1// SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
2/* Copyright (C) 2015-2019 Netronome Systems, Inc. */
3
4#include <linux/bpf_trace.h>
5#include <linux/netdevice.h>
6#include <linux/bitfield.h>
7#include <net/xfrm.h>
8
9#include "../nfp_app.h"
10#include "../nfp_net.h"
11#include "../nfp_net_dp.h"
12#include "../nfp_net_xsk.h"
13#include "../crypto/crypto.h"
14#include "../crypto/fw.h"
15#include "nfd3.h"
16
17/* Transmit processing
18 *
19 * One queue controller peripheral queue is used for transmit.  The
20 * driver en-queues packets for transmit by advancing the write
21 * pointer.  The device indicates that packets have transmitted by
22 * advancing the read pointer.  The driver maintains a local copy of
23 * the read and write pointer in @struct nfp_net_tx_ring.  The driver
24 * keeps @wr_p in sync with the queue controller write pointer and can
25 * determine how many packets have been transmitted by comparing its
26 * copy of the read pointer @rd_p with the read pointer maintained by
27 * the queue controller peripheral.
28 */
29
30/* Wrappers for deciding when to stop and restart TX queues */
31static int nfp_nfd3_tx_ring_should_wake(struct nfp_net_tx_ring *tx_ring)
32{
33	return !nfp_net_tx_full(tx_ring, MAX_SKB_FRAGS * 4);
34}
35
36static int nfp_nfd3_tx_ring_should_stop(struct nfp_net_tx_ring *tx_ring)
37{
38	return nfp_net_tx_full(tx_ring, MAX_SKB_FRAGS + 1);
39}
40
41/**
42 * nfp_nfd3_tx_ring_stop() - stop tx ring
43 * @nd_q:    netdev queue
44 * @tx_ring: driver tx queue structure
45 *
46 * Safely stop TX ring.  Remember that while we are running .start_xmit()
47 * someone else may be cleaning the TX ring completions so we need to be
48 * extra careful here.
49 */
50static void
51nfp_nfd3_tx_ring_stop(struct netdev_queue *nd_q,
52		      struct nfp_net_tx_ring *tx_ring)
53{
54	netif_tx_stop_queue(nd_q);
55
56	/* We can race with the TX completion out of NAPI so recheck */
57	smp_mb();
58	if (unlikely(nfp_nfd3_tx_ring_should_wake(tx_ring)))
59		netif_tx_start_queue(nd_q);
60}
61
62/**
63 * nfp_nfd3_tx_tso() - Set up Tx descriptor for LSO
64 * @r_vec: per-ring structure
65 * @txbuf: Pointer to driver soft TX descriptor
66 * @txd: Pointer to HW TX descriptor
67 * @skb: Pointer to SKB
68 * @md_bytes: Prepend length
69 *
70 * Set up Tx descriptor for LSO, do nothing for non-LSO skbs.
71 * Return error on packet header greater than maximum supported LSO header size.
72 */
73static void
74nfp_nfd3_tx_tso(struct nfp_net_r_vector *r_vec, struct nfp_nfd3_tx_buf *txbuf,
75		struct nfp_nfd3_tx_desc *txd, struct sk_buff *skb, u32 md_bytes)
76{
77	u32 l3_offset, l4_offset, hdrlen, l4_hdrlen;
78	u16 mss;
79
80	if (!skb_is_gso(skb))
81		return;
82
83	if (!skb->encapsulation) {
84		l3_offset = skb_network_offset(skb);
85		l4_offset = skb_transport_offset(skb);
86		l4_hdrlen = (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ?
87			    sizeof(struct udphdr) : tcp_hdrlen(skb);
88	} else {
89		l3_offset = skb_inner_network_offset(skb);
90		l4_offset = skb_inner_transport_offset(skb);
91		l4_hdrlen = (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ?
92			    sizeof(struct udphdr) : inner_tcp_hdrlen(skb);
93	}
94
95	hdrlen = l4_offset + l4_hdrlen;
96	txbuf->pkt_cnt = skb_shinfo(skb)->gso_segs;
97	txbuf->real_len += hdrlen * (txbuf->pkt_cnt - 1);
98
99	mss = skb_shinfo(skb)->gso_size & NFD3_DESC_TX_MSS_MASK;
100	txd->l3_offset = l3_offset - md_bytes;
101	txd->l4_offset = l4_offset - md_bytes;
102	txd->lso_hdrlen = hdrlen - md_bytes;
103	txd->mss = cpu_to_le16(mss);
104	txd->flags |= NFD3_DESC_TX_LSO;
105
106	u64_stats_update_begin(&r_vec->tx_sync);
107	r_vec->tx_lso++;
108	u64_stats_update_end(&r_vec->tx_sync);
109}
110
111/**
112 * nfp_nfd3_tx_csum() - Set TX CSUM offload flags in TX descriptor
113 * @dp:  NFP Net data path struct
114 * @r_vec: per-ring structure
115 * @txbuf: Pointer to driver soft TX descriptor
116 * @txd: Pointer to TX descriptor
117 * @skb: Pointer to SKB
118 *
119 * This function sets the TX checksum flags in the TX descriptor based
120 * on the configuration and the protocol of the packet to be transmitted.
121 */
122static void
123nfp_nfd3_tx_csum(struct nfp_net_dp *dp, struct nfp_net_r_vector *r_vec,
124		 struct nfp_nfd3_tx_buf *txbuf, struct nfp_nfd3_tx_desc *txd,
125		 struct sk_buff *skb)
126{
127	struct ipv6hdr *ipv6h;
128	struct iphdr *iph;
129	u8 l4_hdr;
130
131	if (!(dp->ctrl & NFP_NET_CFG_CTRL_TXCSUM))
132		return;
133
134	if (skb->ip_summed != CHECKSUM_PARTIAL)
135		return;
136
137	txd->flags |= NFD3_DESC_TX_CSUM;
138	if (skb->encapsulation)
139		txd->flags |= NFD3_DESC_TX_ENCAP;
140
141	iph = skb->encapsulation ? inner_ip_hdr(skb) : ip_hdr(skb);
142	ipv6h = skb->encapsulation ? inner_ipv6_hdr(skb) : ipv6_hdr(skb);
143
144	if (iph->version == 4) {
145		txd->flags |= NFD3_DESC_TX_IP4_CSUM;
146		l4_hdr = iph->protocol;
147	} else if (ipv6h->version == 6) {
148		l4_hdr = ipv6h->nexthdr;
149	} else {
150		nn_dp_warn(dp, "partial checksum but ipv=%x!\n", iph->version);
151		return;
152	}
153
154	switch (l4_hdr) {
155	case IPPROTO_TCP:
156		txd->flags |= NFD3_DESC_TX_TCP_CSUM;
157		break;
158	case IPPROTO_UDP:
159		txd->flags |= NFD3_DESC_TX_UDP_CSUM;
160		break;
161	default:
162		nn_dp_warn(dp, "partial checksum but l4 proto=%x!\n", l4_hdr);
163		return;
164	}
165
