1// SPDX-License-Identifier: GPL-2.0
2/* Renesas Ethernet AVB device driver
3 *
4 * Copyright (C) 2014-2019 Renesas Electronics Corporation
5 * Copyright (C) 2015 Renesas Solutions Corp.
6 * Copyright (C) 2015-2016 Cogent Embedded, Inc. <source@cogentembedded.com>
7 *
8 * Based on the SuperH Ethernet driver
9 */
10
11#include <linux/cache.h>
12#include <linux/clk.h>
13#include <linux/delay.h>
14#include <linux/dma-mapping.h>
15#include <linux/err.h>
16#include <linux/etherdevice.h>
17#include <linux/ethtool.h>
18#include <linux/if_vlan.h>
19#include <linux/kernel.h>
20#include <linux/list.h>
21#include <linux/module.h>
22#include <linux/net_tstamp.h>
23#include <linux/of.h>
24#include <linux/of_mdio.h>
25#include <linux/of_net.h>
26#include <linux/platform_device.h>
27#include <linux/pm_runtime.h>
28#include <linux/slab.h>
29#include <linux/spinlock.h>
30#include <linux/reset.h>
31#include <linux/math64.h>
32#include <net/ip.h>
33
34#include "ravb.h"
35
36#define RAVB_DEF_MSG_ENABLE \
37		(NETIF_MSG_LINK	  | \
38		 NETIF_MSG_TIMER  | \
39		 NETIF_MSG_RX_ERR | \
40		 NETIF_MSG_TX_ERR)
41
42void ravb_modify(struct net_device *ndev, enum ravb_reg reg, u32 clear,
43		 u32 set)
44{
45	ravb_write(ndev, (ravb_read(ndev, reg) & ~clear) | set, reg);
46}
47
48int ravb_wait(struct net_device *ndev, enum ravb_reg reg, u32 mask, u32 value)
49{
50	int i;
51
52	for (i = 0; i < 10000; i++) {
53		if ((ravb_read(ndev, reg) & mask) == value)
54			return 0;
55		udelay(10);
56	}
57	return -ETIMEDOUT;
58}
59
60static int ravb_set_opmode(struct net_device *ndev, u32 opmode)
61{
62	u32 csr_ops = 1U << (opmode & CCC_OPC);
63	u32 ccc_mask = CCC_OPC;
64	int error;
65
66	/* If gPTP active in config mode is supported it needs to be configured
67	 * along with CSEL and operating mode in the same access. This is a
68	 * hardware limitation.
69	 */
70	if (opmode & CCC_GAC)
71		ccc_mask |= CCC_GAC | CCC_CSEL;
72
73	/* Set operating mode */
74	ravb_modify(ndev, CCC, ccc_mask, opmode);
75	/* Check if the operating mode is changed to the requested one */
76	error = ravb_wait(ndev, CSR, CSR_OPS, csr_ops);
77	if (error) {
78		netdev_err(ndev, "failed to switch device to requested mode (%u)\n",
79			   opmode & CCC_OPC);
80	}
81
82	return error;
83}
84
85static void ravb_set_rate_gbeth(struct net_device *ndev)
86{
87	struct ravb_private *priv = netdev_priv(ndev);
88
89	switch (priv->speed) {
90	case 10:		/* 10BASE */
91		ravb_write(ndev, GBETH_GECMR_SPEED_10, GECMR);
92		break;
93	case 100:		/* 100BASE */
94		ravb_write(ndev, GBETH_GECMR_SPEED_100, GECMR);
95		break;
96	case 1000:		/* 1000BASE */
97		ravb_write(ndev, GBETH_GECMR_SPEED_1000, GECMR);
98		break;
99	}
100}
101
102static void ravb_set_rate_rcar(struct net_device *ndev)
103{
104	struct ravb_private *priv = netdev_priv(ndev);
105
106	switch (priv->speed) {
107	case 100:		/* 100BASE */
108		ravb_write(ndev, GECMR_SPEED_100, GECMR);
109		break;
110	case 1000:		/* 1000BASE */
111		ravb_write(ndev, GECMR_SPEED_1000, GECMR);
112		break;
113	}
114}
115
116static struct sk_buff *
117ravb_alloc_skb(struct net_device *ndev, const struct ravb_hw_info *info,
118	       gfp_t gfp_mask)
119{
120	struct sk_buff *skb;
121	u32 reserve;
122
123	skb = __netdev_alloc_skb(ndev, info->rx_max_frame_size + RAVB_ALIGN - 1,
124				 gfp_mask);
125	if (!skb)
126		return NULL;
127
128	reserve = (unsigned long)skb->data & (RAVB_ALIGN - 1);
129	if (reserve)
130		skb_reserve(skb, RAVB_ALIGN - reserve);
131
132	return skb;
133}
134
135/* Get MAC address from the MAC address registers
136 *
137 * Ethernet AVB device doesn't have ROM for MAC address.
138 * This function gets the MAC address that was used by a bootloader.
139 */
140static void ravb_read_mac_address(struct device_node *np,
141				  struct net_device *ndev)
142{
143	int ret;
144
145	ret = of_get_ethdev_address(np, ndev);
146	if (ret) {
147		u32 mahr = ravb_read(ndev, MAHR);
148		u32 malr = ravb_read(ndev, MALR);
149		u8 addr[ETH_ALEN];
150
151		addr[0] = (mahr >> 24) & 0xFF;
152		addr[1] = (mahr >> 16) & 0xFF;
153		addr[2] = (mahr >>  8) & 0xFF;
154		addr[3] = (mahr >>  0) & 0xFF;
155		addr[4] = (malr >>  8) & 0xFF;
156		addr[5] = (malr >>  0) & 0xFF;
157		eth_hw_addr_set(ndev, addr);
158	}
159}
160
161static void ravb_mdio_ctrl(struct mdiobb_ctrl *ctrl, u32 mask, int set)
162{
163	struct ravb_private *priv = container_of(ctrl, struct ravb_private,
164						 mdiobb);
165
166	ravb_modify(priv->ndev, PIR, mask, set ? mask : 0);
167}
168
169/* MDC pin control */
170static void ravb_set_mdc(struct mdiobb_ctrl *ctrl, int level)
171{
172	ravb_mdio_ctrl(ctrl, PIR_MDC, level);
173}
174
175/* Data I/O pin control */
176static void ravb_set_mdio_dir(struct mdiobb_ctrl *ctrl, int output)
177{
178	ravb_mdio_ctrl(ctrl, PIR_MMD, output);
179}
180
181/* Set data bit */
182static void ravb_set_mdio_data(struct mdiobb_ctrl *ctrl, int value)
183{
184	ravb_mdio_ctrl(ctrl, PIR_MDO, value);
185}
186
187/* Get data bit */
188static int ravb_get_mdio_data(struct mdiobb_ctrl *ctrl)
189{
190	struct ravb_private *priv = container_of(ctrl, struct ravb_private,
191						 mdiobb);
192
193	return (ravb_read(priv->ndev, PIR) & PIR_MDI) != 0;
194}
195
196/* MDIO bus control struct */
197static const struct mdiobb_ops bb_ops = {
198	.owner = THIS_MODULE,
199	.set_mdc = ravb_set_mdc,
200	.set_mdio_dir = ravb_set_mdio_dir,
201	.set_mdio_data = ravb_set_mdio_data,
202	.get_mdio_data = ravb_get_mdio_data,
203};
204
205static struct ravb_rx_desc *
206ravb_rx_get_desc(struct ravb_private *priv, unsigned int q,
207		 unsigned int i)
208{
209	return priv->rx_ring[q].raw + priv->info->rx_desc_size * i;
210}
211
212/* Free TX skb function for AVB-IP */
213static int ravb_tx_free(struct net_device *ndev, int q, bool free_txed_only)
214{
215	struct ravb_private *priv = netdev_priv(ndev);
216	struct net_device_stats *stats = &priv->stats[q];
217	unsigned int num_tx_desc = priv->num_tx_desc;
218	struct ravb_tx_desc *desc;
219	unsigned int entry;
220	int free_num = 0;
221	u32 size;
222
223	for (; priv->cur_tx[q] - priv->dirty_tx[q] > 0; priv->dirty_tx[q]++) {
224		bool txed;
225
226		entry = priv->dirty_tx[q] % (priv->num_tx_ring[q] *
227					     num_tx_desc);
228		desc = &priv->tx_ring[q][entry];
229		txed = desc->die_dt == DT_FEMPTY;
230		if (free_txed_only && !txed)
231			break;
232		/* Descriptor type must be checked before all other reads */
233		dma_rmb();
234		size = le16_to_cpu(desc->ds_tagl) & TX_DS;
235		/* Free the original skb. */
236		if (priv->tx_skb[q][entry / num_tx_desc]) {
237			dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
238					 size, DMA_TO_DEVICE);
239			/* Last packet descriptor? */
240			if (entry % num_tx_desc == num_tx_desc - 1) {
241				entry /= num_tx_desc;
242				dev_kfree_skb_any(priv->tx_skb[q][entry]);
243				priv->tx_skb[q][entry] = NULL;
244				if (txed)
245					stats->tx_packets++;
246			}
247			free_num++;
248		}
249		if (txed)
250			stats->tx_bytes += size;
251		desc->die_dt = DT_EEMPTY;
252	}
253	return free_num;
254}
255
256static void ravb_rx_ring_free(struct net_device *ndev, int q)
257{
258	struct ravb_private *priv = netdev_priv(ndev);
259	unsigned int ring_size;
260	unsigned int i;
261
262	if (!priv->rx_ring[q].raw)
263		return;
264
265	for (i = 0; i < priv->num_rx_ring[q]; i++) {
266		struct ravb_rx_desc *desc = ravb_rx_get_desc(priv, q, i);
267
268		if (!dma_mapping_error(ndev->dev.parent,
269				       le32_to_cpu(desc->dptr)))
270			dma_unmap_single(ndev->dev.parent,
271					 le32_to_cpu(desc->dptr),
272					 priv->info->rx_max_frame_size,
273					 DMA_FROM_DEVICE);
274	}
275	ring_size = priv->info->rx_desc_size * (priv->num_rx_ring[q] + 1);
276	dma_free_coherent(ndev->dev.parent, ring_size, priv->rx_ring[q].raw,
277			  priv->rx_desc_dma[q]);
278	priv->rx_ring[q].raw = NULL;
279}
280
281/* Free skb's and DMA buffers for Ethernet AVB */
282static void ravb_ring_free(struct net_device *ndev, int q)
283{
284	struct ravb_private *priv = netdev_priv(ndev);
285	unsigned int num_tx_desc = priv->num_tx_desc;
286	unsigned int ring_size;
287	unsigned int i;
288
289	ravb_rx_ring_free(ndev, q);
290
291	if (priv->tx_ring[q]) {
292		ravb_tx_free(ndev, q, false);
293
294		ring_size = sizeof(struct ravb_tx_desc) *
295			    (priv->num_tx_ring[q] * num_tx_desc + 1);
296		dma_free_coherent(ndev->dev.parent, ring_size, priv->tx_ring[q],
297				  priv->tx_desc_dma[q]);
298		priv->tx_ring[q] = NULL;
299	}
300
301	/* Free RX skb ringbuffer */
302	if (priv->rx_skb[q]) {
303		for (i = 0; i < priv->num_rx_ring[q]; i++)
304			dev_kfree_skb(priv->rx_skb[q][i]);
305	}
306	kfree(priv->rx_skb[q]);
307	priv->rx_skb[q] = NULL;
308
309	/* Free aligned TX buffers */
310	kfree(priv->tx_align[q]);
311	priv->tx_align[q] = NULL;
312
313	/* Free TX skb ringbuffer.
314	 * SKBs are freed by ravb_tx_free() call above.
315	 */
316	kfree(priv->tx_skb[q]);
317	priv->tx_skb[q] = NULL;
318}
319
320static void ravb_rx_ring_format(struct net_device *ndev, int q)
321{
322	struct ravb_private *priv = netdev_priv(ndev);
323	struct ravb_rx_desc *rx_desc;
324	unsigned int rx_ring_size;
325	dma_addr_t dma_addr;
326	unsigned int i;
327
328	rx_ring_size = priv->info->rx_desc_size * priv->num_rx_ring[q];
329	memset(priv->rx_ring[q].raw, 0, rx_ring_size);
330	/* Build RX ring buffer */
331	for (i = 0; i < priv->num_rx_ring[q]; i++) {
332		/* RX descriptor */
333		rx_desc = ravb_rx_get_desc(priv, q, i);
334		rx_desc->ds_cc = cpu_to_le16(priv->info->rx_max_desc_use);
335		dma_addr = dma_map_single(ndev->dev.parent, priv->rx_skb[q][i]->data,
336					  priv->info->rx_max_frame_size,
337					  DMA_FROM_DEVICE);
338		/* We just set the data size to 0 for a failed mapping which
339		 * should prevent DMA from happening...
