1/* 8139cp.c: A Linux PCI Ethernet driver for the RealTek 8139C+ chips. */
2/*
3	Copyright 2001-2004 Jeff Garzik <jgarzik@pobox.com>
4
5	Copyright (C) 2001, 2002 David S. Miller (davem@redhat.com) [tg3.c]
6	Copyright (C) 2000, 2001 David S. Miller (davem@redhat.com) [sungem.c]
7	Copyright 2001 Manfred Spraul				    [natsemi.c]
8	Copyright 1999-2001 by Donald Becker.			    [natsemi.c]
9	Written 1997-2001 by Donald Becker.			    [8139too.c]
10	Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>. [acenic.c]
11
12	This software may be used and distributed according to the terms of
13	the GNU General Public License (GPL), incorporated herein by reference.
14	Drivers based on or derived from this code fall under the GPL and must
15	retain the authorship, copyright and license notice.  This file is not
16	a complete program and may only be used when the entire operating
17	system is licensed under the GPL.
18
19	See the file COPYING in this distribution for more information.
20
21	Contributors:
22
23		Wake-on-LAN support - Felipe Damasio <felipewd@terra.com.br>
24		PCI suspend/resume  - Felipe Damasio <felipewd@terra.com.br>
25		LinkChg interrupt   - Felipe Damasio <felipewd@terra.com.br>
26
27	TODO:
28	* Test Tx checksumming thoroughly
29
30	Low priority TODO:
31	* Complete reset on PciErr
32	* Consider Rx interrupt mitigation using TimerIntr
33	* Investigate using skb->priority with h/w VLAN priority
34	* Investigate using High Priority Tx Queue with skb->priority
35	* Adjust Rx FIFO threshold and Max Rx DMA burst on Rx FIFO error
36	* Adjust Tx FIFO threshold and Max Tx DMA burst on Tx FIFO error
37	* Implement Tx software interrupt mitigation via
38	  Tx descriptor bit
39	* The real minimum of CP_MIN_MTU is 4 bytes.  However,
40	  for this to be supported, one must(?) turn on packet padding.
41	* Support external MII transceivers (patch available)
42
43	NOTES:
44	* TX checksumming is considered experimental.  It is off by
45	  default, use ethtool to turn it on.
46
47 */
48
49#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
50
51#define DRV_NAME		"8139cp"
52#define DRV_VERSION		"1.3"
53#define DRV_RELDATE		"Mar 22, 2004"
54
55
56#include <linux/module.h>
57#include <linux/moduleparam.h>
58#include <linux/kernel.h>
59#include <linux/compiler.h>
60#include <linux/netdevice.h>
61#include <linux/etherdevice.h>
62#include <linux/init.h>
63#include <linux/interrupt.h>
64#include <linux/pci.h>
65#include <linux/dma-mapping.h>
66#include <linux/delay.h>
67#include <linux/ethtool.h>
68#include <linux/gfp.h>
69#include <linux/mii.h>
70#include <linux/if_vlan.h>
71#include <linux/crc32.h>
72#include <linux/in.h>
73#include <linux/ip.h>
74#include <linux/tcp.h>
75#include <linux/udp.h>
76#include <linux/cache.h>
77#include <asm/io.h>
78#include <asm/irq.h>
79#include <linux/uaccess.h>
80
81/* These identify the driver base version and may not be removed. */
82static char version[] =
83DRV_NAME ": 10/100 PCI Ethernet driver v" DRV_VERSION " (" DRV_RELDATE ")\n";
84
85MODULE_AUTHOR("Jeff Garzik <jgarzik@pobox.com>");
86MODULE_DESCRIPTION("RealTek RTL-8139C+ series 10/100 PCI Ethernet driver");
87MODULE_VERSION(DRV_VERSION);
88MODULE_LICENSE("GPL");
89
90static int debug = -1;
91module_param(debug, int, 0);
92MODULE_PARM_DESC (debug, "8139cp: bitmapped message enable number");
93
94/* Maximum number of multicast addresses to filter (vs. Rx-all-multicast).
95   The RTL chips use a 64 element hash table based on the Ethernet CRC.  */
96static int multicast_filter_limit = 32;
97module_param(multicast_filter_limit, int, 0);
98MODULE_PARM_DESC (multicast_filter_limit, "8139cp: maximum number of filtered multicast addresses");
99
100#define CP_DEF_MSG_ENABLE	(NETIF_MSG_DRV		| \
101				 NETIF_MSG_PROBE 	| \
102				 NETIF_MSG_LINK)
103#define CP_NUM_STATS		14	/* struct cp_dma_stats, plus one */
104#define CP_STATS_SIZE		64	/* size in bytes of DMA stats block */
105#define CP_REGS_SIZE		(0xff + 1)
106#define CP_REGS_VER		1		/* version 1 */
107#define CP_RX_RING_SIZE		64
108#define CP_TX_RING_SIZE		64
109#define CP_RING_BYTES		\
110		((sizeof(struct cp_desc) * CP_RX_RING_SIZE) +	\
111		 (sizeof(struct cp_desc) * CP_TX_RING_SIZE) +	\
112		 CP_STATS_SIZE)
113#define NEXT_TX(N)		(((N) + 1) & (CP_TX_RING_SIZE - 1))
114#define NEXT_RX(N)		(((N) + 1) & (CP_RX_RING_SIZE - 1))
115#define TX_BUFFS_AVAIL(CP)					\
116	(((CP)->tx_tail <= (CP)->tx_head) ?			\
117	  (CP)->tx_tail + (CP_TX_RING_SIZE - 1) - (CP)->tx_head :	\
118	  (CP)->tx_tail - (CP)->tx_head - 1)
119
120#define PKT_BUF_SZ		1536	/* Size of each temporary Rx buffer.*/
121#define CP_INTERNAL_PHY		32
122
123/* The following settings are log_2(bytes)-4:  0 == 16 bytes .. 6==1024, 7==end of packet. */
124#define RX_FIFO_THRESH		5	/* Rx buffer level before first PCI xfer.  */
125#define RX_DMA_BURST		4	/* Maximum PCI burst, '4' is 256 */
126#define TX_DMA_BURST		6	/* Maximum PCI burst, '6' is 1024 */
127#define TX_EARLY_THRESH		256	/* Early Tx threshold, in bytes */
128
129/* Time in jiffies before concluding the transmitter is hung. */
130#define TX_TIMEOUT		(6*HZ)
131
132/* hardware minimum and maximum for a single frame's data payload */
133#define CP_MIN_MTU		60	/* TODO: allow lower, but pad */
134#define CP_MAX_MTU		4096
135
136enum {
137	/* NIC register offsets */
138	MAC0		= 0x00,	/* Ethernet hardware address. */
139	MAR0		= 0x08,	/* Multicast filter. */
140	StatsAddr	= 0x10,	/* 64-bit start addr of 64-byte DMA stats blk */
141	TxRingAddr	= 0x20, /* 64-bit start addr of Tx ring */
142	HiTxRingAddr	= 0x28, /* 64-bit start addr of high priority Tx ring */
143	Cmd		= 0x37, /* Command register */
144	IntrMask	= 0x3C, /* Interrupt mask */
145	IntrStatus	= 0x3E, /* Interrupt status */
146	TxConfig	= 0x40, /* Tx configuration */
147	ChipVersion	= 0x43, /* 8-bit chip version, inside TxConfig */
148	RxConfig	= 0x44, /* Rx configuration */
149	RxMissed	= 0x4C,	/* 24 bits valid, write clears */
150	Cfg9346		= 0x50, /* EEPROM select/control; Cfg reg [un]lock */
151	Config1		= 0x52, /* Config1 */
152	Config3		= 0x59, /* Config3 */
153	Config4		= 0x5A, /* Config4 */
154	MultiIntr	= 0x5C, /* Multiple interrupt select */
155	BasicModeCtrl	= 0x62,	/* MII BMCR */
156	BasicModeStatus	= 0x64, /* MII BMSR */
157	NWayAdvert	= 0x66, /* MII ADVERTISE */
158	NWayLPAR	= 0x68, /* MII LPA */
159	NWayExpansion	= 0x6A, /* MII Expansion */
160	TxDmaOkLowDesc  = 0x82, /* Low 16 bit address of a Tx descriptor. */
161	Config5		= 0xD8,	/* Config5 */
162	TxPoll		= 0xD9,	/* Tell chip to check Tx descriptors for work */
163	RxMaxSize	= 0xDA, /* Max size of an Rx packet (8169 only) */
164	CpCmd		= 0xE0, /* C+ Command register (C+ mode only) */
165	IntrMitigate	= 0xE2,	/* rx/tx interrupt mitigation control */
166	RxRingAddr	= 0xE4, /* 64-bit start addr of Rx ring */
167	TxThresh	= 0xEC, /* Early Tx threshold */
168	OldRxBufAddr	= 0x30, /* DMA address of Rx ring buffer (C mode) */
169	OldTSD0		= 0x10, /* DMA address of first Tx desc (C mode) */
170
171	/* Tx and Rx status descriptors */
172	DescOwn		= (1 << 31), /* Descriptor is owned by NIC */
173	RingEnd		= (1 << 30), /* End of descriptor ring */
174	FirstFrag	= (1 << 29), /* First segment of a packet */
175	LastFrag	= (1 << 28), /* Final segment of a packet */
176	LargeSend	= (1 << 27), /* TCP Large Send Offload (TSO) */
177	MSSShift	= 16,	     /* MSS value position */
178	MSSMask		= 0x7ff,     /* MSS value: 11 bits */
179	TxError		= (1 << 23), /* Tx error summary */
180	RxError		= (1 << 20), /* Rx error summary */
181	IPCS		= (1 << 18), /* Calculate IP checksum */
182	UDPCS		= (1 << 17), /* Calculate UDP/IP checksum */
183	TCPCS		= (1 << 16), /* Calculate TCP/IP checksum */
184	TxVlanTag	= (1 << 17), /* Add VLAN tag */
185	RxVlanTagged	= (1 << 16), /* Rx VLAN tag available */
186	IPFail		= (1 << 15), /* IP checksum failed */
187	UDPFail		= (1 << 14), /* UDP/IP checksum failed */
188	TCPFail		= (1 << 13), /* TCP/IP checksum failed */
189	NormalTxPoll	= (1 << 6),  /* One or more normal Tx packets to send */
190	PID1		= (1 << 17), /* 2 protocol id bits:  0==non-IP, */
191	PID0		= (1 << 16), /* 1==UDP/IP, 2==TCP/IP, 3==IP */
192	RxProtoTCP	= 1,
193	RxProtoUDP	= 2,
194	RxProtoIP	= 3,
195	TxFIFOUnder	= (1 << 25), /* Tx FIFO underrun */
196	TxOWC		= (1 << 22), /* Tx Out-of-window collision */
197	TxLinkFail	= (1 << 21), /* Link failed during Tx of packet */
198	TxMaxCol	= (1 << 20), /* Tx aborted due to excessive collisions */
199	TxColCntShift	= 16,	     /* Shift, to get 4-bit Tx collision cnt */
200	TxColCntMask	= 0x01 | 0x02 | 0x04 | 0x08, /* 4-bit collision count */
201	RxErrFrame	= (1 << 27), /* Rx frame alignment error */
202	RxMcast		= (1 << 26), /* Rx multicast packet rcv'd */
203	RxErrCRC	= (1 << 18), /* Rx CRC error */
204	RxErrRunt	= (1 << 19), /* Rx error, packet < 64 bytes */
205	RxErrLong	= (1 << 21), /* Rx error, packet > 4096 bytes */
206	RxErrFIFO	= (1 << 22), /* Rx error, FIFO overflowed, pkt bad */
207
208	/* StatsAddr register */
209	DumpStats	= (1 << 3),  /* Begin stats dump */
210
211	/* RxConfig register */
212	RxCfgFIFOShift	= 13,	     /* Shift, to get Rx FIFO thresh value */
213	RxCfgDMAShift	= 8,	     /* Shift, to get Rx Max DMA value */
