tx_desc(tx_queue);
344	}
345}
346
347unsigned int ef4_farch_tx_limit_len(struct ef4_tx_queue *tx_queue,
348				    dma_addr_t dma_addr, unsigned int len)
349{
350	/* Don't cross 4K boundaries with descriptors. */
351	unsigned int limit = (~dma_addr & (EF4_PAGE_SIZE - 1)) + 1;
352
353	len = min(limit, len);
354
355	if (EF4_WORKAROUND_5391(tx_queue->efx) && (dma_addr & 0xf))
356		len = min_t(unsigned int, len, 512 - (dma_addr & 0xf));
357
358	return len;
359}
360
361
362/* Allocate hardware resources for a TX queue */
363int ef4_farch_tx_probe(struct ef4_tx_queue *tx_queue)
364{
365	struct ef4_nic *efx = tx_queue->efx;
366	unsigned entries;
367
368	entries = tx_queue->ptr_mask + 1;
369	return ef4_alloc_special_buffer(efx, &tx_queue->txd,
370					entries * sizeof(ef4_qword_t));
371}
372
373void ef4_farch_tx_init(struct ef4_tx_queue *tx_queue)
374{
375	struct ef4_nic *efx = tx_queue->efx;
376	ef4_oword_t reg;
377
378	/* Pin TX descriptor ring */
379	ef4_init_special_buffer(efx, &tx_queue->txd);
380
381	/* Push TX descriptor ring to card */
382	EF4_POPULATE_OWORD_10(reg,
383			      FRF_AZ_TX_DESCQ_EN, 1,
384			      FRF_AZ_TX_ISCSI_DDIG_EN, 0,
385			      FRF_AZ_TX_ISCSI_HDIG_EN, 0,
386			      FRF_AZ_TX_DESCQ_BUF_BASE_ID, tx_queue->txd.index,
387			      FRF_AZ_TX_DESCQ_EVQ_ID,
388			      tx_queue->channel->channel,
389			      FRF_AZ_TX_DESCQ_OWNER_ID, 0,
390			      FRF_AZ_TX_DESCQ_LABEL, tx_queue->queue,
391			      FRF_AZ_TX_DESCQ_SIZE,
392			      __ffs(tx_queue->txd.entries),
393			      FRF_AZ_TX_DESCQ_TYPE, 0,
394			      FRF_BZ_TX_NON_IP_DROP_DIS, 1);
395
396	if (ef4_nic_rev(efx) >= EF4_REV_FALCON_B0) {
397		int csum = tx_queue->queue & EF4_TXQ_TYPE_OFFLOAD;
398		EF4_SET_OWORD_FIELD(reg, FRF_BZ_TX_IP_CHKSM_DIS, !csum);
399		EF4_SET_OWORD_FIELD(reg, FRF_BZ_TX_TCP_CHKSM_DIS,
400				    !csum);
401	}
402
403	ef4_writeo_table(efx, &reg, efx->type->txd_ptr_tbl_base,
404			 tx_queue->queue);
405
406	if (ef4_nic_rev(efx) < EF4_REV_FALCON_B0) {
407		/* Only 128 bits in this register */
408		BUILD_BUG_ON(EF4_MAX_TX_QUEUES > 128);
409
410		ef4_reado(efx, &reg, FR_AA_TX_CHKSM_CFG);
411		if (tx_queue->queue & EF4_TXQ_TYPE_OFFLOAD)
412			__clear_bit_le(tx_queue->queue, &reg);
413		else
414			__set_bit_le(tx_queue->queue, &reg);
415		ef4_writeo(efx, &reg, FR_AA_TX_CHKSM_CFG);
416	}
417
418	if (ef4_nic_rev(efx) >= EF4_REV_FALCON_B0) {
419		EF4_POPULATE_OWORD_1(reg,
420				     FRF_BZ_TX_PACE,
421				     (tx_queue->queue & EF4_TXQ_TYPE_HIGHPRI) ?
422				     FFE_BZ_TX_PACE_OFF :
423				     FFE_BZ_TX_PACE_RESERVED);
424		ef4_writeo_table(efx, &reg, FR_BZ_TX_PACE_TBL,
425				 tx_queue->queue);
426	}
427}
428
429static void ef4_farch_flush_tx_queue(struct ef4_tx_queue *tx_queue)
430{
431	struct ef4_nic *efx = tx_queue->efx;
432	ef4_oword_t tx_flush_descq;
433
434	WARN_ON(atomic_read(&tx_queue->flush_outstanding));
435	atomic_set(&tx_queue->flush_outstanding, 1);
436
437	EF4_POPULATE_OWORD_2(tx_flush_descq,
438			     FRF_AZ_TX_FLUSH_DESCQ_CMD, 1,
439			     FRF_AZ_TX_FLUSH_DESCQ, tx_queue->queue);
440	ef4_writeo(efx, &tx_flush_descq, FR_AZ_TX_FLUSH_DESCQ);
441}
442
443void ef4_farch_tx_fini(struct ef4_tx_queue *tx_queue)
444{
445	struct ef4_nic *efx = tx_queue->efx;
446	ef4_oword_t tx_desc_ptr;
447
448	/* Remove TX descriptor ring from card */
449	EF4_ZERO_OWORD(tx_desc_ptr);
450	ef4_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
451			 tx_queue->queue);
452
453	/* Unpin TX descriptor ring */
454	ef4_fini_special_buffer(efx, &tx_queue->txd);
455}
456
457/* Free buffers backing TX queue */
458void ef4_farch_tx_remove(struct ef4_tx_queue *tx_queue)
459{
460	ef4_free_special_buffer(tx_queue->efx, &tx_queue->txd);
461}
462
463/**************************************************************************
464 *
465 * RX path
466 *
467 **************************************************************************/
468
469/* This creates an entry in the RX descriptor queue */
470static inline void
471ef4_farch_build_rx_desc(struct ef4_rx_queue *rx_queue, unsigned index)
472{
473	struct ef4_rx_buffer *rx_buf;
474	ef4_qword_t *rxd;
475
476	rxd = ef4_rx_desc(rx_queue, index);
477	rx_buf = ef4_rx_buffer(rx_queue, index);
478	EF4_POPULATE_QWORD_3(*rxd,
479			     FSF_AZ_RX_KER_BUF_SIZE,
480			     rx_buf->len -
481			     rx_queue->efx->type->rx_buffer_padding,
482			     FSF_AZ_RX_KER_BUF_REGION, 0,
483			     FSF_AZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
484}
485
486/* This writes to the RX_DESC_WPTR register for the specified receive
487 * descriptor ring.
488 */
489void ef4_farch_rx_write(struct ef4_rx_queue *rx_queue)
490{
491	struct ef4_nic *efx = rx_queue->efx;
492	ef4_dword_t reg;
493	unsigned write_ptr;
494
495	while (rx_queue->notified_count != rx_queue->added_count) {
496		ef4_farch_build_rx_desc(
497			rx_queue,
498			rx_queue->notified_count & rx_queue->ptr_mask);
499		++rx_queue->notified_count;
500	}
501
502	wmb();
503	write_ptr = rx_queue->added_count & rx_queue->ptr_mask;
504	EF4_POPULATE_DWORD_1(reg, FRF_AZ_RX_DESC_WPTR_DWORD, write_ptr);
505	ef4_writed_page(efx, &reg, FR_AZ_RX_DESC_UPD_DWORD_P0,
506			ef4_rx_queue_index(rx_queue));
507}
508
509int ef4_farch_rx_probe(struct ef4_rx_queue *rx_queue)
510{
511	struct ef4_nic *efx = rx_queue->efx;
512	unsigned entries;
513
514	entries = rx_queue->ptr_mask + 1;
515	return ef4_alloc_special_buffer(efx, &rx_queue->rxd,
516					entries * sizeof(ef4_qword_t));
517}
518
519void ef4_farch_rx_init(struct ef4_rx_queue *rx_queue)
520{
521	ef4_oword_t rx_desc_ptr;
522	struct ef4_nic *efx = rx_queue->efx;
523	bool is_b0 = ef4_nic_rev(efx) >= EF4_REV_FALCON_B0;
524	bool iscsi_digest_en = is_b0;
525	bool jumbo_en;
526
527	/* For kernel-mode queues in Falcon A1, the JUMBO flag enables
528	 * DMA to continue after a PCIe page boundary (and scattering
529	 * is not possible).  In Falcon B0 and Siena, it enables
530	 * scatter.
531	 */
532	jumbo_en = !is_b0 || efx->rx_scatter;
533
534	netif_dbg(efx, hw, efx->net_dev,
535		  "RX queue %d ring in special buffers %d-%d\n",
536		  ef4_rx_queue_index(rx_queue), rx_queue->rxd.index,
537		  rx_queue->rxd.index + rx_queue->rxd.entries - 1);
538
539	rx_queue->scatter_n = 0;
540
541	/* Pin RX descriptor ring */
542	ef4_init_special_buffer(efx, &rx_queue->rxd);
543
544	/* Push RX descriptor ring to card */
545	EF4_POPULATE_OWORD_10(rx_desc_ptr,
546			      FRF_AZ_RX_ISCSI_DDIG_EN, iscsi_digest_en,
547			      FRF_AZ_RX_ISCSI_HDIG_EN, iscsi_digest_en,
548			      FRF_AZ_RX_DESCQ_BUF_BASE_ID, rx_queue->rxd.index,
549			      FRF_AZ_RX_DESCQ_EVQ_ID,
550			      ef4_rx_queue_channel(rx_queue)->channel,
551			      FRF_AZ_RX_DESCQ_OWNER_ID, 0,
552			      FRF_AZ_RX_DESCQ_LABEL,
553			      ef4_rx_queue_index(rx_queue),
554			      FRF_AZ_RX_DESCQ_SIZE,
555			      __ffs(rx_queue->rxd.entries),
556			      FRF_AZ_RX_DESCQ_TYPE, 0 /* kernel queue */ ,
557			      FRF_AZ_RX_DESCQ_JUMBO, jumbo_en,
558			      FRF_AZ_RX_DESCQ_EN, 1);
559	ef4_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
560			 ef4_rx_queue_index(rx_queue));
561}
562
563static void ef4_farch_flush_rx_queue(struct ef4_rx_queue *rx_queue)
564{
565	struct ef4_nic *efx = rx_queue->efx;
566	ef4_oword_t rx_flush_descq;
567
568	EF4_POPULATE_OWORD_2(rx_flush_descq,
569			     FRF_AZ_RX_FLUSH_DESCQ_CMD, 1,
570			     FRF_AZ_RX_FLUSH_DESCQ,
571			     ef4_rx_queue_index(rx_queue));
572	ef4_writeo(efx, &rx_flush_descq, FR_AZ_RX_FLUSH_DESCQ);
573}
574
575void ef4_farch_rx_fini(struct ef4_rx_queue *rx_queue)
576{
577	ef4_oword_t rx_desc_ptr;
578	struct ef4_nic *efx = rx_queue->efx;
579
580	/* Remove RX descriptor ring from card */
581	EF4_ZERO_OWORD(rx_desc_ptr);
582	ef4_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
583			 ef4_rx_queue_index(rx_queue));
584
585	/* Unpin RX descriptor ring */
586	ef4_fini_special_buffer(efx, &rx_queue->rxd);
587}
588
589/* Free buffers backing RX queue */
590void ef4_farch_rx_remove(struct ef4_rx_queue *rx_queue)
591{
592	ef4_free_special_buffer(rx_queue->efx, &rx_queue->rxd);
593}
594
595/**************************************************************************
596 *
597 * Flush handling
598 *
599 **************************************************************************/
600
601/* ef4_farch_flush_queues() must be woken up when all flushes are completed,
602 * or more RX flushes can be kicked off.