340		 */
341		if (dma_mapping_error(ndev->dev.parent, dma_addr))
342			rx_desc->ds_cc = cpu_to_le16(0);
343		rx_desc->dptr = cpu_to_le32(dma_addr);
344		rx_desc->die_dt = DT_FEMPTY;
345	}
346	rx_desc = ravb_rx_get_desc(priv, q, i);
347	rx_desc->dptr = cpu_to_le32((u32)priv->rx_desc_dma[q]);
348	rx_desc->die_dt = DT_LINKFIX; /* type */
349}
350
351/* Format skb and descriptor buffer for Ethernet AVB */
352static void ravb_ring_format(struct net_device *ndev, int q)
353{
354	struct ravb_private *priv = netdev_priv(ndev);
355	unsigned int num_tx_desc = priv->num_tx_desc;
356	struct ravb_tx_desc *tx_desc;
357	struct ravb_desc *desc;
358	unsigned int tx_ring_size = sizeof(*tx_desc) * priv->num_tx_ring[q] *
359				    num_tx_desc;
360	unsigned int i;
361
362	priv->cur_rx[q] = 0;
363	priv->cur_tx[q] = 0;
364	priv->dirty_rx[q] = 0;
365	priv->dirty_tx[q] = 0;
366
367	ravb_rx_ring_format(ndev, q);
368
369	memset(priv->tx_ring[q], 0, tx_ring_size);
370	/* Build TX ring buffer */
371	for (i = 0, tx_desc = priv->tx_ring[q]; i < priv->num_tx_ring[q];
372	     i++, tx_desc++) {
373		tx_desc->die_dt = DT_EEMPTY;
374		if (num_tx_desc > 1) {
375			tx_desc++;
376			tx_desc->die_dt = DT_EEMPTY;
377		}
378	}
379	tx_desc->dptr = cpu_to_le32((u32)priv->tx_desc_dma[q]);
380	tx_desc->die_dt = DT_LINKFIX; /* type */
381
382	/* RX descriptor base address for best effort */
383	desc = &priv->desc_bat[RX_QUEUE_OFFSET + q];
384	desc->die_dt = DT_LINKFIX; /* type */
385	desc->dptr = cpu_to_le32((u32)priv->rx_desc_dma[q]);
386
387	/* TX descriptor base address for best effort */
388	desc = &priv->desc_bat[q];
389	desc->die_dt = DT_LINKFIX; /* type */
390	desc->dptr = cpu_to_le32((u32)priv->tx_desc_dma[q]);
391}
392
393static void *ravb_alloc_rx_desc(struct net_device *ndev, int q)
394{
395	struct ravb_private *priv = netdev_priv(ndev);
396	unsigned int ring_size;
397
398	ring_size = priv->info->rx_desc_size * (priv->num_rx_ring[q] + 1);
399
400	priv->rx_ring[q].raw = dma_alloc_coherent(ndev->dev.parent, ring_size,
401						  &priv->rx_desc_dma[q],
402						  GFP_KERNEL);
403
404	return priv->rx_ring[q].raw;
405}
406
407/* Init skb and descriptor buffer for Ethernet AVB */
408static int ravb_ring_init(struct net_device *ndev, int q)
409{
410	struct ravb_private *priv = netdev_priv(ndev);
411	const struct ravb_hw_info *info = priv->info;
412	unsigned int num_tx_desc = priv->num_tx_desc;
413	unsigned int ring_size;
414	struct sk_buff *skb;
415	unsigned int i;
416
417	/* Allocate RX and TX skb rings */
418	priv->rx_skb[q] = kcalloc(priv->num_rx_ring[q],
419				  sizeof(*priv->rx_skb[q]), GFP_KERNEL);
420	priv->tx_skb[q] = kcalloc(priv->num_tx_ring[q],
421				  sizeof(*priv->tx_skb[q]), GFP_KERNEL);
422	if (!priv->rx_skb[q] || !priv->tx_skb[q])
423		goto error;
424
425	for (i = 0; i < priv->num_rx_ring[q]; i++) {
426		skb = ravb_alloc_skb(ndev, info, GFP_KERNEL);
427		if (!skb)
428			goto error;
429		priv->rx_skb[q][i] = skb;
430	}
431
432	if (num_tx_desc > 1) {
433		/* Allocate rings for the aligned buffers */
434		priv->tx_align[q] = kmalloc(DPTR_ALIGN * priv->num_tx_ring[q] +
435					    DPTR_ALIGN - 1, GFP_KERNEL);
436		if (!priv->tx_align[q])
437			goto error;
438	}
439
440	/* Allocate all RX descriptors. */
441	if (!ravb_alloc_rx_desc(ndev, q))
442		goto error;
443
444	priv->dirty_rx[q] = 0;
445
446	/* Allocate all TX descriptors. */
447	ring_size = sizeof(struct ravb_tx_desc) *
448		    (priv->num_tx_ring[q] * num_tx_desc + 1);
449	priv->tx_ring[q] = dma_alloc_coherent(ndev->dev.parent, ring_size,
450					      &priv->tx_desc_dma[q],
451					      GFP_KERNEL);
452	if (!priv->tx_ring[q])
453		goto error;
454
455	return 0;
456
457error:
458	ravb_ring_free(ndev, q);
459
460	return -ENOMEM;
461}
462
463static void ravb_csum_init_gbeth(struct net_device *ndev)
464{
465	bool tx_enable = ndev->features & NETIF_F_HW_CSUM;
466	bool rx_enable = ndev->features & NETIF_F_RXCSUM;
467
468	if (!(tx_enable || rx_enable))
469		goto done;
470
471	ravb_write(ndev, 0, CSR0);
472	if (ravb_wait(ndev, CSR0, CSR0_TPE | CSR0_RPE, 0)) {
473		netdev_err(ndev, "Timeout enabling hardware checksum\n");
474
475		if (tx_enable)
476			ndev->features &= ~NETIF_F_HW_CSUM;
477
478		if (rx_enable)
479			ndev->features &= ~NETIF_F_RXCSUM;
480	} else {
481		if (tx_enable)
482			ravb_write(ndev, CSR1_TIP4 | CSR1_TTCP4 | CSR1_TUDP4, CSR1);
483
484		if (rx_enable)
485			ravb_write(ndev, CSR2_RIP4 | CSR2_RTCP4 | CSR2_RUDP4 | CSR2_RICMP4,
486				   CSR2);
487	}
488
489done:
490	ravb_write(ndev, CSR0_TPE | CSR0_RPE, CSR0);
491}
492
493static void ravb_emac_init_gbeth(struct net_device *ndev)
494{
495	struct ravb_private *priv = netdev_priv(ndev);
496
497	if (priv->phy_interface == PHY_INTERFACE_MODE_MII) {
498		ravb_write(ndev, (1000 << 16) | CXR35_SEL_XMII_MII, CXR35);
499		ravb_modify(ndev, CXR31, CXR31_SEL_LINK0 | CXR31_SEL_LINK1, 0);
500	} else {
501		ravb_write(ndev, (1000 << 16) | CXR35_SEL_XMII_RGMII, CXR35);
502		ravb_modify(ndev, CXR31, CXR31_SEL_LINK0 | CXR31_SEL_LINK1,
503			    CXR31_SEL_LINK0);
504	}
505
506	/* Receive frame limit set register */
507	ravb_write(ndev, priv->info->rx_max_frame_size + ETH_FCS_LEN, RFLR);
508
509	/* EMAC Mode: PAUSE prohibition; Duplex; TX; RX; CRC Pass Through */
510	ravb_write(ndev, ECMR_ZPF | ((priv->duplex > 0) ? ECMR_DM : 0) |
511			 ECMR_TE | ECMR_RE | ECMR_RCPT |
512			 ECMR_TXF | ECMR_RXF, ECMR);
513
514	ravb_set_rate_gbeth(ndev);
515
516	/* Set MAC address */
517	ravb_write(ndev,
518		   (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
519		   (ndev->dev_addr[2] << 8)  | (ndev->dev_addr[3]), MAHR);
520	ravb_write(ndev, (ndev->dev_addr[4] << 8)  | (ndev->dev_addr[5]), MALR);
521
522	/* E-MAC status register clear */
523	ravb_write(ndev, ECSR_ICD | ECSR_LCHNG | ECSR_PFRI, ECSR);
524
525	ravb_csum_init_gbeth(ndev);
526
527	/* E-MAC interrupt enable register */
528	ravb_write(ndev, ECSIPR_ICDIP, ECSIPR);
529}
530
531static void ravb_emac_init_rcar(struct net_device *ndev)
532{
533	/* Receive frame limit set register */
534	ravb_write(ndev, ndev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN, RFLR);
535
536	/* EMAC Mode: PAUSE prohibition; Duplex; RX Checksum; TX; RX */
537	ravb_write(ndev, ECMR_ZPF | ECMR_DM |
538		   (ndev->features & NETIF_F_RXCSUM ? ECMR_RCSC : 0) |
539		   ECMR_TE | ECMR_RE, ECMR);
540
541	ravb_set_rate_rcar(ndev);
542
543	/* Set MAC address */
544	ravb_write(ndev,
545		   (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
546		   (ndev->dev_addr[2] << 8)  | (ndev->dev_addr[3]), MAHR);
547	ravb_write(ndev,
548		   (ndev->dev_addr[4] << 8)  | (ndev->dev_addr[5]), MALR);
549
550	/* E-MAC status register clear */
551	ravb_write(ndev, ECSR_ICD | ECSR_MPD, ECSR);
552
553	/* E-MAC interrupt enable register */
554	ravb_write(ndev, ECSIPR_ICDIP | ECSIPR_MPDIP | ECSIPR_LCHNGIP, ECSIPR);
555}
556
557/* E-MAC init function */
558static void ravb_emac_init(struct net_device *ndev)
559{
560	struct ravb_private *priv = netdev_priv(ndev);
561	const struct ravb_hw_info *info = priv->info;
562
563	info->emac_init(ndev);
564}
565
566static int ravb_dmac_init_gbeth(struct net_device *ndev)
567{
568	struct ravb_private *priv = netdev_priv(ndev);
569	int error;
570
571	error = ravb_ring_init(ndev, RAVB_BE);
572	if (error)
573		return error;
574
575	/* Descriptor format */
576	ravb_ring_format(ndev, RAVB_BE);
577
578	/* Set DMAC RX */
579	ravb_write(ndev, 0x60000000, RCR);
580
581	/* Set Max Frame Length (RTC) */
582	ravb_write(ndev, 0x7ffc0000 | priv->info->rx_max_frame_size, RTC);
583
584	/* Set FIFO size */
585	ravb_write(ndev, 0x00222200, TGC);
586
587	ravb_write(ndev, 0, TCCR);
588
589	/* Frame receive */
590	ravb_write(ndev, RIC0_FRE0, RIC0);
591	/* Disable FIFO full warning */
592	ravb_write(ndev, 0x0, RIC1);
593	/* Receive FIFO full error, descriptor empty */
594	ravb_write(ndev, RIC2_QFE0 | RIC2_RFFE, RIC2);
595
596	ravb_write(ndev, TIC_FTE0, TIC);
597
598	return 0;
599}
600
601static int ravb_dmac_init_rcar(struct net_device *ndev)
602{
603	struct ravb_private *priv = netdev_priv(ndev);
604	const struct ravb_hw_info *info = priv->info;
605	int error;
606
607	error = ravb_ring_init(ndev, RAVB_BE);
608	if (error)
609		return error;
610	error = ravb_ring_init(ndev, RAVB_NC);
611	if (error) {
612		ravb_ring_free(ndev, RAVB_BE);
613		return error;
614	}
615
616	/* Descriptor format */
617	ravb_ring_format(ndev, RAVB_BE);
618	ravb_ring_format(ndev, RAVB_NC);
619
620	/* Set AVB RX */
621	ravb_write(ndev,
622		   RCR_EFFS | RCR_ENCF | RCR_ETS0 | RCR_ESF | 0x18000000, RCR);
623
624	/* Set FIFO size */
625	ravb_write(ndev, TGC_TQP_AVBMODE1 | 0x00112200, TGC);
626
627	/* Timestamp enable */
628	ravb_write(ndev, TCCR_TFEN, TCCR);
629
630	/* Interrupt init: */
631	if (info->multi_irqs) {
632		/* Clear DIL.DPLx */
633		ravb_write(ndev, 0, DIL);
634		/* Set queue specific interrupt */
635		ravb_write(ndev, CIE_CRIE | CIE_CTIE | CIE_CL0M, CIE);
636	}
637	/* Frame receive */
638	ravb_write(ndev, RIC0_FRE0 | RIC0_FRE1, RIC0);
639	/* Disable FIFO full warning */
640	ravb_write(ndev, 0, RIC1);
641	/* Receive FIFO full error, descriptor empty */
642	ravb_write(ndev, RIC2_QFE0 | RIC2_QFE1 | RIC2_RFFE, RIC2);
643	/* Frame transmitted, timestamp FIFO updated */
644	ravb_write(ndev, TIC_FTE0 | TIC_FTE1 | TIC_TFUE, TIC);
645
646	return 0;
647}
648
649/* Device init function for Ethernet AVB */
650static int ravb_dmac_init(struct net_device *ndev)
651{
652	struct ravb_private *priv = netdev_priv(ndev);
653	const struct ravb_hw_info *info = priv->info;
654	int error;
655
656	/* Set CONFIG mode */
657	error = ravb_set_opmode(ndev, CCC_OPC_CONFIG);
658	if (error)
659		return error;
660
661	error = info->dmac_init(ndev);
662	if (error)
663		return error;
664
665	/* Setting the control will start the AVB-DMAC process. */
666	return ravb_set_opmode(ndev, CCC_OPC_OPERATION);
667}
668
669static void ravb_get_tx_tstamp(struct net_device *ndev)
670{
671	struct ravb_private *priv = netdev_priv(ndev);
672	struct ravb_tstamp_skb *ts_skb, *ts_skb2;
673	struct skb_shared_hwtstamps shhwtstamps;
674	struct sk_buff *skb;
675	struct timespec64 ts;
676	u16 tag, tfa_tag;
677	int count;
678	u32 tfa2;
679
680	count = (ravb_read(ndev, TSR) & TSR_TFFL) >> 8;
681	while (count--) {
682		tfa2 = ravb_read(ndev, TFA2);
683		tfa_tag = (tfa2 & TFA2_TST) >> 16;
684		ts.tv_nsec = (u64)ravb_read(ndev, TFA0);
685		ts.tv_sec = ((u64)(tfa2 & TFA2_TSV) << 32) |
686			    ravb_read(ndev, TFA1);
687		memset(&shhwtstamps, 0, sizeof(shhwtstamps));
688		shhwtstamps.hwtstamp = timespec64_to_ktime(ts);
689		list_for_each_entry_safe(ts_skb, ts_skb2, &priv->ts_skb_list,
690					 list) {
691			skb = ts_skb->skb;
692			tag = ts_skb->tag;
693			list_del(&ts_skb->list);
694			kfree(ts_skb);
695			if (tag == tfa_tag) {
696				skb_tstamp_tx(skb, &shhwtstamps);
697				dev_consume_skb_any(skb);
698				break;
699			} else {
700				dev_kfree_skb_any(skb);
701			}
702		}
703		ravb_modify(ndev, TCCR, TCCR_TFR, TCCR_TFR);
704	}
705}
706
707static void ravb_rx_csum_gbeth(struct sk_buff *skb)
708{
709	__wsum csum_ip_hdr, csum_proto;
710	u8 *hw_csum;
711
712	/* The hardware checksum status is contained in sizeof(__sum16) * 2 = 4
713	 * bytes appended to packet data. First 2 bytes is ip header checksum
714	 * and last 2 bytes is protocol checksum.