214	AcceptErr	= 0x20,	     /* Accept packets with CRC errors */
215	AcceptRunt	= 0x10,	     /* Accept runt (<64 bytes) packets */
216	AcceptBroadcast	= 0x08,	     /* Accept broadcast packets */
217	AcceptMulticast	= 0x04,	     /* Accept multicast packets */
218	AcceptMyPhys	= 0x02,	     /* Accept pkts with our MAC as dest */
219	AcceptAllPhys	= 0x01,	     /* Accept all pkts w/ physical dest */
220
221	/* IntrMask / IntrStatus registers */
222	PciErr		= (1 << 15), /* System error on the PCI bus */
223	TimerIntr	= (1 << 14), /* Asserted when TCTR reaches TimerInt value */
224	LenChg		= (1 << 13), /* Cable length change */
225	SWInt		= (1 << 8),  /* Software-requested interrupt */
226	TxEmpty		= (1 << 7),  /* No Tx descriptors available */
227	RxFIFOOvr	= (1 << 6),  /* Rx FIFO Overflow */
228	LinkChg		= (1 << 5),  /* Packet underrun, or link change */
229	RxEmpty		= (1 << 4),  /* No Rx descriptors available */
230	TxErr		= (1 << 3),  /* Tx error */
231	TxOK		= (1 << 2),  /* Tx packet sent */
232	RxErr		= (1 << 1),  /* Rx error */
233	RxOK		= (1 << 0),  /* Rx packet received */
234	IntrResvd	= (1 << 10), /* reserved, according to RealTek engineers,
235					but hardware likes to raise it */
236
237	IntrAll		= PciErr | TimerIntr | LenChg | SWInt | TxEmpty |
238			  RxFIFOOvr | LinkChg | RxEmpty | TxErr | TxOK |
239			  RxErr | RxOK | IntrResvd,
240
241	/* C mode command register */
242	CmdReset	= (1 << 4),  /* Enable to reset; self-clearing */
243	RxOn		= (1 << 3),  /* Rx mode enable */
244	TxOn		= (1 << 2),  /* Tx mode enable */
245
246	/* C+ mode command register */
247	RxVlanOn	= (1 << 6),  /* Rx VLAN de-tagging enable */
248	RxChkSum	= (1 << 5),  /* Rx checksum offload enable */
249	PCIDAC		= (1 << 4),  /* PCI Dual Address Cycle (64-bit PCI) */
250	PCIMulRW	= (1 << 3),  /* Enable PCI read/write multiple */
251	CpRxOn		= (1 << 1),  /* Rx mode enable */
252	CpTxOn		= (1 << 0),  /* Tx mode enable */
253
254	/* Cfg9436 EEPROM control register */
255	Cfg9346_Lock	= 0x00,	     /* Lock ConfigX/MII register access */
256	Cfg9346_Unlock	= 0xC0,	     /* Unlock ConfigX/MII register access */
257
258	/* TxConfig register */
259	IFG		= (1 << 25) | (1 << 24), /* standard IEEE interframe gap */
260	TxDMAShift	= 8,	     /* DMA burst value (0-7) is shift this many bits */
261
262	/* Early Tx Threshold register */
263	TxThreshMask	= 0x3f,	     /* Mask bits 5-0 */
264	TxThreshMax	= 2048,	     /* Max early Tx threshold */
265
266	/* Config1 register */
267	DriverLoaded	= (1 << 5),  /* Software marker, driver is loaded */
268	LWACT           = (1 << 4),  /* LWAKE active mode */
269	PMEnable	= (1 << 0),  /* Enable various PM features of chip */
270
271	/* Config3 register */
272	PARMEnable	= (1 << 6),  /* Enable auto-loading of PHY parms */
273	MagicPacket     = (1 << 5),  /* Wake up when receives a Magic Packet */
274	LinkUp          = (1 << 4),  /* Wake up when the cable connection is re-established */
275
276	/* Config4 register */
277	LWPTN           = (1 << 1),  /* LWAKE Pattern */
278	LWPME           = (1 << 4),  /* LANWAKE vs PMEB */
279
280	/* Config5 register */
281	BWF             = (1 << 6),  /* Accept Broadcast wakeup frame */
282	MWF             = (1 << 5),  /* Accept Multicast wakeup frame */
283	UWF             = (1 << 4),  /* Accept Unicast wakeup frame */
284	LANWake         = (1 << 1),  /* Enable LANWake signal */
285	PMEStatus	= (1 << 0),  /* PME status can be reset by PCI RST# */
286
287	cp_norx_intr_mask = PciErr | LinkChg | TxOK | TxErr | TxEmpty,
288	cp_rx_intr_mask = RxOK | RxErr | RxEmpty | RxFIFOOvr,
289	cp_intr_mask = cp_rx_intr_mask | cp_norx_intr_mask,
290};
291
292static const unsigned int cp_rx_config =
293	  (RX_FIFO_THRESH << RxCfgFIFOShift) |
294	  (RX_DMA_BURST << RxCfgDMAShift);
295
296struct cp_desc {
297	__le32		opts1;
298	__le32		opts2;
299	__le64		addr;
300};
301
302struct cp_dma_stats {
303	__le64			tx_ok;
304	__le64			rx_ok;
305	__le64			tx_err;
306	__le32			rx_err;
307	__le16			rx_fifo;
308	__le16			frame_align;
309	__le32			tx_ok_1col;
310	__le32			tx_ok_mcol;
311	__le64			rx_ok_phys;
312	__le64			rx_ok_bcast;
313	__le32			rx_ok_mcast;
314	__le16			tx_abort;
315	__le16			tx_underrun;
316} __packed;
317
318struct cp_extra_stats {
319	unsigned long		rx_frags;
320};
321
322struct cp_private {
323	void			__iomem *regs;
324	struct net_device	*dev;
325	spinlock_t		lock;
326	u32			msg_enable;
327
328	struct napi_struct	napi;
329
330	struct pci_dev		*pdev;
331	u32			rx_config;
332	u16			cpcmd;
333
334	struct cp_extra_stats	cp_stats;
335
336	unsigned		rx_head		____cacheline_aligned;
337	unsigned		rx_tail;
338	struct cp_desc		*rx_ring;
339	struct sk_buff		*rx_skb[CP_RX_RING_SIZE];
340
341	unsigned		tx_head		____cacheline_aligned;
342	unsigned		tx_tail;
343	struct cp_desc		*tx_ring;
344	struct sk_buff		*tx_skb[CP_TX_RING_SIZE];
345	u32			tx_opts[CP_TX_RING_SIZE];
346
347	unsigned		rx_buf_sz;
348	unsigned		wol_enabled : 1; /* Is Wake-on-LAN enabled? */
349
350	dma_addr_t		ring_dma;
351
352	struct mii_if_info	mii_if;
353};
354
355#define cpr8(reg)	readb(cp->regs + (reg))
356#define cpr16(reg)	readw(cp->regs + (reg))
357#define cpr32(reg)	readl(cp->regs + (reg))
358#define cpw8(reg,val)	writeb((val), cp->regs + (reg))
359#define cpw16(reg,val)	writew((val), cp->regs + (reg))
360#define cpw32(reg,val)	writel((val), cp->regs + (reg))
361#define cpw8_f(reg,val) do {			\
362	writeb((val), cp->regs + (reg));	\
363	readb(cp->regs + (reg));		\
364	} while (0)
365#define cpw16_f(reg,val) do {			\
366	writew((val), cp->regs + (reg));	\
367	readw(cp->regs + (reg));		\
368	} while (0)
369#define cpw32_f(reg,val) do {			\
370	writel((val), cp->regs + (reg));	\
371	readl(cp->regs + (reg));		\
372	} while (0)
373
374
375static void __cp_set_rx_mode (struct net_device *dev);
376static void cp_tx (struct cp_private *cp);
377static void cp_clean_rings (struct cp_private *cp);
378#ifdef CONFIG_NET_POLL_CONTROLLER
379static void cp_poll_controller(struct net_device *dev);
380#endif
381static int cp_get_eeprom_len(struct net_device *dev);
382static int cp_get_eeprom(struct net_device *dev,
383			 struct ethtool_eeprom *eeprom, u8 *data);
384static int cp_set_eeprom(struct net_device *dev,
385			 struct ethtool_eeprom *eeprom, u8 *data);
386
387static struct {
388	const char str[ETH_GSTRING_LEN];
389} ethtool_stats_keys[] = {
390	{ "tx_ok" },
391	{ "rx_ok" },
392	{ "tx_err" },
393	{ "rx_err" },
394	{ "rx_fifo" },
395	{ "frame_align" },
396	{ "tx_ok_1col" },
397	{ "tx_ok_mcol" },
398	{ "rx_ok_phys" },
399	{ "rx_ok_bcast" },
400	{ "rx_ok_mcast" },
401	{ "tx_abort" },
402	{ "tx_underrun" },
403	{ "rx_frags" },
404};
405
406
407static inline void cp_set_rxbufsize (struct cp_private *cp)
408{
409	unsigned int mtu = cp->dev->mtu;
410
411	if (mtu > ETH_DATA_LEN)
412		/* MTU + ethernet header + FCS + optional VLAN tag */
413		cp->rx_buf_sz = mtu + ETH_HLEN + 8;
414	else
415		cp->rx_buf_sz = PKT_BUF_SZ;
416}
417
418static inline void cp_rx_skb (struct cp_private *cp, struct sk_buff *skb,
419			      struct cp_desc *desc)
420{
421	u32 opts2 = le32_to_cpu(desc->opts2);
422
423	skb->protocol = eth_type_trans (skb, cp->dev);
424
425	cp->dev->stats.rx_packets++;
426	cp->dev->stats.rx_bytes += skb->len;
427
428	if (opts2 & RxVlanTagged)
429		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), swab16(opts2 & 0xffff));
430
431	napi_gro_receive(&cp->napi, skb);
432}
433
434static void cp_rx_err_acct (struct cp_private *cp, unsigned rx_tail,
435			    u32 status, u32 len)
436{
437	netif_dbg(cp, rx_err, cp->dev, "rx err, slot %d status 0x%x len %d\n",
438		  rx_tail, status, len);
439	cp->dev->stats.rx_errors++;
440	if (status & RxErrFrame)
441		cp->dev->stats.rx_frame_errors++;
442	if (status & RxErrCRC)
443		cp->dev->stats.rx_crc_errors++;
444	if ((status & RxErrRunt) || (status & RxErrLong))
445		cp->dev->stats.rx_length_errors++;
446	if ((status & (FirstFrag | LastFrag)) != (FirstFrag | LastFrag))
447		cp->dev->stats.rx_length_errors++;
448	if (status & RxErrFIFO)
449		cp->dev->stats.rx_fifo_errors++;
450}
451
452static inline unsigned int cp_rx_csum_ok (u32 status)
453{
454	unsigned int protocol = (status >> 16) & 0x3;
455
456	if (((protocol == RxProtoTCP) && !(status & TCPFail)) ||
457	    ((protocol == RxProtoUDP) && !(status & UDPFail)))
458		return 1;
459	else
460		return 0;
461}
462
463static int cp_rx_poll(struct napi_struct *napi, int budget)
464{
465	struct cp_private *cp = container_of(napi, struct cp_private, napi);
466	struct net_device *dev = cp->dev;
467	unsigned int rx_tail = cp->rx_tail;
468	int rx = 0;
469
470	cpw16(IntrStatus, cp_rx_intr_mask);
471
472	while (rx < budget) {
473		u32 status, len;
474		dma_addr_t mapping, new_mapping;
475		struct sk_buff *skb, *new_skb;
476		struct cp_desc *desc;
477		const unsigned buflen = cp->rx_buf_sz;
478
479		skb = cp->rx_skb[rx_tail];
480		BUG_ON(!skb);
481
482		desc = &cp->rx_ring[rx_tail];
483		status = le32_to_cpu(desc->opts1);
484		if (status & DescOwn)
485			break;
486
487		len = (status & 0x1fff) - 4;
488		mapping = le64_to_cpu(desc->addr);
489
490		if ((status & (FirstFrag | LastFrag)) != (FirstFrag | LastFrag)) {
491			/* we don't support incoming fragmented frames.