603 */
604static bool ef4_farch_flush_wake(struct ef4_nic *efx)
605{
606	/* Ensure that all updates are visible to ef4_farch_flush_queues() */
607	smp_mb();
608
609	return (atomic_read(&efx->active_queues) == 0 ||
610		(atomic_read(&efx->rxq_flush_outstanding) < EF4_RX_FLUSH_COUNT
611		 && atomic_read(&efx->rxq_flush_pending) > 0));
612}
613
614static bool ef4_check_tx_flush_complete(struct ef4_nic *efx)
615{
616	bool i = true;
617	ef4_oword_t txd_ptr_tbl;
618	struct ef4_channel *channel;
619	struct ef4_tx_queue *tx_queue;
620
621	ef4_for_each_channel(channel, efx) {
622		ef4_for_each_channel_tx_queue(tx_queue, channel) {
623			ef4_reado_table(efx, &txd_ptr_tbl,
624					FR_BZ_TX_DESC_PTR_TBL, tx_queue->queue);
625			if (EF4_OWORD_FIELD(txd_ptr_tbl,
626					    FRF_AZ_TX_DESCQ_FLUSH) ||
627			    EF4_OWORD_FIELD(txd_ptr_tbl,
628					    FRF_AZ_TX_DESCQ_EN)) {
629				netif_dbg(efx, hw, efx->net_dev,
630					  "flush did not complete on TXQ %d\n",
631					  tx_queue->queue);
632				i = false;
633			} else if (atomic_cmpxchg(&tx_queue->flush_outstanding,
634						  1, 0)) {
635				/* The flush is complete, but we didn't
636				 * receive a flush completion event
637				 */
638				netif_dbg(efx, hw, efx->net_dev,
639					  "flush complete on TXQ %d, so drain "
640					  "the queue\n", tx_queue->queue);
641				/* Don't need to increment active_queues as it
642				 * has already been incremented for the queues
643				 * which did not drain
644				 */
645				ef4_farch_magic_event(channel,
646						      EF4_CHANNEL_MAGIC_TX_DRAIN(
647							      tx_queue));
648			}
649		}
650	}
651
652	return i;
653}
654
655/* Flush all the transmit queues, and continue flushing receive queues until
656 * they're all flushed. Wait for the DRAIN events to be received so that there
657 * are no more RX and TX events left on any channel. */
658static int ef4_farch_do_flush(struct ef4_nic *efx)
659{
660	unsigned timeout = msecs_to_jiffies(5000); /* 5s for all flushes and drains */
661	struct ef4_channel *channel;
662	struct ef4_rx_queue *rx_queue;
663	struct ef4_tx_queue *tx_queue;
664	int rc = 0;
665
666	ef4_for_each_channel(channel, efx) {
667		ef4_for_each_channel_tx_queue(tx_queue, channel) {
668			ef4_farch_flush_tx_queue(tx_queue);
669		}
670		ef4_for_each_channel_rx_queue(rx_queue, channel) {
671			rx_queue->flush_pending = true;
672			atomic_inc(&efx->rxq_flush_pending);
673		}
674	}
675
676	while (timeout && atomic_read(&efx->active_queues) > 0) {
677		/* The hardware supports four concurrent rx flushes, each of
678		 * which may need to be retried if there is an outstanding
679		 * descriptor fetch
680		 */
681		ef4_for_each_channel(channel, efx) {
682			ef4_for_each_channel_rx_queue(rx_queue, channel) {
683				if (atomic_read(&efx->rxq_flush_outstanding) >=
684				    EF4_RX_FLUSH_COUNT)
685					break;
686
687				if (rx_queue->flush_pending) {
688					rx_queue->flush_pending = false;
689					atomic_dec(&efx->rxq_flush_pending);
690					atomic_inc(&efx->rxq_flush_outstanding);
691					ef4_farch_flush_rx_queue(rx_queue);
692				}
693			}
694		}
695
696		timeout = wait_event_timeout(efx->flush_wq,
697					     ef4_farch_flush_wake(efx),
698					     timeout);
699	}
700
701	if (atomic_read(&efx->active_queues) &&
702	    !ef4_check_tx_flush_complete(efx)) {
703		netif_err(efx, hw, efx->net_dev, "failed to flush %d queues "
704			  "(rx %d+%d)\n", atomic_read(&efx->active_queues),
705			  atomic_read(&efx->rxq_flush_outstanding),
706			  atomic_read(&efx->rxq_flush_pending));
707		rc = -ETIMEDOUT;
708
709		atomic_set(&efx->active_queues, 0);
710		atomic_set(&efx->rxq_flush_pending, 0);
711		atomic_set(&efx->rxq_flush_outstanding, 0);
712	}
713
714	return rc;
715}
716
717int ef4_farch_fini_dmaq(struct ef4_nic *efx)
718{
719	struct ef4_channel *channel;
720	struct ef4_tx_queue *tx_queue;
721	struct ef4_rx_queue *rx_queue;
722	int rc = 0;
723
724	/* Do not attempt to write to the NIC during EEH recovery */
725	if (efx->state != STATE_RECOVERY) {
726		/* Only perform flush if DMA is enabled */
727		if (efx->pci_dev->is_busmaster) {
728			efx->type->prepare_flush(efx);
729			rc = ef4_farch_do_flush(efx);
730			efx->type->finish_flush(efx);
731		}
732
733		ef4_for_each_channel(channel, efx) {
734			ef4_for_each_channel_rx_queue(rx_queue, channel)
735				ef4_farch_rx_fini(rx_queue);
736			ef4_for_each_channel_tx_queue(tx_queue, channel)
737				ef4_farch_tx_fini(tx_queue);
738		}
739	}
740
741	return rc;
742}
743
744/* Reset queue and flush accounting after FLR
745 *
746 * One possible cause of FLR recovery is that DMA may be failing (eg. if bus
747 * mastering was disabled), in which case we don't receive (RXQ) flush
748 * completion events.  This means that efx->rxq_flush_outstanding remained at 4
749 * after the FLR; also, efx->active_queues was non-zero (as no flush completion
750 * events were received, and we didn't go through ef4_check_tx_flush_complete())
751 * If we don't fix this up, on the next call to ef4_realloc_channels() we won't
752 * flush any RX queues because efx->rxq_flush_outstanding is at the limit of 4
753 * for batched flush requests; and the efx->active_queues gets messed up because
754 * we keep incrementing for the newly initialised queues, but it never went to
755 * zero previously.  Then we get a timeout every time we try to restart the
756 * queues, as it doesn't go back to zero when we should be flushing the queues.
757 */
758void ef4_farch_finish_flr(struct ef4_nic *efx)
759{
760	atomic_set(&efx->rxq_flush_pending, 0);
761	atomic_set(&efx->rxq_flush_outstanding, 0);
762	atomic_set(&efx->active_queues, 0);
763}
764
765
766/**************************************************************************
767 *
768 * Event queue processing
769 * Event queues are processed by per-channel tasklets.
770 *
771 **************************************************************************/
772
773/* Update a channel's event queue's read pointer (RPTR) register
774 *
775 * This writes the EVQ_RPTR_REG register for the specified channel's
776 * event queue.
777 */
778void ef4_farch_ev_read_ack(struct ef4_channel *channel)
779{
780	ef4_dword_t reg;
781	struct ef4_nic *efx = channel->efx;
782
783	EF4_POPULATE_DWORD_1(reg, FRF_AZ_EVQ_RPTR,
784			     channel->eventq_read_ptr & channel->eventq_mask);
785
786	/* For Falcon A1, EVQ_RPTR_KER is documented as having a step size
787	 * of 4 bytes, but it is really 16 bytes just like later revisions.
788	 */
789	ef4_writed(efx, &reg,
790		   efx->type->evq_rptr_tbl_base +
791		   FR_BZ_EVQ_RPTR_STEP * channel->channel);
792}
793
794/* Use HW to insert a SW defined event */
795void ef4_farch_generate_event(struct ef4_nic *efx, unsigned int evq,
796			      ef4_qword_t *event)
797{
798	ef4_oword_t drv_ev_reg;
799
800	BUILD_BUG_ON(FRF_AZ_DRV_EV_DATA_LBN != 0 ||
801		     FRF_AZ_DRV_EV_DATA_WIDTH != 64);
802	drv_ev_reg.u32[0] = event->u32[0];
803	drv_ev_reg.u32[1] = event->u32[1];
804	drv_ev_reg.u32[2] = 0;
805	drv_ev_reg.u32[3] = 0;
806	EF4_SET_OWORD_FIELD(drv_ev_reg, FRF_AZ_DRV_EV_QID, evq);
807	ef4_writeo(efx, &drv_ev_reg, FR_AZ_DRV_EV);
808}
809
810static void ef4_farch_magic_event(struct ef4_channel *channel, u32 magic)
811{
812	ef4_qword_t event;
813
814	EF4_POPULATE_QWORD_2(event, FSF_AZ_EV_CODE,
815			     FSE_AZ_EV_CODE_DRV_GEN_EV,
816			     FSF_AZ_DRV_GEN_EV_MAGIC, magic);
817	ef4_farch_generate_event(channel->efx, channel->channel, &event);
818}
819
820/* Handle a transmit completion event
821 *
822 * The NIC batches TX completion events; the message we receive is of
823 * the form "complete all TX events up to this index".
824 */
825static int
826ef4_farch_handle_tx_event(struct ef4_channel *channel, ef4_qword_t *event)
827{
828	unsigned int tx_ev_desc_ptr;
829	unsigned int tx_ev_q_label;
830	struct ef4_tx_queue *tx_queue;
831	struct ef4_nic *efx = channel->efx;
832	int tx_packets = 0;
833
834	if (unlikely(READ_ONCE(efx->reset_pending)))
835		return 0;
836
837	if (likely(EF4_QWORD_FIELD(*event, FSF_AZ_TX_EV_COMP))) {
838		/* Transmit completion */
839		tx_ev_desc_ptr = EF4_QWORD_FIELD(*event, FSF_AZ_TX_EV_DESC_PTR);
840		tx_ev_q_label = EF4_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
841		tx_queue = ef4_channel_get_tx_queue(
842			channel, tx_ev_q_label % EF4_TXQ_TYPES);
843		tx_packets = ((tx_ev_desc_ptr - tx_queue->read_count) &
844			      tx_queue->ptr_mask);
845		ef4_xmit_done(tx_queue, tx_ev_desc_ptr);
846	} else if (EF4_QWORD_FIELD(*event, FSF_AZ_TX_EV_WQ_FF_FULL)) {
847		/* Rewrite the FIFO write pointer */
848		tx_ev_q_label = EF4_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
849		tx_queue = ef4_channel_get_tx_queue(
850			channel, tx_ev_q_label % EF4_TXQ_TYPES);
851
852		netif_tx_lock(efx->net_dev);
853		ef4_farch_notify_tx_desc(tx_queue);
854		netif_tx_unlock(efx->net_dev);
855	} else if (EF4_QWORD_FIELD(*event, FSF_AZ_TX_EV_PKT_ERR)) {
856		ef4_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
857	} else {
858		netif_err(efx, tx_err, efx->net_dev,
859			  "channel %d unexpected TX event "
860			  EF4_QWORD_FMT"\n", channel->channel,
861			  EF4_QWORD_VAL(*event));
862	}
863
864	return tx_packets;
865}
866
867/* Detect errors included in the rx_evt_pkt_ok bit. */
868static u16 ef4_farch_handle_rx_not_ok(struct ef4_rx_queue *rx_queue,
869				      const ef4_qword_t *event)
870{
871	struct ef4_channel *channel = ef4_rx_queue_channel(rx_queue);
872	struct ef4_nic *efx = rx_queue->efx;
873	bool __maybe_unused rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err;
874	bool rx_ev_tcp_udp_chksum_err, rx_ev_eth_crc_err;
875	bool rx_ev_frm_trunc, rx_ev_drib_nib, rx_ev_tobe_disc;
876	bool rx_ev_pause_frm;
877
878	rx_ev_tobe_disc = EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_TOBE_DISC);
879	rx_ev_buf_owner_id_err = EF4_QWORD_FIELD(*event,
880						 FSF_AZ_RX_EV_BUF_OWNER_ID_ERR);
881	rx_ev_ip_hdr_chksum_err = EF4_QWORD_FIELD(*event,
882						  FSF_AZ_RX_EV_IP_HDR_CHKSUM_ERR);
883	rx_ev_tcp_udp_chksum_err = EF4_QWORD_FIELD(*event,
884						   FSF_AZ_RX_EV_TCP_UDP_CHKSUM_ERR);
885	rx_ev_eth_crc_err = EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_ETH_CRC_ERR);
886	rx_ev_frm_trunc = EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_FRM_TRUNC);
887	rx_ev_drib_nib = ((ef4_nic_rev(efx) >= EF4_REV_FALCON_B0) ?
888			  0 : EF4_QWORD_FIELD(*event, FSF_AA_RX_EV_DRIB_NIB));
889	rx_ev_pause_frm = EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_PAUSE_FRM_ERR);
890
891
892	/* Count errors that are not in MAC stats.  Ignore expected
893	 * checksum errors during self-test. */
894	if (rx_ev_frm_trunc)
895		++channel->n_rx_frm_trunc;
896	else if (rx_ev_tobe_disc)
897		++channel->n_rx_tobe_disc;
898	else if (!efx->loopback_selftest) {
899		if (rx_ev_ip_hdr_chksum_err)
900			++channel->n_rx_ip_hdr_chksum_err;
901		else if (rx_ev_tcp_udp_chksum_err)
902			++channel->n_rx_tcp_udp_chksum_err;
903	}
904
905	/* TOBE_DISC is expected on unicast mismatches; don't print out an
906	 * error message.  FRM_TRUNC indicates RXDP dropped the packet due
907	 * to a FIFO overflow.
908	 */
909#ifdef DEBUG
910	{
911	/* Every error apart from tobe_disc and pause_frm */
912
913	bool rx_ev_other_err = (rx_ev_drib_nib | rx_ev_tcp_udp_chksum_err |
914				rx_ev_buf_owner_id_err | rx_ev_eth_crc_err |
915				rx_ev_frm_trunc | rx_ev_ip_hdr_chksum_err);
916
917	if (rx_ev_other_err && net_ratelimit()) {
918		netif_dbg(efx, rx_err, efx->net_dev,
919			  " RX queue %d unexpected RX event "
920			  EF4_QWORD_FMT "%s%s%s%s%s%s%s%s\n",
921			  ef4_rx_queue_index(rx_queue), EF4_QWORD_VAL(*event),
922			  rx_ev_buf_owner_id_err ? " [OWNER_ID_ERR]" : "",
923			  rx_ev_ip_hdr_chksum_err ?
924			  " [IP_HDR_CHKSUM_ERR]" : "",
925			  rx_ev_tcp_udp_chksum_err ?
926			  " [TCP_UDP_CHKSUM_ERR]" : "",
927			  rx_ev_eth_crc_err ? " [ETH_CRC_ERR]" : "",
928			  rx_ev_frm_trunc ? " [FRM_TRUNC]" : "",
929			  rx_ev_drib_nib ? " [DRIB_NIB]" : "",
930			  rx_ev_tobe_disc ? " [TOBE_DISC]" : "",
931			  rx_ev_pause_frm ? " [PAUSE]" : "");
932	}
933	}
934#endif
935
936	/* The frame must be discarded if any of these are true. */
937	return (rx_ev_eth_crc_err | rx_ev_frm_trunc | rx_ev_drib_nib |
938		rx_ev_tobe_disc | rx_ev_pause_frm) ?
939		EF4_RX_PKT_DISCARD : 0;
940}
941
942/* Handle receive events that are not in-order. Return true if this
943 * can be handled as a partial packet discard, false if it's more
944 * serious.
945 */
946static bool
947ef4_farch_handle_rx_bad_index(struct ef4_rx_queue *rx_queue, unsigned index)
948{
949	struct ef4_channel *channel = ef4_rx_queue_channel(rx_queue);
950	struct ef4_nic *efx = rx_queue->efx;
951	unsigned expected, dropped;
952
953	if (rx_queue->scatter_n &&
954	    index == ((rx_queue->removed_count + rx_queue->scatter_n - 1) &
955		      rx_queue->ptr_mask)) {
956		++channel->n_rx_nodesc_trunc;
957		return true;
958	}
959
960	expected = rx_queue->removed_count & rx_queue->ptr_mask;
961	dropped = (index - expected) & rx_queue->ptr_mask;
962	netif_info(efx, rx_err, efx->net_dev,
963		   "dropped %d events (index=%d expected=%d)\n",
964		   dropped, index, expected);
965
966	ef4_schedule_reset(efx, EF4_WORKAROUND_5676(efx) ?
967			   RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
968	return false;
969}
970
971/* Handle a packet received event
972 *
973 * The NIC gives a "discard" flag if it's a unicast packet with the
974 * wrong destination address
975 * Also "is multicast" and "matches multicast filter" flags can be used to
976 * discard non-matching multicast packets.