715	 */
716	if (unlikely(skb->len < sizeof(__sum16) * 2))
717		return;
718
719	hw_csum = skb_tail_pointer(skb) - sizeof(__sum16);
720	csum_proto = csum_unfold((__force __sum16)get_unaligned_le16(hw_csum));
721
722	hw_csum -= sizeof(__sum16);
723	csum_ip_hdr = csum_unfold((__force __sum16)get_unaligned_le16(hw_csum));
724	skb_trim(skb, skb->len - 2 * sizeof(__sum16));
725
726	/* TODO: IPV6 Rx checksum */
727	if (skb->protocol == htons(ETH_P_IP) && !csum_ip_hdr && !csum_proto)
728		skb->ip_summed = CHECKSUM_UNNECESSARY;
729}
730
731static void ravb_rx_csum(struct sk_buff *skb)
732{
733	u8 *hw_csum;
734
735	/* The hardware checksum is contained in sizeof(__sum16) (2) bytes
736	 * appended to packet data
737	 */
738	if (unlikely(skb->len < sizeof(__sum16)))
739		return;
740	hw_csum = skb_tail_pointer(skb) - sizeof(__sum16);
741	skb->csum = csum_unfold((__force __sum16)get_unaligned_le16(hw_csum));
742	skb->ip_summed = CHECKSUM_COMPLETE;
743	skb_trim(skb, skb->len - sizeof(__sum16));
744}
745
746static struct sk_buff *ravb_get_skb_gbeth(struct net_device *ndev, int entry,
747					  struct ravb_rx_desc *desc)
748{
749	struct ravb_private *priv = netdev_priv(ndev);
750	struct sk_buff *skb;
751
752	skb = priv->rx_skb[RAVB_BE][entry];
753	priv->rx_skb[RAVB_BE][entry] = NULL;
754	dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
755			 ALIGN(priv->info->rx_max_frame_size, 16),
756			 DMA_FROM_DEVICE);
757
758	return skb;
759}
760
761/* Packet receive function for Gigabit Ethernet */
762static bool ravb_rx_gbeth(struct net_device *ndev, int *quota, int q)
763{
764	struct ravb_private *priv = netdev_priv(ndev);
765	const struct ravb_hw_info *info = priv->info;
766	struct net_device_stats *stats;
767	struct ravb_rx_desc *desc;
768	struct sk_buff *skb;
769	dma_addr_t dma_addr;
770	int rx_packets = 0;
771	u8  desc_status;
772	u16 desc_len;
773	u8  die_dt;
774	int entry;
775	int limit;
776	int i;
777
778	limit = priv->dirty_rx[q] + priv->num_rx_ring[q] - priv->cur_rx[q];
779	stats = &priv->stats[q];
780
781	for (i = 0; i < limit; i++, priv->cur_rx[q]++) {
782		entry = priv->cur_rx[q] % priv->num_rx_ring[q];
783		desc = &priv->rx_ring[q].desc[entry];
784		if (rx_packets == *quota || desc->die_dt == DT_FEMPTY)
785			break;
786
787		/* Descriptor type must be checked before all other reads */
788		dma_rmb();
789		desc_status = desc->msc;
790		desc_len = le16_to_cpu(desc->ds_cc) & RX_DS;
791
792		/* We use 0-byte descriptors to mark the DMA mapping errors */
793		if (!desc_len)
794			continue;
795
796		if (desc_status & MSC_MC)
797			stats->multicast++;
798
799		if (desc_status & (MSC_CRC | MSC_RFE | MSC_RTSF | MSC_RTLF | MSC_CEEF)) {
800			stats->rx_errors++;
801			if (desc_status & MSC_CRC)
802				stats->rx_crc_errors++;
803			if (desc_status & MSC_RFE)
804				stats->rx_frame_errors++;
805			if (desc_status & (MSC_RTLF | MSC_RTSF))
806				stats->rx_length_errors++;
807			if (desc_status & MSC_CEEF)
808				stats->rx_missed_errors++;
809		} else {
810			die_dt = desc->die_dt & 0xF0;
811			switch (die_dt) {
812			case DT_FSINGLE:
813				skb = ravb_get_skb_gbeth(ndev, entry, desc);
814				skb_put(skb, desc_len);
815				skb->protocol = eth_type_trans(skb, ndev);
816				if (ndev->features & NETIF_F_RXCSUM)
817					ravb_rx_csum_gbeth(skb);
818				napi_gro_receive(&priv->napi[q], skb);
819				rx_packets++;
820				stats->rx_bytes += desc_len;
821				break;
822			case DT_FSTART:
823				priv->rx_1st_skb = ravb_get_skb_gbeth(ndev, entry, desc);
824				skb_put(priv->rx_1st_skb, desc_len);
825				break;
826			case DT_FMID:
827				skb = ravb_get_skb_gbeth(ndev, entry, desc);
828				skb_copy_to_linear_data_offset(priv->rx_1st_skb,
829							       priv->rx_1st_skb->len,
830							       skb->data,
831							       desc_len);
832				skb_put(priv->rx_1st_skb, desc_len);
833				dev_kfree_skb(skb);
834				break;
835			case DT_FEND:
836				skb = ravb_get_skb_gbeth(ndev, entry, desc);
837				skb_copy_to_linear_data_offset(priv->rx_1st_skb,
838							       priv->rx_1st_skb->len,
839							       skb->data,
840							       desc_len);
841				skb_put(priv->rx_1st_skb, desc_len);
842				dev_kfree_skb(skb);
843				priv->rx_1st_skb->protocol =
844					eth_type_trans(priv->rx_1st_skb, ndev);
845				if (ndev->features & NETIF_F_RXCSUM)
846					ravb_rx_csum_gbeth(priv->rx_1st_skb);
847				stats->rx_bytes += priv->rx_1st_skb->len;
848				napi_gro_receive(&priv->napi[q],
849						 priv->rx_1st_skb);
850				rx_packets++;
851				break;
852			}
853		}
854	}
855
856	/* Refill the RX ring buffers. */
857	for (; priv->cur_rx[q] - priv->dirty_rx[q] > 0; priv->dirty_rx[q]++) {
858		entry = priv->dirty_rx[q] % priv->num_rx_ring[q];
859		desc = &priv->rx_ring[q].desc[entry];
860		desc->ds_cc = cpu_to_le16(priv->info->rx_max_desc_use);
861
862		if (!priv->rx_skb[q][entry]) {
863			skb = ravb_alloc_skb(ndev, info, GFP_ATOMIC);
864			if (!skb)
865				break;
866			dma_addr = dma_map_single(ndev->dev.parent,
867						  skb->data,
868						  priv->info->rx_max_frame_size,
869						  DMA_FROM_DEVICE);
870			skb_checksum_none_assert(skb);
871			/* We just set the data size to 0 for a failed mapping
872			 * which should prevent DMA  from happening...
873			 */
874			if (dma_mapping_error(ndev->dev.parent, dma_addr))
875				desc->ds_cc = cpu_to_le16(0);
876			desc->dptr = cpu_to_le32(dma_addr);
877			priv->rx_skb[q][entry] = skb;
878		}
879		/* Descriptor type must be set after all the above writes */
880		dma_wmb();
881		desc->die_dt = DT_FEMPTY;
882	}
883
884	stats->rx_packets += rx_packets;
885	*quota -= rx_packets;
886	return *quota == 0;
887}
888
889/* Packet receive function for Ethernet AVB */
890static bool ravb_rx_rcar(struct net_device *ndev, int *quota, int q)
891{
892	struct ravb_private *priv = netdev_priv(ndev);
893	const struct ravb_hw_info *info = priv->info;
894	struct net_device_stats *stats = &priv->stats[q];
895	struct ravb_ex_rx_desc *desc;
896	unsigned int limit, i;
897	struct sk_buff *skb;
898	dma_addr_t dma_addr;
899	struct timespec64 ts;
900	int rx_packets = 0;
901	u8  desc_status;
902	u16 pkt_len;
903	int entry;
904
905	limit = priv->dirty_rx[q] + priv->num_rx_ring[q] - priv->cur_rx[q];
906	for (i = 0; i < limit; i++, priv->cur_rx[q]++) {
907		entry = priv->cur_rx[q] % priv->num_rx_ring[q];
908		desc = &priv->rx_ring[q].ex_desc[entry];
909		if (rx_packets == *quota || desc->die_dt == DT_FEMPTY)
910			break;
911
912		/* Descriptor type must be checked before all other reads */
913		dma_rmb();
914		desc_status = desc->msc;
915		pkt_len = le16_to_cpu(desc->ds_cc) & RX_DS;
916
917		/* We use 0-byte descriptors to mark the DMA mapping errors */
918		if (!pkt_len)
919			continue;
920
921		if (desc_status & MSC_MC)
922			stats->multicast++;
923
924		if (desc_status & (MSC_CRC | MSC_RFE | MSC_RTSF | MSC_RTLF |
925				   MSC_CEEF)) {
926			stats->rx_errors++;
927			if (desc_status & MSC_CRC)
928				stats->rx_crc_errors++;
929			if (desc_status & MSC_RFE)
930				stats->rx_frame_errors++;
931			if (desc_status & (MSC_RTLF | MSC_RTSF))
932				stats->rx_length_errors++;
933			if (desc_status & MSC_CEEF)
934				stats->rx_missed_errors++;
935		} else {
936			u32 get_ts = priv->tstamp_rx_ctrl & RAVB_RXTSTAMP_TYPE;
937
938			skb = priv->rx_skb[q][entry];
939			priv->rx_skb[q][entry] = NULL;
940			dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
941					 priv->info->rx_max_frame_size,
942					 DMA_FROM_DEVICE);
943			get_ts &= (q == RAVB_NC) ?
944					RAVB_RXTSTAMP_TYPE_V2_L2_EVENT :
945					~RAVB_RXTSTAMP_TYPE_V2_L2_EVENT;
946			if (get_ts) {
947				struct skb_shared_hwtstamps *shhwtstamps;
948
949				shhwtstamps = skb_hwtstamps(skb);
950				memset(shhwtstamps, 0, sizeof(*shhwtstamps));
951				ts.tv_sec = ((u64) le16_to_cpu(desc->ts_sh) <<
952					     32) | le32_to_cpu(desc->ts_sl);
953				ts.tv_nsec = le32_to_cpu(desc->ts_n);
954				shhwtstamps->hwtstamp = timespec64_to_ktime(ts);
955			}
956
957			skb_put(skb, pkt_len);
958			skb->protocol = eth_type_trans(skb, ndev);
959			if (ndev->features & NETIF_F_RXCSUM)
960				ravb_rx_csum(skb);
961			napi_gro_receive(&priv->napi[q], skb);
962			rx_packets++;
963			stats->rx_bytes += pkt_len;
964		}
965	}
966
967	/* Refill the RX ring buffers. */
968	for (; priv->cur_rx[q] - priv->dirty_rx[q] > 0; priv->dirty_rx[q]++) {
969		entry = priv->dirty_rx[q] % priv->num_rx_ring[q];
970		desc = &priv->rx_ring[q].ex_desc[entry];
971		desc->ds_cc = cpu_to_le16(priv->info->rx_max_desc_use);
972
973		if (!priv->rx_skb[q][entry]) {
974			skb = ravb_alloc_skb(ndev, info, GFP_ATOMIC);
975			if (!skb)
976				break;	/* Better luck next round. */
977			dma_addr = dma_map_single(ndev->dev.parent, skb->data,
978						  priv->info->rx_max_frame_size,
979						  DMA_FROM_DEVICE);
980			skb_checksum_none_assert(skb);
981			/* We just set the data size to 0 for a failed mapping
982			 * which should prevent DMA  from happening...
983			 */
984			if (dma_mapping_error(ndev->dev.parent, dma_addr))
985				desc->ds_cc = cpu_to_le16(0);
986			desc->dptr = cpu_to_le32(dma_addr);
987			priv->rx_skb[q][entry] = skb;
988		}
989		/* Descriptor type must be set after all the above writes */
990		dma_wmb();
991		desc->die_dt = DT_FEMPTY;
992	}
993
994	stats->rx_packets += rx_packets;
995	*quota -= rx_packets;
996	return *quota == 0;
997}
998
999/* Packet receive function for Ethernet AVB */
1000static bool ravb_rx(struct net_device *ndev, int *quota, int q)
1001{
1002	struct ravb_private *priv = netdev_priv(ndev);
1003	const struct ravb_hw_info *info = priv->info;
1004
1005	return info->receive(ndev, quota, q);
1006}
1007
1008static void ravb_rcv_snd_disable(struct net_device *ndev)
1009{
1010	/* Disable TX and RX */
1011	ravb_modify(ndev, ECMR, ECMR_RE | ECMR_TE, 0);
1012}
1013
1014static void ravb_rcv_snd_enable(struct net_device *ndev)
1015{
1016	/* Enable TX and RX */
1017	ravb_modify(ndev, ECMR, ECMR_RE | ECMR_TE, ECMR_RE | ECMR_TE);
1018}
1019
1020/* function for waiting dma process finished */
1021static int ravb_stop_dma(struct net_device *ndev)
1022{
1023	struct ravb_private *priv = netdev_priv(ndev);
1024	const struct ravb_hw_info *info = priv->info;
1025	int error;
1026
1027	/* Wait for stopping the hardware TX process */
1028	error = ravb_wait(ndev, TCCR, info->tccr_mask, 0);
1029
1030	if (error)
1031		return error;
1032
1033	error = ravb_wait(ndev, CSR, CSR_TPO0 | CSR_TPO1 | CSR_TPO2 | CSR_TPO3,
1034			  0);
1035	if (error)
1036		return error;
1037
1038	/* Stop the E-MAC's RX/TX processes. */
1039	ravb_rcv_snd_disable(ndev);
1040
1041	/* Wait for stopping the RX DMA process */
1042	error = ravb_wait(ndev, CSR, CSR_RPO, 0);
1043	if (error)
1044		return error;
1045
1046	/* Stop AVB-DMAC process */
1047	return ravb_set_opmode(ndev, CCC_OPC_CONFIG);
1048}
1049
1050/* E-MAC interrupt handler */
1051static void ravb_emac_interrupt_unlocked(struct net_device *ndev)
1052{
1053	struct ravb_private *priv = netdev_priv(ndev);
1054	u32 ecsr, psr;
1055
1056	ecsr = ravb_read(ndev, ECSR);
1057	ravb_write(ndev, ecsr, ECSR);	/* clear interrupt */
1058
1059	if (ecsr & ECSR_MPD)
1060		pm_wakeup_event(&priv->pdev->dev, 0);
1061	if (ecsr & ECSR_ICD)
1062		ndev->stats.tx_carrier_errors++;
1063	if (ecsr & ECSR_LCHNG) {
1064		/* Link changed */
1065		if (priv->no_avb_link)
1066			return;
1067		psr = ravb_read(ndev, PSR);
1068		if (priv->avb_link_active_low)
1069			psr ^= PSR_LMON;
1070		if (!(psr & PSR_LMON)) {
1071			/* DIsable RX and TX */
1072			ravb_rcv_snd_disable(ndev);
1073		} else {
1074			/* Enable RX and TX */
1075			ravb_rcv_snd_enable(ndev);
1076		}
1077	}
1078}
1079
1080static irqreturn_t ravb_emac_interrupt(int irq, void *dev_id)
1081{
1082	struct net_device *ndev = dev_id;
1083	struct ravb_private *priv = netdev_priv(ndev);
1084	struct device *dev = &priv->pdev->dev;
1085	irqreturn_t result = IRQ_HANDLED;
1086
1087	pm_runtime_get_noresume(dev);
1088
1089	if (unlikely(!pm_runtime_active(dev))) {
1090		result = IRQ_NONE;
1091		goto out_rpm_put;
1092	}
1093
1094	spin_lock(&priv->lock);
1095	ravb_emac_interrupt_unlocked(ndev);
1096	spin_unlock(&priv->lock);
1097
1098out_rpm_put:
1099	pm_runtime_put_noidle(dev);
1100	return result;
1101}
1102
1103/* Error interrupt handler */
1104static void ravb_error_interrupt(struct net_device *ndev)
1105{
1106	struct ravb_private *priv = netdev_priv(ndev);
1107	u32 eis, ris2;
1108
1109	eis = ravb_read(ndev, EIS);
1110	ravb_write(ndev, ~(EIS_QFS | EIS_RESERVED), EIS);
1111	if (eis & EIS_QFS) {
1112		ris2 = ravb_read(ndev, RIS2);
1113		ravb_write(ndev, ~(RIS2_QFF0 | RIS2_QFF1 | RIS2_RFFF | RIS2_RESERVED),
1114			   RIS2);
1115
1116		/* Receive Descriptor Empty int */
1117		if (ris2 & RIS2_QFF0)
1118			priv->stats[RAVB_BE].rx_over_errors++;
1119
1120		/* Receive Descriptor Empty int */
1121		if (ris2 & RIS2_QFF1)
1122			priv->stats[RAVB_NC].rx_over_errors++;
1123
1124		/* Receive FIFO Overflow int */
1125		if (ris2 & RIS2_RFFF)
1126			priv->rx_fifo_errors++;
1127	}
1128}
1129
1130static bool ravb_queue_interrupt(struct net_device *ndev, int q)
1131{
1132	struct ravb_private *priv = netdev_priv(ndev);
