1// SPDX-License-Identifier: GPL-2.0-only
2/****************************************************************************
3 * Driver for Solarflare network controllers and boards
4 * Copyright 2005-2006 Fen Systems Ltd.
5 * Copyright 2005-2013 Solarflare Communications Inc.
6 */
7
8#include <linux/module.h>
9#include <linux/pci.h>
10#include <linux/netdevice.h>
11#include <linux/etherdevice.h>
12#include <linux/delay.h>
13#include <linux/notifier.h>
14#include <linux/ip.h>
15#include <linux/tcp.h>
16#include <linux/in.h>
17#include <linux/ethtool.h>
18#include <linux/topology.h>
19#include <linux/gfp.h>
20#include <linux/interrupt.h>
21#include "net_driver.h"
22#include "efx.h"
23#include "nic.h"
24#include "selftest.h"
25
26#include "workarounds.h"
27
28/**************************************************************************
29 *
30 * Type name strings
31 *
32 **************************************************************************
33 */
34
35/* Loopback mode names (see LOOPBACK_MODE()) */
36const unsigned int ef4_loopback_mode_max = LOOPBACK_MAX;
37const char *const ef4_loopback_mode_names[] = {
38	[LOOPBACK_NONE]		= "NONE",
39	[LOOPBACK_DATA]		= "DATAPATH",
40	[LOOPBACK_GMAC]		= "GMAC",
41	[LOOPBACK_XGMII]	= "XGMII",
42	[LOOPBACK_XGXS]		= "XGXS",
43	[LOOPBACK_XAUI]		= "XAUI",
44	[LOOPBACK_GMII]		= "GMII",
45	[LOOPBACK_SGMII]	= "SGMII",
46	[LOOPBACK_XGBR]		= "XGBR",
47	[LOOPBACK_XFI]		= "XFI",
48	[LOOPBACK_XAUI_FAR]	= "XAUI_FAR",
49	[LOOPBACK_GMII_FAR]	= "GMII_FAR",
50	[LOOPBACK_SGMII_FAR]	= "SGMII_FAR",
51	[LOOPBACK_XFI_FAR]	= "XFI_FAR",
52	[LOOPBACK_GPHY]		= "GPHY",
53	[LOOPBACK_PHYXS]	= "PHYXS",
54	[LOOPBACK_PCS]		= "PCS",
55	[LOOPBACK_PMAPMD]	= "PMA/PMD",
56	[LOOPBACK_XPORT]	= "XPORT",
57	[LOOPBACK_XGMII_WS]	= "XGMII_WS",
58	[LOOPBACK_XAUI_WS]	= "XAUI_WS",
59	[LOOPBACK_XAUI_WS_FAR]  = "XAUI_WS_FAR",
60	[LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR",
61	[LOOPBACK_GMII_WS]	= "GMII_WS",
62	[LOOPBACK_XFI_WS]	= "XFI_WS",
63	[LOOPBACK_XFI_WS_FAR]	= "XFI_WS_FAR",
64	[LOOPBACK_PHYXS_WS]	= "PHYXS_WS",
65};
66
67const unsigned int ef4_reset_type_max = RESET_TYPE_MAX;
68const char *const ef4_reset_type_names[] = {
69	[RESET_TYPE_INVISIBLE]          = "INVISIBLE",
70	[RESET_TYPE_ALL]                = "ALL",
71	[RESET_TYPE_RECOVER_OR_ALL]     = "RECOVER_OR_ALL",
72	[RESET_TYPE_WORLD]              = "WORLD",
73	[RESET_TYPE_RECOVER_OR_DISABLE] = "RECOVER_OR_DISABLE",
74	[RESET_TYPE_DATAPATH]           = "DATAPATH",
75	[RESET_TYPE_DISABLE]            = "DISABLE",
76	[RESET_TYPE_TX_WATCHDOG]        = "TX_WATCHDOG",
77	[RESET_TYPE_INT_ERROR]          = "INT_ERROR",
78	[RESET_TYPE_RX_RECOVERY]        = "RX_RECOVERY",
79	[RESET_TYPE_DMA_ERROR]          = "DMA_ERROR",
80	[RESET_TYPE_TX_SKIP]            = "TX_SKIP",
81};
82
83/* Reset workqueue. If any NIC has a hardware failure then a reset will be
84 * queued onto this work queue. This is not a per-nic work queue, because
85 * ef4_reset_work() acquires the rtnl lock, so resets are naturally serialised.
86 */
87static struct workqueue_struct *reset_workqueue;
88
89/* How often and how many times to poll for a reset while waiting for a
90 * BIST that another function started to complete.
91 */
92#define BIST_WAIT_DELAY_MS	100
93#define BIST_WAIT_DELAY_COUNT	100
94
95/**************************************************************************
96 *
97 * Configurable values
98 *
99 *************************************************************************/
100
101/*
102 * Use separate channels for TX and RX events
103 *
104 * Set this to 1 to use separate channels for TX and RX. It allows us
105 * to control interrupt affinity separately for TX and RX.
106 *
107 * This is only used in MSI-X interrupt mode
108 */
109bool ef4_separate_tx_channels;
110module_param(ef4_separate_tx_channels, bool, 0444);
111MODULE_PARM_DESC(ef4_separate_tx_channels,
112		 "Use separate channels for TX and RX");
113
114/* This is the time (in jiffies) between invocations of the hardware
115 * monitor.
116 * On Falcon-based NICs, this will:
117 * - Check the on-board hardware monitor;
118 * - Poll the link state and reconfigure the hardware as necessary.
119 * On Siena-based NICs for power systems with EEH support, this will give EEH a
120 * chance to start.
121 */
122static unsigned int ef4_monitor_interval = 1 * HZ;
123
124/* Initial interrupt moderation settings.  They can be modified after
125 * module load with ethtool.
126 *
127 * The default for RX should strike a balance between increasing the
128 * round-trip latency and reducing overhead.
129 */
130static unsigned int rx_irq_mod_usec = 60;
131
132/* Initial interrupt moderation settings.  They can be modified after
133 * module load with ethtool.
134 *
135 * This default is chosen to ensure that a 10G link does not go idle
136 * while a TX queue is stopped after it has become full.  A queue is
137 * restarted when it drops below half full.  The time this takes (assuming
138 * worst case 3 descriptors per packet and 1024 descriptors) is
139 *   512 / 3 * 1.2 = 205 usec.
140 */
141static unsigned int tx_irq_mod_usec = 150;
142
143/* This is the first interrupt mode to try out of:
144 * 0 => MSI-X
145 * 1 => MSI
146 * 2 => legacy
147 */
148static unsigned int interrupt_mode;
149
150/* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
151 * i.e. the number of CPUs among which we may distribute simultaneous
152 * interrupt handling.
153 *
154 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
155 * The default (0) means to assign an interrupt to each core.
156 */
157static unsigned int rss_cpus;
158module_param(rss_cpus, uint, 0444);
159MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");
160
161static bool phy_flash_cfg;
162module_param(phy_flash_cfg, bool, 0644);
163MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");
164
165static unsigned irq_adapt_low_thresh = 8000;
166module_param(irq_adapt_low_thresh, uint, 0644);
167MODULE_PARM_DESC(irq_adapt_low_thresh,
168		 "Threshold score for reducing IRQ moderation");
169
170static unsigned irq_adapt_high_thresh = 16000;
171module_param(irq_adapt_high_thresh, uint, 0644);
172MODULE_PARM_DESC(irq_adapt_high_thresh,
173		 "Threshold score for increasing IRQ moderation");
174
175static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
176			 NETIF_MSG_LINK | NETIF_MSG_IFDOWN |
177			 NETIF_MSG_IFUP | NETIF_MSG_RX_ERR |
178			 NETIF_MSG_TX_ERR | NETIF_MSG_HW);
179module_param(debug, uint, 0);
180MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value");
181
182/**************************************************************************
183 *
184 * Utility functions and prototypes
185 *
186 *************************************************************************/
187
188static int ef4_soft_enable_interrupts(struct ef4_nic *efx);
189static void ef4_soft_disable_interrupts(struct ef4_nic *efx);
190static void ef4_remove_channel(struct ef4_channel *channel);
191static void ef4_remove_channels(struct ef4_nic *efx);
192static const struct ef4_channel_type ef4_default_channel_type;
193static void ef4_remove_port(struct ef4_nic *efx);
194static void ef4_init_napi_channel(struct ef4_channel *channel);
195static void ef4_fini_napi(struct ef4_nic *efx);
196static void ef4_fini_napi_channel(struct ef4_channel *channel);
197static void ef4_fini_struct(struct ef4_nic *efx);
198static void ef4_start_all(struct ef4_nic *efx);
199static void ef4_stop_all(struct ef4_nic *efx);
200
201#define EF4_ASSERT_RESET_SERIALISED(efx)		\
202	do {						\
203		if ((efx->state == STATE_READY) ||	\
204		    (efx->state == STATE_RECOVERY) ||	\
205		    (efx->state == STATE_DISABLED))	\
206			ASSERT_RTNL();			\
207	} while (0)
208
209static int ef4_check_disabled(struct ef4_nic *efx)
210{
211	if (efx->state == STATE_DISABLED || efx->state == STATE_RECOVERY) {
212		netif_err(efx, drv, efx->net_dev,
213			  "device is disabled due to earlier errors\n");
214		return -EIO;
215	}
216	return 0;
217}
218
219/**************************************************************************
220 *
221 * Event queue processing
222 *
223 *************************************************************************/
224
225/* Process channel's event queue
226 *
227 * This function is responsible for processing the event queue of a
228 * single channel.  The caller must guarantee that this function will
229 * never be concurrently called more than once on the same channel,
230 * though different channels may be being processed concurrently.
231 */
232static int ef4_process_channel(struct ef4_channel *channel, int budget)
233{
234	struct ef4_tx_queue *tx_queue;
235	int spent;
236
237	if (unlikely(!channel->enabled))
238		return 0;
239
240	ef4_for_each_channel_tx_queue(tx_queue, channel) {
241		tx_queue->pkts_compl = 0;
242		tx_queue->bytes_compl = 0;
243	}
244
245	spent = ef4_nic_process_eventq(channel, budget);
246	if (spent && ef4_channel_has_rx_queue(channel)) {
247		struct ef4_rx_queue *rx_queue =
248			ef4_channel_get_rx_queue(channel);
249
250		ef4_rx_flush_packet(channel);
251		ef4_fast_push_rx_descriptors(rx_queue, true);
252	}
253
254	/* Update BQL */
255	ef4_for_each_channel_tx_queue(tx_queue, channel) {
256		if (tx_queue->bytes_compl) {
257			netdev_tx_completed_queue(tx_queue->core_txq,
258				tx_queue->pkts_compl, tx_queue->bytes_compl);
259		}
260	}
261
262	return spent;
263}
264
265/* NAPI poll handler
266 *
267 * NAPI guarantees serialisation of polls of the same device, which
268 * provides the guarantee required by ef4_process_channel().
269 */
270static void ef4_update_irq_mod(struct ef4_nic *efx, struct ef4_channel *channel)
271{
272	int step = efx->irq_mod_step_us;
273
274	if (channel->irq_mod_score < irq_adapt_low_thresh) {
275		if (channel->irq_moderation_us > step) {
276			channel->irq_moderation_us -= step;
277			efx->type->push_irq_moderation(channel);
278		}
279	} else if (channel->irq_mod_score > irq_adapt_high_thresh) {
280		if (channel->irq_moderation_us <
281		    efx->irq_rx_moderation_us) {
282			channel->irq_moderation_us += step;
283			efx->type->push_irq_moderation(channel);
284		}
285	}
286
287	channel->irq_count = 0;
288	channel->irq_mod_score = 0;
289}
290
291static int ef4_poll(struct napi_struct *napi, int budget)
292{
293	struct ef4_channel *channel =
294		container_of(napi, struct ef4_channel, napi_str);
295	struct ef4_nic *efx = channel->efx;
296	int spent;
297
298	netif_vdbg(efx, intr, efx->net_dev,
299		   "channel %d NAPI poll executing on CPU %d\n",
300		   channel->channel, raw_smp_processor_id());
301
302	spent = ef4_process_channel(channel, budget);
303
304	if (spent < budget) {
305		if (ef4_channel_has_rx_queue(channel) &&
306		    efx->irq_rx_adaptive &&
307		    unlikely(++channel->irq_count == 1000)) {
308			ef4_update_irq_mod(efx, channel);
309		}
310
311		ef4_filter_rfs_expire(channel);
312
313		/* There is no race here; although napi_disable() will
314		 * only wait for napi_complete(), this isn't a problem
315		 * since ef4_nic_eventq_read_ack() will have no effect if
316		 * interrupts have already been disabled.
317		 */
318		napi_complete_done(napi, spent);
319		ef4_nic_eventq_read_ack(channel);
320	}
321
322	return spent;
323}
324
325/* Create event queue
326 * Event queue memory allocations are done only once.  If the channel
327 * is reset, the memory buffer will be reused; this guards against
328 * errors during channel reset and also simplifies interrupt handling.
