1// SPDX-License-Identifier: GPL-2.0
2/*
3 * RSS and Classifier helpers for Marvell PPv2 Network Controller
4 *
5 * Copyright (C) 2014 Marvell
6 *
7 * Marcin Wojtas <mw@semihalf.com>
8 */
9
10#include "mvpp2.h"
11#include "mvpp2_cls.h"
12#include "mvpp2_prs.h"
13
14#define MVPP2_DEF_FLOW(_type, _id, _opts, _ri, _ri_mask)	\
15{								\
16	.flow_type = _type,					\
17	.flow_id = _id,						\
18	.supported_hash_opts = _opts,				\
19	.prs_ri = {						\
20		.ri = _ri,					\
21		.ri_mask = _ri_mask				\
22	}							\
23}
24
25static const struct mvpp2_cls_flow cls_flows[MVPP2_N_PRS_FLOWS] = {
26	/* TCP over IPv4 flows, Not fragmented, no vlan tag */
27	MVPP2_DEF_FLOW(MVPP22_FLOW_TCP4, MVPP2_FL_IP4_TCP_NF_UNTAG,
28		       MVPP22_CLS_HEK_IP4_5T,
29		       MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4 |
30		       MVPP2_PRS_RI_L4_TCP,
31		       MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),
32
33	MVPP2_DEF_FLOW(MVPP22_FLOW_TCP4, MVPP2_FL_IP4_TCP_NF_UNTAG,
34		       MVPP22_CLS_HEK_IP4_5T,
35		       MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4_OPT |
36		       MVPP2_PRS_RI_L4_TCP,
37		       MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),
38
39	MVPP2_DEF_FLOW(MVPP22_FLOW_TCP4, MVPP2_FL_IP4_TCP_NF_UNTAG,
40		       MVPP22_CLS_HEK_IP4_5T,
41		       MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4_OTHER |
42		       MVPP2_PRS_RI_L4_TCP,
43		       MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),
44
45	/* TCP over IPv4 flows, Not fragmented, with vlan tag */
46	MVPP2_DEF_FLOW(MVPP22_FLOW_TCP4, MVPP2_FL_IP4_TCP_NF_TAG,
47		       MVPP22_CLS_HEK_IP4_5T | MVPP22_CLS_HEK_TAGGED,
48		       MVPP2_PRS_RI_L3_IP4 | MVPP2_PRS_RI_L4_TCP,
49		       MVPP2_PRS_IP_MASK),
50
51	MVPP2_DEF_FLOW(MVPP22_FLOW_TCP4, MVPP2_FL_IP4_TCP_NF_TAG,
52		       MVPP22_CLS_HEK_IP4_5T | MVPP22_CLS_HEK_TAGGED,
53		       MVPP2_PRS_RI_L3_IP4_OPT | MVPP2_PRS_RI_L4_TCP,
54		       MVPP2_PRS_IP_MASK),
55
56	MVPP2_DEF_FLOW(MVPP22_FLOW_TCP4, MVPP2_FL_IP4_TCP_NF_TAG,
57		       MVPP22_CLS_HEK_IP4_5T | MVPP22_CLS_HEK_TAGGED,
58		       MVPP2_PRS_RI_L3_IP4_OTHER | MVPP2_PRS_RI_L4_TCP,
59		       MVPP2_PRS_IP_MASK),
60
61	/* TCP over IPv4 flows, fragmented, no vlan tag */
62	MVPP2_DEF_FLOW(MVPP22_FLOW_TCP4, MVPP2_FL_IP4_TCP_FRAG_UNTAG,
63		       MVPP22_CLS_HEK_IP4_2T,
64		       MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4 |
65		       MVPP2_PRS_RI_IP_FRAG_TRUE | MVPP2_PRS_RI_L4_TCP,
66		       MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),
67
68	MVPP2_DEF_FLOW(MVPP22_FLOW_TCP4, MVPP2_FL_IP4_TCP_FRAG_UNTAG,
69		       MVPP22_CLS_HEK_IP4_2T,
70		       MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4_OPT |
71		       MVPP2_PRS_RI_IP_FRAG_TRUE | MVPP2_PRS_RI_L4_TCP,
72		       MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),
73
74	MVPP2_DEF_FLOW(MVPP22_FLOW_TCP4, MVPP2_FL_IP4_TCP_FRAG_UNTAG,
75		       MVPP22_CLS_HEK_IP4_2T,
76		       MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4_OTHER |
77		       MVPP2_PRS_RI_IP_FRAG_TRUE | MVPP2_PRS_RI_L4_TCP,
78		       MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),
79
80	/* TCP over IPv4 flows, fragmented, with vlan tag */
81	MVPP2_DEF_FLOW(MVPP22_FLOW_TCP4, MVPP2_FL_IP4_TCP_FRAG_TAG,
82		       MVPP22_CLS_HEK_IP4_2T | MVPP22_CLS_HEK_TAGGED,
83		       MVPP2_PRS_RI_L3_IP4 | MVPP2_PRS_RI_IP_FRAG_TRUE |
84			   MVPP2_PRS_RI_L4_TCP,
85		       MVPP2_PRS_IP_MASK),
86
87	MVPP2_DEF_FLOW(MVPP22_FLOW_TCP4, MVPP2_FL_IP4_TCP_FRAG_TAG,
88		       MVPP22_CLS_HEK_IP4_2T | MVPP22_CLS_HEK_TAGGED,
89		       MVPP2_PRS_RI_L3_IP4_OPT | MVPP2_PRS_RI_IP_FRAG_TRUE |
90			   MVPP2_PRS_RI_L4_TCP,
91		       MVPP2_PRS_IP_MASK),
92
93	MVPP2_DEF_FLOW(MVPP22_FLOW_TCP4, MVPP2_FL_IP4_TCP_FRAG_TAG,
94		       MVPP22_CLS_HEK_IP4_2T | MVPP22_CLS_HEK_TAGGED,
95		       MVPP2_PRS_RI_L3_IP4_OTHER | MVPP2_PRS_RI_IP_FRAG_TRUE |
96			   MVPP2_PRS_RI_L4_TCP,
97		       MVPP2_PRS_IP_MASK),
98
99	/* UDP over IPv4 flows, Not fragmented, no vlan tag */
100	MVPP2_DEF_FLOW(MVPP22_FLOW_UDP4, MVPP2_FL_IP4_UDP_NF_UNTAG,
101		       MVPP22_CLS_HEK_IP4_5T,
102		       MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4 |
103		       MVPP2_PRS_RI_L4_UDP,
104		       MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),
105
106	MVPP2_DEF_FLOW(MVPP22_FLOW_UDP4, MVPP2_FL_IP4_UDP_NF_UNTAG,
107		       MVPP22_CLS_HEK_IP4_5T,
108		       MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4_OPT |
109		       MVPP2_PRS_RI_L4_UDP,
110		       MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),
111
112	MVPP2_DEF_FLOW(MVPP22_FLOW_UDP4, MVPP2_FL_IP4_UDP_NF_UNTAG,
113		       MVPP22_CLS_HEK_IP4_5T,
114		       MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4_OTHER |
115		       MVPP2_PRS_RI_L4_UDP,
116		       MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),
117
118	/* UDP over IPv4 flows, Not fragmented, with vlan tag */
119	MVPP2_DEF_FLOW(MVPP22_FLOW_UDP4, MVPP2_FL_IP4_UDP_NF_TAG,
120		       MVPP22_CLS_HEK_IP4_5T | MVPP22_CLS_HEK_TAGGED,
121		       MVPP2_PRS_RI_L3_IP4 | MVPP2_PRS_RI_L4_UDP,
122		       MVPP2_PRS_IP_MASK),
123
124	MVPP2_DEF_FLOW(MVPP22_FLOW_UDP4, MVPP2_FL_IP4_UDP_NF_TAG,
125		       MVPP22_CLS_HEK_IP4_5T | MVPP22_CLS_HEK_TAGGED,
126		       MVPP2_PRS_RI_L3_IP4_OPT | MVPP2_PRS_RI_L4_UDP,
127		       MVPP2_PRS_IP_MASK),
128
129	MVPP2_DEF_FLOW(MVPP22_FLOW_UDP4, MVPP2_FL_IP4_UDP_NF_TAG,
130		       MVPP22_CLS_HEK_IP4_5T | MVPP22_CLS_HEK_TAGGED,
131		       MVPP2_PRS_RI_L3_IP4_OTHER | MVPP2_PRS_RI_L4_UDP,
132		       MVPP2_PRS_IP_MASK),
133
134	/* UDP over IPv4 flows, fragmented, no vlan tag */
135	MVPP2_DEF_FLOW(MVPP22_FLOW_UDP4, MVPP2_FL_IP4_UDP_FRAG_UNTAG,
136		       MVPP22_CLS_HEK_IP4_2T,
137		       MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4 |
138		       MVPP2_PRS_RI_IP_FRAG_TRUE | MVPP2_PRS_RI_L4_UDP,
139		       MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),
140
141	MVPP2_DEF_FLOW(MVPP22_FLOW_UDP4, MVPP2_FL_IP4_UDP_FRAG_UNTAG,
142		       MVPP22_CLS_HEK_IP4_2T,
143		       MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4_OPT |
144		       MVPP2_PRS_RI_IP_FRAG_TRUE | MVPP2_PRS_RI_L4_UDP,
145		       MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),
146
147	MVPP2_DEF_FLOW(MVPP22_FLOW_UDP4, MVPP2_FL_IP4_UDP_FRAG_UNTAG,
148		       MVPP22_CLS_HEK_IP4_2T,
149		       MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4_OTHER |
150		       MVPP2_PRS_RI_IP_FRAG_TRUE | MVPP2_PRS_RI_L4_UDP,
151		       MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),
152
153	/* UDP over IPv4 flows, fragmented, with vlan tag */