492			 * instead, we attempt to ensure that the
493			 * pre-allocated RX skbs are properly sized such
494			 * that RX fragments are never encountered
495			 */
496			cp_rx_err_acct(cp, rx_tail, status, len);
497			dev->stats.rx_dropped++;
498			cp->cp_stats.rx_frags++;
499			goto rx_next;
500		}
501
502		if (status & (RxError | RxErrFIFO)) {
503			cp_rx_err_acct(cp, rx_tail, status, len);
504			goto rx_next;
505		}
506
507		netif_dbg(cp, rx_status, dev, "rx slot %d status 0x%x len %d\n",
508			  rx_tail, status, len);
509
510		new_skb = napi_alloc_skb(napi, buflen);
511		if (!new_skb) {
512			dev->stats.rx_dropped++;
513			goto rx_next;
514		}
515
516		new_mapping = dma_map_single(&cp->pdev->dev, new_skb->data, buflen,
517					 DMA_FROM_DEVICE);
518		if (dma_mapping_error(&cp->pdev->dev, new_mapping)) {
519			dev->stats.rx_dropped++;
520			kfree_skb(new_skb);
521			goto rx_next;
522		}
523
524		dma_unmap_single(&cp->pdev->dev, mapping,
525				 buflen, DMA_FROM_DEVICE);
526
527		/* Handle checksum offloading for incoming packets. */
528		if (cp_rx_csum_ok(status))
529			skb->ip_summed = CHECKSUM_UNNECESSARY;
530		else
531			skb_checksum_none_assert(skb);
532
533		skb_put(skb, len);
534
535		cp->rx_skb[rx_tail] = new_skb;
536
537		cp_rx_skb(cp, skb, desc);
538		rx++;
539		mapping = new_mapping;
540
541rx_next:
542		cp->rx_ring[rx_tail].opts2 = 0;
543		cp->rx_ring[rx_tail].addr = cpu_to_le64(mapping);
544		if (rx_tail == (CP_RX_RING_SIZE - 1))
545			desc->opts1 = cpu_to_le32(DescOwn | RingEnd |
546						  cp->rx_buf_sz);
547		else
548			desc->opts1 = cpu_to_le32(DescOwn | cp->rx_buf_sz);
549		rx_tail = NEXT_RX(rx_tail);
550	}
551
552	cp->rx_tail = rx_tail;
553
554	/* if we did not reach work limit, then we're done with
555	 * this round of polling
556	 */
557	if (rx < budget && napi_complete_done(napi, rx)) {
558		unsigned long flags;
559
560		spin_lock_irqsave(&cp->lock, flags);
561		cpw16_f(IntrMask, cp_intr_mask);
562		spin_unlock_irqrestore(&cp->lock, flags);
563	}
564
565	return rx;
566}
567
568static irqreturn_t cp_interrupt (int irq, void *dev_instance)
569{
570	struct net_device *dev = dev_instance;
571	struct cp_private *cp;
572	int handled = 0;
573	u16 status;
574	u16 mask;
575
576	if (unlikely(dev == NULL))
577		return IRQ_NONE;
578	cp = netdev_priv(dev);
579
580	spin_lock(&cp->lock);
581
582	mask = cpr16(IntrMask);
583	if (!mask)
584		goto out_unlock;
585
586	status = cpr16(IntrStatus);
587	if (!status || (status == 0xFFFF))
588		goto out_unlock;
589
590	handled = 1;
591
592	netif_dbg(cp, intr, dev, "intr, status %04x cmd %02x cpcmd %04x\n",
593		  status, cpr8(Cmd), cpr16(CpCmd));
594
595	cpw16(IntrStatus, status & ~cp_rx_intr_mask);
596
597	/* close possible race's with dev_close */
598	if (unlikely(!netif_running(dev))) {
599		cpw16(IntrMask, 0);
600		goto out_unlock;
601	}
602
603	if (status & (RxOK | RxErr | RxEmpty | RxFIFOOvr))
604		if (napi_schedule_prep(&cp->napi)) {
605			cpw16_f(IntrMask, cp_norx_intr_mask);
606			__napi_schedule(&cp->napi);
607		}
608
609	if (status & (TxOK | TxErr | TxEmpty | SWInt))
610		cp_tx(cp);
611	if (status & LinkChg)
612		mii_check_media(&cp->mii_if, netif_msg_link(cp), false);
613
614
615	if (status & PciErr) {
616		u16 pci_status;
617
618		pci_read_config_word(cp->pdev, PCI_STATUS, &pci_status);
619		pci_write_config_word(cp->pdev, PCI_STATUS, pci_status);
620		netdev_err(dev, "PCI bus error, status=%04x, PCI status=%04x\n",
621			   status, pci_status);
622
623		/* TODO: reset hardware */
624	}
625
626out_unlock:
627	spin_unlock(&cp->lock);
628
629	return IRQ_RETVAL(handled);
630}
631
632#ifdef CONFIG_NET_POLL_CONTROLLER
633/*
634 * Polling receive - used by netconsole and other diagnostic tools
635 * to allow network i/o with interrupts disabled.
636 */
637static void cp_poll_controller(struct net_device *dev)
638{
639	struct cp_private *cp = netdev_priv(dev);
640	const int irq = cp->pdev->irq;
641
642	disable_irq(irq);
643	cp_interrupt(irq, dev);
644	enable_irq(irq);
645}
646#endif
647
648static void cp_tx (struct cp_private *cp)
649{
650	unsigned tx_head = cp->tx_head;
651	unsigned tx_tail = cp->tx_tail;
652	unsigned bytes_compl = 0, pkts_compl = 0;
653
654	while (tx_tail != tx_head) {
655		struct cp_desc *txd = cp->tx_ring + tx_tail;
656		struct sk_buff *skb;
657		u32 status;
658
659		rmb();
660		status = le32_to_cpu(txd->opts1);
661		if (status & DescOwn)
662			break;
663
664		skb = cp->tx_skb[tx_tail];
665		BUG_ON(!skb);
666
667		dma_unmap_single(&cp->pdev->dev, le64_to_cpu(txd->addr),
668				 cp->tx_opts[tx_tail] & 0xffff,
669				 DMA_TO_DEVICE);
670
671		if (status & LastFrag) {
672			if (status & (TxError | TxFIFOUnder)) {
673				netif_dbg(cp, tx_err, cp->dev,
674					  "tx err, status 0x%x\n", status);
675				cp->dev->stats.tx_errors++;
676				if (status & TxOWC)
677					cp->dev->stats.tx_window_errors++;
678				if (status & TxMaxCol)
679					cp->dev->stats.tx_aborted_errors++;
680				if (status & TxLinkFail)
681					cp->dev->stats.tx_carrier_errors++;
682				if (status & TxFIFOUnder)
683					cp->dev->stats.tx_fifo_errors++;
684			} else {
685				cp->dev->stats.collisions +=
686					((status >> TxColCntShift) & TxColCntMask);
687				cp->dev->stats.tx_packets++;
688				cp->dev->stats.tx_bytes += skb->len;
689				netif_dbg(cp, tx_done, cp->dev,
690					  "tx done, slot %d\n", tx_tail);
691			}
692			bytes_compl += skb->len;
693			pkts_compl++;
694			dev_consume_skb_irq(skb);
695		}
696
697		cp->tx_skb[tx_tail] = NULL;
698
699		tx_tail = NEXT_TX(tx_tail);
700	}
701
702	cp->tx_tail = tx_tail;
703
704	netdev_completed_queue(cp->dev, pkts_compl, bytes_compl);
705	if (TX_BUFFS_AVAIL(cp) > (MAX_SKB_FRAGS + 1))
706		netif_wake_queue(cp->dev);
707}
708
709static inline u32 cp_tx_vlan_tag(struct sk_buff *skb)
710{
711	return skb_vlan_tag_present(skb) ?