1133	const struct ravb_hw_info *info = priv->info;
1134	u32 ris0 = ravb_read(ndev, RIS0);
1135	u32 ric0 = ravb_read(ndev, RIC0);
1136	u32 tis  = ravb_read(ndev, TIS);
1137	u32 tic  = ravb_read(ndev, TIC);
1138
1139	if (((ris0 & ric0) & BIT(q)) || ((tis  & tic)  & BIT(q))) {
1140		if (napi_schedule_prep(&priv->napi[q])) {
1141			/* Mask RX and TX interrupts */
1142			if (!info->irq_en_dis) {
1143				ravb_write(ndev, ric0 & ~BIT(q), RIC0);
1144				ravb_write(ndev, tic & ~BIT(q), TIC);
1145			} else {
1146				ravb_write(ndev, BIT(q), RID0);
1147				ravb_write(ndev, BIT(q), TID);
1148			}
1149			__napi_schedule(&priv->napi[q]);
1150		} else {
1151			netdev_warn(ndev,
1152				    "ignoring interrupt, rx status 0x%08x, rx mask 0x%08x,\n",
1153				    ris0, ric0);
1154			netdev_warn(ndev,
1155				    "                    tx status 0x%08x, tx mask 0x%08x.\n",
1156				    tis, tic);
1157		}
1158		return true;
1159	}
1160	return false;
1161}
1162
1163static bool ravb_timestamp_interrupt(struct net_device *ndev)
1164{
1165	u32 tis = ravb_read(ndev, TIS);
1166
1167	if (tis & TIS_TFUF) {
1168		ravb_write(ndev, ~(TIS_TFUF | TIS_RESERVED), TIS);
1169		ravb_get_tx_tstamp(ndev);
1170		return true;
1171	}
1172	return false;
1173}
1174
1175static irqreturn_t ravb_interrupt(int irq, void *dev_id)
1176{
1177	struct net_device *ndev = dev_id;
1178	struct ravb_private *priv = netdev_priv(ndev);
1179	const struct ravb_hw_info *info = priv->info;
1180	struct device *dev = &priv->pdev->dev;
1181	irqreturn_t result = IRQ_NONE;
1182	u32 iss;
1183
1184	pm_runtime_get_noresume(dev);
1185
1186	if (unlikely(!pm_runtime_active(dev)))
1187		goto out_rpm_put;
1188
1189	spin_lock(&priv->lock);
1190	/* Get interrupt status */
1191	iss = ravb_read(ndev, ISS);
1192
1193	/* Received and transmitted interrupts */
1194	if (iss & (ISS_FRS | ISS_FTS | ISS_TFUS)) {
1195		int q;
1196
1197		/* Timestamp updated */
1198		if (ravb_timestamp_interrupt(ndev))
1199			result = IRQ_HANDLED;
1200
1201		/* Network control and best effort queue RX/TX */
1202		if (info->nc_queues) {
1203			for (q = RAVB_NC; q >= RAVB_BE; q--) {
1204				if (ravb_queue_interrupt(ndev, q))
1205					result = IRQ_HANDLED;
1206			}
1207		} else {
1208			if (ravb_queue_interrupt(ndev, RAVB_BE))
1209				result = IRQ_HANDLED;
1210		}
1211	}
1212
1213	/* E-MAC status summary */
1214	if (iss & ISS_MS) {
1215		ravb_emac_interrupt_unlocked(ndev);
1216		result = IRQ_HANDLED;
1217	}
1218
1219	/* Error status summary */
1220	if (iss & ISS_ES) {
1221		ravb_error_interrupt(ndev);
1222		result = IRQ_HANDLED;
1223	}
1224
1225	/* gPTP interrupt status summary */
1226	if (iss & ISS_CGIS) {
1227		ravb_ptp_interrupt(ndev);
1228		result = IRQ_HANDLED;
1229	}
1230
1231	spin_unlock(&priv->lock);
1232
1233out_rpm_put:
1234	pm_runtime_put_noidle(dev);
1235	return result;
1236}
1237
1238/* Timestamp/Error/gPTP interrupt handler */
1239static irqreturn_t ravb_multi_interrupt(int irq, void *dev_id)
1240{
1241	struct net_device *ndev = dev_id;
1242	struct ravb_private *priv = netdev_priv(ndev);
1243	struct device *dev = &priv->pdev->dev;
1244	irqreturn_t result = IRQ_NONE;
1245	u32 iss;
1246
1247	pm_runtime_get_noresume(dev);
1248
1249	if (unlikely(!pm_runtime_active(dev)))
1250		goto out_rpm_put;
1251
1252	spin_lock(&priv->lock);
1253	/* Get interrupt status */
1254	iss = ravb_read(ndev, ISS);
1255
1256	/* Timestamp updated */
1257	if ((iss & ISS_TFUS) && ravb_timestamp_interrupt(ndev))
1258		result = IRQ_HANDLED;
1259
1260	/* Error status summary */
1261	if (iss & ISS_ES) {
1262		ravb_error_interrupt(ndev);
1263		result = IRQ_HANDLED;
1264	}
1265
1266	/* gPTP interrupt status summary */
1267	if (iss & ISS_CGIS) {
1268		ravb_ptp_interrupt(ndev);
1269		result = IRQ_HANDLED;
1270	}
1271
1272	spin_unlock(&priv->lock);
1273
1274out_rpm_put:
1275	pm_runtime_put_noidle(dev);
1276	return result;
1277}
1278
1279static irqreturn_t ravb_dma_interrupt(int irq, void *dev_id, int q)
1280{
1281	struct net_device *ndev = dev_id;
1282	struct ravb_private *priv = netdev_priv(ndev);
1283	struct device *dev = &priv->pdev->dev;
1284	irqreturn_t result = IRQ_NONE;
1285
1286	pm_runtime_get_noresume(dev);
1287
1288	if (unlikely(!pm_runtime_active(dev)))
1289		goto out_rpm_put;
1290
1291	spin_lock(&priv->lock);
1292
1293	/* Network control/Best effort queue RX/TX */
1294	if (ravb_queue_interrupt(ndev, q))
1295		result = IRQ_HANDLED;
1296
1297	spin_unlock(&priv->lock);
1298
1299out_rpm_put:
1300	pm_runtime_put_noidle(dev);
1301	return result;
1302}
1303
1304static irqreturn_t ravb_be_interrupt(int irq, void *dev_id)
1305{
1306	return ravb_dma_interrupt(irq, dev_id, RAVB_BE);
1307}
1308
1309static irqreturn_t ravb_nc_interrupt(int irq, void *dev_id)
1310{
1311	return ravb_dma_interrupt(irq, dev_id, RAVB_NC);
1312}
1313
1314static int ravb_poll(struct napi_struct *napi, int budget)
1315{
1316	struct net_device *ndev = napi->dev;
1317	struct ravb_private *priv = netdev_priv(ndev);
1318	const struct ravb_hw_info *info = priv->info;
1319	unsigned long flags;
1320	int q = napi - priv->napi;
1321	int mask = BIT(q);
1322	int quota = budget;
1323	bool unmask;
1324
1325	/* Processing RX Descriptor Ring */
1326	/* Clear RX interrupt */
1327	ravb_write(ndev, ~(mask | RIS0_RESERVED), RIS0);
1328	unmask = !ravb_rx(ndev, &quota, q);
1329
1330	/* Processing TX Descriptor Ring */
1331	spin_lock_irqsave(&priv->lock, flags);
1332	/* Clear TX interrupt */
1333	ravb_write(ndev, ~(mask | TIS_RESERVED), TIS);
1334	ravb_tx_free(ndev, q, true);
1335	netif_wake_subqueue(ndev, q);
1336	spin_unlock_irqrestore(&priv->lock, flags);
1337
1338	/* Receive error message handling */
1339	priv->rx_over_errors = priv->stats[RAVB_BE].rx_over_errors;
1340	if (info->nc_queues)
1341		priv->rx_over_errors += priv->stats[RAVB_NC].rx_over_errors;
1342	if (priv->rx_over_errors != ndev->stats.rx_over_errors)
1343		ndev->stats.rx_over_errors = priv->rx_over_errors;
1344	if (priv->rx_fifo_errors != ndev->stats.rx_fifo_errors)
1345		ndev->stats.rx_fifo_errors = priv->rx_fifo_errors;
1346
1347	if (!unmask)
1348		goto out;
1349
1350	napi_complete(napi);
1351
1352	/* Re-enable RX/TX interrupts */
1353	spin_lock_irqsave(&priv->lock, flags);
1354	if (!info->irq_en_dis) {
1355		ravb_modify(ndev, RIC0, mask, mask);
1356		ravb_modify(ndev, TIC,  mask, mask);
1357	} else {
1358		ravb_write(ndev, mask, RIE0);
1359		ravb_write(ndev, mask, TIE);
1360	}
1361	spin_unlock_irqrestore(&priv->lock, flags);
1362
1363out:
1364	return budget - quota;
1365}
1366
1367static void ravb_set_duplex_gbeth(struct net_device *ndev)
1368{
1369	struct ravb_private *priv = netdev_priv(ndev);
1370
1371	ravb_modify(ndev, ECMR, ECMR_DM, priv->duplex > 0 ? ECMR_DM : 0);
1372}
1373
1374/* PHY state control function */
1375static void ravb_adjust_link(struct net_device *ndev)
1376{
1377	struct ravb_private *priv = netdev_priv(ndev);
1378	const struct ravb_hw_info *info = priv->info;
1379	struct phy_device *phydev = ndev->phydev;
1380	bool new_state = false;
1381	unsigned long flags;
1382
1383	spin_lock_irqsave(&priv->lock, flags);
1384
1385	/* Disable TX and RX right over here, if E-MAC change is ignored */
1386	if (priv->no_avb_link)
1387		ravb_rcv_snd_disable(ndev);
1388
1389	if (phydev->link) {
1390		if (info->half_duplex && phydev->duplex != priv->duplex) {
1391			new_state = true;
1392			priv->duplex = phydev->duplex;
1393			ravb_set_duplex_gbeth(ndev);
1394		}
1395
1396		if (phydev->speed != priv->speed) {
1397			new_state = true;
1398			priv->speed = phydev->speed;
1399			info->set_rate(ndev);
1400		}
1401		if (!priv->link) {
1402			ravb_modify(ndev, ECMR, ECMR_TXF, 0);
1403			new_state = true;
1404			priv->link = phydev->link;
1405		}
1406	} else if (priv->link) {
1407		new_state = true;
1408		priv->link = 0;
1409		priv->speed = 0;
1410		if (info->half_duplex)
1411			priv->duplex = -1;
1412	}
1413
1414	/* Enable TX and RX right over here, if E-MAC change is ignored */
1415	if (priv->no_avb_link && phydev->link)
1416		ravb_rcv_snd_enable(ndev);
1417
1418	spin_unlock_irqrestore(&priv->lock, flags);
1419
1420	if (new_state && netif_msg_link(priv))
1421		phy_print_status(phydev);
1422}
1423
1424/* PHY init function */
1425static int ravb_phy_init(struct net_device *ndev)
1426{
1427	struct device_node *np = ndev->dev.parent->of_node;
1428	struct ravb_private *priv = netdev_priv(ndev);
1429	const struct ravb_hw_info *info = priv->info;
1430	struct phy_device *phydev;
1431	struct device_node *pn;
1432	phy_interface_t iface;
1433	int err;
1434
1435	priv->link = 0;
1436	priv->speed = 0;
1437	priv->duplex = -1;
1438
1439	/* Try connecting to PHY */
1440	pn = of_parse_phandle(np, "phy-handle", 0);
1441	if (!pn) {
1442		/* In the case of a fixed PHY, the DT node associated
1443		 * to the PHY is the Ethernet MAC DT node.
1444		 */
1445		if (of_phy_is_fixed_link(np)) {
1446			err = of_phy_register_fixed_link(np);
1447			if (err)
1448				return err;
1449		}
1450		pn = of_node_get(np);
1451	}
1452
1453	iface = priv->rgmii_override ? PHY_INTERFACE_MODE_RGMII
1454				     : priv->phy_interface;
1455	phydev = of_phy_connect(ndev, pn, ravb_adjust_link, 0, iface);
1456	of_node_put(pn);
1457	if (!phydev) {
1458		netdev_err(ndev, "failed to connect PHY\n");
1459		err = -ENOENT;
1460		goto err_deregister_fixed_link;
1461	}
1462
1463	if (!info->half_duplex) {
1464		/* 10BASE, Pause and Asym Pause is not supported */
1465		phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_10baseT_Half_BIT);
1466		phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_10baseT_Full_BIT);
1467		phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_Pause_BIT);
1468		phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_Asym_Pause_BIT);
1469
1470		/* Half Duplex is not supported */
1471		phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
1472		phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_100baseT_Half_BIT);
1473	}
1474
1475	phy_attached_info(phydev);
1476
1477	return 0;
1478
1479err_deregister_fixed_link:
1480	if (of_phy_is_fixed_link(np))
1481		of_phy_deregister_fixed_link(np);
1482
1483	return err;
1484}
1485
1486/* PHY control start function */
1487static int ravb_phy_start(struct net_device *ndev)
1488{
1489	int error;
1490
1491	error = ravb_phy_init(ndev);
1492	if (error)
1493		return error;
1494
1495	phy_start(ndev->phydev);
1496
1497	return 0;
1498}
1499
1500static u32 ravb_get_msglevel(struct net_device *ndev)
1501{
1502	struct ravb_private *priv = netdev_priv(ndev);
1503
1504	return priv->msg_enable;
1505}
1506
1507static void ravb_set_msglevel(struct net_device *ndev, u32 value)
1508{
1509	struct ravb_private *priv = netdev_priv(ndev);
1510
1511	priv->msg_enable = value;
1512}
1513
1514static const char ravb_gstrings_stats_gbeth[][ETH_GSTRING_LEN] = {
1515	"rx_queue_0_current",
1516	"tx_queue_0_current",
1517	"rx_queue_0_dirty",
1518	"tx_queue_0_dirty",
1519	"rx_queue_0_packets",
1520	"tx_queue_0_packets",
1521	"rx_queue_0_bytes",
1522	"tx_queue_0_bytes",
1523	"rx_queue_0_mcast_packets",
1524	"rx_queue_0_errors",
1525	"rx_queue_0_crc_errors",
1526	"rx_queue_0_frame_errors",
1527	"rx_queue_0_length_errors",
1528	"rx_queue_0_csum_offload_errors",
1529	"rx_queue_0_over_errors",
1530};
1531
1532static const char ravb_gstrings_stats[][ETH_GSTRING_LEN] = {
1533	"rx_queue_0_current",
1534	"tx_queue_0_current",
1535	"rx_queue_0_dirty",
1536	"tx_queue_0_dirty",
1537	"rx_queue_0_packets",
1538	"tx_queue_0_packets",
1539	"rx_queue_0_bytes",
1540	"tx_queue_0_bytes",
1541	"rx_queue_0_mcast_packets",
1542	"rx_queue_0_errors",
1543	"rx_queue_0_crc_errors",
1544	"rx_queue_0_frame_errors",
1545	"rx_queue_0_length_errors",
1546	"rx_queue_0_missed_errors",
1547	"rx_queue_0_over_errors",
1548
1549	"rx_queue_1_current",
1550	"tx_queue_1_current",
1551	"rx_queue_1_dirty",
1552	"tx_queue_1_dirty",
1553	"rx_queue_1_packets",
1554	"tx_queue_1_packets",
1555	"rx_queue_1_bytes",
1556	"tx_queue_1_bytes",
1557	"rx_queue_1_mcast_packets",
1558	"rx_queue_1_errors",
1559	"rx_queue_1_crc_errors",
1560	"rx_queue_1_frame_errors",
1561	"rx_queue_1_length_errors",
1562	"rx_queue_1_missed_errors",
1563	"rx_queue_1_over_errors",
1564};
1565
1566static int ravb_get_sset_count(struct net_device *netdev, int sset)
1567{
1568	struct ravb_private *priv = netdev_priv(netdev);
1569	const struct ravb_hw_info *info = priv->info;
1570
1571	switch (sset) {
1572	case ETH_SS_STATS:
1573		return info->stats_len;
1574	default:
1575		return -EOPNOTSUPP;
1576	}
1577}
1578
1579static void ravb_get_ethtool_stats(struct net_device *ndev,
1580				   struct ethtool_stats *estats, u64 *data)
1581{
1582	struct ravb_private *priv = netdev_priv(ndev);
1583	const struct ravb_hw_info *info = priv->info;
1584	int num_rx_q;
1585	int i = 0;
1586	int q;
1587
1588	num_rx_q = info->nc_queues ? NUM_RX_QUEUE : 1;
1589	/* Device-specific stats */
1590	for (q = RAVB_BE; q < num_rx_q; q++) {
1591		struct net_device_stats *stats = &priv->stats[q];
1592
1593		data[i++] = priv->cur_rx[q];
1594		data[i++] = priv->cur_tx[q];
1595		data[i++] = priv->dirty_rx[q];
1596		data[i++] = priv->dirty_tx[q];