154	MVPP2_DEF_FLOW(MVPP22_FLOW_UDP4, MVPP2_FL_IP4_UDP_FRAG_TAG,
155		       MVPP22_CLS_HEK_IP4_2T | MVPP22_CLS_HEK_TAGGED,
156		       MVPP2_PRS_RI_L3_IP4 | MVPP2_PRS_RI_IP_FRAG_TRUE |
157			   MVPP2_PRS_RI_L4_UDP,
158		       MVPP2_PRS_IP_MASK),
159
160	MVPP2_DEF_FLOW(MVPP22_FLOW_UDP4, MVPP2_FL_IP4_UDP_FRAG_TAG,
161		       MVPP22_CLS_HEK_IP4_2T | MVPP22_CLS_HEK_TAGGED,
162		       MVPP2_PRS_RI_L3_IP4_OPT | MVPP2_PRS_RI_IP_FRAG_TRUE |
163			   MVPP2_PRS_RI_L4_UDP,
164		       MVPP2_PRS_IP_MASK),
165
166	MVPP2_DEF_FLOW(MVPP22_FLOW_UDP4, MVPP2_FL_IP4_UDP_FRAG_TAG,
167		       MVPP22_CLS_HEK_IP4_2T | MVPP22_CLS_HEK_TAGGED,
168		       MVPP2_PRS_RI_L3_IP4_OTHER | MVPP2_PRS_RI_IP_FRAG_TRUE |
169			   MVPP2_PRS_RI_L4_UDP,
170		       MVPP2_PRS_IP_MASK),
171
172	/* TCP over IPv6 flows, not fragmented, no vlan tag */
173	MVPP2_DEF_FLOW(MVPP22_FLOW_TCP6, MVPP2_FL_IP6_TCP_NF_UNTAG,
174		       MVPP22_CLS_HEK_IP6_5T,
175		       MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP6 |
176		       MVPP2_PRS_RI_L4_TCP,
177		       MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),
178
179	MVPP2_DEF_FLOW(MVPP22_FLOW_TCP6, MVPP2_FL_IP6_TCP_NF_UNTAG,
180		       MVPP22_CLS_HEK_IP6_5T,
181		       MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP6_EXT |
182		       MVPP2_PRS_RI_L4_TCP,
183		       MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),
184
185	/* TCP over IPv6 flows, not fragmented, with vlan tag */
186	MVPP2_DEF_FLOW(MVPP22_FLOW_TCP6, MVPP2_FL_IP6_TCP_NF_TAG,
187		       MVPP22_CLS_HEK_IP6_5T | MVPP22_CLS_HEK_TAGGED,
188		       MVPP2_PRS_RI_L3_IP6 | MVPP2_PRS_RI_L4_TCP,
189		       MVPP2_PRS_IP_MASK),
190
191	MVPP2_DEF_FLOW(MVPP22_FLOW_TCP6, MVPP2_FL_IP6_TCP_NF_TAG,
192		       MVPP22_CLS_HEK_IP6_5T | MVPP22_CLS_HEK_TAGGED,
193		       MVPP2_PRS_RI_L3_IP6_EXT | MVPP2_PRS_RI_L4_TCP,
194		       MVPP2_PRS_IP_MASK),
195
196	/* TCP over IPv6 flows, fragmented, no vlan tag */
197	MVPP2_DEF_FLOW(MVPP22_FLOW_TCP6, MVPP2_FL_IP6_TCP_FRAG_UNTAG,
198		       MVPP22_CLS_HEK_IP6_2T,
199		       MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP6 |
200		       MVPP2_PRS_RI_IP_FRAG_TRUE | MVPP2_PRS_RI_L4_TCP,
201		       MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),
202
203	MVPP2_DEF_FLOW(MVPP22_FLOW_TCP6, MVPP2_FL_IP6_TCP_FRAG_UNTAG,
204		       MVPP22_CLS_HEK_IP6_2T,
205		       MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP6_EXT |
206		       MVPP2_PRS_RI_IP_FRAG_TRUE | MVPP2_PRS_RI_L4_TCP,
207		       MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),
208
209	/* TCP over IPv6 flows, fragmented, with vlan tag */
210	MVPP2_DEF_FLOW(MVPP22_FLOW_TCP6, MVPP2_FL_IP6_TCP_FRAG_TAG,
211		       MVPP22_CLS_HEK_IP6_2T | MVPP22_CLS_HEK_TAGGED,
212		       MVPP2_PRS_RI_L3_IP6 | MVPP2_PRS_RI_IP_FRAG_TRUE |
213		       MVPP2_PRS_RI_L4_TCP,
214		       MVPP2_PRS_IP_MASK),
215
216	MVPP2_DEF_FLOW(MVPP22_FLOW_TCP6, MVPP2_FL_IP6_TCP_FRAG_TAG,
217		       MVPP22_CLS_HEK_IP6_2T | MVPP22_CLS_HEK_TAGGED,
218		       MVPP2_PRS_RI_L3_IP6_EXT | MVPP2_PRS_RI_IP_FRAG_TRUE |
219		       MVPP2_PRS_RI_L4_TCP,
220		       MVPP2_PRS_IP_MASK),
221
222	/* UDP over IPv6 flows, not fragmented, no vlan tag */
223	MVPP2_DEF_FLOW(MVPP22_FLOW_UDP6, MVPP2_FL_IP6_UDP_NF_UNTAG,
224		       MVPP22_CLS_HEK_IP6_5T,
225		       MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP6 |
226		       MVPP2_PRS_RI_L4_UDP,
227		       MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),
228
229	MVPP2_DEF_FLOW(MVPP22_FLOW_UDP6, MVPP2_FL_IP6_UDP_NF_UNTAG,
230		       MVPP22_CLS_HEK_IP6_5T,
231		       MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP6_EXT |
232		       MVPP2_PRS_RI_L4_UDP,
233		       MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),
234
235	/* UDP over IPv6 flows, not fragmented, with vlan tag */
236	MVPP2_DEF_FLOW(MVPP22_FLOW_UDP6, MVPP2_FL_IP6_UDP_NF_TAG,
237		       MVPP22_CLS_HEK_IP6_5T | MVPP22_CLS_HEK_TAGGED,
238		       MVPP2_PRS_RI_L3_IP6 | MVPP2_PRS_RI_L4_UDP,
239		       MVPP2_PRS_IP_MASK),
240
241	MVPP2_DEF_FLOW(MVPP22_FLOW_UDP6, MVPP2_FL_IP6_UDP_NF_TAG,
242		       MVPP22_CLS_HEK_IP6_5T | MVPP22_CLS_HEK_TAGGED,
243		       MVPP2_PRS_RI_L3_IP6_EXT | MVPP2_PRS_RI_L4_UDP,
244		       MVPP2_PRS_IP_MASK),
245
246	/* UDP over IPv6 flows, fragmented, no vlan tag */
247	MVPP2_DEF_FLOW(MVPP22_FLOW_UDP6, MVPP2_FL_IP6_UDP_FRAG_UNTAG,
248		       MVPP22_CLS_HEK_IP6_2T,
249		       MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP6 |
250		       MVPP2_PRS_RI_IP_FRAG_TRUE | MVPP2_PRS_RI_L4_UDP,
251		       MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),
252
253	MVPP2_DEF_FLOW(MVPP22_FLOW_UDP6, MVPP2_FL_IP6_UDP_FRAG_UNTAG,
254		       MVPP22_CLS_HEK_IP6_2T,
255		       MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP6_EXT |
256		       MVPP2_PRS_RI_IP_FRAG_TRUE | MVPP2_PRS_RI_L4_UDP,
257		       MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),
258
259	/* UDP over IPv6 flows, fragmented, with vlan tag */
260	MVPP2_DEF_FLOW(MVPP22_FLOW_UDP6, MVPP2_FL_IP6_UDP_FRAG_TAG,
261		       MVPP22_CLS_HEK_IP6_2T | MVPP22_CLS_HEK_TAGGED,
262		       MVPP2_PRS_RI_L3_IP6 | MVPP2_PRS_RI_IP_FRAG_TRUE |
263		       MVPP2_PRS_RI_L4_UDP,
264		       MVPP2_PRS_IP_MASK),
265
266	MVPP2_DEF_FLOW(MVPP22_FLOW_UDP6, MVPP2_FL_IP6_UDP_FRAG_TAG,
267		       MVPP22_CLS_HEK_IP6_2T | MVPP22_CLS_HEK_TAGGED,
268		       MVPP2_PRS_RI_L3_IP6_EXT | MVPP2_PRS_RI_IP_FRAG_TRUE |
269		       MVPP2_PRS_RI_L4_UDP,
270		       MVPP2_PRS_IP_MASK),
271
272	/* IPv4 flows, no vlan tag */
273	MVPP2_DEF_FLOW(MVPP22_FLOW_IP4, MVPP2_FL_IP4_UNTAG,
274		       MVPP22_CLS_HEK_IP4_2T,
275		       MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4,
276		       MVPP2_PRS_RI_VLAN_MASK | MVPP2_PRS_RI_L3_PROTO_MASK),
277	MVPP2_DEF_FLOW(MVPP22_FLOW_IP4, MVPP2_FL_IP4_UNTAG,
278		       MVPP22_CLS_HEK_IP4_2T,
279		       MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4_OPT,
280		       MVPP2_PRS_RI_VLAN_MASK | MVPP2_PRS_RI_L3_PROTO_MASK),
281	MVPP2_DEF_FLOW(MVPP22_FLOW_IP4, MVPP2_FL_IP4_UNTAG,
282		       MVPP22_CLS_HEK_IP4_2T,
283		       MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4_OTHER,
284		       MVPP2_PRS_RI_VLAN_MASK | MVPP2_PRS_RI_L3_PROTO_MASK),
285
286	/* IPv4 flows, with vlan tag */
287	MVPP2_DEF_FLOW(MVPP22_FLOW_IP4, MVPP2_FL_IP4_TAG,
288		       MVPP22_CLS_HEK_IP4_2T | MVPP22_CLS_HEK_TAGGED,
289		       MVPP2_PRS_RI_L3_IP4,
290		       MVPP2_PRS_RI_L3_PROTO_MASK),
291	MVPP2_DEF_FLOW(MVPP22_FLOW_IP4, MVPP2_FL_IP4_TAG,
292		       MVPP22_CLS_HEK_IP4_2T | MVPP22_CLS_HEK_TAGGED,
293		       MVPP2_PRS_RI_L3_IP4_OPT,
294		       MVPP2_PRS_RI_L3_PROTO_MASK),