329 */
330static int ef4_probe_eventq(struct ef4_channel *channel)
331{
332	struct ef4_nic *efx = channel->efx;
333	unsigned long entries;
334
335	netif_dbg(efx, probe, efx->net_dev,
336		  "chan %d create event queue\n", channel->channel);
337
338	/* Build an event queue with room for one event per tx and rx buffer,
339	 * plus some extra for link state events and MCDI completions. */
340	entries = roundup_pow_of_two(efx->rxq_entries + efx->txq_entries + 128);
341	EF4_BUG_ON_PARANOID(entries > EF4_MAX_EVQ_SIZE);
342	channel->eventq_mask = max(entries, EF4_MIN_EVQ_SIZE) - 1;
343
344	return ef4_nic_probe_eventq(channel);
345}
346
347/* Prepare channel's event queue */
348static int ef4_init_eventq(struct ef4_channel *channel)
349{
350	struct ef4_nic *efx = channel->efx;
351	int rc;
352
353	EF4_WARN_ON_PARANOID(channel->eventq_init);
354
355	netif_dbg(efx, drv, efx->net_dev,
356		  "chan %d init event queue\n", channel->channel);
357
358	rc = ef4_nic_init_eventq(channel);
359	if (rc == 0) {
360		efx->type->push_irq_moderation(channel);
361		channel->eventq_read_ptr = 0;
362		channel->eventq_init = true;
363	}
364	return rc;
365}
366
367/* Enable event queue processing and NAPI */
368void ef4_start_eventq(struct ef4_channel *channel)
369{
370	netif_dbg(channel->efx, ifup, channel->efx->net_dev,
371		  "chan %d start event queue\n", channel->channel);
372
373	/* Make sure the NAPI handler sees the enabled flag set */
374	channel->enabled = true;
375	smp_wmb();
376
377	napi_enable(&channel->napi_str);
378	ef4_nic_eventq_read_ack(channel);
379}
380
381/* Disable event queue processing and NAPI */
382void ef4_stop_eventq(struct ef4_channel *channel)
383{
384	if (!channel->enabled)
385		return;
386
387	napi_disable(&channel->napi_str);
388	channel->enabled = false;
389}
390
391static void ef4_fini_eventq(struct ef4_channel *channel)
392{
393	if (!channel->eventq_init)
394		return;
395
396	netif_dbg(channel->efx, drv, channel->efx->net_dev,
397		  "chan %d fini event queue\n", channel->channel);
398
399	ef4_nic_fini_eventq(channel);
400	channel->eventq_init = false;
401}
402
403static void ef4_remove_eventq(struct ef4_channel *channel)
404{
405	netif_dbg(channel->efx, drv, channel->efx->net_dev,
406		  "chan %d remove event queue\n", channel->channel);
407
408	ef4_nic_remove_eventq(channel);
409}
410
411/**************************************************************************
412 *
413 * Channel handling
414 *
415 *************************************************************************/
416
417/* Allocate and initialise a channel structure. */
418static struct ef4_channel *
419ef4_alloc_channel(struct ef4_nic *efx, int i, struct ef4_channel *old_channel)
420{
421	struct ef4_channel *channel;
422	struct ef4_rx_queue *rx_queue;
423	struct ef4_tx_queue *tx_queue;
424	int j;
425
426	channel = kzalloc(sizeof(*channel), GFP_KERNEL);
427	if (!channel)
428		return NULL;
429
430	channel->efx = efx;
431	channel->channel = i;
432	channel->type = &ef4_default_channel_type;
433
434	for (j = 0; j < EF4_TXQ_TYPES; j++) {
435		tx_queue = &channel->tx_queue[j];
436		tx_queue->efx = efx;
437		tx_queue->queue = i * EF4_TXQ_TYPES + j;
438		tx_queue->channel = channel;
439	}
440
441	rx_queue = &channel->rx_queue;
442	rx_queue->efx = efx;
443	timer_setup(&rx_queue->slow_fill, ef4_rx_slow_fill, 0);
444
445	return channel;
446}
447
448/* Allocate and initialise a channel structure, copying parameters
449 * (but not resources) from an old channel structure.
450 */
451static struct ef4_channel *
452ef4_copy_channel(const struct ef4_channel *old_channel)
453{
454	struct ef4_channel *channel;
455	struct ef4_rx_queue *rx_queue;
456	struct ef4_tx_queue *tx_queue;
457	int j;
458
459	channel = kmalloc(sizeof(*channel), GFP_KERNEL);
460	if (!channel)
461		return NULL;
462
463	*channel = *old_channel;
464
465	channel->napi_dev = NULL;
466	INIT_HLIST_NODE(&channel->napi_str.napi_hash_node);
467	channel->napi_str.napi_id = 0;
468	channel->napi_str.state = 0;
469	memset(&channel->eventq, 0, sizeof(channel->eventq));
470
471	for (j = 0; j < EF4_TXQ_TYPES; j++) {
472		tx_queue = &channel->tx_queue[j];
473		if (tx_queue->channel)
474			tx_queue->channel = channel;
475		tx_queue->buffer = NULL;
476		memset(&tx_queue->txd, 0, sizeof(tx_queue->txd));
477	}
478
479	rx_queue = &channel->rx_queue;
480	rx_queue->buffer = NULL;
481	memset(&rx_queue->rxd, 0, sizeof(rx_queue->rxd));
482	timer_setup(&rx_queue->slow_fill, ef4_rx_slow_fill, 0);
483
484	return channel;
485}
486
487static int ef4_probe_channel(struct ef4_channel *channel)
488{
489	struct ef4_tx_queue *tx_queue;
490	struct ef4_rx_queue *rx_queue;
491	int rc;
492
493	netif_dbg(channel->efx, probe, channel->efx->net_dev,
494		  "creating channel %d\n", channel->channel);
495
496	rc = channel->type->pre_probe(channel);
497	if (rc)
498		goto fail;
499
500	rc = ef4_probe_eventq(channel);
501	if (rc)
502		goto fail;
503
504	ef4_for_each_channel_tx_queue(tx_queue, channel) {
505		rc = ef4_probe_tx_queue(tx_queue);
506		if (rc)
507			goto fail;
508	}
509
510	ef4_for_each_channel_rx_queue(rx_queue, channel) {
511		rc = ef4_probe_rx_queue(rx_queue);
512		if (rc)
513			goto fail;
514	}
515
516	return 0;
517
518fail:
519	ef4_remove_channel(channel);
520	return rc;
521}
522
523static void
524ef4_get_channel_name(struct ef4_channel *channel, char *buf, size_t len)
525{
526	struct ef4_nic *efx = channel->efx;
527	const char *type;
528	int number;
529
530	number = channel->channel;
531	if (efx->tx_channel_offset == 0) {
532		type = "";
533	} else if (channel->channel < efx->tx_channel_offset) {
534		type = "-rx";
535	} else {
536		type = "-tx";
537		number -= efx->tx_channel_offset;
538	}
539	snprintf(buf, len, "%s%s-%d", efx->name, type, number);
540}
541
542static void ef4_set_channel_names(struct ef4_nic *efx)
543{
544	struct ef4_channel *channel;
545
546	ef4_for_each_channel(channel, efx)
547		channel->type->get_name(channel,
548					efx->msi_context[channel->channel].name,
549					sizeof(efx->msi_context[0].name));
550}
551
552static int ef4_probe_channels(struct ef4_nic *efx)
553{
554	struct ef4_channel *channel;
555	int rc;
556
557	/* Restart special buffer allocation */
558	efx->next_buffer_table = 0;
559
560	/* Probe channels in reverse, so that any 'extra' channels
561	 * use the start of the buffer table. This allows the traffic
562	 * channels to be resized without moving them or wasting the
563	 * entries before them.
564	 */
565	ef4_for_each_channel_rev(channel, efx) {
566		rc = ef4_probe_channel(channel);
567		if (rc) {
568			netif_err(efx, probe, efx->net_dev,
569				  "failed to create channel %d\n",
570				  channel->channel);
571			goto fail;
572		}
573	}
574	ef4_set_channel_names(efx);
575
576	return 0;
577
578fail:
579	ef4_remove_channels(efx);
580	return rc;
581}
582
583/* Channels are shutdown and reinitialised whilst the NIC is running
584 * to propagate configuration changes (mtu, checksum offload), or
585 * to clear hardware error conditions
586 */
587static void ef4_start_datapath(struct ef4_nic *efx)
588{
589	netdev_features_t old_features = efx->net_dev->features;
590	bool old_rx_scatter = efx->rx_scatter;
591	struct ef4_tx_queue *tx_queue;
592	struct ef4_rx_queue *rx_queue;
593	struct ef4_channel *channel;
594	size_t rx_buf_len;
595
596	/* Calculate the rx buffer allocation parameters required to
597	 * support the current MTU, including padding for header
598	 * alignment and overruns.
599	 */
600	efx->rx_dma_len = (efx->rx_prefix_size +
601			   EF4_MAX_FRAME_LEN(efx->net_dev->mtu) +
602			   efx->type->rx_buffer_padding);
603	rx_buf_len = (sizeof(struct ef4_rx_page_state) +
604		      efx->rx_ip_align + efx->rx_dma_len);
605	if (rx_buf_len <= PAGE_SIZE) {
606		efx->rx_scatter = efx->type->always_rx_scatter;
607		efx->rx_buffer_order = 0;
608	} else if (efx->type->can_rx_scatter) {
609		BUILD_BUG_ON(EF4_RX_USR_BUF_SIZE % L1_CACHE_BYTES);
610		BUILD_BUG_ON(sizeof(struct ef4_rx_page_state) +
611			     2 * ALIGN(NET_IP_ALIGN + EF4_RX_USR_BUF_SIZE,
612				       EF4_RX_BUF_ALIGNMENT) >
613			     PAGE_SIZE);
614		efx->rx_scatter = true;
615		efx->rx_dma_len = EF4_RX_USR_BUF_SIZE;
616		efx->rx_buffer_order = 0;
617	} else {
618		efx->rx_scatter = false;
619		efx->rx_buffer_order = get_order(rx_buf_len);
620	}
621
622	ef4_rx_config_page_split(efx);
623	if (efx->rx_buffer_order)
624		netif_dbg(efx, drv, efx->net_dev,
625			  "RX buf len=%u; page order=%u batch=%u\n",
626			  efx->rx_dma_len, efx->rx_buffer_order,
627			  efx->rx_pages_per_batch);
628	else
629		netif_dbg(efx, drv, efx->net_dev,
630			  "RX buf len=%u step=%u bpp=%u; page batch=%u\n",
631			  efx->rx_dma_len, efx->rx_page_buf_step,
632			  efx->rx_bufs_per_page, efx->rx_pages_per_batch);
633
634	/* Restore previously fixed features in hw_features and remove
635	 * features which are fixed now
636	 */
637	efx->net_dev->hw_features |= efx->net_dev->features;
638	efx->net_dev->hw_features &= ~efx->fixed_features;
639	efx->net_dev->features |= efx->fixed_features;
640	if (efx->net_dev->features != old_features)
641		netdev_features_change(efx->net_dev);
642
643	/* RX filters may also have scatter-enabled flags */
644	if (efx->rx_scatter != old_rx_scatter)
645		efx->type->filter_update_rx_scatter(efx);
646
647	/* We must keep at least one descriptor in a TX ring empty.
648	 * We could avoid this when the queue size does not exactly
649	 * match the hardware ring size, but it's not that important.
650	 * Therefore we stop the queue when one more skb might fill
651	 * the ring completely.  We wake it when half way back to
652	 * empty.
653	 */
654	efx->txq_stop_thresh = efx->txq_entries - ef4_tx_max_skb_descs(efx);
655	efx->txq_wake_thresh = efx->txq_stop_thresh / 2;
656
657	/* Initialise the channels */
658	ef4_for_each_channel(channel, efx) {
659		ef4_for_each_channel_tx_queue(tx_queue, channel) {
660			ef4_init_tx_queue(tx_queue);
661			atomic_inc(&efx->active_queues);
662		}
663
664		ef4_for_each_channel_rx_queue(rx_queue, channel) {
665			ef4_init_rx_queue(rx_queue);
666			atomic_inc(&efx->active_queues);
667			ef4_stop_eventq(channel);
668			ef4_fast_push_rx_descriptors(rx_queue, false);
669			ef4_start_eventq(channel);
670		}
671
672		WARN_ON(channel->rx_pkt_n_frags);
673	}
674
675	if (netif_device_present(efx->net_dev))
676		netif_tx_wake_all_queues(efx->net_dev);
677}
678
679static void ef4_stop_datapath(struct ef4_nic *efx)
680{
681	struct ef4_channel *channel;
682	struct ef4_tx_queue *tx_queue;
683	struct ef4_rx_queue *rx_queue;
684	int rc;
685
686	EF4_ASSERT_RESET_SERIALISED(efx);
687	BUG_ON(efx->port_enabled);
688
689	/* Stop RX refill */
690	ef4_for_each_channel(channel, efx) {
691		ef4_for_each_channel_rx_queue(rx_queue, channel)
692			rx_queue->refill_enabled = false;
693	}
694
695	ef4_for_each_channel(channel, efx) {
696		/* RX packet processing is pipelined, so wait for the
697		 * NAPI handler to complete.  At least event queue 0
698		 * might be kept active by non-data events, so don't
699		 * use napi_synchronize() but actually disable NAPI
700		 * temporarily.
701		 */
702		if (ef4_channel_has_rx_queue(channel)) {
703			ef4_stop_eventq(channel);
704			ef4_start_eventq(channel);
705		}
706	}
707
708	rc = efx->type->fini_dmaq(efx);
709	if (rc && EF4_WORKAROUND_7803(efx)) {
710		/* Schedule a reset to recover from the flush failure. The
711		 * descriptor caches reference memory we're about to free,
712		 * but falcon_reconfigure_mac_wrapper() won't reconnect
713		 * the MACs because of the pending reset.
714		 */
715		netif_err(efx, drv, efx->net_dev,
716			  "Resetting to recover from flush failure\n");
717		ef4_schedule_reset(efx, RESET_TYPE_ALL);
718	} else if (rc) {
719		netif_err(efx, drv, efx->net_dev, "failed to flush queues\n");
720	} else {
721		netif_dbg(efx, drv, efx->net_dev,
722			  "successfully flushed all queues\n");
723	}
724
725	ef4_for_each_channel(channel, efx) {
726		ef4_for_each_channel_rx_queue(rx_queue, channel)
727			ef4_fini_rx_queue(rx_queue);
728		ef4_for_each_possible_channel_tx_queue(tx_queue, channel)
729			ef4_fini_tx_queue(tx_queue);
730	}
731}
732
733static void ef4_remove_channel(struct ef4_channel *channel)
734{
735	struct ef4_tx_queue *tx_queue;
736	struct ef4_rx_queue *rx_queue;
737
738	netif_dbg(channel->efx, drv, channel->efx->net_dev,
739		  "destroy chan %d\n", channel->channel);
740
741	ef4_for_each_channel_rx_queue(rx_queue, channel)
742		ef4_remove_rx_queue(rx_queue);
743	ef4_for_each_possible_channel_tx_queue(tx_queue, channel)
744		ef4_remove_tx_queue(tx_queue);
745	ef4_remove_eventq(channel);
746	channel->type->post_remove(channel);
747}
748
749static void ef4_remove_channels(struct ef4_nic *efx)
750{
751	struct ef4_channel *channel;
752
753	ef4_for_each_channel(channel, efx)
754		ef4_remove_channel(channel);
755}
756
757int
758ef4_realloc_channels(struct ef4_nic *efx, u32 rxq_entries, u32 txq_entries)
759{
760	struct ef4_channel *other_channel[EF4_MAX_CHANNELS], *channel;
761	u32 old_rxq_entries, old_txq_entries;
762	unsigned i, next_buffer_table = 0;
763	int rc, rc2;
764
765	rc = ef4_check_disabled(efx);
766	if (rc)
767		return rc;
768
769	/* Not all channels should be reallocated. We must avoid
770	 * reallocating their buffer table entries.