166	u64_stats_update_begin(&r_vec->tx_sync);
167	if (skb->encapsulation)
168		r_vec->hw_csum_tx_inner += txbuf->pkt_cnt;
169	else
170		r_vec->hw_csum_tx += txbuf->pkt_cnt;
171	u64_stats_update_end(&r_vec->tx_sync);
172}
173
174static int nfp_nfd3_prep_tx_meta(struct nfp_net_dp *dp, struct sk_buff *skb,
175				 u64 tls_handle, bool *ipsec)
176{
177	struct metadata_dst *md_dst = skb_metadata_dst(skb);
178	struct nfp_ipsec_offload offload_info;
179	unsigned char *data;
180	bool vlan_insert;
181	u32 meta_id = 0;
182	int md_bytes;
183
184#ifdef CONFIG_NFP_NET_IPSEC
185	if (xfrm_offload(skb))
186		*ipsec = nfp_net_ipsec_tx_prep(dp, skb, &offload_info);
187#endif
188
189	if (unlikely(md_dst && md_dst->type != METADATA_HW_PORT_MUX))
190		md_dst = NULL;
191
192	vlan_insert = skb_vlan_tag_present(skb) && (dp->ctrl & NFP_NET_CFG_CTRL_TXVLAN_V2);
193
194	if (!(md_dst || tls_handle || vlan_insert || *ipsec))
195		return 0;
196
197	md_bytes = sizeof(meta_id) +
198		   (!!md_dst ? NFP_NET_META_PORTID_SIZE : 0) +
199		   (!!tls_handle ? NFP_NET_META_CONN_HANDLE_SIZE : 0) +
200		   (vlan_insert ? NFP_NET_META_VLAN_SIZE : 0) +
201		   (*ipsec ? NFP_NET_META_IPSEC_FIELD_SIZE : 0);
202
203	if (unlikely(skb_cow_head(skb, md_bytes)))
204		return -ENOMEM;
205
206	data = skb_push(skb, md_bytes) + md_bytes;
207	if (md_dst) {
208		data -= NFP_NET_META_PORTID_SIZE;
209		put_unaligned_be32(md_dst->u.port_info.port_id, data);
210		meta_id = NFP_NET_META_PORTID;
211	}
212	if (tls_handle) {
213		/* conn handle is opaque, we just use u64 to be able to quickly
214		 * compare it to zero
215		 */
216		data -= NFP_NET_META_CONN_HANDLE_SIZE;
217		memcpy(data, &tls_handle, sizeof(tls_handle));
218		meta_id <<= NFP_NET_META_FIELD_SIZE;
219		meta_id |= NFP_NET_META_CONN_HANDLE;
220	}
221	if (vlan_insert) {
222		data -= NFP_NET_META_VLAN_SIZE;
223		/* data type of skb->vlan_proto is __be16
224		 * so it fills metadata without calling put_unaligned_be16
225		 */
226		memcpy(data, &skb->vlan_proto, sizeof(skb->vlan_proto));
227		put_unaligned_be16(skb_vlan_tag_get(skb), data + sizeof(skb->vlan_proto));
228		meta_id <<= NFP_NET_META_FIELD_SIZE;
229		meta_id |= NFP_NET_META_VLAN;
230	}
231	if (*ipsec) {
232		data -= NFP_NET_META_IPSEC_SIZE;
233		put_unaligned_be32(offload_info.seq_hi, data);
234		data -= NFP_NET_META_IPSEC_SIZE;
235		put_unaligned_be32(offload_info.seq_low, data);
236		data -= NFP_NET_META_IPSEC_SIZE;
237		put_unaligned_be32(offload_info.handle - 1, data);
238		meta_id <<= NFP_NET_META_IPSEC_FIELD_SIZE;
239		meta_id |= NFP_NET_META_IPSEC << 8 | NFP_NET_META_IPSEC << 4 | NFP_NET_META_IPSEC;
240	}
241
242	data -= sizeof(meta_id);
243	put_unaligned_be32(meta_id, data);
244
245	return md_bytes;
246}
247
248/**
249 * nfp_nfd3_tx() - Main transmit entry point
250 * @skb:    SKB to transmit
251 * @netdev: netdev structure
252 *
253 * Return: NETDEV_TX_OK on success.
254 */
255netdev_tx_t nfp_nfd3_tx(struct sk_buff *skb, struct net_device *netdev)
256{
257	struct nfp_net *nn = netdev_priv(netdev);
258	int f, nr_frags, wr_idx, md_bytes;
259	struct nfp_net_tx_ring *tx_ring;
260	struct nfp_net_r_vector *r_vec;
261	struct nfp_nfd3_tx_buf *txbuf;
262	struct nfp_nfd3_tx_desc *txd;
263	struct netdev_queue *nd_q;
264	const skb_frag_t *frag;
265	struct nfp_net_dp *dp;
266	dma_addr_t dma_addr;
267	unsigned int fsize;
268	u64 tls_handle = 0;
269	bool ipsec = false;
270	u16 qidx;
271
272	dp = &nn->dp;
273	qidx = skb_get_queue_mapping(skb);
274	tx_ring = &dp->tx_rings[qidx];
275	r_vec = tx_ring->r_vec;
276
277	nr_frags = skb_shinfo(skb)->nr_frags;
278
279	if (unlikely(nfp_net_tx_full(tx_ring, nr_frags + 1))) {
280		nn_dp_warn(dp, "TX ring %d busy. wrp=%u rdp=%u\n",
281			   qidx, tx_ring->wr_p, tx_ring->rd_p);
282		nd_q = netdev_get_tx_queue(dp->netdev, qidx);
283		netif_tx_stop_queue(nd_q);
284		nfp_net_tx_xmit_more_flush(tx_ring);
285		u64_stats_update_begin(&r_vec->tx_sync);
286		r_vec->tx_busy++;
287		u64_stats_update_end(&r_vec->tx_sync);
288		return NETDEV_TX_BUSY;
289	}
290
291	skb = nfp_net_tls_tx(dp, r_vec, skb, &tls_handle, &nr_frags);
292	if (unlikely(!skb)) {
293		nfp_net_tx_xmit_more_flush(tx_ring);
294		return NETDEV_TX_OK;
295	}
296
297	md_bytes = nfp_nfd3_prep_tx_meta(dp, skb, tls_handle, &ipsec);
298	if (unlikely(md_bytes < 0))
299		goto err_flush;
300
301	/* Start with the head skbuf */
302	dma_addr = dma_map_single(dp->dev, skb->data, skb_headlen(skb),
303				  DMA_TO_DEVICE);
304	if (dma_mapping_error(dp->dev, dma_addr))
305		goto err_dma_err;
306
307	wr_idx = D_IDX(tx_ring, tx_ring->wr_p);
308
309	/* Stash the soft descriptor of the head then initialize it */
310	txbuf = &tx_ring->txbufs[wr_idx];
311	txbuf->skb = skb;
312	txbuf->dma_addr = dma_addr;
313	txbuf->fidx = -1;
314	txbuf->pkt_cnt = 1;
315	txbuf->real_len = skb->len;
316
317	/* Build TX descriptor */
318	txd = &tx_ring->txds[wr_idx];
319	txd->offset_eop = (nr_frags ? 0 : NFD3_DESC_TX_EOP) | md_bytes;
320	txd->dma_len = cpu_to_le16(skb_headlen(skb));
321	nfp_desc_set_dma_addr_40b(txd, dma_addr);
322	txd->data_len = cpu_to_le16(skb->len);
323
324	txd->flags = 0;
325	txd->mss = 0;
326	txd->lso_hdrlen = 0;
327
328	/* Do not reorder - tso may adjust pkt cnt, vlan may override fields */
329	nfp_nfd3_tx_tso(r_vec, txbuf, txd, skb, md_bytes);
330	if (ipsec)
331		nfp_nfd3_ipsec_tx(txd, skb);