1597		data[i++] = stats->rx_packets;
1598		data[i++] = stats->tx_packets;
1599		data[i++] = stats->rx_bytes;
1600		data[i++] = stats->tx_bytes;
1601		data[i++] = stats->multicast;
1602		data[i++] = stats->rx_errors;
1603		data[i++] = stats->rx_crc_errors;
1604		data[i++] = stats->rx_frame_errors;
1605		data[i++] = stats->rx_length_errors;
1606		data[i++] = stats->rx_missed_errors;
1607		data[i++] = stats->rx_over_errors;
1608	}
1609}
1610
1611static void ravb_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
1612{
1613	struct ravb_private *priv = netdev_priv(ndev);
1614	const struct ravb_hw_info *info = priv->info;
1615
1616	switch (stringset) {
1617	case ETH_SS_STATS:
1618		memcpy(data, info->gstrings_stats, info->gstrings_size);
1619		break;
1620	}
1621}
1622
1623static void ravb_get_ringparam(struct net_device *ndev,
1624			       struct ethtool_ringparam *ring,
1625			       struct kernel_ethtool_ringparam *kernel_ring,
1626			       struct netlink_ext_ack *extack)
1627{
1628	struct ravb_private *priv = netdev_priv(ndev);
1629
1630	ring->rx_max_pending = BE_RX_RING_MAX;
1631	ring->tx_max_pending = BE_TX_RING_MAX;
1632	ring->rx_pending = priv->num_rx_ring[RAVB_BE];
1633	ring->tx_pending = priv->num_tx_ring[RAVB_BE];
1634}
1635
1636static int ravb_set_ringparam(struct net_device *ndev,
1637			      struct ethtool_ringparam *ring,
1638			      struct kernel_ethtool_ringparam *kernel_ring,
1639			      struct netlink_ext_ack *extack)
1640{
1641	struct ravb_private *priv = netdev_priv(ndev);
1642	const struct ravb_hw_info *info = priv->info;
1643	int error;
1644
1645	if (ring->tx_pending > BE_TX_RING_MAX ||
1646	    ring->rx_pending > BE_RX_RING_MAX ||
1647	    ring->tx_pending < BE_TX_RING_MIN ||
1648	    ring->rx_pending < BE_RX_RING_MIN)
1649		return -EINVAL;
1650	if (ring->rx_mini_pending || ring->rx_jumbo_pending)
1651		return -EINVAL;
1652
1653	if (netif_running(ndev)) {
1654		netif_device_detach(ndev);
1655		/* Stop PTP Clock driver */
1656		if (info->gptp)
1657			ravb_ptp_stop(ndev);
1658		/* Wait for DMA stopping */
1659		error = ravb_stop_dma(ndev);
1660		if (error) {
1661			netdev_err(ndev,
1662				   "cannot set ringparam! Any AVB processes are still running?\n");
1663			return error;
1664		}
1665		synchronize_irq(ndev->irq);
1666
1667		/* Free all the skb's in the RX queue and the DMA buffers. */
1668		ravb_ring_free(ndev, RAVB_BE);
1669		if (info->nc_queues)
1670			ravb_ring_free(ndev, RAVB_NC);
1671	}
1672
1673	/* Set new parameters */
1674	priv->num_rx_ring[RAVB_BE] = ring->rx_pending;
1675	priv->num_tx_ring[RAVB_BE] = ring->tx_pending;
1676
1677	if (netif_running(ndev)) {
1678		error = ravb_dmac_init(ndev);
1679		if (error) {
1680			netdev_err(ndev,
1681				   "%s: ravb_dmac_init() failed, error %d\n",
1682				   __func__, error);
1683			return error;
1684		}
1685
1686		ravb_emac_init(ndev);
1687
1688		/* Initialise PTP Clock driver */
1689		if (info->gptp)
1690			ravb_ptp_init(ndev, priv->pdev);
1691
1692		netif_device_attach(ndev);
1693	}
1694
1695	return 0;
1696}
1697
1698static int ravb_get_ts_info(struct net_device *ndev,
1699			    struct ethtool_ts_info *info)
1700{
1701	struct ravb_private *priv = netdev_priv(ndev);
1702	const struct ravb_hw_info *hw_info = priv->info;
1703
1704	info->so_timestamping =
1705		SOF_TIMESTAMPING_TX_SOFTWARE |
1706		SOF_TIMESTAMPING_RX_SOFTWARE |
1707		SOF_TIMESTAMPING_SOFTWARE |
1708		SOF_TIMESTAMPING_TX_HARDWARE |
1709		SOF_TIMESTAMPING_RX_HARDWARE |
1710		SOF_TIMESTAMPING_RAW_HARDWARE;
1711	info->tx_types = (1 << HWTSTAMP_TX_OFF) | (1 << HWTSTAMP_TX_ON);
1712	info->rx_filters =
1713		(1 << HWTSTAMP_FILTER_NONE) |
1714		(1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) |
1715		(1 << HWTSTAMP_FILTER_ALL);
1716	if (hw_info->gptp || hw_info->ccc_gac)
1717		info->phc_index = ptp_clock_index(priv->ptp.clock);
1718
1719	return 0;
1720}
1721
1722static void ravb_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
1723{
1724	struct ravb_private *priv = netdev_priv(ndev);
1725
1726	wol->supported = WAKE_MAGIC;
1727	wol->wolopts = priv->wol_enabled ? WAKE_MAGIC : 0;
1728}
1729
1730static int ravb_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
1731{
1732	struct ravb_private *priv = netdev_priv(ndev);
1733	const struct ravb_hw_info *info = priv->info;
1734
1735	if (!info->magic_pkt || (wol->wolopts & ~WAKE_MAGIC))
1736		return -EOPNOTSUPP;
1737
1738	priv->wol_enabled = !!(wol->wolopts & WAKE_MAGIC);
1739
1740	device_set_wakeup_enable(&priv->pdev->dev, priv->wol_enabled);
1741
1742	return 0;
1743}
1744
1745static const struct ethtool_ops ravb_ethtool_ops = {
1746	.nway_reset		= phy_ethtool_nway_reset,
1747	.get_msglevel		= ravb_get_msglevel,
1748	.set_msglevel		= ravb_set_msglevel,
1749	.get_link		= ethtool_op_get_link,
1750	.get_strings		= ravb_get_strings,
1751	.get_ethtool_stats	= ravb_get_ethtool_stats,
1752	.get_sset_count		= ravb_get_sset_count,
1753	.get_ringparam		= ravb_get_ringparam,
1754	.set_ringparam		= ravb_set_ringparam,
1755	.get_ts_info		= ravb_get_ts_info,
1756	.get_link_ksettings	= phy_ethtool_get_link_ksettings,
1757	.set_link_ksettings	= phy_ethtool_set_link_ksettings,
1758	.get_wol		= ravb_get_wol,
1759	.set_wol		= ravb_set_wol,
1760};
1761
1762static int ravb_set_config_mode(struct net_device *ndev)
1763{
1764	struct ravb_private *priv = netdev_priv(ndev);
1765	const struct ravb_hw_info *info = priv->info;
1766	int error;
1767
1768	if (info->gptp) {
1769		error = ravb_set_opmode(ndev, CCC_OPC_CONFIG);
1770		if (error)
1771			return error;
1772		/* Set CSEL value */
1773		ravb_modify(ndev, CCC, CCC_CSEL, CCC_CSEL_HPB);
1774	} else if (info->ccc_gac) {
1775		error = ravb_set_opmode(ndev, CCC_OPC_CONFIG | CCC_GAC | CCC_CSEL_HPB);
1776	} else {
1777		error = ravb_set_opmode(ndev, CCC_OPC_CONFIG);
1778	}
1779
1780	return error;
1781}
1782
1783static void ravb_set_gti(struct net_device *ndev)
1784{
1785	struct ravb_private *priv = netdev_priv(ndev);
1786	const struct ravb_hw_info *info = priv->info;
1787
1788	if (!(info->gptp || info->ccc_gac))
1789		return;
1790
1791	ravb_write(ndev, priv->gti_tiv, GTI);
1792
1793	/* Request GTI loading */
1794	ravb_modify(ndev, GCCR, GCCR_LTI, GCCR_LTI);
1795}
1796
1797static int ravb_compute_gti(struct net_device *ndev)
1798{
1799	struct ravb_private *priv = netdev_priv(ndev);
1800	const struct ravb_hw_info *info = priv->info;
1801	struct device *dev = ndev->dev.parent;
1802	unsigned long rate;
1803	u64 inc;
1804
1805	if (!(info->gptp || info->ccc_gac))
1806		return 0;
1807
1808	if (info->gptp_ref_clk)
1809		rate = clk_get_rate(priv->gptp_clk);
1810	else
1811		rate = clk_get_rate(priv->clk);
1812	if (!rate)
1813		return -EINVAL;
1814
1815	inc = div64_ul(1000000000ULL << 20, rate);
1816
1817	if (inc < GTI_TIV_MIN || inc > GTI_TIV_MAX) {
1818		dev_err(dev, "gti.tiv increment 0x%llx is outside the range 0x%x - 0x%x\n",
1819			inc, GTI_TIV_MIN, GTI_TIV_MAX);
1820		return -EINVAL;
1821	}
1822	priv->gti_tiv = inc;
1823
1824	return 0;
1825}
1826
1827/* Set tx and rx clock internal delay modes */
1828static void ravb_parse_delay_mode(struct device_node *np, struct net_device *ndev)
1829{
1830	struct ravb_private *priv = netdev_priv(ndev);
1831	bool explicit_delay = false;
1832	u32 delay;
1833
1834	if (!priv->info->internal_delay)
1835		return;
1836
1837	if (!of_property_read_u32(np, "rx-internal-delay-ps", &delay)) {
1838		/* Valid values are 0 and 1800, according to DT bindings */
1839		priv->rxcidm = !!delay;
1840		explicit_delay = true;
1841	}
1842	if (!of_property_read_u32(np, "tx-internal-delay-ps", &delay)) {
1843		/* Valid values are 0 and 2000, according to DT bindings */
1844		priv->txcidm = !!delay;
1845		explicit_delay = true;
1846	}
1847
1848	if (explicit_delay)
1849		return;
1850
1851	/* Fall back to legacy rgmii-*id behavior */
1852	if (priv->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
1853	    priv->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID) {
1854		priv->rxcidm = 1;
1855		priv->rgmii_override = 1;
1856	}
1857
1858	if (priv->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
1859	    priv->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID) {
1860		priv->txcidm = 1;
1861		priv->rgmii_override = 1;
1862	}
1863}
1864
1865static void ravb_set_delay_mode(struct net_device *ndev)
1866{
1867	struct ravb_private *priv = netdev_priv(ndev);
1868	u32 set = 0;
1869
1870	if (!priv->info->internal_delay)
1871		return;
1872
1873	if (priv->rxcidm)
1874		set |= APSR_RDM;
1875	if (priv->txcidm)
1876		set |= APSR_TDM;
1877	ravb_modify(ndev, APSR, APSR_RDM | APSR_TDM, set);
1878}
1879
1880/* Network device open function for Ethernet AVB */
1881static int ravb_open(struct net_device *ndev)
1882{
1883	struct ravb_private *priv = netdev_priv(ndev);
1884	const struct ravb_hw_info *info = priv->info;
1885	struct device *dev = &priv->pdev->dev;
1886	int error;
1887
1888	napi_enable(&priv->napi[RAVB_BE]);
1889	if (info->nc_queues)
1890		napi_enable(&priv->napi[RAVB_NC]);
1891
1892	error = pm_runtime_resume_and_get(dev);
1893	if (error < 0)
1894		goto out_napi_off;
1895
1896	/* Set AVB config mode */
1897	error = ravb_set_config_mode(ndev);
1898	if (error)
1899		goto out_rpm_put;
1900
1901	ravb_set_delay_mode(ndev);
1902	ravb_write(ndev, priv->desc_bat_dma, DBAT);
1903
1904	/* Device init */
1905	error = ravb_dmac_init(ndev);
1906	if (error)
1907		goto out_set_reset;
1908
1909	ravb_emac_init(ndev);
1910
1911	ravb_set_gti(ndev);
1912
1913	/* Initialise PTP Clock driver */
1914	if (info->gptp || info->ccc_gac)
1915		ravb_ptp_init(ndev, priv->pdev);
1916
1917	/* PHY control start */
1918	error = ravb_phy_start(ndev);
1919	if (error)
1920		goto out_ptp_stop;
1921
1922	netif_tx_start_all_queues(ndev);
1923
1924	return 0;
1925
1926out_ptp_stop:
1927	/* Stop PTP Clock driver */
1928	if (info->gptp || info->ccc_gac)
1929		ravb_ptp_stop(ndev);
1930	ravb_stop_dma(ndev);
1931out_set_reset:
1932	ravb_set_opmode(ndev, CCC_OPC_RESET);
1933out_rpm_put:
1934	pm_runtime_mark_last_busy(dev);
1935	pm_runtime_put_autosuspend(dev);
1936out_napi_off:
1937	if (info->nc_queues)
1938		napi_disable(&priv->napi[RAVB_NC]);
1939	napi_disable(&priv->napi[RAVB_BE]);
1940	return error;
1941}
1942
1943/* Timeout function for Ethernet AVB */
1944static void ravb_tx_timeout(struct net_device *ndev, unsigned int txqueue)
1945{
1946	struct ravb_private *priv = netdev_priv(ndev);
1947
1948	netif_err(priv, tx_err, ndev,
1949		  "transmit timed out, status %08x, resetting...\n",
1950		  ravb_read(ndev, ISS));
1951
1952	/* tx_errors count up */
1953	ndev->stats.tx_errors++;
1954
1955	schedule_work(&priv->work);
1956}
1957
1958static void ravb_tx_timeout_work(struct work_struct *work)
1959{
1960	struct ravb_private *priv = container_of(work, struct ravb_private,
1961						 work);
1962	const struct ravb_hw_info *info = priv->info;
1963	struct net_device *ndev = priv->ndev;
1964	int error;
1965
1966	if (!rtnl_trylock()) {
1967		usleep_range(1000, 2000);
1968		schedule_work(&priv->work);
1969		return;
1970	}
1971
1972	netif_tx_stop_all_queues(ndev);
1973
1974	/* Stop PTP Clock driver */
1975	if (info->gptp)
1976		ravb_ptp_stop(ndev);
1977
1978	/* Wait for DMA stopping */
1979	if (ravb_stop_dma(ndev)) {
1980		/* If ravb_stop_dma() fails, the hardware is still operating
1981		 * for TX and/or RX. So, this should not call the following
1982		 * functions because ravb_dmac_init() is possible to fail too.
1983		 * Also, this should not retry ravb_stop_dma() again and again
1984		 * here because it's possible to wait forever. So, this just
1985		 * re-enables the TX and RX and skip the following
1986		 * re-initialization procedure.
1987		 */
1988		ravb_rcv_snd_enable(ndev);
1989		goto out;
1990	}
1991
1992	ravb_ring_free(ndev, RAVB_BE);
1993	if (info->nc_queues)
1994		ravb_ring_free(ndev, RAVB_NC);
1995
1996	/* Device init */
1997	error = ravb_dmac_init(ndev);
1998	if (error) {
1999		/* If ravb_dmac_init() fails, descriptors are freed. So, this
2000		 * should return here to avoid re-enabling the TX and RX in
2001		 * ravb_emac_init().
2002		 */
2003		netdev_err(ndev, "%s: ravb_dmac_init() failed, error %d\n",
2004			   __func__, error);
2005		goto out_unlock;
2006	}
2007	ravb_emac_init(ndev);
2008
2009out:
2010	/* Initialise PTP Clock driver */
2011	if (info->gptp)
2012		ravb_ptp_init(ndev, priv->pdev);
2013
2014	netif_tx_start_all_queues(ndev);
2015
2016out_unlock:
2017	rtnl_unlock();
2018}
2019
2020static bool ravb_can_tx_csum_gbeth(struct sk_buff *skb)
2021{
2022	struct iphdr *ip = ip_hdr(skb);
2023
2024	/* TODO: Need to add support for VLAN tag 802.1Q */
2025	if (skb_vlan_tag_present(skb))
2026		return false;
2027
2028	/* TODO: Need to add hardware checksum for IPv6 */
2029	if (skb->protocol != htons(ETH_P_IP))
2030		return false;
2031
2032	switch (ip->protocol) {
2033	case IPPROTO_TCP:
2034		break;
2035	case IPPROTO_UDP:
2036		/* If the checksum value in the UDP header field is 0, TOE does
2037		 * not calculate checksum for UDP part of this frame as it is
2038		 * optional function as per standards.
