1/* natsemi.c: A Linux PCI Ethernet driver for the NatSemi DP8381x series. */
2/*
3	Written/copyright 1999-2001 by Donald Becker.
4	Portions copyright (c) 2001,2002 Sun Microsystems (thockin@sun.com)
5	Portions copyright 2001,2002 Manfred Spraul (manfred@colorfullife.com)
6	Portions copyright 2004 Harald Welte <laforge@gnumonks.org>
7
8	This software may be used and distributed according to the terms of
9	the GNU General Public License (GPL), incorporated herein by reference.
10	Drivers based on or derived from this code fall under the GPL and must
11	retain the authorship, copyright and license notice.  This file is not
12	a complete program and may only be used when the entire operating
13	system is licensed under the GPL.  License for under other terms may be
14	available.  Contact the original author for details.
15
16	The original author may be reached as becker@scyld.com, or at
17	Scyld Computing Corporation
18	410 Severn Ave., Suite 210
19	Annapolis MD 21403
20
21	Support information and updates available at
22	http://www.scyld.com/network/netsemi.html
23	[link no longer provides useful info -jgarzik]
24
25
26	TODO:
27	* big endian support with CFG:BEM instead of cpu_to_le32
28*/
29
30#include <linux/module.h>
31#include <linux/kernel.h>
32#include <linux/string.h>
33#include <linux/timer.h>
34#include <linux/errno.h>
35#include <linux/ioport.h>
36#include <linux/slab.h>
37#include <linux/interrupt.h>
38#include <linux/pci.h>
39#include <linux/netdevice.h>
40#include <linux/etherdevice.h>
41#include <linux/skbuff.h>
42#include <linux/init.h>
43#include <linux/spinlock.h>
44#include <linux/ethtool.h>
45#include <linux/delay.h>
46#include <linux/rtnetlink.h>
47#include <linux/mii.h>
48#include <linux/crc32.h>
49#include <linux/bitops.h>
50#include <linux/prefetch.h>
51#include <asm/processor.h>	/* Processor type for cache alignment. */
52#include <asm/io.h>
53#include <asm/irq.h>
54#include <linux/uaccess.h>
55
56#define DRV_NAME	"natsemi"
57#define DRV_VERSION	"2.1"
58#define DRV_RELDATE	"Sept 11, 2006"
59
60#define RX_OFFSET	2
61
62/* Updated to recommendations in pci-skeleton v2.03. */
63
64/* The user-configurable values.
65   These may be modified when a driver module is loaded.*/
66
67#define NATSEMI_DEF_MSG		(NETIF_MSG_DRV		| \
68				 NETIF_MSG_LINK		| \
69				 NETIF_MSG_WOL		| \
70				 NETIF_MSG_RX_ERR	| \
71				 NETIF_MSG_TX_ERR)
72static int debug = -1;
73
74static int mtu;
75
76/* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
77   This chip uses a 512 element hash table based on the Ethernet CRC.  */
78static const int multicast_filter_limit = 100;
79
80/* Set the copy breakpoint for the copy-only-tiny-frames scheme.
81   Setting to > 1518 effectively disables this feature. */
82static int rx_copybreak;
83
84static int dspcfg_workaround = 1;
85
86/* Used to pass the media type, etc.
87   Both 'options[]' and 'full_duplex[]' should exist for driver
88   interoperability.
89   The media type is usually passed in 'options[]'.
90*/
91#define MAX_UNITS 8		/* More are supported, limit only on options */
92static int options[MAX_UNITS];
93static int full_duplex[MAX_UNITS];
94
95/* Operational parameters that are set at compile time. */
96
97/* Keep the ring sizes a power of two for compile efficiency.
98   The compiler will convert <unsigned>'%'<2^N> into a bit mask.
99   Making the Tx ring too large decreases the effectiveness of channel
100   bonding and packet priority.
101   There are no ill effects from too-large receive rings. */
102#define TX_RING_SIZE	16
103#define TX_QUEUE_LEN	10 /* Limit ring entries actually used, min 4. */
104#define RX_RING_SIZE	32
105
106/* Operational parameters that usually are not changed. */
107/* Time in jiffies before concluding the transmitter is hung. */
108#define TX_TIMEOUT  (2*HZ)
109
110#define NATSEMI_HW_TIMEOUT	400
111#define NATSEMI_TIMER_FREQ	5*HZ
112#define NATSEMI_PG0_NREGS	64
113#define NATSEMI_RFDR_NREGS	8
114#define NATSEMI_PG1_NREGS	4
115#define NATSEMI_NREGS		(NATSEMI_PG0_NREGS + NATSEMI_RFDR_NREGS + \
116				 NATSEMI_PG1_NREGS)
117#define NATSEMI_REGS_VER	1 /* v1 added RFDR registers */
118#define NATSEMI_REGS_SIZE	(NATSEMI_NREGS * sizeof(u32))
119
120/* Buffer sizes:
121 * The nic writes 32-bit values, even if the upper bytes of
122 * a 32-bit value are beyond the end of the buffer.
123 */
124#define NATSEMI_HEADERS		22	/* 2*mac,type,vlan,crc */
125#define NATSEMI_PADDING		16	/* 2 bytes should be sufficient */
126#define NATSEMI_LONGPKT		1518	/* limit for normal packets */
127#define NATSEMI_RX_LIMIT	2046	/* maximum supported by hardware */
128
129/* These identify the driver base version and may not be removed. */
130static const char version[] =
131  KERN_INFO DRV_NAME " dp8381x driver, version "
132      DRV_VERSION ", " DRV_RELDATE "\n"
133  "  originally by Donald Becker <becker@scyld.com>\n"
134  "  2.4.x kernel port by Jeff Garzik, Tjeerd Mulder\n";
135
136MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
137MODULE_DESCRIPTION("National Semiconductor DP8381x series PCI Ethernet driver");
138MODULE_LICENSE("GPL");
139
140module_param(mtu, int, 0);
141module_param(debug, int, 0);
142module_param(rx_copybreak, int, 0);
143module_param(dspcfg_workaround, int, 0);
144module_param_array(options, int, NULL, 0);
145module_param_array(full_duplex, int, NULL, 0);
146MODULE_PARM_DESC(mtu, "DP8381x MTU (all boards)");
147MODULE_PARM_DESC(debug, "DP8381x default debug level");
148MODULE_PARM_DESC(rx_copybreak,
149	"DP8381x copy breakpoint for copy-only-tiny-frames");
150MODULE_PARM_DESC(dspcfg_workaround, "DP8381x: control DspCfg workaround");
151MODULE_PARM_DESC(options,
152	"DP8381x: Bits 0-3: media type, bit 17: full duplex");
153MODULE_PARM_DESC(full_duplex, "DP8381x full duplex setting(s) (1)");
154
155/*
156				Theory of Operation
157
158I. Board Compatibility
159
160This driver is designed for National Semiconductor DP83815 PCI Ethernet NIC.
161It also works with other chips in the DP83810 series.
162
163II. Board-specific settings
164
165This driver requires the PCI interrupt line to be valid.
166It honors the EEPROM-set values.
167
168III. Driver operation
169
170IIIa. Ring buffers
171
172This driver uses two statically allocated fixed-size descriptor lists
173formed into rings by a branch from the final descriptor to the beginning of
174the list.  The ring sizes are set at compile time by RX/TX_RING_SIZE.
175The NatSemi design uses a 'next descriptor' pointer that the driver forms
176into a list.
177
178IIIb/c. Transmit/Receive Structure
179
180This driver uses a zero-copy receive and transmit scheme.
181The driver allocates full frame size skbuffs for the Rx ring buffers at
182open() time and passes the skb->data field to the chip as receive data
183buffers.  When an incoming frame is less than RX_COPYBREAK bytes long,
184a fresh skbuff is allocated and the frame is copied to the new skbuff.
185When the incoming frame is larger, the skbuff is passed directly up the
186protocol stack.  Buffers consumed this way are replaced by newly allocated
187skbuffs in a later phase of receives.
188
189The RX_COPYBREAK value is chosen to trade-off the memory wasted by
190using a full-sized skbuff for small frames vs. the copying costs of larger
191frames.  New boards are typically used in generously configured machines
192and the underfilled buffers have negligible impact compared to the benefit of
193a single allocation size, so the default value of zero results in never
194copying packets.  When copying is done, the cost is usually mitigated by using
195a combined copy/checksum routine.  Copying also preloads the cache, which is
196most useful with small frames.
197
198A subtle aspect of the operation is that unaligned buffers are not permitted
199by the hardware.  Thus the IP header at offset 14 in an ethernet frame isn't
200longword aligned for further processing.  On copies frames are put into the
201skbuff at an offset of "+2", 16-byte aligning the IP header.
202
203IIId. Synchronization
204
205Most operations are synchronized on the np->lock irq spinlock, except the
206receive and transmit paths which are synchronised using a combination of
207hardware descriptor ownership, disabling interrupts and NAPI poll scheduling.
208
209IVb. References
210
211http://www.scyld.com/expert/100mbps.html
212http://www.scyld.com/expert/NWay.html
213Datasheet is available from:
214http://www.national.com/pf/DP/DP83815.html
215
216IVc. Errata
217
218None characterised.
219*/
220
221
222
223/*
224 * Support for fibre connections on Am79C874:
225 * This phy needs a special setup when connected to a fibre cable.
226 * http://www.amd.com/files/connectivitysolutions/networking/archivednetworking/22235.pdf
227 */
228#define PHYID_AM79C874	0x0022561b
229
230enum {
231	MII_MCTRL	= 0x15,		/* mode control register */
232	MII_FX_SEL	= 0x0001,	/* 100BASE-FX (fiber) */
233	MII_EN_SCRM	= 0x0004,	/* enable scrambler (tp) */
234};
235
236enum {
237	NATSEMI_FLAG_IGNORE_PHY		= 0x1,
238};
239
240/* array of board data directly indexed by pci_tbl[x].driver_data */
241static struct {
242	const char *name;
243	unsigned long flags;
244	unsigned int eeprom_size;
245} natsemi_pci_info[] = {
246	{ "Aculab E1/T1 PMXc cPCI carrier card", NATSEMI_FLAG_IGNORE_PHY, 128 },
247	{ "NatSemi DP8381[56]", 0, 24 },
248};
249
250static const struct pci_device_id natsemi_pci_tbl[] = {
251	{ PCI_VENDOR_ID_NS, 0x0020, 0x12d9,     0x000c,     0, 0, 0 },
252	{ PCI_VENDOR_ID_NS, 0x0020, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 1 },
253	{ }	/* terminate list */
254};
255MODULE_DEVICE_TABLE(pci, natsemi_pci_tbl);
256
257/* Offsets to the device registers.
258   Unlike software-only systems, device drivers interact with complex hardware.
259   It's not useful to define symbolic names for every register bit in the
260   device.
261*/
262enum register_offsets {
263	ChipCmd			= 0x00,
264	ChipConfig		= 0x04,
265	EECtrl			= 0x08,
266	PCIBusCfg		= 0x0C,
267	IntrStatus		= 0x10,
268	IntrMask		= 0x14,
269	IntrEnable		= 0x18,
270	IntrHoldoff		= 0x1C, /* DP83816 only */
271	TxRingPtr		= 0x20,
272	TxConfig		= 0x24,
273	RxRingPtr		= 0x30,
274	RxConfig		= 0x34,
275	ClkRun			= 0x3C,
276	WOLCmd			= 0x40,
277	PauseCmd		= 0x44,
278	RxFilterAddr		= 0x48,
279	RxFilterData		= 0x4C,
280	BootRomAddr		= 0x50,
281	BootRomData		= 0x54,
282	SiliconRev		= 0x58,
283	StatsCtrl		= 0x5C,
284	StatsData		= 0x60,
285	RxPktErrs		= 0x60,
286	RxMissed		= 0x68,
287	RxCRCErrs		= 0x64,
288	BasicControl		= 0x80,
289	BasicStatus		= 0x84,
290	AnegAdv			= 0x90,
291	AnegPeer		= 0x94,
292	PhyStatus		= 0xC0,
293	MIntrCtrl		= 0xC4,
294	MIntrStatus		= 0xC8,
295	PhyCtrl			= 0xE4,
296
297	/* These are from the spec, around page 78... on a separate table.
298	 * The meaning of these registers depend on the value of PGSEL. */
299	PGSEL			= 0xCC,
300	PMDCSR			= 0xE4,
301	TSTDAT			= 0xFC,
302	DSPCFG			= 0xF4,
303	SDCFG			= 0xF8
304};
305/* the values for the 'magic' registers above (PGSEL=1) */
306#define PMDCSR_VAL	0x189c	/* enable preferred adaptation circuitry */
307#define TSTDAT_VAL	0x0
308#define DSPCFG_VAL	0x5040
309#define SDCFG_VAL	0x008c	/* set voltage thresholds for Signal Detect */
310#define DSPCFG_LOCK	0x20	/* coefficient lock bit in DSPCFG */
311#define DSPCFG_COEF	0x1000	/* see coefficient (in TSTDAT) bit in DSPCFG */
312#define TSTDAT_FIXED	0xe8	/* magic number for bad coefficients */
313
314/* misc PCI space registers */
315enum pci_register_offsets {
316	PCIPM			= 0x44,
317};
318
319enum ChipCmd_bits {
320	ChipReset		= 0x100,
321	RxReset			= 0x20,
322	TxReset			= 0x10,
323	RxOff			= 0x08,
324	RxOn			= 0x04,
325	TxOff			= 0x02,
326	TxOn			= 0x01,
327};
328
329enum ChipConfig_bits {
330	CfgPhyDis		= 0x200,
331	CfgPhyRst		= 0x400,
332	CfgExtPhy		= 0x1000,
333	CfgAnegEnable		= 0x2000,
334	CfgAneg100		= 0x4000,
335	CfgAnegFull		= 0x8000,
336	CfgAnegDone		= 0x8000000,
337	CfgFullDuplex		= 0x20000000,
338	CfgSpeed100		= 0x40000000,
339	CfgLink			= 0x80000000,
340};
341
342enum EECtrl_bits {
343	EE_ShiftClk		= 0x04,
344	EE_DataIn		= 0x01,
345	EE_ChipSelect		= 0x08,
346	EE_DataOut		= 0x02,
347	MII_Data 		= 0x10,
348	MII_Write		= 0x20,
349	MII_ShiftClk		= 0x40,
350};
351
352enum PCIBusCfg_bits {
353	EepromReload		= 0x4,
354};
355
356/* Bits in the interrupt status/mask registers. */
357enum IntrStatus_bits {
358	IntrRxDone		= 0x0001,
359	IntrRxIntr		= 0x0002,
360	IntrRxErr		= 0x0004,
361	IntrRxEarly		= 0x0008,
362	IntrRxIdle		= 0x0010,
363	IntrRxOverrun		= 0x0020,
364	IntrTxDone		= 0x0040,
365	IntrTxIntr		= 0x0080,
366	IntrTxErr		= 0x0100,
367	IntrTxIdle		= 0x0200,
368	IntrTxUnderrun		= 0x0400,
369	StatsMax		= 0x0800,
370	SWInt			= 0x1000,
371	WOLPkt			= 0x2000,
372	LinkChange		= 0x4000,
373	IntrHighBits		= 0x8000,
374	RxStatusFIFOOver	= 0x10000,
375	IntrPCIErr		= 0xf00000,
376	RxResetDone		= 0x1000000,
377	TxResetDone		= 0x2000000,
378	IntrAbnormalSummary	= 0xCD20,
379};
380
381/*
382 * Default Interrupts:
383 * Rx OK, Rx Packet Error, Rx Overrun,
384 * Tx OK, Tx Packet Error, Tx Underrun,
385 * MIB Service, Phy Interrupt, High Bits,
386 * Rx Status FIFO overrun,
387 * Received Target Abort, Received Master Abort,
388 * Signalled System Error, Received Parity Error
389 */
390#define DEFAULT_INTR 0x00f1cd65
391
392enum TxConfig_bits {
393	TxDrthMask		= 0x3f,
394	TxFlthMask		= 0x3f00,
395	TxMxdmaMask		= 0x700000,
396	TxMxdma_512		= 0x0,
397	TxMxdma_4		= 0x100000,
398	TxMxdma_8		= 0x200000,
399	TxMxdma_16		= 0x300000,
400	TxMxdma_32		= 0x400000,
401	TxMxdma_64		= 0x500000,
402	TxMxdma_128		= 0x600000,
403	TxMxdma_256		= 0x700000,
404	TxCollRetry		= 0x800000,
405	TxAutoPad		= 0x10000000,
406	TxMacLoop		= 0x20000000,
407	TxHeartIgn		= 0x40000000,
408	TxCarrierIgn		= 0x80000000
409};
410
411/*
412 * Tx Configuration:
413 * - 256 byte DMA burst length
414 * - fill threshold 512 bytes (i.e. restart DMA when 512 bytes are free)
415 * - 64 bytes initial drain threshold (i.e. begin actual transmission
416 *   when 64 byte are in the fifo)
417 * - on tx underruns, increase drain threshold by 64.
418 * - at most use a drain threshold of 1472 bytes: The sum of the fill
419 *   threshold and the drain threshold must be less than 2016 bytes.