295	MVPP2_DEF_FLOW(MVPP22_FLOW_IP4, MVPP2_FL_IP4_TAG,
296		       MVPP22_CLS_HEK_IP4_2T | MVPP22_CLS_HEK_TAGGED,
297		       MVPP2_PRS_RI_L3_IP4_OTHER,
298		       MVPP2_PRS_RI_L3_PROTO_MASK),
299
300	/* IPv6 flows, no vlan tag */
301	MVPP2_DEF_FLOW(MVPP22_FLOW_IP6, MVPP2_FL_IP6_UNTAG,
302		       MVPP22_CLS_HEK_IP6_2T,
303		       MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP6,
304		       MVPP2_PRS_RI_VLAN_MASK | MVPP2_PRS_RI_L3_PROTO_MASK),
305	MVPP2_DEF_FLOW(MVPP22_FLOW_IP6, MVPP2_FL_IP6_UNTAG,
306		       MVPP22_CLS_HEK_IP6_2T,
307		       MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP6,
308		       MVPP2_PRS_RI_VLAN_MASK | MVPP2_PRS_RI_L3_PROTO_MASK),
309
310	/* IPv6 flows, with vlan tag */
311	MVPP2_DEF_FLOW(MVPP22_FLOW_IP6, MVPP2_FL_IP6_TAG,
312		       MVPP22_CLS_HEK_IP6_2T | MVPP22_CLS_HEK_TAGGED,
313		       MVPP2_PRS_RI_L3_IP6,
314		       MVPP2_PRS_RI_L3_PROTO_MASK),
315	MVPP2_DEF_FLOW(MVPP22_FLOW_IP6, MVPP2_FL_IP6_TAG,
316		       MVPP22_CLS_HEK_IP6_2T | MVPP22_CLS_HEK_TAGGED,
317		       MVPP2_PRS_RI_L3_IP6,
318		       MVPP2_PRS_RI_L3_PROTO_MASK),
319
320	/* Non IP flow, no vlan tag */
321	MVPP2_DEF_FLOW(MVPP22_FLOW_ETHERNET, MVPP2_FL_NON_IP_UNTAG,
322		       0,
323		       MVPP2_PRS_RI_VLAN_NONE,
324		       MVPP2_PRS_RI_VLAN_MASK),
325	/* Non IP flow, with vlan tag */
326	MVPP2_DEF_FLOW(MVPP22_FLOW_ETHERNET, MVPP2_FL_NON_IP_TAG,
327		       MVPP22_CLS_HEK_OPT_VLAN,
328		       0, 0),
329};
330
331u32 mvpp2_cls_flow_hits(struct mvpp2 *priv, int index)
332{
333	mvpp2_write(priv, MVPP2_CTRS_IDX, index);
334
335	return mvpp2_read(priv, MVPP2_CLS_FLOW_TBL_HIT_CTR);
336}
337
338void mvpp2_cls_flow_read(struct mvpp2 *priv, int index,
339			 struct mvpp2_cls_flow_entry *fe)
340{
341	fe->index = index;
342	mvpp2_write(priv, MVPP2_CLS_FLOW_INDEX_REG, index);
343	fe->data[0] = mvpp2_read(priv, MVPP2_CLS_FLOW_TBL0_REG);
344	fe->data[1] = mvpp2_read(priv, MVPP2_CLS_FLOW_TBL1_REG);
345	fe->data[2] = mvpp2_read(priv, MVPP2_CLS_FLOW_TBL2_REG);
346}
347
348/* Update classification flow table registers */
349static void mvpp2_cls_flow_write(struct mvpp2 *priv,
350				 struct mvpp2_cls_flow_entry *fe)
351{
352	mvpp2_write(priv, MVPP2_CLS_FLOW_INDEX_REG, fe->index);
353	mvpp2_write(priv, MVPP2_CLS_FLOW_TBL0_REG, fe->data[0]);
354	mvpp2_write(priv, MVPP2_CLS_FLOW_TBL1_REG, fe->data[1]);
355	mvpp2_write(priv, MVPP2_CLS_FLOW_TBL2_REG, fe->data[2]);
356}
357
358u32 mvpp2_cls_lookup_hits(struct mvpp2 *priv, int index)
359{
360	mvpp2_write(priv, MVPP2_CTRS_IDX, index);
361
362	return mvpp2_read(priv, MVPP2_CLS_DEC_TBL_HIT_CTR);
363}
364
365void mvpp2_cls_lookup_read(struct mvpp2 *priv, int lkpid, int way,
366			   struct mvpp2_cls_lookup_entry *le)
367{
368	u32 val;
369
370	val = (way << MVPP2_CLS_LKP_INDEX_WAY_OFFS) | lkpid;
371	mvpp2_write(priv, MVPP2_CLS_LKP_INDEX_REG, val);
372	le->way = way;
373	le->lkpid = lkpid;
374	le->data = mvpp2_read(priv, MVPP2_CLS_LKP_TBL_REG);
375}
376
377/* Update classification lookup table register */
378static void mvpp2_cls_lookup_write(struct mvpp2 *priv,
379				   struct mvpp2_cls_lookup_entry *le)
380{
381	u32 val;
382
383	val = (le->way << MVPP2_CLS_LKP_INDEX_WAY_OFFS) | le->lkpid;
384	mvpp2_write(priv, MVPP2_CLS_LKP_INDEX_REG, val);
385	mvpp2_write(priv, MVPP2_CLS_LKP_TBL_REG, le->data);
386}
387
388/* Operations on flow entry */
389static int mvpp2_cls_flow_hek_num_get(struct mvpp2_cls_flow_entry *fe)
390{
391	return fe->data[1] & MVPP2_CLS_FLOW_TBL1_N_FIELDS_MASK;
392}
393
394static void mvpp2_cls_flow_hek_num_set(struct mvpp2_cls_flow_entry *fe,
395				       int num_of_fields)
396{
397	fe->data[1] &= ~MVPP2_CLS_FLOW_TBL1_N_FIELDS_MASK;
398	fe->data[1] |= MVPP2_CLS_FLOW_TBL1_N_FIELDS(num_of_fields);
399}
400
401static int mvpp2_cls_flow_hek_get(struct mvpp2_cls_flow_entry *fe,
402				  int field_index)
403{
404	return (fe->data[2] >> MVPP2_CLS_FLOW_TBL2_FLD_OFFS(field_index)) &
405		MVPP2_CLS_FLOW_TBL2_FLD_MASK;
406}
407
408static void mvpp2_cls_flow_hek_set(struct mvpp2_cls_flow_entry *fe,
409				   int field_index, int field_id)
410{
411	fe->data[2] &= ~MVPP2_CLS_FLOW_TBL2_FLD(field_index,
412						MVPP2_CLS_FLOW_TBL2_FLD_MASK);
413	fe->data[2] |= MVPP2_CLS_FLOW_TBL2_FLD(field_index, field_id);
414}
415
416static void mvpp2_cls_flow_eng_set(struct mvpp2_cls_flow_entry *fe,
417				   int engine)
418{
419	fe->data[0] &= ~MVPP2_CLS_FLOW_TBL0_ENG(MVPP2_CLS_FLOW_TBL0_ENG_MASK);
420	fe->data[0] |= MVPP2_CLS_FLOW_TBL0_ENG(engine);
421}
422
423int mvpp2_cls_flow_eng_get(struct mvpp2_cls_flow_entry *fe)
424{
425	return (fe->data[0] >> MVPP2_CLS_FLOW_TBL0_OFFS) &
426		MVPP2_CLS_FLOW_TBL0_ENG_MASK;
427}
428
429static void mvpp2_cls_flow_port_id_sel(struct mvpp2_cls_flow_entry *fe,
430				       bool from_packet)
431{
432	if (from_packet)
433		fe->data[0] |= MVPP2_CLS_FLOW_TBL0_PORT_ID_SEL;
434	else
435		fe->data[0] &= ~MVPP2_CLS_FLOW_TBL0_PORT_ID_SEL;
436}
437
438static void mvpp2_cls_flow_last_set(struct mvpp2_cls_flow_entry *fe,
439				    bool is_last)
440{
441	fe->data[0] &= ~MVPP2_CLS_FLOW_TBL0_LAST;
442	fe->data[0] |= !!is_last;
443}
444
445static void mvpp2_cls_flow_pri_set(struct mvpp2_cls_flow_entry *fe, int prio)
446{
447	fe->data[1] &= ~MVPP2_CLS_FLOW_TBL1_PRIO(MVPP2_CLS_FLOW_TBL1_PRIO_MASK);
448	fe->data[1] |= MVPP2_CLS_FLOW_TBL1_PRIO(prio);
449}
450
451static void mvpp2_cls_flow_port_add(struct mvpp2_cls_flow_entry *fe,
452				    u32 port)
453{
454	fe->data[0] |= MVPP2_CLS_FLOW_TBL0_PORT_ID(port);
455}
456
457static void mvpp2_cls_flow_port_remove(struct mvpp2_cls_flow_entry *fe,
458				       u32 port)
459{
460	fe->data[0] &= ~MVPP2_CLS_FLOW_TBL0_PORT_ID(port);
461}
462
463static void mvpp2_cls_flow_lu_type_set(struct mvpp2_cls_flow_entry *fe,
464				       u8 lu_type)
465{
466	fe->data[1] &= ~MVPP2_CLS_FLOW_TBL1_LU_TYPE(MVPP2_CLS_LU_TYPE_MASK);
467	fe->data[1] |= MVPP2_CLS_FLOW_TBL1_LU_TYPE(lu_type);
468}
469
470/* Initialize the parser entry for the given flow */
471static void mvpp2_cls_flow_prs_init(struct mvpp2 *priv,
472				    const struct mvpp2_cls_flow *flow)
473{
474	mvpp2_prs_add_flow(priv, flow->flow_id, flow->prs_ri.ri,
475			   flow->prs_ri.ri_mask);
476}
477
478/* Initialize the Lookup Id table entry for the given flow */
479static void mvpp2_cls_flow_lkp_init(struct mvpp2 *priv,
480				    const struct mvpp2_cls_flow *flow)
481{
482	struct mvpp2_cls_lookup_entry le;
483
484	le.way = 0;
485	le.lkpid = flow->flow_id;
486
487	/* The default RxQ for this port is set in the C2 lookup */
488	le.data = 0;
489
490	/* We point on the first lookup in the sequence for the flow, that is
491	 * the C2 lookup.