771	 */
772	ef4_for_each_channel(channel, efx) {
773		struct ef4_rx_queue *rx_queue;
774		struct ef4_tx_queue *tx_queue;
775
776		if (channel->type->copy)
777			continue;
778		next_buffer_table = max(next_buffer_table,
779					channel->eventq.index +
780					channel->eventq.entries);
781		ef4_for_each_channel_rx_queue(rx_queue, channel)
782			next_buffer_table = max(next_buffer_table,
783						rx_queue->rxd.index +
784						rx_queue->rxd.entries);
785		ef4_for_each_channel_tx_queue(tx_queue, channel)
786			next_buffer_table = max(next_buffer_table,
787						tx_queue->txd.index +
788						tx_queue->txd.entries);
789	}
790
791	ef4_device_detach_sync(efx);
792	ef4_stop_all(efx);
793	ef4_soft_disable_interrupts(efx);
794
795	/* Clone channels (where possible) */
796	memset(other_channel, 0, sizeof(other_channel));
797	for (i = 0; i < efx->n_channels; i++) {
798		channel = efx->channel[i];
799		if (channel->type->copy)
800			channel = channel->type->copy(channel);
801		if (!channel) {
802			rc = -ENOMEM;
803			goto out;
804		}
805		other_channel[i] = channel;
806	}
807
808	/* Swap entry counts and channel pointers */
809	old_rxq_entries = efx->rxq_entries;
810	old_txq_entries = efx->txq_entries;
811	efx->rxq_entries = rxq_entries;
812	efx->txq_entries = txq_entries;
813	for (i = 0; i < efx->n_channels; i++) {
814		swap(efx->channel[i], other_channel[i]);
815	}
816
817	/* Restart buffer table allocation */
818	efx->next_buffer_table = next_buffer_table;
819
820	for (i = 0; i < efx->n_channels; i++) {
821		channel = efx->channel[i];
822		if (!channel->type->copy)
823			continue;
824		rc = ef4_probe_channel(channel);
825		if (rc)
826			goto rollback;
827		ef4_init_napi_channel(efx->channel[i]);
828	}
829
830out:
831	/* Destroy unused channel structures */
832	for (i = 0; i < efx->n_channels; i++) {
833		channel = other_channel[i];
834		if (channel && channel->type->copy) {
835			ef4_fini_napi_channel(channel);
836			ef4_remove_channel(channel);
837			kfree(channel);
838		}
839	}
840
841	rc2 = ef4_soft_enable_interrupts(efx);
842	if (rc2) {
843		rc = rc ? rc : rc2;
844		netif_err(efx, drv, efx->net_dev,
845			  "unable to restart interrupts on channel reallocation\n");
846		ef4_schedule_reset(efx, RESET_TYPE_DISABLE);
847	} else {
848		ef4_start_all(efx);
849		netif_device_attach(efx->net_dev);
850	}
851	return rc;
852
853rollback:
854	/* Swap back */
855	efx->rxq_entries = old_rxq_entries;
856	efx->txq_entries = old_txq_entries;
857	for (i = 0; i < efx->n_channels; i++) {
858		swap(efx->channel[i], other_channel[i]);
859	}
860	goto out;
861}
862
863void ef4_schedule_slow_fill(struct ef4_rx_queue *rx_queue)
864{
865	mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(100));
866}
867
868static const struct ef4_channel_type ef4_default_channel_type = {
869	.pre_probe		= ef4_channel_dummy_op_int,
870	.post_remove		= ef4_channel_dummy_op_void,
871	.get_name		= ef4_get_channel_name,
872	.copy			= ef4_copy_channel,
873	.keep_eventq		= false,
874};
875
876int ef4_channel_dummy_op_int(struct ef4_channel *channel)
877{
878	return 0;
879}
880
881void ef4_channel_dummy_op_void(struct ef4_channel *channel)
882{
883}
884
885/**************************************************************************
886 *
887 * Port handling
888 *
889 **************************************************************************/
890
891/* This ensures that the kernel is kept informed (via
892 * netif_carrier_on/off) of the link status, and also maintains the
893 * link status's stop on the port's TX queue.
894 */
895void ef4_link_status_changed(struct ef4_nic *efx)
896{
897	struct ef4_link_state *link_state = &efx->link_state;
898
899	/* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
900	 * that no events are triggered between unregister_netdev() and the
901	 * driver unloading. A more general condition is that NETDEV_CHANGE
902	 * can only be generated between NETDEV_UP and NETDEV_DOWN */
903	if (!netif_running(efx->net_dev))
904		return;
905
906	if (link_state->up != netif_carrier_ok(efx->net_dev)) {
907		efx->n_link_state_changes++;
908
909		if (link_state->up)
910			netif_carrier_on(efx->net_dev);
911		else
912			netif_carrier_off(efx->net_dev);
913	}
914
915	/* Status message for kernel log */
916	if (link_state->up)
917		netif_info(efx, link, efx->net_dev,
918			   "link up at %uMbps %s-duplex (MTU %d)\n",
919			   link_state->speed, link_state->fd ? "full" : "half",
920			   efx->net_dev->mtu);
921	else
922		netif_info(efx, link, efx->net_dev, "link down\n");
923}
924
925void ef4_link_set_advertising(struct ef4_nic *efx, u32 advertising)
926{
927	efx->link_advertising = advertising;
928	if (advertising) {
929		if (advertising & ADVERTISED_Pause)
930			efx->wanted_fc |= (EF4_FC_TX | EF4_FC_RX);
931		else
932			efx->wanted_fc &= ~(EF4_FC_TX | EF4_FC_RX);
933		if (advertising & ADVERTISED_Asym_Pause)
934			efx->wanted_fc ^= EF4_FC_TX;
935	}
936}
937
938void ef4_link_set_wanted_fc(struct ef4_nic *efx, u8 wanted_fc)
939{
940	efx->wanted_fc = wanted_fc;
941	if (efx->link_advertising) {
942		if (wanted_fc & EF4_FC_RX)
943			efx->link_advertising |= (ADVERTISED_Pause |
944						  ADVERTISED_Asym_Pause);
945		else
946			efx->link_advertising &= ~(ADVERTISED_Pause |
947						   ADVERTISED_Asym_Pause);
948		if (wanted_fc & EF4_FC_TX)
949			efx->link_advertising ^= ADVERTISED_Asym_Pause;
950	}
951}
952
953static void ef4_fini_port(struct ef4_nic *efx);
954
955/* We assume that efx->type->reconfigure_mac will always try to sync RX
956 * filters and therefore needs to read-lock the filter table against freeing
957 */
958void ef4_mac_reconfigure(struct ef4_nic *efx)
959{
960	down_read(&efx->filter_sem);
961	efx->type->reconfigure_mac(efx);
962	up_read(&efx->filter_sem);
963}
964
965/* Push loopback/power/transmit disable settings to the PHY, and reconfigure
966 * the MAC appropriately. All other PHY configuration changes are pushed
967 * through phy_op->set_link_ksettings(), and pushed asynchronously to the MAC
968 * through ef4_monitor().
969 *
970 * Callers must hold the mac_lock
971 */
972int __ef4_reconfigure_port(struct ef4_nic *efx)
973{
974	enum ef4_phy_mode phy_mode;
975	int rc;
976
977	WARN_ON(!mutex_is_locked(&efx->mac_lock));
978
979	/* Disable PHY transmit in mac level loopbacks */
980	phy_mode = efx->phy_mode;
981	if (LOOPBACK_INTERNAL(efx))
982		efx->phy_mode |= PHY_MODE_TX_DISABLED;
983	else
984		efx->phy_mode &= ~PHY_MODE_TX_DISABLED;
985
986	rc = efx->type->reconfigure_port(efx);
987
988	if (rc)
989		efx->phy_mode = phy_mode;
990
991	return rc;
992}
993
994/* Reinitialise the MAC to pick up new PHY settings, even if the port is
995 * disabled. */
996int ef4_reconfigure_port(struct ef4_nic *efx)
997{
998	int rc;
999
1000	EF4_ASSERT_RESET_SERIALISED(efx);
1001
1002	mutex_lock(&efx->mac_lock);
1003	rc = __ef4_reconfigure_port(efx);
1004	mutex_unlock(&efx->mac_lock);
1005
1006	return rc;
1007}
1008
1009/* Asynchronous work item for changing MAC promiscuity and multicast
1010 * hash.  Avoid a drain/rx_ingress enable by reconfiguring the current
1011 * MAC directly. */
1012static void ef4_mac_work(struct work_struct *data)
1013{
1014	struct ef4_nic *efx = container_of(data, struct ef4_nic, mac_work);
1015
1016	mutex_lock(&efx->mac_lock);
1017	if (efx->port_enabled)
1018		ef4_mac_reconfigure(efx);
1019	mutex_unlock(&efx->mac_lock);
1020}
1021
1022static int ef4_probe_port(struct ef4_nic *efx)
1023{
1024	int rc;
1025
1026	netif_dbg(efx, probe, efx->net_dev, "create port\n");
1027
1028	if (phy_flash_cfg)
1029		efx->phy_mode = PHY_MODE_SPECIAL;
1030
1031	/* Connect up MAC/PHY operations table */
1032	rc = efx->type->probe_port(efx);
1033	if (rc)
1034		return rc;
1035
1036	/* Initialise MAC address to permanent address */
1037	eth_hw_addr_set(efx->net_dev, efx->net_dev->perm_addr);
1038
1039	return 0;
1040}
1041
1042static int ef4_init_port(struct ef4_nic *efx)
1043{
1044	int rc;
1045
1046	netif_dbg(efx, drv, efx->net_dev, "init port\n");
1047
1048	mutex_lock(&efx->mac_lock);
1049
1050	rc = efx->phy_op->init(efx);
1051	if (rc)
1052		goto fail1;
1053
1054	efx->port_initialized = true;
1055
1056	/* Reconfigure the MAC before creating dma queues (required for
1057	 * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */
1058	ef4_mac_reconfigure(efx);
1059
1060	/* Ensure the PHY advertises the correct flow control settings */
1061	rc = efx->phy_op->reconfigure(efx);
1062	if (rc && rc != -EPERM)
1063		goto fail2;
1064
1065	mutex_unlock(&efx->mac_lock);
1066	return 0;
1067
1068fail2:
1069	efx->phy_op->fini(efx);
1070fail1:
1071	mutex_unlock(&efx->mac_lock);
1072	return rc;
1073}
1074
1075static void ef4_start_port(struct ef4_nic *efx)
1076{
1077	netif_dbg(efx, ifup, efx->net_dev, "start port\n");
1078	BUG_ON(efx->port_enabled);
1079
1080	mutex_lock(&efx->mac_lock);
1081	efx->port_enabled = true;
1082
1083	/* Ensure MAC ingress/egress is enabled */
1084	ef4_mac_reconfigure(efx);
1085
1086	mutex_unlock(&efx->mac_lock);
1087}
1088
1089/* Cancel work for MAC reconfiguration, periodic hardware monitoring
1090 * and the async self-test, wait for them to finish and prevent them
1091 * being scheduled again.  This doesn't cover online resets, which
1092 * should only be cancelled when removing the device.
1093 */
1094static void ef4_stop_port(struct ef4_nic *efx)
1095{
1096	netif_dbg(efx, ifdown, efx->net_dev, "stop port\n");
1097
1098	EF4_ASSERT_RESET_SERIALISED(efx);
1099
1100	mutex_lock(&efx->mac_lock);
1101	efx->port_enabled = false;
1102	mutex_unlock(&efx->mac_lock);
1103
1104	/* Serialise against ef4_set_multicast_list() */
1105	netif_addr_lock_bh(efx->net_dev);
1106	netif_addr_unlock_bh(efx->net_dev);
1107
1108	cancel_delayed_work_sync(&efx->monitor_work);
1109	ef4_selftest_async_cancel(efx);
1110	cancel_work_sync(&efx->mac_work);
1111}
1112
1113static void ef4_fini_port(struct ef4_nic *efx)
1114{
1115	netif_dbg(efx, drv, efx->net_dev, "shut down port\n");
1116
1117	if (!efx->port_initialized)
1118		return;
1119
1120	efx->phy_op->fini(efx);
1121	efx->port_initialized = false;
1122
1123	efx->link_state.up = false;
1124	ef4_link_status_changed(efx);
1125}
1126
1127static void ef4_remove_port(struct ef4_nic *efx)
1128{
1129	netif_dbg(efx, drv, efx->net_dev, "destroying port\n");
1130
1131	efx->type->remove_port(efx);
1132}
1133
1134/**************************************************************************
1135 *
1136 * NIC handling
1137 *
1138 **************************************************************************/
1139
1140static LIST_HEAD(ef4_primary_list);
1141static LIST_HEAD(ef4_unassociated_list);
1142
1143static bool ef4_same_controller(struct ef4_nic *left, struct ef4_nic *right)
1144{
1145	return left->type == right->type &&
1146		left->vpd_sn && right->vpd_sn &&
1147		!strcmp(left->vpd_sn, right->vpd_sn);
1148}
1149
1150static void ef4_associate(struct ef4_nic *efx)
1151{
1152	struct ef4_nic *other, *next;
1153
1154	if (efx->primary == efx) {
1155		/* Adding primary function; look for secondaries */
1156
1157		netif_dbg(efx, probe, efx->net_dev, "adding to primary list\n");
1158		list_add_tail(&efx->node, &ef4_primary_list);
1159
1160		list_for_each_entry_safe(other, next, &ef4_unassociated_list,
1161					 node) {
1162			if (ef4_same_controller(efx, other)) {
1163				list_del(&other->node);
1164				netif_dbg(other, probe, other->net_dev,
1165					  "moving to secondary list of %s %s\n",
1166					  pci_name(efx->pci_dev),
1167					  efx->net_dev->name);
1168				list_add_tail(&other->node,
1169					      &efx->secondary_list);
1170				other->primary = efx;
1171			}
1172		}
1173	} else {
1174		/* Adding secondary function; look for primary */
1175
1176		list_for_each_entry(other, &ef4_primary_list, node) {
1177			if (ef4_same_controller(efx, other)) {
1178				netif_dbg(efx, probe, efx->net_dev,
1179					  "adding to secondary list of %s %s\n",
1180					  pci_name(other->pci_dev),
1181					  other->net_dev->name);
1182				list_add_tail(&efx->node,
1183					      &other->secondary_list);
1184				efx->primary = other;
1185				return;
1186			}
1187		}
1188
1189		netif_dbg(efx, probe, efx->net_dev,
1190			  "adding to unassociated list\n");
1191		list_add_tail(&efx->node, &ef4_unassociated_list);
1192	}
1193}
1194
1195static void ef4_dissociate(struct ef4_nic *efx)
1196{
1197	struct ef4_nic *other, *next;
1198
1199	list_del(&efx->node);
1200	efx->primary = NULL;
1201
1202	list_for_each_entry_safe(other, next, &efx->secondary_list, node) {
1203		list_del(&other->node);
1204		netif_dbg(other, probe, other->net_dev,
1205			  "moving to unassociated list\n");
1206		list_add_tail(&other->node, &ef4_unassociated_list);
1207		other->primary = NULL;
1208	}
1209}
1210
1211/* This configures the PCI device to enable I/O and DMA. */
1212static int ef4_init_io(struct ef4_nic *efx)
1213{
1214	struct pci_dev *pci_dev = efx->pci_dev;
1215	dma_addr_t dma_mask = efx->type->max_dma_mask;
1216	unsigned int mem_map_size = efx->type->mem_map_size(efx);
1217	int rc, bar;
1218
1219	netif_dbg(efx, probe, efx->net_dev, "initialising I/O\n");
1220
1221	bar = efx->type->mem_bar;
1222
1223	rc = pci_enable_device(pci_dev);
1224	if (rc) {
1225		netif_err(efx, probe, efx->net_dev,
1226			  "failed to enable PCI device\n");
1227		goto fail1;
1228	}
1229
1230	pci_set_master(pci_dev);
1231
1232	/* Set the PCI DMA mask.  Try all possibilities from our genuine mask
1233	 * down to 32 bits, because some architectures will allow 40 bit
1234	 * masks event though they reject 46 bit masks.