420 *
421 */
422#define TX_FLTH_VAL		((512/32) << 8)
423#define TX_DRTH_VAL_START	(64/32)
424#define TX_DRTH_VAL_INC		2
425#define TX_DRTH_VAL_LIMIT	(1472/32)
426
427enum RxConfig_bits {
428	RxDrthMask		= 0x3e,
429	RxMxdmaMask		= 0x700000,
430	RxMxdma_512		= 0x0,
431	RxMxdma_4		= 0x100000,
432	RxMxdma_8		= 0x200000,
433	RxMxdma_16		= 0x300000,
434	RxMxdma_32		= 0x400000,
435	RxMxdma_64		= 0x500000,
436	RxMxdma_128		= 0x600000,
437	RxMxdma_256		= 0x700000,
438	RxAcceptLong		= 0x8000000,
439	RxAcceptTx		= 0x10000000,
440	RxAcceptRunt		= 0x40000000,
441	RxAcceptErr		= 0x80000000
442};
443#define RX_DRTH_VAL		(128/8)
444
445enum ClkRun_bits {
446	PMEEnable		= 0x100,
447	PMEStatus		= 0x8000,
448};
449
450enum WolCmd_bits {
451	WakePhy			= 0x1,
452	WakeUnicast		= 0x2,
453	WakeMulticast		= 0x4,
454	WakeBroadcast		= 0x8,
455	WakeArp			= 0x10,
456	WakePMatch0		= 0x20,
457	WakePMatch1		= 0x40,
458	WakePMatch2		= 0x80,
459	WakePMatch3		= 0x100,
460	WakeMagic		= 0x200,
461	WakeMagicSecure		= 0x400,
462	SecureHack		= 0x100000,
463	WokePhy			= 0x400000,
464	WokeUnicast		= 0x800000,
465	WokeMulticast		= 0x1000000,
466	WokeBroadcast		= 0x2000000,
467	WokeArp			= 0x4000000,
468	WokePMatch0		= 0x8000000,
469	WokePMatch1		= 0x10000000,
470	WokePMatch2		= 0x20000000,
471	WokePMatch3		= 0x40000000,
472	WokeMagic		= 0x80000000,
473	WakeOptsSummary		= 0x7ff
474};
475
476enum RxFilterAddr_bits {
477	RFCRAddressMask		= 0x3ff,
478	AcceptMulticast		= 0x00200000,
479	AcceptMyPhys		= 0x08000000,
480	AcceptAllPhys		= 0x10000000,
481	AcceptAllMulticast	= 0x20000000,
482	AcceptBroadcast		= 0x40000000,
483	RxFilterEnable		= 0x80000000
484};
485
486enum StatsCtrl_bits {
487	StatsWarn		= 0x1,
488	StatsFreeze		= 0x2,
489	StatsClear		= 0x4,
490	StatsStrobe		= 0x8,
491};
492
493enum MIntrCtrl_bits {
494	MICRIntEn		= 0x2,
495};
496
497enum PhyCtrl_bits {
498	PhyAddrMask		= 0x1f,
499};
500
501#define PHY_ADDR_NONE		32
502#define PHY_ADDR_INTERNAL	1
503
504/* values we might find in the silicon revision register */
505#define SRR_DP83815_C	0x0302
506#define SRR_DP83815_D	0x0403
507#define SRR_DP83816_A4	0x0504
508#define SRR_DP83816_A5	0x0505
509
510/* The Rx and Tx buffer descriptors. */
511/* Note that using only 32 bit fields simplifies conversion to big-endian
512   architectures. */
513struct netdev_desc {
514	__le32 next_desc;
515	__le32 cmd_status;
516	__le32 addr;
517	__le32 software_use;
518};
519
520/* Bits in network_desc.status */
521enum desc_status_bits {
522	DescOwn=0x80000000, DescMore=0x40000000, DescIntr=0x20000000,
523	DescNoCRC=0x10000000, DescPktOK=0x08000000,
524	DescSizeMask=0xfff,
525
526	DescTxAbort=0x04000000, DescTxFIFO=0x02000000,
527	DescTxCarrier=0x01000000, DescTxDefer=0x00800000,
528	DescTxExcDefer=0x00400000, DescTxOOWCol=0x00200000,
529	DescTxExcColl=0x00100000, DescTxCollCount=0x000f0000,
530
531	DescRxAbort=0x04000000, DescRxOver=0x02000000,
532	DescRxDest=0x01800000, DescRxLong=0x00400000,
533	DescRxRunt=0x00200000, DescRxInvalid=0x00100000,
534	DescRxCRC=0x00080000, DescRxAlign=0x00040000,
535	DescRxLoop=0x00020000, DesRxColl=0x00010000,
536};
537
538struct netdev_private {
539	/* Descriptor rings first for alignment */
540	dma_addr_t ring_dma;
541	struct netdev_desc *rx_ring;
542	struct netdev_desc *tx_ring;
543	/* The addresses of receive-in-place skbuffs */
544	struct sk_buff *rx_skbuff[RX_RING_SIZE];
545	dma_addr_t rx_dma[RX_RING_SIZE];
546	/* address of a sent-in-place packet/buffer, for later free() */
547	struct sk_buff *tx_skbuff[TX_RING_SIZE];
548	dma_addr_t tx_dma[TX_RING_SIZE];
549	struct net_device *dev;
550	void __iomem *ioaddr;
551	struct napi_struct napi;
552	/* Media monitoring timer */
553	struct timer_list timer;
554	/* Frequently used values: keep some adjacent for cache effect */
555	struct pci_dev *pci_dev;
556	struct netdev_desc *rx_head_desc;
557	/* Producer/consumer ring indices */
558	unsigned int cur_rx, dirty_rx;
559	unsigned int cur_tx, dirty_tx;
560	/* Based on MTU+slack. */
561	unsigned int rx_buf_sz;
562	int oom;
563	/* Interrupt status */
564	u32 intr_status;
565	/* Do not touch the nic registers */
566	int hands_off;
567	/* Don't pay attention to the reported link state. */
568	int ignore_phy;
569	/* external phy that is used: only valid if dev->if_port != PORT_TP */
570	int mii;
571	int phy_addr_external;
572	unsigned int full_duplex;
573	/* Rx filter */
574	u32 cur_rx_mode;
575	u32 rx_filter[16];
576	/* FIFO and PCI burst thresholds */
577	u32 tx_config, rx_config;
578	/* original contents of ClkRun register */
579	u32 SavedClkRun;
580	/* silicon revision */
581	u32 srr;
582	/* expected DSPCFG value */
583	u16 dspcfg;
584	int dspcfg_workaround;
585	/* parms saved in ethtool format */
586	u16	speed;		/* The forced speed, 10Mb, 100Mb, gigabit */
587	u8	duplex;		/* Duplex, half or full */
588	u8	autoneg;	/* Autonegotiation enabled */
589	/* MII transceiver section */
590	u16 advertising;
591	unsigned int iosize;
592	spinlock_t lock;
593	u32 msg_enable;
594	/* EEPROM data */
595	int eeprom_size;
596};
597
598static void move_int_phy(struct net_device *dev, int addr);
599static int eeprom_read(void __iomem *ioaddr, int location);
600static int mdio_read(struct net_device *dev, int reg);
601static void mdio_write(struct net_device *dev, int reg, u16 data);
602static void init_phy_fixup(struct net_device *dev);
603static int miiport_read(struct net_device *dev, int phy_id, int reg);
604static void miiport_write(struct net_device *dev, int phy_id, int reg, u16 data);
605static int find_mii(struct net_device *dev);
606static void natsemi_reset(struct net_device *dev);
607static void natsemi_reload_eeprom(struct net_device *dev);
608static void natsemi_stop_rxtx(struct net_device *dev);
609static int netdev_open(struct net_device *dev);
610static void do_cable_magic(struct net_device *dev);
611static void undo_cable_magic(struct net_device *dev);
612static void check_link(struct net_device *dev);
613static void netdev_timer(struct timer_list *t);
614static void dump_ring(struct net_device *dev);
615static void ns_tx_timeout(struct net_device *dev, unsigned int txqueue);
616static int alloc_ring(struct net_device *dev);
617static void refill_rx(struct net_device *dev);
618static void init_ring(struct net_device *dev);
619static void drain_tx(struct net_device *dev);
620static void drain_ring(struct net_device *dev);
621static void free_ring(struct net_device *dev);
622static void reinit_ring(struct net_device *dev);
623static void init_registers(struct net_device *dev);
624static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev);
625static irqreturn_t intr_handler(int irq, void *dev_instance);
626static void netdev_error(struct net_device *dev, int intr_status);
627static int natsemi_poll(struct napi_struct *napi, int budget);
628static void netdev_rx(struct net_device *dev, int *work_done, int work_to_do);
629static void netdev_tx_done(struct net_device *dev);
630static int natsemi_change_mtu(struct net_device *dev, int new_mtu);
631#ifdef CONFIG_NET_POLL_CONTROLLER
632static void natsemi_poll_controller(struct net_device *dev);
633#endif
634static void __set_rx_mode(struct net_device *dev);
635static void set_rx_mode(struct net_device *dev);
636static void __get_stats(struct net_device *dev);
637static struct net_device_stats *get_stats(struct net_device *dev);
638static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
639static int netdev_set_wol(struct net_device *dev, u32 newval);
640static int netdev_get_wol(struct net_device *dev, u32 *supported, u32 *cur);
641static int netdev_set_sopass(struct net_device *dev, u8 *newval);
642static int netdev_get_sopass(struct net_device *dev, u8 *data);
643static int netdev_get_ecmd(struct net_device *dev,
644			   struct ethtool_link_ksettings *ecmd);
645static int netdev_set_ecmd(struct net_device *dev,
646			   const struct ethtool_link_ksettings *ecmd);
647static void enable_wol_mode(struct net_device *dev, int enable_intr);
648static int netdev_close(struct net_device *dev);
649static int netdev_get_regs(struct net_device *dev, u8 *buf);
650static int netdev_get_eeprom(struct net_device *dev, u8 *buf);
651static const struct ethtool_ops ethtool_ops;
652
653#define NATSEMI_ATTR(_name) \
654static ssize_t natsemi_show_##_name(struct device *dev, \
655         struct device_attribute *attr, char *buf); \
656	 static ssize_t natsemi_set_##_name(struct device *dev, \
657		struct device_attribute *attr, \
658	        const char *buf, size_t count); \
659	 static DEVICE_ATTR(_name, 0644, natsemi_show_##_name, natsemi_set_##_name)
660
661#define NATSEMI_CREATE_FILE(_dev, _name) \
662         device_create_file(&_dev->dev, &dev_attr_##_name)
663#define NATSEMI_REMOVE_FILE(_dev, _name) \
664         device_remove_file(&_dev->dev, &dev_attr_##_name)
665
666NATSEMI_ATTR(dspcfg_workaround);
667
668static ssize_t natsemi_show_dspcfg_workaround(struct device *dev,
669				  	      struct device_attribute *attr,
670					      char *buf)
671{
672	struct netdev_private *np = netdev_priv(to_net_dev(dev));
673
674	return sprintf(buf, "%s\n", np->dspcfg_workaround ? "on" : "off");
675}
676
677static ssize_t natsemi_set_dspcfg_workaround(struct device *dev,
678					     struct device_attribute *attr,
679					     const char *buf, size_t count)
680{
681	struct netdev_private *np = netdev_priv(to_net_dev(dev));
682	int new_setting;
683	unsigned long flags;
684
685        /* Find out the new setting */
686        if (!strncmp("on", buf, count - 1) || !strncmp("1", buf, count - 1))
687                new_setting = 1;
688        else if (!strncmp("off", buf, count - 1) ||
689                 !strncmp("0", buf, count - 1))
690		new_setting = 0;
691	else
692                 return count;
693
694	spin_lock_irqsave(&np->lock, flags);
695
696	np->dspcfg_workaround = new_setting;
697
698	spin_unlock_irqrestore(&np->lock, flags);
699
700	return count;
701}
702
703static inline void __iomem *ns_ioaddr(struct net_device *dev)
704{
705	struct netdev_private *np = netdev_priv(dev);
706
707	return np->ioaddr;
708}
709
710static inline void natsemi_irq_enable(struct net_device *dev)
711{
712	writel(1, ns_ioaddr(dev) + IntrEnable);
713	readl(ns_ioaddr(dev) + IntrEnable);
714}
715
716static inline void natsemi_irq_disable(struct net_device *dev)
717{
718	writel(0, ns_ioaddr(dev) + IntrEnable);
719	readl(ns_ioaddr(dev) + IntrEnable);
720}
721
722static void move_int_phy(struct net_device *dev, int addr)
723{
724	struct netdev_private *np = netdev_priv(dev);
725	void __iomem *ioaddr = ns_ioaddr(dev);
726	int target = 31;
727
728	/*
729	 * The internal phy is visible on the external mii bus. Therefore we must
730	 * move it away before we can send commands to an external phy.
731	 * There are two addresses we must avoid:
732	 * - the address on the external phy that is used for transmission.
733	 * - the address that we want to access. User space can access phys
734	 *   on the mii bus with SIOCGMIIREG/SIOCSMIIREG, independent from the
735	 *   phy that is used for transmission.
736	 */
737
738	if (target == addr)
739		target--;
740	if (target == np->phy_addr_external)
741		target--;
742	writew(target, ioaddr + PhyCtrl);
743	readw(ioaddr + PhyCtrl);
744	udelay(1);
745}
746
747static void natsemi_init_media(struct net_device *dev)
748{
749	struct netdev_private *np = netdev_priv(dev);
750	u32 tmp;
751
752	if (np->ignore_phy)
753		netif_carrier_on(dev);
754	else
755		netif_carrier_off(dev);
756
757	/* get the initial settings from hardware */
758	tmp            = mdio_read(dev, MII_BMCR);
759	np->speed      = (tmp & BMCR_SPEED100)? SPEED_100     : SPEED_10;
760	np->duplex     = (tmp & BMCR_FULLDPLX)? DUPLEX_FULL   : DUPLEX_HALF;
761	np->autoneg    = (tmp & BMCR_ANENABLE)? AUTONEG_ENABLE: AUTONEG_DISABLE;
762	np->advertising= mdio_read(dev, MII_ADVERTISE);
763
764	if ((np->advertising & ADVERTISE_ALL) != ADVERTISE_ALL &&
765	    netif_msg_probe(np)) {
766		printk(KERN_INFO "natsemi %s: Transceiver default autonegotiation %s "
767			"10%s %s duplex.\n",
768			pci_name(np->pci_dev),
769			(mdio_read(dev, MII_BMCR) & BMCR_ANENABLE)?
770			  "enabled, advertise" : "disabled, force",
771			(np->advertising &
772			  (ADVERTISE_100FULL|ADVERTISE_100HALF))?
773			    "0" : "",
774			(np->advertising &
775			  (ADVERTISE_100FULL|ADVERTISE_10FULL))?
776			    "full" : "half");
777	}
778	if (netif_msg_probe(np))
779		printk(KERN_INFO
780			"natsemi %s: Transceiver status %#04x advertising %#04x.\n",
781			pci_name(np->pci_dev), mdio_read(dev, MII_BMSR),
782			np->advertising);
783
784}
785
786static const struct net_device_ops natsemi_netdev_ops = {
787	.ndo_open		= netdev_open,
788	.ndo_stop		= netdev_close,
789	.ndo_start_xmit		= start_tx,
790	.ndo_get_stats		= get_stats,
791	.ndo_set_rx_mode	= set_rx_mode,
792	.ndo_change_mtu		= natsemi_change_mtu,
793	.ndo_eth_ioctl		= netdev_ioctl,
794	.ndo_tx_timeout 	= ns_tx_timeout,
795	.ndo_set_mac_address 	= eth_mac_addr,
796	.ndo_validate_addr	= eth_validate_addr,
797#ifdef CONFIG_NET_POLL_CONTROLLER
798	.ndo_poll_controller	= natsemi_poll_controller,
799#endif
800};
801
802static int natsemi_probe1(struct pci_dev *pdev, const struct pci_device_id *ent)
803{
804	struct net_device *dev;
805	struct netdev_private *np;
806	int i, option, irq, chip_idx = ent->driver_data;
807	static int find_cnt = -1;
808	resource_size_t iostart;
809	unsigned long iosize;
810	void __iomem *ioaddr;
811	const int pcibar = 1; /* PCI base address register */
812	u8 addr[ETH_ALEN];
813	int prev_eedata;
814	u32 tmp;
815
816/* when built into the kernel, we only print version if device is found */
817#ifndef MODULE
818	static int printed_version;
819	if (!printed_version++)
820		printk(version);
821#endif
822
823	i = pcim_enable_device(pdev);
824	if (i) return i;
825
826	/* natsemi has a non-standard PM control register
827	 * in PCI config space.  Some boards apparently need
828	 * to be brought to D0 in this manner.