977 */
978static void
979ef4_farch_handle_rx_event(struct ef4_channel *channel, const ef4_qword_t *event)
980{
981	unsigned int rx_ev_desc_ptr, rx_ev_byte_cnt;
982	unsigned int rx_ev_hdr_type, rx_ev_mcast_pkt;
983	unsigned expected_ptr;
984	bool rx_ev_pkt_ok, rx_ev_sop, rx_ev_cont;
985	u16 flags;
986	struct ef4_rx_queue *rx_queue;
987	struct ef4_nic *efx = channel->efx;
988
989	if (unlikely(READ_ONCE(efx->reset_pending)))
990		return;
991
992	rx_ev_cont = EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_JUMBO_CONT);
993	rx_ev_sop = EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_SOP);
994	WARN_ON(EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_Q_LABEL) !=
995		channel->channel);
996
997	rx_queue = ef4_channel_get_rx_queue(channel);
998
999	rx_ev_desc_ptr = EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_DESC_PTR);
1000	expected_ptr = ((rx_queue->removed_count + rx_queue->scatter_n) &
1001			rx_queue->ptr_mask);
1002
1003	/* Check for partial drops and other errors */
1004	if (unlikely(rx_ev_desc_ptr != expected_ptr) ||
1005	    unlikely(rx_ev_sop != (rx_queue->scatter_n == 0))) {
1006		if (rx_ev_desc_ptr != expected_ptr &&
1007		    !ef4_farch_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr))
1008			return;
1009
1010		/* Discard all pending fragments */
1011		if (rx_queue->scatter_n) {
1012			ef4_rx_packet(
1013				rx_queue,
1014				rx_queue->removed_count & rx_queue->ptr_mask,
1015				rx_queue->scatter_n, 0, EF4_RX_PKT_DISCARD);
1016			rx_queue->removed_count += rx_queue->scatter_n;
1017			rx_queue->scatter_n = 0;
1018		}
1019
1020		/* Return if there is no new fragment */
1021		if (rx_ev_desc_ptr != expected_ptr)
1022			return;
1023
1024		/* Discard new fragment if not SOP */
1025		if (!rx_ev_sop) {
1026			ef4_rx_packet(
1027				rx_queue,
1028				rx_queue->removed_count & rx_queue->ptr_mask,
1029				1, 0, EF4_RX_PKT_DISCARD);
1030			++rx_queue->removed_count;
1031			return;
1032		}
1033	}
1034
1035	++rx_queue->scatter_n;
1036	if (rx_ev_cont)
1037		return;
1038
1039	rx_ev_byte_cnt = EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_BYTE_CNT);
1040	rx_ev_pkt_ok = EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_OK);
1041	rx_ev_hdr_type = EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
1042
1043	if (likely(rx_ev_pkt_ok)) {
1044		/* If packet is marked as OK then we can rely on the
1045		 * hardware checksum and classification.
1046		 */
1047		flags = 0;
1048		switch (rx_ev_hdr_type) {
1049		case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_TCP:
1050			flags |= EF4_RX_PKT_TCP;
1051			fallthrough;
1052		case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_UDP:
1053			flags |= EF4_RX_PKT_CSUMMED;
1054			fallthrough;
1055		case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_OTHER:
1056		case FSE_AZ_RX_EV_HDR_TYPE_OTHER:
1057			break;
1058		}
1059	} else {
1060		flags = ef4_farch_handle_rx_not_ok(rx_queue, event);
1061	}
1062
1063	/* Detect multicast packets that didn't match the filter */
1064	rx_ev_mcast_pkt = EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
1065	if (rx_ev_mcast_pkt) {
1066		unsigned int rx_ev_mcast_hash_match =
1067			EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_HASH_MATCH);
1068
1069		if (unlikely(!rx_ev_mcast_hash_match)) {
1070			++channel->n_rx_mcast_mismatch;
1071			flags |= EF4_RX_PKT_DISCARD;
1072		}
1073	}
1074
1075	channel->irq_mod_score += 2;
1076
1077	/* Handle received packet */
1078	ef4_rx_packet(rx_queue,
1079		      rx_queue->removed_count & rx_queue->ptr_mask,
1080		      rx_queue->scatter_n, rx_ev_byte_cnt, flags);
1081	rx_queue->removed_count += rx_queue->scatter_n;
1082	rx_queue->scatter_n = 0;
1083}
1084
1085/* If this flush done event corresponds to a &struct ef4_tx_queue, then
1086 * send an %EF4_CHANNEL_MAGIC_TX_DRAIN event to drain the event queue
1087 * of all transmit completions.
1088 */
1089static void
1090ef4_farch_handle_tx_flush_done(struct ef4_nic *efx, ef4_qword_t *event)
1091{
1092	struct ef4_tx_queue *tx_queue;
1093	int qid;
1094
1095	qid = EF4_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
1096	if (qid < EF4_TXQ_TYPES * efx->n_tx_channels) {
1097		tx_queue = ef4_get_tx_queue(efx, qid / EF4_TXQ_TYPES,
1098					    qid % EF4_TXQ_TYPES);
1099		if (atomic_cmpxchg(&tx_queue->flush_outstanding, 1, 0)) {
1100			ef4_farch_magic_event(tx_queue->channel,
1101					      EF4_CHANNEL_MAGIC_TX_DRAIN(tx_queue));
1102		}
1103	}
1104}
1105
1106/* If this flush done event corresponds to a &struct ef4_rx_queue: If the flush
1107 * was successful then send an %EF4_CHANNEL_MAGIC_RX_DRAIN, otherwise add
1108 * the RX queue back to the mask of RX queues in need of flushing.
1109 */
1110static void
1111ef4_farch_handle_rx_flush_done(struct ef4_nic *efx, ef4_qword_t *event)
1112{
1113	struct ef4_channel *channel;
1114	struct ef4_rx_queue *rx_queue;
1115	int qid;
1116	bool failed;
1117
1118	qid = EF4_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_DESCQ_ID);
1119	failed = EF4_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL);
1120	if (qid >= efx->n_channels)
1121		return;
1122	channel = ef4_get_channel(efx, qid);
1123	if (!ef4_channel_has_rx_queue(channel))
1124		return;
1125	rx_queue = ef4_channel_get_rx_queue(channel);
1126
1127	if (failed) {
1128		netif_info(efx, hw, efx->net_dev,
1129			   "RXQ %d flush retry\n", qid);
1130		rx_queue->flush_pending = true;
1131		atomic_inc(&efx->rxq_flush_pending);
1132	} else {
1133		ef4_farch_magic_event(ef4_rx_queue_channel(rx_queue),
1134				      EF4_CHANNEL_MAGIC_RX_DRAIN(rx_queue));
1135	}
1136	atomic_dec(&efx->rxq_flush_outstanding);
1137	if (ef4_farch_flush_wake(efx))
1138		wake_up(&efx->flush_wq);
1139}
1140
1141static void
1142ef4_farch_handle_drain_event(struct ef4_channel *channel)
1143{
1144	struct ef4_nic *efx = channel->efx;
1145
1146	WARN_ON(atomic_read(&efx->active_queues) == 0);
1147	atomic_dec(&efx->active_queues);
1148	if (ef4_farch_flush_wake(efx))
1149		wake_up(&efx->flush_wq);
1150}
1151
1152static void ef4_farch_handle_generated_event(struct ef4_channel *channel,
1153					     ef4_qword_t *event)
1154{
1155	struct ef4_nic *efx = channel->efx;
1156	struct ef4_rx_queue *rx_queue =
1157		ef4_channel_has_rx_queue(channel) ?
1158		ef4_channel_get_rx_queue(channel) : NULL;
1159	unsigned magic, code;
1160
1161	magic = EF4_QWORD_FIELD(*event, FSF_AZ_DRV_GEN_EV_MAGIC);
1162	code = _EF4_CHANNEL_MAGIC_CODE(magic);
1163
1164	if (magic == EF4_CHANNEL_MAGIC_TEST(channel)) {
1165		channel->event_test_cpu = raw_smp_processor_id();
1166	} else if (rx_queue && magic == EF4_CHANNEL_MAGIC_FILL(rx_queue)) {
1167		/* The queue must be empty, so we won't receive any rx
1168		 * events, so ef4_process_channel() won't refill the
1169		 * queue. Refill it here */
1170		ef4_fast_push_rx_descriptors(rx_queue, true);
1171	} else if (rx_queue && magic == EF4_CHANNEL_MAGIC_RX_DRAIN(rx_queue)) {
1172		ef4_farch_handle_drain_event(channel);
1173	} else if (code == _EF4_CHANNEL_MAGIC_TX_DRAIN) {
1174		ef4_farch_handle_drain_event(channel);
1175	} else {
1176		netif_dbg(efx, hw, efx->net_dev, "channel %d received "
1177			  "generated event "EF4_QWORD_FMT"\n",
1178			  channel->channel, EF4_QWORD_VAL(*event));
1179	}
1180}
1181
1182static void
1183ef4_farch_handle_driver_event(struct ef4_channel *channel, ef4_qword_t *event)
1184{
1185	struct ef4_nic *efx = channel->efx;
1186	unsigned int ev_sub_code;
1187	unsigned int ev_sub_data;
1188
1189	ev_sub_code = EF4_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBCODE);
1190	ev_sub_data = EF4_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
1191
1192	switch (ev_sub_code) {
1193	case FSE_AZ_TX_DESCQ_FLS_DONE_EV:
1194		netif_vdbg(efx, hw, efx->net_dev, "channel %d TXQ %d flushed\n",
1195			   channel->channel, ev_sub_data);
1196		ef4_farch_handle_tx_flush_done(efx, event);
1197		break;
1198	case FSE_AZ_RX_DESCQ_FLS_DONE_EV:
1199		netif_vdbg(efx, hw, efx->net_dev, "channel %d RXQ %d flushed\n",
1200			   channel->channel, ev_sub_data);
1201		ef4_farch_handle_rx_flush_done(efx, event);
1202		break;
1203	case FSE_AZ_EVQ_INIT_DONE_EV:
1204		netif_dbg(efx, hw, efx->net_dev,
1205			  "channel %d EVQ %d initialised\n",
1206			  channel->channel, ev_sub_data);
1207		break;
1208	case FSE_AZ_SRM_UPD_DONE_EV:
1209		netif_vdbg(efx, hw, efx->net_dev,
1210			   "channel %d SRAM update done\n", channel->channel);
1211		break;
1212	case FSE_AZ_WAKE_UP_EV:
1213		netif_vdbg(efx, hw, efx->net_dev,
1214			   "channel %d RXQ %d wakeup event\n",
1215			   channel->channel, ev_sub_data);
1216		break;
1217	case FSE_AZ_TIMER_EV:
1218		netif_vdbg(efx, hw, efx->net_dev,
1219			   "channel %d RX queue %d timer expired\n",
1220			   channel->channel, ev_sub_data);
1221		break;
1222	case FSE_AA_RX_RECOVER_EV:
1223		netif_err(efx, rx_err, efx->net_dev,
1224			  "channel %d seen DRIVER RX_RESET event. "
1225			"Resetting.\n", channel->channel);
1226		atomic_inc(&efx->rx_reset);
1227		ef4_schedule_reset(efx,
1228				   EF4_WORKAROUND_6555(efx) ?
1229				   RESET_TYPE_RX_RECOVERY :
1230				   RESET_TYPE_DISABLE);
1231		break;
1232	case FSE_BZ_RX_DSC_ERROR_EV:
1233		netif_err(efx, rx_err, efx->net_dev,
1234			  "RX DMA Q %d reports descriptor fetch error."
1235			  " RX Q %d is disabled.\n", ev_sub_data,
1236			  ev_sub_data);
1237		ef4_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
1238		break;
1239	case FSE_BZ_TX_DSC_ERROR_EV:
1240		netif_err(efx, tx_err, efx->net_dev,
1241			  "TX DMA Q %d reports descriptor fetch error."