492	 */
493	le.data |= MVPP2_CLS_LKP_FLOW_PTR(MVPP2_CLS_FLT_FIRST(flow->flow_id));
494
495	/* CLS is always enabled, RSS is enabled/disabled in C2 lookup */
496	le.data |= MVPP2_CLS_LKP_TBL_LOOKUP_EN_MASK;
497
498	mvpp2_cls_lookup_write(priv, &le);
499}
500
501static void mvpp2_cls_c2_write(struct mvpp2 *priv,
502			       struct mvpp2_cls_c2_entry *c2)
503{
504	u32 val;
505	mvpp2_write(priv, MVPP22_CLS_C2_TCAM_IDX, c2->index);
506
507	val = mvpp2_read(priv, MVPP22_CLS_C2_TCAM_INV);
508	if (c2->valid)
509		val &= ~MVPP22_CLS_C2_TCAM_INV_BIT;
510	else
511		val |= MVPP22_CLS_C2_TCAM_INV_BIT;
512	mvpp2_write(priv, MVPP22_CLS_C2_TCAM_INV, val);
513
514	mvpp2_write(priv, MVPP22_CLS_C2_ACT, c2->act);
515
516	mvpp2_write(priv, MVPP22_CLS_C2_ATTR0, c2->attr[0]);
517	mvpp2_write(priv, MVPP22_CLS_C2_ATTR1, c2->attr[1]);
518	mvpp2_write(priv, MVPP22_CLS_C2_ATTR2, c2->attr[2]);
519	mvpp2_write(priv, MVPP22_CLS_C2_ATTR3, c2->attr[3]);
520
521	mvpp2_write(priv, MVPP22_CLS_C2_TCAM_DATA0, c2->tcam[0]);
522	mvpp2_write(priv, MVPP22_CLS_C2_TCAM_DATA1, c2->tcam[1]);
523	mvpp2_write(priv, MVPP22_CLS_C2_TCAM_DATA2, c2->tcam[2]);
524	mvpp2_write(priv, MVPP22_CLS_C2_TCAM_DATA3, c2->tcam[3]);
525	/* Writing TCAM_DATA4 flushes writes to TCAM_DATA0-4 and INV to HW */
526	mvpp2_write(priv, MVPP22_CLS_C2_TCAM_DATA4, c2->tcam[4]);
527}
528
529void mvpp2_cls_c2_read(struct mvpp2 *priv, int index,
530		       struct mvpp2_cls_c2_entry *c2)
531{
532	u32 val;
533	mvpp2_write(priv, MVPP22_CLS_C2_TCAM_IDX, index);
534
535	c2->index = index;
536
537	c2->tcam[0] = mvpp2_read(priv, MVPP22_CLS_C2_TCAM_DATA0);
538	c2->tcam[1] = mvpp2_read(priv, MVPP22_CLS_C2_TCAM_DATA1);
539	c2->tcam[2] = mvpp2_read(priv, MVPP22_CLS_C2_TCAM_DATA2);
540	c2->tcam[3] = mvpp2_read(priv, MVPP22_CLS_C2_TCAM_DATA3);
541	c2->tcam[4] = mvpp2_read(priv, MVPP22_CLS_C2_TCAM_DATA4);
542
543	c2->act = mvpp2_read(priv, MVPP22_CLS_C2_ACT);
544
545	c2->attr[0] = mvpp2_read(priv, MVPP22_CLS_C2_ATTR0);
546	c2->attr[1] = mvpp2_read(priv, MVPP22_CLS_C2_ATTR1);
547	c2->attr[2] = mvpp2_read(priv, MVPP22_CLS_C2_ATTR2);
548	c2->attr[3] = mvpp2_read(priv, MVPP22_CLS_C2_ATTR3);
549
550	val = mvpp2_read(priv, MVPP22_CLS_C2_TCAM_INV);
551	c2->valid = !(val & MVPP22_CLS_C2_TCAM_INV_BIT);
552}
553
554static int mvpp2_cls_ethtool_flow_to_type(int flow_type)
555{
556	switch (flow_type & ~(FLOW_EXT | FLOW_MAC_EXT | FLOW_RSS)) {
557	case ETHER_FLOW:
558		return MVPP22_FLOW_ETHERNET;
559	case TCP_V4_FLOW:
560		return MVPP22_FLOW_TCP4;
561	case TCP_V6_FLOW:
562		return MVPP22_FLOW_TCP6;
563	case UDP_V4_FLOW:
564		return MVPP22_FLOW_UDP4;
565	case UDP_V6_FLOW:
566		return MVPP22_FLOW_UDP6;
567	case IPV4_FLOW:
568		return MVPP22_FLOW_IP4;
569	case IPV6_FLOW:
570		return MVPP22_FLOW_IP6;
571	default:
572		return -EOPNOTSUPP;
573	}
574}
575
576static int mvpp2_cls_c2_port_flow_index(struct mvpp2_port *port, int loc)
577{
578	return MVPP22_CLS_C2_RFS_LOC(port->id, loc);
579}
580
581/* Initialize the flow table entries for the given flow */
582static void mvpp2_cls_flow_init(struct mvpp2 *priv,
583				const struct mvpp2_cls_flow *flow)
584{
585	struct mvpp2_cls_flow_entry fe;
586	int i, pri = 0;
587
588	/* Assign default values to all entries in the flow */
589	for (i = MVPP2_CLS_FLT_FIRST(flow->flow_id);
590	     i <= MVPP2_CLS_FLT_LAST(flow->flow_id); i++) {
591		memset(&fe, 0, sizeof(fe));
592		fe.index = i;
593		mvpp2_cls_flow_pri_set(&fe, pri++);
594
595		if (i == MVPP2_CLS_FLT_LAST(flow->flow_id))
596			mvpp2_cls_flow_last_set(&fe, 1);
597
598		mvpp2_cls_flow_write(priv, &fe);
599	}
600
601	/* RSS config C2 lookup */
602	mvpp2_cls_flow_read(priv, MVPP2_CLS_FLT_C2_RSS_ENTRY(flow->flow_id),
603			    &fe);
604
605	mvpp2_cls_flow_eng_set(&fe, MVPP22_CLS_ENGINE_C2);
606	mvpp2_cls_flow_port_id_sel(&fe, true);
607	mvpp2_cls_flow_lu_type_set(&fe, MVPP22_CLS_LU_TYPE_ALL);
608
609	/* Add all ports */
610	for (i = 0; i < MVPP2_MAX_PORTS; i++)
611		mvpp2_cls_flow_port_add(&fe, BIT(i));
612
613	mvpp2_cls_flow_write(priv, &fe);
614
615	/* C3Hx lookups */
616	for (i = 0; i < MVPP2_MAX_PORTS; i++) {
617		mvpp2_cls_flow_read(priv,
618				    MVPP2_CLS_FLT_HASH_ENTRY(i, flow->flow_id),
619				    &fe);
620
621		/* Set a default engine. Will be overwritten when setting the
622		 * real HEK parameters
623		 */
624		mvpp2_cls_flow_eng_set(&fe, MVPP22_CLS_ENGINE_C3HA);
625		mvpp2_cls_flow_port_id_sel(&fe, true);
626		mvpp2_cls_flow_port_add(&fe, BIT(i));
627
628		mvpp2_cls_flow_write(priv, &fe);
629	}
630}
631
632/* Adds a field to the Header Extracted Key generation parameters*/
633static int mvpp2_flow_add_hek_field(struct mvpp2_cls_flow_entry *fe,
634				    u32 field_id)
635{
636	int nb_fields = mvpp2_cls_flow_hek_num_get(fe);
637
638	if (nb_fields == MVPP2_FLOW_N_FIELDS)
639		return -EINVAL;
640
641	mvpp2_cls_flow_hek_set(fe, nb_fields, field_id);
642
643	mvpp2_cls_flow_hek_num_set(fe, nb_fields + 1);
644
645	return 0;
646}
647
648static int mvpp2_flow_set_hek_fields(struct mvpp2_cls_flow_entry *fe,
649				     unsigned long hash_opts)
650{
651	u32 field_id;
652	int i;
653
654	/* Clear old fields */
655	mvpp2_cls_flow_hek_num_set(fe, 0);
656	fe->data[2] = 0;
657
658	for_each_set_bit(i, &hash_opts, MVPP22_CLS_HEK_N_FIELDS) {
659		switch (BIT(i)) {
660		case MVPP22_CLS_HEK_OPT_MAC_DA:
661			field_id = MVPP22_CLS_FIELD_MAC_DA;
662			break;
663		case MVPP22_CLS_HEK_OPT_VLAN:
664			field_id = MVPP22_CLS_FIELD_VLAN;
665			break;
666		case MVPP22_CLS_HEK_OPT_VLAN_PRI:
667			field_id = MVPP22_CLS_FIELD_VLAN_PRI;
668			break;
669		case MVPP22_CLS_HEK_OPT_IP4SA:
670			field_id = MVPP22_CLS_FIELD_IP4SA;
671			break;
672		case MVPP22_CLS_HEK_OPT_IP4DA:
673			field_id = MVPP22_CLS_FIELD_IP4DA;
674			break;
675		case MVPP22_CLS_HEK_OPT_IP6SA:
676			field_id = MVPP22_CLS_FIELD_IP6SA;
677			break;
678		case MVPP22_CLS_HEK_OPT_IP6DA:
679			field_id = MVPP22_CLS_FIELD_IP6DA;
680			break;
681		case MVPP22_CLS_HEK_OPT_L4SIP:
682			field_id = MVPP22_CLS_FIELD_L4SIP;
683			break;
684		case MVPP22_CLS_HEK_OPT_L4DIP:
685			field_id = MVPP22_CLS_FIELD_L4DIP;
686			break;
687		default:
688			return -EINVAL;
689		}
690		if (mvpp2_flow_add_hek_field(fe, field_id))
691			return -EINVAL;
692	}
693
694	return 0;
695}
696
697/* Returns the size, in bits, of the corresponding HEK field */
698static int mvpp2_cls_hek_field_size(u32 field)
699{
700	switch (field) {
701	case MVPP22_CLS_HEK_OPT_MAC_DA:
702		return 48;
703	case MVPP22_CLS_HEK_OPT_VLAN:
704		return 12;
705	case MVPP22_CLS_HEK_OPT_VLAN_PRI:
706		return 3;
707	case MVPP22_CLS_HEK_OPT_IP4SA:
708	case MVPP22_CLS_HEK_OPT_IP4DA:
709		return 32;
710	case MVPP22_CLS_HEK_OPT_IP6SA:
711	case MVPP22_CLS_HEK_OPT_IP6DA:
712		return 128;
713	case MVPP22_CLS_HEK_OPT_L4SIP:
714	case MVPP22_CLS_HEK_OPT_L4DIP:
715		return 16;
716	default:
717		return -1;
718	}
719}
720
721const struct mvpp2_cls_flow *mvpp2_cls_flow_get(int flow)
722{
723	if (flow >= MVPP2_N_PRS_FLOWS)
724		return NULL;
725
726	return &cls_flows[flow];
727}
728
729/* Set the hash generation options for the given traffic flow.