829	 */
830	pci_read_config_dword(pdev, PCIPM, &tmp);
831	if (tmp & PCI_PM_CTRL_STATE_MASK) {
832		/* D0 state, disable PME assertion */
833		u32 newtmp = tmp & ~PCI_PM_CTRL_STATE_MASK;
834		pci_write_config_dword(pdev, PCIPM, newtmp);
835	}
836
837	find_cnt++;
838	iostart = pci_resource_start(pdev, pcibar);
839	iosize = pci_resource_len(pdev, pcibar);
840	irq = pdev->irq;
841
842	pci_set_master(pdev);
843
844	dev = alloc_etherdev(sizeof (struct netdev_private));
845	if (!dev)
846		return -ENOMEM;
847	SET_NETDEV_DEV(dev, &pdev->dev);
848
849	i = pci_request_regions(pdev, DRV_NAME);
850	if (i)
851		goto err_pci_request_regions;
852
853	ioaddr = ioremap(iostart, iosize);
854	if (!ioaddr) {
855		i = -ENOMEM;
856		goto err_pci_request_regions;
857	}
858
859	/* Work around the dropped serial bit. */
860	prev_eedata = eeprom_read(ioaddr, 6);
861	for (i = 0; i < 3; i++) {
862		int eedata = eeprom_read(ioaddr, i + 7);
863		addr[i*2] = (eedata << 1) + (prev_eedata >> 15);
864		addr[i*2+1] = eedata >> 7;
865		prev_eedata = eedata;
866	}
867	eth_hw_addr_set(dev, addr);
868
869	np = netdev_priv(dev);
870	np->ioaddr = ioaddr;
871
872	netif_napi_add(dev, &np->napi, natsemi_poll);
873	np->dev = dev;
874
875	np->pci_dev = pdev;
876	pci_set_drvdata(pdev, dev);
877	np->iosize = iosize;
878	spin_lock_init(&np->lock);
879	np->msg_enable = (debug >= 0) ? (1<<debug)-1 : NATSEMI_DEF_MSG;
880	np->hands_off = 0;
881	np->intr_status = 0;
882	np->eeprom_size = natsemi_pci_info[chip_idx].eeprom_size;
883	if (natsemi_pci_info[chip_idx].flags & NATSEMI_FLAG_IGNORE_PHY)
884		np->ignore_phy = 1;
885	else
886		np->ignore_phy = 0;
887	np->dspcfg_workaround = dspcfg_workaround;
888
889	/* Initial port:
890	 * - If configured to ignore the PHY set up for external.
891	 * - If the nic was configured to use an external phy and if find_mii
892	 *   finds a phy: use external port, first phy that replies.
893	 * - Otherwise: internal port.
894	 * Note that the phy address for the internal phy doesn't matter:
895	 * The address would be used to access a phy over the mii bus, but
896	 * the internal phy is accessed through mapped registers.
897	 */
898	if (np->ignore_phy || readl(ioaddr + ChipConfig) & CfgExtPhy)
899		dev->if_port = PORT_MII;
900	else
901		dev->if_port = PORT_TP;
902	/* Reset the chip to erase previous misconfiguration. */
903	natsemi_reload_eeprom(dev);
904	natsemi_reset(dev);
905
906	if (dev->if_port != PORT_TP) {
907		np->phy_addr_external = find_mii(dev);
908		/* If we're ignoring the PHY it doesn't matter if we can't
909		 * find one. */
910		if (!np->ignore_phy && np->phy_addr_external == PHY_ADDR_NONE) {
911			dev->if_port = PORT_TP;
912			np->phy_addr_external = PHY_ADDR_INTERNAL;
913		}
914	} else {
915		np->phy_addr_external = PHY_ADDR_INTERNAL;
916	}
917
918	option = find_cnt < MAX_UNITS ? options[find_cnt] : 0;
919	/* The lower four bits are the media type. */
920	if (option) {
921		if (option & 0x200)
922			np->full_duplex = 1;
923		if (option & 15)
924			printk(KERN_INFO
925				"natsemi %s: ignoring user supplied media type %d",
926				pci_name(np->pci_dev), option & 15);
927	}
928	if (find_cnt < MAX_UNITS  &&  full_duplex[find_cnt])
929		np->full_duplex = 1;
930
931	dev->netdev_ops = &natsemi_netdev_ops;
932	dev->watchdog_timeo = TX_TIMEOUT;
933
934	dev->ethtool_ops = &ethtool_ops;
935
936	/* MTU range: 64 - 2024 */
937	dev->min_mtu = ETH_ZLEN + ETH_FCS_LEN;
938	dev->max_mtu = NATSEMI_RX_LIMIT - NATSEMI_HEADERS;
939
940	if (mtu)
941		dev->mtu = mtu;
942
943	natsemi_init_media(dev);
944
945	/* save the silicon revision for later querying */
946	np->srr = readl(ioaddr + SiliconRev);
947	if (netif_msg_hw(np))
948		printk(KERN_INFO "natsemi %s: silicon revision %#04x.\n",
949				pci_name(np->pci_dev), np->srr);
950
951	i = register_netdev(dev);
952	if (i)
953		goto err_register_netdev;
954	i = NATSEMI_CREATE_FILE(pdev, dspcfg_workaround);
955	if (i)
956		goto err_create_file;
957
958	if (netif_msg_drv(np)) {
959		printk(KERN_INFO "natsemi %s: %s at %#08llx "
960		       "(%s), %pM, IRQ %d",
961		       dev->name, natsemi_pci_info[chip_idx].name,
962		       (unsigned long long)iostart, pci_name(np->pci_dev),
963		       dev->dev_addr, irq);
964		if (dev->if_port == PORT_TP)
965			printk(", port TP.\n");
966		else if (np->ignore_phy)
967			printk(", port MII, ignoring PHY\n");
968		else
969			printk(", port MII, phy ad %d.\n", np->phy_addr_external);
970	}
971	return 0;
972
973 err_create_file:
974	unregister_netdev(dev);
975
976 err_register_netdev:
977	iounmap(ioaddr);
978
979 err_pci_request_regions:
980	free_netdev(dev);
981	return i;
982}
983
984
985/* Read the EEPROM and MII Management Data I/O (MDIO) interfaces.
986   The EEPROM code is for the common 93c06/46 EEPROMs with 6 bit addresses. */
987
988/* Delay between EEPROM clock transitions.
989   No extra delay is needed with 33Mhz PCI, but future 66Mhz access may need
990   a delay.  Note that pre-2.0.34 kernels had a cache-alignment bug that
991   made udelay() unreliable.
992*/
993#define eeprom_delay(ee_addr)	readl(ee_addr)
994
995#define EE_Write0 (EE_ChipSelect)
996#define EE_Write1 (EE_ChipSelect | EE_DataIn)
997
998/* The EEPROM commands include the alway-set leading bit. */
999enum EEPROM_Cmds {
1000	EE_WriteCmd=(5 << 6), EE_ReadCmd=(6 << 6), EE_EraseCmd=(7 << 6),
1001};
1002
1003static int eeprom_read(void __iomem *addr, int location)
1004{
1005	int i;
1006	int retval = 0;
1007	void __iomem *ee_addr = addr + EECtrl;
1008	int read_cmd = location | EE_ReadCmd;
1009
1010	writel(EE_Write0, ee_addr);
1011
1012	/* Shift the read command bits out. */
1013	for (i = 10; i >= 0; i--) {
1014		short dataval = (read_cmd & (1 << i)) ? EE_Write1 : EE_Write0;
1015		writel(dataval, ee_addr);
1016		eeprom_delay(ee_addr);
1017		writel(dataval | EE_ShiftClk, ee_addr);
1018		eeprom_delay(ee_addr);
1019	}
1020	writel(EE_ChipSelect, ee_addr);
1021	eeprom_delay(ee_addr);
1022
1023	for (i = 0; i < 16; i++) {
1024		writel(EE_ChipSelect | EE_ShiftClk, ee_addr);
1025		eeprom_delay(ee_addr);
1026		retval |= (readl(ee_addr) & EE_DataOut) ? 1 << i : 0;
1027		writel(EE_ChipSelect, ee_addr);
1028		eeprom_delay(ee_addr);
1029	}
1030
1031	/* Terminate the EEPROM access. */
1032	writel(EE_Write0, ee_addr);
1033	writel(0, ee_addr);
1034	return retval;
1035}
1036
1037/* MII transceiver control section.
1038 * The 83815 series has an internal transceiver, and we present the
1039 * internal management registers as if they were MII connected.
1040 * External Phy registers are referenced through the MII interface.
1041 */
1042
1043/* clock transitions >= 20ns (25MHz)
1044 * One readl should be good to PCI @ 100MHz
1045 */
1046#define mii_delay(ioaddr)  readl(ioaddr + EECtrl)
1047
1048static int mii_getbit (struct net_device *dev)
1049{
1050	int data;
1051	void __iomem *ioaddr = ns_ioaddr(dev);
1052
1053	writel(MII_ShiftClk, ioaddr + EECtrl);
1054	data = readl(ioaddr + EECtrl);
1055	writel(0, ioaddr + EECtrl);
1056	mii_delay(ioaddr);
1057	return (data & MII_Data)? 1 : 0;
1058}
1059
1060static void mii_send_bits (struct net_device *dev, u32 data, int len)
1061{
1062	u32 i;
1063	void __iomem *ioaddr = ns_ioaddr(dev);
1064
1065	for (i = (1 << (len-1)); i; i >>= 1)
1066	{
1067		u32 mdio_val = MII_Write | ((data & i)? MII_Data : 0);
1068		writel(mdio_val, ioaddr + EECtrl);
1069		mii_delay(ioaddr);
1070		writel(mdio_val | MII_ShiftClk, ioaddr + EECtrl);
1071		mii_delay(ioaddr);
1072	}
1073	writel(0, ioaddr + EECtrl);
1074	mii_delay(ioaddr);
1075}
1076
1077static int miiport_read(struct net_device *dev, int phy_id, int reg)
1078{
1079	u32 cmd;
1080	int i;
1081	u32 retval = 0;
1082
1083	/* Ensure sync */
1084	mii_send_bits (dev, 0xffffffff, 32);
1085	/* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1086	/* ST,OP = 0110'b for read operation */
1087	cmd = (0x06 << 10) | (phy_id << 5) | reg;
1088	mii_send_bits (dev, cmd, 14);
1089	/* Turnaround */
1090	if (mii_getbit (dev))
1091		return 0;
1092	/* Read data */
1093	for (i = 0; i < 16; i++) {
1094		retval <<= 1;
1095		retval |= mii_getbit (dev);
1096	}
1097	/* End cycle */
1098	mii_getbit (dev);
1099	return retval;
1100}
1101
1102static void miiport_write(struct net_device *dev, int phy_id, int reg, u16 data)
1103{
1104	u32 cmd;
1105
1106	/* Ensure sync */
1107	mii_send_bits (dev, 0xffffffff, 32);
1108	/* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1109	/* ST,OP,AAAAA,RRRRR,TA = 0101xxxxxxxxxx10'b = 0x5002 for write */
1110	cmd = (0x5002 << 16) | (phy_id << 23) | (reg << 18) | data;
1111	mii_send_bits (dev, cmd, 32);
1112	/* End cycle */
1113	mii_getbit (dev);
1114}
1115
1116static int mdio_read(struct net_device *dev, int reg)
1117{
1118	struct netdev_private *np = netdev_priv(dev);
1119	void __iomem *ioaddr = ns_ioaddr(dev);
1120
1121	/* The 83815 series has two ports:
1122	 * - an internal transceiver
1123	 * - an external mii bus
1124	 */
1125	if (dev->if_port == PORT_TP)
1126		return readw(ioaddr+BasicControl+(reg<<2));
1127	else
1128		return miiport_read(dev, np->phy_addr_external, reg);
1129}
1130
1131static void mdio_write(struct net_device *dev, int reg, u16 data)
1132{
1133	struct netdev_private *np = netdev_priv(dev);
1134	void __iomem *ioaddr = ns_ioaddr(dev);
1135
1136	/* The 83815 series has an internal transceiver; handle separately */
1137	if (dev->if_port == PORT_TP)
1138		writew(data, ioaddr+BasicControl+(reg<<2));
1139	else
1140		miiport_write(dev, np->phy_addr_external, reg, data);
1141}
1142
1143static void init_phy_fixup(struct net_device *dev)
1144{
1145	struct netdev_private *np = netdev_priv(dev);
1146	void __iomem *ioaddr = ns_ioaddr(dev);
1147	int i;
1148	u32 cfg;
1149	u16 tmp;
1150
1151	/* restore stuff lost when power was out */
1152	tmp = mdio_read(dev, MII_BMCR);
1153	if (np->autoneg == AUTONEG_ENABLE) {
1154		/* renegotiate if something changed */
1155		if ((tmp & BMCR_ANENABLE) == 0 ||
1156		    np->advertising != mdio_read(dev, MII_ADVERTISE))
1157		{
1158			/* turn on autonegotiation and force negotiation */
1159			tmp |= (BMCR_ANENABLE | BMCR_ANRESTART);
1160			mdio_write(dev, MII_ADVERTISE, np->advertising);
1161		}
1162	} else {
1163		/* turn off auto negotiation, set speed and duplexity */
1164		tmp &= ~(BMCR_ANENABLE | BMCR_SPEED100 | BMCR_FULLDPLX);
1165		if (np->speed == SPEED_100)
1166			tmp |= BMCR_SPEED100;
1167		if (np->duplex == DUPLEX_FULL)
1168			tmp |= BMCR_FULLDPLX;
1169		/*
1170		 * Note: there is no good way to inform the link partner
1171		 * that our capabilities changed. The user has to unplug
1172		 * and replug the network cable after some changes, e.g.
1173		 * after switching from 10HD, autoneg off to 100 HD,
1174		 * autoneg off.
1175		 */
1176	}
1177	mdio_write(dev, MII_BMCR, tmp);
1178	readl(ioaddr + ChipConfig);
1179	udelay(1);
1180
1181	/* find out what phy this is */
1182	np->mii = (mdio_read(dev, MII_PHYSID1) << 16)
1183				+ mdio_read(dev, MII_PHYSID2);
1184
1185	/* handle external phys here */
1186	switch (np->mii) {
1187	case PHYID_AM79C874:
1188		/* phy specific configuration for fibre/tp operation */
1189		tmp = mdio_read(dev, MII_MCTRL);
1190		tmp &= ~(MII_FX_SEL | MII_EN_SCRM);
1191		if (dev->if_port == PORT_FIBRE)
1192			tmp |= MII_FX_SEL;
1193		else
1194			tmp |= MII_EN_SCRM;
1195		mdio_write(dev, MII_MCTRL, tmp);
1196		break;
1197	default:
1198		break;
1199	}
1200	cfg = readl(ioaddr + ChipConfig);
1201	if (cfg & CfgExtPhy)
1202		return;
1203
1204	/* On page 78 of the spec, they recommend some settings for "optimum
1205	   performance" to be done in sequence.  These settings optimize some
1206	   of the 100Mbit autodetection circuitry.  They say we only want to
1207	   do this for rev C of the chip, but engineers at NSC (Bradley
1208	   Kennedy) recommends always setting them.  If you don't, you get
1209	   errors on some autonegotiations that make the device unusable.
1210
1211	   It seems that the DSP needs a few usec to reinitialize after
1212	   the start of the phy. Just retry writing these values until they
1213	   stick.
1214	*/
1215	for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1216
1217		int dspcfg;
1218		writew(1, ioaddr + PGSEL);
1219		writew(PMDCSR_VAL, ioaddr + PMDCSR);
1220		writew(TSTDAT_VAL, ioaddr + TSTDAT);
1221		np->dspcfg = (np->srr <= SRR_DP83815_C)?
1222			DSPCFG_VAL : (DSPCFG_COEF | readw(ioaddr + DSPCFG));
1223		writew(np->dspcfg, ioaddr + DSPCFG);
1224		writew(SDCFG_VAL, ioaddr + SDCFG);
1225		writew(0, ioaddr + PGSEL);
1226		readl(ioaddr + ChipConfig);
1227		udelay(10);
1228
1229		writew(1, ioaddr + PGSEL);
1230		dspcfg = readw(ioaddr + DSPCFG);
1231		writew(0, ioaddr + PGSEL);
1232		if (np->dspcfg == dspcfg)
1233			break;
1234	}
1235
1236	if (netif_msg_link(np)) {
1237		if (i==NATSEMI_HW_TIMEOUT) {
1238			printk(KERN_INFO
1239				"%s: DSPCFG mismatch after retrying for %d usec.\n",
1240				dev->name, i*10);
1241		} else {
1242			printk(KERN_INFO
1243				"%s: DSPCFG accepted after %d usec.\n",
1244				dev->name, i*10);
1245		}
1246	}
1247	/*
1248	 * Enable PHY Specific event based interrupts.  Link state change
1249	 * and Auto-Negotiation Completion are among the affected.
1250	 * Read the intr status to clear it (needed for wake events).
1251	 */
1252	readw(ioaddr + MIntrStatus);
1253	writew(MICRIntEn, ioaddr + MIntrCtrl);
1254}
1255
1256static int switch_port_external(struct net_device *dev)
1257{
1258	struct netdev_private *np = netdev_priv(dev);
1259	void __iomem *ioaddr = ns_ioaddr(dev);
1260	u32 cfg;
1261
1262	cfg = readl(ioaddr + ChipConfig);
1263	if (cfg & CfgExtPhy)
1264		return 0;
1265
1266	if (netif_msg_link(np)) {
1267		printk(KERN_INFO "%s: switching to external transceiver.\n",
1268				dev->name);
1269	}
1270
1271	/* 1) switch back to external phy */
1272	writel(cfg | (CfgExtPhy | CfgPhyDis), ioaddr + ChipConfig);
1273	readl(ioaddr + ChipConfig);
1274	udelay(1);
1275
1276	/* 2) reset the external phy: */
1277	/* resetting the external PHY has been known to cause a hub supplying
1278	 * power over Ethernet to kill the power.  We don't want to kill
1279	 * power to this computer, so we avoid resetting the phy.