2039		 */
2040		if (udp_hdr(skb)->check == 0)
2041			return false;
2042		break;
2043	default:
2044		return false;
2045	}
2046
2047	return true;
2048}
2049
2050/* Packet transmit function for Ethernet AVB */
2051static netdev_tx_t ravb_start_xmit(struct sk_buff *skb, struct net_device *ndev)
2052{
2053	struct ravb_private *priv = netdev_priv(ndev);
2054	const struct ravb_hw_info *info = priv->info;
2055	unsigned int num_tx_desc = priv->num_tx_desc;
2056	u16 q = skb_get_queue_mapping(skb);
2057	struct ravb_tstamp_skb *ts_skb;
2058	struct ravb_tx_desc *desc;
2059	unsigned long flags;
2060	dma_addr_t dma_addr;
2061	void *buffer;
2062	u32 entry;
2063	u32 len;
2064
2065	if (skb->ip_summed == CHECKSUM_PARTIAL && !ravb_can_tx_csum_gbeth(skb))
2066		skb_checksum_help(skb);
2067
2068	spin_lock_irqsave(&priv->lock, flags);
2069	if (priv->cur_tx[q] - priv->dirty_tx[q] > (priv->num_tx_ring[q] - 1) *
2070	    num_tx_desc) {
2071		netif_err(priv, tx_queued, ndev,
2072			  "still transmitting with the full ring!\n");
2073		netif_stop_subqueue(ndev, q);
2074		spin_unlock_irqrestore(&priv->lock, flags);
2075		return NETDEV_TX_BUSY;
2076	}
2077
2078	if (skb_put_padto(skb, ETH_ZLEN))
2079		goto exit;
2080
2081	entry = priv->cur_tx[q] % (priv->num_tx_ring[q] * num_tx_desc);
2082	priv->tx_skb[q][entry / num_tx_desc] = skb;
2083
2084	if (num_tx_desc > 1) {
2085		buffer = PTR_ALIGN(priv->tx_align[q], DPTR_ALIGN) +
2086			 entry / num_tx_desc * DPTR_ALIGN;
2087		len = PTR_ALIGN(skb->data, DPTR_ALIGN) - skb->data;
2088
2089		/* Zero length DMA descriptors are problematic as they seem
2090		 * to terminate DMA transfers. Avoid them by simply using a
2091		 * length of DPTR_ALIGN (4) when skb data is aligned to
2092		 * DPTR_ALIGN.
2093		 *
2094		 * As skb is guaranteed to have at least ETH_ZLEN (60)
2095		 * bytes of data by the call to skb_put_padto() above this
2096		 * is safe with respect to both the length of the first DMA
2097		 * descriptor (len) overflowing the available data and the
2098		 * length of the second DMA descriptor (skb->len - len)
2099		 * being negative.
2100		 */
2101		if (len == 0)
2102			len = DPTR_ALIGN;
2103
2104		memcpy(buffer, skb->data, len);
2105		dma_addr = dma_map_single(ndev->dev.parent, buffer, len,
2106					  DMA_TO_DEVICE);
2107		if (dma_mapping_error(ndev->dev.parent, dma_addr))
2108			goto drop;
2109
2110		desc = &priv->tx_ring[q][entry];
2111		desc->ds_tagl = cpu_to_le16(len);
2112		desc->dptr = cpu_to_le32(dma_addr);
2113
2114		buffer = skb->data + len;
2115		len = skb->len - len;
2116		dma_addr = dma_map_single(ndev->dev.parent, buffer, len,
2117					  DMA_TO_DEVICE);
2118		if (dma_mapping_error(ndev->dev.parent, dma_addr))
2119			goto unmap;
2120
2121		desc++;
2122	} else {
2123		desc = &priv->tx_ring[q][entry];
2124		len = skb->len;
2125		dma_addr = dma_map_single(ndev->dev.parent, skb->data, skb->len,
2126					  DMA_TO_DEVICE);
2127		if (dma_mapping_error(ndev->dev.parent, dma_addr))
2128			goto drop;
2129	}
2130	desc->ds_tagl = cpu_to_le16(len);
2131	desc->dptr = cpu_to_le32(dma_addr);
2132
2133	/* TX timestamp required */
2134	if (info->gptp || info->ccc_gac) {
2135		if (q == RAVB_NC) {
2136			ts_skb = kmalloc(sizeof(*ts_skb), GFP_ATOMIC);
2137			if (!ts_skb) {
2138				if (num_tx_desc > 1) {
2139					desc--;
2140					dma_unmap_single(ndev->dev.parent, dma_addr,
2141							 len, DMA_TO_DEVICE);
2142				}
2143				goto unmap;
2144			}
2145			ts_skb->skb = skb_get(skb);
2146			ts_skb->tag = priv->ts_skb_tag++;
2147			priv->ts_skb_tag &= 0x3ff;
2148			list_add_tail(&ts_skb->list, &priv->ts_skb_list);
2149
2150			/* TAG and timestamp required flag */
2151			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2152			desc->tagh_tsr = (ts_skb->tag >> 4) | TX_TSR;
2153			desc->ds_tagl |= cpu_to_le16(ts_skb->tag << 12);
2154		}
2155
2156		skb_tx_timestamp(skb);
2157	}
2158	/* Descriptor type must be set after all the above writes */
2159	dma_wmb();
2160	if (num_tx_desc > 1) {
2161		desc->die_dt = DT_FEND;
2162		desc--;
2163		desc->die_dt = DT_FSTART;
2164	} else {
2165		desc->die_dt = DT_FSINGLE;
2166	}
2167	ravb_modify(ndev, TCCR, TCCR_TSRQ0 << q, TCCR_TSRQ0 << q);
2168
2169	priv->cur_tx[q] += num_tx_desc;
2170	if (priv->cur_tx[q] - priv->dirty_tx[q] >
2171	    (priv->num_tx_ring[q] - 1) * num_tx_desc &&
2172	    !ravb_tx_free(ndev, q, true))
2173		netif_stop_subqueue(ndev, q);
2174
2175exit:
2176	spin_unlock_irqrestore(&priv->lock, flags);
2177	return NETDEV_TX_OK;
2178
2179unmap:
2180	dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
2181			 le16_to_cpu(desc->ds_tagl), DMA_TO_DEVICE);
2182drop:
2183	dev_kfree_skb_any(skb);
2184	priv->tx_skb[q][entry / num_tx_desc] = NULL;
2185	goto exit;
2186}
2187
2188static u16 ravb_select_queue(struct net_device *ndev, struct sk_buff *skb,
2189			     struct net_device *sb_dev)
2190{
2191	/* If skb needs TX timestamp, it is handled in network control queue */
2192	return (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) ? RAVB_NC :
2193							       RAVB_BE;
2194
2195}
2196
2197static struct net_device_stats *ravb_get_stats(struct net_device *ndev)
2198{
2199	struct ravb_private *priv = netdev_priv(ndev);
2200	const struct ravb_hw_info *info = priv->info;
2201	struct net_device_stats *nstats, *stats0, *stats1;
2202	struct device *dev = &priv->pdev->dev;
2203
2204	nstats = &ndev->stats;
2205
2206	pm_runtime_get_noresume(dev);
2207
2208	if (!pm_runtime_active(dev))
2209		goto out_rpm_put;
2210
2211	stats0 = &priv->stats[RAVB_BE];
2212
2213	if (info->tx_counters) {
2214		nstats->tx_dropped += ravb_read(ndev, TROCR);
2215		ravb_write(ndev, 0, TROCR);	/* (write clear) */
2216	}
2217
2218	if (info->carrier_counters) {
2219		nstats->collisions += ravb_read(ndev, CXR41);
2220		ravb_write(ndev, 0, CXR41);	/* (write clear) */
2221		nstats->tx_carrier_errors += ravb_read(ndev, CXR42);
2222		ravb_write(ndev, 0, CXR42);	/* (write clear) */
2223	}
2224
2225	nstats->rx_packets = stats0->rx_packets;
2226	nstats->tx_packets = stats0->tx_packets;
2227	nstats->rx_bytes = stats0->rx_bytes;
2228	nstats->tx_bytes = stats0->tx_bytes;
2229	nstats->multicast = stats0->multicast;
2230	nstats->rx_errors = stats0->rx_errors;
2231	nstats->rx_crc_errors = stats0->rx_crc_errors;
2232	nstats->rx_frame_errors = stats0->rx_frame_errors;
2233	nstats->rx_length_errors = stats0->rx_length_errors;
2234	nstats->rx_missed_errors = stats0->rx_missed_errors;
2235	nstats->rx_over_errors = stats0->rx_over_errors;
2236	if (info->nc_queues) {
2237		stats1 = &priv->stats[RAVB_NC];
2238
2239		nstats->rx_packets += stats1->rx_packets;
2240		nstats->tx_packets += stats1->tx_packets;
2241		nstats->rx_bytes += stats1->rx_bytes;
2242		nstats->tx_bytes += stats1->tx_bytes;
2243		nstats->multicast += stats1->multicast;
2244		nstats->rx_errors += stats1->rx_errors;
2245		nstats->rx_crc_errors += stats1->rx_crc_errors;
2246		nstats->rx_frame_errors += stats1->rx_frame_errors;
2247		nstats->rx_length_errors += stats1->rx_length_errors;
2248		nstats->rx_missed_errors += stats1->rx_missed_errors;
2249		nstats->rx_over_errors += stats1->rx_over_errors;
2250	}
2251
2252out_rpm_put:
2253	pm_runtime_put_noidle(dev);
2254	return nstats;
2255}
2256
2257/* Update promiscuous bit */
2258static void ravb_set_rx_mode(struct net_device *ndev)
2259{
2260	struct ravb_private *priv = netdev_priv(ndev);
2261	unsigned long flags;
2262
2263	spin_lock_irqsave(&priv->lock, flags);
2264	ravb_modify(ndev, ECMR, ECMR_PRM,
2265		    ndev->flags & IFF_PROMISC ? ECMR_PRM : 0);
2266	spin_unlock_irqrestore(&priv->lock, flags);
2267}
2268
2269/* Device close function for Ethernet AVB */
2270static int ravb_close(struct net_device *ndev)
2271{
2272	struct device_node *np = ndev->dev.parent->of_node;
2273	struct ravb_private *priv = netdev_priv(ndev);
2274	const struct ravb_hw_info *info = priv->info;
2275	struct ravb_tstamp_skb *ts_skb, *ts_skb2;
2276	struct device *dev = &priv->pdev->dev;
2277	int error;
2278
2279	netif_tx_stop_all_queues(ndev);
2280
2281	/* Disable interrupts by clearing the interrupt masks. */
2282	ravb_write(ndev, 0, RIC0);
2283	ravb_write(ndev, 0, RIC2);
2284	ravb_write(ndev, 0, TIC);
2285
2286	/* PHY disconnect */
2287	if (ndev->phydev) {
2288		phy_stop(ndev->phydev);
2289		phy_disconnect(ndev->phydev);
2290		if (of_phy_is_fixed_link(np))
2291			of_phy_deregister_fixed_link(np);
2292	}
2293
2294	/* Stop PTP Clock driver */
2295	if (info->gptp || info->ccc_gac)
2296		ravb_ptp_stop(ndev);
2297
2298	/* Set the config mode to stop the AVB-DMAC's processes */
2299	if (ravb_stop_dma(ndev) < 0)
2300		netdev_err(ndev,
2301			   "device will be stopped after h/w processes are done.\n");
2302
2303	/* Clear the timestamp list */
2304	if (info->gptp || info->ccc_gac) {
2305		list_for_each_entry_safe(ts_skb, ts_skb2, &priv->ts_skb_list, list) {
2306			list_del(&ts_skb->list);
2307			kfree_skb(ts_skb->skb);
2308			kfree(ts_skb);
2309		}
2310	}
2311
2312	cancel_work_sync(&priv->work);
2313
2314	if (info->nc_queues)
2315		napi_disable(&priv->napi[RAVB_NC]);
2316	napi_disable(&priv->napi[RAVB_BE]);
2317
2318	/* Free all the skb's in the RX queue and the DMA buffers. */
2319	ravb_ring_free(ndev, RAVB_BE);
2320	if (info->nc_queues)
2321		ravb_ring_free(ndev, RAVB_NC);
2322
2323	/* Update statistics. */
2324	ravb_get_stats(ndev);
2325
2326	/* Set reset mode. */
2327	error = ravb_set_opmode(ndev, CCC_OPC_RESET);
2328	if (error)
2329		return error;
2330
2331	pm_runtime_mark_last_busy(dev);
2332	pm_runtime_put_autosuspend(dev);
2333
2334	return 0;
2335}
2336
2337static int ravb_hwtstamp_get(struct net_device *ndev, struct ifreq *req)
2338{
2339	struct ravb_private *priv = netdev_priv(ndev);
2340	struct hwtstamp_config config;
2341
2342	config.flags = 0;
2343	config.tx_type = priv->tstamp_tx_ctrl ? HWTSTAMP_TX_ON :
2344						HWTSTAMP_TX_OFF;
2345	switch (priv->tstamp_rx_ctrl & RAVB_RXTSTAMP_TYPE) {
2346	case RAVB_RXTSTAMP_TYPE_V2_L2_EVENT:
2347		config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT;
2348		break;
2349	case RAVB_RXTSTAMP_TYPE_ALL:
2350		config.rx_filter = HWTSTAMP_FILTER_ALL;
2351		break;
2352	default:
2353		config.rx_filter = HWTSTAMP_FILTER_NONE;
2354	}
2355
2356	return copy_to_user(req->ifr_data, &config, sizeof(config)) ?
2357		-EFAULT : 0;
2358}
2359
2360/* Control hardware time stamping */
2361static int ravb_hwtstamp_set(struct net_device *ndev, struct ifreq *req)
2362{
2363	struct ravb_private *priv = netdev_priv(ndev);
2364	struct hwtstamp_config config;
2365	u32 tstamp_rx_ctrl = RAVB_RXTSTAMP_ENABLED;
2366	u32 tstamp_tx_ctrl;
2367
2368	if (copy_from_user(&config, req->ifr_data, sizeof(config)))
2369		return -EFAULT;
2370
2371	switch (config.tx_type) {
2372	case HWTSTAMP_TX_OFF:
2373		tstamp_tx_ctrl = 0;
2374		break;
2375	case HWTSTAMP_TX_ON:
2376		tstamp_tx_ctrl = RAVB_TXTSTAMP_ENABLED;
2377		break;
2378	default:
2379		return -ERANGE;
2380	}
2381
2382	switch (config.rx_filter) {
2383	case HWTSTAMP_FILTER_NONE:
2384		tstamp_rx_ctrl = 0;
2385		break;
2386	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
2387		tstamp_rx_ctrl |= RAVB_RXTSTAMP_TYPE_V2_L2_EVENT;
2388		break;
2389	default:
2390		config.rx_filter = HWTSTAMP_FILTER_ALL;
2391		tstamp_rx_ctrl |= RAVB_RXTSTAMP_TYPE_ALL;
2392	}
2393
2394	priv->tstamp_tx_ctrl = tstamp_tx_ctrl;
2395	priv->tstamp_rx_ctrl = tstamp_rx_ctrl;
2396
2397	return copy_to_user(req->ifr_data, &config, sizeof(config)) ?