712		TxVlanTag | swab16(skb_vlan_tag_get(skb)) : 0x00;
713}
714
715static void unwind_tx_frag_mapping(struct cp_private *cp, struct sk_buff *skb,
716				   int first, int entry_last)
717{
718	int frag, index;
719	struct cp_desc *txd;
720	skb_frag_t *this_frag;
721	for (frag = 0; frag+first < entry_last; frag++) {
722		index = first+frag;
723		cp->tx_skb[index] = NULL;
724		txd = &cp->tx_ring[index];
725		this_frag = &skb_shinfo(skb)->frags[frag];
726		dma_unmap_single(&cp->pdev->dev, le64_to_cpu(txd->addr),
727				 skb_frag_size(this_frag), DMA_TO_DEVICE);
728	}
729}
730
731static netdev_tx_t cp_start_xmit (struct sk_buff *skb,
732					struct net_device *dev)
733{
734	struct cp_private *cp = netdev_priv(dev);
735	unsigned entry;
736	u32 eor, opts1;
737	unsigned long intr_flags;
738	__le32 opts2;
739	int mss = 0;
740
741	spin_lock_irqsave(&cp->lock, intr_flags);
742
743	/* This is a hard error, log it. */
744	if (TX_BUFFS_AVAIL(cp) <= (skb_shinfo(skb)->nr_frags + 1)) {
745		netif_stop_queue(dev);
746		spin_unlock_irqrestore(&cp->lock, intr_flags);
747		netdev_err(dev, "BUG! Tx Ring full when queue awake!\n");
748		return NETDEV_TX_BUSY;
749	}
750
751	entry = cp->tx_head;
752	eor = (entry == (CP_TX_RING_SIZE - 1)) ? RingEnd : 0;
753	mss = skb_shinfo(skb)->gso_size;
754
755	if (mss > MSSMask) {
756		netdev_WARN_ONCE(dev, "Net bug: GSO size %d too large for 8139CP\n",
757				 mss);
758		goto out_dma_error;
759	}
760
761	opts2 = cpu_to_le32(cp_tx_vlan_tag(skb));
762	opts1 = DescOwn;
763	if (mss)
764		opts1 |= LargeSend | (mss << MSSShift);
765	else if (skb->ip_summed == CHECKSUM_PARTIAL) {
766		const struct iphdr *ip = ip_hdr(skb);
767		if (ip->protocol == IPPROTO_TCP)
768			opts1 |= IPCS | TCPCS;
769		else if (ip->protocol == IPPROTO_UDP)
770			opts1 |= IPCS | UDPCS;
771		else {
772			WARN_ONCE(1,
773				  "Net bug: asked to checksum invalid Legacy IP packet\n");
774			goto out_dma_error;
775		}
776	}
777
778	if (skb_shinfo(skb)->nr_frags == 0) {
779		struct cp_desc *txd = &cp->tx_ring[entry];
780		u32 len;
781		dma_addr_t mapping;
782
783		len = skb->len;
784		mapping = dma_map_single(&cp->pdev->dev, skb->data, len, DMA_TO_DEVICE);
785		if (dma_mapping_error(&cp->pdev->dev, mapping))
786			goto out_dma_error;
787
788		txd->opts2 = opts2;
789		txd->addr = cpu_to_le64(mapping);
790		wmb();
791
792		opts1 |= eor | len | FirstFrag | LastFrag;
793
794		txd->opts1 = cpu_to_le32(opts1);
795		wmb();
796
797		cp->tx_skb[entry] = skb;
798		cp->tx_opts[entry] = opts1;
799		netif_dbg(cp, tx_queued, cp->dev, "tx queued, slot %d, skblen %d\n",
800			  entry, skb->len);
801	} else {
802		struct cp_desc *txd;
803		u32 first_len, first_eor, ctrl;
804		dma_addr_t first_mapping;
805		int frag, first_entry = entry;
806
807		/* We must give this initial chunk to the device last.
808		 * Otherwise we could race with the device.
809		 */
810		first_eor = eor;
811		first_len = skb_headlen(skb);
812		first_mapping = dma_map_single(&cp->pdev->dev, skb->data,
813					       first_len, DMA_TO_DEVICE);
814		if (dma_mapping_error(&cp->pdev->dev, first_mapping))
815			goto out_dma_error;
816
817		cp->tx_skb[entry] = skb;
818
819		for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
820			const skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag];
821			u32 len;
822			dma_addr_t mapping;
823
824			entry = NEXT_TX(entry);
825
826			len = skb_frag_size(this_frag);
827			mapping = dma_map_single(&cp->pdev->dev,
828						 skb_frag_address(this_frag),
829						 len, DMA_TO_DEVICE);
830			if (dma_mapping_error(&cp->pdev->dev, mapping)) {
831				unwind_tx_frag_mapping(cp, skb, first_entry, entry);
832				goto out_dma_error;
833			}
834
835			eor = (entry == (CP_TX_RING_SIZE - 1)) ? RingEnd : 0;
836
837			ctrl = opts1 | eor | len;
838
839			if (frag == skb_shinfo(skb)->nr_frags - 1)
840				ctrl |= LastFrag;
841
842			txd = &cp->tx_ring[entry];
843			txd->opts2 = opts2;
844			txd->addr = cpu_to_le64(mapping);
845			wmb();
846
847			txd->opts1 = cpu_to_le32(ctrl);
848			wmb();
849
850			cp->tx_opts[entry] = ctrl;
851			cp->tx_skb[entry] = skb;
852		}
853
854		txd = &cp->tx_ring[first_entry];
855		txd->opts2 = opts2;
856		txd->addr = cpu_to_le64(first_mapping);
857		wmb();
858
859		ctrl = opts1 | first_eor | first_len | FirstFrag;
860		txd->opts1 = cpu_to_le32(ctrl);
861		wmb();
862
863		cp->tx_opts[first_entry] = ctrl;
864		netif_dbg(cp, tx_queued, cp->dev, "tx queued, slots %d-%d, skblen %d\n",
865			  first_entry, entry, skb->len);
866	}
867	cp->tx_head = NEXT_TX(entry);
868
869	netdev_sent_queue(dev, skb->len);
870	if (TX_BUFFS_AVAIL(cp) <= (MAX_SKB_FRAGS + 1))
871		netif_stop_queue(dev);
872
873out_unlock:
874	spin_unlock_irqrestore(&cp->lock, intr_flags);
875
876	cpw8(TxPoll, NormalTxPoll);
877
878	return NETDEV_TX_OK;
879out_dma_error:
880	dev_kfree_skb_any(skb);
881	cp->dev->stats.tx_dropped++;
882	goto out_unlock;
883}
884
885/* Set or clear the multicast filter for this adaptor.
886   This routine is not state sensitive and need not be SMP locked. */
887
888static void __cp_set_rx_mode (struct net_device *dev)
889{
890	struct cp_private *cp = netdev_priv(dev);
891	u32 mc_filter[2];	/* Multicast hash filter */
892	int rx_mode;
893
894	/* Note: do not reorder, GCC is clever about common statements. */
895	if (dev->flags & IFF_PROMISC) {
896		/* Unconditionally log net taps. */
897		rx_mode =
898		    AcceptBroadcast | AcceptMulticast | AcceptMyPhys |
899		    AcceptAllPhys;
900		mc_filter[1] = mc_filter[0] = 0xffffffff;
901	} else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
902		   (dev->flags & IFF_ALLMULTI)) {
903		/* Too many to filter perfectly -- accept all multicasts. */
904		rx_mode = AcceptBroadcast | AcceptMulticast | AcceptMyPhys;
905		mc_filter[1] = mc_filter[0] = 0xffffffff;
906	} else {
907		struct netdev_hw_addr *ha;
908		rx_mode = AcceptBroadcast | AcceptMyPhys;
909		mc_filter[1] = mc_filter[0] = 0;
910		netdev_for_each_mc_addr(ha, dev) {
911			int bit_nr = ether_crc(ETH_ALEN, ha->addr) >> 26;
912
913			mc_filter[bit_nr >> 5] |= 1 << (bit_nr & 31);
914			rx_mode |= AcceptMulticast;
915		}
916	}
917
918	/* We can safely update without stopping the chip. */
919	cp->rx_config = cp_rx_config | rx_mode;
920	cpw32_f(RxConfig, cp->rx_config);
921
922	cpw32_f (MAR0 + 0, mc_filter[0]);
923	cpw32_f (MAR0 + 4, mc_filter[1]);
924}
925
926static void cp_set_rx_mode (struct net_device *dev)
927{
928	unsigned long flags;
929	struct cp_private *cp = netdev_priv(dev);
930
931	spin_lock_irqsave (&cp->lock, flags);
932	__cp_set_rx_mode(dev);
933	spin_unlock_irqrestore (&cp->lock, flags);
934}
935
936static void __cp_get_stats(struct cp_private *cp)
937{
938	/* only lower 24 bits valid; write any value to clear */
939	cp->dev->stats.rx_missed_errors += (cpr32 (RxMissed) & 0xffffff);
940	cpw32 (RxMissed, 0);
941}
942
943static struct net_device_stats *cp_get_stats(struct net_device *dev)
944{
945	struct cp_private *cp = netdev_priv(dev);
946	unsigned long flags;
947
948	/* The chip only need report frame silently dropped. */
949	spin_lock_irqsave(&cp->lock, flags);
950	if (netif_running(dev) && netif_device_present(dev))
951		__cp_get_stats(cp);
952	spin_unlock_irqrestore(&cp->lock, flags);
953
954	return &dev->stats;
955}
956
957static void cp_stop_hw (struct cp_private *cp)
958{
959	cpw16(IntrStatus, ~(cpr16(IntrStatus)));
960	cpw16_f(IntrMask, 0);
961	cpw8(Cmd, 0);
962	cpw16_f(CpCmd, 0);
963	cpw16_f(IntrStatus, ~(cpr16(IntrStatus)));
964
965	cp->rx_tail = 0;
966	cp->tx_head = cp->tx_tail = 0;
967
968	netdev_reset_queue(cp->dev);
969}
970
971static void cp_reset_hw (struct cp_private *cp)
972{
973	unsigned work = 1000;
974
975	cpw8(Cmd, CmdReset);
976
977	while (work--) {
978		if (!(cpr8(Cmd) & CmdReset))
979			return;
980
981		schedule_timeout_uninterruptible(10);
982	}
983
984	netdev_err(cp->dev, "hardware reset timeout\n");
985}
986
987static inline void cp_start_hw (struct cp_private *cp)
988{
989	dma_addr_t ring_dma;
990
991	cpw16(CpCmd, cp->cpcmd);
992
993	/*
994	 * These (at least TxRingAddr) need to be configured after the
995	 * corresponding bits in CpCmd are enabled. Datasheet v1.6 ��6.33
996	 * (C+ Command Register) recommends that these and more be configured
997	 * *after* the [RT]xEnable bits in CpCmd are set. And on some hardware
998	 * it's been observed that the TxRingAddr is actually reset to garbage
999	 * when C+ mode Tx is enabled in CpCmd.
1000	 */
1001	cpw32_f(HiTxRingAddr, 0);
1002	cpw32_f(HiTxRingAddr + 4, 0);
1003
1004	ring_dma = cp->ring_dma;
1005	cpw32_f(RxRingAddr, ring_dma & 0xffffffff);
1006	cpw32_f(RxRingAddr + 4, (ring_dma >> 16) >> 16);
1007
1008	ring_dma += sizeof(struct cp_desc) * CP_RX_RING_SIZE;
1009	cpw32_f(TxRingAddr, ring_dma & 0xffffffff);
1010	cpw32_f(TxRingAddr + 4, (ring_dma >> 16) >> 16);
1011
1012	/*
1013	 * Strictly speaking, the datasheet says this should be enabled
1014	 * *before* setting the descriptor addresses. But what, then, would
1015	 * prevent it from doing DMA to random unconfigured addresses?
1016	 * This variant appears to work fine.