730 * One traffic flow (in the ethtool sense) has multiple classification flows,
731 * to handle specific cases such as fragmentation, or the presence of a
732 * VLAN / DSA Tag.
733 *
734 * Each of these individual flows has different constraints, for example we
735 * can't hash fragmented packets on L4 data (else we would risk having packet
736 * re-ordering), so each classification flows masks the options with their
737 * supported ones.
738 *
739 */
740static int mvpp2_port_rss_hash_opts_set(struct mvpp2_port *port, int flow_type,
741					u16 requested_opts)
742{
743	const struct mvpp2_cls_flow *flow;
744	struct mvpp2_cls_flow_entry fe;
745	int i, engine, flow_index;
746	u16 hash_opts;
747
748	for_each_cls_flow_id_with_type(i, flow_type) {
749		flow = mvpp2_cls_flow_get(i);
750		if (!flow)
751			return -EINVAL;
752
753		flow_index = MVPP2_CLS_FLT_HASH_ENTRY(port->id, flow->flow_id);
754
755		mvpp2_cls_flow_read(port->priv, flow_index, &fe);
756
757		hash_opts = flow->supported_hash_opts & requested_opts;
758
759		/* Use C3HB engine to access L4 infos. This adds L4 infos to the
760		 * hash parameters
761		 */
762		if (hash_opts & MVPP22_CLS_HEK_L4_OPTS)
763			engine = MVPP22_CLS_ENGINE_C3HB;
764		else
765			engine = MVPP22_CLS_ENGINE_C3HA;
766
767		if (mvpp2_flow_set_hek_fields(&fe, hash_opts))
768			return -EINVAL;
769
770		mvpp2_cls_flow_eng_set(&fe, engine);
771
772		mvpp2_cls_flow_write(port->priv, &fe);
773	}
774
775	return 0;
776}
777
778u16 mvpp2_flow_get_hek_fields(struct mvpp2_cls_flow_entry *fe)
779{
780	u16 hash_opts = 0;
781	int n_fields, i, field;
782
783	n_fields = mvpp2_cls_flow_hek_num_get(fe);
784
785	for (i = 0; i < n_fields; i++) {
786		field = mvpp2_cls_flow_hek_get(fe, i);
787
788		switch (field) {
789		case MVPP22_CLS_FIELD_MAC_DA:
790			hash_opts |= MVPP22_CLS_HEK_OPT_MAC_DA;
791			break;
792		case MVPP22_CLS_FIELD_VLAN:
793			hash_opts |= MVPP22_CLS_HEK_OPT_VLAN;
794			break;
795		case MVPP22_CLS_FIELD_VLAN_PRI:
796			hash_opts |= MVPP22_CLS_HEK_OPT_VLAN_PRI;
797			break;
798		case MVPP22_CLS_FIELD_L3_PROTO:
799			hash_opts |= MVPP22_CLS_HEK_OPT_L3_PROTO;
800			break;
801		case MVPP22_CLS_FIELD_IP4SA:
802			hash_opts |= MVPP22_CLS_HEK_OPT_IP4SA;
803			break;
804		case MVPP22_CLS_FIELD_IP4DA:
805			hash_opts |= MVPP22_CLS_HEK_OPT_IP4DA;
806			break;
807		case MVPP22_CLS_FIELD_IP6SA:
808			hash_opts |= MVPP22_CLS_HEK_OPT_IP6SA;
809			break;
810		case MVPP22_CLS_FIELD_IP6DA:
811			hash_opts |= MVPP22_CLS_HEK_OPT_IP6DA;
812			break;
813		case MVPP22_CLS_FIELD_L4SIP:
814			hash_opts |= MVPP22_CLS_HEK_OPT_L4SIP;
815			break;
816		case MVPP22_CLS_FIELD_L4DIP:
817			hash_opts |= MVPP22_CLS_HEK_OPT_L4DIP;
818			break;
819		default:
820			break;
821		}
822	}
823	return hash_opts;
824}
825
826/* Returns the hash opts for this flow. There are several classifier flows
827 * for one traffic flow, this returns an aggregation of all configurations.
828 */
829static u16 mvpp2_port_rss_hash_opts_get(struct mvpp2_port *port, int flow_type)
830{
831	const struct mvpp2_cls_flow *flow;
832	struct mvpp2_cls_flow_entry fe;
833	int i, flow_index;
834	u16 hash_opts = 0;
835
836	for_each_cls_flow_id_with_type(i, flow_type) {
837		flow = mvpp2_cls_flow_get(i);
838		if (!flow)
839			return 0;
840
841		flow_index = MVPP2_CLS_FLT_HASH_ENTRY(port->id, flow->flow_id);
842
843		mvpp2_cls_flow_read(port->priv, flow_index, &fe);
844
845		hash_opts |= mvpp2_flow_get_hek_fields(&fe);
846	}
847
848	return hash_opts;
849}
850
851static void mvpp2_cls_port_init_flows(struct mvpp2 *priv)
852{
853	const struct mvpp2_cls_flow *flow;
854	int i;
855
856	for (i = 0; i < MVPP2_N_PRS_FLOWS; i++) {
857		flow = mvpp2_cls_flow_get(i);
858		if (!flow)
859			break;
860
861		mvpp2_cls_flow_prs_init(priv, flow);
862		mvpp2_cls_flow_lkp_init(priv, flow);
863		mvpp2_cls_flow_init(priv, flow);
864	}
865}
866
867static void mvpp2_port_c2_cls_init(struct mvpp2_port *port)
868{
869	struct mvpp2_cls_c2_entry c2;
870	u8 qh, ql, pmap;
871
872	memset(&c2, 0, sizeof(c2));
873
874	c2.index = MVPP22_CLS_C2_RSS_ENTRY(port->id);
875
876	pmap = BIT(port->id);
877	c2.tcam[4] = MVPP22_CLS_C2_PORT_ID(pmap);
878	c2.tcam[4] |= MVPP22_CLS_C2_TCAM_EN(MVPP22_CLS_C2_PORT_ID(pmap));
879
880	/* Match on Lookup Type */
881	c2.tcam[4] |= MVPP22_CLS_C2_TCAM_EN(MVPP22_CLS_C2_LU_TYPE(MVPP2_CLS_LU_TYPE_MASK));
882	c2.tcam[4] |= MVPP22_CLS_C2_LU_TYPE(MVPP22_CLS_LU_TYPE_ALL);
883
884	/* Update RSS status after matching this entry */
885	c2.act = MVPP22_CLS_C2_ACT_RSS_EN(MVPP22_C2_UPD_LOCK);
886
887	/* Mark packet as "forwarded to software", needed for RSS */
888	c2.act |= MVPP22_CLS_C2_ACT_FWD(MVPP22_C2_FWD_SW_LOCK);
889
890	/* Configure the default rx queue : Update Queue Low and Queue High, but
891	 * don't lock, since the rx queue selection might be overridden by RSS
892	 */
893	c2.act |= MVPP22_CLS_C2_ACT_QHIGH(MVPP22_C2_UPD) |
894		   MVPP22_CLS_C2_ACT_QLOW(MVPP22_C2_UPD);
895
896	qh = (port->first_rxq >> 3) & MVPP22_CLS_C2_ATTR0_QHIGH_MASK;
897	ql = port->first_rxq & MVPP22_CLS_C2_ATTR0_QLOW_MASK;
898
899	c2.attr[0] = MVPP22_CLS_C2_ATTR0_QHIGH(qh) |
900		      MVPP22_CLS_C2_ATTR0_QLOW(ql);
901
902	c2.valid = true;
903
904	mvpp2_cls_c2_write(port->priv, &c2);
905}
906
907/* Classifier default initialization */
908void mvpp2_cls_init(struct mvpp2 *priv)
909{
910	struct mvpp2_cls_lookup_entry le;
911	struct mvpp2_cls_flow_entry fe;
912	struct mvpp2_cls_c2_entry c2;
913	int index;
914
915	/* Enable classifier */
916	mvpp2_write(priv, MVPP2_CLS_MODE_REG, MVPP2_CLS_MODE_ACTIVE_MASK);
917
918	/* Clear classifier flow table */
919	memset(&fe.data, 0, sizeof(fe.data));
920	for (index = 0; index < MVPP2_CLS_FLOWS_TBL_SIZE; index++) {
921		fe.index = index;
922		mvpp2_cls_flow_write(priv, &fe);
923	}
924
925	/* Clear classifier lookup table */
926	le.data = 0;
927	for (index = 0; index < MVPP2_CLS_LKP_TBL_SIZE; index++) {
928		le.lkpid = index;
929		le.way = 0;
930		mvpp2_cls_lookup_write(priv, &le);
931
932		le.way = 1;
933		mvpp2_cls_lookup_write(priv, &le);
934	}
935
936	/* Clear C2 TCAM engine table */
937	memset(&c2, 0, sizeof(c2));
938	c2.valid = false;
939	for (index = 0; index < MVPP22_CLS_C2_N_ENTRIES; index++) {
940		c2.index = index;
941		mvpp2_cls_c2_write(priv, &c2);
942	}
943
944	/* Disable the FIFO stages in C2 engine, which are only used in BIST
945	 * mode
946	 */
947	mvpp2_write(priv, MVPP22_CLS_C2_TCAM_CTRL,
948		    MVPP22_CLS_C2_TCAM_BYPASS_FIFO);
949
950	mvpp2_cls_port_init_flows(priv);
951}
952
953void mvpp2_cls_port_config(struct mvpp2_port *port)
954{
955	struct mvpp2_cls_lookup_entry le;
956	u32 val;
957
958	/* Set way for the port */
959	val = mvpp2_read(port->priv, MVPP2_CLS_PORT_WAY_REG);
960	val &= ~MVPP2_CLS_PORT_WAY_MASK(port->id);
961	mvpp2_write(port->priv, MVPP2_CLS_PORT_WAY_REG, val);
962
963	/* Pick the entry to be accessed in lookup ID decoding table
964	 * according to the way and lkpid.