1280	 */
1281
1282	/* 3) reinit the phy fixup, it got lost during power down. */
1283	move_int_phy(dev, np->phy_addr_external);
1284	init_phy_fixup(dev);
1285
1286	return 1;
1287}
1288
1289static int switch_port_internal(struct net_device *dev)
1290{
1291	struct netdev_private *np = netdev_priv(dev);
1292	void __iomem *ioaddr = ns_ioaddr(dev);
1293	int i;
1294	u32 cfg;
1295	u16 bmcr;
1296
1297	cfg = readl(ioaddr + ChipConfig);
1298	if (!(cfg &CfgExtPhy))
1299		return 0;
1300
1301	if (netif_msg_link(np)) {
1302		printk(KERN_INFO "%s: switching to internal transceiver.\n",
1303				dev->name);
1304	}
1305	/* 1) switch back to internal phy: */
1306	cfg = cfg & ~(CfgExtPhy | CfgPhyDis);
1307	writel(cfg, ioaddr + ChipConfig);
1308	readl(ioaddr + ChipConfig);
1309	udelay(1);
1310
1311	/* 2) reset the internal phy: */
1312	bmcr = readw(ioaddr+BasicControl+(MII_BMCR<<2));
1313	writel(bmcr | BMCR_RESET, ioaddr+BasicControl+(MII_BMCR<<2));
1314	readl(ioaddr + ChipConfig);
1315	udelay(10);
1316	for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1317		bmcr = readw(ioaddr+BasicControl+(MII_BMCR<<2));
1318		if (!(bmcr & BMCR_RESET))
1319			break;
1320		udelay(10);
1321	}
1322	if (i==NATSEMI_HW_TIMEOUT && netif_msg_link(np)) {
1323		printk(KERN_INFO
1324			"%s: phy reset did not complete in %d usec.\n",
1325			dev->name, i*10);
1326	}
1327	/* 3) reinit the phy fixup, it got lost during power down. */
1328	init_phy_fixup(dev);
1329
1330	return 1;
1331}
1332
1333/* Scan for a PHY on the external mii bus.
1334 * There are two tricky points:
1335 * - Do not scan while the internal phy is enabled. The internal phy will
1336 *   crash: e.g. reads from the DSPCFG register will return odd values and
1337 *   the nasty random phy reset code will reset the nic every few seconds.
1338 * - The internal phy must be moved around, an external phy could
1339 *   have the same address as the internal phy.
1340 */
1341static int find_mii(struct net_device *dev)
1342{
1343	struct netdev_private *np = netdev_priv(dev);
1344	int tmp;
1345	int i;
1346	int did_switch;
1347
1348	/* Switch to external phy */
1349	did_switch = switch_port_external(dev);
1350
1351	/* Scan the possible phy addresses:
1352	 *
1353	 * PHY address 0 means that the phy is in isolate mode. Not yet
1354	 * supported due to lack of test hardware. User space should
1355	 * handle it through ethtool.
1356	 */
1357	for (i = 1; i <= 31; i++) {
1358		move_int_phy(dev, i);
1359		tmp = miiport_read(dev, i, MII_BMSR);
1360		if (tmp != 0xffff && tmp != 0x0000) {
1361			/* found something! */
1362			np->mii = (mdio_read(dev, MII_PHYSID1) << 16)
1363					+ mdio_read(dev, MII_PHYSID2);
1364	 		if (netif_msg_probe(np)) {
1365				printk(KERN_INFO "natsemi %s: found external phy %08x at address %d.\n",
1366						pci_name(np->pci_dev), np->mii, i);
1367			}
1368			break;
1369		}
1370	}
1371	/* And switch back to internal phy: */
1372	if (did_switch)
1373		switch_port_internal(dev);
1374	return i;
1375}
1376
1377/* CFG bits [13:16] [18:23] */
1378#define CFG_RESET_SAVE 0xfde000
1379/* WCSR bits [0:4] [9:10] */
1380#define WCSR_RESET_SAVE 0x61f
1381/* RFCR bits [20] [22] [27:31] */
1382#define RFCR_RESET_SAVE 0xf8500000
1383
1384static void natsemi_reset(struct net_device *dev)
1385{
1386	int i;
1387	u32 cfg;
1388	u32 wcsr;
1389	u32 rfcr;
1390	u16 pmatch[3];
1391	u16 sopass[3];
1392	struct netdev_private *np = netdev_priv(dev);
1393	void __iomem *ioaddr = ns_ioaddr(dev);
1394
1395	/*
1396	 * Resetting the chip causes some registers to be lost.
1397	 * Natsemi suggests NOT reloading the EEPROM while live, so instead
1398	 * we save the state that would have been loaded from EEPROM
1399	 * on a normal power-up (see the spec EEPROM map).  This assumes
1400	 * whoever calls this will follow up with init_registers() eventually.
1401	 */
1402
1403	/* CFG */
1404	cfg = readl(ioaddr + ChipConfig) & CFG_RESET_SAVE;
1405	/* WCSR */
1406	wcsr = readl(ioaddr + WOLCmd) & WCSR_RESET_SAVE;
1407	/* RFCR */
1408	rfcr = readl(ioaddr + RxFilterAddr) & RFCR_RESET_SAVE;
1409	/* PMATCH */
1410	for (i = 0; i < 3; i++) {
1411		writel(i*2, ioaddr + RxFilterAddr);
1412		pmatch[i] = readw(ioaddr + RxFilterData);
1413	}
1414	/* SOPAS */
1415	for (i = 0; i < 3; i++) {
1416		writel(0xa+(i*2), ioaddr + RxFilterAddr);
1417		sopass[i] = readw(ioaddr + RxFilterData);
1418	}
1419
1420	/* now whack the chip */
1421	writel(ChipReset, ioaddr + ChipCmd);
1422	for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1423		if (!(readl(ioaddr + ChipCmd) & ChipReset))
1424			break;
1425		udelay(5);
1426	}
1427	if (i==NATSEMI_HW_TIMEOUT) {
1428		printk(KERN_WARNING "%s: reset did not complete in %d usec.\n",
1429			dev->name, i*5);
1430	} else if (netif_msg_hw(np)) {
1431		printk(KERN_DEBUG "%s: reset completed in %d usec.\n",
1432			dev->name, i*5);
1433	}
1434
1435	/* restore CFG */
1436	cfg |= readl(ioaddr + ChipConfig) & ~CFG_RESET_SAVE;
1437	/* turn on external phy if it was selected */
1438	if (dev->if_port == PORT_TP)
1439		cfg &= ~(CfgExtPhy | CfgPhyDis);
1440	else
1441		cfg |= (CfgExtPhy | CfgPhyDis);
1442	writel(cfg, ioaddr + ChipConfig);
1443	/* restore WCSR */
1444	wcsr |= readl(ioaddr + WOLCmd) & ~WCSR_RESET_SAVE;
1445	writel(wcsr, ioaddr + WOLCmd);
1446	/* read RFCR */
1447	rfcr |= readl(ioaddr + RxFilterAddr) & ~RFCR_RESET_SAVE;
1448	/* restore PMATCH */
1449	for (i = 0; i < 3; i++) {
1450		writel(i*2, ioaddr + RxFilterAddr);
1451		writew(pmatch[i], ioaddr + RxFilterData);
1452	}
1453	for (i = 0; i < 3; i++) {
1454		writel(0xa+(i*2), ioaddr + RxFilterAddr);
1455		writew(sopass[i], ioaddr + RxFilterData);
1456	}
1457	/* restore RFCR */
1458	writel(rfcr, ioaddr + RxFilterAddr);
1459}
1460
1461static void reset_rx(struct net_device *dev)
1462{
1463	int i;
1464	struct netdev_private *np = netdev_priv(dev);
1465	void __iomem *ioaddr = ns_ioaddr(dev);
1466
1467	np->intr_status &= ~RxResetDone;
1468
1469	writel(RxReset, ioaddr + ChipCmd);
1470
1471	for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1472		np->intr_status |= readl(ioaddr + IntrStatus);
1473		if (np->intr_status & RxResetDone)
1474			break;
1475		udelay(15);
1476	}
1477	if (i==NATSEMI_HW_TIMEOUT) {
1478		printk(KERN_WARNING "%s: RX reset did not complete in %d usec.\n",
1479		       dev->name, i*15);
1480	} else if (netif_msg_hw(np)) {
1481		printk(KERN_WARNING "%s: RX reset took %d usec.\n",
1482		       dev->name, i*15);
1483	}
1484}
1485
1486static void natsemi_reload_eeprom(struct net_device *dev)
1487{
1488	struct netdev_private *np = netdev_priv(dev);
1489	void __iomem *ioaddr = ns_ioaddr(dev);
1490	int i;
1491
1492	writel(EepromReload, ioaddr + PCIBusCfg);
1493	for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1494		udelay(50);
1495		if (!(readl(ioaddr + PCIBusCfg) & EepromReload))
1496			break;
1497	}
1498	if (i==NATSEMI_HW_TIMEOUT) {
1499		printk(KERN_WARNING "natsemi %s: EEPROM did not reload in %d usec.\n",
1500			pci_name(np->pci_dev), i*50);
1501	} else if (netif_msg_hw(np)) {
1502		printk(KERN_DEBUG "natsemi %s: EEPROM reloaded in %d usec.\n",
1503			pci_name(np->pci_dev), i*50);
1504	}
1505}
1506
1507static void natsemi_stop_rxtx(struct net_device *dev)
1508{
1509	void __iomem * ioaddr = ns_ioaddr(dev);
1510	struct netdev_private *np = netdev_priv(dev);
1511	int i;
1512
1513	writel(RxOff | TxOff, ioaddr + ChipCmd);
1514	for(i=0;i< NATSEMI_HW_TIMEOUT;i++) {
1515		if ((readl(ioaddr + ChipCmd) & (TxOn|RxOn)) == 0)
1516			break;
1517		udelay(5);
1518	}
1519	if (i==NATSEMI_HW_TIMEOUT) {
1520		printk(KERN_WARNING "%s: Tx/Rx process did not stop in %d usec.\n",
1521			dev->name, i*5);
1522	} else if (netif_msg_hw(np)) {
1523		printk(KERN_DEBUG "%s: Tx/Rx process stopped in %d usec.\n",
1524			dev->name, i*5);
1525	}
1526}
1527
1528static int netdev_open(struct net_device *dev)
1529{
1530	struct netdev_private *np = netdev_priv(dev);
1531	void __iomem * ioaddr = ns_ioaddr(dev);
1532	const int irq = np->pci_dev->irq;
1533	int i;
1534
1535	/* Reset the chip, just in case. */
1536	natsemi_reset(dev);
1537
1538	i = request_irq(irq, intr_handler, IRQF_SHARED, dev->name, dev);
1539	if (i) return i;
1540
1541	if (netif_msg_ifup(np))
1542		printk(KERN_DEBUG "%s: netdev_open() irq %d.\n",
1543			dev->name, irq);
1544	i = alloc_ring(dev);
1545	if (i < 0) {
1546		free_irq(irq, dev);
1547		return i;
1548	}
1549	napi_enable(&np->napi);
1550
1551	init_ring(dev);
1552	spin_lock_irq(&np->lock);
1553	init_registers(dev);
1554	/* now set the MAC address according to dev->dev_addr */
1555	for (i = 0; i < 3; i++) {
1556		u16 mac = (dev->dev_addr[2*i+1]<<8) + dev->dev_addr[2*i];
1557
1558		writel(i*2, ioaddr + RxFilterAddr);
1559		writew(mac, ioaddr + RxFilterData);
1560	}
1561	writel(np->cur_rx_mode, ioaddr + RxFilterAddr);
1562	spin_unlock_irq(&np->lock);
1563
1564	netif_start_queue(dev);
1565
1566	if (netif_msg_ifup(np))
1567		printk(KERN_DEBUG "%s: Done netdev_open(), status: %#08x.\n",
1568			dev->name, (int)readl(ioaddr + ChipCmd));
1569
1570	/* Set the timer to check for link beat. */
1571	timer_setup(&np->timer, netdev_timer, 0);
1572	np->timer.expires = round_jiffies(jiffies + NATSEMI_TIMER_FREQ);
1573	add_timer(&np->timer);
1574
1575	return 0;
1576}
1577
1578static void do_cable_magic(struct net_device *dev)
1579{
1580	struct netdev_private *np = netdev_priv(dev);
1581	void __iomem *ioaddr = ns_ioaddr(dev);
1582
1583	if (dev->if_port != PORT_TP)
1584		return;
1585
1586	if (np->srr >= SRR_DP83816_A5)
1587		return;
1588
1589	/*
1590	 * 100 MBit links with short cables can trip an issue with the chip.
1591	 * The problem manifests as lots of CRC errors and/or flickering
1592	 * activity LED while idle.  This process is based on instructions
1593	 * from engineers at National.
1594	 */
1595	if (readl(ioaddr + ChipConfig) & CfgSpeed100) {
1596		u16 data;
1597
1598		writew(1, ioaddr + PGSEL);
1599		/*
1600		 * coefficient visibility should already be enabled via
1601		 * DSPCFG | 0x1000
1602		 */
1603		data = readw(ioaddr + TSTDAT) & 0xff;
1604		/*
1605		 * the value must be negative, and within certain values
1606		 * (these values all come from National)
1607		 */
1608		if (!(data & 0x80) || ((data >= 0xd8) && (data <= 0xff))) {
1609			np = netdev_priv(dev);
1610
1611			/* the bug has been triggered - fix the coefficient */
1612			writew(TSTDAT_FIXED, ioaddr + TSTDAT);
1613			/* lock the value */
1614			data = readw(ioaddr + DSPCFG);
1615			np->dspcfg = data | DSPCFG_LOCK;
1616			writew(np->dspcfg, ioaddr + DSPCFG);
1617		}
1618		writew(0, ioaddr + PGSEL);
1619	}
1620}
1621
1622static void undo_cable_magic(struct net_device *dev)
1623{
1624	u16 data;
1625	struct netdev_private *np = netdev_priv(dev);
1626	void __iomem * ioaddr = ns_ioaddr(dev);
1627
1628	if (dev->if_port != PORT_TP)
1629		return;
1630
1631	if (np->srr >= SRR_DP83816_A5)
1632		return;
1633
1634	writew(1, ioaddr + PGSEL);
1635	/* make sure the lock bit is clear */
1636	data = readw(ioaddr + DSPCFG);
1637	np->dspcfg = data & ~DSPCFG_LOCK;
1638	writew(np->dspcfg, ioaddr + DSPCFG);
1639	writew(0, ioaddr + PGSEL);
1640}
1641
1642static void check_link(struct net_device *dev)
1643{
1644	struct netdev_private *np = netdev_priv(dev);
1645	void __iomem * ioaddr = ns_ioaddr(dev);
1646	int duplex = np->duplex;
1647	u16 bmsr;
1648
1649	/* If we are ignoring the PHY then don't try reading it. */
1650	if (np->ignore_phy)
1651		goto propagate_state;
1652
1653	/* The link status field is latched: it remains low after a temporary
1654	 * link failure until it's read. We need the current link status,
1655	 * thus read twice.
1656	 */
1657	mdio_read(dev, MII_BMSR);
1658	bmsr = mdio_read(dev, MII_BMSR);
1659
1660	if (!(bmsr & BMSR_LSTATUS)) {
1661		if (netif_carrier_ok(dev)) {
1662			if (netif_msg_link(np))
1663				printk(KERN_NOTICE "%s: link down.\n",
1664				       dev->name);
1665			netif_carrier_off(dev);
1666			undo_cable_magic(dev);
1667		}
1668		return;
1669	}
1670	if (!netif_carrier_ok(dev)) {
1671		if (netif_msg_link(np))
1672			printk(KERN_NOTICE "%s: link up.\n", dev->name);
1673		netif_carrier_on(dev);
1674		do_cable_magic(dev);
1675	}
1676
1677	duplex = np->full_duplex;
1678	if (!duplex) {
1679		if (bmsr & BMSR_ANEGCOMPLETE) {
1680			int tmp = mii_nway_result(
1681				np->advertising & mdio_read(dev, MII_LPA));
1682			if (tmp == LPA_100FULL || tmp == LPA_10FULL)
1683				duplex = 1;
1684		} else if (mdio_read(dev, MII_BMCR) & BMCR_FULLDPLX)
1685			duplex = 1;
1686	}
1687
1688propagate_state:
1689	/* if duplex is set then bit 28 must be set, too */
1690	if (duplex ^ !!(np->rx_config & RxAcceptTx)) {
1691		if (netif_msg_link(np))
1692			printk(KERN_INFO
1693				"%s: Setting %s-duplex based on negotiated "
1694				"link capability.\n", dev->name,
1695				duplex ? "full" : "half");
1696		if (duplex) {
1697			np->rx_config |= RxAcceptTx;
1698			np->tx_config |= TxCarrierIgn | TxHeartIgn;
1699		} else {
1700			np->rx_config &= ~RxAcceptTx;
1701			np->tx_config &= ~(TxCarrierIgn | TxHeartIgn);
1702		}
1703		writel(np->tx_config, ioaddr + TxConfig);
1704		writel(np->rx_config, ioaddr + RxConfig);
1705	}
1706}
1707
1708static void init_registers(struct net_device *dev)
1709{
1710	struct netdev_private *np = netdev_priv(dev);
1711	void __iomem * ioaddr = ns_ioaddr(dev);
1712
1713	init_phy_fixup(dev);
1714
1715	/* clear any interrupts that are pending, such as wake events */
1716	readl(ioaddr + IntrStatus);
1717
1718	writel(np->ring_dma, ioaddr + RxRingPtr);
1719	writel(np->ring_dma + RX_RING_SIZE * sizeof(struct netdev_desc),
1720		ioaddr + TxRingPtr);
1721
1722	/* Initialize other registers.