332	else
333		nfp_nfd3_tx_csum(dp, r_vec, txbuf, txd, skb);
334	if (skb_vlan_tag_present(skb) && dp->ctrl & NFP_NET_CFG_CTRL_TXVLAN) {
335		txd->flags |= NFD3_DESC_TX_VLAN;
336		txd->vlan = cpu_to_le16(skb_vlan_tag_get(skb));
337	}
338
339	/* Gather DMA */
340	if (nr_frags > 0) {
341		__le64 second_half;
342
343		/* all descs must match except for in addr, length and eop */
344		second_half = txd->vals8[1];
345
346		for (f = 0; f < nr_frags; f++) {
347			frag = &skb_shinfo(skb)->frags[f];
348			fsize = skb_frag_size(frag);
349
350			dma_addr = skb_frag_dma_map(dp->dev, frag, 0,
351						    fsize, DMA_TO_DEVICE);
352			if (dma_mapping_error(dp->dev, dma_addr))
353				goto err_unmap;
354
355			wr_idx = D_IDX(tx_ring, wr_idx + 1);
356			tx_ring->txbufs[wr_idx].skb = skb;
357			tx_ring->txbufs[wr_idx].dma_addr = dma_addr;
358			tx_ring->txbufs[wr_idx].fidx = f;
359
360			txd = &tx_ring->txds[wr_idx];
361			txd->dma_len = cpu_to_le16(fsize);
362			nfp_desc_set_dma_addr_40b(txd, dma_addr);
363			txd->offset_eop = md_bytes |
364				((f == nr_frags - 1) ? NFD3_DESC_TX_EOP : 0);
365			txd->vals8[1] = second_half;
366		}
367
368		u64_stats_update_begin(&r_vec->tx_sync);
369		r_vec->tx_gather++;
370		u64_stats_update_end(&r_vec->tx_sync);
371	}
372
373	skb_tx_timestamp(skb);
374
375	nd_q = netdev_get_tx_queue(dp->netdev, tx_ring->idx);
376
377	tx_ring->wr_p += nr_frags + 1;
378	if (nfp_nfd3_tx_ring_should_stop(tx_ring))
379		nfp_nfd3_tx_ring_stop(nd_q, tx_ring);
380
381	tx_ring->wr_ptr_add += nr_frags + 1;
382	if (__netdev_tx_sent_queue(nd_q, txbuf->real_len, netdev_xmit_more()))
383		nfp_net_tx_xmit_more_flush(tx_ring);
384
385	return NETDEV_TX_OK;
386
387err_unmap:
388	while (--f >= 0) {
389		frag = &skb_shinfo(skb)->frags[f];
390		dma_unmap_page(dp->dev, tx_ring->txbufs[wr_idx].dma_addr,
391			       skb_frag_size(frag), DMA_TO_DEVICE);
392		tx_ring->txbufs[wr_idx].skb = NULL;
393		tx_ring->txbufs[wr_idx].dma_addr = 0;
394		tx_ring->txbufs[wr_idx].fidx = -2;
395		wr_idx = wr_idx - 1;
396		if (wr_idx < 0)
397			wr_idx += tx_ring->cnt;
398	}
399	dma_unmap_single(dp->dev, tx_ring->txbufs[wr_idx].dma_addr,
400			 skb_headlen(skb), DMA_TO_DEVICE);
401	tx_ring->txbufs[wr_idx].skb = NULL;
402	tx_ring->txbufs[wr_idx].dma_addr = 0;
403	tx_ring->txbufs[wr_idx].fidx = -2;
404err_dma_err:
405	nn_dp_warn(dp, "Failed to map DMA TX buffer\n");
406err_flush:
407	nfp_net_tx_xmit_more_flush(tx_ring);
408	u64_stats_update_begin(&r_vec->tx_sync);
409	r_vec->tx_errors++;
410	u64_stats_update_end(&r_vec->tx_sync);
411	nfp_net_tls_tx_undo(skb, tls_handle);
412	dev_kfree_skb_any(skb);
413	return NETDEV_TX_OK;
414}
415
416/**
417 * nfp_nfd3_tx_complete() - Handled completed TX packets
418 * @tx_ring:	TX ring structure
419 * @budget:	NAPI budget (only used as bool to determine if in NAPI context)
420 */
421void nfp_nfd3_tx_complete(struct nfp_net_tx_ring *tx_ring, int budget)
422{
423	struct nfp_net_r_vector *r_vec = tx_ring->r_vec;
424	struct nfp_net_dp *dp = &r_vec->nfp_net->dp;
425	u32 done_pkts = 0, done_bytes = 0;
426	struct netdev_queue *nd_q;
427	u32 qcp_rd_p;
428	int todo;
429
430	if (tx_ring->wr_p == tx_ring->rd_p)
431		return;
432
433	/* Work out how many descriptors have been transmitted */
434	qcp_rd_p = nfp_net_read_tx_cmpl(tx_ring, dp);
435
436	if (qcp_rd_p == tx_ring->qcp_rd_p)
437		return;
438
439	todo = D_IDX(tx_ring, qcp_rd_p - tx_ring->qcp_rd_p);
440
441	while (todo--) {
442		const skb_frag_t *frag;
443		struct nfp_nfd3_tx_buf *tx_buf;
444		struct sk_buff *skb;
445		int fidx, nr_frags;
446		int idx;
447
448		idx = D_IDX(tx_ring, tx_ring->rd_p++);
449		tx_buf = &tx_ring->txbufs[idx];
450
451		skb = tx_buf->skb;
452		if (!skb)
453			continue;
454
455		nr_frags = skb_shinfo(skb)->nr_frags;
456		fidx = tx_buf->fidx;
457
458		if (fidx == -1) {
459			/* unmap head */
460			dma_unmap_single(dp->dev, tx_buf->dma_addr,
461					 skb_headlen(skb), DMA_TO_DEVICE);
462
463			done_pkts += tx_buf->pkt_cnt;
464			done_bytes += tx_buf->real_len;
465		} else {
466			/* unmap fragment */
467			frag = &skb_shinfo(skb)->frags[fidx];
468			dma_unmap_page(dp->dev, tx_buf->dma_addr,
469				       skb_frag_size(frag), DMA_TO_DEVICE);
470		}
471
472		/* check for last gather fragment */
473		if (fidx == nr_frags - 1)
474			napi_consume_skb(skb, budget);
475
476		tx_buf->dma_addr = 0;
477		tx_buf->skb = NULL;
478		tx_buf->fidx = -2;
479	}
480
481	tx_ring->qcp_rd_p = qcp_rd_p;
482
483	u64_stats_update_begin(&r_vec->tx_sync);
484	r_vec->tx_bytes += done_bytes;
485	r_vec->tx_pkts += done_pkts;
486	u64_stats_update_end(&r_vec->tx_sync);
487
488	if (!dp->netdev)
489		return;
490
491	nd_q = netdev_get_tx_queue(dp->netdev, tx_ring->idx);
492	netdev_tx_completed_queue(nd_q, done_pkts, done_bytes);
493	if (nfp_nfd3_tx_ring_should_wake(tx_ring)) {
494		/* Make sure TX thread will see updated tx_ring->rd_p */
495		smp_mb();
496
497		if (unlikely(netif_tx_queue_stopped(nd_q)))
498			netif_tx_wake_queue(nd_q);
499	}
500
501	WARN_ONCE(tx_ring->wr_p - tx_ring->rd_p > tx_ring->cnt,
502		  "TX ring corruption rd_p=%u wr_p=%u cnt=%u\n",
503		  tx_ring->rd_p, tx_ring->wr_p, tx_ring->cnt);
504}
505
506static bool nfp_nfd3_xdp_complete(struct nfp_net_tx_ring *tx_ring)
507{
508	struct nfp_net_r_vector *r_vec = tx_ring->r_vec;
509	struct nfp_net_dp *dp = &r_vec->nfp_net->dp;