1242			  " TX Q %d is disabled.\n", ev_sub_data,
1243			  ev_sub_data);
1244		ef4_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
1245		break;
1246	default:
1247		netif_vdbg(efx, hw, efx->net_dev,
1248			   "channel %d unknown driver event code %d "
1249			   "data %04x\n", channel->channel, ev_sub_code,
1250			   ev_sub_data);
1251		break;
1252	}
1253}
1254
1255int ef4_farch_ev_process(struct ef4_channel *channel, int budget)
1256{
1257	struct ef4_nic *efx = channel->efx;
1258	unsigned int read_ptr;
1259	ef4_qword_t event, *p_event;
1260	int ev_code;
1261	int tx_packets = 0;
1262	int spent = 0;
1263
1264	if (budget <= 0)
1265		return spent;
1266
1267	read_ptr = channel->eventq_read_ptr;
1268
1269	for (;;) {
1270		p_event = ef4_event(channel, read_ptr);
1271		event = *p_event;
1272
1273		if (!ef4_event_present(&event))
1274			/* End of events */
1275			break;
1276
1277		netif_vdbg(channel->efx, intr, channel->efx->net_dev,
1278			   "channel %d event is "EF4_QWORD_FMT"\n",
1279			   channel->channel, EF4_QWORD_VAL(event));
1280
1281		/* Clear this event by marking it all ones */
1282		EF4_SET_QWORD(*p_event);
1283
1284		++read_ptr;
1285
1286		ev_code = EF4_QWORD_FIELD(event, FSF_AZ_EV_CODE);
1287
1288		switch (ev_code) {
1289		case FSE_AZ_EV_CODE_RX_EV:
1290			ef4_farch_handle_rx_event(channel, &event);
1291			if (++spent == budget)
1292				goto out;
1293			break;
1294		case FSE_AZ_EV_CODE_TX_EV:
1295			tx_packets += ef4_farch_handle_tx_event(channel,
1296								&event);
1297			if (tx_packets > efx->txq_entries) {
1298				spent = budget;
1299				goto out;
1300			}
1301			break;
1302		case FSE_AZ_EV_CODE_DRV_GEN_EV:
1303			ef4_farch_handle_generated_event(channel, &event);
1304			break;
1305		case FSE_AZ_EV_CODE_DRIVER_EV:
1306			ef4_farch_handle_driver_event(channel, &event);
1307			break;
1308		case FSE_AZ_EV_CODE_GLOBAL_EV:
1309			if (efx->type->handle_global_event &&
1310			    efx->type->handle_global_event(channel, &event))
1311				break;
1312			fallthrough;
1313		default:
1314			netif_err(channel->efx, hw, channel->efx->net_dev,
1315				  "channel %d unknown event type %d (data "
1316				  EF4_QWORD_FMT ")\n", channel->channel,
1317				  ev_code, EF4_QWORD_VAL(event));
1318		}
1319	}
1320
1321out:
1322	channel->eventq_read_ptr = read_ptr;
1323	return spent;
1324}
1325
1326/* Allocate buffer table entries for event queue */
1327int ef4_farch_ev_probe(struct ef4_channel *channel)
1328{
1329	struct ef4_nic *efx = channel->efx;
1330	unsigned entries;
1331
1332	entries = channel->eventq_mask + 1;
1333	return ef4_alloc_special_buffer(efx, &channel->eventq,
1334					entries * sizeof(ef4_qword_t));
1335}
1336
1337int ef4_farch_ev_init(struct ef4_channel *channel)
1338{
1339	ef4_oword_t reg;
1340	struct ef4_nic *efx = channel->efx;
1341
1342	netif_dbg(efx, hw, efx->net_dev,
1343		  "channel %d event queue in special buffers %d-%d\n",
1344		  channel->channel, channel->eventq.index,
1345		  channel->eventq.index + channel->eventq.entries - 1);
1346
1347	/* Pin event queue buffer */
1348	ef4_init_special_buffer(efx, &channel->eventq);
1349
1350	/* Fill event queue with all ones (i.e. empty events) */
1351	memset(channel->eventq.buf.addr, 0xff, channel->eventq.buf.len);
1352
1353	/* Push event queue to card */
1354	EF4_POPULATE_OWORD_3(reg,
1355			     FRF_AZ_EVQ_EN, 1,
1356			     FRF_AZ_EVQ_SIZE, __ffs(channel->eventq.entries),
1357			     FRF_AZ_EVQ_BUF_BASE_ID, channel->eventq.index);
1358	ef4_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
1359			 channel->channel);
1360
1361	return 0;
1362}
1363
1364void ef4_farch_ev_fini(struct ef4_channel *channel)
1365{
1366	ef4_oword_t reg;
1367	struct ef4_nic *efx = channel->efx;
1368
1369	/* Remove event queue from card */
1370	EF4_ZERO_OWORD(reg);
1371	ef4_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
1372			 channel->channel);
1373
1374	/* Unpin event queue */
1375	ef4_fini_special_buffer(efx, &channel->eventq);
1376}
1377
1378/* Free buffers backing event queue */
1379void ef4_farch_ev_remove(struct ef4_channel *channel)
1380{
1381	ef4_free_special_buffer(channel->efx, &channel->eventq);
1382}
1383
1384
1385void ef4_farch_ev_test_generate(struct ef4_channel *channel)
1386{
1387	ef4_farch_magic_event(channel, EF4_CHANNEL_MAGIC_TEST(channel));
1388}
1389
1390void ef4_farch_rx_defer_refill(struct ef4_rx_queue *rx_queue)
1391{
1392	ef4_farch_magic_event(ef4_rx_queue_channel(rx_queue),
1393			      EF4_CHANNEL_MAGIC_FILL(rx_queue));
1394}
1395
1396/**************************************************************************
1397 *
1398 * Hardware interrupts
1399 * The hardware interrupt handler does very little work; all the event
1400 * queue processing is carried out by per-channel tasklets.
1401 *
1402 **************************************************************************/
1403
1404/* Enable/disable/generate interrupts */
1405static inline void ef4_farch_interrupts(struct ef4_nic *efx,
1406				      bool enabled, bool force)
1407{
1408	ef4_oword_t int_en_reg_ker;
1409
1410	EF4_POPULATE_OWORD_3(int_en_reg_ker,
1411			     FRF_AZ_KER_INT_LEVE_SEL, efx->irq_level,
1412			     FRF_AZ_KER_INT_KER, force,
1413			     FRF_AZ_DRV_INT_EN_KER, enabled);
1414	ef4_writeo(efx, &int_en_reg_ker, FR_AZ_INT_EN_KER);
1415}
1416
1417void ef4_farch_irq_enable_master(struct ef4_nic *efx)
1418{
1419	EF4_ZERO_OWORD(*((ef4_oword_t *) efx->irq_status.addr));
1420	wmb(); /* Ensure interrupt vector is clear before interrupts enabled */
1421
1422	ef4_farch_interrupts(efx, true, false);
1423}
1424
1425void ef4_farch_irq_disable_master(struct ef4_nic *efx)
1426{
1427	/* Disable interrupts */
1428	ef4_farch_interrupts(efx, false, false);
1429}
1430
1431/* Generate a test interrupt
1432 * Interrupt must already have been enabled, otherwise nasty things
1433 * may happen.
1434 */
1435int ef4_farch_irq_test_generate(struct ef4_nic *efx)
1436{
1437	ef4_farch_interrupts(efx, true, true);
1438	return 0;
1439}
1440
1441/* Process a fatal interrupt
1442 * Disable bus mastering ASAP and schedule a reset
1443 */
1444irqreturn_t ef4_farch_fatal_interrupt(struct ef4_nic *efx)
1445{
1446	struct falcon_nic_data *nic_data = efx->nic_data;
1447	ef4_oword_t *int_ker = efx->irq_status.addr;
1448	ef4_oword_t fatal_intr;
1449	int error, mem_perr;
1450
1451	ef4_reado(efx, &fatal_intr, FR_AZ_FATAL_INTR_KER);
1452	error = EF4_OWORD_FIELD(fatal_intr, FRF_AZ_FATAL_INTR);
1453
1454	netif_err(efx, hw, efx->net_dev, "SYSTEM ERROR "EF4_OWORD_FMT" status "
1455		  EF4_OWORD_FMT ": %s\n", EF4_OWORD_VAL(*int_ker),
1456		  EF4_OWORD_VAL(fatal_intr),
1457		  error ? "disabling bus mastering" : "no recognised error");
1458
1459	/* If this is a memory parity error dump which blocks are offending */
1460	mem_perr = (EF4_OWORD_FIELD(fatal_intr, FRF_AZ_MEM_PERR_INT_KER) ||
1461		    EF4_OWORD_FIELD(fatal_intr, FRF_AZ_SRM_PERR_INT_KER));
1462	if (mem_perr) {
1463		ef4_oword_t reg;
1464		ef4_reado(efx, &reg, FR_AZ_MEM_STAT);
1465		netif_err(efx, hw, efx->net_dev,
1466			  "SYSTEM ERROR: memory parity error "EF4_OWORD_FMT"\n",
1467			  EF4_OWORD_VAL(reg));
1468	}
1469
1470	/* Disable both devices */
1471	pci_clear_master(efx->pci_dev);
1472	if (ef4_nic_is_dual_func(efx))
1473		pci_clear_master(nic_data->pci_dev2);
1474	ef4_farch_irq_disable_master(efx);
1475
1476	/* Count errors and reset or disable the NIC accordingly */
1477	if (efx->int_error_count == 0 ||
1478	    time_after(jiffies, efx->int_error_expire)) {
1479		efx->int_error_count = 0;
1480		efx->int_error_expire =
1481			jiffies + EF4_INT_ERROR_EXPIRE * HZ;
1482	}
1483	if (++efx->int_error_count < EF4_MAX_INT_ERRORS) {
1484		netif_err(efx, hw, efx->net_dev,
1485			  "SYSTEM ERROR - reset scheduled\n");
1486		ef4_schedule_reset(efx, RESET_TYPE_INT_ERROR);
1487	} else {
1488		netif_err(efx, hw, efx->net_dev,
1489			  "SYSTEM ERROR - max number of errors seen."
1490			  "NIC will be disabled\n");
1491		ef4_schedule_reset(efx, RESET_TYPE_DISABLE);
1492	}
1493
1494	return IRQ_HANDLED;
1495}
1496
1497/* Handle a legacy interrupt
1498 * Acknowledges the interrupt and schedule event queue processing.
1499 */
1500irqreturn_t ef4_farch_legacy_interrupt(int irq, void *dev_id)
1501{
1502	struct ef4_nic *efx = dev_id;
1503	bool soft_enabled = READ_ONCE(efx->irq_soft_enabled);
1504	ef4_oword_t *int_ker = efx->irq_status.addr;
1505	irqreturn_t result = IRQ_NONE;
1506	struct ef4_channel *channel;
1507	ef4_dword_t reg;
1508	u32 queues;
1509	int syserr;
1510
1511	/* Read the ISR which also ACKs the interrupts */
1512	ef4_readd(efx, &reg, FR_BZ_INT_ISR0);
1513	queues = EF4_EXTRACT_DWORD(reg, 0, 31);
1514
1515	/* Legacy interrupts are disabled too late by the EEH kernel
1516	 * code. Disable them earlier.
1517	 * If an EEH error occurred, the read will have returned all ones.
1518	 */
1519	if (EF4_DWORD_IS_ALL_ONES(reg) && ef4_try_recovery(efx) &&
1520	    !efx->eeh_disabled_legacy_irq) {
1521		disable_irq_nosync(efx->legacy_irq);
1522		efx->eeh_disabled_legacy_irq = true;
1523	}
1524
1525	/* Handle non-event-queue sources */
1526	if (queues & (1U << efx->irq_level) && soft_enabled) {
1527		syserr = EF4_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1528		if (unlikely(syserr))
1529			return ef4_farch_fatal_interrupt(efx);
1530		efx->last_irq_cpu = raw_smp_processor_id();
1531	}
1532
1533	if (queues != 0) {
1534		efx->irq_zero_count = 0;
1535
1536		/* Schedule processing of any interrupting queues */
1537		if (likely(soft_enabled)) {
1538			ef4_for_each_channel(channel, efx) {
1539				if (queues & 1)
1540					ef4_schedule_channel_irq(channel);
1541				queues >>= 1;
1542			}
1543		}
1544		result = IRQ_HANDLED;
1545
1546	} else {
1547		ef4_qword_t *event;
1548
1549		/* Legacy ISR read can return zero once (SF bug 15783) */
1550
1551		/* We can't return IRQ_HANDLED more than once on seeing ISR=0
1552		 * because this might be a shared interrupt. */
1553		if (efx->irq_zero_count++ == 0)
1554			result = IRQ_HANDLED;
1555
1556		/* Ensure we schedule or rearm all event queues */
1557		if (likely(soft_enabled)) {
1558			ef4_for_each_channel(channel, efx) {
1559				event = ef4_event(channel,
1560						  channel->eventq_read_ptr);
1561				if (ef4_event_present(event))
1562					ef4_schedule_channel_irq(channel);
1563				else
1564					ef4_farch_ev_read_ack(channel);
1565			}
1566		}
1567	}
1568
1569	if (result == IRQ_HANDLED)
1570		netif_vdbg(efx, intr, efx->net_dev,
1571			   "IRQ %d on CPU %d status " EF4_DWORD_FMT "\n",
1572			   irq, raw_smp_processor_id(), EF4_DWORD_VAL(reg));
1573
1574	return result;
1575}
1576
1577/* Handle an MSI interrupt
1578 *
1579 * Handle an MSI hardware interrupt.  This routine schedules event
1580 * queue processing.  No interrupt acknowledgement cycle is necessary.
1581 * Also, we never need to check that the interrupt is for us, since
1582 * MSI interrupts cannot be shared.
1583 */
1584irqreturn_t ef4_farch_msi_interrupt(int irq, void *dev_id)
1585{
1586	struct ef4_msi_context *context = dev_id;
1587	struct ef4_nic *efx = context->efx;
1588	ef4_oword_t *int_ker = efx->irq_status.addr;
1589	int syserr;
1590
1591	netif_vdbg(efx, intr, efx->net_dev,
1592		   "IRQ %d on CPU %d status " EF4_OWORD_FMT "\n",
1593		   irq, raw_smp_processor_id(), EF4_OWORD_VAL(*int_ker));
1594
1595	if (!likely(READ_ONCE(efx->irq_soft_enabled)))
1596		return IRQ_HANDLED;
1597
1598	/* Handle non-event-queue sources */
1599	if (context->index == efx->irq_level) {
1600		syserr = EF4_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1601		if (unlikely(syserr))
1602			return ef4_farch_fatal_interrupt(efx);
1603		efx->last_irq_cpu = raw_smp_processor_id();
1604	}
1605
1606	/* Schedule processing of the channel */
1607	ef4_schedule_channel_irq(efx->channel[context->index]);
1608
1609	return IRQ_HANDLED;
1610}
1611
1612/* Setup RSS indirection table.
1613 * This maps from the hash value of the packet to RXQ
1614 */
1615void ef4_farch_rx_push_indir_table(struct ef4_nic *efx)
1616{
1617	size_t i = 0;
1618	ef4_dword_t dword;
1619
1620	BUG_ON(ef4_nic_rev(efx) < EF4_REV_FALCON_B0);
1621
1622	BUILD_BUG_ON(ARRAY_SIZE(efx->rx_indir_table) !=
1623		     FR_BZ_RX_INDIRECTION_TBL_ROWS);
1624
1625	for (i = 0; i < FR_BZ_RX_INDIRECTION_TBL_ROWS; i++) {
1626		EF4_POPULATE_DWORD_1(dword, FRF_BZ_IT_QUEUE,
1627				     efx->rx_indir_table[i]);
1628		ef4_writed(efx, &dword,
1629			   FR_BZ_RX_INDIRECTION_TBL +
1630			   FR_BZ_RX_INDIRECTION_TBL_STEP * i);
1631	}
1632}
1633
1634/* Looks at available SRAM resources and works out how many queues we
1635 * can support, and where things like descriptor caches should live.
1636 *
1637 * SRAM is split up as follows:
1638 * 0                          buftbl entries for channels
1639 * efx->vf_buftbl_base        buftbl entries for SR-IOV
1640 * efx->rx_dc_base            RX descriptor caches
1641 * efx->tx_dc_base            TX descriptor caches
1642 */
1643void ef4_farch_dimension_resources(struct ef4_nic *efx, unsigned sram_lim_qw)
1644{
1645	unsigned vi_count;
1646
1647	/* Account for the buffer table entries backing the datapath channels
1648	 * and the descriptor caches for those channels.