2398		-EFAULT : 0;
2399}
2400
2401/* ioctl to device function */
2402static int ravb_do_ioctl(struct net_device *ndev, struct ifreq *req, int cmd)
2403{
2404	struct phy_device *phydev = ndev->phydev;
2405
2406	if (!netif_running(ndev))
2407		return -EINVAL;
2408
2409	if (!phydev)
2410		return -ENODEV;
2411
2412	switch (cmd) {
2413	case SIOCGHWTSTAMP:
2414		return ravb_hwtstamp_get(ndev, req);
2415	case SIOCSHWTSTAMP:
2416		return ravb_hwtstamp_set(ndev, req);
2417	}
2418
2419	return phy_mii_ioctl(phydev, req, cmd);
2420}
2421
2422static int ravb_change_mtu(struct net_device *ndev, int new_mtu)
2423{
2424	struct ravb_private *priv = netdev_priv(ndev);
2425
2426	ndev->mtu = new_mtu;
2427
2428	if (netif_running(ndev)) {
2429		synchronize_irq(priv->emac_irq);
2430		ravb_emac_init(ndev);
2431	}
2432
2433	netdev_update_features(ndev);
2434
2435	return 0;
2436}
2437
2438static void ravb_set_rx_csum(struct net_device *ndev, bool enable)
2439{
2440	struct ravb_private *priv = netdev_priv(ndev);
2441	unsigned long flags;
2442
2443	spin_lock_irqsave(&priv->lock, flags);
2444
2445	/* Disable TX and RX */
2446	ravb_rcv_snd_disable(ndev);
2447
2448	/* Modify RX Checksum setting */
2449	ravb_modify(ndev, ECMR, ECMR_RCSC, enable ? ECMR_RCSC : 0);
2450
2451	/* Enable TX and RX */
2452	ravb_rcv_snd_enable(ndev);
2453
2454	spin_unlock_irqrestore(&priv->lock, flags);
2455}
2456
2457static int ravb_endisable_csum_gbeth(struct net_device *ndev, enum ravb_reg reg,
2458				     u32 val, u32 mask)
2459{
2460	u32 csr0 = CSR0_TPE | CSR0_RPE;
2461	int ret;
2462
2463	ravb_write(ndev, csr0 & ~mask, CSR0);
2464	ret = ravb_wait(ndev, CSR0, mask, 0);
2465	if (!ret)
2466		ravb_write(ndev, val, reg);
2467
2468	ravb_write(ndev, csr0, CSR0);
2469
2470	return ret;
2471}
2472
2473static int ravb_set_features_gbeth(struct net_device *ndev,
2474				   netdev_features_t features)
2475{
2476	netdev_features_t changed = ndev->features ^ features;
2477	struct ravb_private *priv = netdev_priv(ndev);
2478	unsigned long flags;
2479	int ret = 0;
2480	u32 val;
2481
2482	spin_lock_irqsave(&priv->lock, flags);
2483	if (changed & NETIF_F_RXCSUM) {
2484		if (features & NETIF_F_RXCSUM)
2485			val = CSR2_RIP4 | CSR2_RTCP4 | CSR2_RUDP4 | CSR2_RICMP4;
2486		else
2487			val = 0;
2488
2489		ret = ravb_endisable_csum_gbeth(ndev, CSR2, val, CSR0_RPE);
2490		if (ret)
2491			goto done;
2492	}
2493
2494	if (changed & NETIF_F_HW_CSUM) {
2495		if (features & NETIF_F_HW_CSUM)
2496			val = CSR1_TIP4 | CSR1_TTCP4 | CSR1_TUDP4;
2497		else
2498			val = 0;
2499
2500		ret = ravb_endisable_csum_gbeth(ndev, CSR1, val, CSR0_TPE);
2501		if (ret)
2502			goto done;
2503	}
2504
2505done:
2506	spin_unlock_irqrestore(&priv->lock, flags);
2507
2508	return ret;
2509}
2510
2511static int ravb_set_features_rcar(struct net_device *ndev,
2512				  netdev_features_t features)
2513{
2514	netdev_features_t changed = ndev->features ^ features;
2515
2516	if (changed & NETIF_F_RXCSUM)
2517		ravb_set_rx_csum(ndev, features & NETIF_F_RXCSUM);
2518
2519	return 0;
2520}
2521
2522static int ravb_set_features(struct net_device *ndev,
2523			     netdev_features_t features)
2524{
2525	struct ravb_private *priv = netdev_priv(ndev);
2526	const struct ravb_hw_info *info = priv->info;
2527	struct device *dev = &priv->pdev->dev;
2528	int ret;
2529
2530	pm_runtime_get_noresume(dev);
2531
2532	if (pm_runtime_active(dev))
2533		ret = info->set_feature(ndev, features);
2534	else
2535		ret = 0;
2536
2537	pm_runtime_put_noidle(dev);
2538
2539	if (ret)
2540		return ret;
2541
2542	ndev->features = features;
2543
2544	return 0;
2545}
2546
2547static const struct net_device_ops ravb_netdev_ops = {
2548	.ndo_open		= ravb_open,
2549	.ndo_stop		= ravb_close,
2550	.ndo_start_xmit		= ravb_start_xmit,
2551	.ndo_select_queue	= ravb_select_queue,
2552	.ndo_get_stats		= ravb_get_stats,
2553	.ndo_set_rx_mode	= ravb_set_rx_mode,
2554	.ndo_tx_timeout		= ravb_tx_timeout,
2555	.ndo_eth_ioctl		= ravb_do_ioctl,
2556	.ndo_change_mtu		= ravb_change_mtu,
2557	.ndo_validate_addr	= eth_validate_addr,
2558	.ndo_set_mac_address	= eth_mac_addr,
2559	.ndo_set_features	= ravb_set_features,
2560};
2561
2562/* MDIO bus init function */
2563static int ravb_mdio_init(struct ravb_private *priv)
2564{
2565	struct platform_device *pdev = priv->pdev;
2566	struct device *dev = &pdev->dev;
2567	struct phy_device *phydev;
2568	struct device_node *pn;
2569	int error;
2570
2571	/* Bitbang init */
2572	priv->mdiobb.ops = &bb_ops;
2573
2574	/* MII controller setting */
2575	priv->mii_bus = alloc_mdio_bitbang(&priv->mdiobb);
2576	if (!priv->mii_bus)
2577		return -ENOMEM;
2578
2579	/* Hook up MII support for ethtool */
2580	priv->mii_bus->name = "ravb_mii";
2581	priv->mii_bus->parent = dev;
2582	snprintf(priv->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2583		 pdev->name, pdev->id);
2584
2585	/* Register MDIO bus */
2586	error = of_mdiobus_register(priv->mii_bus, dev->of_node);
2587	if (error)
2588		goto out_free_bus;
2589
2590	pn = of_parse_phandle(dev->of_node, "phy-handle", 0);
2591	phydev = of_phy_find_device(pn);
2592	if (phydev) {
2593		phydev->mac_managed_pm = true;
2594		put_device(&phydev->mdio.dev);
2595	}
2596	of_node_put(pn);
2597
2598	return 0;
2599
2600out_free_bus:
2601	free_mdio_bitbang(priv->mii_bus);
2602	return error;
2603}
2604
2605/* MDIO bus release function */
2606static int ravb_mdio_release(struct ravb_private *priv)
2607{
2608	/* Unregister mdio bus */
2609	mdiobus_unregister(priv->mii_bus);
2610
2611	/* Free bitbang info */
2612	free_mdio_bitbang(priv->mii_bus);
2613
2614	return 0;
2615}
2616
2617static const struct ravb_hw_info ravb_gen3_hw_info = {
2618	.receive = ravb_rx_rcar,
2619	.set_rate = ravb_set_rate_rcar,
2620	.set_feature = ravb_set_features_rcar,
2621	.dmac_init = ravb_dmac_init_rcar,
2622	.emac_init = ravb_emac_init_rcar,
2623	.gstrings_stats = ravb_gstrings_stats,
2624	.gstrings_size = sizeof(ravb_gstrings_stats),
2625	.net_hw_features = NETIF_F_RXCSUM,
2626	.net_features = NETIF_F_RXCSUM,
2627	.stats_len = ARRAY_SIZE(ravb_gstrings_stats),
2628	.tccr_mask = TCCR_TSRQ0 | TCCR_TSRQ1 | TCCR_TSRQ2 | TCCR_TSRQ3,
2629	.rx_max_frame_size = SZ_2K,
2630	.rx_max_desc_use = SZ_2K - ETH_FCS_LEN + sizeof(__sum16),
2631	.rx_desc_size = sizeof(struct ravb_ex_rx_desc),
2632	.internal_delay = 1,
2633	.tx_counters = 1,
2634	.multi_irqs = 1,
2635	.irq_en_dis = 1,
2636	.ccc_gac = 1,
2637	.nc_queues = 1,
2638	.magic_pkt = 1,
2639};
2640
2641static const struct ravb_hw_info ravb_gen2_hw_info = {
2642	.receive = ravb_rx_rcar,
2643	.set_rate = ravb_set_rate_rcar,
2644	.set_feature = ravb_set_features_rcar,
2645	.dmac_init = ravb_dmac_init_rcar,
2646	.emac_init = ravb_emac_init_rcar,
2647	.gstrings_stats = ravb_gstrings_stats,
2648	.gstrings_size = sizeof(ravb_gstrings_stats),
2649	.net_hw_features = NETIF_F_RXCSUM,
2650	.net_features = NETIF_F_RXCSUM,
2651	.stats_len = ARRAY_SIZE(ravb_gstrings_stats),
2652	.tccr_mask = TCCR_TSRQ0 | TCCR_TSRQ1 | TCCR_TSRQ2 | TCCR_TSRQ3,
2653	.rx_max_frame_size = SZ_2K,
2654	.rx_max_desc_use = SZ_2K - ETH_FCS_LEN + sizeof(__sum16),
2655	.rx_desc_size = sizeof(struct ravb_ex_rx_desc),
2656	.aligned_tx = 1,
2657	.gptp = 1,
2658	.nc_queues = 1,
2659	.magic_pkt = 1,
2660};
2661
2662static const struct ravb_hw_info ravb_rzv2m_hw_info = {
2663	.receive = ravb_rx_rcar,
2664	.set_rate = ravb_set_rate_rcar,
2665	.set_feature = ravb_set_features_rcar,
2666	.dmac_init = ravb_dmac_init_rcar,
2667	.emac_init = ravb_emac_init_rcar,
2668	.gstrings_stats = ravb_gstrings_stats,
2669	.gstrings_size = sizeof(ravb_gstrings_stats),
2670	.net_hw_features = NETIF_F_RXCSUM,
2671	.net_features = NETIF_F_RXCSUM,
2672	.stats_len = ARRAY_SIZE(ravb_gstrings_stats),
2673	.tccr_mask = TCCR_TSRQ0 | TCCR_TSRQ1 | TCCR_TSRQ2 | TCCR_TSRQ3,
2674	.rx_max_frame_size = SZ_2K,
2675	.rx_max_desc_use = SZ_2K - ETH_FCS_LEN + sizeof(__sum16),
2676	.rx_desc_size = sizeof(struct ravb_ex_rx_desc),
2677	.multi_irqs = 1,
2678	.err_mgmt_irqs = 1,
2679	.gptp = 1,
2680	.gptp_ref_clk = 1,
2681	.nc_queues = 1,
2682	.magic_pkt = 1,
2683};
2684
2685static const struct ravb_hw_info gbeth_hw_info = {
2686	.receive = ravb_rx_gbeth,
2687	.set_rate = ravb_set_rate_gbeth,
2688	.set_feature = ravb_set_features_gbeth,
2689	.dmac_init = ravb_dmac_init_gbeth,
2690	.emac_init = ravb_emac_init_gbeth,
2691	.gstrings_stats = ravb_gstrings_stats_gbeth,
2692	.gstrings_size = sizeof(ravb_gstrings_stats_gbeth),
2693	.net_hw_features = NETIF_F_RXCSUM | NETIF_F_HW_CSUM,
2694	.net_features = NETIF_F_RXCSUM | NETIF_F_HW_CSUM,
2695	.stats_len = ARRAY_SIZE(ravb_gstrings_stats_gbeth),
2696	.tccr_mask = TCCR_TSRQ0,
2697	.rx_max_frame_size = SZ_8K,
2698	.rx_max_desc_use = 4080,
2699	.rx_desc_size = sizeof(struct ravb_rx_desc),
2700	.aligned_tx = 1,
2701	.tx_counters = 1,
2702	.carrier_counters = 1,
2703	.half_duplex = 1,
2704};
2705
2706static const struct of_device_id ravb_match_table[] = {
2707	{ .compatible = "renesas,etheravb-r8a7790", .data = &ravb_gen2_hw_info },
2708	{ .compatible = "renesas,etheravb-r8a7794", .data = &ravb_gen2_hw_info },
2709	{ .compatible = "renesas,etheravb-rcar-gen2", .data = &ravb_gen2_hw_info },
2710	{ .compatible = "renesas,etheravb-r8a7795", .data = &ravb_gen3_hw_info },
2711	{ .compatible = "renesas,etheravb-rcar-gen3", .data = &ravb_gen3_hw_info },
2712	{ .compatible = "renesas,etheravb-rcar-gen4", .data = &ravb_gen3_hw_info },
2713	{ .compatible = "renesas,etheravb-rzv2m", .data = &ravb_rzv2m_hw_info },
2714	{ .compatible = "renesas,rzg2l-gbeth", .data = &gbeth_hw_info },
2715	{ }
2716};
2717MODULE_DEVICE_TABLE(of, ravb_match_table);
2718
2719static int ravb_setup_irq(struct ravb_private *priv, const char *irq_name,
2720			  const char *ch, int *irq, irq_handler_t handler)
2721{
2722	struct platform_device *pdev = priv->pdev;
2723	struct net_device *ndev = priv->ndev;
2724	struct device *dev = &pdev->dev;
2725	const char *devname = dev_name(dev);
2726	unsigned long flags;
2727	int error, irq_num;
2728
2729	if (irq_name) {
2730		devname = devm_kasprintf(dev, GFP_KERNEL, "%s:%s", devname, ch);
2731		if (!devname)
2732			return -ENOMEM;
2733
2734		irq_num = platform_get_irq_byname(pdev, irq_name);
2735		flags = 0;
2736	} else {
2737		irq_num = platform_get_irq(pdev, 0);
2738		flags = IRQF_SHARED;
2739	}
2740	if (irq_num < 0)
2741		return irq_num;
2742
2743	if (irq)
2744		*irq = irq_num;
2745
2746	error = devm_request_irq(dev, irq_num, handler, flags, devname, ndev);
2747	if (error)
2748		netdev_err(ndev, "cannot request IRQ %s\n", devname);
2749
2750	return error;
2751}
2752
2753static int ravb_setup_irqs(struct ravb_private *priv)
2754{
2755	const struct ravb_hw_info *info = priv->info;
2756	struct net_device *ndev = priv->ndev;
2757	const char *irq_name, *emac_irq_name;
2758	int error;
2759
2760	if (!info->multi_irqs)
2761		return ravb_setup_irq(priv, NULL, NULL, &ndev->irq, ravb_interrupt);
2762
2763	if (info->err_mgmt_irqs) {
2764		irq_name = "dia";
2765		emac_irq_name = "line3";
2766	} else {
2767		irq_name = "ch22";
2768		emac_irq_name = "ch24";
2769	}
2770
2771	error = ravb_setup_irq(priv, irq_name, "ch22:multi", &ndev->irq, ravb_multi_interrupt);
2772	if (error)
2773		return error;
2774
2775	error = ravb_setup_irq(priv, emac_irq_name, "ch24:emac", &priv->emac_irq,
2776			       ravb_emac_interrupt);
2777	if (error)
2778		return error;
2779
2780	if (info->err_mgmt_irqs) {
2781		error = ravb_setup_irq(priv, "err_a", "err_a", NULL, ravb_multi_interrupt);
2782		if (error)
2783			return error;
2784
2785		error = ravb_setup_irq(priv, "mgmt_a", "mgmt_a", NULL, ravb_multi_interrupt);
2786		if (error)
2787			return error;
2788	}
2789
2790	error = ravb_setup_irq(priv, "ch0", "ch0:rx_be", NULL, ravb_be_interrupt);
2791	if (error)
2792		return error;
2793
2794	error = ravb_setup_irq(priv, "ch1", "ch1:rx_nc", NULL, ravb_nc_interrupt);
2795	if (error)
2796		return error;
2797