965	 */
966	le.lkpid = port->id;
967	le.way = 0;
968	le.data = 0;
969
970	/* Set initial CPU queue for receiving packets */
971	le.data &= ~MVPP2_CLS_LKP_TBL_RXQ_MASK;
972	le.data |= port->first_rxq;
973
974	/* Disable classification engines */
975	le.data &= ~MVPP2_CLS_LKP_TBL_LOOKUP_EN_MASK;
976
977	/* Update lookup ID table entry */
978	mvpp2_cls_lookup_write(port->priv, &le);
979
980	mvpp2_port_c2_cls_init(port);
981}
982
983u32 mvpp2_cls_c2_hit_count(struct mvpp2 *priv, int c2_index)
984{
985	mvpp2_write(priv, MVPP22_CLS_C2_TCAM_IDX, c2_index);
986
987	return mvpp2_read(priv, MVPP22_CLS_C2_HIT_CTR);
988}
989
990static void mvpp2_rss_port_c2_enable(struct mvpp2_port *port, u32 ctx)
991{
992	struct mvpp2_cls_c2_entry c2;
993	u8 qh, ql;
994
995	mvpp2_cls_c2_read(port->priv, MVPP22_CLS_C2_RSS_ENTRY(port->id), &c2);
996
997	/* The RxQ number is used to select the RSS table. It that case, we set
998	 * it to be the ctx number.
999	 */
1000	qh = (ctx >> 3) & MVPP22_CLS_C2_ATTR0_QHIGH_MASK;
1001	ql = ctx & MVPP22_CLS_C2_ATTR0_QLOW_MASK;
1002
1003	c2.attr[0] = MVPP22_CLS_C2_ATTR0_QHIGH(qh) |
1004		     MVPP22_CLS_C2_ATTR0_QLOW(ql);
1005
1006	c2.attr[2] |= MVPP22_CLS_C2_ATTR2_RSS_EN;
1007
1008	mvpp2_cls_c2_write(port->priv, &c2);
1009}
1010
1011static void mvpp2_rss_port_c2_disable(struct mvpp2_port *port)
1012{
1013	struct mvpp2_cls_c2_entry c2;
1014	u8 qh, ql;
1015
1016	mvpp2_cls_c2_read(port->priv, MVPP22_CLS_C2_RSS_ENTRY(port->id), &c2);
1017
1018	/* Reset the default destination RxQ to the port's first rx queue. */
1019	qh = (port->first_rxq >> 3) & MVPP22_CLS_C2_ATTR0_QHIGH_MASK;
1020	ql = port->first_rxq & MVPP22_CLS_C2_ATTR0_QLOW_MASK;
1021
1022	c2.attr[0] = MVPP22_CLS_C2_ATTR0_QHIGH(qh) |
1023		      MVPP22_CLS_C2_ATTR0_QLOW(ql);
1024
1025	c2.attr[2] &= ~MVPP22_CLS_C2_ATTR2_RSS_EN;
1026
1027	mvpp2_cls_c2_write(port->priv, &c2);
1028}
1029
1030static inline int mvpp22_rss_ctx(struct mvpp2_port *port, int port_rss_ctx)
1031{
1032	return port->rss_ctx[port_rss_ctx];
1033}
1034
1035int mvpp22_port_rss_enable(struct mvpp2_port *port)
1036{
1037	if (mvpp22_rss_ctx(port, 0) < 0)
1038		return -EINVAL;
1039
1040	mvpp2_rss_port_c2_enable(port, mvpp22_rss_ctx(port, 0));
1041
1042	return 0;
1043}
1044
1045int mvpp22_port_rss_disable(struct mvpp2_port *port)
1046{
1047	if (mvpp22_rss_ctx(port, 0) < 0)
1048		return -EINVAL;
1049
1050	mvpp2_rss_port_c2_disable(port);
1051
1052	return 0;
1053}
1054
1055static void mvpp22_port_c2_lookup_disable(struct mvpp2_port *port, int entry)
1056{
1057	struct mvpp2_cls_c2_entry c2;
1058
1059	mvpp2_cls_c2_read(port->priv, entry, &c2);
1060
1061	/* Clear the port map so that the entry doesn't match anymore */
1062	c2.tcam[4] &= ~(MVPP22_CLS_C2_PORT_ID(BIT(port->id)));
1063
1064	mvpp2_cls_c2_write(port->priv, &c2);
1065}
1066
1067/* Set CPU queue number for oversize packets */
1068void mvpp2_cls_oversize_rxq_set(struct mvpp2_port *port)
1069{
1070	u32 val;
1071
1072	mvpp2_write(port->priv, MVPP2_CLS_OVERSIZE_RXQ_LOW_REG(port->id),
1073		    port->first_rxq & MVPP2_CLS_OVERSIZE_RXQ_LOW_MASK);
1074
1075	mvpp2_write(port->priv, MVPP2_CLS_SWFWD_P2HQ_REG(port->id),
1076		    (port->first_rxq >> MVPP2_CLS_OVERSIZE_RXQ_LOW_BITS));
1077
1078	val = mvpp2_read(port->priv, MVPP2_CLS_SWFWD_PCTRL_REG);
1079	val &= ~MVPP2_CLS_SWFWD_PCTRL_MASK(port->id);
1080	mvpp2_write(port->priv, MVPP2_CLS_SWFWD_PCTRL_REG, val);
1081}
1082
1083static int mvpp2_port_c2_tcam_rule_add(struct mvpp2_port *port,
1084				       struct mvpp2_rfs_rule *rule)
1085{
1086	struct flow_action_entry *act;
1087	struct mvpp2_cls_c2_entry c2;
1088	u8 qh, ql, pmap;
1089	int index, ctx;
1090
1091	if (!flow_action_basic_hw_stats_check(&rule->flow->action, NULL))
1092		return -EOPNOTSUPP;
1093
1094	memset(&c2, 0, sizeof(c2));
1095
1096	index = mvpp2_cls_c2_port_flow_index(port, rule->loc);
1097	if (index < 0)
1098		return -EINVAL;
1099	c2.index = index;
1100
1101	act = &rule->flow->action.entries[0];
1102
1103	rule->c2_index = c2.index;
1104
1105	c2.tcam[3] = (rule->c2_tcam & 0xffff) |
1106		     ((rule->c2_tcam_mask & 0xffff) << 16);
1107	c2.tcam[2] = ((rule->c2_tcam >> 16) & 0xffff) |
1108		     (((rule->c2_tcam_mask >> 16) & 0xffff) << 16);
1109	c2.tcam[1] = ((rule->c2_tcam >> 32) & 0xffff) |
1110		     (((rule->c2_tcam_mask >> 32) & 0xffff) << 16);
1111	c2.tcam[0] = ((rule->c2_tcam >> 48) & 0xffff) |
1112		     (((rule->c2_tcam_mask >> 48) & 0xffff) << 16);
1113
1114	pmap = BIT(port->id);
1115	c2.tcam[4] = MVPP22_CLS_C2_PORT_ID(pmap);
1116	c2.tcam[4] |= MVPP22_CLS_C2_TCAM_EN(MVPP22_CLS_C2_PORT_ID(pmap));
1117
1118	/* Match on Lookup Type */
1119	c2.tcam[4] |= MVPP22_CLS_C2_TCAM_EN(MVPP22_CLS_C2_LU_TYPE(MVPP2_CLS_LU_TYPE_MASK));
1120	c2.tcam[4] |= MVPP22_CLS_C2_LU_TYPE(rule->loc);
1121
1122	if (act->id == FLOW_ACTION_DROP) {
1123		c2.act = MVPP22_CLS_C2_ACT_COLOR(MVPP22_C2_COL_RED_LOCK);
1124	} else {
1125		/* We want to keep the default color derived from the Header
1126		 * Parser drop entries, for VLAN and MAC filtering. This will
1127		 * assign a default color of Green or Red, and we want matches
1128		 * with a non-drop action to keep that color.
1129		 */
1130		c2.act = MVPP22_CLS_C2_ACT_COLOR(MVPP22_C2_COL_NO_UPD_LOCK);
1131
1132		/* Update RSS status after matching this entry */
1133		if (act->queue.ctx)
1134			c2.attr[2] |= MVPP22_CLS_C2_ATTR2_RSS_EN;
1135
1136		/* Always lock the RSS_EN decision. We might have high prio
1137		 * rules steering to an RXQ, and a lower one steering to RSS,
1138		 * we don't want the low prio RSS rule overwriting this flag.