510	u32 done_pkts = 0, done_bytes = 0;
511	bool done_all;
512	int idx, todo;
513	u32 qcp_rd_p;
514
515	/* Work out how many descriptors have been transmitted */
516	qcp_rd_p = nfp_net_read_tx_cmpl(tx_ring, dp);
517
518	if (qcp_rd_p == tx_ring->qcp_rd_p)
519		return true;
520
521	todo = D_IDX(tx_ring, qcp_rd_p - tx_ring->qcp_rd_p);
522
523	done_all = todo <= NFP_NET_XDP_MAX_COMPLETE;
524	todo = min(todo, NFP_NET_XDP_MAX_COMPLETE);
525
526	tx_ring->qcp_rd_p = D_IDX(tx_ring, tx_ring->qcp_rd_p + todo);
527
528	done_pkts = todo;
529	while (todo--) {
530		idx = D_IDX(tx_ring, tx_ring->rd_p);
531		tx_ring->rd_p++;
532
533		done_bytes += tx_ring->txbufs[idx].real_len;
534	}
535
536	u64_stats_update_begin(&r_vec->tx_sync);
537	r_vec->tx_bytes += done_bytes;
538	r_vec->tx_pkts += done_pkts;
539	u64_stats_update_end(&r_vec->tx_sync);
540
541	WARN_ONCE(tx_ring->wr_p - tx_ring->rd_p > tx_ring->cnt,
542		  "XDP TX ring corruption rd_p=%u wr_p=%u cnt=%u\n",
543		  tx_ring->rd_p, tx_ring->wr_p, tx_ring->cnt);
544
545	return done_all;
546}
547
548/* Receive processing
549 */
550
551static void *
552nfp_nfd3_napi_alloc_one(struct nfp_net_dp *dp, dma_addr_t *dma_addr)
553{
554	void *frag;
555
556	if (!dp->xdp_prog) {
557		frag = napi_alloc_frag(dp->fl_bufsz);
558		if (unlikely(!frag))
559			return NULL;
560	} else {
561		struct page *page;
562
563		page = dev_alloc_page();
564		if (unlikely(!page))
565			return NULL;
566		frag = page_address(page);
567	}
568
569	*dma_addr = nfp_net_dma_map_rx(dp, frag);
570	if (dma_mapping_error(dp->dev, *dma_addr)) {
571		nfp_net_free_frag(frag, dp->xdp_prog);
572		nn_dp_warn(dp, "Failed to map DMA RX buffer\n");
573		return NULL;
574	}
575
576	return frag;
577}
578
579/**
580 * nfp_nfd3_rx_give_one() - Put mapped skb on the software and hardware rings
581 * @dp:		NFP Net data path struct
582 * @rx_ring:	RX ring structure
583 * @frag:	page fragment buffer
584 * @dma_addr:	DMA address of skb mapping
585 */
586static void
587nfp_nfd3_rx_give_one(const struct nfp_net_dp *dp,
588		     struct nfp_net_rx_ring *rx_ring,
589		     void *frag, dma_addr_t dma_addr)
590{
591	unsigned int wr_idx;
592
593	wr_idx = D_IDX(rx_ring, rx_ring->wr_p);
594
595	nfp_net_dma_sync_dev_rx(dp, dma_addr);
596
597	/* Stash SKB and DMA address away */
598	rx_ring->rxbufs[wr_idx].frag = frag;
599	rx_ring->rxbufs[wr_idx].dma_addr = dma_addr;
600
601	/* Fill freelist descriptor */
602	rx_ring->rxds[wr_idx].fld.reserved = 0;
603	rx_ring->rxds[wr_idx].fld.meta_len_dd = 0;
604	/* DMA address is expanded to 48-bit width in freelist for NFP3800,
605	 * so the *_48b macro is used accordingly, it's also OK to fill
606	 * a 40-bit address since the top 8 bits are get set to 0.
607	 */
608	nfp_desc_set_dma_addr_48b(&rx_ring->rxds[wr_idx].fld,
609				  dma_addr + dp->rx_dma_off);
610
611	rx_ring->wr_p++;
612	if (!(rx_ring->wr_p % NFP_NET_FL_BATCH)) {
613		/* Update write pointer of the freelist queue. Make
614		 * sure all writes are flushed before telling the hardware.
615		 */
616		wmb();
617		nfp_qcp_wr_ptr_add(rx_ring->qcp_fl, NFP_NET_FL_BATCH);
618	}
619}
620
621/**
622 * nfp_nfd3_rx_ring_fill_freelist() - Give buffers from the ring to FW
623 * @dp:	     NFP Net data path struct
624 * @rx_ring: RX ring to fill
625 */
626void nfp_nfd3_rx_ring_fill_freelist(struct nfp_net_dp *dp,
627				    struct nfp_net_rx_ring *rx_ring)
628{
629	unsigned int i;
630
631	if (nfp_net_has_xsk_pool_slow(dp, rx_ring->idx))
632		return nfp_net_xsk_rx_ring_fill_freelist(rx_ring);
633
634	for (i = 0; i < rx_ring->cnt - 1; i++)
635		nfp_nfd3_rx_give_one(dp, rx_ring, rx_ring->rxbufs[i].frag,
636				     rx_ring->rxbufs[i].dma_addr);
637}
638
639/**
640 * nfp_nfd3_rx_csum_has_errors() - group check if rxd has any csum errors
641 * @flags: RX descriptor flags field in CPU byte order
642 */
643static int nfp_nfd3_rx_csum_has_errors(u16 flags)
644{
645	u16 csum_all_checked, csum_all_ok;
646
647	csum_all_checked = flags & __PCIE_DESC_RX_CSUM_ALL;
648	csum_all_ok = flags & __PCIE_DESC_RX_CSUM_ALL_OK;
649
650	return csum_all_checked != (csum_all_ok << PCIE_DESC_RX_CSUM_OK_SHIFT);
651}
652
653/**
654 * nfp_nfd3_rx_csum() - set SKB checksum field based on RX descriptor flags
655 * @dp:  NFP Net data path struct
656 * @r_vec: per-ring structure
657 * @rxd: Pointer to RX descriptor
658 * @meta: Parsed metadata prepend
659 * @skb: Pointer to SKB
660 */
661void
662nfp_nfd3_rx_csum(const struct nfp_net_dp *dp, struct nfp_net_r_vector *r_vec,
663		 const struct nfp_net_rx_desc *rxd,
664		 const struct nfp_meta_parsed *meta, struct sk_buff *skb)
665{
666	skb_checksum_none_assert(skb);
667
668	if (!(dp->netdev->features & NETIF_F_RXCSUM))
669		return;
670
671	if (meta->csum_type) {
672		skb->ip_summed = meta->csum_type;
673		skb->csum = meta->csum;
674		u64_stats_update_begin(&r_vec->rx_sync);
675		r_vec->hw_csum_rx_complete++;
676		u64_stats_update_end(&r_vec->rx_sync);
677		return;
678	}
679
680	if (nfp_nfd3_rx_csum_has_errors(le16_to_cpu(rxd->rxd.flags))) {
681		u64_stats_update_begin(&r_vec->rx_sync);
682		r_vec->hw_csum_rx_error++;
683		u64_stats_update_end(&r_vec->rx_sync);
684		return;
685	}
686
687	/* Assume that the firmware will never report inner CSUM_OK unless outer
688	 * L4 headers were successfully parsed. FW will always report zero UDP
689	 * checksum as CSUM_OK.