1723	 * Configure the PCI bus bursts and FIFO thresholds.
1724	 * Configure for standard, in-spec Ethernet.
1725	 * Start with half-duplex. check_link will update
1726	 * to the correct settings.
1727	 */
1728
1729	/* DRTH: 2: start tx if 64 bytes are in the fifo
1730	 * FLTH: 0x10: refill with next packet if 512 bytes are free
1731	 * MXDMA: 0: up to 256 byte bursts.
1732	 * 	MXDMA must be <= FLTH
1733	 * ECRETRY=1
1734	 * ATP=1
1735	 */
1736	np->tx_config = TxAutoPad | TxCollRetry | TxMxdma_256 |
1737				TX_FLTH_VAL | TX_DRTH_VAL_START;
1738	writel(np->tx_config, ioaddr + TxConfig);
1739
1740	/* DRTH 0x10: start copying to memory if 128 bytes are in the fifo
1741	 * MXDMA 0: up to 256 byte bursts
1742	 */
1743	np->rx_config = RxMxdma_256 | RX_DRTH_VAL;
1744	/* if receive ring now has bigger buffers than normal, enable jumbo */
1745	if (np->rx_buf_sz > NATSEMI_LONGPKT)
1746		np->rx_config |= RxAcceptLong;
1747
1748	writel(np->rx_config, ioaddr + RxConfig);
1749
1750	/* Disable PME:
1751	 * The PME bit is initialized from the EEPROM contents.
1752	 * PCI cards probably have PME disabled, but motherboard
1753	 * implementations may have PME set to enable WakeOnLan.
1754	 * With PME set the chip will scan incoming packets but
1755	 * nothing will be written to memory. */
1756	np->SavedClkRun = readl(ioaddr + ClkRun);
1757	writel(np->SavedClkRun & ~PMEEnable, ioaddr + ClkRun);
1758	if (np->SavedClkRun & PMEStatus && netif_msg_wol(np)) {
1759		printk(KERN_NOTICE "%s: Wake-up event %#08x\n",
1760			dev->name, readl(ioaddr + WOLCmd));
1761	}
1762
1763	check_link(dev);
1764	__set_rx_mode(dev);
1765
1766	/* Enable interrupts by setting the interrupt mask. */
1767	writel(DEFAULT_INTR, ioaddr + IntrMask);
1768	natsemi_irq_enable(dev);
1769
1770	writel(RxOn | TxOn, ioaddr + ChipCmd);
1771	writel(StatsClear, ioaddr + StatsCtrl); /* Clear Stats */
1772}
1773
1774/*
1775 * netdev_timer:
1776 * Purpose:
1777 * 1) check for link changes. Usually they are handled by the MII interrupt
1778 *    but it doesn't hurt to check twice.
1779 * 2) check for sudden death of the NIC:
1780 *    It seems that a reference set for this chip went out with incorrect info,
1781 *    and there exist boards that aren't quite right.  An unexpected voltage
1782 *    drop can cause the PHY to get itself in a weird state (basically reset).
1783 *    NOTE: this only seems to affect revC chips.  The user can disable
1784 *    this check via dspcfg_workaround sysfs option.
1785 * 3) check of death of the RX path due to OOM
1786 */
1787static void netdev_timer(struct timer_list *t)
1788{
1789	struct netdev_private *np = from_timer(np, t, timer);
1790	struct net_device *dev = np->dev;
1791	void __iomem * ioaddr = ns_ioaddr(dev);
1792	int next_tick = NATSEMI_TIMER_FREQ;
1793	const int irq = np->pci_dev->irq;
1794
1795	if (netif_msg_timer(np)) {
1796		/* DO NOT read the IntrStatus register,
1797		 * a read clears any pending interrupts.
1798		 */
1799		printk(KERN_DEBUG "%s: Media selection timer tick.\n",
1800			dev->name);
1801	}
1802
1803	if (dev->if_port == PORT_TP) {
1804		u16 dspcfg;
1805
1806		spin_lock_irq(&np->lock);
1807		/* check for a nasty random phy-reset - use dspcfg as a flag */
1808		writew(1, ioaddr+PGSEL);
1809		dspcfg = readw(ioaddr+DSPCFG);
1810		writew(0, ioaddr+PGSEL);
1811		if (np->dspcfg_workaround && dspcfg != np->dspcfg) {
1812			if (!netif_queue_stopped(dev)) {
1813				spin_unlock_irq(&np->lock);
1814				if (netif_msg_drv(np))
1815					printk(KERN_NOTICE "%s: possible phy reset: "
1816						"re-initializing\n", dev->name);
1817				disable_irq(irq);
1818				spin_lock_irq(&np->lock);
1819				natsemi_stop_rxtx(dev);
1820				dump_ring(dev);
1821				reinit_ring(dev);
1822				init_registers(dev);
1823				spin_unlock_irq(&np->lock);
1824				enable_irq(irq);
1825			} else {
1826				/* hurry back */
1827				next_tick = HZ;
1828				spin_unlock_irq(&np->lock);
1829			}
1830		} else {
1831			/* init_registers() calls check_link() for the above case */
1832			check_link(dev);
1833			spin_unlock_irq(&np->lock);
1834		}
1835	} else {
1836		spin_lock_irq(&np->lock);
1837		check_link(dev);
1838		spin_unlock_irq(&np->lock);
1839	}
1840	if (np->oom) {
1841		disable_irq(irq);
1842		np->oom = 0;
1843		refill_rx(dev);
1844		enable_irq(irq);
1845		if (!np->oom) {
1846			writel(RxOn, ioaddr + ChipCmd);
1847		} else {
1848			next_tick = 1;
1849		}
1850	}
1851
1852	if (next_tick > 1)
1853		mod_timer(&np->timer, round_jiffies(jiffies + next_tick));
1854	else
1855		mod_timer(&np->timer, jiffies + next_tick);
1856}
1857
1858static void dump_ring(struct net_device *dev)
1859{
1860	struct netdev_private *np = netdev_priv(dev);
1861
1862	if (netif_msg_pktdata(np)) {
1863		int i;
1864		printk(KERN_DEBUG "  Tx ring at %p:\n", np->tx_ring);
1865		for (i = 0; i < TX_RING_SIZE; i++) {
1866			printk(KERN_DEBUG " #%d desc. %#08x %#08x %#08x.\n",
1867				i, np->tx_ring[i].next_desc,
1868				np->tx_ring[i].cmd_status,
1869				np->tx_ring[i].addr);
1870		}
1871		printk(KERN_DEBUG "  Rx ring %p:\n", np->rx_ring);
1872		for (i = 0; i < RX_RING_SIZE; i++) {
1873			printk(KERN_DEBUG " #%d desc. %#08x %#08x %#08x.\n",
1874				i, np->rx_ring[i].next_desc,
1875				np->rx_ring[i].cmd_status,
1876				np->rx_ring[i].addr);
1877		}
1878	}
1879}
1880
1881static void ns_tx_timeout(struct net_device *dev, unsigned int txqueue)
1882{
1883	struct netdev_private *np = netdev_priv(dev);
1884	void __iomem * ioaddr = ns_ioaddr(dev);
1885	const int irq = np->pci_dev->irq;
1886
1887	disable_irq(irq);
1888	spin_lock_irq(&np->lock);
1889	if (!np->hands_off) {
1890		if (netif_msg_tx_err(np))
1891			printk(KERN_WARNING
1892				"%s: Transmit timed out, status %#08x,"
1893				" resetting...\n",
1894				dev->name, readl(ioaddr + IntrStatus));
1895		dump_ring(dev);
1896
1897		natsemi_reset(dev);
1898		reinit_ring(dev);
1899		init_registers(dev);
1900	} else {
1901		printk(KERN_WARNING
1902			"%s: tx_timeout while in hands_off state?\n",
1903			dev->name);
1904	}
1905	spin_unlock_irq(&np->lock);
1906	enable_irq(irq);
1907
1908	netif_trans_update(dev); /* prevent tx timeout */
1909	dev->stats.tx_errors++;
1910	netif_wake_queue(dev);
1911}
1912
1913static int alloc_ring(struct net_device *dev)
1914{
1915	struct netdev_private *np = netdev_priv(dev);
1916	np->rx_ring = dma_alloc_coherent(&np->pci_dev->dev,
1917					 sizeof(struct netdev_desc) * (RX_RING_SIZE + TX_RING_SIZE),
1918					 &np->ring_dma, GFP_KERNEL);
1919	if (!np->rx_ring)
1920		return -ENOMEM;
1921	np->tx_ring = &np->rx_ring[RX_RING_SIZE];
1922	return 0;
1923}
1924
1925static void refill_rx(struct net_device *dev)
1926{
1927	struct netdev_private *np = netdev_priv(dev);
1928
1929	/* Refill the Rx ring buffers. */
1930	for (; np->cur_rx - np->dirty_rx > 0; np->dirty_rx++) {
1931		struct sk_buff *skb;
1932		int entry = np->dirty_rx % RX_RING_SIZE;
1933		if (np->rx_skbuff[entry] == NULL) {
1934			unsigned int buflen = np->rx_buf_sz+NATSEMI_PADDING;
1935			skb = netdev_alloc_skb(dev, buflen);
1936			np->rx_skbuff[entry] = skb;
1937			if (skb == NULL)
1938				break; /* Better luck next round. */
1939			np->rx_dma[entry] = dma_map_single(&np->pci_dev->dev,
1940							   skb->data, buflen,
1941							   DMA_FROM_DEVICE);
1942			if (dma_mapping_error(&np->pci_dev->dev, np->rx_dma[entry])) {
1943				dev_kfree_skb_any(skb);
1944				np->rx_skbuff[entry] = NULL;
1945				break; /* Better luck next round. */
1946			}
1947			np->rx_ring[entry].addr = cpu_to_le32(np->rx_dma[entry]);
1948		}
1949		np->rx_ring[entry].cmd_status = cpu_to_le32(np->rx_buf_sz);
1950	}
1951	if (np->cur_rx - np->dirty_rx == RX_RING_SIZE) {
1952		if (netif_msg_rx_err(np))
1953			printk(KERN_WARNING "%s: going OOM.\n", dev->name);
1954		np->oom = 1;
1955	}
1956}
1957
1958static void set_bufsize(struct net_device *dev)
1959{
1960	struct netdev_private *np = netdev_priv(dev);
1961	if (dev->mtu <= ETH_DATA_LEN)
1962		np->rx_buf_sz = ETH_DATA_LEN + NATSEMI_HEADERS;
1963	else
1964		np->rx_buf_sz = dev->mtu + NATSEMI_HEADERS;
1965}
1966
1967/* Initialize the Rx and Tx rings, along with various 'dev' bits. */
1968static void init_ring(struct net_device *dev)
1969{
1970	struct netdev_private *np = netdev_priv(dev);
1971	int i;
1972
1973	/* 1) TX ring */
1974	np->dirty_tx = np->cur_tx = 0;
1975	for (i = 0; i < TX_RING_SIZE; i++) {
1976		np->tx_skbuff[i] = NULL;
1977		np->tx_ring[i].next_desc = cpu_to_le32(np->ring_dma
1978			+sizeof(struct netdev_desc)
1979			*((i+1)%TX_RING_SIZE+RX_RING_SIZE));
1980		np->tx_ring[i].cmd_status = 0;
1981	}
1982
1983	/* 2) RX ring */
1984	np->dirty_rx = 0;
1985	np->cur_rx = RX_RING_SIZE;
1986	np->oom = 0;
1987	set_bufsize(dev);
1988
1989	np->rx_head_desc = &np->rx_ring[0];
1990
1991	/* Please be careful before changing this loop - at least gcc-2.95.1
1992	 * miscompiles it otherwise.