1235	 */
1236	while (dma_mask > 0x7fffffffUL) {
1237		rc = dma_set_mask_and_coherent(&pci_dev->dev, dma_mask);
1238		if (rc == 0)
1239			break;
1240		dma_mask >>= 1;
1241	}
1242	if (rc) {
1243		netif_err(efx, probe, efx->net_dev,
1244			  "could not find a suitable DMA mask\n");
1245		goto fail2;
1246	}
1247	netif_dbg(efx, probe, efx->net_dev,
1248		  "using DMA mask %llx\n", (unsigned long long) dma_mask);
1249
1250	efx->membase_phys = pci_resource_start(efx->pci_dev, bar);
1251	rc = pci_request_region(pci_dev, bar, "sfc");
1252	if (rc) {
1253		netif_err(efx, probe, efx->net_dev,
1254			  "request for memory BAR failed\n");
1255		rc = -EIO;
1256		goto fail3;
1257	}
1258	efx->membase = ioremap(efx->membase_phys, mem_map_size);
1259	if (!efx->membase) {
1260		netif_err(efx, probe, efx->net_dev,
1261			  "could not map memory BAR at %llx+%x\n",
1262			  (unsigned long long)efx->membase_phys, mem_map_size);
1263		rc = -ENOMEM;
1264		goto fail4;
1265	}
1266	netif_dbg(efx, probe, efx->net_dev,
1267		  "memory BAR at %llx+%x (virtual %p)\n",
1268		  (unsigned long long)efx->membase_phys, mem_map_size,
1269		  efx->membase);
1270
1271	return 0;
1272
1273 fail4:
1274	pci_release_region(efx->pci_dev, bar);
1275 fail3:
1276	efx->membase_phys = 0;
1277 fail2:
1278	pci_disable_device(efx->pci_dev);
1279 fail1:
1280	return rc;
1281}
1282
1283static void ef4_fini_io(struct ef4_nic *efx)
1284{
1285	int bar;
1286
1287	netif_dbg(efx, drv, efx->net_dev, "shutting down I/O\n");
1288
1289	if (efx->membase) {
1290		iounmap(efx->membase);
1291		efx->membase = NULL;
1292	}
1293
1294	if (efx->membase_phys) {
1295		bar = efx->type->mem_bar;
1296		pci_release_region(efx->pci_dev, bar);
1297		efx->membase_phys = 0;
1298	}
1299
1300	/* Don't disable bus-mastering if VFs are assigned */
1301	if (!pci_vfs_assigned(efx->pci_dev))
1302		pci_disable_device(efx->pci_dev);
1303}
1304
1305void ef4_set_default_rx_indir_table(struct ef4_nic *efx)
1306{
1307	size_t i;
1308
1309	for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); i++)
1310		efx->rx_indir_table[i] =
1311			ethtool_rxfh_indir_default(i, efx->rss_spread);
1312}
1313
1314static unsigned int ef4_wanted_parallelism(struct ef4_nic *efx)
1315{
1316	cpumask_var_t thread_mask;
1317	unsigned int count;
1318	int cpu;
1319
1320	if (rss_cpus) {
1321		count = rss_cpus;
1322	} else {
1323		if (unlikely(!zalloc_cpumask_var(&thread_mask, GFP_KERNEL))) {
1324			netif_warn(efx, probe, efx->net_dev,
1325				   "RSS disabled due to allocation failure\n");
1326			return 1;
1327		}
1328
1329		count = 0;
1330		for_each_online_cpu(cpu) {
1331			if (!cpumask_test_cpu(cpu, thread_mask)) {
1332				++count;
1333				cpumask_or(thread_mask, thread_mask,
1334					   topology_sibling_cpumask(cpu));
1335			}
1336		}
1337
1338		free_cpumask_var(thread_mask);
1339	}
1340
1341	if (count > EF4_MAX_RX_QUEUES) {
1342		netif_cond_dbg(efx, probe, efx->net_dev, !rss_cpus, warn,
1343			       "Reducing number of rx queues from %u to %u.\n",
1344			       count, EF4_MAX_RX_QUEUES);
1345		count = EF4_MAX_RX_QUEUES;
1346	}
1347
1348	return count;
1349}
1350
1351/* Probe the number and type of interrupts we are able to obtain, and
1352 * the resulting numbers of channels and RX queues.
1353 */
1354static int ef4_probe_interrupts(struct ef4_nic *efx)
1355{
1356	unsigned int extra_channels = 0;
1357	unsigned int i, j;
1358	int rc;
1359
1360	for (i = 0; i < EF4_MAX_EXTRA_CHANNELS; i++)
1361		if (efx->extra_channel_type[i])
1362			++extra_channels;
1363
1364	if (efx->interrupt_mode == EF4_INT_MODE_MSIX) {
1365		struct msix_entry xentries[EF4_MAX_CHANNELS];
1366		unsigned int n_channels;
1367
1368		n_channels = ef4_wanted_parallelism(efx);
1369		if (ef4_separate_tx_channels)
1370			n_channels *= 2;
1371		n_channels += extra_channels;
1372		n_channels = min(n_channels, efx->max_channels);
1373
1374		for (i = 0; i < n_channels; i++)
1375			xentries[i].entry = i;
1376		rc = pci_enable_msix_range(efx->pci_dev,
1377					   xentries, 1, n_channels);
1378		if (rc < 0) {
1379			/* Fall back to single channel MSI */
1380			efx->interrupt_mode = EF4_INT_MODE_MSI;
1381			netif_err(efx, drv, efx->net_dev,
1382				  "could not enable MSI-X\n");
1383		} else if (rc < n_channels) {
1384			netif_err(efx, drv, efx->net_dev,
1385				  "WARNING: Insufficient MSI-X vectors"
1386				  " available (%d < %u).\n", rc, n_channels);
1387			netif_err(efx, drv, efx->net_dev,
1388				  "WARNING: Performance may be reduced.\n");
1389			n_channels = rc;
1390		}
1391
1392		if (rc > 0) {
1393			efx->n_channels = n_channels;
1394			if (n_channels > extra_channels)
1395				n_channels -= extra_channels;
1396			if (ef4_separate_tx_channels) {
1397				efx->n_tx_channels = min(max(n_channels / 2,
1398							     1U),
1399							 efx->max_tx_channels);
1400				efx->n_rx_channels = max(n_channels -
1401							 efx->n_tx_channels,
1402							 1U);
1403			} else {
1404				efx->n_tx_channels = min(n_channels,
1405							 efx->max_tx_channels);
1406				efx->n_rx_channels = n_channels;
1407			}
1408			for (i = 0; i < efx->n_channels; i++)
1409				ef4_get_channel(efx, i)->irq =
1410					xentries[i].vector;
1411		}
1412	}
1413
1414	/* Try single interrupt MSI */
1415	if (efx->interrupt_mode == EF4_INT_MODE_MSI) {
1416		efx->n_channels = 1;
1417		efx->n_rx_channels = 1;
1418		efx->n_tx_channels = 1;
1419		rc = pci_enable_msi(efx->pci_dev);
1420		if (rc == 0) {
1421			ef4_get_channel(efx, 0)->irq = efx->pci_dev->irq;
1422		} else {
1423			netif_err(efx, drv, efx->net_dev,
1424				  "could not enable MSI\n");
1425			efx->interrupt_mode = EF4_INT_MODE_LEGACY;
1426		}
1427	}
1428
1429	/* Assume legacy interrupts */
1430	if (efx->interrupt_mode == EF4_INT_MODE_LEGACY) {
1431		efx->n_channels = 1 + (ef4_separate_tx_channels ? 1 : 0);
1432		efx->n_rx_channels = 1;
1433		efx->n_tx_channels = 1;
1434		efx->legacy_irq = efx->pci_dev->irq;
1435	}
1436
1437	/* Assign extra channels if possible */
1438	j = efx->n_channels;
1439	for (i = 0; i < EF4_MAX_EXTRA_CHANNELS; i++) {
1440		if (!efx->extra_channel_type[i])
1441			continue;
1442		if (efx->interrupt_mode != EF4_INT_MODE_MSIX ||
1443		    efx->n_channels <= extra_channels) {
1444			efx->extra_channel_type[i]->handle_no_channel(efx);
1445		} else {
1446			--j;
1447			ef4_get_channel(efx, j)->type =
1448				efx->extra_channel_type[i];
1449		}
1450	}
1451
1452	efx->rss_spread = efx->n_rx_channels;
1453
1454	return 0;
1455}
1456
1457static int ef4_soft_enable_interrupts(struct ef4_nic *efx)
1458{
1459	struct ef4_channel *channel, *end_channel;
1460	int rc;
1461
1462	BUG_ON(efx->state == STATE_DISABLED);
1463
1464	efx->irq_soft_enabled = true;
1465	smp_wmb();
1466
1467	ef4_for_each_channel(channel, efx) {
1468		if (!channel->type->keep_eventq) {
1469			rc = ef4_init_eventq(channel);
1470			if (rc)
1471				goto fail;
1472		}
1473		ef4_start_eventq(channel);
1474	}
1475
1476	return 0;
1477fail:
1478	end_channel = channel;
1479	ef4_for_each_channel(channel, efx) {
1480		if (channel == end_channel)
1481			break;
1482		ef4_stop_eventq(channel);
1483		if (!channel->type->keep_eventq)
1484			ef4_fini_eventq(channel);
1485	}
1486
1487	return rc;
1488}
1489
1490static void ef4_soft_disable_interrupts(struct ef4_nic *efx)
1491{
1492	struct ef4_channel *channel;
1493
1494	if (efx->state == STATE_DISABLED)
1495		return;
1496
1497	efx->irq_soft_enabled = false;
1498	smp_wmb();
1499
1500	if (efx->legacy_irq)
1501		synchronize_irq(efx->legacy_irq);
1502
1503	ef4_for_each_channel(channel, efx) {
1504		if (channel->irq)
1505			synchronize_irq(channel->irq);
1506
1507		ef4_stop_eventq(channel);
1508		if (!channel->type->keep_eventq)
1509			ef4_fini_eventq(channel);
1510	}
1511}
1512
1513static int ef4_enable_interrupts(struct ef4_nic *efx)
1514{
1515	struct ef4_channel *channel, *end_channel;
1516	int rc;
1517
1518	BUG_ON(efx->state == STATE_DISABLED);
1519
1520	if (efx->eeh_disabled_legacy_irq) {
1521		enable_irq(efx->legacy_irq);
1522		efx->eeh_disabled_legacy_irq = false;
1523	}
1524
1525	efx->type->irq_enable_master(efx);
1526
1527	ef4_for_each_channel(channel, efx) {
1528		if (channel->type->keep_eventq) {
1529			rc = ef4_init_eventq(channel);
1530			if (rc)
1531				goto fail;
1532		}
1533	}
1534
1535	rc = ef4_soft_enable_interrupts(efx);
1536	if (rc)
1537		goto fail;
1538
1539	return 0;
1540
1541fail:
1542	end_channel = channel;
1543	ef4_for_each_channel(channel, efx) {
1544		if (channel == end_channel)
1545			break;
1546		if (channel->type->keep_eventq)
1547			ef4_fini_eventq(channel);
1548	}
1549
1550	efx->type->irq_disable_non_ev(efx);
1551
1552	return rc;
1553}
1554
1555static void ef4_disable_interrupts(struct ef4_nic *efx)
1556{
1557	struct ef4_channel *channel;
1558
1559	ef4_soft_disable_interrupts(efx);
1560
1561	ef4_for_each_channel(channel, efx) {
1562		if (channel->type->keep_eventq)
1563			ef4_fini_eventq(channel);
1564	}
1565
1566	efx->type->irq_disable_non_ev(efx);
1567}
1568
1569static void ef4_remove_interrupts(struct ef4_nic *efx)
1570{
1571	struct ef4_channel *channel;
1572
1573	/* Remove MSI/MSI-X interrupts */
1574	ef4_for_each_channel(channel, efx)
1575		channel->irq = 0;
1576	pci_disable_msi(efx->pci_dev);
1577	pci_disable_msix(efx->pci_dev);
1578
1579	/* Remove legacy interrupt */
1580	efx->legacy_irq = 0;
1581}
1582
1583static void ef4_set_channels(struct ef4_nic *efx)
1584{
1585	struct ef4_channel *channel;
1586	struct ef4_tx_queue *tx_queue;
1587
1588	efx->tx_channel_offset =
1589		ef4_separate_tx_channels ?