1017	 */
1018	cpw8(Cmd, RxOn | TxOn);
1019
1020	netdev_reset_queue(cp->dev);
1021}
1022
1023static void cp_enable_irq(struct cp_private *cp)
1024{
1025	cpw16_f(IntrMask, cp_intr_mask);
1026}
1027
1028static void cp_init_hw (struct cp_private *cp)
1029{
1030	struct net_device *dev = cp->dev;
1031
1032	cp_reset_hw(cp);
1033
1034	cpw8_f (Cfg9346, Cfg9346_Unlock);
1035
1036	/* Restore our idea of the MAC address. */
1037	cpw32_f (MAC0 + 0, le32_to_cpu (*(__le32 *) (dev->dev_addr + 0)));
1038	cpw32_f (MAC0 + 4, le32_to_cpu (*(__le32 *) (dev->dev_addr + 4)));
1039
1040	cp_start_hw(cp);
1041	cpw8(TxThresh, 0x06); /* XXX convert magic num to a constant */
1042
1043	__cp_set_rx_mode(dev);
1044	cpw32_f (TxConfig, IFG | (TX_DMA_BURST << TxDMAShift));
1045
1046	cpw8(Config1, cpr8(Config1) | DriverLoaded | PMEnable);
1047	/* Disable Wake-on-LAN. Can be turned on with ETHTOOL_SWOL */
1048	cpw8(Config3, PARMEnable);
1049	cp->wol_enabled = 0;
1050
1051	cpw8(Config5, cpr8(Config5) & PMEStatus);
1052
1053	cpw16(MultiIntr, 0);
1054
1055	cpw8_f(Cfg9346, Cfg9346_Lock);
1056}
1057
1058static int cp_refill_rx(struct cp_private *cp)
1059{
1060	struct net_device *dev = cp->dev;
1061	unsigned i;
1062
1063	for (i = 0; i < CP_RX_RING_SIZE; i++) {
1064		struct sk_buff *skb;
1065		dma_addr_t mapping;
1066
1067		skb = netdev_alloc_skb_ip_align(dev, cp->rx_buf_sz);
1068		if (!skb)
1069			goto err_out;
1070
1071		mapping = dma_map_single(&cp->pdev->dev, skb->data,
1072					 cp->rx_buf_sz, DMA_FROM_DEVICE);
1073		if (dma_mapping_error(&cp->pdev->dev, mapping)) {
1074			kfree_skb(skb);
1075			goto err_out;
1076		}
1077		cp->rx_skb[i] = skb;
1078
1079		cp->rx_ring[i].opts2 = 0;
1080		cp->rx_ring[i].addr = cpu_to_le64(mapping);
1081		if (i == (CP_RX_RING_SIZE - 1))
1082			cp->rx_ring[i].opts1 =
1083				cpu_to_le32(DescOwn | RingEnd | cp->rx_buf_sz);
1084		else
1085			cp->rx_ring[i].opts1 =
1086				cpu_to_le32(DescOwn | cp->rx_buf_sz);
1087	}
1088
1089	return 0;
1090
1091err_out:
1092	cp_clean_rings(cp);
1093	return -ENOMEM;
1094}
1095
1096static void cp_init_rings_index (struct cp_private *cp)
1097{
1098	cp->rx_tail = 0;
1099	cp->tx_head = cp->tx_tail = 0;
1100}
1101
1102static int cp_init_rings (struct cp_private *cp)
1103{
1104	memset(cp->tx_ring, 0, sizeof(struct cp_desc) * CP_TX_RING_SIZE);
1105	cp->tx_ring[CP_TX_RING_SIZE - 1].opts1 = cpu_to_le32(RingEnd);
1106	memset(cp->tx_opts, 0, sizeof(cp->tx_opts));
1107
1108	cp_init_rings_index(cp);
1109
1110	return cp_refill_rx (cp);
1111}
1112
1113static int cp_alloc_rings (struct cp_private *cp)
1114{
1115	struct device *d = &cp->pdev->dev;
1116	void *mem;
1117	int rc;
1118
1119	mem = dma_alloc_coherent(d, CP_RING_BYTES, &cp->ring_dma, GFP_KERNEL);
1120	if (!mem)
1121		return -ENOMEM;
1122
1123	cp->rx_ring = mem;
1124	cp->tx_ring = &cp->rx_ring[CP_RX_RING_SIZE];
1125
1126	rc = cp_init_rings(cp);
1127	if (rc < 0)
1128		dma_free_coherent(d, CP_RING_BYTES, cp->rx_ring, cp->ring_dma);
1129
1130	return rc;
1131}
1132
1133static void cp_clean_rings (struct cp_private *cp)
1134{
1135	struct cp_desc *desc;
1136	unsigned i;
1137
1138	for (i = 0; i < CP_RX_RING_SIZE; i++) {
1139		if (cp->rx_skb[i]) {
1140			desc = cp->rx_ring + i;
1141			dma_unmap_single(&cp->pdev->dev,le64_to_cpu(desc->addr),
1142					 cp->rx_buf_sz, DMA_FROM_DEVICE);
1143			dev_kfree_skb_any(cp->rx_skb[i]);
1144		}
1145	}
1146
1147	for (i = 0; i < CP_TX_RING_SIZE; i++) {
1148		if (cp->tx_skb[i]) {
1149			struct sk_buff *skb = cp->tx_skb[i];
1150
1151			desc = cp->tx_ring + i;
1152			dma_unmap_single(&cp->pdev->dev,le64_to_cpu(desc->addr),
1153					 le32_to_cpu(desc->opts1) & 0xffff,
1154					 DMA_TO_DEVICE);
1155			if (le32_to_cpu(desc->opts1) & LastFrag)
1156				dev_kfree_skb_any(skb);
1157			cp->dev->stats.tx_dropped++;
1158		}
1159	}
1160	netdev_reset_queue(cp->dev);
1161
1162	memset(cp->rx_ring, 0, sizeof(struct cp_desc) * CP_RX_RING_SIZE);
1163	memset(cp->tx_ring, 0, sizeof(struct cp_desc) * CP_TX_RING_SIZE);
1164	memset(cp->tx_opts, 0, sizeof(cp->tx_opts));
1165
1166	memset(cp->rx_skb, 0, sizeof(struct sk_buff *) * CP_RX_RING_SIZE);
1167	memset(cp->tx_skb, 0, sizeof(struct sk_buff *) * CP_TX_RING_SIZE);
1168}
1169
1170static void cp_free_rings (struct cp_private *cp)
1171{
1172	cp_clean_rings(cp);
1173	dma_free_coherent(&cp->pdev->dev, CP_RING_BYTES, cp->rx_ring,
1174			  cp->ring_dma);
1175	cp->rx_ring = NULL;
1176	cp->tx_ring = NULL;
1177}
1178
1179static int cp_open (struct net_device *dev)
1180{
1181	struct cp_private *cp = netdev_priv(dev);
1182	const int irq = cp->pdev->irq;
1183	int rc;
1184
1185	netif_dbg(cp, ifup, dev, "enabling interface\n");
1186
1187	rc = cp_alloc_rings(cp);
1188	if (rc)
1189		return rc;
1190
1191	napi_enable(&cp->napi);
1192
1193	cp_init_hw(cp);
1194
1195	rc = request_irq(irq, cp_interrupt, IRQF_SHARED, dev->name, dev);
1196	if (rc)
1197		goto err_out_hw;
1198
1199	cp_enable_irq(cp);
1200
1201	netif_carrier_off(dev);
1202	mii_check_media(&cp->mii_if, netif_msg_link(cp), true);
1203	netif_start_queue(dev);
1204
1205	return 0;
1206
1207err_out_hw:
1208	napi_disable(&cp->napi);
1209	cp_stop_hw(cp);
1210	cp_free_rings(cp);
1211	return rc;
1212}
1213
1214static int cp_close (struct net_device *dev)
1215{
1216	struct cp_private *cp = netdev_priv(dev);
1217	unsigned long flags;
1218
1219	napi_disable(&cp->napi);
1220
1221	netif_dbg(cp, ifdown, dev, "disabling interface\n");
1222
1223	spin_lock_irqsave(&cp->lock, flags);
1224
1225	netif_stop_queue(dev);
1226	netif_carrier_off(dev);
1227
1228	cp_stop_hw(cp);
1229
1230	spin_unlock_irqrestore(&cp->lock, flags);
1231
1232	free_irq(cp->pdev->irq, dev);
1233
1234	cp_free_rings(cp);
1235	return 0;
1236}
1237
1238static void cp_tx_timeout(struct net_device *dev, unsigned int txqueue)
1239{
1240	struct cp_private *cp = netdev_priv(dev);
1241	unsigned long flags;
1242	int i;
1243
1244	netdev_warn(dev, "Transmit timeout, status %2x %4x %4x %4x\n",
1245		    cpr8(Cmd), cpr16(CpCmd),
1246		    cpr16(IntrStatus), cpr16(IntrMask));
1247
1248	spin_lock_irqsave(&cp->lock, flags);
1249
1250	netif_dbg(cp, tx_err, cp->dev, "TX ring head %d tail %d desc %x\n",
1251		  cp->tx_head, cp->tx_tail, cpr16(TxDmaOkLowDesc));
1252	for (i = 0; i < CP_TX_RING_SIZE; i++) {
1253		netif_dbg(cp, tx_err, cp->dev,
1254			  "TX slot %d @%p: %08x (%08x) %08x %llx %p\n",
1255			  i, &cp->tx_ring[i], le32_to_cpu(cp->tx_ring[i].opts1),
1256			  cp->tx_opts[i], le32_to_cpu(cp->tx_ring[i].opts2),
1257			  le64_to_cpu(cp->tx_ring[i].addr),
1258			  cp->tx_skb[i]);
1259	}
1260
1261	cp_stop_hw(cp);
1262	cp_clean_rings(cp);
1263	cp_init_rings(cp);
1264	cp_start_hw(cp);
1265	__cp_set_rx_mode(dev);
1266	cpw16_f(IntrMask, cp_norx_intr_mask);
1267
1268	netif_wake_queue(dev);
1269	napi_schedule_irqoff(&cp->napi);
1270
1271	spin_unlock_irqrestore(&cp->lock, flags);
1272}
1273
1274static int cp_change_mtu(struct net_device *dev, int new_mtu)
1275{
1276	struct cp_private *cp = netdev_priv(dev);
1277
1278	/* if network interface not up, no need for complexity */
1279	if (!netif_running(dev)) {
1280		dev->mtu = new_mtu;
1281		cp_set_rxbufsize(cp);	/* set new rx buf size */
1282		return 0;
1283	}
1284
1285	/* network IS up, close it, reset MTU, and come up again. */
1286	cp_close(dev);
1287	dev->mtu = new_mtu;
1288	cp_set_rxbufsize(cp);
1289	return cp_open(dev);
1290}
1291
1292static const char mii_2_8139_map[8] = {
1293	BasicModeCtrl,
1294	BasicModeStatus,
1295	0,
1296	0,
1297	NWayAdvert,
1298	NWayLPAR,
1299	NWayExpansion,
1300	0
1301};
1302
1303static int mdio_read(struct net_device *dev, int phy_id, int location)
1304{
1305	struct cp_private *cp = netdev_priv(dev);
1306
1307	return location < 8 && mii_2_8139_map[location] ?