1993	 */
1994	/* Initialize all Rx descriptors. */
1995	for (i = 0; i < RX_RING_SIZE; i++) {
1996		np->rx_ring[i].next_desc = cpu_to_le32(np->ring_dma
1997				+sizeof(struct netdev_desc)
1998				*((i+1)%RX_RING_SIZE));
1999		np->rx_ring[i].cmd_status = cpu_to_le32(DescOwn);
2000		np->rx_skbuff[i] = NULL;
2001	}
2002	refill_rx(dev);
2003	dump_ring(dev);
2004}
2005
2006static void drain_tx(struct net_device *dev)
2007{
2008	struct netdev_private *np = netdev_priv(dev);
2009	int i;
2010
2011	for (i = 0; i < TX_RING_SIZE; i++) {
2012		if (np->tx_skbuff[i]) {
2013			dma_unmap_single(&np->pci_dev->dev, np->tx_dma[i],
2014					 np->tx_skbuff[i]->len, DMA_TO_DEVICE);
2015			dev_kfree_skb(np->tx_skbuff[i]);
2016			dev->stats.tx_dropped++;
2017		}
2018		np->tx_skbuff[i] = NULL;
2019	}
2020}
2021
2022static void drain_rx(struct net_device *dev)
2023{
2024	struct netdev_private *np = netdev_priv(dev);
2025	unsigned int buflen = np->rx_buf_sz;
2026	int i;
2027
2028	/* Free all the skbuffs in the Rx queue. */
2029	for (i = 0; i < RX_RING_SIZE; i++) {
2030		np->rx_ring[i].cmd_status = 0;
2031		np->rx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */
2032		if (np->rx_skbuff[i]) {
2033			dma_unmap_single(&np->pci_dev->dev, np->rx_dma[i],
2034					 buflen + NATSEMI_PADDING,
2035					 DMA_FROM_DEVICE);
2036			dev_kfree_skb(np->rx_skbuff[i]);
2037		}
2038		np->rx_skbuff[i] = NULL;
2039	}
2040}
2041
2042static void drain_ring(struct net_device *dev)
2043{
2044	drain_rx(dev);
2045	drain_tx(dev);
2046}
2047
2048static void free_ring(struct net_device *dev)
2049{
2050	struct netdev_private *np = netdev_priv(dev);
2051	dma_free_coherent(&np->pci_dev->dev,
2052			  sizeof(struct netdev_desc) * (RX_RING_SIZE + TX_RING_SIZE),
2053			  np->rx_ring, np->ring_dma);
2054}
2055
2056static void reinit_rx(struct net_device *dev)
2057{
2058	struct netdev_private *np = netdev_priv(dev);
2059	int i;
2060
2061	/* RX Ring */
2062	np->dirty_rx = 0;
2063	np->cur_rx = RX_RING_SIZE;
2064	np->rx_head_desc = &np->rx_ring[0];
2065	/* Initialize all Rx descriptors. */
2066	for (i = 0; i < RX_RING_SIZE; i++)
2067		np->rx_ring[i].cmd_status = cpu_to_le32(DescOwn);
2068
2069	refill_rx(dev);
2070}
2071
2072static void reinit_ring(struct net_device *dev)
2073{
2074	struct netdev_private *np = netdev_priv(dev);
2075	int i;
2076
2077	/* drain TX ring */
2078	drain_tx(dev);
2079	np->dirty_tx = np->cur_tx = 0;
2080	for (i=0;i<TX_RING_SIZE;i++)
2081		np->tx_ring[i].cmd_status = 0;
2082
2083	reinit_rx(dev);
2084}
2085
2086static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev)
2087{
2088	struct netdev_private *np = netdev_priv(dev);
2089	void __iomem * ioaddr = ns_ioaddr(dev);
2090	unsigned entry;
2091	unsigned long flags;
2092
2093	/* Note: Ordering is important here, set the field with the
2094	   "ownership" bit last, and only then increment cur_tx. */
2095
2096	/* Calculate the next Tx descriptor entry. */
2097	entry = np->cur_tx % TX_RING_SIZE;
2098
2099	np->tx_skbuff[entry] = skb;
2100	np->tx_dma[entry] = dma_map_single(&np->pci_dev->dev, skb->data,
2101					   skb->len, DMA_TO_DEVICE);
2102	if (dma_mapping_error(&np->pci_dev->dev, np->tx_dma[entry])) {
2103		np->tx_skbuff[entry] = NULL;
2104		dev_kfree_skb_irq(skb);
2105		dev->stats.tx_dropped++;
2106		return NETDEV_TX_OK;
2107	}
2108
2109	np->tx_ring[entry].addr = cpu_to_le32(np->tx_dma[entry]);
2110
2111	spin_lock_irqsave(&np->lock, flags);
2112
2113	if (!np->hands_off) {
2114		np->tx_ring[entry].cmd_status = cpu_to_le32(DescOwn | skb->len);
2115		/* StrongARM: Explicitly cache flush np->tx_ring and
2116		 * skb->data,skb->len. */
2117		wmb();
2118		np->cur_tx++;
2119		if (np->cur_tx - np->dirty_tx >= TX_QUEUE_LEN - 1) {
2120			netdev_tx_done(dev);
2121			if (np->cur_tx - np->dirty_tx >= TX_QUEUE_LEN - 1)
2122				netif_stop_queue(dev);
2123		}
2124		/* Wake the potentially-idle transmit channel. */
2125		writel(TxOn, ioaddr + ChipCmd);
2126	} else {
2127		dev_kfree_skb_irq(skb);
2128		dev->stats.tx_dropped++;
2129	}
2130	spin_unlock_irqrestore(&np->lock, flags);
2131
2132	if (netif_msg_tx_queued(np)) {
2133		printk(KERN_DEBUG "%s: Transmit frame #%d queued in slot %d.\n",
2134			dev->name, np->cur_tx, entry);
2135	}
2136	return NETDEV_TX_OK;
2137}
2138
2139static void netdev_tx_done(struct net_device *dev)
2140{
2141	struct netdev_private *np = netdev_priv(dev);
2142
2143	for (; np->cur_tx - np->dirty_tx > 0; np->dirty_tx++) {
2144		int entry = np->dirty_tx % TX_RING_SIZE;
2145		if (np->tx_ring[entry].cmd_status & cpu_to_le32(DescOwn))
2146			break;
2147		if (netif_msg_tx_done(np))
2148			printk(KERN_DEBUG
2149				"%s: tx frame #%d finished, status %#08x.\n",
2150					dev->name, np->dirty_tx,
2151					le32_to_cpu(np->tx_ring[entry].cmd_status));
2152		if (np->tx_ring[entry].cmd_status & cpu_to_le32(DescPktOK)) {
2153			dev->stats.tx_packets++;
2154			dev->stats.tx_bytes += np->tx_skbuff[entry]->len;
2155		} else { /* Various Tx errors */
2156			int tx_status =
2157				le32_to_cpu(np->tx_ring[entry].cmd_status);
2158			if (tx_status & (DescTxAbort|DescTxExcColl))
2159				dev->stats.tx_aborted_errors++;
2160			if (tx_status & DescTxFIFO)
2161				dev->stats.tx_fifo_errors++;
2162			if (tx_status & DescTxCarrier)
2163				dev->stats.tx_carrier_errors++;
2164			if (tx_status & DescTxOOWCol)
2165				dev->stats.tx_window_errors++;
2166			dev->stats.tx_errors++;
2167		}
2168		dma_unmap_single(&np->pci_dev->dev, np->tx_dma[entry],
2169				 np->tx_skbuff[entry]->len, DMA_TO_DEVICE);
2170		/* Free the original skb. */
2171		dev_consume_skb_irq(np->tx_skbuff[entry]);
2172		np->tx_skbuff[entry] = NULL;
2173	}
2174	if (netif_queue_stopped(dev) &&
2175	    np->cur_tx - np->dirty_tx < TX_QUEUE_LEN - 4) {
2176		/* The ring is no longer full, wake queue. */
2177		netif_wake_queue(dev);
2178	}
2179}
2180
2181/* The interrupt handler doesn't actually handle interrupts itself, it
2182 * schedules a NAPI poll if there is anything to do. */
2183static irqreturn_t intr_handler(int irq, void *dev_instance)
2184{
2185	struct net_device *dev = dev_instance;
2186	struct netdev_private *np = netdev_priv(dev);
2187	void __iomem * ioaddr = ns_ioaddr(dev);
2188
2189	/* Reading IntrStatus automatically acknowledges so don't do
2190	 * that while interrupts are disabled, (for example, while a
2191	 * poll is scheduled).  */
2192	if (np->hands_off || !readl(ioaddr + IntrEnable))
2193		return IRQ_NONE;
2194
2195	np->intr_status = readl(ioaddr + IntrStatus);
2196
2197	if (!np->intr_status)
2198		return IRQ_NONE;
2199
2200	if (netif_msg_intr(np))
2201		printk(KERN_DEBUG
2202		       "%s: Interrupt, status %#08x, mask %#08x.\n",
2203		       dev->name, np->intr_status,
2204		       readl(ioaddr + IntrMask));
2205
2206	prefetch(&np->rx_skbuff[np->cur_rx % RX_RING_SIZE]);
2207
2208	if (napi_schedule_prep(&np->napi)) {
2209		/* Disable interrupts and register for poll */
2210		natsemi_irq_disable(dev);
2211		__napi_schedule(&np->napi);
2212	} else
2213		printk(KERN_WARNING
2214	       	       "%s: Ignoring interrupt, status %#08x, mask %#08x.\n",
2215		       dev->name, np->intr_status,
2216		       readl(ioaddr + IntrMask));
2217
2218	return IRQ_HANDLED;
2219}
2220
2221/* This is the NAPI poll routine.  As well as the standard RX handling
2222 * it also handles all other interrupts that the chip might raise.
2223 */
2224static int natsemi_poll(struct napi_struct *napi, int budget)
2225{
2226	struct netdev_private *np = container_of(napi, struct netdev_private, napi);
2227	struct net_device *dev = np->dev;
2228	void __iomem * ioaddr = ns_ioaddr(dev);
2229	int work_done = 0;
2230
2231	do {
2232		if (netif_msg_intr(np))
2233			printk(KERN_DEBUG
2234			       "%s: Poll, status %#08x, mask %#08x.\n",
2235			       dev->name, np->intr_status,
2236			       readl(ioaddr + IntrMask));
2237
2238		/* netdev_rx() may read IntrStatus again if the RX state
2239		 * machine falls over so do it first. */
2240		if (np->intr_status &
2241		    (IntrRxDone | IntrRxIntr | RxStatusFIFOOver |
2242		     IntrRxErr | IntrRxOverrun)) {
2243			netdev_rx(dev, &work_done, budget);
2244		}
2245
2246		if (np->intr_status &
2247		    (IntrTxDone | IntrTxIntr | IntrTxIdle | IntrTxErr)) {
2248			spin_lock(&np->lock);
2249			netdev_tx_done(dev);
2250			spin_unlock(&np->lock);
2251		}
2252
2253		/* Abnormal error summary/uncommon events handlers. */
2254		if (np->intr_status & IntrAbnormalSummary)
2255			netdev_error(dev, np->intr_status);
2256
2257		if (work_done >= budget)
2258			return work_done;
2259
2260		np->intr_status = readl(ioaddr + IntrStatus);
2261	} while (np->intr_status);
2262
2263	napi_complete_done(napi, work_done);
2264
2265	/* Reenable interrupts providing nothing is trying to shut
2266	 * the chip down. */
2267	spin_lock(&np->lock);
2268	if (!np->hands_off)
2269		natsemi_irq_enable(dev);
2270	spin_unlock(&np->lock);
2271
2272	return work_done;
2273}
2274
2275/* This routine is logically part of the interrupt handler, but separated
2276   for clarity and better register allocation. */
2277static void netdev_rx(struct net_device *dev, int *work_done, int work_to_do)
2278{
2279	struct netdev_private *np = netdev_priv(dev);
2280	int entry = np->cur_rx % RX_RING_SIZE;
2281	int boguscnt = np->dirty_rx + RX_RING_SIZE - np->cur_rx;
2282	s32 desc_status = le32_to_cpu(np->rx_head_desc->cmd_status);
2283	unsigned int buflen = np->rx_buf_sz;
2284	void __iomem * ioaddr = ns_ioaddr(dev);
2285
2286	/* If the driver owns the next entry it's a new packet. Send it up. */
2287	while (desc_status < 0) { /* e.g. & DescOwn */
2288		int pkt_len;
2289		if (netif_msg_rx_status(np))
2290			printk(KERN_DEBUG
2291				"  netdev_rx() entry %d status was %#08x.\n",
2292				entry, desc_status);
2293		if (--boguscnt < 0)
2294			break;
2295
2296		if (*work_done >= work_to_do)
2297			break;
2298
2299		(*work_done)++;
2300
2301		pkt_len = (desc_status & DescSizeMask) - 4;
2302		if ((desc_status&(DescMore|DescPktOK|DescRxLong)) != DescPktOK){
2303			if (desc_status & DescMore) {
2304				unsigned long flags;
2305
2306				if (netif_msg_rx_err(np))
2307					printk(KERN_WARNING
2308						"%s: Oversized(?) Ethernet "
2309						"frame spanned multiple "
2310						"buffers, entry %#08x "
2311						"status %#08x.\n", dev->name,
2312						np->cur_rx, desc_status);
2313				dev->stats.rx_length_errors++;
2314
2315				/* The RX state machine has probably
2316				 * locked up beneath us.  Follow the
2317				 * reset procedure documented in
2318				 * AN-1287. */
2319
2320				spin_lock_irqsave(&np->lock, flags);
2321				reset_rx(dev);
2322				reinit_rx(dev);
2323				writel(np->ring_dma, ioaddr + RxRingPtr);
2324				check_link(dev);
2325				spin_unlock_irqrestore(&np->lock, flags);
2326
2327				/* We'll enable RX on exit from this
2328				 * function. */
2329				break;
2330
2331			} else {
2332				/* There was an error. */
2333				dev->stats.rx_errors++;
2334				if (desc_status & (DescRxAbort|DescRxOver))
2335					dev->stats.rx_over_errors++;
2336				if (desc_status & (DescRxLong|DescRxRunt))
2337					dev->stats.rx_length_errors++;
2338				if (desc_status & (DescRxInvalid|DescRxAlign))
2339					dev->stats.rx_frame_errors++;
2340				if (desc_status & DescRxCRC)
2341					dev->stats.rx_crc_errors++;
2342			}
2343		} else if (pkt_len > np->rx_buf_sz) {
2344			/* if this is the tail of a double buffer
2345			 * packet, we've already counted the error
2346			 * on the first part.  Ignore the second half.
2347			 */
2348		} else {
2349			struct sk_buff *skb;
2350			/* Omit CRC size. */
2351			/* Check if the packet is long enough to accept
2352			 * without copying to a minimally-sized skbuff. */
2353			if (pkt_len < rx_copybreak &&
2354			    (skb = netdev_alloc_skb(dev, pkt_len + RX_OFFSET)) != NULL) {
2355				/* 16 byte align the IP header */
2356				skb_reserve(skb, RX_OFFSET);
2357				dma_sync_single_for_cpu(&np->pci_dev->dev,
2358							np->rx_dma[entry],
2359							buflen,
2360							DMA_FROM_DEVICE);
2361				skb_copy_to_linear_data(skb,
2362					np->rx_skbuff[entry]->data, pkt_len);
2363				skb_put(skb, pkt_len);
2364				dma_sync_single_for_device(&np->pci_dev->dev,
2365							   np->rx_dma[entry],
2366							   buflen,
2367							   DMA_FROM_DEVICE);
2368			} else {
2369				dma_unmap_single(&np->pci_dev->dev,
2370						 np->rx_dma[entry],
2371						 buflen + NATSEMI_PADDING,
2372						 DMA_FROM_DEVICE);
2373				skb_put(skb = np->rx_skbuff[entry], pkt_len);
2374				np->rx_skbuff[entry] = NULL;
2375			}
2376			skb->protocol = eth_type_trans(skb, dev);
2377			netif_receive_skb(skb);
2378			dev->stats.rx_packets++;
2379			dev->stats.rx_bytes += pkt_len;
2380		}
2381		entry = (++np->cur_rx) % RX_RING_SIZE;
2382		np->rx_head_desc = &np->rx_ring[entry];
2383		desc_status = le32_to_cpu(np->rx_head_desc->cmd_status);
2384	}
2385	refill_rx(dev);
2386
2387	/* Restart Rx engine if stopped. */
2388	if (np->oom)
2389		mod_timer(&np->timer, jiffies + 1);
2390	else
2391		writel(RxOn, ioaddr + ChipCmd);
2392}
2393
2394static void netdev_error(struct net_device *dev, int intr_status)
2395{
2396	struct netdev_private *np = netdev_priv(dev);
2397	void __iomem * ioaddr = ns_ioaddr(dev);
2398
2399	spin_lock(&np->lock);
2400	if (intr_status & LinkChange) {
2401		u16 lpa = mdio_read(dev, MII_LPA);
2402		if (mdio_read(dev, MII_BMCR) & BMCR_ANENABLE &&
2403		    netif_msg_link(np)) {
2404			printk(KERN_INFO
2405				"%s: Autonegotiation advertising"
2406				" %#04x  partner %#04x.\n", dev->name,
2407				np->advertising, lpa);
2408		}
2409
2410		/* read MII int status to clear the flag */
2411		readw(ioaddr + MIntrStatus);
2412		check_link(dev);
2413	}
2414	if (intr_status & StatsMax) {
2415		__get_stats(dev);
2416	}
2417	if (intr_status & IntrTxUnderrun) {
2418		if ((np->tx_config & TxDrthMask) < TX_DRTH_VAL_LIMIT) {
2419			np->tx_config += TX_DRTH_VAL_INC;
2420			if (netif_msg_tx_err(np))
2421				printk(KERN_NOTICE
2422					"%s: increased tx threshold, txcfg %#08x.\n",
2423					dev->name, np->tx_config);
2424		} else {
2425			if (netif_msg_tx_err(np))
2426				printk(KERN_NOTICE
2427					"%s: tx underrun with maximum tx threshold, txcfg %#08x.\n",
2428					dev->name, np->tx_config);
2429		}
2430		writel(np->tx_config, ioaddr + TxConfig);
2431	}
2432	if (intr_status & WOLPkt && netif_msg_wol(np)) {
2433		int wol_status = readl(ioaddr + WOLCmd);
2434		printk(KERN_NOTICE "%s: Link wake-up event %#08x\n",
2435			dev->name, wol_status);
2436	}
2437	if (intr_status & RxStatusFIFOOver) {
2438		if (netif_msg_rx_err(np) && netif_msg_intr(np)) {
2439			printk(KERN_NOTICE "%s: Rx status FIFO overrun\n",
2440				dev->name);
2441		}
2442		dev->stats.rx_fifo_errors++;
2443		dev->stats.rx_errors++;
2444	}
2445	/* Hmmmmm, it's not clear how to recover from PCI faults. */
2446	if (intr_status & IntrPCIErr) {
2447		printk(KERN_NOTICE "%s: PCI error %#08x\n", dev->name,
2448			intr_status & IntrPCIErr);
2449		dev->stats.tx_fifo_errors++;
2450		dev->stats.tx_errors++;
2451		dev->stats.rx_fifo_errors++;
2452		dev->stats.rx_errors++;
2453	}
2454	spin_unlock(&np->lock);