1590		efx->n_channels - efx->n_tx_channels : 0;
1591
1592	/* We need to mark which channels really have RX and TX
1593	 * queues, and adjust the TX queue numbers if we have separate
1594	 * RX-only and TX-only channels.
1595	 */
1596	ef4_for_each_channel(channel, efx) {
1597		if (channel->channel < efx->n_rx_channels)
1598			channel->rx_queue.core_index = channel->channel;
1599		else
1600			channel->rx_queue.core_index = -1;
1601
1602		ef4_for_each_channel_tx_queue(tx_queue, channel)
1603			tx_queue->queue -= (efx->tx_channel_offset *
1604					    EF4_TXQ_TYPES);
1605	}
1606}
1607
1608static int ef4_probe_nic(struct ef4_nic *efx)
1609{
1610	int rc;
1611
1612	netif_dbg(efx, probe, efx->net_dev, "creating NIC\n");
1613
1614	/* Carry out hardware-type specific initialisation */
1615	rc = efx->type->probe(efx);
1616	if (rc)
1617		return rc;
1618
1619	do {
1620		if (!efx->max_channels || !efx->max_tx_channels) {
1621			netif_err(efx, drv, efx->net_dev,
1622				  "Insufficient resources to allocate"
1623				  " any channels\n");
1624			rc = -ENOSPC;
1625			goto fail1;
1626		}
1627
1628		/* Determine the number of channels and queues by trying
1629		 * to hook in MSI-X interrupts.
1630		 */
1631		rc = ef4_probe_interrupts(efx);
1632		if (rc)
1633			goto fail1;
1634
1635		ef4_set_channels(efx);
1636
1637		/* dimension_resources can fail with EAGAIN */
1638		rc = efx->type->dimension_resources(efx);
1639		if (rc != 0 && rc != -EAGAIN)
1640			goto fail2;
1641
1642		if (rc == -EAGAIN)
1643			/* try again with new max_channels */
1644			ef4_remove_interrupts(efx);
1645
1646	} while (rc == -EAGAIN);
1647
1648	if (efx->n_channels > 1)
1649		netdev_rss_key_fill(&efx->rx_hash_key,
1650				    sizeof(efx->rx_hash_key));
1651	ef4_set_default_rx_indir_table(efx);
1652
1653	netif_set_real_num_tx_queues(efx->net_dev, efx->n_tx_channels);
1654	netif_set_real_num_rx_queues(efx->net_dev, efx->n_rx_channels);
1655
1656	/* Initialise the interrupt moderation settings */
1657	efx->irq_mod_step_us = DIV_ROUND_UP(efx->timer_quantum_ns, 1000);
1658	ef4_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true,
1659				true);
1660
1661	return 0;
1662
1663fail2:
1664	ef4_remove_interrupts(efx);
1665fail1:
1666	efx->type->remove(efx);
1667	return rc;
1668}
1669
1670static void ef4_remove_nic(struct ef4_nic *efx)
1671{
1672	netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n");
1673
1674	ef4_remove_interrupts(efx);
1675	efx->type->remove(efx);
1676}
1677
1678static int ef4_probe_filters(struct ef4_nic *efx)
1679{
1680	int rc;
1681
1682	spin_lock_init(&efx->filter_lock);
1683	init_rwsem(&efx->filter_sem);
1684	mutex_lock(&efx->mac_lock);
1685	down_write(&efx->filter_sem);
1686	rc = efx->type->filter_table_probe(efx);
1687	if (rc)
1688		goto out_unlock;
1689
1690#ifdef CONFIG_RFS_ACCEL
1691	if (efx->type->offload_features & NETIF_F_NTUPLE) {
1692		struct ef4_channel *channel;
1693		int i, success = 1;
1694
1695		ef4_for_each_channel(channel, efx) {
1696			channel->rps_flow_id =
1697				kcalloc(efx->type->max_rx_ip_filters,
1698					sizeof(*channel->rps_flow_id),
1699					GFP_KERNEL);
1700			if (!channel->rps_flow_id)
1701				success = 0;
1702			else
1703				for (i = 0;
1704				     i < efx->type->max_rx_ip_filters;
1705				     ++i)
1706					channel->rps_flow_id[i] =
1707						RPS_FLOW_ID_INVALID;
1708		}
1709
1710		if (!success) {
1711			ef4_for_each_channel(channel, efx)
1712				kfree(channel->rps_flow_id);
1713			efx->type->filter_table_remove(efx);
1714			rc = -ENOMEM;
1715			goto out_unlock;
1716		}
1717
1718		efx->rps_expire_index = efx->rps_expire_channel = 0;
1719	}
1720#endif
1721out_unlock:
1722	up_write(&efx->filter_sem);
1723	mutex_unlock(&efx->mac_lock);
1724	return rc;
1725}
1726
1727static void ef4_remove_filters(struct ef4_nic *efx)
1728{
1729#ifdef CONFIG_RFS_ACCEL
1730	struct ef4_channel *channel;
1731
1732	ef4_for_each_channel(channel, efx)
1733		kfree(channel->rps_flow_id);
1734#endif
1735	down_write(&efx->filter_sem);
1736	efx->type->filter_table_remove(efx);
1737	up_write(&efx->filter_sem);
1738}
1739
1740static void ef4_restore_filters(struct ef4_nic *efx)
1741{
1742	down_read(&efx->filter_sem);
1743	efx->type->filter_table_restore(efx);
1744	up_read(&efx->filter_sem);
1745}
1746
1747/**************************************************************************
1748 *
1749 * NIC startup/shutdown
1750 *
1751 *************************************************************************/
1752
1753static int ef4_probe_all(struct ef4_nic *efx)
1754{
1755	int rc;
1756
1757	rc = ef4_probe_nic(efx);
1758	if (rc) {
1759		netif_err(efx, probe, efx->net_dev, "failed to create NIC\n");
1760		goto fail1;
1761	}
1762
1763	rc = ef4_probe_port(efx);
1764	if (rc) {
1765		netif_err(efx, probe, efx->net_dev, "failed to create port\n");
1766		goto fail2;
1767	}
1768
1769	BUILD_BUG_ON(EF4_DEFAULT_DMAQ_SIZE < EF4_RXQ_MIN_ENT);
1770	if (WARN_ON(EF4_DEFAULT_DMAQ_SIZE < EF4_TXQ_MIN_ENT(efx))) {
1771		rc = -EINVAL;
1772		goto fail3;
1773	}
1774	efx->rxq_entries = efx->txq_entries = EF4_DEFAULT_DMAQ_SIZE;
1775
1776	rc = ef4_probe_filters(efx);
1777	if (rc) {
1778		netif_err(efx, probe, efx->net_dev,
1779			  "failed to create filter tables\n");
1780		goto fail4;
1781	}
1782
1783	rc = ef4_probe_channels(efx);
1784	if (rc)
1785		goto fail5;
1786
1787	return 0;
1788
1789 fail5:
1790	ef4_remove_filters(efx);
1791 fail4:
1792 fail3:
1793	ef4_remove_port(efx);
1794 fail2:
1795	ef4_remove_nic(efx);
1796 fail1:
1797	return rc;
1798}
1799
1800/* If the interface is supposed to be running but is not, start
1801 * the hardware and software data path, regular activity for the port
1802 * (MAC statistics, link polling, etc.) and schedule the port to be
1803 * reconfigured.  Interrupts must already be enabled.  This function
1804 * is safe to call multiple times, so long as the NIC is not disabled.
1805 * Requires the RTNL lock.
1806 */
1807static void ef4_start_all(struct ef4_nic *efx)
1808{
1809	EF4_ASSERT_RESET_SERIALISED(efx);
1810	BUG_ON(efx->state == STATE_DISABLED);
1811
1812	/* Check that it is appropriate to restart the interface. All
1813	 * of these flags are safe to read under just the rtnl lock */
1814	if (efx->port_enabled || !netif_running(efx->net_dev) ||
1815	    efx->reset_pending)
1816		return;
1817
1818	ef4_start_port(efx);
1819	ef4_start_datapath(efx);
1820
1821	/* Start the hardware monitor if there is one */
1822	if (efx->type->monitor != NULL)
1823		queue_delayed_work(efx->workqueue, &efx->monitor_work,
1824				   ef4_monitor_interval);
1825
1826	efx->type->start_stats(efx);
1827	efx->type->pull_stats(efx);
1828	spin_lock_bh(&efx->stats_lock);
1829	efx->type->update_stats(efx, NULL, NULL);
1830	spin_unlock_bh(&efx->stats_lock);
1831}
1832
1833/* Quiesce the hardware and software data path, and regular activity
1834 * for the port without bringing the link down.  Safe to call multiple
1835 * times with the NIC in almost any state, but interrupts should be
1836 * enabled.  Requires the RTNL lock.
1837 */
1838static void ef4_stop_all(struct ef4_nic *efx)
1839{
1840	EF4_ASSERT_RESET_SERIALISED(efx);
1841
1842	/* port_enabled can be read safely under the rtnl lock */
1843	if (!efx->port_enabled)
1844		return;
1845
1846	/* update stats before we go down so we can accurately count
1847	 * rx_nodesc_drops
1848	 */
1849	efx->type->pull_stats(efx);
1850	spin_lock_bh(&efx->stats_lock);
1851	efx->type->update_stats(efx, NULL, NULL);
1852	spin_unlock_bh(&efx->stats_lock);
1853	efx->type->stop_stats(efx);
1854	ef4_stop_port(efx);
1855
1856	/* Stop the kernel transmit interface.  This is only valid if
1857	 * the device is stopped or detached; otherwise the watchdog
1858	 * may fire immediately.
1859	 */
1860	WARN_ON(netif_running(efx->net_dev) &&
1861		netif_device_present(efx->net_dev));
1862	netif_tx_disable(efx->net_dev);
1863
1864	ef4_stop_datapath(efx);
1865}
1866
1867static void ef4_remove_all(struct ef4_nic *efx)
1868{
1869	ef4_remove_channels(efx);
1870	ef4_remove_filters(efx);
1871	ef4_remove_port(efx);
1872	ef4_remove_nic(efx);
1873}
1874
1875/**************************************************************************
1876 *
1877 * Interrupt moderation
1878 *
1879 **************************************************************************/
1880unsigned int ef4_usecs_to_ticks(struct ef4_nic *efx, unsigned int usecs)
1881{
1882	if (usecs == 0)
1883		return 0;
1884	if (usecs * 1000 < efx->timer_quantum_ns)
1885		return 1; /* never round down to 0 */
1886	return usecs * 1000 / efx->timer_quantum_ns;
1887}
1888
1889unsigned int ef4_ticks_to_usecs(struct ef4_nic *efx, unsigned int ticks)
1890{
1891	/* We must round up when converting ticks to microseconds
1892	 * because we round down when converting the other way.
1893	 */
1894	return DIV_ROUND_UP(ticks * efx->timer_quantum_ns, 1000);
1895}
1896
1897/* Set interrupt moderation parameters */
1898int ef4_init_irq_moderation(struct ef4_nic *efx, unsigned int tx_usecs,
1899			    unsigned int rx_usecs, bool rx_adaptive,
1900			    bool rx_may_override_tx)
1901{
1902	struct ef4_channel *channel;
1903	unsigned int timer_max_us;
1904
1905	EF4_ASSERT_RESET_SERIALISED(efx);
1906
1907	timer_max_us = efx->timer_max_ns / 1000;
1908
1909	if (tx_usecs > timer_max_us || rx_usecs > timer_max_us)
1910		return -EINVAL;
1911
1912	if (tx_usecs != rx_usecs && efx->tx_channel_offset == 0 &&
1913	    !rx_may_override_tx) {
1914		netif_err(efx, drv, efx->net_dev, "Channels are shared. "
1915			  "RX and TX IRQ moderation must be equal\n");
1916		return -EINVAL;
1917	}
1918
1919	efx->irq_rx_adaptive = rx_adaptive;
1920	efx->irq_rx_moderation_us = rx_usecs;
1921	ef4_for_each_channel(channel, efx) {
1922		if (ef4_channel_has_rx_queue(channel))
1923			channel->irq_moderation_us = rx_usecs;
1924		else if (ef4_channel_has_tx_queues(channel))
1925			channel->irq_moderation_us = tx_usecs;
1926	}
1927
1928	return 0;
1929}
1930
1931void ef4_get_irq_moderation(struct ef4_nic *efx, unsigned int *tx_usecs,
1932			    unsigned int *rx_usecs, bool *rx_adaptive)
1933{
1934	*rx_adaptive = efx->irq_rx_adaptive;
1935	*rx_usecs = efx->irq_rx_moderation_us;
1936
1937	/* If channels are shared between RX and TX, so is IRQ
1938	 * moderation.  Otherwise, IRQ moderation is the same for all
1939	 * TX channels and is not adaptive.
1940	 */
1941	if (efx->tx_channel_offset == 0) {
1942		*tx_usecs = *rx_usecs;
1943	} else {
1944		struct ef4_channel *tx_channel;
1945
1946		tx_channel = efx->channel[efx->tx_channel_offset];
1947		*tx_usecs = tx_channel->irq_moderation_us;
1948	}
1949}
1950
1951/**************************************************************************
1952 *
1953 * Hardware monitor
1954 *
1955 **************************************************************************/
1956
1957/* Run periodically off the general workqueue */
1958static void ef4_monitor(struct work_struct *data)
1959{
1960	struct ef4_nic *efx = container_of(data, struct ef4_nic,
1961					   monitor_work.work);
1962
1963	netif_vdbg(efx, timer, efx->net_dev,
1964		   "hardware monitor executing on CPU %d\n",
1965		   raw_smp_processor_id());
1966	BUG_ON(efx->type->monitor == NULL);
1967
1968	/* If the mac_lock is already held then it is likely a port
1969	 * reconfiguration is already in place, which will likely do
1970	 * most of the work of monitor() anyway. */
1971	if (mutex_trylock(&efx->mac_lock)) {
1972		if (efx->port_enabled)
1973			efx->type->monitor(efx);
1974		mutex_unlock(&efx->mac_lock);
1975	}
1976
1977	queue_delayed_work(efx->workqueue, &efx->monitor_work,
1978			   ef4_monitor_interval);
1979}
1980
1981/**************************************************************************
1982 *
1983 * ioctls
1984 *
1985 *************************************************************************/
1986
1987/* Net device ioctl
1988 * Context: process, rtnl_lock() held.