1308	       readw(cp->regs + mii_2_8139_map[location]) : 0;
1309}
1310
1311
1312static void mdio_write(struct net_device *dev, int phy_id, int location,
1313		       int value)
1314{
1315	struct cp_private *cp = netdev_priv(dev);
1316
1317	if (location == 0) {
1318		cpw8(Cfg9346, Cfg9346_Unlock);
1319		cpw16(BasicModeCtrl, value);
1320		cpw8(Cfg9346, Cfg9346_Lock);
1321	} else if (location < 8 && mii_2_8139_map[location])
1322		cpw16(mii_2_8139_map[location], value);
1323}
1324
1325/* Set the ethtool Wake-on-LAN settings */
1326static int netdev_set_wol (struct cp_private *cp,
1327			   const struct ethtool_wolinfo *wol)
1328{
1329	u8 options;
1330
1331	options = cpr8 (Config3) & ~(LinkUp | MagicPacket);
1332	/* If WOL is being disabled, no need for complexity */
1333	if (wol->wolopts) {
1334		if (wol->wolopts & WAKE_PHY)	options |= LinkUp;
1335		if (wol->wolopts & WAKE_MAGIC)	options |= MagicPacket;
1336	}
1337
1338	cpw8 (Cfg9346, Cfg9346_Unlock);
1339	cpw8 (Config3, options);
1340	cpw8 (Cfg9346, Cfg9346_Lock);
1341
1342	options = 0; /* Paranoia setting */
1343	options = cpr8 (Config5) & ~(UWF | MWF | BWF);
1344	/* If WOL is being disabled, no need for complexity */
1345	if (wol->wolopts) {
1346		if (wol->wolopts & WAKE_UCAST)  options |= UWF;
1347		if (wol->wolopts & WAKE_BCAST)	options |= BWF;
1348		if (wol->wolopts & WAKE_MCAST)	options |= MWF;
1349	}
1350
1351	cpw8 (Config5, options);
1352
1353	cp->wol_enabled = (wol->wolopts) ? 1 : 0;
1354
1355	return 0;
1356}
1357
1358/* Get the ethtool Wake-on-LAN settings */
1359static void netdev_get_wol (struct cp_private *cp,
1360	             struct ethtool_wolinfo *wol)
1361{
1362	u8 options;
1363
1364	wol->wolopts   = 0; /* Start from scratch */
1365	wol->supported = WAKE_PHY   | WAKE_BCAST | WAKE_MAGIC |
1366		         WAKE_MCAST | WAKE_UCAST;
1367	/* We don't need to go on if WOL is disabled */
1368	if (!cp->wol_enabled) return;
1369
1370	options        = cpr8 (Config3);
1371	if (options & LinkUp)        wol->wolopts |= WAKE_PHY;
1372	if (options & MagicPacket)   wol->wolopts |= WAKE_MAGIC;
1373
1374	options        = 0; /* Paranoia setting */
1375	options        = cpr8 (Config5);
1376	if (options & UWF)           wol->wolopts |= WAKE_UCAST;
1377	if (options & BWF)           wol->wolopts |= WAKE_BCAST;
1378	if (options & MWF)           wol->wolopts |= WAKE_MCAST;
1379}
1380
1381static void cp_get_drvinfo (struct net_device *dev, struct ethtool_drvinfo *info)
1382{
1383	struct cp_private *cp = netdev_priv(dev);
1384
1385	strscpy(info->driver, DRV_NAME, sizeof(info->driver));
1386	strscpy(info->version, DRV_VERSION, sizeof(info->version));
1387	strscpy(info->bus_info, pci_name(cp->pdev), sizeof(info->bus_info));
1388}
1389
1390static void cp_get_ringparam(struct net_device *dev,
1391			     struct ethtool_ringparam *ring,
1392			     struct kernel_ethtool_ringparam *kernel_ring,
1393			     struct netlink_ext_ack *extack)
1394{
1395	ring->rx_max_pending = CP_RX_RING_SIZE;
1396	ring->tx_max_pending = CP_TX_RING_SIZE;
1397	ring->rx_pending = CP_RX_RING_SIZE;
1398	ring->tx_pending = CP_TX_RING_SIZE;
1399}
1400
1401static int cp_get_regs_len(struct net_device *dev)
1402{
1403	return CP_REGS_SIZE;
1404}
1405
1406static int cp_get_sset_count (struct net_device *dev, int sset)
1407{
1408	switch (sset) {
1409	case ETH_SS_STATS:
1410		return CP_NUM_STATS;
1411	default:
1412		return -EOPNOTSUPP;
1413	}
1414}
1415
1416static int cp_get_link_ksettings(struct net_device *dev,
1417				 struct ethtool_link_ksettings *cmd)
1418{
1419	struct cp_private *cp = netdev_priv(dev);
1420	unsigned long flags;
1421
1422	spin_lock_irqsave(&cp->lock, flags);
1423	mii_ethtool_get_link_ksettings(&cp->mii_if, cmd);
1424	spin_unlock_irqrestore(&cp->lock, flags);
1425
1426	return 0;
1427}
1428
1429static int cp_set_link_ksettings(struct net_device *dev,
1430				 const struct ethtool_link_ksettings *cmd)
1431{
1432	struct cp_private *cp = netdev_priv(dev);
1433	int rc;
1434	unsigned long flags;
1435
1436	spin_lock_irqsave(&cp->lock, flags);
1437	rc = mii_ethtool_set_link_ksettings(&cp->mii_if, cmd);
1438	spin_unlock_irqrestore(&cp->lock, flags);
1439
1440	return rc;
1441}
1442
1443static int cp_nway_reset(struct net_device *dev)
1444{
1445	struct cp_private *cp = netdev_priv(dev);
1446	return mii_nway_restart(&cp->mii_if);
1447}
1448
1449static u32 cp_get_msglevel(struct net_device *dev)
1450{
1451	struct cp_private *cp = netdev_priv(dev);
1452	return cp->msg_enable;
1453}
1454
1455static void cp_set_msglevel(struct net_device *dev, u32 value)
1456{
1457	struct cp_private *cp = netdev_priv(dev);
1458	cp->msg_enable = value;
1459}
1460
1461static int cp_set_features(struct net_device *dev, netdev_features_t features)
1462{
1463	struct cp_private *cp = netdev_priv(dev);
1464	unsigned long flags;
1465
1466	if (!((dev->features ^ features) & NETIF_F_RXCSUM))
1467		return 0;
1468
1469	spin_lock_irqsave(&cp->lock, flags);
1470
1471	if (features & NETIF_F_RXCSUM)
1472		cp->cpcmd |= RxChkSum;
1473	else
1474		cp->cpcmd &= ~RxChkSum;
1475
1476	if (features & NETIF_F_HW_VLAN_CTAG_RX)
1477		cp->cpcmd |= RxVlanOn;
1478	else
1479		cp->cpcmd &= ~RxVlanOn;
1480
1481	cpw16_f(CpCmd, cp->cpcmd);
1482	spin_unlock_irqrestore(&cp->lock, flags);
1483
1484	return 0;
1485}
1486
1487static void cp_get_regs(struct net_device *dev, struct ethtool_regs *regs,
1488		        void *p)
1489{
1490	struct cp_private *cp = netdev_priv(dev);
1491	unsigned long flags;
1492
1493	if (regs->len < CP_REGS_SIZE)
1494		return /* -EINVAL */;
1495
1496	regs->version = CP_REGS_VER;
1497
1498	spin_lock_irqsave(&cp->lock, flags);
1499	memcpy_fromio(p, cp->regs, CP_REGS_SIZE);
1500	spin_unlock_irqrestore(&cp->lock, flags);
1501}
1502
1503static void cp_get_wol (struct net_device *dev, struct ethtool_wolinfo *wol)
1504{
1505	struct cp_private *cp = netdev_priv(dev);
1506	unsigned long flags;
1507
1508	spin_lock_irqsave (&cp->lock, flags);
1509	netdev_get_wol (cp, wol);
1510	spin_unlock_irqrestore (&cp->lock, flags);
1511}
1512
1513static int cp_set_wol (struct net_device *dev, struct ethtool_wolinfo *wol)
1514{
1515	struct cp_private *cp = netdev_priv(dev);
1516	unsigned long flags;
1517	int rc;
1518
1519	spin_lock_irqsave (&cp->lock, flags);
1520	rc = netdev_set_wol (cp, wol);
1521	spin_unlock_irqrestore (&cp->lock, flags);
1522
1523	return rc;
1524}
1525
1526static void cp_get_strings (struct net_device *dev, u32 stringset, u8 *buf)
1527{
1528	switch (stringset) {
1529	case ETH_SS_STATS:
1530		memcpy(buf, &ethtool_stats_keys, sizeof(ethtool_stats_keys));
1531		break;
1532	default:
1533		BUG();
1534		break;
1535	}
1536}
1537
1538static void cp_get_ethtool_stats (struct net_device *dev,
1539				  struct ethtool_stats *estats, u64 *tmp_stats)
1540{
1541	struct cp_private *cp = netdev_priv(dev);
1542	struct cp_dma_stats *nic_stats;
1543	dma_addr_t dma;
1544	int i;
1545
1546	nic_stats = dma_alloc_coherent(&cp->pdev->dev, sizeof(*nic_stats),
1547				       &dma, GFP_KERNEL);
1548	if (!nic_stats)
1549		return;
1550
1551	/* begin NIC statistics dump */
1552	cpw32(StatsAddr + 4, (u64)dma >> 32);
1553	cpw32(StatsAddr, ((u64)dma & DMA_BIT_MASK(32)) | DumpStats);
1554	cpr32(StatsAddr);
1555
1556	for (i = 0; i < 1000; i++) {
1557		if ((cpr32(StatsAddr) & DumpStats) == 0)
1558			break;
1559		udelay(10);
1560	}
1561	cpw32(StatsAddr, 0);
1562	cpw32(StatsAddr + 4, 0);
1563	cpr32(StatsAddr);
1564
1565	i = 0;
1566	tmp_stats[i++] = le64_to_cpu(nic_stats->tx_ok);
1567	tmp_stats[i++] = le64_to_cpu(nic_stats->rx_ok);
1568	tmp_stats[i++] = le64_to_cpu(nic_stats->tx_err);
1569	tmp_stats[i++] = le32_to_cpu(nic_stats->rx_err);
1570	tmp_stats[i++] = le16_to_cpu(nic_stats->rx_fifo);
1571	tmp_stats[i++] = le16_to_cpu(nic_stats->frame_align);
1572	tmp_stats[i++] = le32_to_cpu(nic_stats->tx_ok_1col);
1573	tmp_stats[i++] = le32_to_cpu(nic_stats->tx_ok_mcol);