2455}
2456
2457static void __get_stats(struct net_device *dev)
2458{
2459	void __iomem * ioaddr = ns_ioaddr(dev);
2460
2461	/* The chip only need report frame silently dropped. */
2462	dev->stats.rx_crc_errors += readl(ioaddr + RxCRCErrs);
2463	dev->stats.rx_missed_errors += readl(ioaddr + RxMissed);
2464}
2465
2466static struct net_device_stats *get_stats(struct net_device *dev)
2467{
2468	struct netdev_private *np = netdev_priv(dev);
2469
2470	/* The chip only need report frame silently dropped. */
2471	spin_lock_irq(&np->lock);
2472	if (netif_running(dev) && !np->hands_off)
2473		__get_stats(dev);
2474	spin_unlock_irq(&np->lock);
2475
2476	return &dev->stats;
2477}
2478
2479#ifdef CONFIG_NET_POLL_CONTROLLER
2480static void natsemi_poll_controller(struct net_device *dev)
2481{
2482	struct netdev_private *np = netdev_priv(dev);
2483	const int irq = np->pci_dev->irq;
2484
2485	disable_irq(irq);
2486	intr_handler(irq, dev);
2487	enable_irq(irq);
2488}
2489#endif
2490
2491#define HASH_TABLE	0x200
2492static void __set_rx_mode(struct net_device *dev)
2493{
2494	void __iomem * ioaddr = ns_ioaddr(dev);
2495	struct netdev_private *np = netdev_priv(dev);
2496	u8 mc_filter[64]; /* Multicast hash filter */
2497	u32 rx_mode;
2498
2499	if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
2500		rx_mode = RxFilterEnable | AcceptBroadcast
2501			| AcceptAllMulticast | AcceptAllPhys | AcceptMyPhys;
2502	} else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
2503		   (dev->flags & IFF_ALLMULTI)) {
2504		rx_mode = RxFilterEnable | AcceptBroadcast
2505			| AcceptAllMulticast | AcceptMyPhys;
2506	} else {
2507		struct netdev_hw_addr *ha;
2508		int i;
2509
2510		memset(mc_filter, 0, sizeof(mc_filter));
2511		netdev_for_each_mc_addr(ha, dev) {
2512			int b = (ether_crc(ETH_ALEN, ha->addr) >> 23) & 0x1ff;
2513			mc_filter[b/8] |= (1 << (b & 0x07));
2514		}
2515		rx_mode = RxFilterEnable | AcceptBroadcast
2516			| AcceptMulticast | AcceptMyPhys;
2517		for (i = 0; i < 64; i += 2) {
2518			writel(HASH_TABLE + i, ioaddr + RxFilterAddr);
2519			writel((mc_filter[i + 1] << 8) + mc_filter[i],
2520			       ioaddr + RxFilterData);
2521		}
2522	}
2523	writel(rx_mode, ioaddr + RxFilterAddr);
2524	np->cur_rx_mode = rx_mode;
2525}
2526
2527static int natsemi_change_mtu(struct net_device *dev, int new_mtu)
2528{
2529	dev->mtu = new_mtu;
2530
2531	/* synchronized against open : rtnl_lock() held by caller */
2532	if (netif_running(dev)) {
2533		struct netdev_private *np = netdev_priv(dev);
2534		void __iomem * ioaddr = ns_ioaddr(dev);
2535		const int irq = np->pci_dev->irq;
2536
2537		disable_irq(irq);
2538		spin_lock(&np->lock);
2539		/* stop engines */
2540		natsemi_stop_rxtx(dev);
2541		/* drain rx queue */
2542		drain_rx(dev);
2543		/* change buffers */
2544		set_bufsize(dev);
2545		reinit_rx(dev);
2546		writel(np->ring_dma, ioaddr + RxRingPtr);
2547		/* restart engines */
2548		writel(RxOn | TxOn, ioaddr + ChipCmd);
2549		spin_unlock(&np->lock);
2550		enable_irq(irq);
2551	}
2552	return 0;
2553}
2554
2555static void set_rx_mode(struct net_device *dev)
2556{
2557	struct netdev_private *np = netdev_priv(dev);
2558	spin_lock_irq(&np->lock);
2559	if (!np->hands_off)
2560		__set_rx_mode(dev);
2561	spin_unlock_irq(&np->lock);
2562}
2563
2564static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2565{
2566	struct netdev_private *np = netdev_priv(dev);
2567	strscpy(info->driver, DRV_NAME, sizeof(info->driver));
2568	strscpy(info->version, DRV_VERSION, sizeof(info->version));
2569	strscpy(info->bus_info, pci_name(np->pci_dev), sizeof(info->bus_info));
2570}
2571
2572static int get_regs_len(struct net_device *dev)
2573{
2574	return NATSEMI_REGS_SIZE;
2575}
2576
2577static int get_eeprom_len(struct net_device *dev)
2578{
2579	struct netdev_private *np = netdev_priv(dev);
2580	return np->eeprom_size;
2581}
2582
2583static int get_link_ksettings(struct net_device *dev,
2584			      struct ethtool_link_ksettings *ecmd)
2585{
2586	struct netdev_private *np = netdev_priv(dev);
2587	spin_lock_irq(&np->lock);
2588	netdev_get_ecmd(dev, ecmd);
2589	spin_unlock_irq(&np->lock);
2590	return 0;
2591}
2592
2593static int set_link_ksettings(struct net_device *dev,
2594			      const struct ethtool_link_ksettings *ecmd)
2595{
2596	struct netdev_private *np = netdev_priv(dev);
2597	int res;
2598	spin_lock_irq(&np->lock);
2599	res = netdev_set_ecmd(dev, ecmd);
2600	spin_unlock_irq(&np->lock);
2601	return res;
2602}
2603
2604static void get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2605{
2606	struct netdev_private *np = netdev_priv(dev);
2607	spin_lock_irq(&np->lock);
2608	netdev_get_wol(dev, &wol->supported, &wol->wolopts);
2609	netdev_get_sopass(dev, wol->sopass);
2610	spin_unlock_irq(&np->lock);
2611}
2612
2613static int set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2614{
2615	struct netdev_private *np = netdev_priv(dev);
2616	int res;
2617	spin_lock_irq(&np->lock);
2618	netdev_set_wol(dev, wol->wolopts);
2619	res = netdev_set_sopass(dev, wol->sopass);
2620	spin_unlock_irq(&np->lock);
2621	return res;
2622}
2623
2624static void get_regs(struct net_device *dev, struct ethtool_regs *regs, void *buf)
2625{
2626	struct netdev_private *np = netdev_priv(dev);
2627	regs->version = NATSEMI_REGS_VER;
2628	spin_lock_irq(&np->lock);
2629	netdev_get_regs(dev, buf);
2630	spin_unlock_irq(&np->lock);
2631}
2632
2633static u32 get_msglevel(struct net_device *dev)
2634{
2635	struct netdev_private *np = netdev_priv(dev);
2636	return np->msg_enable;
2637}
2638
2639static void set_msglevel(struct net_device *dev, u32 val)
2640{
2641	struct netdev_private *np = netdev_priv(dev);
2642	np->msg_enable = val;
2643}
2644
2645static int nway_reset(struct net_device *dev)
2646{
2647	int tmp;
2648	int r = -EINVAL;
2649	/* if autoneg is off, it's an error */
2650	tmp = mdio_read(dev, MII_BMCR);
2651	if (tmp & BMCR_ANENABLE) {
2652		tmp |= (BMCR_ANRESTART);
2653		mdio_write(dev, MII_BMCR, tmp);
2654		r = 0;
2655	}
2656	return r;
2657}
2658
2659static u32 get_link(struct net_device *dev)
2660{
2661	/* LSTATUS is latched low until a read - so read twice */
2662	mdio_read(dev, MII_BMSR);
2663	return (mdio_read(dev, MII_BMSR)&BMSR_LSTATUS) ? 1:0;
2664}
2665
2666static int get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom, u8 *data)
2667{
2668	struct netdev_private *np = netdev_priv(dev);
2669	u8 *eebuf;
2670	int res;
2671
2672	eebuf = kmalloc(np->eeprom_size, GFP_KERNEL);
2673	if (!eebuf)
2674		return -ENOMEM;
2675
2676	eeprom->magic = PCI_VENDOR_ID_NS | (PCI_DEVICE_ID_NS_83815<<16);
2677	spin_lock_irq(&np->lock);
2678	res = netdev_get_eeprom(dev, eebuf);
2679	spin_unlock_irq(&np->lock);
2680	if (!res)
2681		memcpy(data, eebuf+eeprom->offset, eeprom->len);
2682	kfree(eebuf);
2683	return res;
2684}
2685
2686static const struct ethtool_ops ethtool_ops = {
2687	.get_drvinfo = get_drvinfo,
2688	.get_regs_len = get_regs_len,
2689	.get_eeprom_len = get_eeprom_len,
2690	.get_wol = get_wol,
2691	.set_wol = set_wol,
2692	.get_regs = get_regs,
2693	.get_msglevel = get_msglevel,
2694	.set_msglevel = set_msglevel,
2695	.nway_reset = nway_reset,
2696	.get_link = get_link,
2697	.get_eeprom = get_eeprom,
2698	.get_link_ksettings = get_link_ksettings,
2699	.set_link_ksettings = set_link_ksettings,
2700};
2701
2702static int netdev_set_wol(struct net_device *dev, u32 newval)
2703{
2704	struct netdev_private *np = netdev_priv(dev);
2705	void __iomem * ioaddr = ns_ioaddr(dev);
2706	u32 data = readl(ioaddr + WOLCmd) & ~WakeOptsSummary;
2707
2708	/* translate to bitmasks this chip understands */
2709	if (newval & WAKE_PHY)
2710		data |= WakePhy;
2711	if (newval & WAKE_UCAST)
2712		data |= WakeUnicast;
2713	if (newval & WAKE_MCAST)
2714		data |= WakeMulticast;
2715	if (newval & WAKE_BCAST)
2716		data |= WakeBroadcast;
2717	if (newval & WAKE_ARP)
2718		data |= WakeArp;
2719	if (newval & WAKE_MAGIC)
2720		data |= WakeMagic;
2721	if (np->srr >= SRR_DP83815_D) {
2722		if (newval & WAKE_MAGICSECURE) {
2723			data |= WakeMagicSecure;
2724		}
2725	}
2726
2727	writel(data, ioaddr + WOLCmd);
2728
2729	return 0;
2730}
2731
2732static int netdev_get_wol(struct net_device *dev, u32 *supported, u32 *cur)
2733{
2734	struct netdev_private *np = netdev_priv(dev);
2735	void __iomem * ioaddr = ns_ioaddr(dev);
2736	u32 regval = readl(ioaddr + WOLCmd);
2737
2738	*supported = (WAKE_PHY | WAKE_UCAST | WAKE_MCAST | WAKE_BCAST
2739			| WAKE_ARP | WAKE_MAGIC);
2740
2741	if (np->srr >= SRR_DP83815_D) {
2742		/* SOPASS works on revD and higher */
2743		*supported |= WAKE_MAGICSECURE;
2744	}
2745	*cur = 0;
2746
2747	/* translate from chip bitmasks */
2748	if (regval & WakePhy)
2749		*cur |= WAKE_PHY;
2750	if (regval & WakeUnicast)
2751		*cur |= WAKE_UCAST;
2752	if (regval & WakeMulticast)
2753		*cur |= WAKE_MCAST;
2754	if (regval & WakeBroadcast)
2755		*cur |= WAKE_BCAST;
2756	if (regval & WakeArp)
2757		*cur |= WAKE_ARP;
2758	if (regval & WakeMagic)
2759		*cur |= WAKE_MAGIC;
2760	if (regval & WakeMagicSecure) {
2761		/* this can be on in revC, but it's broken */
2762		*cur |= WAKE_MAGICSECURE;
2763	}
2764
2765	return 0;
2766}
2767
2768static int netdev_set_sopass(struct net_device *dev, u8 *newval)
2769{
2770	struct netdev_private *np = netdev_priv(dev);
2771	void __iomem * ioaddr = ns_ioaddr(dev);
2772	u16 *sval = (u16 *)newval;
2773	u32 addr;
2774
2775	if (np->srr < SRR_DP83815_D) {
2776		return 0;
2777	}
2778
2779	/* enable writing to these registers by disabling the RX filter */
2780	addr = readl(ioaddr + RxFilterAddr) & ~RFCRAddressMask;
2781	addr &= ~RxFilterEnable;
2782	writel(addr, ioaddr + RxFilterAddr);
2783
2784	/* write the three words to (undocumented) RFCR vals 0xa, 0xc, 0xe */
2785	writel(addr | 0xa, ioaddr + RxFilterAddr);
2786	writew(sval[0], ioaddr + RxFilterData);
2787
2788	writel(addr | 0xc, ioaddr + RxFilterAddr);
2789	writew(sval[1], ioaddr + RxFilterData);
2790
2791	writel(addr | 0xe, ioaddr + RxFilterAddr);
2792	writew(sval[2], ioaddr + RxFilterData);
2793
2794	/* re-enable the RX filter */
2795	writel(addr | RxFilterEnable, ioaddr + RxFilterAddr);
2796
2797	return 0;
2798}
2799
2800static int netdev_get_sopass(struct net_device *dev, u8 *data)
2801{
2802	struct netdev_private *np = netdev_priv(dev);
2803	void __iomem * ioaddr = ns_ioaddr(dev);
2804	u16 *sval = (u16 *)data;
2805	u32 addr;
2806
2807	if (np->srr < SRR_DP83815_D) {
2808		sval[0] = sval[1] = sval[2] = 0;
2809		return 0;
2810	}
2811
2812	/* read the three words from (undocumented) RFCR vals 0xa, 0xc, 0xe */
2813	addr = readl(ioaddr + RxFilterAddr) & ~RFCRAddressMask;
2814
2815	writel(addr | 0xa, ioaddr + RxFilterAddr);
2816	sval[0] = readw(ioaddr + RxFilterData);
2817
2818	writel(addr | 0xc, ioaddr + RxFilterAddr);
2819	sval[1] = readw(ioaddr + RxFilterData);
2820
2821	writel(addr | 0xe, ioaddr + RxFilterAddr);
2822	sval[2] = readw(ioaddr + RxFilterData);
2823
2824	writel(addr, ioaddr + RxFilterAddr);
2825
2826	return 0;
2827}
2828
2829static int netdev_get_ecmd(struct net_device *dev,
2830			   struct ethtool_link_ksettings *ecmd)
2831{
2832	struct netdev_private *np = netdev_priv(dev);
2833	u32 supported, advertising;
2834	u32 tmp;
2835
2836	ecmd->base.port   = dev->if_port;
2837	ecmd->base.speed  = np->speed;
2838	ecmd->base.duplex = np->duplex;
2839	ecmd->base.autoneg = np->autoneg;
2840	advertising = 0;
2841
2842	if (np->advertising & ADVERTISE_10HALF)
2843		advertising |= ADVERTISED_10baseT_Half;
2844	if (np->advertising & ADVERTISE_10FULL)
2845		advertising |= ADVERTISED_10baseT_Full;
2846	if (np->advertising & ADVERTISE_100HALF)
2847		advertising |= ADVERTISED_100baseT_Half;
2848	if (np->advertising & ADVERTISE_100FULL)
2849		advertising |= ADVERTISED_100baseT_Full;
2850	supported   = (SUPPORTED_Autoneg |
2851		SUPPORTED_10baseT_Half  | SUPPORTED_10baseT_Full  |
2852		SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
2853		SUPPORTED_TP | SUPPORTED_MII | SUPPORTED_FIBRE);
2854	ecmd->base.phy_address = np->phy_addr_external;
2855	/*
2856	 * We intentionally report the phy address of the external
2857	 * phy, even if the internal phy is used. This is necessary
2858	 * to work around a deficiency of the ethtool interface:
2859	 * It's only possible to query the settings of the active
2860	 * port. Therefore
2861	 * # ethtool -s ethX port mii
2862	 * actually sends an ioctl to switch to port mii with the
2863	 * settings that are used for the current active port.
2864	 * If we would report a different phy address in this
2865	 * command, then
2866	 * # ethtool -s ethX port tp;ethtool -s ethX port mii
2867	 * would unintentionally change the phy address.
2868	 *
2869	 * Fortunately the phy address doesn't matter with the
2870	 * internal phy...
2871	 */
2872
2873	/* set information based on active port type */
2874	switch (ecmd->base.port) {
2875	default:
2876	case PORT_TP:
2877		advertising |= ADVERTISED_TP;
2878		break;
2879	case PORT_MII:
2880		advertising |= ADVERTISED_MII;
2881		break;
2882	case PORT_FIBRE:
2883		advertising |= ADVERTISED_FIBRE;
2884		break;
2885	}
2886
2887	/* if autonegotiation is on, try to return the active speed/duplex */
2888	if (ecmd->base.autoneg == AUTONEG_ENABLE) {
2889		advertising |= ADVERTISED_Autoneg;
2890		tmp = mii_nway_result(
2891			np->advertising & mdio_read(dev, MII_LPA));
2892		if (tmp == LPA_100FULL || tmp == LPA_100HALF)
2893			ecmd->base.speed = SPEED_100;
2894		else
2895			ecmd->base.speed = SPEED_10;
2896		if (tmp == LPA_100FULL || tmp == LPA_10FULL)
2897			ecmd->base.duplex = DUPLEX_FULL;
2898		else
2899			ecmd->base.duplex = DUPLEX_HALF;
2900	}
2901
2902	/* ignore maxtxpkt, maxrxpkt for now */
2903
2904	ethtool_convert_legacy_u32_to_link_mode(ecmd->link_modes.supported,
2905						supported);
2906	ethtool_convert_legacy_u32_to_link_mode(ecmd->link_modes.advertising,
2907						advertising);
2908
2909	return 0;
2910}
2911
2912static int netdev_set_ecmd(struct net_device *dev,
2913			   const struct ethtool_link_ksettings *ecmd)
2914{
2915	struct netdev_private *np = netdev_priv(dev);
2916	u32 advertising;
2917
2918	ethtool_convert_link_mode_to_legacy_u32(&advertising,
2919						ecmd->link_modes.advertising);
2920
2921	if (ecmd->base.port != PORT_TP &&
2922	    ecmd->base.port != PORT_MII &&
2923	    ecmd->base.port != PORT_FIBRE)
2924		return -EINVAL;
2925	if (ecmd->base.autoneg == AUTONEG_ENABLE) {
2926		if ((advertising & (ADVERTISED_10baseT_Half |
2927					  ADVERTISED_10baseT_Full |
2928					  ADVERTISED_100baseT_Half |
2929					  ADVERTISED_100baseT_Full)) == 0) {
2930			return -EINVAL;
2931		}
2932	} else if (ecmd->base.autoneg == AUTONEG_DISABLE) {
2933		u32 speed = ecmd->base.speed;
2934		if (speed != SPEED_10 && speed != SPEED_100)
2935			return -EINVAL;
2936		if (ecmd->base.duplex != DUPLEX_HALF &&
2937		    ecmd->base.duplex != DUPLEX_FULL)
2938			return -EINVAL;
2939	} else {
2940		return -EINVAL;
2941	}
2942
2943	/*
2944	 * If we're ignoring the PHY then autoneg and the internal
2945	 * transceiver are really not going to work so don't let the
2946	 * user select them.