1649	 */
1650	vi_count = max(efx->n_channels, efx->n_tx_channels * EF4_TXQ_TYPES);
1651
1652	efx->tx_dc_base = sram_lim_qw - vi_count * TX_DC_ENTRIES;
1653	efx->rx_dc_base = efx->tx_dc_base - vi_count * RX_DC_ENTRIES;
1654}
1655
1656u32 ef4_farch_fpga_ver(struct ef4_nic *efx)
1657{
1658	ef4_oword_t altera_build;
1659	ef4_reado(efx, &altera_build, FR_AZ_ALTERA_BUILD);
1660	return EF4_OWORD_FIELD(altera_build, FRF_AZ_ALTERA_BUILD_VER);
1661}
1662
1663void ef4_farch_init_common(struct ef4_nic *efx)
1664{
1665	ef4_oword_t temp;
1666
1667	/* Set positions of descriptor caches in SRAM. */
1668	EF4_POPULATE_OWORD_1(temp, FRF_AZ_SRM_TX_DC_BASE_ADR, efx->tx_dc_base);
1669	ef4_writeo(efx, &temp, FR_AZ_SRM_TX_DC_CFG);
1670	EF4_POPULATE_OWORD_1(temp, FRF_AZ_SRM_RX_DC_BASE_ADR, efx->rx_dc_base);
1671	ef4_writeo(efx, &temp, FR_AZ_SRM_RX_DC_CFG);
1672
1673	/* Set TX descriptor cache size. */
1674	BUILD_BUG_ON(TX_DC_ENTRIES != (8 << TX_DC_ENTRIES_ORDER));
1675	EF4_POPULATE_OWORD_1(temp, FRF_AZ_TX_DC_SIZE, TX_DC_ENTRIES_ORDER);
1676	ef4_writeo(efx, &temp, FR_AZ_TX_DC_CFG);
1677
1678	/* Set RX descriptor cache size.  Set low watermark to size-8, as
1679	 * this allows most efficient prefetching.
1680	 */
1681	BUILD_BUG_ON(RX_DC_ENTRIES != (8 << RX_DC_ENTRIES_ORDER));
1682	EF4_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_SIZE, RX_DC_ENTRIES_ORDER);
1683	ef4_writeo(efx, &temp, FR_AZ_RX_DC_CFG);
1684	EF4_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_PF_LWM, RX_DC_ENTRIES - 8);
1685	ef4_writeo(efx, &temp, FR_AZ_RX_DC_PF_WM);
1686
1687	/* Program INT_KER address */
1688	EF4_POPULATE_OWORD_2(temp,
1689			     FRF_AZ_NORM_INT_VEC_DIS_KER,
1690			     EF4_INT_MODE_USE_MSI(efx),
1691			     FRF_AZ_INT_ADR_KER, efx->irq_status.dma_addr);
1692	ef4_writeo(efx, &temp, FR_AZ_INT_ADR_KER);
1693
1694	/* Use a valid MSI-X vector */
1695	efx->irq_level = 0;
1696
1697	/* Enable all the genuinely fatal interrupts.  (They are still
1698	 * masked by the overall interrupt mask, controlled by
1699	 * falcon_interrupts()).
1700	 *
1701	 * Note: All other fatal interrupts are enabled
1702	 */
1703	EF4_POPULATE_OWORD_3(temp,
1704			     FRF_AZ_ILL_ADR_INT_KER_EN, 1,
1705			     FRF_AZ_RBUF_OWN_INT_KER_EN, 1,
1706			     FRF_AZ_TBUF_OWN_INT_KER_EN, 1);
1707	EF4_INVERT_OWORD(temp);
1708	ef4_writeo(efx, &temp, FR_AZ_FATAL_INTR_KER);
1709
1710	/* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be
1711	 * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q.
1712	 */
1713	ef4_reado(efx, &temp, FR_AZ_TX_RESERVED);
1714	EF4_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER, 0xfe);
1715	EF4_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER_EN, 1);
1716	EF4_SET_OWORD_FIELD(temp, FRF_AZ_TX_ONE_PKT_PER_Q, 1);
1717	EF4_SET_OWORD_FIELD(temp, FRF_AZ_TX_PUSH_EN, 1);
1718	EF4_SET_OWORD_FIELD(temp, FRF_AZ_TX_DIS_NON_IP_EV, 1);
1719	/* Enable SW_EV to inherit in char driver - assume harmless here */
1720	EF4_SET_OWORD_FIELD(temp, FRF_AZ_TX_SOFT_EVT_EN, 1);
1721	/* Prefetch threshold 2 => fetch when descriptor cache half empty */
1722	EF4_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_THRESHOLD, 2);
1723	/* Disable hardware watchdog which can misfire */
1724	EF4_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_WD_TMR, 0x3fffff);
1725	/* Squash TX of packets of 16 bytes or less */
1726	if (ef4_nic_rev(efx) >= EF4_REV_FALCON_B0)
1727		EF4_SET_OWORD_FIELD(temp, FRF_BZ_TX_FLUSH_MIN_LEN_EN, 1);
1728	ef4_writeo(efx, &temp, FR_AZ_TX_RESERVED);
1729
1730	if (ef4_nic_rev(efx) >= EF4_REV_FALCON_B0) {
1731		EF4_POPULATE_OWORD_4(temp,
1732				     /* Default values */
1733				     FRF_BZ_TX_PACE_SB_NOT_AF, 0x15,
1734				     FRF_BZ_TX_PACE_SB_AF, 0xb,
1735				     FRF_BZ_TX_PACE_FB_BASE, 0,
1736				     /* Allow large pace values in the
1737				      * fast bin. */
1738				     FRF_BZ_TX_PACE_BIN_TH,
1739				     FFE_BZ_TX_PACE_RESERVED);
1740		ef4_writeo(efx, &temp, FR_BZ_TX_PACE);
1741	}
1742}
1743
1744/**************************************************************************
1745 *
1746 * Filter tables
1747 *
1748 **************************************************************************
1749 */
1750
1751/* "Fudge factors" - difference between programmed value and actual depth.
1752 * Due to pipelined implementation we need to program H/W with a value that
1753 * is larger than the hop limit we want.
1754 */
1755#define EF4_FARCH_FILTER_CTL_SRCH_FUDGE_WILD 3
1756#define EF4_FARCH_FILTER_CTL_SRCH_FUDGE_FULL 1
1757
1758/* Hard maximum search limit.  Hardware will time-out beyond 200-something.
1759 * We also need to avoid infinite loops in ef4_farch_filter_search() when the
1760 * table is full.
1761 */
1762#define EF4_FARCH_FILTER_CTL_SRCH_MAX 200
1763
1764/* Don't try very hard to find space for performance hints, as this is
1765 * counter-productive. */
1766#define EF4_FARCH_FILTER_CTL_SRCH_HINT_MAX 5
1767
1768enum ef4_farch_filter_type {
1769	EF4_FARCH_FILTER_TCP_FULL = 0,
1770	EF4_FARCH_FILTER_TCP_WILD,
1771	EF4_FARCH_FILTER_UDP_FULL,
1772	EF4_FARCH_FILTER_UDP_WILD,
1773	EF4_FARCH_FILTER_MAC_FULL = 4,
1774	EF4_FARCH_FILTER_MAC_WILD,
1775	EF4_FARCH_FILTER_UC_DEF = 8,
1776	EF4_FARCH_FILTER_MC_DEF,
1777	EF4_FARCH_FILTER_TYPE_COUNT,		/* number of specific types */
1778};
1779
1780enum ef4_farch_filter_table_id {
1781	EF4_FARCH_FILTER_TABLE_RX_IP = 0,
1782	EF4_FARCH_FILTER_TABLE_RX_MAC,
1783	EF4_FARCH_FILTER_TABLE_RX_DEF,
1784	EF4_FARCH_FILTER_TABLE_TX_MAC,
1785	EF4_FARCH_FILTER_TABLE_COUNT,
1786};
1787
1788enum ef4_farch_filter_index {
1789	EF4_FARCH_FILTER_INDEX_UC_DEF,
1790	EF4_FARCH_FILTER_INDEX_MC_DEF,
1791	EF4_FARCH_FILTER_SIZE_RX_DEF,
1792};
1793
1794struct ef4_farch_filter_spec {
1795	u8	type:4;
1796	u8	priority:4;
1797	u8	flags;
1798	u16	dmaq_id;
1799	u32	data[3];
1800};
1801
1802struct ef4_farch_filter_table {
1803	enum ef4_farch_filter_table_id id;
1804	u32		offset;		/* address of table relative to BAR */
1805	unsigned	size;		/* number of entries */
1806	unsigned	step;		/* step between entries */
1807	unsigned	used;		/* number currently used */
1808	unsigned long	*used_bitmap;
1809	struct ef4_farch_filter_spec *spec;
1810	unsigned	search_limit[EF4_FARCH_FILTER_TYPE_COUNT];
1811};
1812
1813struct ef4_farch_filter_state {
1814	struct ef4_farch_filter_table table[EF4_FARCH_FILTER_TABLE_COUNT];
1815};
1816
1817static void
1818ef4_farch_filter_table_clear_entry(struct ef4_nic *efx,
1819				   struct ef4_farch_filter_table *table,
1820				   unsigned int filter_idx);
1821
1822/* The filter hash function is LFSR polynomial x^16 + x^3 + 1 of a 32-bit
1823 * key derived from the n-tuple.  The initial LFSR state is 0xffff. */
1824static u16 ef4_farch_filter_hash(u32 key)
1825{
1826	u16 tmp;
1827
1828	/* First 16 rounds */
1829	tmp = 0x1fff ^ key >> 16;
1830	tmp = tmp ^ tmp >> 3 ^ tmp >> 6;
1831	tmp = tmp ^ tmp >> 9;
1832	/* Last 16 rounds */
1833	tmp = tmp ^ tmp << 13 ^ key;
1834	tmp = tmp ^ tmp >> 3 ^ tmp >> 6;
1835	return tmp ^ tmp >> 9;
1836}
1837
1838/* To allow for hash collisions, filter search continues at these
1839 * increments from the first possible entry selected by the hash. */
1840static u16 ef4_farch_filter_increment(u32 key)
1841{
1842	return key * 2 - 1;
1843}
1844
1845static enum ef4_farch_filter_table_id
1846ef4_farch_filter_spec_table_id(const struct ef4_farch_filter_spec *spec)
1847{
1848	BUILD_BUG_ON(EF4_FARCH_FILTER_TABLE_RX_IP !=
1849		     (EF4_FARCH_FILTER_TCP_FULL >> 2));
1850	BUILD_BUG_ON(EF4_FARCH_FILTER_TABLE_RX_IP !=
1851		     (EF4_FARCH_FILTER_TCP_WILD >> 2));
1852	BUILD_BUG_ON(EF4_FARCH_FILTER_TABLE_RX_IP !=
1853		     (EF4_FARCH_FILTER_UDP_FULL >> 2));
1854	BUILD_BUG_ON(EF4_FARCH_FILTER_TABLE_RX_IP !=
1855		     (EF4_FARCH_FILTER_UDP_WILD >> 2));
1856	BUILD_BUG_ON(EF4_FARCH_FILTER_TABLE_RX_MAC !=
1857		     (EF4_FARCH_FILTER_MAC_FULL >> 2));
1858	BUILD_BUG_ON(EF4_FARCH_FILTER_TABLE_RX_MAC !=
1859		     (EF4_FARCH_FILTER_MAC_WILD >> 2));
1860	BUILD_BUG_ON(EF4_FARCH_FILTER_TABLE_TX_MAC !=
1861		     EF4_FARCH_FILTER_TABLE_RX_MAC + 2);
1862	return (spec->type >> 2) + ((spec->flags & EF4_FILTER_FLAG_TX) ? 2 : 0);
1863}
1864
1865static void ef4_farch_filter_push_rx_config(struct ef4_nic *efx)
1866{
1867	struct ef4_farch_filter_state *state = efx->filter_state;
1868	struct ef4_farch_filter_table *table;
1869	ef4_oword_t filter_ctl;
1870
1871	ef4_reado(efx, &filter_ctl, FR_BZ_RX_FILTER_CTL);
1872
1873	table = &state->table[EF4_FARCH_FILTER_TABLE_RX_IP];
1874	EF4_SET_OWORD_FIELD(filter_ctl, FRF_BZ_TCP_FULL_SRCH_LIMIT,
1875			    table->search_limit[EF4_FARCH_FILTER_TCP_FULL] +
1876			    EF4_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
1877	EF4_SET_OWORD_FIELD(filter_ctl, FRF_BZ_TCP_WILD_SRCH_LIMIT,
1878			    table->search_limit[EF4_FARCH_FILTER_TCP_WILD] +
1879			    EF4_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
1880	EF4_SET_OWORD_FIELD(filter_ctl, FRF_BZ_UDP_FULL_SRCH_LIMIT,
1881			    table->search_limit[EF4_FARCH_FILTER_UDP_FULL] +
1882			    EF4_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
1883	EF4_SET_OWORD_FIELD(filter_ctl, FRF_BZ_UDP_WILD_SRCH_LIMIT,
1884			    table->search_limit[EF4_FARCH_FILTER_UDP_WILD] +
1885			    EF4_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
1886
1887	table = &state->table[EF4_FARCH_FILTER_TABLE_RX_MAC];
1888	if (table->size) {
1889		EF4_SET_OWORD_FIELD(
1890			filter_ctl, FRF_CZ_ETHERNET_FULL_SEARCH_LIMIT,
1891			table->search_limit[EF4_FARCH_FILTER_MAC_FULL] +
1892			EF4_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
1893		EF4_SET_OWORD_FIELD(
1894			filter_ctl, FRF_CZ_ETHERNET_WILDCARD_SEARCH_LIMIT,
1895			table->search_limit[EF4_FARCH_FILTER_MAC_WILD] +
1896			EF4_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
1897	}
1898
1899	table = &state->table[EF4_FARCH_FILTER_TABLE_RX_DEF];
1900	if (table->size) {
1901		EF4_SET_OWORD_FIELD(
1902			filter_ctl, FRF_CZ_UNICAST_NOMATCH_Q_ID,
1903			table->spec[EF4_FARCH_FILTER_INDEX_UC_DEF].dmaq_id);
1904		EF4_SET_OWORD_FIELD(
1905			filter_ctl, FRF_CZ_UNICAST_NOMATCH_RSS_ENABLED,
1906			!!(table->spec[EF4_FARCH_FILTER_INDEX_UC_DEF].flags &
1907			   EF4_FILTER_FLAG_RX_RSS));
1908		EF4_SET_OWORD_FIELD(
1909			filter_ctl, FRF_CZ_MULTICAST_NOMATCH_Q_ID,
1910			table->spec[EF4_FARCH_FILTER_INDEX_MC_DEF].dmaq_id);
1911		EF4_SET_OWORD_FIELD(
1912			filter_ctl, FRF_CZ_MULTICAST_NOMATCH_RSS_ENABLED,
1913			!!(table->spec[EF4_FARCH_FILTER_INDEX_MC_DEF].flags &
1914			   EF4_FILTER_FLAG_RX_RSS));
1915
1916		/* There is a single bit to enable RX scatter for all
1917		 * unmatched packets.  Only set it if scatter is
1918		 * enabled in both filter specs.