1574	tmp_stats[i++] = le64_to_cpu(nic_stats->rx_ok_phys);
1575	tmp_stats[i++] = le64_to_cpu(nic_stats->rx_ok_bcast);
1576	tmp_stats[i++] = le32_to_cpu(nic_stats->rx_ok_mcast);
1577	tmp_stats[i++] = le16_to_cpu(nic_stats->tx_abort);
1578	tmp_stats[i++] = le16_to_cpu(nic_stats->tx_underrun);
1579	tmp_stats[i++] = cp->cp_stats.rx_frags;
1580	BUG_ON(i != CP_NUM_STATS);
1581
1582	dma_free_coherent(&cp->pdev->dev, sizeof(*nic_stats), nic_stats, dma);
1583}
1584
1585static const struct ethtool_ops cp_ethtool_ops = {
1586	.get_drvinfo		= cp_get_drvinfo,
1587	.get_regs_len		= cp_get_regs_len,
1588	.get_sset_count		= cp_get_sset_count,
1589	.nway_reset		= cp_nway_reset,
1590	.get_link		= ethtool_op_get_link,
1591	.get_msglevel		= cp_get_msglevel,
1592	.set_msglevel		= cp_set_msglevel,
1593	.get_regs		= cp_get_regs,
1594	.get_wol		= cp_get_wol,
1595	.set_wol		= cp_set_wol,
1596	.get_strings		= cp_get_strings,
1597	.get_ethtool_stats	= cp_get_ethtool_stats,
1598	.get_eeprom_len		= cp_get_eeprom_len,
1599	.get_eeprom		= cp_get_eeprom,
1600	.set_eeprom		= cp_set_eeprom,
1601	.get_ringparam		= cp_get_ringparam,
1602	.get_link_ksettings	= cp_get_link_ksettings,
1603	.set_link_ksettings	= cp_set_link_ksettings,
1604};
1605
1606static int cp_ioctl (struct net_device *dev, struct ifreq *rq, int cmd)
1607{
1608	struct cp_private *cp = netdev_priv(dev);
1609	int rc;
1610	unsigned long flags;
1611
1612	if (!netif_running(dev))
1613		return -EINVAL;
1614
1615	spin_lock_irqsave(&cp->lock, flags);
1616	rc = generic_mii_ioctl(&cp->mii_if, if_mii(rq), cmd, NULL);
1617	spin_unlock_irqrestore(&cp->lock, flags);
1618	return rc;
1619}
1620
1621static int cp_set_mac_address(struct net_device *dev, void *p)
1622{
1623	struct cp_private *cp = netdev_priv(dev);
1624	struct sockaddr *addr = p;
1625
1626	if (!is_valid_ether_addr(addr->sa_data))
1627		return -EADDRNOTAVAIL;
1628
1629	eth_hw_addr_set(dev, addr->sa_data);
1630
1631	spin_lock_irq(&cp->lock);
1632
1633	cpw8_f(Cfg9346, Cfg9346_Unlock);
1634	cpw32_f(MAC0 + 0, le32_to_cpu (*(__le32 *) (dev->dev_addr + 0)));
1635	cpw32_f(MAC0 + 4, le32_to_cpu (*(__le32 *) (dev->dev_addr + 4)));
1636	cpw8_f(Cfg9346, Cfg9346_Lock);
1637
1638	spin_unlock_irq(&cp->lock);
1639
1640	return 0;
1641}
1642
1643/* Serial EEPROM section. */
1644
1645/*  EEPROM_Ctrl bits. */
1646#define EE_SHIFT_CLK	0x04	/* EEPROM shift clock. */
1647#define EE_CS			0x08	/* EEPROM chip select. */
1648#define EE_DATA_WRITE	0x02	/* EEPROM chip data in. */
1649#define EE_WRITE_0		0x00
1650#define EE_WRITE_1		0x02
1651#define EE_DATA_READ	0x01	/* EEPROM chip data out. */
1652#define EE_ENB			(0x80 | EE_CS)
1653
1654/* Delay between EEPROM clock transitions.
1655   No extra delay is needed with 33Mhz PCI, but 66Mhz may change this.
1656 */
1657
1658#define eeprom_delay()	readb(ee_addr)
1659
1660/* The EEPROM commands include the alway-set leading bit. */
1661#define EE_EXTEND_CMD	(4)
1662#define EE_WRITE_CMD	(5)
1663#define EE_READ_CMD		(6)
1664#define EE_ERASE_CMD	(7)
1665
1666#define EE_EWDS_ADDR	(0)
1667#define EE_WRAL_ADDR	(1)
1668#define EE_ERAL_ADDR	(2)
1669#define EE_EWEN_ADDR	(3)
1670
1671#define CP_EEPROM_MAGIC PCI_DEVICE_ID_REALTEK_8139
1672
1673static void eeprom_cmd_start(void __iomem *ee_addr)
1674{
1675	writeb (EE_ENB & ~EE_CS, ee_addr);
1676	writeb (EE_ENB, ee_addr);
1677	eeprom_delay ();
1678}
1679
1680static void eeprom_cmd(void __iomem *ee_addr, int cmd, int cmd_len)
1681{
1682	int i;
1683
1684	/* Shift the command bits out. */
1685	for (i = cmd_len - 1; i >= 0; i--) {
1686		int dataval = (cmd & (1 << i)) ? EE_DATA_WRITE : 0;
1687		writeb (EE_ENB | dataval, ee_addr);
1688		eeprom_delay ();
1689		writeb (EE_ENB | dataval | EE_SHIFT_CLK, ee_addr);
1690		eeprom_delay ();
1691	}
1692	writeb (EE_ENB, ee_addr);
1693	eeprom_delay ();
1694}
1695
1696static void eeprom_cmd_end(void __iomem *ee_addr)
1697{
1698	writeb(0, ee_addr);
1699	eeprom_delay ();
1700}
1701
1702static void eeprom_extend_cmd(void __iomem *ee_addr, int extend_cmd,
1703			      int addr_len)
1704{
1705	int cmd = (EE_EXTEND_CMD << addr_len) | (extend_cmd << (addr_len - 2));
1706
1707	eeprom_cmd_start(ee_addr);
1708	eeprom_cmd(ee_addr, cmd, 3 + addr_len);
1709	eeprom_cmd_end(ee_addr);
1710}
1711
1712static u16 read_eeprom (void __iomem *ioaddr, int location, int addr_len)
1713{
1714	int i;
1715	u16 retval = 0;
1716	void __iomem *ee_addr = ioaddr + Cfg9346;
1717	int read_cmd = location | (EE_READ_CMD << addr_len);
1718
1719	eeprom_cmd_start(ee_addr);
1720	eeprom_cmd(ee_addr, read_cmd, 3 + addr_len);
1721
1722	for (i = 16; i > 0; i--) {
1723		writeb (EE_ENB | EE_SHIFT_CLK, ee_addr);
1724		eeprom_delay ();
1725		retval =
1726		    (retval << 1) | ((readb (ee_addr) & EE_DATA_READ) ? 1 :
1727				     0);
1728		writeb (EE_ENB, ee_addr);
1729		eeprom_delay ();
1730	}
1731
1732	eeprom_cmd_end(ee_addr);
1733
1734	return retval;
1735}
1736
1737static void write_eeprom(void __iomem *ioaddr, int location, u16 val,
1738			 int addr_len)
1739{
1740	int i;
1741	void __iomem *ee_addr = ioaddr + Cfg9346;
1742	int write_cmd = location | (EE_WRITE_CMD << addr_len);
1743
1744	eeprom_extend_cmd(ee_addr, EE_EWEN_ADDR, addr_len);
1745
1746	eeprom_cmd_start(ee_addr);
1747	eeprom_cmd(ee_addr, write_cmd, 3 + addr_len);
1748	eeprom_cmd(ee_addr, val, 16);
1749	eeprom_cmd_end(ee_addr);
1750
1751	eeprom_cmd_start(ee_addr);
1752	for (i = 0; i < 20000; i++)
1753		if (readb(ee_addr) & EE_DATA_READ)
1754			break;
1755	eeprom_cmd_end(ee_addr);
1756
1757	eeprom_extend_cmd(ee_addr, EE_EWDS_ADDR, addr_len);
1758}
1759
1760static int cp_get_eeprom_len(struct net_device *dev)
1761{
1762	struct cp_private *cp = netdev_priv(dev);
1763	int size;
1764
1765	spin_lock_irq(&cp->lock);
1766	size = read_eeprom(cp->regs, 0, 8) == 0x8129 ? 256 : 128;
1767	spin_unlock_irq(&cp->lock);
1768
1769	return size;
1770}
1771
1772static int cp_get_eeprom(struct net_device *dev,
1773			 struct ethtool_eeprom *eeprom, u8 *data)
1774{
1775	struct cp_private *cp = netdev_priv(dev);
1776	unsigned int addr_len;
1777	u16 val;
1778	u32 offset = eeprom->offset >> 1;
1779	u32 len = eeprom->len;
1780	u32 i = 0;
1781
1782	eeprom->magic = CP_EEPROM_MAGIC;
1783
1784	spin_lock_irq(&cp->lock);
1785
1786	addr_len = read_eeprom(cp->regs, 0, 8) == 0x8129 ? 8 : 6;
1787
1788	if (eeprom->offset & 1) {
1789		val = read_eeprom(cp->regs, offset, addr_len);
1790		data[i++] = (u8)(val >> 8);
1791		offset++;
1792	}
1793
1794	while (i < len - 1) {
1795		val = read_eeprom(cp->regs, offset, addr_len);
1796		data[i++] = (u8)val;
1797		data[i++] = (u8)(val >> 8);
1798		offset++;
1799	}
1800
1801	if (i < len) {
1802		val = read_eeprom(cp->regs, offset, addr_len);
1803		data[i] = (u8)val;
1804	}
1805
1806	spin_unlock_irq(&cp->lock);
1807	return 0;
1808}
1809
1810static int cp_set_eeprom(struct net_device *dev,
1811			 struct ethtool_eeprom *eeprom, u8 *data)
1812{
1813	struct cp_private *cp = netdev_priv(dev);
1814	unsigned int addr_len;
1815	u16 val;
1816	u32 offset = eeprom->offset >> 1;
1817	u32 len = eeprom->len;
1818	u32 i = 0;
1819
1820	if (eeprom->magic != CP_EEPROM_MAGIC)
1821		return -EINVAL;
1822
1823	spin_lock_irq(&cp->lock);
1824
1825	addr_len = read_eeprom(cp->regs, 0, 8) == 0x8129 ? 8 : 6;
1826
1827	if (eeprom->offset & 1) {
1828		val = read_eeprom(cp->regs, offset, addr_len) & 0xff;
1829		val |= (u16)data[i++] << 8;
1830		write_eeprom(cp->regs, offset, val, addr_len);
1831		offset++;
1832	}
1833
1834	while (i < len - 1) {
1835		val = (u16)data[i++];
1836		val |= (u16)data[i++] << 8;
1837		write_eeprom(cp->regs, offset, val, addr_len);
1838		offset++;
1839	}
1840
1841	if (i < len) {
1842		val = read_eeprom(cp->regs, offset, addr_len) & 0xff00;
1843		val |= (u16)data[i];
1844		write_eeprom(cp->regs, offset, val, addr_len);
1845	}
1846
1847	spin_unlock_irq(&cp->lock);
1848	return 0;
1849}
1850