2947	 */
2948	if (np->ignore_phy && (ecmd->base.autoneg == AUTONEG_ENABLE ||
2949			       ecmd->base.port == PORT_TP))
2950		return -EINVAL;
2951
2952	/*
2953	 * maxtxpkt, maxrxpkt: ignored for now.
2954	 *
2955	 * transceiver:
2956	 * PORT_TP is always XCVR_INTERNAL, PORT_MII and PORT_FIBRE are always
2957	 * XCVR_EXTERNAL. The implementation thus ignores ecmd->transceiver and
2958	 * selects based on ecmd->port.
2959	 *
2960	 * Actually PORT_FIBRE is nearly identical to PORT_MII: it's for fibre
2961	 * phys that are connected to the mii bus. It's used to apply fibre
2962	 * specific updates.
2963	 */
2964
2965	/* WHEW! now lets bang some bits */
2966
2967	/* save the parms */
2968	dev->if_port          = ecmd->base.port;
2969	np->autoneg           = ecmd->base.autoneg;
2970	np->phy_addr_external = ecmd->base.phy_address & PhyAddrMask;
2971	if (np->autoneg == AUTONEG_ENABLE) {
2972		/* advertise only what has been requested */
2973		np->advertising &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4);
2974		if (advertising & ADVERTISED_10baseT_Half)
2975			np->advertising |= ADVERTISE_10HALF;
2976		if (advertising & ADVERTISED_10baseT_Full)
2977			np->advertising |= ADVERTISE_10FULL;
2978		if (advertising & ADVERTISED_100baseT_Half)
2979			np->advertising |= ADVERTISE_100HALF;
2980		if (advertising & ADVERTISED_100baseT_Full)
2981			np->advertising |= ADVERTISE_100FULL;
2982	} else {
2983		np->speed  = ecmd->base.speed;
2984		np->duplex = ecmd->base.duplex;
2985		/* user overriding the initial full duplex parm? */
2986		if (np->duplex == DUPLEX_HALF)
2987			np->full_duplex = 0;
2988	}
2989
2990	/* get the right phy enabled */
2991	if (ecmd->base.port == PORT_TP)
2992		switch_port_internal(dev);
2993	else
2994		switch_port_external(dev);
2995
2996	/* set parms and see how this affected our link status */
2997	init_phy_fixup(dev);
2998	check_link(dev);
2999	return 0;
3000}
3001
3002static int netdev_get_regs(struct net_device *dev, u8 *buf)
3003{
3004	int i;
3005	int j;
3006	u32 rfcr;
3007	u32 *rbuf = (u32 *)buf;
3008	void __iomem * ioaddr = ns_ioaddr(dev);
3009
3010	/* read non-mii page 0 of registers */
3011	for (i = 0; i < NATSEMI_PG0_NREGS/2; i++) {
3012		rbuf[i] = readl(ioaddr + i*4);
3013	}
3014
3015	/* read current mii registers */
3016	for (i = NATSEMI_PG0_NREGS/2; i < NATSEMI_PG0_NREGS; i++)
3017		rbuf[i] = mdio_read(dev, i & 0x1f);
3018
3019	/* read only the 'magic' registers from page 1 */
3020	writew(1, ioaddr + PGSEL);
3021	rbuf[i++] = readw(ioaddr + PMDCSR);
3022	rbuf[i++] = readw(ioaddr + TSTDAT);
3023	rbuf[i++] = readw(ioaddr + DSPCFG);
3024	rbuf[i++] = readw(ioaddr + SDCFG);
3025	writew(0, ioaddr + PGSEL);
3026
3027	/* read RFCR indexed registers */
3028	rfcr = readl(ioaddr + RxFilterAddr);
3029	for (j = 0; j < NATSEMI_RFDR_NREGS; j++) {
3030		writel(j*2, ioaddr + RxFilterAddr);
3031		rbuf[i++] = readw(ioaddr + RxFilterData);
3032	}
3033	writel(rfcr, ioaddr + RxFilterAddr);
3034
3035	/* the interrupt status is clear-on-read - see if we missed any */
3036	if (rbuf[4] & rbuf[5]) {
3037		printk(KERN_WARNING
3038			"%s: shoot, we dropped an interrupt (%#08x)\n",
3039			dev->name, rbuf[4] & rbuf[5]);
3040	}
3041
3042	return 0;
3043}
3044
3045#define SWAP_BITS(x)	( (((x) & 0x0001) << 15) | (((x) & 0x0002) << 13) \
3046			| (((x) & 0x0004) << 11) | (((x) & 0x0008) << 9)  \
3047			| (((x) & 0x0010) << 7)  | (((x) & 0x0020) << 5)  \
3048			| (((x) & 0x0040) << 3)  | (((x) & 0x0080) << 1)  \
3049			| (((x) & 0x0100) >> 1)  | (((x) & 0x0200) >> 3)  \
3050			| (((x) & 0x0400) >> 5)  | (((x) & 0x0800) >> 7)  \
3051			| (((x) & 0x1000) >> 9)  | (((x) & 0x2000) >> 11) \
3052			| (((x) & 0x4000) >> 13) | (((x) & 0x8000) >> 15) )
3053
3054static int netdev_get_eeprom(struct net_device *dev, u8 *buf)
3055{
3056	int i;
3057	u16 *ebuf = (u16 *)buf;
3058	void __iomem * ioaddr = ns_ioaddr(dev);
3059	struct netdev_private *np = netdev_priv(dev);
3060
3061	/* eeprom_read reads 16 bits, and indexes by 16 bits */
3062	for (i = 0; i < np->eeprom_size/2; i++) {
3063		ebuf[i] = eeprom_read(ioaddr, i);
3064		/* The EEPROM itself stores data bit-swapped, but eeprom_read
3065		 * reads it back "sanely". So we swap it back here in order to
3066		 * present it to userland as it is stored. */
3067		ebuf[i] = SWAP_BITS(ebuf[i]);
3068	}
3069	return 0;
3070}
3071
3072static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
3073{
3074	struct mii_ioctl_data *data = if_mii(rq);
3075	struct netdev_private *np = netdev_priv(dev);
3076
3077	switch(cmd) {
3078	case SIOCGMIIPHY:		/* Get address of MII PHY in use. */
3079		data->phy_id = np->phy_addr_external;
3080		fallthrough;
3081
3082	case SIOCGMIIREG:		/* Read MII PHY register. */
3083		/* The phy_id is not enough to uniquely identify
3084		 * the intended target. Therefore the command is sent to
3085		 * the given mii on the current port.
3086		 */
3087		if (dev->if_port == PORT_TP) {
3088			if ((data->phy_id & 0x1f) == np->phy_addr_external)
3089				data->val_out = mdio_read(dev,
3090							data->reg_num & 0x1f);
3091			else
3092				data->val_out = 0;
3093		} else {
3094			move_int_phy(dev, data->phy_id & 0x1f);
3095			data->val_out = miiport_read(dev, data->phy_id & 0x1f,
3096							data->reg_num & 0x1f);
3097		}
3098		return 0;
3099
3100	case SIOCSMIIREG:		/* Write MII PHY register. */
3101		if (dev->if_port == PORT_TP) {
3102			if ((data->phy_id & 0x1f) == np->phy_addr_external) {
3103				if ((data->reg_num & 0x1f) == MII_ADVERTISE)
3104					np->advertising = data->val_in;
3105				mdio_write(dev, data->reg_num & 0x1f,
3106							data->val_in);
3107			}
3108		} else {
3109			if ((data->phy_id & 0x1f) == np->phy_addr_external) {
3110				if ((data->reg_num & 0x1f) == MII_ADVERTISE)
3111					np->advertising = data->val_in;
3112			}
3113			move_int_phy(dev, data->phy_id & 0x1f);
3114			miiport_write(dev, data->phy_id & 0x1f,
3115						data->reg_num & 0x1f,
3116						data->val_in);
3117		}
3118		return 0;
3119	default:
3120		return -EOPNOTSUPP;
3121	}
3122}
3123
3124static void enable_wol_mode(struct net_device *dev, int enable_intr)
3125{
3126	void __iomem * ioaddr = ns_ioaddr(dev);
3127	struct netdev_private *np = netdev_priv(dev);
3128
3129	if (netif_msg_wol(np))
3130		printk(KERN_INFO "%s: remaining active for wake-on-lan\n",
3131			dev->name);
3132
3133	/* For WOL we must restart the rx process in silent mode.
3134	 * Write NULL to the RxRingPtr. Only possible if
3135	 * rx process is stopped
3136	 */
3137	writel(0, ioaddr + RxRingPtr);
3138
3139	/* read WoL status to clear */
3140	readl(ioaddr + WOLCmd);
3141
3142	/* PME on, clear status */
3143	writel(np->SavedClkRun | PMEEnable | PMEStatus, ioaddr + ClkRun);
3144
3145	/* and restart the rx process */
3146	writel(RxOn, ioaddr + ChipCmd);
3147
3148	if (enable_intr) {
3149		/* enable the WOL interrupt.
3150		 * Could be used to send a netlink message.
3151		 */
3152		writel(WOLPkt | LinkChange, ioaddr + IntrMask);
3153		natsemi_irq_enable(dev);
3154	}
3155}
3156
3157static int netdev_close(struct net_device *dev)
3158{
3159	void __iomem * ioaddr = ns_ioaddr(dev);
3160	struct netdev_private *np = netdev_priv(dev);
3161	const int irq = np->pci_dev->irq;
3162
3163	if (netif_msg_ifdown(np))
3164		printk(KERN_DEBUG
3165			"%s: Shutting down ethercard, status was %#04x.\n",
3166			dev->name, (int)readl(ioaddr + ChipCmd));
3167	if (netif_msg_pktdata(np))
3168		printk(KERN_DEBUG
3169			"%s: Queue pointers were Tx %d / %d,  Rx %d / %d.\n",
3170			dev->name, np->cur_tx, np->dirty_tx,
3171			np->cur_rx, np->dirty_rx);
3172
3173	napi_disable(&np->napi);
3174
3175	/*
3176	 * FIXME: what if someone tries to close a device
3177	 * that is suspended?
3178	 * Should we reenable the nic to switch to
3179	 * the final WOL settings?
3180	 */
3181
3182	del_timer_sync(&np->timer);
3183	disable_irq(irq);
3184	spin_lock_irq(&np->lock);
3185	natsemi_irq_disable(dev);
3186	np->hands_off = 1;
3187	spin_unlock_irq(&np->lock);
3188	enable_irq(irq);
3189
3190	free_irq(irq, dev);
3191
3192	/* Interrupt disabled, interrupt handler released,
3193	 * queue stopped, timer deleted, rtnl_lock held
3194	 * All async codepaths that access the driver are disabled.
3195	 */
3196	spin_lock_irq(&np->lock);
3197	np->hands_off = 0;
3198	readl(ioaddr + IntrMask);
3199	readw(ioaddr + MIntrStatus);
3200
3201	/* Freeze Stats */
3202	writel(StatsFreeze, ioaddr + StatsCtrl);
3203
3204	/* Stop the chip's Tx and Rx processes. */
3205	natsemi_stop_rxtx(dev);
3206
3207	__get_stats(dev);
3208	spin_unlock_irq(&np->lock);
3209
3210	/* clear the carrier last - an interrupt could reenable it otherwise */
3211	netif_carrier_off(dev);
3212	netif_stop_queue(dev);
3213
3214	dump_ring(dev);
3215	drain_ring(dev);
3216	free_ring(dev);
3217
3218	{
3219		u32 wol = readl(ioaddr + WOLCmd) & WakeOptsSummary;
3220		if (wol) {
3221			/* restart the NIC in WOL mode.
3222			 * The nic must be stopped for this.
3223			 */
3224			enable_wol_mode(dev, 0);
3225		} else {
3226			/* Restore PME enable bit unmolested */
3227			writel(np->SavedClkRun, ioaddr + ClkRun);
3228		}
3229	}
3230	return 0;
3231}
3232
3233
3234static void natsemi_remove1(struct pci_dev *pdev)
3235{
3236	struct net_device *dev = pci_get_drvdata(pdev);
3237	void __iomem * ioaddr = ns_ioaddr(dev);
3238
3239	NATSEMI_REMOVE_FILE(pdev, dspcfg_workaround);
3240	unregister_netdev (dev);
3241	iounmap(ioaddr);
3242	free_netdev (dev);
3243}
3244
3245/*
3246 * The ns83815 chip doesn't have explicit RxStop bits.
3247 * Kicking the Rx or Tx process for a new packet reenables the Rx process
3248 * of the nic, thus this function must be very careful:
3249 *
3250 * suspend/resume synchronization:
3251 * entry points:
3252 *   netdev_open, netdev_close, netdev_ioctl, set_rx_mode, intr_handler,
3253 *   start_tx, ns_tx_timeout
3254 *
3255 * No function accesses the hardware without checking np->hands_off.
3256 *	the check occurs under spin_lock_irq(&np->lock);
3257 * exceptions:
3258 *	* netdev_ioctl: noncritical access.
3259 *	* netdev_open: cannot happen due to the device_detach
3260 *	* netdev_close: doesn't hurt.
3261 *	* netdev_timer: timer stopped by natsemi_suspend.
3262 *	* intr_handler: doesn't acquire the spinlock. suspend calls
3263 *		disable_irq() to enforce synchronization.
3264 *      * natsemi_poll: checks before reenabling interrupts.  suspend
3265 *              sets hands_off, disables interrupts and then waits with
3266 *              napi_disable().
3267 *
3268 * Interrupts must be disabled, otherwise hands_off can cause irq storms.
3269 */
3270
3271static int __maybe_unused natsemi_suspend(struct device *dev_d)
3272{
3273	struct net_device *dev = dev_get_drvdata(dev_d);
3274	struct netdev_private *np = netdev_priv(dev);
3275	void __iomem * ioaddr = ns_ioaddr(dev);
3276
3277	rtnl_lock();
3278	if (netif_running (dev)) {
3279		const int irq = np->pci_dev->irq;
3280
3281		del_timer_sync(&np->timer);
3282
3283		disable_irq(irq);
3284		spin_lock_irq(&np->lock);
3285
3286		natsemi_irq_disable(dev);
3287		np->hands_off = 1;
3288		natsemi_stop_rxtx(dev);
3289		netif_stop_queue(dev);
3290
3291		spin_unlock_irq(&np->lock);
3292		enable_irq(irq);
3293
3294		napi_disable(&np->napi);
3295
3296		/* Update the error counts. */
3297		__get_stats(dev);
3298
3299		/* pci_power_off(pdev, -1); */
3300		drain_ring(dev);
3301		{
3302			u32 wol = readl(ioaddr + WOLCmd) & WakeOptsSummary;
3303			/* Restore PME enable bit */
3304			if (wol) {
3305				/* restart the NIC in WOL mode.
3306				 * The nic must be stopped for this.
3307				 * FIXME: use the WOL interrupt
3308				 */
3309				enable_wol_mode(dev, 0);
3310			} else {
3311				/* Restore PME enable bit unmolested */
3312				writel(np->SavedClkRun, ioaddr + ClkRun);
3313			}
3314		}
3315	}
3316	netif_device_detach(dev);
3317	rtnl_unlock();
3318	return 0;
3319}
3320
3321
3322static int __maybe_unused natsemi_resume(struct device *dev_d)
3323{
3324	struct net_device *dev = dev_get_drvdata(dev_d);
3325	struct netdev_private *np = netdev_priv(dev);
3326
3327	rtnl_lock();
3328	if (netif_device_present(dev))
3329		goto out;
3330	if (netif_running(dev)) {
3331		const int irq = np->pci_dev->irq;
3332
3333		BUG_ON(!np->hands_off);
3334	/*	pci_power_on(pdev); */
3335
3336		napi_enable(&np->napi);
3337
3338		natsemi_reset(dev);
3339		init_ring(dev);
3340		disable_irq(irq);
3341		spin_lock_irq(&np->lock);
3342		np->hands_off = 0;
3343		init_registers(dev);
3344		netif_device_attach(dev);
3345		spin_unlock_irq(&np->lock);
3346		enable_irq(irq);
3347
3348		mod_timer(&np->timer, round_jiffies(jiffies + 1*HZ));
3349	}
3350	netif_device_attach(dev);
3351out:
3352	rtnl_unlock();
3353	return 0;
3354}
3355
3356static SIMPLE_DEV_PM_OPS(natsemi_pm_ops, natsemi_suspend, natsemi_resume);
3357
3358static struct pci_driver natsemi_driver = {
3359	.name		= DRV_NAME,
3360	.id_table	= natsemi_pci_tbl,
3361	.probe		= natsemi_probe1,
3362	.remove		= natsemi_remove1,
3363	.driver.pm	= &natsemi_pm_ops,
3364};
3365
3366static int __init natsemi_init_mod (void)
3367{
3368/* when a module, this is printed whether or not devices are found in probe */
3369#ifdef MODULE
3370	printk(version);
3371#endif
3372
3373	return pci_register_driver(&natsemi_driver);
3374}
3375
3376static void __exit natsemi_exit_mod (void)
3377{
3378	pci_unregister_driver (&natsemi_driver);
3379}
3380
3381module_init(natsemi_init_mod);
3382module_exit(natsemi_exit_mod);
3383
3384