1919		 */
1920		EF4_SET_OWORD_FIELD(
1921			filter_ctl, FRF_BZ_SCATTER_ENBL_NO_MATCH_Q,
1922			!!(table->spec[EF4_FARCH_FILTER_INDEX_UC_DEF].flags &
1923			   table->spec[EF4_FARCH_FILTER_INDEX_MC_DEF].flags &
1924			   EF4_FILTER_FLAG_RX_SCATTER));
1925	} else if (ef4_nic_rev(efx) >= EF4_REV_FALCON_B0) {
1926		/* We don't expose 'default' filters because unmatched
1927		 * packets always go to the queue number found in the
1928		 * RSS table.  But we still need to set the RX scatter
1929		 * bit here.
1930		 */
1931		EF4_SET_OWORD_FIELD(
1932			filter_ctl, FRF_BZ_SCATTER_ENBL_NO_MATCH_Q,
1933			efx->rx_scatter);
1934	}
1935
1936	ef4_writeo(efx, &filter_ctl, FR_BZ_RX_FILTER_CTL);
1937}
1938
1939static void ef4_farch_filter_push_tx_limits(struct ef4_nic *efx)
1940{
1941	struct ef4_farch_filter_state *state = efx->filter_state;
1942	struct ef4_farch_filter_table *table;
1943	ef4_oword_t tx_cfg;
1944
1945	ef4_reado(efx, &tx_cfg, FR_AZ_TX_CFG);
1946
1947	table = &state->table[EF4_FARCH_FILTER_TABLE_TX_MAC];
1948	if (table->size) {
1949		EF4_SET_OWORD_FIELD(
1950			tx_cfg, FRF_CZ_TX_ETH_FILTER_FULL_SEARCH_RANGE,
1951			table->search_limit[EF4_FARCH_FILTER_MAC_FULL] +
1952			EF4_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
1953		EF4_SET_OWORD_FIELD(
1954			tx_cfg, FRF_CZ_TX_ETH_FILTER_WILD_SEARCH_RANGE,
1955			table->search_limit[EF4_FARCH_FILTER_MAC_WILD] +
1956			EF4_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
1957	}
1958
1959	ef4_writeo(efx, &tx_cfg, FR_AZ_TX_CFG);
1960}
1961
1962static int
1963ef4_farch_filter_from_gen_spec(struct ef4_farch_filter_spec *spec,
1964			       const struct ef4_filter_spec *gen_spec)
1965{
1966	bool is_full = false;
1967
1968	if ((gen_spec->flags & EF4_FILTER_FLAG_RX_RSS) &&
1969	    gen_spec->rss_context != EF4_FILTER_RSS_CONTEXT_DEFAULT)
1970		return -EINVAL;
1971
1972	spec->priority = gen_spec->priority;
1973	spec->flags = gen_spec->flags;
1974	spec->dmaq_id = gen_spec->dmaq_id;
1975
1976	switch (gen_spec->match_flags) {
1977	case (EF4_FILTER_MATCH_ETHER_TYPE | EF4_FILTER_MATCH_IP_PROTO |
1978	      EF4_FILTER_MATCH_LOC_HOST | EF4_FILTER_MATCH_LOC_PORT |
1979	      EF4_FILTER_MATCH_REM_HOST | EF4_FILTER_MATCH_REM_PORT):
1980		is_full = true;
1981		fallthrough;
1982	case (EF4_FILTER_MATCH_ETHER_TYPE | EF4_FILTER_MATCH_IP_PROTO |
1983	      EF4_FILTER_MATCH_LOC_HOST | EF4_FILTER_MATCH_LOC_PORT): {
1984		__be32 rhost, host1, host2;
1985		__be16 rport, port1, port2;
1986
1987		EF4_BUG_ON_PARANOID(!(gen_spec->flags & EF4_FILTER_FLAG_RX));
1988
1989		if (gen_spec->ether_type != htons(ETH_P_IP))
1990			return -EPROTONOSUPPORT;
1991		if (gen_spec->loc_port == 0 ||
1992		    (is_full && gen_spec->rem_port == 0))
1993			return -EADDRNOTAVAIL;
1994		switch (gen_spec->ip_proto) {
1995		case IPPROTO_TCP:
1996			spec->type = (is_full ? EF4_FARCH_FILTER_TCP_FULL :
1997				      EF4_FARCH_FILTER_TCP_WILD);
1998			break;
1999		case IPPROTO_UDP:
2000			spec->type = (is_full ? EF4_FARCH_FILTER_UDP_FULL :
2001				      EF4_FARCH_FILTER_UDP_WILD);
2002			break;
2003		default:
2004			return -EPROTONOSUPPORT;
2005		}
2006
2007		/* Filter is constructed in terms of source and destination,
2008		 * with the odd wrinkle that the ports are swapped in a UDP
2009		 * wildcard filter.  We need to convert from local and remote
2010		 * (= zero for wildcard) addresses.
2011		 */
2012		rhost = is_full ? gen_spec->rem_host[0] : 0;
2013		rport = is_full ? gen_spec->rem_port : 0;
2014		host1 = rhost;
2015		host2 = gen_spec->loc_host[0];
2016		if (!is_full && gen_spec->ip_proto == IPPROTO_UDP) {
2017			port1 = gen_spec->loc_port;
2018			port2 = rport;
2019		} else {
2020			port1 = rport;
2021			port2 = gen_spec->loc_port;
2022		}
2023		spec->data[0] = ntohl(host1) << 16 | ntohs(port1);
2024		spec->data[1] = ntohs(port2) << 16 | ntohl(host1) >> 16;
2025		spec->data[2] = ntohl(host2);
2026
2027		break;
2028	}
2029
2030	case EF4_FILTER_MATCH_LOC_MAC | EF4_FILTER_MATCH_OUTER_VID:
2031		is_full = true;
2032		fallthrough;
2033	case EF4_FILTER_MATCH_LOC_MAC:
2034		spec->type = (is_full ? EF4_FARCH_FILTER_MAC_FULL :
2035			      EF4_FARCH_FILTER_MAC_WILD);
2036		spec->data[0] = is_full ? ntohs(gen_spec->outer_vid) : 0;
2037		spec->data[1] = (gen_spec->loc_mac[2] << 24 |
2038				 gen_spec->loc_mac[3] << 16 |
2039				 gen_spec->loc_mac[4] << 8 |
2040				 gen_spec->loc_mac[5]);
2041		spec->data[2] = (gen_spec->loc_mac[0] << 8 |
2042				 gen_spec->loc_mac[1]);
2043		break;
2044
2045	case EF4_FILTER_MATCH_LOC_MAC_IG:
2046		spec->type = (is_multicast_ether_addr(gen_spec->loc_mac) ?
2047			      EF4_FARCH_FILTER_MC_DEF :
2048			      EF4_FARCH_FILTER_UC_DEF);
2049		memset(spec->data, 0, sizeof(spec->data)); /* ensure equality */
2050		break;
2051
2052	default:
2053		return -EPROTONOSUPPORT;
2054	}
2055
2056	return 0;
2057}
2058
2059static void
2060ef4_farch_filter_to_gen_spec(struct ef4_filter_spec *gen_spec,
2061			     const struct ef4_farch_filter_spec *spec)
2062{
2063	bool is_full = false;
2064
2065	/* *gen_spec should be completely initialised, to be consistent
2066	 * with ef4_filter_init_{rx,tx}() and in case we want to copy
2067	 * it back to userland.
2068	 */
2069	memset(gen_spec, 0, sizeof(*gen_spec));
2070
2071	gen_spec->priority = spec->priority;
2072	gen_spec->flags = spec->flags;
2073	gen_spec->dmaq_id = spec->dmaq_id;
2074
2075	switch (spec->type) {
2076	case EF4_FARCH_FILTER_TCP_FULL:
2077	case EF4_FARCH_FILTER_UDP_FULL:
2078		is_full = true;
2079		fallthrough;
2080	case EF4_FARCH_FILTER_TCP_WILD:
2081	case EF4_FARCH_FILTER_UDP_WILD: {
2082		__be32 host1, host2;
2083		__be16 port1, port2;
2084
2085		gen_spec->match_flags =
2086			EF4_FILTER_MATCH_ETHER_TYPE |
2087			EF4_FILTER_MATCH_IP_PROTO |
2088			EF4_FILTER_MATCH_LOC_HOST | EF4_FILTER_MATCH_LOC_PORT;
2089		if (is_full)
2090			gen_spec->match_flags |= (EF4_FILTER_MATCH_REM_HOST |
2091						  EF4_FILTER_MATCH_REM_PORT);
2092		gen_spec->ether_type = htons(ETH_P_IP);
2093		gen_spec->ip_proto =
2094			(spec->type == EF4_FARCH_FILTER_TCP_FULL ||
2095			 spec->type == EF4_FARCH_FILTER_TCP_WILD) ?
2096			IPPROTO_TCP : IPPROTO_UDP;
2097
2098		host1 = htonl(spec->data[0] >> 16 | spec->data[1] << 16);
2099		port1 = htons(spec->data[0]);
2100		host2 = htonl(spec->data[2]);
2101		port2 = htons(spec->data[1] >> 16);
2102		if (spec->flags & EF4_FILTER_FLAG_TX) {
2103			gen_spec->loc_host[0] = host1;
2104			gen_spec->rem_host[0] = host2;
2105		} else {
2106			gen_spec->loc_host[0] = host2;
2107			gen_spec->rem_host[0] = host1;
2108		}
2109		if (!!(gen_spec->flags & EF4_FILTER_FLAG_TX) ^
2110		    (!is_full && gen_spec->ip_proto == IPPROTO_UDP)) {
2111			gen_spec->loc_port = port1;
2112			gen_spec->rem_port = port2;
2113		} else {
2114			gen_spec->loc_port = port2;
2115			gen_spec->rem_port = port1;
2116		}
2117
2118		break;
2119	}
2120
2121	case EF4_FARCH_FILTER_MAC_FULL:
2122		is_full = true;
2123		fallthrough;
2124	case EF4_FARCH_FILTER_MAC_WILD:
2125		gen_spec->match_flags = EF4_FILTER_MATCH_LOC_MAC;
2126		if (is_full)
2127			gen_spec->match_flags |= EF4_FILTER_MATCH_OUTER_VID;
2128		gen_spec->loc_mac[0] = spec->data[2] >> 8;
2129		gen_spec->loc_mac[1] = spec->data[2];
2130		gen_spec->loc_mac[2] = spec->data[1] >> 24;
2131		gen_spec->loc_mac[3] = spec->data[1] >> 16;
2132		gen_spec->loc_mac[4] = spec->data[1] >> 8;
2133		gen_spec->loc_mac[5] = spec->data[1];
2134		gen_spec->outer_vid = htons(spec->data[0]);
2135		break;
2136
2137	case EF4_FARCH_FILTER_UC_DEF:
2138	case EF4_FARCH_FILTER_MC_DEF:
2139		gen_spec->match_flags = EF4_FILTER_MATCH_LOC_MAC_IG;
2140		gen_spec->loc_mac[0] = spec->type == EF4_FARCH_FILTER_MC_DEF;
2141		break;
2142
2143	default:
2144		WARN_ON(1);
2145		break;
2146	}
2147}
2148
2149static void
2150ef4_farch_filter_init_rx_auto(struct ef4_nic *efx,
2151			      struct ef4_farch_filter_spec *spec)
2152{
2153	/* If there's only one channel then disable RSS for non VF
2154	 * traffic, thereby allowing VFs to use RSS when the PF can't.