1851/* Put the board into D3cold state and wait for WakeUp signal */
1852static void cp_set_d3_state (struct cp_private *cp)
1853{
1854	pci_enable_wake(cp->pdev, PCI_D0, 1); /* Enable PME# generation */
1855	pci_set_power_state (cp->pdev, PCI_D3hot);
1856}
1857
1858static netdev_features_t cp_features_check(struct sk_buff *skb,
1859					   struct net_device *dev,
1860					   netdev_features_t features)
1861{
1862	if (skb_shinfo(skb)->gso_size > MSSMask)
1863		features &= ~NETIF_F_TSO;
1864
1865	return vlan_features_check(skb, features);
1866}
1867static const struct net_device_ops cp_netdev_ops = {
1868	.ndo_open		= cp_open,
1869	.ndo_stop		= cp_close,
1870	.ndo_validate_addr	= eth_validate_addr,
1871	.ndo_set_mac_address 	= cp_set_mac_address,
1872	.ndo_set_rx_mode	= cp_set_rx_mode,
1873	.ndo_get_stats		= cp_get_stats,
1874	.ndo_eth_ioctl		= cp_ioctl,
1875	.ndo_start_xmit		= cp_start_xmit,
1876	.ndo_tx_timeout		= cp_tx_timeout,
1877	.ndo_set_features	= cp_set_features,
1878	.ndo_change_mtu		= cp_change_mtu,
1879	.ndo_features_check	= cp_features_check,
1880
1881#ifdef CONFIG_NET_POLL_CONTROLLER
1882	.ndo_poll_controller	= cp_poll_controller,
1883#endif
1884};
1885
1886static int cp_init_one (struct pci_dev *pdev, const struct pci_device_id *ent)
1887{
1888	struct net_device *dev;
1889	struct cp_private *cp;
1890	int rc;
1891	void __iomem *regs;
1892	resource_size_t pciaddr;
1893	unsigned int addr_len, i, pci_using_dac;
1894	__le16 addr[ETH_ALEN / 2];
1895
1896	pr_info_once("%s", version);
1897
1898	if (pdev->vendor == PCI_VENDOR_ID_REALTEK &&
1899	    pdev->device == PCI_DEVICE_ID_REALTEK_8139 && pdev->revision < 0x20) {
1900		dev_info(&pdev->dev,
1901			 "This (id %04x:%04x rev %02x) is not an 8139C+ compatible chip, use 8139too\n",
1902			 pdev->vendor, pdev->device, pdev->revision);
1903		return -ENODEV;
1904	}
1905
1906	dev = alloc_etherdev(sizeof(struct cp_private));
1907	if (!dev)
1908		return -ENOMEM;
1909	SET_NETDEV_DEV(dev, &pdev->dev);
1910
1911	cp = netdev_priv(dev);
1912	cp->pdev = pdev;
1913	cp->dev = dev;
1914	cp->msg_enable = (debug < 0 ? CP_DEF_MSG_ENABLE : debug);
1915	spin_lock_init (&cp->lock);
1916	cp->mii_if.dev = dev;
1917	cp->mii_if.mdio_read = mdio_read;
1918	cp->mii_if.mdio_write = mdio_write;
1919	cp->mii_if.phy_id = CP_INTERNAL_PHY;
1920	cp->mii_if.phy_id_mask = 0x1f;
1921	cp->mii_if.reg_num_mask = 0x1f;
1922	cp_set_rxbufsize(cp);
1923
1924	rc = pci_enable_device(pdev);
1925	if (rc)
1926		goto err_out_free;
1927
1928	rc = pci_set_mwi(pdev);
1929	if (rc)
1930		goto err_out_disable;
1931
1932	rc = pci_request_regions(pdev, DRV_NAME);
1933	if (rc)
1934		goto err_out_mwi;
1935
1936	pciaddr = pci_resource_start(pdev, 1);
1937	if (!pciaddr) {
1938		rc = -EIO;
1939		dev_err(&pdev->dev, "no MMIO resource\n");
1940		goto err_out_res;
1941	}
1942	if (pci_resource_len(pdev, 1) < CP_REGS_SIZE) {
1943		rc = -EIO;
1944		dev_err(&pdev->dev, "MMIO resource (%llx) too small\n",
1945		       (unsigned long long)pci_resource_len(pdev, 1));
1946		goto err_out_res;
1947	}
1948
1949	/* Configure DMA attributes. */
1950	if ((sizeof(dma_addr_t) > 4) &&
1951	    !dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) {
1952		pci_using_dac = 1;
1953	} else {
1954		pci_using_dac = 0;
1955
1956		rc = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1957		if (rc) {
1958			dev_err(&pdev->dev,
1959				"No usable DMA configuration, aborting\n");
1960			goto err_out_res;
1961		}
1962	}
1963
1964	cp->cpcmd = (pci_using_dac ? PCIDAC : 0) |
1965		    PCIMulRW | RxChkSum | CpRxOn | CpTxOn;
1966
1967	dev->features |= NETIF_F_RXCSUM;
1968	dev->hw_features |= NETIF_F_RXCSUM;
1969
1970	regs = ioremap(pciaddr, CP_REGS_SIZE);
1971	if (!regs) {
1972		rc = -EIO;
1973		dev_err(&pdev->dev, "Cannot map PCI MMIO (%Lx@%Lx)\n",
1974			(unsigned long long)pci_resource_len(pdev, 1),
1975		       (unsigned long long)pciaddr);
1976		goto err_out_res;
1977	}
1978	cp->regs = regs;
1979
1980	cp_stop_hw(cp);
1981
1982	/* read MAC address from EEPROM */
1983	addr_len = read_eeprom (regs, 0, 8) == 0x8129 ? 8 : 6;
1984	for (i = 0; i < 3; i++)
1985		addr[i] = cpu_to_le16(read_eeprom (regs, i + 7, addr_len));
1986	eth_hw_addr_set(dev, (u8 *)addr);
1987
1988	dev->netdev_ops = &cp_netdev_ops;
1989	netif_napi_add_weight(dev, &cp->napi, cp_rx_poll, 16);
1990	dev->ethtool_ops = &cp_ethtool_ops;
1991	dev->watchdog_timeo = TX_TIMEOUT;
1992
1993	dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO |
1994		NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
1995
1996	if (pci_using_dac)
1997		dev->features |= NETIF_F_HIGHDMA;
1998
1999	dev->hw_features |= NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO |
2000		NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
2001	dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO |
2002		NETIF_F_HIGHDMA;
2003
2004	/* MTU range: 60 - 4096 */
2005	dev->min_mtu = CP_MIN_MTU;
2006	dev->max_mtu = CP_MAX_MTU;
2007
2008	rc = register_netdev(dev);
2009	if (rc)
2010		goto err_out_iomap;
2011
2012	netdev_info(dev, "RTL-8139C+ at 0x%p, %pM, IRQ %d\n",
2013		    regs, dev->dev_addr, pdev->irq);
2014
2015	pci_set_drvdata(pdev, dev);
2016
2017	/* enable busmastering and memory-write-invalidate */
2018	pci_set_master(pdev);
2019
2020	if (cp->wol_enabled)
2021		cp_set_d3_state (cp);
2022
2023	return 0;
2024
2025err_out_iomap:
2026	iounmap(regs);
2027err_out_res:
2028	pci_release_regions(pdev);
2029err_out_mwi:
2030	pci_clear_mwi(pdev);
2031err_out_disable:
2032	pci_disable_device(pdev);
2033err_out_free:
2034	free_netdev(dev);
2035	return rc;
2036}
2037
2038static void cp_remove_one (struct pci_dev *pdev)
2039{
2040	struct net_device *dev = pci_get_drvdata(pdev);
2041	struct cp_private *cp = netdev_priv(dev);
2042
2043	unregister_netdev(dev);
2044	iounmap(cp->regs);
2045	if (cp->wol_enabled)
2046		pci_set_power_state (pdev, PCI_D0);
2047	pci_release_regions(pdev);
2048	pci_clear_mwi(pdev);
2049	pci_disable_device(pdev);
2050	free_netdev(dev);
2051}
2052
2053static int __maybe_unused cp_suspend(struct device *device)
2054{
2055	struct net_device *dev = dev_get_drvdata(device);
2056	struct cp_private *cp = netdev_priv(dev);
2057	unsigned long flags;
2058
2059	if (!netif_running(dev))
2060		return 0;
2061
2062	netif_device_detach (dev);
2063	netif_stop_queue (dev);
2064
2065	spin_lock_irqsave (&cp->lock, flags);
2066
2067	/* Disable Rx and Tx */
2068	cpw16 (IntrMask, 0);
2069	cpw8  (Cmd, cpr8 (Cmd) & (~RxOn | ~TxOn));
2070
2071	spin_unlock_irqrestore (&cp->lock, flags);
2072
2073	device_set_wakeup_enable(device, cp->wol_enabled);
2074
2075	return 0;
2076}
2077
2078static int __maybe_unused cp_resume(struct device *device)
2079{
2080	struct net_device *dev = dev_get_drvdata(device);
2081	struct cp_private *cp = netdev_priv(dev);
2082	unsigned long flags;
2083
2084	if (!netif_running(dev))
2085		return 0;
2086
2087	netif_device_attach (dev);
2088
2089	/* FIXME: sh*t may happen if the Rx ring buffer is depleted */
2090	cp_init_rings_index (cp);
2091	cp_init_hw (cp);
2092	cp_enable_irq(cp);
2093	netif_start_queue (dev);
2094
2095	spin_lock_irqsave (&cp->lock, flags);
2096
2097	mii_check_media(&cp->mii_if, netif_msg_link(cp), false);
2098
2099	spin_unlock_irqrestore (&cp->lock, flags);
2100
2101	return 0;
2102}
2103
2104static const struct pci_device_id cp_pci_tbl[] = {
2105        { PCI_DEVICE(PCI_VENDOR_ID_REALTEK,     PCI_DEVICE_ID_REALTEK_8139), },
2106        { PCI_DEVICE(PCI_VENDOR_ID_TTTECH,      PCI_DEVICE_ID_TTTECH_MC322), },
2107        { },
2108};
2109MODULE_DEVICE_TABLE(pci, cp_pci_tbl);
2110
2111static SIMPLE_DEV_PM_OPS(cp_pm_ops, cp_suspend, cp_resume);
2112
2113static struct pci_driver cp_driver = {
2114	.name         = DRV_NAME,
2115	.id_table     = cp_pci_tbl,
2116	.probe        =	cp_init_one,
2117	.remove       = cp_remove_one,
2118	.driver.pm    = &cp_pm_ops,
2119};
2120
2121module_pci_driver(cp_driver);
2122