1139		 */
1140		c2.act = MVPP22_CLS_C2_ACT_RSS_EN(MVPP22_C2_UPD_LOCK);
1141
1142		/* Mark packet as "forwarded to software", needed for RSS */
1143		c2.act |= MVPP22_CLS_C2_ACT_FWD(MVPP22_C2_FWD_SW_LOCK);
1144
1145		c2.act |= MVPP22_CLS_C2_ACT_QHIGH(MVPP22_C2_UPD_LOCK) |
1146			   MVPP22_CLS_C2_ACT_QLOW(MVPP22_C2_UPD_LOCK);
1147
1148		if (act->queue.ctx) {
1149			/* Get the global ctx number */
1150			ctx = mvpp22_rss_ctx(port, act->queue.ctx);
1151			if (ctx < 0)
1152				return -EINVAL;
1153
1154			qh = (ctx >> 3) & MVPP22_CLS_C2_ATTR0_QHIGH_MASK;
1155			ql = ctx & MVPP22_CLS_C2_ATTR0_QLOW_MASK;
1156		} else {
1157			qh = ((act->queue.index + port->first_rxq) >> 3) &
1158			      MVPP22_CLS_C2_ATTR0_QHIGH_MASK;
1159			ql = (act->queue.index + port->first_rxq) &
1160			      MVPP22_CLS_C2_ATTR0_QLOW_MASK;
1161		}
1162
1163		c2.attr[0] = MVPP22_CLS_C2_ATTR0_QHIGH(qh) |
1164			      MVPP22_CLS_C2_ATTR0_QLOW(ql);
1165	}
1166
1167	c2.valid = true;
1168
1169	mvpp2_cls_c2_write(port->priv, &c2);
1170
1171	return 0;
1172}
1173
1174static int mvpp2_port_c2_rfs_rule_insert(struct mvpp2_port *port,
1175					 struct mvpp2_rfs_rule *rule)
1176{
1177	return mvpp2_port_c2_tcam_rule_add(port, rule);
1178}
1179
1180static int mvpp2_port_cls_rfs_rule_remove(struct mvpp2_port *port,
1181					  struct mvpp2_rfs_rule *rule)
1182{
1183	const struct mvpp2_cls_flow *flow;
1184	struct mvpp2_cls_flow_entry fe;
1185	int index, i;
1186
1187	for_each_cls_flow_id_containing_type(i, rule->flow_type) {
1188		flow = mvpp2_cls_flow_get(i);
1189		if (!flow)
1190			return 0;
1191
1192		index = MVPP2_CLS_FLT_C2_RFS(port->id, flow->flow_id, rule->loc);
1193
1194		mvpp2_cls_flow_read(port->priv, index, &fe);
1195		mvpp2_cls_flow_port_remove(&fe, BIT(port->id));
1196		mvpp2_cls_flow_write(port->priv, &fe);
1197	}
1198
1199	if (rule->c2_index >= 0)
1200		mvpp22_port_c2_lookup_disable(port, rule->c2_index);
1201
1202	return 0;
1203}
1204
1205static int mvpp2_port_flt_rfs_rule_insert(struct mvpp2_port *port,
1206					  struct mvpp2_rfs_rule *rule)
1207{
1208	const struct mvpp2_cls_flow *flow;
1209	struct mvpp2 *priv = port->priv;
1210	struct mvpp2_cls_flow_entry fe;
1211	int index, ret, i;
1212
1213	if (rule->engine != MVPP22_CLS_ENGINE_C2)
1214		return -EOPNOTSUPP;
1215
1216	ret = mvpp2_port_c2_rfs_rule_insert(port, rule);
1217	if (ret)
1218		return ret;
1219
1220	for_each_cls_flow_id_containing_type(i, rule->flow_type) {
1221		flow = mvpp2_cls_flow_get(i);
1222		if (!flow)
1223			return 0;
1224
1225		if ((rule->hek_fields & flow->supported_hash_opts) != rule->hek_fields)
1226			continue;
1227
1228		index = MVPP2_CLS_FLT_C2_RFS(port->id, flow->flow_id, rule->loc);
1229
1230		mvpp2_cls_flow_read(priv, index, &fe);
1231		mvpp2_cls_flow_eng_set(&fe, rule->engine);
1232		mvpp2_cls_flow_port_id_sel(&fe, true);
1233		mvpp2_flow_set_hek_fields(&fe, rule->hek_fields);
1234		mvpp2_cls_flow_lu_type_set(&fe, rule->loc);
1235		mvpp2_cls_flow_port_add(&fe, 0xf);
1236
1237		mvpp2_cls_flow_write(priv, &fe);
1238	}
1239
1240	return 0;
1241}
1242
1243static int mvpp2_cls_c2_build_match(struct mvpp2_rfs_rule *rule)
1244{
1245	struct flow_rule *flow = rule->flow;
1246	int offs = 0;
1247
1248	/* The order of insertion in C2 tcam must match the order in which
1249	 * the fields are found in the header
1250	 */
1251	if (flow_rule_match_key(flow, FLOW_DISSECTOR_KEY_VLAN)) {
1252		struct flow_match_vlan match;
1253
1254		flow_rule_match_vlan(flow, &match);
1255		if (match.mask->vlan_id) {
1256			rule->hek_fields |= MVPP22_CLS_HEK_OPT_VLAN;
1257
1258			rule->c2_tcam |= ((u64)match.key->vlan_id) << offs;
1259			rule->c2_tcam_mask |= ((u64)match.mask->vlan_id) << offs;
1260
1261			/* Don't update the offset yet */
1262		}
1263
1264		if (match.mask->vlan_priority) {
1265			rule->hek_fields |= MVPP22_CLS_HEK_OPT_VLAN_PRI;
1266
1267			/* VLAN pri is always at offset 13 relative to the
1268			 * current offset
1269			 */
1270			rule->c2_tcam |= ((u64)match.key->vlan_priority) <<
1271				(offs + 13);
1272			rule->c2_tcam_mask |= ((u64)match.mask->vlan_priority) <<
1273				(offs + 13);
1274		}
1275
1276		if (match.mask->vlan_dei)
1277			return -EOPNOTSUPP;
1278
1279		/* vlan id and prio always seem to take a full 16-bit slot in
1280		 * the Header Extracted Key.
1281		 */
1282		offs += 16;
1283	}
1284
1285	if (flow_rule_match_key(flow, FLOW_DISSECTOR_KEY_PORTS)) {
1286		struct flow_match_ports match;
1287
1288		flow_rule_match_ports(flow, &match);
1289		if (match.mask->src) {
1290			rule->hek_fields |= MVPP22_CLS_HEK_OPT_L4SIP;
1291
1292			rule->c2_tcam |= ((u64)ntohs(match.key->src)) << offs;
1293			rule->c2_tcam_mask |= ((u64)ntohs(match.mask->src)) << offs;
1294			offs += mvpp2_cls_hek_field_size(MVPP22_CLS_HEK_OPT_L4SIP);
1295		}
1296
1297		if (match.mask->dst) {
1298			rule->hek_fields |= MVPP22_CLS_HEK_OPT_L4DIP;
1299
1300			rule->c2_tcam |= ((u64)ntohs(match.key->dst)) << offs;
1301			rule->c2_tcam_mask |= ((u64)ntohs(match.mask->dst)) << offs;
1302			offs += mvpp2_cls_hek_field_size(MVPP22_CLS_HEK_OPT_L4DIP);
1303		}
1304	}
1305
1306	if (hweight16(rule->hek_fields) > MVPP2_FLOW_N_FIELDS)
1307		return -EOPNOTSUPP;
1308
1309	return 0;
1310}
1311
1312static int mvpp2_cls_rfs_parse_rule(struct mvpp2_rfs_rule *rule)
1313{
1314	struct flow_rule *flow = rule->flow;
1315	struct flow_action_entry *act;
1316
1317	if (!flow_action_basic_hw_stats_check(&rule->flow->action, NULL))
1318		return -EOPNOTSUPP;
1319
1320	act = &flow->action.entries[0];
1321	if (act->id != FLOW_ACTION_QUEUE && act->id != FLOW_ACTION_DROP)
1322		return -EOPNOTSUPP;
1323
1324	/* When both an RSS context and an queue index are set, the index
1325	 * is considered as an offset to be added to the indirection table
1326	 * entries. We don't support this, so reject this rule.
1327	 */
1328	if (act->queue.ctx && act->queue.index)
1329		return -EOPNOTSUPP;
1330
1331	/* For now, only use the C2 engine which has a HEK size limited to 64
1332	 * bits for TCAM matching.
1333	 */
1334	rule->engine = MVPP22_CLS_ENGINE_C2;
1335
1336	if (mvpp2_cls_c2_build_match(rule))
1337		return -EINVAL;
1338
1339	return 0;
1340}
1341
1342int mvpp2_ethtool_cls_rule_get(struct mvpp2_port *port,
1343			       struct ethtool_rxnfc *rxnfc)
1344{
1345	struct mvpp2_ethtool_fs *efs;
1346
1347	if (rxnfc->fs.location >= MVPP2_N_RFS_ENTRIES_PER_FLOW)
1348		return -EINVAL;
1349
1350	efs = port->rfs_rules[rxnfc->fs.location];
1351	if (!efs)
1352		return -ENOENT;
1353
1354	memcpy(rxnfc, &efs->rxnfc, sizeof(efs->rxnfc));
1355
1356	return 0;
1357}
1358
1359int mvpp2_ethtool_cls_rule_ins(struct mvpp2_port *port,
1360			       struct ethtool_rxnfc *info)
1361{
1362	struct ethtool_rx_flow_spec_input input = {};
1363	struct ethtool_rx_flow_rule *ethtool_rule;
1364	struct mvpp2_ethtool_fs *efs, *old_efs;
1365	int ret = 0;
1366
1367	if (info->fs.location >= MVPP2_N_RFS_ENTRIES_PER_FLOW)
1368		return -EINVAL;
1369
1370	efs = kzalloc(sizeof(*efs), GFP_KERNEL);
1371	if (!efs)
1372		return -ENOMEM;
1373
1374	input.fs = &info->fs;
1375
1376	/* We need to manually set the rss_ctx, since this info isn't present
1377	 * in info->fs
1378	 */
1379	if (info->fs.flow_type & FLOW_RSS)
1380		input.rss_ctx = info->rss_context;
1381
1382	ethtool_rule = ethtool_rx_flow_rule_create(&input);
1383	if (IS_ERR(ethtool_rule)) {
1384		ret = PTR_ERR(ethtool_rule);
1385		goto clean_rule;
1386	}
1387
1388	efs->rule.flow = ethtool_rule->rule;
1389	efs->rule.flow_type = mvpp2_cls_ethtool_flow_to_type(info->fs.flow_type);
1390	if (efs->rule.flow_type < 0) {
1391		ret = efs->rule.flow_type;
1392		goto clean_rule;
1393	}
1394
1395	ret = mvpp2_cls_rfs_parse_rule(&efs->rule);
1396	if (ret)
1397		goto clean_eth_rule;
1398
1399	efs->rule.loc = info->fs.location;
1400
1401	/* Replace an already existing rule */
1402	if (port->rfs_rules[efs->rule.loc]) {
1403		old_efs = port->rfs_rules[efs->rule.loc];
1404		ret = mvpp2_port_cls_rfs_rule_remove(port, &old_efs->rule);
1405		if (ret)
1406			goto clean_eth_rule;
1407		kfree(old_efs);
1408		port->n_rfs_rules--;
1409	}
1410
1411	ret = mvpp2_port_flt_rfs_rule_insert(port, &efs->rule);
1412	if (ret)
1413		goto clean_eth_rule;
1414
1415	ethtool_rx_flow_rule_destroy(ethtool_rule);
1416	efs->rule.flow = NULL;
1417
1418	memcpy(&efs->rxnfc, info, sizeof(*info));
1419	port->rfs_rules[efs->rule.loc] = efs;
1420	port->n_rfs_rules++;
1421
1422	return ret;
1423
1424clean_eth_rule:
1425	ethtool_rx_flow_rule_destroy(ethtool_rule);
1426clean_rule:
1427	kfree(efs);
1428	return ret;
1429}
1430
1431int mvpp2_ethtool_cls_rule_del(struct mvpp2_port *port,
1432			       struct ethtool_rxnfc *info)
1433{
1434	struct mvpp2_ethtool_fs *efs;
1435	int ret;
1436
1437	if (info->fs.location >= MVPP2_N_RFS_ENTRIES_PER_FLOW)
1438		return -EINVAL;
1439
1440	efs = port->rfs_rules[info->fs.location];
1441	if (!efs)
1442		return -EINVAL;
1443
1444	/* Remove the rule from the engines. */
1445	ret = mvpp2_port_cls_rfs_rule_remove(port, &efs->rule);
1446	if (ret)
1447		return ret;
1448
1449	port->n_rfs_rules--;
1450	port->rfs_rules[info->fs.location] = NULL;
1451	kfree(efs);
1452
1453	return 0;
1454}
1455
1456static inline u32 mvpp22_rxfh_indir(struct mvpp2_port *port, u32 rxq)
1457{
1458	int nrxqs, cpu, cpus = num_possible_cpus();
1459
1460	/* Number of RXQs per CPU */
1461	nrxqs = port->nrxqs / cpus;
1462
1463	/* CPU that will handle this rx queue */
1464	cpu = rxq / nrxqs;
1465
1466	if (!cpu_online(cpu))
1467		return port->first_rxq;
1468
1469	/* Indirection to better distribute the paquets on the CPUs when
1470	 * configuring the RSS queues.