2155	 */
2156	spec->priority = EF4_FILTER_PRI_AUTO;
2157	spec->flags = (EF4_FILTER_FLAG_RX |
2158		       (ef4_rss_enabled(efx) ? EF4_FILTER_FLAG_RX_RSS : 0) |
2159		       (efx->rx_scatter ? EF4_FILTER_FLAG_RX_SCATTER : 0));
2160	spec->dmaq_id = 0;
2161}
2162
2163/* Build a filter entry and return its n-tuple key. */
2164static u32 ef4_farch_filter_build(ef4_oword_t *filter,
2165				  struct ef4_farch_filter_spec *spec)
2166{
2167	u32 data3;
2168
2169	switch (ef4_farch_filter_spec_table_id(spec)) {
2170	case EF4_FARCH_FILTER_TABLE_RX_IP: {
2171		bool is_udp = (spec->type == EF4_FARCH_FILTER_UDP_FULL ||
2172			       spec->type == EF4_FARCH_FILTER_UDP_WILD);
2173		EF4_POPULATE_OWORD_7(
2174			*filter,
2175			FRF_BZ_RSS_EN,
2176			!!(spec->flags & EF4_FILTER_FLAG_RX_RSS),
2177			FRF_BZ_SCATTER_EN,
2178			!!(spec->flags & EF4_FILTER_FLAG_RX_SCATTER),
2179			FRF_BZ_TCP_UDP, is_udp,
2180			FRF_BZ_RXQ_ID, spec->dmaq_id,
2181			EF4_DWORD_2, spec->data[2],
2182			EF4_DWORD_1, spec->data[1],
2183			EF4_DWORD_0, spec->data[0]);
2184		data3 = is_udp;
2185		break;
2186	}
2187
2188	case EF4_FARCH_FILTER_TABLE_RX_MAC: {
2189		bool is_wild = spec->type == EF4_FARCH_FILTER_MAC_WILD;
2190		EF4_POPULATE_OWORD_7(
2191			*filter,
2192			FRF_CZ_RMFT_RSS_EN,
2193			!!(spec->flags & EF4_FILTER_FLAG_RX_RSS),
2194			FRF_CZ_RMFT_SCATTER_EN,
2195			!!(spec->flags & EF4_FILTER_FLAG_RX_SCATTER),
2196			FRF_CZ_RMFT_RXQ_ID, spec->dmaq_id,
2197			FRF_CZ_RMFT_WILDCARD_MATCH, is_wild,
2198			FRF_CZ_RMFT_DEST_MAC_HI, spec->data[2],
2199			FRF_CZ_RMFT_DEST_MAC_LO, spec->data[1],
2200			FRF_CZ_RMFT_VLAN_ID, spec->data[0]);
2201		data3 = is_wild;
2202		break;
2203	}
2204
2205	case EF4_FARCH_FILTER_TABLE_TX_MAC: {
2206		bool is_wild = spec->type == EF4_FARCH_FILTER_MAC_WILD;
2207		EF4_POPULATE_OWORD_5(*filter,
2208				     FRF_CZ_TMFT_TXQ_ID, spec->dmaq_id,
2209				     FRF_CZ_TMFT_WILDCARD_MATCH, is_wild,
2210				     FRF_CZ_TMFT_SRC_MAC_HI, spec->data[2],
2211				     FRF_CZ_TMFT_SRC_MAC_LO, spec->data[1],
2212				     FRF_CZ_TMFT_VLAN_ID, spec->data[0]);
2213		data3 = is_wild | spec->dmaq_id << 1;
2214		break;
2215	}
2216
2217	default:
2218		BUG();
2219	}
2220
2221	return spec->data[0] ^ spec->data[1] ^ spec->data[2] ^ data3;
2222}
2223
2224static bool ef4_farch_filter_equal(const struct ef4_farch_filter_spec *left,
2225				   const struct ef4_farch_filter_spec *right)
2226{
2227	if (left->type != right->type ||
2228	    memcmp(left->data, right->data, sizeof(left->data)))
2229		return false;
2230
2231	if (left->flags & EF4_FILTER_FLAG_TX &&
2232	    left->dmaq_id != right->dmaq_id)
2233		return false;
2234
2235	return true;
2236}
2237
2238/*
2239 * Construct/deconstruct external filter IDs.  At least the RX filter
2240 * IDs must be ordered by matching priority, for RX NFC semantics.
2241 *
2242 * Deconstruction needs to be robust against invalid IDs so that
2243 * ef4_filter_remove_id_safe() and ef4_filter_get_filter_safe() can
2244 * accept user-provided IDs.
2245 */
2246
2247#define EF4_FARCH_FILTER_MATCH_PRI_COUNT	5
2248
2249static const u8 ef4_farch_filter_type_match_pri[EF4_FARCH_FILTER_TYPE_COUNT] = {
2250	[EF4_FARCH_FILTER_TCP_FULL]	= 0,
2251	[EF4_FARCH_FILTER_UDP_FULL]	= 0,
2252	[EF4_FARCH_FILTER_TCP_WILD]	= 1,
2253	[EF4_FARCH_FILTER_UDP_WILD]	= 1,
2254	[EF4_FARCH_FILTER_MAC_FULL]	= 2,
2255	[EF4_FARCH_FILTER_MAC_WILD]	= 3,
2256	[EF4_FARCH_FILTER_UC_DEF]	= 4,
2257	[EF4_FARCH_FILTER_MC_DEF]	= 4,
2258};
2259
2260static const enum ef4_farch_filter_table_id ef4_farch_filter_range_table[] = {
2261	EF4_FARCH_FILTER_TABLE_RX_IP,	/* RX match pri 0 */
2262	EF4_FARCH_FILTER_TABLE_RX_IP,
2263	EF4_FARCH_FILTER_TABLE_RX_MAC,
2264	EF4_FARCH_FILTER_TABLE_RX_MAC,
2265	EF4_FARCH_FILTER_TABLE_RX_DEF,	/* RX match pri 4 */
2266	EF4_FARCH_FILTER_TABLE_TX_MAC,	/* TX match pri 0 */
2267	EF4_FARCH_FILTER_TABLE_TX_MAC,	/* TX match pri 1 */
2268};
2269
2270#define EF4_FARCH_FILTER_INDEX_WIDTH 13
2271#define EF4_FARCH_FILTER_INDEX_MASK ((1 << EF4_FARCH_FILTER_INDEX_WIDTH) - 1)
2272
2273static inline u32
2274ef4_farch_filter_make_id(const struct ef4_farch_filter_spec *spec,
2275			 unsigned int index)
2276{
2277	unsigned int range;
2278
2279	range = ef4_farch_filter_type_match_pri[spec->type];
2280	if (!(spec->flags & EF4_FILTER_FLAG_RX))
2281		range += EF4_FARCH_FILTER_MATCH_PRI_COUNT;
2282
2283	return range << EF4_FARCH_FILTER_INDEX_WIDTH | index;
2284}
2285
2286static inline enum ef4_farch_filter_table_id
2287ef4_farch_filter_id_table_id(u32 id)
2288{
2289	unsigned int range = id >> EF4_FARCH_FILTER_INDEX_WIDTH;
2290
2291	if (range < ARRAY_SIZE(ef4_farch_filter_range_table))
2292		return ef4_farch_filter_range_table[range];
2293	else
2294		return EF4_FARCH_FILTER_TABLE_COUNT; /* invalid */
2295}
2296
2297static inline unsigned int ef4_farch_filter_id_index(u32 id)
2298{
2299	return id & EF4_FARCH_FILTER_INDEX_MASK;
2300}
2301
2302u32 ef4_farch_filter_get_rx_id_limit(struct ef4_nic *efx)
2303{
2304	struct ef4_farch_filter_state *state = efx->filter_state;
2305	unsigned int range = EF4_FARCH_FILTER_MATCH_PRI_COUNT - 1;
2306	enum ef4_farch_filter_table_id table_id;
2307
2308	do {
2309		table_id = ef4_farch_filter_range_table[range];
2310		if (state->table[table_id].size != 0)
2311			return range << EF4_FARCH_FILTER_INDEX_WIDTH |
2312				state->table[table_id].size;
2313	} while (range--);
2314
2315	return 0;
2316}
2317
2318s32 ef4_farch_filter_insert(struct ef4_nic *efx,
2319			    struct ef4_filter_spec *gen_spec,
2320			    bool replace_equal)
2321{
2322	struct ef4_farch_filter_state *state = efx->filter_state;
2323	struct ef4_farch_filter_table *table;
2324	struct ef4_farch_filter_spec spec;
2325	ef4_oword_t filter;
2326	int rep_index, ins_index;
2327	unsigned int depth = 0;
2328	int rc;
2329
2330	rc = ef4_farch_filter_from_gen_spec(&spec, gen_spec);
2331	if (rc)
2332		return rc;
2333
2334	table = &state->table[ef4_farch_filter_spec_table_id(&spec)];
2335	if (table->size == 0)
2336		return -EINVAL;
2337
2338	netif_vdbg(efx, hw, efx->net_dev,
2339		   "%s: type %d search_limit=%d", __func__, spec.type,
2340		   table->search_limit[spec.type]);
2341
2342	if (table->id == EF4_FARCH_FILTER_TABLE_RX_DEF) {
2343		/* One filter spec per type */
2344		BUILD_BUG_ON(EF4_FARCH_FILTER_INDEX_UC_DEF != 0);
2345		BUILD_BUG_ON(EF4_FARCH_FILTER_INDEX_MC_DEF !=
2346			     EF4_FARCH_FILTER_MC_DEF - EF4_FARCH_FILTER_UC_DEF);
2347		rep_index = spec.type - EF4_FARCH_FILTER_UC_DEF;
2348		ins_index = rep_index;
2349
2350		spin_lock_bh(&efx->filter_lock);
2351	} else {
2352		/* Search concurrently for
2353		 * (1) a filter to be replaced (rep_index): any filter
2354		 *     with the same match values, up to the current
2355		 *     search depth for this type, and
2356		 * (2) the insertion point (ins_index): (1) or any
2357		 *     free slot before it or up to the maximum search
2358		 *     depth for this priority
2359		 * We fail if we cannot find (2).
2360		 *
2361		 * We can stop once either
2362		 * (a) we find (1), in which case we have definitely
2363		 *     found (2) as well; or
2364		 * (b) we have searched exhaustively for (1), and have
2365		 *     either found (2) or searched exhaustively for it
2366		 */
2367		u32 key = ef4_farch_filter_build(&filter, &spec);
2368		unsigned int hash = ef4_farch_filter_hash(key);
2369		unsigned int incr = ef4_farch_filter_increment(key);
2370		unsigned int max_rep_depth = table->search_limit[spec.type];
2371		unsigned int max_ins_depth =
2372			spec.priority <= EF4_FILTER_PRI_HINT ?
2373			EF4_FARCH_FILTER_CTL_SRCH_HINT_MAX :
2374			EF4_FARCH_FILTER_CTL_SRCH_MAX;
2375		unsigned int i = hash & (table->size - 1);
2376
2377		ins_index = -1;
2378		depth = 1;
2379
2380		spin_lock_bh(&efx->filter_lock);
2381
2382		for (;;) {
2383			if (!test_bit(i, table->used_bitmap)) {
2384				if (ins_index < 0)
2385					ins_index = i;
2386			} else if (ef4_farch_filter_equal(&spec,
2387							  &table->spec[i])) {
2388				/* Case (a) */
2389				if (ins_index < 0)
2390					ins_index = i;
2391				rep_index = i;
2392				break;
2393			}
2394
2395			if (depth >= max_rep_depth &&
2396			    (ins_index >= 0 || depth >= max_ins_depth)) {
2397				/* Case (b) */
2398				if (ins_index < 0) {
2399					rc = -EBUSY;
2400					goto out;
2401				}
2402				rep_index = -1;
2403				break;
2404			}
2405
2406			i = (i + incr) & (table->size - 1);
2407			++depth;
2408		}
2409	}
2410
2411	/* If we found a filter to be replaced, check whether we
2412	 * should do so
2413	 */
2414	if (rep_index >= 0) {
2415		struct ef4_farch_filter_spec *saved_spec =
2416			&table->spec[rep_index];
2417
2418		if (spec.priority == saved_spec->priority && !replace_equal) {
2419			rc = -EEXIST;
2420			goto out;
2421		}
2422		if (spec.priority < saved_spec->priority) {
2423			rc = -EPERM;
2424			goto out;
2425		}
2426		if (saved_spec->priority == EF4_FILTER_PRI_AUTO ||
2427		    saved_spec->flags & EF4_FILTER_FLAG_RX_OVER_AUTO)
2428			spec.flags |= EF4_FILTER_FLAG_RX_OVER_AUTO;
2429	}
2430
2431	/* Insert the filter */
2432	if (ins_index != rep_index) {
2433		__set_bit(ins_index, table->used_bitmap);
2434		++table->used;
2435	}
2436	table->spec[ins_index] = spec;
2437
2438	if (table->id == EF4_FARCH_FILTER_TABLE_RX_DEF) {
2439		ef4_farch_filter_push_rx_config(efx);
2440	} else {
2441		if (table->search_limit[spec.type] < depth) {
2442			table->search_limit[spec.type] = depth;
2443			if (spec.flags & EF4_FILTER_FLAG_TX)
2444				ef4_farch_filter_push_tx_limits(efx);
2445			else
2446				ef4_farch_filter_push_rx_config(efx);
2447		}
2448
2449		ef4_writeo(efx, &filter,
2450			   table->offset + table->step * ins_index);
2451
2452		/* If we were able to replace a filter by inserting
2453		 * at a lower depth, clear the replaced filter
2454		 */
2455		if (ins_index != rep_index && rep_index >= 0)
2456			ef4_farch_filter_table_clear_entry(efx, table,
2457							   rep_index);
2458	}
2459
2460	netif_vdbg(efx, hw, efx->net_dev,
2461		   "%s: filter type %d index %d rxq %u set",
2462		   __func__, spec.type, ins_index, spec.dmaq_id);
2463	rc = ef4_farch_filter_make_id(&spec, ins_index);
2464
2465out:
2466	spin_unlock_bh(&efx->filter_lock);
2467	return rc;
2468}
2469
2470static void
2471ef4_farch_filter_table_clear_entry(struct ef4_nic *efx,
2472				   struct ef4_farch_filter_table *table,
2473				   unsigned int filter_idx)
2474{
2475	static ef4_oword_t filter;
2476
2477	EF4_WARN_ON_PARANOID(!test_bit(filter_idx, table->used_bitmap));
2478	BUG_ON(table->offset == 0); /* can't clear MAC default filters */
2479
2480	__clear_bit(filter_idx, table->used_bitmap);
2481	--table->used;
2482	memset(&table->spec[filter_idx], 0, sizeof(table->spec[0]));
2483
2484	ef4_writeo(efx, &filter, table->offset + table->step * filter_idx);
2485
2486	/* If this filter required a greater search depth than
2487	 * any other, the search limit for its type can now be
2488	 * decreased.  However, it is hard to determine that
2489	 * unless the table has become completely empty - in
2490	 * which case, all its search limits can be set to 0.