690	 */
691	if (rxd->rxd.flags & PCIE_DESC_RX_TCP_CSUM_OK ||
692	    rxd->rxd.flags & PCIE_DESC_RX_UDP_CSUM_OK) {
693		__skb_incr_checksum_unnecessary(skb);
694		u64_stats_update_begin(&r_vec->rx_sync);
695		r_vec->hw_csum_rx_ok++;
696		u64_stats_update_end(&r_vec->rx_sync);
697	}
698
699	if (rxd->rxd.flags & PCIE_DESC_RX_I_TCP_CSUM_OK ||
700	    rxd->rxd.flags & PCIE_DESC_RX_I_UDP_CSUM_OK) {
701		__skb_incr_checksum_unnecessary(skb);
702		u64_stats_update_begin(&r_vec->rx_sync);
703		r_vec->hw_csum_rx_inner_ok++;
704		u64_stats_update_end(&r_vec->rx_sync);
705	}
706}
707
708static void
709nfp_nfd3_set_hash(struct net_device *netdev, struct nfp_meta_parsed *meta,
710		  unsigned int type, __be32 *hash)
711{
712	if (!(netdev->features & NETIF_F_RXHASH))
713		return;
714
715	switch (type) {
716	case NFP_NET_RSS_IPV4:
717	case NFP_NET_RSS_IPV6:
718	case NFP_NET_RSS_IPV6_EX:
719		meta->hash_type = PKT_HASH_TYPE_L3;
720		break;
721	default:
722		meta->hash_type = PKT_HASH_TYPE_L4;
723		break;
724	}
725
726	meta->hash = get_unaligned_be32(hash);
727}
728
729static void
730nfp_nfd3_set_hash_desc(struct net_device *netdev, struct nfp_meta_parsed *meta,
731		       void *data, struct nfp_net_rx_desc *rxd)
732{
733	struct nfp_net_rx_hash *rx_hash = data;
734
735	if (!(rxd->rxd.flags & PCIE_DESC_RX_RSS))
736		return;
737
738	nfp_nfd3_set_hash(netdev, meta, get_unaligned_be32(&rx_hash->hash_type),
739			  &rx_hash->hash);
740}
741
742bool
743nfp_nfd3_parse_meta(struct net_device *netdev, struct nfp_meta_parsed *meta,
744		    void *data, void *pkt, unsigned int pkt_len, int meta_len)
745{
746	u32 meta_info, vlan_info;
747
748	meta_info = get_unaligned_be32(data);
749	data += 4;
750
751	while (meta_info) {
752		switch (meta_info & NFP_NET_META_FIELD_MASK) {
753		case NFP_NET_META_HASH:
754			meta_info >>= NFP_NET_META_FIELD_SIZE;
755			nfp_nfd3_set_hash(netdev, meta,
756					  meta_info & NFP_NET_META_FIELD_MASK,
757					  (__be32 *)data);
758			data += 4;
759			break;
760		case NFP_NET_META_MARK:
761			meta->mark = get_unaligned_be32(data);
762			data += 4;
763			break;
764		case NFP_NET_META_VLAN:
765			vlan_info = get_unaligned_be32(data);
766			if (FIELD_GET(NFP_NET_META_VLAN_STRIP, vlan_info)) {
767				meta->vlan.stripped = true;
768				meta->vlan.tpid = FIELD_GET(NFP_NET_META_VLAN_TPID_MASK,
769							    vlan_info);
770				meta->vlan.tci = FIELD_GET(NFP_NET_META_VLAN_TCI_MASK,
771							   vlan_info);
772			}
773			data += 4;
774			break;
775		case NFP_NET_META_PORTID:
776			meta->portid = get_unaligned_be32(data);
777			data += 4;
778			break;
779		case NFP_NET_META_CSUM:
780			meta->csum_type = CHECKSUM_COMPLETE;
781			meta->csum =
782				(__force __wsum)__get_unaligned_cpu32(data);
783			data += 4;
784			break;
785		case NFP_NET_META_RESYNC_INFO:
786			if (nfp_net_tls_rx_resync_req(netdev, data, pkt,
787						      pkt_len))
788				return false;
789			data += sizeof(struct nfp_net_tls_resync_req);
790			break;
791#ifdef CONFIG_NFP_NET_IPSEC
792		case NFP_NET_META_IPSEC:
793			/* Note: IPsec packet will have zero saidx, so need add 1
794			 * to indicate packet is IPsec packet within driver.
795			 */
796			meta->ipsec_saidx = get_unaligned_be32(data) + 1;
797			data += 4;
798			break;
799#endif
800		default:
801			return true;
802		}
803
804		meta_info >>= NFP_NET_META_FIELD_SIZE;
805	}
806
807	return data != pkt;
808}
809
810static void
811nfp_nfd3_rx_drop(const struct nfp_net_dp *dp, struct nfp_net_r_vector *r_vec,
812		 struct nfp_net_rx_ring *rx_ring, struct nfp_net_rx_buf *rxbuf,
813		 struct sk_buff *skb)
814{
815	u64_stats_update_begin(&r_vec->rx_sync);
816	r_vec->rx_drops++;
817	/* If we have both skb and rxbuf the replacement buffer allocation
818	 * must have failed, count this as an alloc failure.
819	 */
820	if (skb && rxbuf)
821		r_vec->rx_replace_buf_alloc_fail++;
822	u64_stats_update_end(&r_vec->rx_sync);
823
824	/* skb is build based on the frag, free_skb() would free the frag
825	 * so to be able to reuse it we need an extra ref.
826	 */
827	if (skb && rxbuf && skb->head == rxbuf->frag)
828		page_ref_inc(virt_to_head_page(rxbuf->frag));
829	if (rxbuf)
830		nfp_nfd3_rx_give_one(dp, rx_ring, rxbuf->frag, rxbuf->dma_addr);
831	if (skb)
832		dev_kfree_skb_any(skb);
833}
834
835static bool
836nfp_nfd3_tx_xdp_buf(struct nfp_net_dp *dp, struct nfp_net_rx_ring *rx_ring,
837		    struct nfp_net_tx_ring *tx_ring,
838		    struct nfp_net_rx_buf *rxbuf, unsigned int dma_off,
839		    unsigned int pkt_len, bool *completed)
840{
841	unsigned int dma_map_sz = dp->fl_bufsz - NFP_NET_RX_BUF_NON_DATA;
842	struct nfp_nfd3_tx_buf *txbuf;
843	struct nfp_nfd3_tx_desc *txd;
844	int wr_idx;
845
846	/* Reject if xdp_adjust_tail grow packet beyond DMA area */
847	if (pkt_len + dma_off > dma_map_sz)
848		return false;
849
850	if (unlikely(nfp_net_tx_full(tx_ring, 1))) {
851		if (!*completed) {
852			nfp_nfd3_xdp_complete(tx_ring);
853			*completed = true;
854		}
855
856		if (unlikely(nfp_net_tx_full(tx_ring, 1))) {
857			nfp_nfd3_rx_drop(dp, rx_ring->r_vec, rx_ring, rxbuf,
858					 NULL);
859			return false;
860		}
861	}
862
863	wr_idx = D_IDX(tx_ring, tx_ring->wr_p);
864
865	/* Stash the soft descriptor of the head then initialize it */
866	txbuf = &tx_ring->txbufs[wr_idx];
867
868	nfp_nfd3_rx_give_one(dp, rx_ring, txbuf->frag, txbuf->dma_addr);
869
870	txbuf->frag = rxbuf->frag;
871	txbuf->dma_addr = rxbuf->dma_addr;
872	txbuf->fidx = -1;
873	txbuf->pkt_cnt = 1;
874	txbuf->real_len = pkt_len;
875
876	dma_sync_single_for_device(dp->dev, rxbuf->dma_addr + dma_off,
877				   pkt_len, DMA_BIDIRECTIONAL);
878
879	/* Build TX descriptor */
880	txd = &tx_ring->txds[wr_idx];
881	txd->offset_eop = NFD3_DESC_TX_EOP;
882	txd->dma_len = cpu_to_le16(pkt_len);
883	nfp_desc_set_dma_addr_40b(txd, rxbuf->dma_addr + dma_off);
884	txd->data_len = cpu_to_le16(pkt_len);
885
886	txd->flags = 0;
887	txd->mss = 0;
888	txd->lso_hdrlen = 0;
889
890	tx_ring->wr_p++;
891	tx_ring->wr_ptr_add++;
892	return true;
893}
894
895/**
896 * nfp_nfd3_rx() - receive up to @budget packets on @rx_ring
897 * @rx_ring:   RX ring to receive from
898 * @budget:    NAPI budget
899 *
900 * Note, this function is separated out from the napi poll function to
901 * more cleanly separate packet receive code from other bookkeeping
902 * functions performed in the napi poll function.