1989 */
1990static int ef4_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
1991{
1992	struct ef4_nic *efx = netdev_priv(net_dev);
1993	struct mii_ioctl_data *data = if_mii(ifr);
1994
1995	/* Convert phy_id from older PRTAD/DEVAD format */
1996	if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
1997	    (data->phy_id & 0xfc00) == 0x0400)
1998		data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;
1999
2000	return mdio_mii_ioctl(&efx->mdio, data, cmd);
2001}
2002
2003/**************************************************************************
2004 *
2005 * NAPI interface
2006 *
2007 **************************************************************************/
2008
2009static void ef4_init_napi_channel(struct ef4_channel *channel)
2010{
2011	struct ef4_nic *efx = channel->efx;
2012
2013	channel->napi_dev = efx->net_dev;
2014	netif_napi_add(channel->napi_dev, &channel->napi_str, ef4_poll);
2015}
2016
2017static void ef4_init_napi(struct ef4_nic *efx)
2018{
2019	struct ef4_channel *channel;
2020
2021	ef4_for_each_channel(channel, efx)
2022		ef4_init_napi_channel(channel);
2023}
2024
2025static void ef4_fini_napi_channel(struct ef4_channel *channel)
2026{
2027	if (channel->napi_dev)
2028		netif_napi_del(&channel->napi_str);
2029
2030	channel->napi_dev = NULL;
2031}
2032
2033static void ef4_fini_napi(struct ef4_nic *efx)
2034{
2035	struct ef4_channel *channel;
2036
2037	ef4_for_each_channel(channel, efx)
2038		ef4_fini_napi_channel(channel);
2039}
2040
2041/**************************************************************************
2042 *
2043 * Kernel net device interface
2044 *
2045 *************************************************************************/
2046
2047/* Context: process, rtnl_lock() held. */
2048int ef4_net_open(struct net_device *net_dev)
2049{
2050	struct ef4_nic *efx = netdev_priv(net_dev);
2051	int rc;
2052
2053	netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n",
2054		  raw_smp_processor_id());
2055
2056	rc = ef4_check_disabled(efx);
2057	if (rc)
2058		return rc;
2059	if (efx->phy_mode & PHY_MODE_SPECIAL)
2060		return -EBUSY;
2061
2062	/* Notify the kernel of the link state polled during driver load,
2063	 * before the monitor starts running */
2064	ef4_link_status_changed(efx);
2065
2066	ef4_start_all(efx);
2067	ef4_selftest_async_start(efx);
2068	return 0;
2069}
2070
2071/* Context: process, rtnl_lock() held.
2072 * Note that the kernel will ignore our return code; this method
2073 * should really be a void.
2074 */
2075int ef4_net_stop(struct net_device *net_dev)
2076{
2077	struct ef4_nic *efx = netdev_priv(net_dev);
2078
2079	netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n",
2080		  raw_smp_processor_id());
2081
2082	/* Stop the device and flush all the channels */
2083	ef4_stop_all(efx);
2084
2085	return 0;
2086}
2087
2088/* Context: process, rcu_read_lock or RTNL held, non-blocking. */
2089static void ef4_net_stats(struct net_device *net_dev,
2090			  struct rtnl_link_stats64 *stats)
2091{
2092	struct ef4_nic *efx = netdev_priv(net_dev);
2093
2094	spin_lock_bh(&efx->stats_lock);
2095	efx->type->update_stats(efx, NULL, stats);
2096	spin_unlock_bh(&efx->stats_lock);
2097}
2098
2099/* Context: netif_tx_lock held, BHs disabled. */
2100static void ef4_watchdog(struct net_device *net_dev, unsigned int txqueue)
2101{
2102	struct ef4_nic *efx = netdev_priv(net_dev);
2103
2104	netif_err(efx, tx_err, efx->net_dev,
2105		  "TX stuck with port_enabled=%d: resetting channels\n",
2106		  efx->port_enabled);
2107
2108	ef4_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
2109}
2110
2111
2112/* Context: process, rtnl_lock() held. */
2113static int ef4_change_mtu(struct net_device *net_dev, int new_mtu)
2114{
2115	struct ef4_nic *efx = netdev_priv(net_dev);
2116	int rc;
2117
2118	rc = ef4_check_disabled(efx);
2119	if (rc)
2120		return rc;
2121
2122	netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu);
2123
2124	ef4_device_detach_sync(efx);
2125	ef4_stop_all(efx);
2126
2127	mutex_lock(&efx->mac_lock);
2128	net_dev->mtu = new_mtu;
2129	ef4_mac_reconfigure(efx);
2130	mutex_unlock(&efx->mac_lock);
2131
2132	ef4_start_all(efx);
2133	netif_device_attach(efx->net_dev);
2134	return 0;
2135}
2136
2137static int ef4_set_mac_address(struct net_device *net_dev, void *data)
2138{
2139	struct ef4_nic *efx = netdev_priv(net_dev);
2140	struct sockaddr *addr = data;
2141	u8 *new_addr = addr->sa_data;
2142	u8 old_addr[6];
2143	int rc;
2144
2145	if (!is_valid_ether_addr(new_addr)) {
2146		netif_err(efx, drv, efx->net_dev,
2147			  "invalid ethernet MAC address requested: %pM\n",
2148			  new_addr);
2149		return -EADDRNOTAVAIL;
2150	}
2151
2152	/* save old address */
2153	ether_addr_copy(old_addr, net_dev->dev_addr);
2154	eth_hw_addr_set(net_dev, new_addr);
2155	if (efx->type->set_mac_address) {
2156		rc = efx->type->set_mac_address(efx);
2157		if (rc) {
2158			eth_hw_addr_set(net_dev, old_addr);
2159			return rc;
2160		}
2161	}
2162
2163	/* Reconfigure the MAC */
2164	mutex_lock(&efx->mac_lock);
2165	ef4_mac_reconfigure(efx);
2166	mutex_unlock(&efx->mac_lock);
2167
2168	return 0;
2169}
2170
2171/* Context: netif_addr_lock held, BHs disabled. */
2172static void ef4_set_rx_mode(struct net_device *net_dev)
2173{
2174	struct ef4_nic *efx = netdev_priv(net_dev);
2175
2176	if (efx->port_enabled)
2177		queue_work(efx->workqueue, &efx->mac_work);
2178	/* Otherwise ef4_start_port() will do this */
2179}
2180
2181static int ef4_set_features(struct net_device *net_dev, netdev_features_t data)
2182{
2183	struct ef4_nic *efx = netdev_priv(net_dev);
2184	int rc;
2185
2186	/* If disabling RX n-tuple filtering, clear existing filters */
2187	if (net_dev->features & ~data & NETIF_F_NTUPLE) {
2188		rc = efx->type->filter_clear_rx(efx, EF4_FILTER_PRI_MANUAL);
2189		if (rc)
2190			return rc;
2191	}
2192
2193	/* If Rx VLAN filter is changed, update filters via mac_reconfigure */
2194	if ((net_dev->features ^ data) & NETIF_F_HW_VLAN_CTAG_FILTER) {
2195		/* ef4_set_rx_mode() will schedule MAC work to update filters
2196		 * when a new features are finally set in net_dev.
2197		 */
2198		ef4_set_rx_mode(net_dev);
2199	}
2200
2201	return 0;
2202}
2203
2204static const struct net_device_ops ef4_netdev_ops = {
2205	.ndo_open		= ef4_net_open,
2206	.ndo_stop		= ef4_net_stop,
2207	.ndo_get_stats64	= ef4_net_stats,
2208	.ndo_tx_timeout		= ef4_watchdog,
2209	.ndo_start_xmit		= ef4_hard_start_xmit,
2210	.ndo_validate_addr	= eth_validate_addr,
2211	.ndo_eth_ioctl		= ef4_ioctl,
2212	.ndo_change_mtu		= ef4_change_mtu,
2213	.ndo_set_mac_address	= ef4_set_mac_address,
2214	.ndo_set_rx_mode	= ef4_set_rx_mode,
2215	.ndo_set_features	= ef4_set_features,
2216	.ndo_setup_tc		= ef4_setup_tc,
2217#ifdef CONFIG_RFS_ACCEL
2218	.ndo_rx_flow_steer	= ef4_filter_rfs,
2219#endif
2220};
2221
2222static void ef4_update_name(struct ef4_nic *efx)
2223{
2224	strcpy(efx->name, efx->net_dev->name);
2225	ef4_mtd_rename(efx);
2226	ef4_set_channel_names(efx);
2227}
2228
2229static int ef4_netdev_event(struct notifier_block *this,
2230			    unsigned long event, void *ptr)
2231{
2232	struct net_device *net_dev = netdev_notifier_info_to_dev(ptr);
2233
2234	if ((net_dev->netdev_ops == &ef4_netdev_ops) &&
2235	    event == NETDEV_CHANGENAME)
2236		ef4_update_name(netdev_priv(net_dev));
2237
2238	return NOTIFY_DONE;
2239}
2240
2241static struct notifier_block ef4_netdev_notifier = {
2242	.notifier_call = ef4_netdev_event,
2243};
2244
2245static ssize_t
2246phy_type_show(struct device *dev, struct device_attribute *attr, char *buf)
2247{
2248	struct ef4_nic *efx = dev_get_drvdata(dev);
2249	return sprintf(buf, "%d\n", efx->phy_type);
2250}
2251static DEVICE_ATTR_RO(phy_type);
2252
2253static int ef4_register_netdev(struct ef4_nic *efx)
2254{
2255	struct net_device *net_dev = efx->net_dev;
2256	struct ef4_channel *channel;
2257	int rc;
2258
2259	net_dev->watchdog_timeo = 5 * HZ;
2260	net_dev->irq = efx->pci_dev->irq;
2261	net_dev->netdev_ops = &ef4_netdev_ops;
2262	net_dev->ethtool_ops = &ef4_ethtool_ops;
2263	netif_set_tso_max_segs(net_dev, EF4_TSO_MAX_SEGS);
2264	net_dev->min_mtu = EF4_MIN_MTU;
2265	net_dev->max_mtu = EF4_MAX_MTU;
2266
2267	rtnl_lock();
2268
2269	/* Enable resets to be scheduled and check whether any were
2270	 * already requested.  If so, the NIC is probably hosed so we
2271	 * abort.
2272	 */
2273	efx->state = STATE_READY;
2274	smp_mb(); /* ensure we change state before checking reset_pending */
2275	if (efx->reset_pending) {
2276		netif_err(efx, probe, efx->net_dev,
2277			  "aborting probe due to scheduled reset\n");
2278		rc = -EIO;
2279		goto fail_locked;
2280	}
2281
2282	rc = dev_alloc_name(net_dev, net_dev->name);
2283	if (rc < 0)
2284		goto fail_locked;
2285	ef4_update_name(efx);
2286
2287	/* Always start with carrier off; PHY events will detect the link */
2288	netif_carrier_off(net_dev);
2289
2290	rc = register_netdevice(net_dev);
2291	if (rc)
2292		goto fail_locked;
2293
2294	ef4_for_each_channel(channel, efx) {
2295		struct ef4_tx_queue *tx_queue;
2296		ef4_for_each_channel_tx_queue(tx_queue, channel)
2297			ef4_init_tx_queue_core_txq(tx_queue);
2298	}
2299
2300	ef4_associate(efx);
2301
2302	rtnl_unlock();
2303
2304	rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
2305	if (rc) {
2306		netif_err(efx, drv, efx->net_dev,
2307			  "failed to init net dev attributes\n");
2308		goto fail_registered;
2309	}
2310	return 0;
2311
2312fail_registered:
2313	rtnl_lock();
2314	ef4_dissociate(efx);
2315	unregister_netdevice(net_dev);
2316fail_locked:
2317	efx->state = STATE_UNINIT;
2318	rtnl_unlock();
2319	netif_err(efx, drv, efx->net_dev, "could not register net dev\n");
2320	return rc;
2321}
2322
2323static void ef4_unregister_netdev(struct ef4_nic *efx)
2324{
2325	if (!efx->net_dev)
2326		return;
2327
2328	BUG_ON(netdev_priv(efx->net_dev) != efx);
2329
2330	if (ef4_dev_registered(efx)) {
2331		strscpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
2332		device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
2333		unregister_netdev(efx->net_dev);
2334	}
2335}
2336
2337/**************************************************************************
2338 *
2339 * Device reset and suspend
2340 *
2341 **************************************************************************/
2342
2343/* Tears down the entire software state and most of the hardware state
2344 * before reset.  */
2345void ef4_reset_down(struct ef4_nic *efx, enum reset_type method)
2346{
2347	EF4_ASSERT_RESET_SERIALISED(efx);
2348
2349	ef4_stop_all(efx);
2350	ef4_disable_interrupts(efx);
2351
2352	mutex_lock(&efx->mac_lock);
2353	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE &&
2354	    method != RESET_TYPE_DATAPATH)
2355		efx->phy_op->fini(efx);
2356	efx->type->fini(efx);
2357}
2358
2359/* This function will always ensure that the locks acquired in
2360 * ef4_reset_down() are released. A failure return code indicates
2361 * that we were unable to reinitialise the hardware, and the
2362 * driver should be disabled. If ok is false, then the rx and tx
2363 * engines are not restarted, pending a RESET_DISABLE. */
2364int ef4_reset_up(struct ef4_nic *efx, enum reset_type method, bool ok)
2365{
2366	int rc;
2367
2368	EF4_ASSERT_RESET_SERIALISED(efx);
2369
2370	/* Ensure that SRAM is initialised even if we're disabling the device */
2371	rc = efx->type->init(efx);
2372	if (rc) {
2373		netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n");
2374		goto fail;
2375	}
2376
2377	if (!ok)
2378		goto fail;
2379
2380	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE &&
2381	    method != RESET_TYPE_DATAPATH) {
2382		rc = efx->phy_op->init(efx);
2383		if (rc)
2384			goto fail;
2385		rc = efx->phy_op->reconfigure(efx);
2386		if (rc && rc != -EPERM)
2387			netif_err(efx, drv, efx->net_dev,
2388				  "could not restore PHY settings\n");
2389	}
2390
2391	rc = ef4_enable_interrupts(efx);
2392	if (rc)
2393		goto fail;
2394
2395	down_read(&efx->filter_sem);
2396	ef4_restore_filters(efx);
2397	up_read(&efx->filter_sem);
2398
2399	mutex_unlock(&efx->mac_lock);
2400
2401	ef4_start_all(efx);
2402
2403	return 0;
2404
2405fail:
2406	efx->port_initialized = false;
2407
2408	mutex_unlock(&efx->mac_lock);
2409
2410	return rc;
2411}
2412
2413/* Reset the NIC using the specified method.  Note that the reset may
2414 * fail, in which case the card will be left in an unusable state.