2491	 */
2492	if (unlikely(table->used == 0)) {
2493		memset(table->search_limit, 0, sizeof(table->search_limit));
2494		if (table->id == EF4_FARCH_FILTER_TABLE_TX_MAC)
2495			ef4_farch_filter_push_tx_limits(efx);
2496		else
2497			ef4_farch_filter_push_rx_config(efx);
2498	}
2499}
2500
2501static int ef4_farch_filter_remove(struct ef4_nic *efx,
2502				   struct ef4_farch_filter_table *table,
2503				   unsigned int filter_idx,
2504				   enum ef4_filter_priority priority)
2505{
2506	struct ef4_farch_filter_spec *spec = &table->spec[filter_idx];
2507
2508	if (!test_bit(filter_idx, table->used_bitmap) ||
2509	    spec->priority != priority)
2510		return -ENOENT;
2511
2512	if (spec->flags & EF4_FILTER_FLAG_RX_OVER_AUTO) {
2513		ef4_farch_filter_init_rx_auto(efx, spec);
2514		ef4_farch_filter_push_rx_config(efx);
2515	} else {
2516		ef4_farch_filter_table_clear_entry(efx, table, filter_idx);
2517	}
2518
2519	return 0;
2520}
2521
2522int ef4_farch_filter_remove_safe(struct ef4_nic *efx,
2523				 enum ef4_filter_priority priority,
2524				 u32 filter_id)
2525{
2526	struct ef4_farch_filter_state *state = efx->filter_state;
2527	enum ef4_farch_filter_table_id table_id;
2528	struct ef4_farch_filter_table *table;
2529	unsigned int filter_idx;
2530	int rc;
2531
2532	table_id = ef4_farch_filter_id_table_id(filter_id);
2533	if ((unsigned int)table_id >= EF4_FARCH_FILTER_TABLE_COUNT)
2534		return -ENOENT;
2535	table = &state->table[table_id];
2536
2537	filter_idx = ef4_farch_filter_id_index(filter_id);
2538	if (filter_idx >= table->size)
2539		return -ENOENT;
2540
2541	spin_lock_bh(&efx->filter_lock);
2542	rc = ef4_farch_filter_remove(efx, table, filter_idx, priority);
2543	spin_unlock_bh(&efx->filter_lock);
2544
2545	return rc;
2546}
2547
2548int ef4_farch_filter_get_safe(struct ef4_nic *efx,
2549			      enum ef4_filter_priority priority,
2550			      u32 filter_id, struct ef4_filter_spec *spec_buf)
2551{
2552	struct ef4_farch_filter_state *state = efx->filter_state;
2553	enum ef4_farch_filter_table_id table_id;
2554	struct ef4_farch_filter_table *table;
2555	struct ef4_farch_filter_spec *spec;
2556	unsigned int filter_idx;
2557	int rc;
2558
2559	table_id = ef4_farch_filter_id_table_id(filter_id);
2560	if ((unsigned int)table_id >= EF4_FARCH_FILTER_TABLE_COUNT)
2561		return -ENOENT;
2562	table = &state->table[table_id];
2563
2564	filter_idx = ef4_farch_filter_id_index(filter_id);
2565	if (filter_idx >= table->size)
2566		return -ENOENT;
2567	spec = &table->spec[filter_idx];
2568
2569	spin_lock_bh(&efx->filter_lock);
2570
2571	if (test_bit(filter_idx, table->used_bitmap) &&
2572	    spec->priority == priority) {
2573		ef4_farch_filter_to_gen_spec(spec_buf, spec);
2574		rc = 0;
2575	} else {
2576		rc = -ENOENT;
2577	}
2578
2579	spin_unlock_bh(&efx->filter_lock);
2580
2581	return rc;
2582}
2583
2584static void
2585ef4_farch_filter_table_clear(struct ef4_nic *efx,
2586			     enum ef4_farch_filter_table_id table_id,
2587			     enum ef4_filter_priority priority)
2588{
2589	struct ef4_farch_filter_state *state = efx->filter_state;
2590	struct ef4_farch_filter_table *table = &state->table[table_id];
2591	unsigned int filter_idx;
2592
2593	spin_lock_bh(&efx->filter_lock);
2594	for (filter_idx = 0; filter_idx < table->size; ++filter_idx) {
2595		if (table->spec[filter_idx].priority != EF4_FILTER_PRI_AUTO)
2596			ef4_farch_filter_remove(efx, table,
2597						filter_idx, priority);
2598	}
2599	spin_unlock_bh(&efx->filter_lock);
2600}
2601
2602int ef4_farch_filter_clear_rx(struct ef4_nic *efx,
2603			       enum ef4_filter_priority priority)
2604{
2605	ef4_farch_filter_table_clear(efx, EF4_FARCH_FILTER_TABLE_RX_IP,
2606				     priority);
2607	ef4_farch_filter_table_clear(efx, EF4_FARCH_FILTER_TABLE_RX_MAC,
2608				     priority);
2609	ef4_farch_filter_table_clear(efx, EF4_FARCH_FILTER_TABLE_RX_DEF,
2610				     priority);
2611	return 0;
2612}
2613
2614u32 ef4_farch_filter_count_rx_used(struct ef4_nic *efx,
2615				   enum ef4_filter_priority priority)
2616{
2617	struct ef4_farch_filter_state *state = efx->filter_state;
2618	enum ef4_farch_filter_table_id table_id;
2619	struct ef4_farch_filter_table *table;
2620	unsigned int filter_idx;
2621	u32 count = 0;
2622
2623	spin_lock_bh(&efx->filter_lock);
2624
2625	for (table_id = EF4_FARCH_FILTER_TABLE_RX_IP;
2626	     table_id <= EF4_FARCH_FILTER_TABLE_RX_DEF;
2627	     table_id++) {
2628		table = &state->table[table_id];
2629		for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2630			if (test_bit(filter_idx, table->used_bitmap) &&
2631			    table->spec[filter_idx].priority == priority)
2632				++count;
2633		}
2634	}
2635
2636	spin_unlock_bh(&efx->filter_lock);
2637
2638	return count;
2639}
2640
2641s32 ef4_farch_filter_get_rx_ids(struct ef4_nic *efx,
2642				enum ef4_filter_priority priority,
2643				u32 *buf, u32 size)
2644{
2645	struct ef4_farch_filter_state *state = efx->filter_state;
2646	enum ef4_farch_filter_table_id table_id;
2647	struct ef4_farch_filter_table *table;
2648	unsigned int filter_idx;
2649	s32 count = 0;
2650
2651	spin_lock_bh(&efx->filter_lock);
2652
2653	for (table_id = EF4_FARCH_FILTER_TABLE_RX_IP;
2654	     table_id <= EF4_FARCH_FILTER_TABLE_RX_DEF;
2655	     table_id++) {
2656		table = &state->table[table_id];
2657		for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2658			if (test_bit(filter_idx, table->used_bitmap) &&
2659			    table->spec[filter_idx].priority == priority) {
2660				if (count == size) {
2661					count = -EMSGSIZE;
2662					goto out;
2663				}
2664				buf[count++] = ef4_farch_filter_make_id(
2665					&table->spec[filter_idx], filter_idx);
2666			}
2667		}
2668	}
2669out:
2670	spin_unlock_bh(&efx->filter_lock);
2671
2672	return count;
2673}
2674
2675/* Restore filter stater after reset */
2676void ef4_farch_filter_table_restore(struct ef4_nic *efx)
2677{
2678	struct ef4_farch_filter_state *state = efx->filter_state;
2679	enum ef4_farch_filter_table_id table_id;
2680	struct ef4_farch_filter_table *table;
2681	ef4_oword_t filter;
2682	unsigned int filter_idx;
2683
2684	spin_lock_bh(&efx->filter_lock);
2685
2686	for (table_id = 0; table_id < EF4_FARCH_FILTER_TABLE_COUNT; table_id++) {
2687		table = &state->table[table_id];
2688
2689		/* Check whether this is a regular register table */
2690		if (table->step == 0)
2691			continue;
2692
2693		for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2694			if (!test_bit(filter_idx, table->used_bitmap))
2695				continue;
2696			ef4_farch_filter_build(&filter, &table->spec[filter_idx]);
2697			ef4_writeo(efx, &filter,
2698				   table->offset + table->step * filter_idx);
2699		}
2700	}
2701
2702	ef4_farch_filter_push_rx_config(efx);
2703	ef4_farch_filter_push_tx_limits(efx);
2704
2705	spin_unlock_bh(&efx->filter_lock);
2706}
2707
2708void ef4_farch_filter_table_remove(struct ef4_nic *efx)
2709{
2710	struct ef4_farch_filter_state *state = efx->filter_state;
2711	enum ef4_farch_filter_table_id table_id;
2712
2713	for (table_id = 0; table_id < EF4_FARCH_FILTER_TABLE_COUNT; table_id++) {
2714		bitmap_free(state->table[table_id].used_bitmap);
2715		vfree(state->table[table_id].spec);
2716	}
2717	kfree(state);
2718}
2719
2720int ef4_farch_filter_table_probe(struct ef4_nic *efx)
2721{
2722	struct ef4_farch_filter_state *state;
2723	struct ef4_farch_filter_table *table;
2724	unsigned table_id;
2725
2726	state = kzalloc(sizeof(struct ef4_farch_filter_state), GFP_KERNEL);
2727	if (!state)
2728		return -ENOMEM;
2729	efx->filter_state = state;
2730
2731	if (ef4_nic_rev(efx) >= EF4_REV_FALCON_B0) {
2732		table = &state->table[EF4_FARCH_FILTER_TABLE_RX_IP];
2733		table->id = EF4_FARCH_FILTER_TABLE_RX_IP;
2734		table->offset = FR_BZ_RX_FILTER_TBL0;
2735		table->size = FR_BZ_RX_FILTER_TBL0_ROWS;
2736		table->step = FR_BZ_RX_FILTER_TBL0_STEP;
2737	}
2738
2739	for (table_id = 0; table_id < EF4_FARCH_FILTER_TABLE_COUNT; table_id++) {
2740		table = &state->table[table_id];
2741		if (table->size == 0)
2742			continue;
2743		table->used_bitmap = bitmap_zalloc(table->size, GFP_KERNEL);
2744		if (!table->used_bitmap)
2745			goto fail;
2746		table->spec = vzalloc(array_size(sizeof(*table->spec),
2747						 table->size));
2748		if (!table->spec)
2749			goto fail;
2750	}
2751
2752	table = &state->table[EF4_FARCH_FILTER_TABLE_RX_DEF];
2753	if (table->size) {
2754		/* RX default filters must always exist */
2755		struct ef4_farch_filter_spec *spec;
2756		unsigned i;
2757
2758		for (i = 0; i < EF4_FARCH_FILTER_SIZE_RX_DEF; i++) {
2759			spec = &table->spec[i];
2760			spec->type = EF4_FARCH_FILTER_UC_DEF + i;
2761			ef4_farch_filter_init_rx_auto(efx, spec);
2762			__set_bit(i, table->used_bitmap);
2763		}
2764	}
2765
2766	ef4_farch_filter_push_rx_config(efx);
2767
2768	return 0;
2769
2770fail:
2771	ef4_farch_filter_table_remove(efx);
2772	return -ENOMEM;
2773}
2774
2775/* Update scatter enable flags for filters pointing to our own RX queues */
2776void ef4_farch_filter_update_rx_scatter(struct ef4_nic *efx)
2777{
2778	struct ef4_farch_filter_state *state = efx->filter_state;
2779	enum ef4_farch_filter_table_id table_id;
2780	struct ef4_farch_filter_table *table;
2781	ef4_oword_t filter;
2782	unsigned int filter_idx;
2783
2784	spin_lock_bh(&efx->filter_lock);
2785
2786	for (table_id = EF4_FARCH_FILTER_TABLE_RX_IP;
2787	     table_id <= EF4_FARCH_FILTER_TABLE_RX_DEF;
2788	     table_id++) {
2789		table = &state->table[table_id];
2790
2791		for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2792			if (!test_bit(filter_idx, table->used_bitmap) ||
2793			    table->spec[filter_idx].dmaq_id >=
2794			    efx->n_rx_channels)
2795				continue;
2796
2797			if (efx->rx_scatter)
2798				table->spec[filter_idx].flags |=
2799					EF4_FILTER_FLAG_RX_SCATTER;
2800			else
2801				table->spec[filter_idx].flags &=
2802					~EF4_FILTER_FLAG_RX_SCATTER;
2803
2804			if (table_id == EF4_FARCH_FILTER_TABLE_RX_DEF)
2805				/* Pushed by ef4_farch_filter_push_rx_config() */
2806				continue;
2807
2808			ef4_farch_filter_build(&filter, &table->spec[filter_idx]);
2809			ef4_writeo(efx, &filter,
2810				   table->offset + table->step * filter_idx);
2811		}
2812	}
2813
2814	ef4_farch_filter_push_rx_config(efx);
2815
2816	spin_unlock_bh(&efx->filter_lock);
2817}
2818
2819#ifdef CONFIG_RFS_ACCEL
2820
2821s32 ef4_farch_filter_rfs_insert(struct ef4_nic *efx,
2822				struct ef4_filter_spec *gen_spec)
2823{
2824	return ef4_farch_filter_insert(efx, gen_spec, true);
2825}
2826
2827bool ef4_farch_filter_rfs_expire_one(struct ef4_nic *efx, u32 flow_id,
2828				     unsigned int index)
2829{
2830	struct ef4_farch_filter_state *state = efx->filter_state;
2831	struct ef4_farch_filter_table *table =
2832		&state->table[EF4_FARCH_FILTER_TABLE_RX_IP];
2833
2834	if (test_bit(index, table->used_bitmap) &&
2835	    table->spec[index].priority == EF4_FILTER_PRI_HINT &&
2836	    rps_may_expire_flow(efx->net_dev, table->spec[index].dmaq_id,
2837				flow_id, index)) {
2838		ef4_farch_filter_table_clear_entry(efx, table, index);
2839		return true;
2840	}
2841
2842	return false;
2843}
2844
2845#endif /* CONFIG_RFS_ACCEL */
2846
2847void ef4_farch_filter_sync_rx_mode(struct ef4_nic *efx)
2848{
2849	struct net_device *net_dev = efx->net_dev;
2850	struct netdev_hw_addr *ha;
2851	union ef4_multicast_hash *mc_hash = &efx->multicast_hash;
2852	u32 crc;
2853	int bit;
2854
2855	if (!ef4_dev_registered(efx))
2856		return;
2857
2858	netif_addr_lock_bh(net_dev);
2859
2860	efx->unicast_filter = !(net_dev->flags & IFF_PROMISC);
2861
2862	/* Build multicast hash table */
2863	if (net_dev->flags & (IFF_PROMISC | IFF_ALLMULTI)) {
2864		memset(mc_hash, 0xff, sizeof(*mc_hash));
2865	} else {
2866		memset(mc_hash, 0x00, sizeof(*mc_hash));
2867		netdev_for_each_mc_addr(ha, net_dev) {
2868			crc = ether_crc_le(ETH_ALEN, ha->addr);
2869			bit = crc & (EF4_MCAST_HASH_ENTRIES - 1);
2870			__set_bit_le(bit, mc_hash);
2871		}
2872
2873		/* Broadcast packets go through the multicast hash filter.
2874		 * ether_crc_le() of the broadcast address is 0xbe2612ff
2875		 * so we always add bit 0xff to the mask.
2876		 */
2877		__set_bit_le(0xff, mc_hash);
2878	}
2879
2880	netif_addr_unlock_bh(net_dev);
2881}
2882