903 *
904 * Return: Number of packets received.
905 */
906static int nfp_nfd3_rx(struct nfp_net_rx_ring *rx_ring, int budget)
907{
908	struct nfp_net_r_vector *r_vec = rx_ring->r_vec;
909	struct nfp_net_dp *dp = &r_vec->nfp_net->dp;
910	struct nfp_net_tx_ring *tx_ring;
911	struct bpf_prog *xdp_prog;
912	int idx, pkts_polled = 0;
913	bool xdp_tx_cmpl = false;
914	unsigned int true_bufsz;
915	struct sk_buff *skb;
916	struct xdp_buff xdp;
917
918	xdp_prog = READ_ONCE(dp->xdp_prog);
919	true_bufsz = xdp_prog ? PAGE_SIZE : dp->fl_bufsz;
920	xdp_init_buff(&xdp, PAGE_SIZE - NFP_NET_RX_BUF_HEADROOM,
921		      &rx_ring->xdp_rxq);
922	tx_ring = r_vec->xdp_ring;
923
924	while (pkts_polled < budget) {
925		unsigned int meta_len, data_len, meta_off, pkt_len, pkt_off;
926		struct nfp_net_rx_buf *rxbuf;
927		struct nfp_net_rx_desc *rxd;
928		struct nfp_meta_parsed meta;
929		bool redir_egress = false;
930		struct net_device *netdev;
931		dma_addr_t new_dma_addr;
932		u32 meta_len_xdp = 0;
933		void *new_frag;
934
935		idx = D_IDX(rx_ring, rx_ring->rd_p);
936
937		rxd = &rx_ring->rxds[idx];
938		if (!(rxd->rxd.meta_len_dd & PCIE_DESC_RX_DD))
939			break;
940
941		/* Memory barrier to ensure that we won't do other reads
942		 * before the DD bit.
943		 */
944		dma_rmb();
945
946		memset(&meta, 0, sizeof(meta));
947
948		rx_ring->rd_p++;
949		pkts_polled++;
950
951		rxbuf =	&rx_ring->rxbufs[idx];
952		/*         < meta_len >
953		 *  <-- [rx_offset] -->
954		 *  ---------------------------------------------------------
955		 * | [XX] |  metadata  |             packet           | XXXX |
956		 *  ---------------------------------------------------------
957		 *         <---------------- data_len --------------->
958		 *
959		 * The rx_offset is fixed for all packets, the meta_len can vary
960		 * on a packet by packet basis. If rx_offset is set to zero
961		 * (_RX_OFFSET_DYNAMIC) metadata starts at the beginning of the
962		 * buffer and is immediately followed by the packet (no [XX]).
963		 */
964		meta_len = rxd->rxd.meta_len_dd & PCIE_DESC_RX_META_LEN_MASK;
965		data_len = le16_to_cpu(rxd->rxd.data_len);
966		pkt_len = data_len - meta_len;
967
968		pkt_off = NFP_NET_RX_BUF_HEADROOM + dp->rx_dma_off;
969		if (dp->rx_offset == NFP_NET_CFG_RX_OFFSET_DYNAMIC)
970			pkt_off += meta_len;
971		else
972			pkt_off += dp->rx_offset;
973		meta_off = pkt_off - meta_len;
974
975		/* Stats update */
976		u64_stats_update_begin(&r_vec->rx_sync);
977		r_vec->rx_pkts++;
978		r_vec->rx_bytes += pkt_len;
979		u64_stats_update_end(&r_vec->rx_sync);
980
981		if (unlikely(meta_len > NFP_NET_MAX_PREPEND ||
982			     (dp->rx_offset && meta_len > dp->rx_offset))) {
983			nn_dp_warn(dp, "oversized RX packet metadata %u\n",
984				   meta_len);
985			nfp_nfd3_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL);
986			continue;
987		}
988
989		nfp_net_dma_sync_cpu_rx(dp, rxbuf->dma_addr + meta_off,
990					data_len);
991
992		if (!dp->chained_metadata_format) {
993			nfp_nfd3_set_hash_desc(dp->netdev, &meta,
994					       rxbuf->frag + meta_off, rxd);
995		} else if (meta_len) {
996			if (unlikely(nfp_nfd3_parse_meta(dp->netdev, &meta,
997							 rxbuf->frag + meta_off,
998							 rxbuf->frag + pkt_off,
999							 pkt_len, meta_len))) {
1000				nn_dp_warn(dp, "invalid RX packet metadata\n");
1001				nfp_nfd3_rx_drop(dp, r_vec, rx_ring, rxbuf,
1002						 NULL);
1003				continue;
1004			}
1005		}
1006
1007		if (xdp_prog && !meta.portid) {
1008			void *orig_data = rxbuf->frag + pkt_off;
1009			unsigned int dma_off;
1010			int act;
1011
1012			xdp_prepare_buff(&xdp,
1013					 rxbuf->frag + NFP_NET_RX_BUF_HEADROOM,
1014					 pkt_off - NFP_NET_RX_BUF_HEADROOM,
1015					 pkt_len, true);
1016
1017			act = bpf_prog_run_xdp(xdp_prog, &xdp);
1018
1019			pkt_len = xdp.data_end - xdp.data;
1020			pkt_off += xdp.data - orig_data;
1021
1022			switch (act) {
1023			case XDP_PASS:
1024				meta_len_xdp = xdp.data - xdp.data_meta;
1025				break;
1026			case XDP_TX:
1027				dma_off = pkt_off - NFP_NET_RX_BUF_HEADROOM;
1028				if (unlikely(!nfp_nfd3_tx_xdp_buf(dp, rx_ring,
1029								  tx_ring,
1030								  rxbuf,
1031								  dma_off,
1032								  pkt_len,
1033								  &xdp_tx_cmpl)))
1034					trace_xdp_exception(dp->netdev,
1035							    xdp_prog, act);
1036				continue;
1037			default:
1038				bpf_warn_invalid_xdp_action(dp->netdev, xdp_prog, act);
1039				fallthrough;
1040			case XDP_ABORTED:
1041				trace_xdp_exception(dp->netdev, xdp_prog, act);
1042				fallthrough;
1043			case XDP_DROP:
1044				nfp_nfd3_rx_give_one(dp, rx_ring, rxbuf->frag,
1045						     rxbuf->dma_addr);
1046				continue;
1047			}
1048		}
1049
1050		if (likely(!meta.portid)) {
1051			netdev = dp->netdev;
1052		} else if (meta.portid == NFP_META_PORT_ID_CTRL) {
1053			struct nfp_net *nn = netdev_priv(dp->netdev);
1054
1055			nfp_app_ctrl_rx_raw(nn->app, rxbuf->frag + pkt_off,
1056					    pkt_len);
1057			nfp_nfd3_rx_give_one(dp, rx_ring, rxbuf->frag,
1058					     rxbuf->dma_addr);
1059			continue;
1060		} else {
1061			struct nfp_net *nn;
1062
1063			nn = netdev_priv(dp->netdev);
1064			netdev = nfp_app_dev_get(nn->app, meta.portid,