2798	error = ravb_setup_irq(priv, "ch18", "ch18:tx_be", NULL, ravb_be_interrupt);
2799	if (error)
2800		return error;
2801
2802	return ravb_setup_irq(priv, "ch19", "ch19:tx_nc", NULL, ravb_nc_interrupt);
2803}
2804
2805static int ravb_probe(struct platform_device *pdev)
2806{
2807	struct device_node *np = pdev->dev.of_node;
2808	const struct ravb_hw_info *info;
2809	struct reset_control *rstc;
2810	struct ravb_private *priv;
2811	struct net_device *ndev;
2812	struct resource *res;
2813	int error, q;
2814
2815	if (!np) {
2816		dev_err(&pdev->dev,
2817			"this driver is required to be instantiated from device tree\n");
2818		return -EINVAL;
2819	}
2820
2821	rstc = devm_reset_control_get_exclusive(&pdev->dev, NULL);
2822	if (IS_ERR(rstc))
2823		return dev_err_probe(&pdev->dev, PTR_ERR(rstc),
2824				     "failed to get cpg reset\n");
2825
2826	ndev = alloc_etherdev_mqs(sizeof(struct ravb_private),
2827				  NUM_TX_QUEUE, NUM_RX_QUEUE);
2828	if (!ndev)
2829		return -ENOMEM;
2830
2831	info = of_device_get_match_data(&pdev->dev);
2832
2833	ndev->features = info->net_features;
2834	ndev->hw_features = info->net_hw_features;
2835
2836	error = reset_control_deassert(rstc);
2837	if (error)
2838		goto out_free_netdev;
2839
2840	SET_NETDEV_DEV(ndev, &pdev->dev);
2841
2842	priv = netdev_priv(ndev);
2843	priv->info = info;
2844	priv->rstc = rstc;
2845	priv->ndev = ndev;
2846	priv->pdev = pdev;
2847	priv->num_tx_ring[RAVB_BE] = BE_TX_RING_SIZE;
2848	priv->num_rx_ring[RAVB_BE] = BE_RX_RING_SIZE;
2849	if (info->nc_queues) {
2850		priv->num_tx_ring[RAVB_NC] = NC_TX_RING_SIZE;
2851		priv->num_rx_ring[RAVB_NC] = NC_RX_RING_SIZE;
2852	}
2853
2854	error = ravb_setup_irqs(priv);
2855	if (error)
2856		goto out_reset_assert;
2857
2858	priv->clk = devm_clk_get(&pdev->dev, NULL);
2859	if (IS_ERR(priv->clk)) {
2860		error = PTR_ERR(priv->clk);
2861		goto out_reset_assert;
2862	}
2863
2864	if (info->gptp_ref_clk) {
2865		priv->gptp_clk = devm_clk_get(&pdev->dev, "gptp");
2866		if (IS_ERR(priv->gptp_clk)) {
2867			error = PTR_ERR(priv->gptp_clk);
2868			goto out_reset_assert;
2869		}
2870	}
2871
2872	priv->refclk = devm_clk_get_optional(&pdev->dev, "refclk");
2873	if (IS_ERR(priv->refclk)) {
2874		error = PTR_ERR(priv->refclk);
2875		goto out_reset_assert;
2876	}
2877	clk_prepare(priv->refclk);
2878
2879	platform_set_drvdata(pdev, ndev);
2880	pm_runtime_set_autosuspend_delay(&pdev->dev, 100);
2881	pm_runtime_use_autosuspend(&pdev->dev);
2882	pm_runtime_enable(&pdev->dev);
2883	error = pm_runtime_resume_and_get(&pdev->dev);
2884	if (error < 0)
2885		goto out_rpm_disable;
2886
2887	priv->addr = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
2888	if (IS_ERR(priv->addr)) {
2889		error = PTR_ERR(priv->addr);
2890		goto out_rpm_put;
2891	}
2892
2893	/* The Ether-specific entries in the device structure. */
2894	ndev->base_addr = res->start;
2895
2896	spin_lock_init(&priv->lock);
2897	INIT_WORK(&priv->work, ravb_tx_timeout_work);
2898
2899	error = of_get_phy_mode(np, &priv->phy_interface);
2900	if (error && error != -ENODEV)
2901		goto out_rpm_put;
2902
2903	priv->no_avb_link = of_property_read_bool(np, "renesas,no-ether-link");
2904	priv->avb_link_active_low =
2905		of_property_read_bool(np, "renesas,ether-link-active-low");
2906
2907	ndev->max_mtu = info->rx_max_frame_size -
2908		(ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN);
2909	ndev->min_mtu = ETH_MIN_MTU;
2910
2911	/* FIXME: R-Car Gen2 has 4byte alignment restriction for tx buffer
2912	 * Use two descriptor to handle such situation. First descriptor to
2913	 * handle aligned data buffer and second descriptor to handle the
2914	 * overflow data because of alignment.
2915	 */
2916	priv->num_tx_desc = info->aligned_tx ? 2 : 1;
2917
2918	/* Set function */
2919	ndev->netdev_ops = &ravb_netdev_ops;
2920	ndev->ethtool_ops = &ravb_ethtool_ops;
2921
2922	error = ravb_compute_gti(ndev);
2923	if (error)
2924		goto out_rpm_put;
2925
2926	ravb_parse_delay_mode(np, ndev);
2927
2928	/* Allocate descriptor base address table */
2929	priv->desc_bat_size = sizeof(struct ravb_desc) * DBAT_ENTRY_NUM;
2930	priv->desc_bat = dma_alloc_coherent(ndev->dev.parent, priv->desc_bat_size,
2931					    &priv->desc_bat_dma, GFP_KERNEL);
2932	if (!priv->desc_bat) {
2933		dev_err(&pdev->dev,
2934			"Cannot allocate desc base address table (size %d bytes)\n",
2935			priv->desc_bat_size);
2936		error = -ENOMEM;
2937		goto out_rpm_put;
2938	}
2939	for (q = RAVB_BE; q < DBAT_ENTRY_NUM; q++)
2940		priv->desc_bat[q].die_dt = DT_EOS;
2941
2942	/* Initialise HW timestamp list */
2943	INIT_LIST_HEAD(&priv->ts_skb_list);
2944
2945	/* Debug message level */
2946	priv->msg_enable = RAVB_DEF_MSG_ENABLE;
2947
2948	/* Set config mode as this is needed for PHY initialization. */
2949	error = ravb_set_opmode(ndev, CCC_OPC_CONFIG);
2950	if (error)
2951		goto out_rpm_put;
2952
2953	/* Read and set MAC address */
2954	ravb_read_mac_address(np, ndev);
2955	if (!is_valid_ether_addr(ndev->dev_addr)) {
2956		dev_warn(&pdev->dev,
2957			 "no valid MAC address supplied, using a random one\n");
2958		eth_hw_addr_random(ndev);
2959	}
2960
2961	/* MDIO bus init */
2962	error = ravb_mdio_init(priv);
2963	if (error) {
2964		dev_err(&pdev->dev, "failed to initialize MDIO\n");
2965		goto out_reset_mode;
2966	}
2967
2968	/* Undo previous switch to config opmode. */
2969	error = ravb_set_opmode(ndev, CCC_OPC_RESET);
2970	if (error)
2971		goto out_mdio_release;
2972
2973	netif_napi_add(ndev, &priv->napi[RAVB_BE], ravb_poll);
2974	if (info->nc_queues)
2975		netif_napi_add(ndev, &priv->napi[RAVB_NC], ravb_poll);
2976
2977	/* Network device register */
2978	error = register_netdev(ndev);
2979	if (error)
2980		goto out_napi_del;
2981
2982	device_set_wakeup_capable(&pdev->dev, 1);
2983
2984	/* Print device information */
2985	netdev_info(ndev, "Base address at %#x, %pM, IRQ %d.\n",
2986		    (u32)ndev->base_addr, ndev->dev_addr, ndev->irq);
2987
2988	pm_runtime_mark_last_busy(&pdev->dev);
2989	pm_runtime_put_autosuspend(&pdev->dev);
2990
2991	return 0;
2992
2993out_napi_del:
2994	if (info->nc_queues)
2995		netif_napi_del(&priv->napi[RAVB_NC]);
2996
2997	netif_napi_del(&priv->napi[RAVB_BE]);
2998out_mdio_release:
2999	ravb_mdio_release(priv);
3000out_reset_mode:
3001	ravb_set_opmode(ndev, CCC_OPC_RESET);
3002	dma_free_coherent(ndev->dev.parent, priv->desc_bat_size, priv->desc_bat,
3003			  priv->desc_bat_dma);
3004out_rpm_put:
3005	pm_runtime_put(&pdev->dev);
3006out_rpm_disable:
3007	pm_runtime_disable(&pdev->dev);
3008	pm_runtime_dont_use_autosuspend(&pdev->dev);
3009	clk_unprepare(priv->refclk);
3010out_reset_assert:
3011	reset_control_assert(rstc);
3012out_free_netdev:
3013	free_netdev(ndev);
3014	return error;
3015}
3016
3017static void ravb_remove(struct platform_device *pdev)
3018{
3019	struct net_device *ndev = platform_get_drvdata(pdev);
3020	struct ravb_private *priv = netdev_priv(ndev);
3021	const struct ravb_hw_info *info = priv->info;
3022	struct device *dev = &priv->pdev->dev;
3023	int error;
3024
3025	error = pm_runtime_resume_and_get(dev);
3026	if (error < 0)
3027		return;
3028
3029	unregister_netdev(ndev);
3030	if (info->nc_queues)
3031		netif_napi_del(&priv->napi[RAVB_NC]);
3032	netif_napi_del(&priv->napi[RAVB_BE]);
3033
3034	ravb_mdio_release(priv);
3035
3036	dma_free_coherent(ndev->dev.parent, priv->desc_bat_size, priv->desc_bat,
3037			  priv->desc_bat_dma);
3038
3039	pm_runtime_put_sync_suspend(&pdev->dev);
3040	pm_runtime_disable(&pdev->dev);
3041	pm_runtime_dont_use_autosuspend(dev);
3042	clk_unprepare(priv->refclk);
3043	reset_control_assert(priv->rstc);
3044	free_netdev(ndev);
3045	platform_set_drvdata(pdev, NULL);
3046}
3047
3048static int ravb_wol_setup(struct net_device *ndev)
3049{
3050	struct ravb_private *priv = netdev_priv(ndev);
3051	const struct ravb_hw_info *info = priv->info;
3052
3053	/* Disable interrupts by clearing the interrupt masks. */
3054	ravb_write(ndev, 0, RIC0);
3055	ravb_write(ndev, 0, RIC2);
3056	ravb_write(ndev, 0, TIC);
3057
3058	/* Only allow ECI interrupts */
3059	synchronize_irq(priv->emac_irq);
3060	if (info->nc_queues)
3061		napi_disable(&priv->napi[RAVB_NC]);
3062	napi_disable(&priv->napi[RAVB_BE]);
3063	ravb_write(ndev, ECSIPR_MPDIP, ECSIPR);
3064
3065	/* Enable MagicPacket */
3066	ravb_modify(ndev, ECMR, ECMR_MPDE, ECMR_MPDE);
3067
3068	if (priv->info->ccc_gac)
3069		ravb_ptp_stop(ndev);
3070
3071	return enable_irq_wake(priv->emac_irq);
3072}
3073
3074static int ravb_wol_restore(struct net_device *ndev)
3075{
3076	struct ravb_private *priv = netdev_priv(ndev);
3077	const struct ravb_hw_info *info = priv->info;
3078	int error;
3079
3080	/* Set reset mode to rearm the WoL logic. */
3081	error = ravb_set_opmode(ndev, CCC_OPC_RESET);
3082	if (error)
3083		return error;
3084
3085	/* Set AVB config mode. */
3086	error = ravb_set_config_mode(ndev);
3087	if (error)
3088		return error;
3089
3090	if (priv->info->ccc_gac)
3091		ravb_ptp_init(ndev, priv->pdev);
3092
3093	if (info->nc_queues)
3094		napi_enable(&priv->napi[RAVB_NC]);
3095	napi_enable(&priv->napi[RAVB_BE]);
3096
3097	/* Disable MagicPacket */
3098	ravb_modify(ndev, ECMR, ECMR_MPDE, 0);
3099
3100	ravb_close(ndev);
3101
3102	return disable_irq_wake(priv->emac_irq);
3103}
3104
3105static int ravb_suspend(struct device *dev)
3106{
3107	struct net_device *ndev = dev_get_drvdata(dev);
3108	struct ravb_private *priv = netdev_priv(ndev);
3109	int ret;
3110
3111	if (!netif_running(ndev))
3112		goto reset_assert;
3113
3114	netif_device_detach(ndev);
3115
3116	if (priv->wol_enabled)
3117		return ravb_wol_setup(ndev);
3118
3119	ret = ravb_close(ndev);
3120	if (ret)
3121		return ret;
3122
3123	ret = pm_runtime_force_suspend(&priv->pdev->dev);
3124	if (ret)
3125		return ret;
3126
3127reset_assert:
3128	return reset_control_assert(priv->rstc);
3129}
3130
3131static int ravb_resume(struct device *dev)
3132{
3133	struct net_device *ndev = dev_get_drvdata(dev);
3134	struct ravb_private *priv = netdev_priv(ndev);
3135	int ret;
3136
3137	ret = reset_control_deassert(priv->rstc);
3138	if (ret)
3139		return ret;
3140
3141	if (!netif_running(ndev))
3142		return 0;
3143
3144	/* If WoL is enabled restore the interface. */
3145	if (priv->wol_enabled) {
3146		ret = ravb_wol_restore(ndev);
3147		if (ret)
3148			return ret;
3149	} else {
3150		ret = pm_runtime_force_resume(dev);
3151		if (ret)
3152			return ret;
3153	}
3154
3155	/* Reopening the interface will restore the device to the working state. */
3156	ret = ravb_open(ndev);
3157	if (ret < 0)
3158		goto out_rpm_put;
3159
3160	ravb_set_rx_mode(ndev);
3161	netif_device_attach(ndev);
3162
3163	return 0;
3164
3165out_rpm_put:
3166	if (!priv->wol_enabled) {
3167		pm_runtime_mark_last_busy(dev);
3168		pm_runtime_put_autosuspend(dev);
3169	}
3170
3171	return ret;
3172}
3173
3174static int ravb_runtime_suspend(struct device *dev)
3175{
3176	struct net_device *ndev = dev_get_drvdata(dev);
3177	struct ravb_private *priv = netdev_priv(ndev);
3178
3179	clk_disable(priv->refclk);
3180
3181	return 0;
3182}
3183
3184static int ravb_runtime_resume(struct device *dev)
3185{
3186	struct net_device *ndev = dev_get_drvdata(dev);
3187	struct ravb_private *priv = netdev_priv(ndev);
3188
3189	return clk_enable(priv->refclk);
3190}
3191
3192static const struct dev_pm_ops ravb_dev_pm_ops = {
3193	SYSTEM_SLEEP_PM_OPS(ravb_suspend, ravb_resume)
3194	RUNTIME_PM_OPS(ravb_runtime_suspend, ravb_runtime_resume, NULL)
3195};
3196
3197static struct platform_driver ravb_driver = {
3198	.probe		= ravb_probe,
3199	.remove_new	= ravb_remove,
3200	.driver = {
3201		.name	= "ravb",
3202		.pm	= pm_ptr(&ravb_dev_pm_ops),
3203		.of_match_table = ravb_match_table,
3204	},
3205};
3206
3207module_platform_driver(ravb_driver);
3208
3209MODULE_AUTHOR("Mitsuhiro Kimura, Masaru Nagai");
3210MODULE_DESCRIPTION("Renesas Ethernet AVB driver");
3211MODULE_LICENSE("GPL v2");
3212