2415 *
2416 * Caller must hold the rtnl_lock.
2417 */
2418int ef4_reset(struct ef4_nic *efx, enum reset_type method)
2419{
2420	int rc, rc2;
2421	bool disabled;
2422
2423	netif_info(efx, drv, efx->net_dev, "resetting (%s)\n",
2424		   RESET_TYPE(method));
2425
2426	ef4_device_detach_sync(efx);
2427	ef4_reset_down(efx, method);
2428
2429	rc = efx->type->reset(efx, method);
2430	if (rc) {
2431		netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n");
2432		goto out;
2433	}
2434
2435	/* Clear flags for the scopes we covered.  We assume the NIC and
2436	 * driver are now quiescent so that there is no race here.
2437	 */
2438	if (method < RESET_TYPE_MAX_METHOD)
2439		efx->reset_pending &= -(1 << (method + 1));
2440	else /* it doesn't fit into the well-ordered scope hierarchy */
2441		__clear_bit(method, &efx->reset_pending);
2442
2443	/* Reinitialise bus-mastering, which may have been turned off before
2444	 * the reset was scheduled. This is still appropriate, even in the
2445	 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
2446	 * can respond to requests. */
2447	pci_set_master(efx->pci_dev);
2448
2449out:
2450	/* Leave device stopped if necessary */
2451	disabled = rc ||
2452		method == RESET_TYPE_DISABLE ||
2453		method == RESET_TYPE_RECOVER_OR_DISABLE;
2454	rc2 = ef4_reset_up(efx, method, !disabled);
2455	if (rc2) {
2456		disabled = true;
2457		if (!rc)
2458			rc = rc2;
2459	}
2460
2461	if (disabled) {
2462		dev_close(efx->net_dev);
2463		netif_err(efx, drv, efx->net_dev, "has been disabled\n");
2464		efx->state = STATE_DISABLED;
2465	} else {
2466		netif_dbg(efx, drv, efx->net_dev, "reset complete\n");
2467		netif_device_attach(efx->net_dev);
2468	}
2469	return rc;
2470}
2471
2472/* Try recovery mechanisms.
2473 * For now only EEH is supported.
2474 * Returns 0 if the recovery mechanisms are unsuccessful.
2475 * Returns a non-zero value otherwise.
2476 */
2477int ef4_try_recovery(struct ef4_nic *efx)
2478{
2479#ifdef CONFIG_EEH
2480	/* A PCI error can occur and not be seen by EEH because nothing
2481	 * happens on the PCI bus. In this case the driver may fail and
2482	 * schedule a 'recover or reset', leading to this recovery handler.
2483	 * Manually call the eeh failure check function.
2484	 */
2485	struct eeh_dev *eehdev = pci_dev_to_eeh_dev(efx->pci_dev);
2486	if (eeh_dev_check_failure(eehdev)) {
2487		/* The EEH mechanisms will handle the error and reset the
2488		 * device if necessary.
2489		 */
2490		return 1;
2491	}
2492#endif
2493	return 0;
2494}
2495
2496/* The worker thread exists so that code that cannot sleep can
2497 * schedule a reset for later.
2498 */
2499static void ef4_reset_work(struct work_struct *data)
2500{
2501	struct ef4_nic *efx = container_of(data, struct ef4_nic, reset_work);
2502	unsigned long pending;
2503	enum reset_type method;
2504
2505	pending = READ_ONCE(efx->reset_pending);
2506	method = fls(pending) - 1;
2507
2508	if ((method == RESET_TYPE_RECOVER_OR_DISABLE ||
2509	     method == RESET_TYPE_RECOVER_OR_ALL) &&
2510	    ef4_try_recovery(efx))
2511		return;
2512
2513	if (!pending)
2514		return;
2515
2516	rtnl_lock();
2517
2518	/* We checked the state in ef4_schedule_reset() but it may
2519	 * have changed by now.  Now that we have the RTNL lock,
2520	 * it cannot change again.
2521	 */
2522	if (efx->state == STATE_READY)
2523		(void)ef4_reset(efx, method);
2524
2525	rtnl_unlock();
2526}
2527
2528void ef4_schedule_reset(struct ef4_nic *efx, enum reset_type type)
2529{
2530	enum reset_type method;
2531
2532	if (efx->state == STATE_RECOVERY) {
2533		netif_dbg(efx, drv, efx->net_dev,
2534			  "recovering: skip scheduling %s reset\n",
2535			  RESET_TYPE(type));
2536		return;
2537	}
2538
2539	switch (type) {
2540	case RESET_TYPE_INVISIBLE:
2541	case RESET_TYPE_ALL:
2542	case RESET_TYPE_RECOVER_OR_ALL:
2543	case RESET_TYPE_WORLD:
2544	case RESET_TYPE_DISABLE:
2545	case RESET_TYPE_RECOVER_OR_DISABLE:
2546	case RESET_TYPE_DATAPATH:
2547		method = type;
2548		netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n",
2549			  RESET_TYPE(method));
2550		break;
2551	default:
2552		method = efx->type->map_reset_reason(type);
2553		netif_dbg(efx, drv, efx->net_dev,
2554			  "scheduling %s reset for %s\n",
2555			  RESET_TYPE(method), RESET_TYPE(type));
2556		break;
2557	}
2558
2559	set_bit(method, &efx->reset_pending);
2560	smp_mb(); /* ensure we change reset_pending before checking state */
2561
2562	/* If we're not READY then just leave the flags set as the cue
2563	 * to abort probing or reschedule the reset later.
2564	 */
2565	if (READ_ONCE(efx->state) != STATE_READY)
2566		return;
2567
2568	queue_work(reset_workqueue, &efx->reset_work);
2569}
2570
2571/**************************************************************************
2572 *
2573 * List of NICs we support
2574 *
2575 **************************************************************************/
2576
2577/* PCI device ID table */
2578static const struct pci_device_id ef4_pci_table[] = {
2579	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
2580		    PCI_DEVICE_ID_SOLARFLARE_SFC4000A_0),
2581	 .driver_data = (unsigned long) &falcon_a1_nic_type},
2582	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
2583		    PCI_DEVICE_ID_SOLARFLARE_SFC4000B),
2584	 .driver_data = (unsigned long) &falcon_b0_nic_type},
2585	{0}			/* end of list */
2586};
2587
2588/**************************************************************************
2589 *
2590 * Dummy PHY/MAC operations
2591 *
2592 * Can be used for some unimplemented operations
2593 * Needed so all function pointers are valid and do not have to be tested
2594 * before use
2595 *
2596 **************************************************************************/
2597int ef4_port_dummy_op_int(struct ef4_nic *efx)
2598{
2599	return 0;
2600}
2601void ef4_port_dummy_op_void(struct ef4_nic *efx) {}
2602
2603static bool ef4_port_dummy_op_poll(struct ef4_nic *efx)
2604{
2605	return false;
2606}
2607
2608static const struct ef4_phy_operations ef4_dummy_phy_operations = {
2609	.init		 = ef4_port_dummy_op_int,
2610	.reconfigure	 = ef4_port_dummy_op_int,
2611	.poll		 = ef4_port_dummy_op_poll,
2612	.fini		 = ef4_port_dummy_op_void,
2613};
2614
2615/**************************************************************************
2616 *
2617 * Data housekeeping
2618 *
2619 **************************************************************************/
2620
2621/* This zeroes out and then fills in the invariants in a struct
2622 * ef4_nic (including all sub-structures).
2623 */
2624static int ef4_init_struct(struct ef4_nic *efx,
2625			   struct pci_dev *pci_dev, struct net_device *net_dev)
2626{
2627	int i;
2628
2629	/* Initialise common structures */
2630	INIT_LIST_HEAD(&efx->node);
2631	INIT_LIST_HEAD(&efx->secondary_list);
2632	spin_lock_init(&efx->biu_lock);
2633#ifdef CONFIG_SFC_FALCON_MTD
2634	INIT_LIST_HEAD(&efx->mtd_list);
2635#endif
2636	INIT_WORK(&efx->reset_work, ef4_reset_work);
2637	INIT_DELAYED_WORK(&efx->monitor_work, ef4_monitor);
2638	INIT_DELAYED_WORK(&efx->selftest_work, ef4_selftest_async_work);
2639	efx->pci_dev = pci_dev;
2640	efx->msg_enable = debug;
2641	efx->state = STATE_UNINIT;
2642	strscpy(efx->name, pci_name(pci_dev), sizeof(efx->name));
2643
2644	efx->net_dev = net_dev;
2645	efx->rx_prefix_size = efx->type->rx_prefix_size;
2646	efx->rx_ip_align =
2647		NET_IP_ALIGN ? (efx->rx_prefix_size + NET_IP_ALIGN) % 4 : 0;
2648	efx->rx_packet_hash_offset =
2649		efx->type->rx_hash_offset - efx->type->rx_prefix_size;
2650	efx->rx_packet_ts_offset =
2651		efx->type->rx_ts_offset - efx->type->rx_prefix_size;
2652	spin_lock_init(&efx->stats_lock);
2653	mutex_init(&efx->mac_lock);
2654	efx->phy_op = &ef4_dummy_phy_operations;
2655	efx->mdio.dev = net_dev;
2656	INIT_WORK(&efx->mac_work, ef4_mac_work);
2657	init_waitqueue_head(&efx->flush_wq);
2658
2659	for (i = 0; i < EF4_MAX_CHANNELS; i++) {
2660		efx->channel[i] = ef4_alloc_channel(efx, i, NULL);
2661		if (!efx->channel[i])
2662			goto fail;
2663		efx->msi_context[i].efx = efx;
2664		efx->msi_context[i].index = i;
2665	}
2666
2667	/* Higher numbered interrupt modes are less capable! */
2668	efx->interrupt_mode = max(efx->type->max_interrupt_mode,
2669				  interrupt_mode);
2670
2671	/* Would be good to use the net_dev name, but we're too early */
2672	snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
2673		 pci_name(pci_dev));
2674	efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
2675	if (!efx->workqueue)
2676		goto fail;
2677
2678	return 0;
2679
2680fail:
2681	ef4_fini_struct(efx);
2682	return -ENOMEM;
2683}
2684
2685static void ef4_fini_struct(struct ef4_nic *efx)
2686{
2687	int i;
2688
2689	for (i = 0; i < EF4_MAX_CHANNELS; i++)
2690		kfree(efx->channel[i]);
2691
2692	kfree(efx->vpd_sn);
2693
2694	if (efx->workqueue) {
2695		destroy_workqueue(efx->workqueue);
2696		efx->workqueue = NULL;
2697	}
2698}
2699
2700void ef4_update_sw_stats(struct ef4_nic *efx, u64 *stats)
2701{
2702	u64 n_rx_nodesc_trunc = 0;
2703	struct ef4_channel *channel;
2704
2705	ef4_for_each_channel(channel, efx)
2706		n_rx_nodesc_trunc += channel->n_rx_nodesc_trunc;
2707	stats[GENERIC_STAT_rx_nodesc_trunc] = n_rx_nodesc_trunc;
2708	stats[GENERIC_STAT_rx_noskb_drops] = atomic_read(&efx->n_rx_noskb_drops);
2709}
2710
2711/**************************************************************************
2712 *
2713 * PCI interface
2714 *
2715 **************************************************************************/
2716
2717/* Main body of final NIC shutdown code
2718 * This is called only at module unload (or hotplug removal).
2719 */
2720static void ef4_pci_remove_main(struct ef4_nic *efx)
2721{
2722	/* Flush reset_work. It can no longer be scheduled since we
2723	 * are not READY.
2724	 */
2725	BUG_ON(efx->state == STATE_READY);
2726	cancel_work_sync(&efx->reset_work);
2727
2728	ef4_disable_interrupts(efx);
2729	ef4_nic_fini_interrupt(efx);
2730	ef4_fini_port(efx);
2731	efx->type->fini(efx);
2732	ef4_fini_napi(efx);
2733	ef4_remove_all(efx);
2734}
2735
2736/* Final NIC shutdown
2737 * This is called only at module unload (or hotplug removal).  A PF can call
2738 * this on its VFs to ensure they are unbound first.
2739 */
2740static void ef4_pci_remove(struct pci_dev *pci_dev)
2741{
2742	struct ef4_nic *efx;
2743
2744	efx = pci_get_drvdata(pci_dev);
2745	if (!efx)
2746		return;
2747
2748	/* Mark the NIC as fini, then stop the interface */
2749	rtnl_lock();
2750	ef4_dissociate(efx);
2751	dev_close(efx->net_dev);
2752	ef4_disable_interrupts(efx);
2753	efx->state = STATE_UNINIT;
2754	rtnl_unlock();
2755
2756	ef4_unregister_netdev(efx);
2757
2758	ef4_mtd_remove(efx);
2759
2760	ef4_pci_remove_main(efx);
2761
2762	ef4_fini_io(efx);
2763	netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n");
2764
2765	ef4_fini_struct(efx);
2766	free_netdev(efx->net_dev);
2767};
2768
2769/* NIC VPD information
2770 * Called during probe to display the part number of the installed NIC.
2771 */
2772static void ef4_probe_vpd_strings(struct ef4_nic *efx)
2773{
2774	struct pci_dev *dev = efx->pci_dev;
2775	unsigned int vpd_size, kw_len;
2776	u8 *vpd_data;
2777	int start;
2778
2779	vpd_data = pci_vpd_alloc(dev, &vpd_size);
2780	if (IS_ERR(vpd_data)) {
2781		pci_warn(dev, "Unable to read VPD\n");
2782		return;
2783	}
2784
2785	start = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size,
2786					     PCI_VPD_RO_KEYWORD_PARTNO, &kw_len);
2787	if (start < 0)
2788		pci_warn(dev, "Part number not found or incomplete\n");
2789	else
2790		pci_info(dev, "Part Number : %.*s\n", kw_len, vpd_data + start);
2791
2792	start = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size,
2793					     PCI_VPD_RO_KEYWORD_SERIALNO, &kw_len);
2794	if (start < 0)
2795		pci_warn(dev, "Serial number not found or incomplete\n");
2796	else
2797		efx->vpd_sn = kmemdup_nul(vpd_data + start, kw_len, GFP_KERNEL);
2798
2799	kfree(vpd_data);
2800}
2801
2802
2803/* Main body of NIC initialisation
2804 * This is called at module load (or hotplug insertion, theoretically).