1065						 &redir_egress);
1066			if (unlikely(!netdev)) {
1067				nfp_nfd3_rx_drop(dp, r_vec, rx_ring, rxbuf,
1068						 NULL);
1069				continue;
1070			}
1071
1072			if (nfp_netdev_is_nfp_repr(netdev))
1073				nfp_repr_inc_rx_stats(netdev, pkt_len);
1074		}
1075
1076		skb = napi_build_skb(rxbuf->frag, true_bufsz);
1077		if (unlikely(!skb)) {
1078			nfp_nfd3_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL);
1079			continue;
1080		}
1081		new_frag = nfp_nfd3_napi_alloc_one(dp, &new_dma_addr);
1082		if (unlikely(!new_frag)) {
1083			nfp_nfd3_rx_drop(dp, r_vec, rx_ring, rxbuf, skb);
1084			continue;
1085		}
1086
1087		nfp_net_dma_unmap_rx(dp, rxbuf->dma_addr);
1088
1089		nfp_nfd3_rx_give_one(dp, rx_ring, new_frag, new_dma_addr);
1090
1091		skb_reserve(skb, pkt_off);
1092		skb_put(skb, pkt_len);
1093
1094		skb->mark = meta.mark;
1095		skb_set_hash(skb, meta.hash, meta.hash_type);
1096
1097		skb_record_rx_queue(skb, rx_ring->idx);
1098		skb->protocol = eth_type_trans(skb, netdev);
1099
1100		nfp_nfd3_rx_csum(dp, r_vec, rxd, &meta, skb);
1101
1102#ifdef CONFIG_TLS_DEVICE
1103		if (rxd->rxd.flags & PCIE_DESC_RX_DECRYPTED) {
1104			skb->decrypted = true;
1105			u64_stats_update_begin(&r_vec->rx_sync);
1106			r_vec->hw_tls_rx++;
1107			u64_stats_update_end(&r_vec->rx_sync);
1108		}
1109#endif
1110
1111		if (unlikely(!nfp_net_vlan_strip(skb, rxd, &meta))) {
1112			nfp_nfd3_rx_drop(dp, r_vec, rx_ring, NULL, skb);
1113			continue;
1114		}
1115
1116#ifdef CONFIG_NFP_NET_IPSEC
1117		if (meta.ipsec_saidx != 0 && unlikely(nfp_net_ipsec_rx(&meta, skb))) {
1118			nfp_nfd3_rx_drop(dp, r_vec, rx_ring, NULL, skb);
1119			continue;
1120		}
1121#endif
1122
1123		if (meta_len_xdp)
1124			skb_metadata_set(skb, meta_len_xdp);
1125
1126		if (likely(!redir_egress)) {
1127			napi_gro_receive(&rx_ring->r_vec->napi, skb);
1128		} else {
1129			skb->dev = netdev;
1130			skb_reset_network_header(skb);
1131			__skb_push(skb, ETH_HLEN);
1132			dev_queue_xmit(skb);
1133		}
1134	}
1135
1136	if (xdp_prog) {
1137		if (tx_ring->wr_ptr_add)
1138			nfp_net_tx_xmit_more_flush(tx_ring);
1139		else if (unlikely(tx_ring->wr_p != tx_ring->rd_p) &&
1140			 !xdp_tx_cmpl)
1141			if (!nfp_nfd3_xdp_complete(tx_ring))
1142				pkts_polled = budget;
1143	}
1144
1145	return pkts_polled;
1146}
1147
1148/**
1149 * nfp_nfd3_poll() - napi poll function
1150 * @napi:    NAPI structure
1151 * @budget:  NAPI budget
1152 *
1153 * Return: number of packets polled.
1154 */
1155int nfp_nfd3_poll(struct napi_struct *napi, int budget)
1156{
1157	struct nfp_net_r_vector *r_vec =
1158		container_of(napi, struct nfp_net_r_vector, napi);
1159	unsigned int pkts_polled = 0;
1160
1161	if (r_vec->tx_ring)
1162		nfp_nfd3_tx_complete(r_vec->tx_ring, budget);
1163	if (r_vec->rx_ring)
1164		pkts_polled = nfp_nfd3_rx(r_vec->rx_ring, budget);
1165
1166	if (pkts_polled < budget)
1167		if (napi_complete_done(napi, pkts_polled))
1168			nfp_net_irq_unmask(r_vec->nfp_net, r_vec->irq_entry);
1169
1170	if (r_vec->nfp_net->rx_coalesce_adapt_on && r_vec->rx_ring) {
1171		struct dim_sample dim_sample = {};
1172		unsigned int start;
1173		u64 pkts, bytes;
1174
1175		do {
1176			start = u64_stats_fetch_begin(&r_vec->rx_sync);
1177			pkts = r_vec->rx_pkts;
1178			bytes = r_vec->rx_bytes;
1179		} while (u64_stats_fetch_retry(&r_vec->rx_sync, start));
1180
1181		dim_update_sample(r_vec->event_ctr, pkts, bytes, &dim_sample);
1182		net_dim(&r_vec->rx_dim, dim_sample);
1183	}
1184
1185	if (r_vec->nfp_net->tx_coalesce_adapt_on && r_vec->tx_ring) {
1186		struct dim_sample dim_sample = {};
1187		unsigned int start;
1188		u64 pkts, bytes;
1189
1190		do {
1191			start = u64_stats_fetch_begin(&r_vec->tx_sync);
1192			pkts = r_vec->tx_pkts;
1193			bytes = r_vec->tx_bytes;
1194		} while (u64_stats_fetch_retry(&r_vec->tx_sync, start));
1195
1196		dim_update_sample(r_vec->event_ctr, pkts, bytes, &dim_sample);
1197		net_dim(&r_vec->tx_dim, dim_sample);
1198	}
1199
1200	return pkts_polled;
1201}
1202
1203/* Control device data path
1204 */
1205
1206bool
1207nfp_nfd3_ctrl_tx_one(struct nfp_net *nn, struct nfp_net_r_vector *r_vec,
1208		     struct sk_buff *skb, bool old)
1209{
1210	unsigned int real_len = skb->len, meta_len = 0;
1211	struct nfp_net_tx_ring *tx_ring;
1212	struct nfp_nfd3_tx_buf *txbuf;
1213	struct nfp_nfd3_tx_desc *txd;
1214	struct nfp_net_dp *dp;
1215	dma_addr_t dma_addr;
1216	int wr_idx;
1217
1218	dp = &r_vec->nfp_net->dp;
1219	tx_ring = r_vec->tx_ring;
1220
1221	if (WARN_ON_ONCE(skb_shinfo(skb)->nr_frags)) {
1222		nn_dp_warn(dp, "Driver's CTRL TX does not implement gather\n");
1223		goto err_free;
1224	}
1225
1226	if (unlikely(nfp_net_tx_full(tx_ring, 1))) {
1227		u64_stats_update_begin(&r_vec->tx_sync);
1228		r_vec->tx_busy++;
1229		u64_stats_update_end(&r_vec->tx_sync);
1230		if (!old)
1231			__skb_queue_tail(&r_vec->queue, skb);
1232		else
1233			__skb_queue_head(&r_vec->queue, skb);
1234		return true;
1235	}
1236
1237	if (nfp_app_ctrl_has_meta(nn->app)) {
1238		if (unlikely(skb_headroom(skb) < 8)) {
1239			nn_dp_warn(dp, "CTRL TX on skb without headroom\n");
1240			goto err_free;
1241		}
1242		meta_len = 8;
1243		put_unaligned_be32(NFP_META_PORT_ID_CTRL, skb_push(skb, 4));