2805 */
2806static int ef4_pci_probe_main(struct ef4_nic *efx)
2807{
2808	int rc;
2809
2810	/* Do start-of-day initialisation */
2811	rc = ef4_probe_all(efx);
2812	if (rc)
2813		goto fail1;
2814
2815	ef4_init_napi(efx);
2816
2817	rc = efx->type->init(efx);
2818	if (rc) {
2819		netif_err(efx, probe, efx->net_dev,
2820			  "failed to initialise NIC\n");
2821		goto fail3;
2822	}
2823
2824	rc = ef4_init_port(efx);
2825	if (rc) {
2826		netif_err(efx, probe, efx->net_dev,
2827			  "failed to initialise port\n");
2828		goto fail4;
2829	}
2830
2831	rc = ef4_nic_init_interrupt(efx);
2832	if (rc)
2833		goto fail5;
2834	rc = ef4_enable_interrupts(efx);
2835	if (rc)
2836		goto fail6;
2837
2838	return 0;
2839
2840 fail6:
2841	ef4_nic_fini_interrupt(efx);
2842 fail5:
2843	ef4_fini_port(efx);
2844 fail4:
2845	efx->type->fini(efx);
2846 fail3:
2847	ef4_fini_napi(efx);
2848	ef4_remove_all(efx);
2849 fail1:
2850	return rc;
2851}
2852
2853/* NIC initialisation
2854 *
2855 * This is called at module load (or hotplug insertion,
2856 * theoretically).  It sets up PCI mappings, resets the NIC,
2857 * sets up and registers the network devices with the kernel and hooks
2858 * the interrupt service routine.  It does not prepare the device for
2859 * transmission; this is left to the first time one of the network
2860 * interfaces is brought up (i.e. ef4_net_open).
2861 */
2862static int ef4_pci_probe(struct pci_dev *pci_dev,
2863			 const struct pci_device_id *entry)
2864{
2865	struct net_device *net_dev;
2866	struct ef4_nic *efx;
2867	int rc;
2868
2869	/* Allocate and initialise a struct net_device and struct ef4_nic */
2870	net_dev = alloc_etherdev_mqs(sizeof(*efx), EF4_MAX_CORE_TX_QUEUES,
2871				     EF4_MAX_RX_QUEUES);
2872	if (!net_dev)
2873		return -ENOMEM;
2874	efx = netdev_priv(net_dev);
2875	efx->type = (const struct ef4_nic_type *) entry->driver_data;
2876	efx->fixed_features |= NETIF_F_HIGHDMA;
2877
2878	pci_set_drvdata(pci_dev, efx);
2879	SET_NETDEV_DEV(net_dev, &pci_dev->dev);
2880	rc = ef4_init_struct(efx, pci_dev, net_dev);
2881	if (rc)
2882		goto fail1;
2883
2884	netif_info(efx, probe, efx->net_dev,
2885		   "Solarflare NIC detected\n");
2886
2887	ef4_probe_vpd_strings(efx);
2888
2889	/* Set up basic I/O (BAR mappings etc) */
2890	rc = ef4_init_io(efx);
2891	if (rc)
2892		goto fail2;
2893
2894	rc = ef4_pci_probe_main(efx);
2895	if (rc)
2896		goto fail3;
2897
2898	net_dev->features |= (efx->type->offload_features | NETIF_F_SG |
2899			      NETIF_F_RXCSUM);
2900	/* Mask for features that also apply to VLAN devices */
2901	net_dev->vlan_features |= (NETIF_F_HW_CSUM | NETIF_F_SG |
2902				   NETIF_F_HIGHDMA | NETIF_F_RXCSUM);
2903
2904	net_dev->hw_features = net_dev->features & ~efx->fixed_features;
2905
2906	/* Disable VLAN filtering by default.  It may be enforced if
2907	 * the feature is fixed (i.e. VLAN filters are required to
2908	 * receive VLAN tagged packets due to vPort restrictions).
2909	 */
2910	net_dev->features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
2911	net_dev->features |= efx->fixed_features;
2912
2913	rc = ef4_register_netdev(efx);
2914	if (rc)
2915		goto fail4;
2916
2917	netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n");
2918
2919	/* Try to create MTDs, but allow this to fail */
2920	rtnl_lock();
2921	rc = ef4_mtd_probe(efx);
2922	rtnl_unlock();
2923	if (rc && rc != -EPERM)
2924		netif_warn(efx, probe, efx->net_dev,
2925			   "failed to create MTDs (%d)\n", rc);
2926
2927	return 0;
2928
2929 fail4:
2930	ef4_pci_remove_main(efx);
2931 fail3:
2932	ef4_fini_io(efx);
2933 fail2:
2934	ef4_fini_struct(efx);
2935 fail1:
2936	WARN_ON(rc > 0);
2937	netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc);
2938	free_netdev(net_dev);
2939	return rc;
2940}
2941
2942static int ef4_pm_freeze(struct device *dev)
2943{
2944	struct ef4_nic *efx = dev_get_drvdata(dev);
2945
2946	rtnl_lock();
2947
2948	if (efx->state != STATE_DISABLED) {
2949		efx->state = STATE_UNINIT;
2950
2951		ef4_device_detach_sync(efx);
2952
2953		ef4_stop_all(efx);
2954		ef4_disable_interrupts(efx);
2955	}
2956
2957	rtnl_unlock();
2958
2959	return 0;
2960}
2961
2962static int ef4_pm_thaw(struct device *dev)
2963{
2964	int rc;
2965	struct ef4_nic *efx = dev_get_drvdata(dev);
2966
2967	rtnl_lock();
2968
2969	if (efx->state != STATE_DISABLED) {
2970		rc = ef4_enable_interrupts(efx);
2971		if (rc)
2972			goto fail;
2973
2974		mutex_lock(&efx->mac_lock);
2975		efx->phy_op->reconfigure(efx);
2976		mutex_unlock(&efx->mac_lock);
2977
2978		ef4_start_all(efx);
2979
2980		netif_device_attach(efx->net_dev);
2981
2982		efx->state = STATE_READY;
2983
2984		efx->type->resume_wol(efx);
2985	}
2986
2987	rtnl_unlock();
2988
2989	/* Reschedule any quenched resets scheduled during ef4_pm_freeze() */
2990	queue_work(reset_workqueue, &efx->reset_work);
2991
2992	return 0;
2993
2994fail:
2995	rtnl_unlock();
2996
2997	return rc;
2998}
2999
3000static int ef4_pm_poweroff(struct device *dev)
3001{
3002	struct pci_dev *pci_dev = to_pci_dev(dev);
3003	struct ef4_nic *efx = pci_get_drvdata(pci_dev);
3004
3005	efx->type->fini(efx);
3006
3007	efx->reset_pending = 0;
3008
3009	pci_save_state(pci_dev);
3010	return pci_set_power_state(pci_dev, PCI_D3hot);
3011}
3012
3013/* Used for both resume and restore */
3014static int ef4_pm_resume(struct device *dev)
3015{
3016	struct pci_dev *pci_dev = to_pci_dev(dev);
3017	struct ef4_nic *efx = pci_get_drvdata(pci_dev);
3018	int rc;
3019
3020	rc = pci_set_power_state(pci_dev, PCI_D0);
3021	if (rc)
3022		return rc;
3023	pci_restore_state(pci_dev);
3024	rc = pci_enable_device(pci_dev);
3025	if (rc)
3026		return rc;
3027	pci_set_master(efx->pci_dev);
3028	rc = efx->type->reset(efx, RESET_TYPE_ALL);
3029	if (rc)
3030		return rc;
3031	rc = efx->type->init(efx);
3032	if (rc)
3033		return rc;
3034	rc = ef4_pm_thaw(dev);
3035	return rc;
3036}
3037
3038static int ef4_pm_suspend(struct device *dev)
3039{
3040	int rc;
3041
3042	ef4_pm_freeze(dev);
3043	rc = ef4_pm_poweroff(dev);
3044	if (rc)
3045		ef4_pm_resume(dev);
3046	return rc;
3047}
3048
3049static const struct dev_pm_ops ef4_pm_ops = {
3050	.suspend	= ef4_pm_suspend,
3051	.resume		= ef4_pm_resume,
3052	.freeze		= ef4_pm_freeze,
3053	.thaw		= ef4_pm_thaw,
3054	.poweroff	= ef4_pm_poweroff,
3055	.restore	= ef4_pm_resume,
3056};
3057
3058/* A PCI error affecting this device was detected.
3059 * At this point MMIO and DMA may be disabled.
3060 * Stop the software path and request a slot reset.
3061 */
3062static pci_ers_result_t ef4_io_error_detected(struct pci_dev *pdev,
3063					      pci_channel_state_t state)
3064{
3065	pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
3066	struct ef4_nic *efx = pci_get_drvdata(pdev);
3067
3068	if (state == pci_channel_io_perm_failure)
3069		return PCI_ERS_RESULT_DISCONNECT;
3070
3071	rtnl_lock();
3072
3073	if (efx->state != STATE_DISABLED) {
3074		efx->state = STATE_RECOVERY;
3075		efx->reset_pending = 0;
3076
3077		ef4_device_detach_sync(efx);
3078
3079		ef4_stop_all(efx);
3080		ef4_disable_interrupts(efx);
3081
3082		status = PCI_ERS_RESULT_NEED_RESET;
3083	} else {
3084		/* If the interface is disabled we don't want to do anything
3085		 * with it.
3086		 */
3087		status = PCI_ERS_RESULT_RECOVERED;
3088	}
3089
3090	rtnl_unlock();
3091
3092	pci_disable_device(pdev);
3093
3094	return status;
3095}
3096
3097/* Fake a successful reset, which will be performed later in ef4_io_resume. */
3098static pci_ers_result_t ef4_io_slot_reset(struct pci_dev *pdev)
3099{
3100	struct ef4_nic *efx = pci_get_drvdata(pdev);
3101	pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
3102
3103	if (pci_enable_device(pdev)) {
3104		netif_err(efx, hw, efx->net_dev,
3105			  "Cannot re-enable PCI device after reset.\n");
3106		status =  PCI_ERS_RESULT_DISCONNECT;
3107	}
3108
3109	return status;
3110}
3111
3112/* Perform the actual reset and resume I/O operations. */
3113static void ef4_io_resume(struct pci_dev *pdev)
3114{
3115	struct ef4_nic *efx = pci_get_drvdata(pdev);
3116	int rc;
3117
3118	rtnl_lock();
3119
3120	if (efx->state == STATE_DISABLED)
3121		goto out;
3122
3123	rc = ef4_reset(efx, RESET_TYPE_ALL);
3124	if (rc) {
3125		netif_err(efx, hw, efx->net_dev,
3126			  "ef4_reset failed after PCI error (%d)\n", rc);
3127	} else {
3128		efx->state = STATE_READY;
3129		netif_dbg(efx, hw, efx->net_dev,
3130			  "Done resetting and resuming IO after PCI error.\n");
3131	}
3132
3133out:
3134	rtnl_unlock();
3135}
3136
3137/* For simplicity and reliability, we always require a slot reset and try to
3138 * reset the hardware when a pci error affecting the device is detected.
3139 * We leave both the link_reset and mmio_enabled callback unimplemented:
3140 * with our request for slot reset the mmio_enabled callback will never be
3141 * called, and the link_reset callback is not used by AER or EEH mechanisms.
3142 */
3143static const struct pci_error_handlers ef4_err_handlers = {
3144	.error_detected = ef4_io_error_detected,
3145	.slot_reset	= ef4_io_slot_reset,
3146	.resume		= ef4_io_resume,
3147};
3148
3149static struct pci_driver ef4_pci_driver = {
3150	.name		= KBUILD_MODNAME,
3151	.id_table	= ef4_pci_table,
3152	.probe		= ef4_pci_probe,
3153	.remove		= ef4_pci_remove,
3154	.driver.pm	= &ef4_pm_ops,
3155	.err_handler	= &ef4_err_handlers,
3156};
3157
3158/**************************************************************************
3159 *
3160 * Kernel module interface
3161 *
3162 *************************************************************************/
3163
3164module_param(interrupt_mode, uint, 0444);
3165MODULE_PARM_DESC(interrupt_mode,
3166		 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
3167
3168static int __init ef4_init_module(void)
3169{
3170	int rc;
3171
3172	printk(KERN_INFO "Solarflare Falcon driver v" EF4_DRIVER_VERSION "\n");
3173
3174	rc = register_netdevice_notifier(&ef4_netdev_notifier);
3175	if (rc)
3176		goto err_notifier;
3177
3178	reset_workqueue = create_singlethread_workqueue("sfc_reset");
3179	if (!reset_workqueue) {
3180		rc = -ENOMEM;
3181		goto err_reset;
3182	}
3183
3184	rc = pci_register_driver(&ef4_pci_driver);
3185	if (rc < 0)
3186		goto err_pci;
3187
3188	return 0;
3189
3190 err_pci:
3191	destroy_workqueue(reset_workqueue);
3192 err_reset:
3193	unregister_netdevice_notifier(&ef4_netdev_notifier);
3194 err_notifier:
3195	return rc;
3196}
3197
3198static void __exit ef4_exit_module(void)
3199{
3200	printk(KERN_INFO "Solarflare Falcon driver unloading\n");
3201
3202	pci_unregister_driver(&ef4_pci_driver);
3203	destroy_workqueue(reset_workqueue);
3204	unregister_netdevice_notifier(&ef4_netdev_notifier);
3205
3206}
3207
3208module_init(ef4_init_module);
3209module_exit(ef4_exit_module);
3210
3211MODULE_AUTHOR("Solarflare Communications and "
3212	      "Michael Brown <mbrown@fensystems.co.uk>");
3213MODULE_DESCRIPTION("Solarflare Falcon network driver");
3214MODULE_LICENSE("GPL");
3215MODULE_DEVICE_TABLE(pci, ef4_pci_table);
3216MODULE_VERSION(EF4_DRIVER_VERSION);
3217