1244		put_unaligned_be32(NFP_NET_META_PORTID, skb_push(skb, 4));
1245	}
1246
1247	/* Start with the head skbuf */
1248	dma_addr = dma_map_single(dp->dev, skb->data, skb_headlen(skb),
1249				  DMA_TO_DEVICE);
1250	if (dma_mapping_error(dp->dev, dma_addr))
1251		goto err_dma_warn;
1252
1253	wr_idx = D_IDX(tx_ring, tx_ring->wr_p);
1254
1255	/* Stash the soft descriptor of the head then initialize it */
1256	txbuf = &tx_ring->txbufs[wr_idx];
1257	txbuf->skb = skb;
1258	txbuf->dma_addr = dma_addr;
1259	txbuf->fidx = -1;
1260	txbuf->pkt_cnt = 1;
1261	txbuf->real_len = real_len;
1262
1263	/* Build TX descriptor */
1264	txd = &tx_ring->txds[wr_idx];
1265	txd->offset_eop = meta_len | NFD3_DESC_TX_EOP;
1266	txd->dma_len = cpu_to_le16(skb_headlen(skb));
1267	nfp_desc_set_dma_addr_40b(txd, dma_addr);
1268	txd->data_len = cpu_to_le16(skb->len);
1269
1270	txd->flags = 0;
1271	txd->mss = 0;
1272	txd->lso_hdrlen = 0;
1273
1274	tx_ring->wr_p++;
1275	tx_ring->wr_ptr_add++;
1276	nfp_net_tx_xmit_more_flush(tx_ring);
1277
1278	return false;
1279
1280err_dma_warn:
1281	nn_dp_warn(dp, "Failed to DMA map TX CTRL buffer\n");
1282err_free:
1283	u64_stats_update_begin(&r_vec->tx_sync);
1284	r_vec->tx_errors++;
1285	u64_stats_update_end(&r_vec->tx_sync);
1286	dev_kfree_skb_any(skb);
1287	return false;
1288}
1289
1290static void __nfp_ctrl_tx_queued(struct nfp_net_r_vector *r_vec)
1291{
1292	struct sk_buff *skb;
1293
1294	while ((skb = __skb_dequeue(&r_vec->queue)))
1295		if (nfp_nfd3_ctrl_tx_one(r_vec->nfp_net, r_vec, skb, true))
1296			return;
1297}
1298
1299static bool
1300nfp_ctrl_meta_ok(struct nfp_net *nn, void *data, unsigned int meta_len)
1301{
1302	u32 meta_type, meta_tag;
1303
1304	if (!nfp_app_ctrl_has_meta(nn->app))
1305		return !meta_len;
1306
1307	if (meta_len != 8)
1308		return false;
1309
1310	meta_type = get_unaligned_be32(data);
1311	meta_tag = get_unaligned_be32(data + 4);
1312
1313	return (meta_type == NFP_NET_META_PORTID &&
1314		meta_tag == NFP_META_PORT_ID_CTRL);
1315}
1316
1317static bool
1318nfp_ctrl_rx_one(struct nfp_net *nn, struct nfp_net_dp *dp,
1319		struct nfp_net_r_vector *r_vec, struct nfp_net_rx_ring *rx_ring)
1320{
1321	unsigned int meta_len, data_len, meta_off, pkt_len, pkt_off;
1322	struct nfp_net_rx_buf *rxbuf;
1323	struct nfp_net_rx_desc *rxd;
1324	dma_addr_t new_dma_addr;
1325	struct sk_buff *skb;
1326	void *new_frag;
1327	int idx;
1328
1329	idx = D_IDX(rx_ring, rx_ring->rd_p);
1330
1331	rxd = &rx_ring->rxds[idx];
1332	if (!(rxd->rxd.meta_len_dd & PCIE_DESC_RX_DD))
1333		return false;
1334
1335	/* Memory barrier to ensure that we won't do other reads
1336	 * before the DD bit.
1337	 */
1338	dma_rmb();
1339
1340	rx_ring->rd_p++;
1341
1342	rxbuf =	&rx_ring->rxbufs[idx];
1343	meta_len = rxd->rxd.meta_len_dd & PCIE_DESC_RX_META_LEN_MASK;
1344	data_len = le16_to_cpu(rxd->rxd.data_len);
1345	pkt_len = data_len - meta_len;
1346
1347	pkt_off = NFP_NET_RX_BUF_HEADROOM + dp->rx_dma_off;
1348	if (dp->rx_offset == NFP_NET_CFG_RX_OFFSET_DYNAMIC)
1349		pkt_off += meta_len;
1350	else
1351		pkt_off += dp->rx_offset;
1352	meta_off = pkt_off - meta_len;
1353
1354	/* Stats update */
1355	u64_stats_update_begin(&r_vec->rx_sync);
1356	r_vec->rx_pkts++;
1357	r_vec->rx_bytes += pkt_len;
1358	u64_stats_update_end(&r_vec->rx_sync);
1359
1360	nfp_net_dma_sync_cpu_rx(dp, rxbuf->dma_addr + meta_off,	data_len);
1361
1362	if (unlikely(!nfp_ctrl_meta_ok(nn, rxbuf->frag + meta_off, meta_len))) {
1363		nn_dp_warn(dp, "incorrect metadata for ctrl packet (%d)\n",
1364			   meta_len);
1365		nfp_nfd3_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL);
1366		return true;
1367	}
1368
1369	skb = build_skb(rxbuf->frag, dp->fl_bufsz);
1370	if (unlikely(!skb)) {
1371		nfp_nfd3_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL);
1372		return true;
1373	}
1374	new_frag = nfp_nfd3_napi_alloc_one(dp, &new_dma_addr);
1375	if (unlikely(!new_frag)) {
1376		nfp_nfd3_rx_drop(dp, r_vec, rx_ring, rxbuf, skb);
1377		return true;
1378	}
1379
1380	nfp_net_dma_unmap_rx(dp, rxbuf->dma_addr);
1381
1382	nfp_nfd3_rx_give_one(dp, rx_ring, new_frag, new_dma_addr);
1383
1384	skb_reserve(skb, pkt_off);
1385	skb_put(skb, pkt_len);
1386
1387	nfp_app_ctrl_rx(nn->app, skb);
1388
1389	return true;
1390}
1391
1392static bool nfp_ctrl_rx(struct nfp_net_r_vector *r_vec)
1393{
1394	struct nfp_net_rx_ring *rx_ring = r_vec->rx_ring;
1395	struct nfp_net *nn = r_vec->nfp_net;
1396	struct nfp_net_dp *dp = &nn->dp;
1397	unsigned int budget = 512;
1398
1399	while (nfp_ctrl_rx_one(nn, dp, r_vec, rx_ring) && budget--)
1400		continue;
1401
1402	return budget;
1403}
1404
1405void nfp_nfd3_ctrl_poll(struct tasklet_struct *t)
1406{
1407	struct nfp_net_r_vector *r_vec = from_tasklet(r_vec, t, tasklet);
1408
1409	spin_lock(&r_vec->lock);
1410	nfp_nfd3_tx_complete(r_vec->tx_ring, 0);
1411	__nfp_ctrl_tx_queued(r_vec);
1412	spin_unlock(&r_vec->lock);
1413
1414	if (nfp_ctrl_rx(r_vec)) {
1415		nfp_net_irq_unmask(r_vec->nfp_net, r_vec->irq_entry);
1416	} else {
1417		tasklet_schedule(&r_vec->tasklet);
1418		nn_dp_warn(&r_vec->nfp_net->dp,
1419			   "control message budget exceeded!\n");
1420	}
1421}
1422