1471	 */
1472	return port->first_rxq + ((rxq * nrxqs + rxq / cpus) % port->nrxqs);
1473}
1474
1475static void mvpp22_rss_fill_table(struct mvpp2_port *port,
1476				  struct mvpp2_rss_table *table,
1477				  u32 rss_ctx)
1478{
1479	struct mvpp2 *priv = port->priv;
1480	int i;
1481
1482	for (i = 0; i < MVPP22_RSS_TABLE_ENTRIES; i++) {
1483		u32 sel = MVPP22_RSS_INDEX_TABLE(rss_ctx) |
1484			  MVPP22_RSS_INDEX_TABLE_ENTRY(i);
1485		mvpp2_write(priv, MVPP22_RSS_INDEX, sel);
1486
1487		mvpp2_write(priv, MVPP22_RSS_TABLE_ENTRY,
1488			    mvpp22_rxfh_indir(port, table->indir[i]));
1489	}
1490}
1491
1492static int mvpp22_rss_context_create(struct mvpp2_port *port, u32 *rss_ctx)
1493{
1494	struct mvpp2 *priv = port->priv;
1495	u32 ctx;
1496
1497	/* Find the first free RSS table */
1498	for (ctx = 0; ctx < MVPP22_N_RSS_TABLES; ctx++) {
1499		if (!priv->rss_tables[ctx])
1500			break;
1501	}
1502
1503	if (ctx == MVPP22_N_RSS_TABLES)
1504		return -EINVAL;
1505
1506	priv->rss_tables[ctx] = kzalloc(sizeof(*priv->rss_tables[ctx]),
1507					GFP_KERNEL);
1508	if (!priv->rss_tables[ctx])
1509		return -ENOMEM;
1510
1511	*rss_ctx = ctx;
1512
1513	/* Set the table width: replace the whole classifier Rx queue number
1514	 * with the ones configured in RSS table entries.
1515	 */
1516	mvpp2_write(priv, MVPP22_RSS_INDEX, MVPP22_RSS_INDEX_TABLE(ctx));
1517	mvpp2_write(priv, MVPP22_RSS_WIDTH, 8);
1518
1519	mvpp2_write(priv, MVPP22_RSS_INDEX, MVPP22_RSS_INDEX_QUEUE(ctx));
1520	mvpp2_write(priv, MVPP22_RXQ2RSS_TABLE, MVPP22_RSS_TABLE_POINTER(ctx));
1521
1522	return 0;
1523}
1524
1525int mvpp22_port_rss_ctx_create(struct mvpp2_port *port, u32 *port_ctx)
1526{
1527	u32 rss_ctx;
1528	int ret, i;
1529
1530	ret = mvpp22_rss_context_create(port, &rss_ctx);
1531	if (ret)
1532		return ret;
1533
1534	/* Find the first available context number in the port, starting from 1.
1535	 * Context 0 on each port is reserved for the default context.
1536	 */
1537	for (i = 1; i < MVPP22_N_RSS_TABLES; i++) {
1538		if (port->rss_ctx[i] < 0)
1539			break;
1540	}
1541
1542	if (i == MVPP22_N_RSS_TABLES)
1543		return -EINVAL;
1544
1545	port->rss_ctx[i] = rss_ctx;
1546	*port_ctx = i;
1547
1548	return 0;
1549}
1550
1551static struct mvpp2_rss_table *mvpp22_rss_table_get(struct mvpp2 *priv,
1552						    int rss_ctx)
1553{
1554	if (rss_ctx < 0 || rss_ctx >= MVPP22_N_RSS_TABLES)
1555		return NULL;
1556
1557	return priv->rss_tables[rss_ctx];
1558}
1559
1560int mvpp22_port_rss_ctx_delete(struct mvpp2_port *port, u32 port_ctx)
1561{
1562	struct mvpp2 *priv = port->priv;
1563	struct ethtool_rxnfc *rxnfc;
1564	int i, rss_ctx, ret;
1565
1566	rss_ctx = mvpp22_rss_ctx(port, port_ctx);
1567
1568	if (rss_ctx < 0 || rss_ctx >= MVPP22_N_RSS_TABLES)
1569		return -EINVAL;
1570
1571	/* Invalidate any active classification rule that use this context */
1572	for (i = 0; i < MVPP2_N_RFS_ENTRIES_PER_FLOW; i++) {
1573		if (!port->rfs_rules[i])
1574			continue;
1575
1576		rxnfc = &port->rfs_rules[i]->rxnfc;
1577		if (!(rxnfc->fs.flow_type & FLOW_RSS) ||
1578		    rxnfc->rss_context != port_ctx)
1579			continue;
1580
1581		ret = mvpp2_ethtool_cls_rule_del(port, rxnfc);
1582		if (ret) {
1583			netdev_warn(port->dev,
1584				    "couldn't remove classification rule %d associated to this context",
1585				    rxnfc->fs.location);
1586		}
1587	}
1588
1589	kfree(priv->rss_tables[rss_ctx]);
1590
1591	priv->rss_tables[rss_ctx] = NULL;
1592	port->rss_ctx[port_ctx] = -1;
1593
1594	return 0;
1595}
1596
1597int mvpp22_port_rss_ctx_indir_set(struct mvpp2_port *port, u32 port_ctx,
1598				  const u32 *indir)
1599{
1600	int rss_ctx = mvpp22_rss_ctx(port, port_ctx);
1601	struct mvpp2_rss_table *rss_table = mvpp22_rss_table_get(port->priv,
1602								 rss_ctx);
1603
1604	if (!rss_table)
1605		return -EINVAL;
1606
1607	memcpy(rss_table->indir, indir,
1608	       MVPP22_RSS_TABLE_ENTRIES * sizeof(rss_table->indir[0]));
1609
1610	mvpp22_rss_fill_table(port, rss_table, rss_ctx);
1611
1612	return 0;
1613}
1614
1615int mvpp22_port_rss_ctx_indir_get(struct mvpp2_port *port, u32 port_ctx,
1616				  u32 *indir)
1617{
1618	int rss_ctx =  mvpp22_rss_ctx(port, port_ctx);
1619	struct mvpp2_rss_table *rss_table = mvpp22_rss_table_get(port->priv,
1620								 rss_ctx);
1621
1622	if (!rss_table)
1623		return -EINVAL;
1624
1625	memcpy(indir, rss_table->indir,
1626	       MVPP22_RSS_TABLE_ENTRIES * sizeof(rss_table->indir[0]));
1627
1628	return 0;
1629}
1630
1631int mvpp2_ethtool_rxfh_set(struct mvpp2_port *port, struct ethtool_rxnfc *info)
1632{
1633	u16 hash_opts = 0;
1634	u32 flow_type;
1635
1636	flow_type = mvpp2_cls_ethtool_flow_to_type(info->flow_type);
1637
1638	switch (flow_type) {
1639	case MVPP22_FLOW_TCP4:
1640	case MVPP22_FLOW_UDP4:
1641	case MVPP22_FLOW_TCP6:
1642	case MVPP22_FLOW_UDP6:
1643		if (info->data & RXH_L4_B_0_1)
1644			hash_opts |= MVPP22_CLS_HEK_OPT_L4SIP;
1645		if (info->data & RXH_L4_B_2_3)
1646			hash_opts |= MVPP22_CLS_HEK_OPT_L4DIP;
1647		fallthrough;
1648	case MVPP22_FLOW_IP4:
1649	case MVPP22_FLOW_IP6:
1650		if (info->data & RXH_L2DA)
1651			hash_opts |= MVPP22_CLS_HEK_OPT_MAC_DA;
1652		if (info->data & RXH_VLAN)
1653			hash_opts |= MVPP22_CLS_HEK_OPT_VLAN;
1654		if (info->data & RXH_L3_PROTO)
1655			hash_opts |= MVPP22_CLS_HEK_OPT_L3_PROTO;
1656		if (info->data & RXH_IP_SRC)
1657			hash_opts |= (MVPP22_CLS_HEK_OPT_IP4SA |
1658				     MVPP22_CLS_HEK_OPT_IP6SA);
1659		if (info->data & RXH_IP_DST)
1660			hash_opts |= (MVPP22_CLS_HEK_OPT_IP4DA |
1661				     MVPP22_CLS_HEK_OPT_IP6DA);
1662		break;
1663	default: return -EOPNOTSUPP;
1664	}
1665
1666	return mvpp2_port_rss_hash_opts_set(port, flow_type, hash_opts);
1667}
1668
1669int mvpp2_ethtool_rxfh_get(struct mvpp2_port *port, struct ethtool_rxnfc *info)
1670{
1671	unsigned long hash_opts;
1672	u32 flow_type;
1673	int i;
1674
1675	flow_type = mvpp2_cls_ethtool_flow_to_type(info->flow_type);
1676
1677	hash_opts = mvpp2_port_rss_hash_opts_get(port, flow_type);
1678	info->data = 0;
1679
1680	for_each_set_bit(i, &hash_opts, MVPP22_CLS_HEK_N_FIELDS) {
1681		switch (BIT(i)) {
1682		case MVPP22_CLS_HEK_OPT_MAC_DA:
1683			info->data |= RXH_L2DA;
1684			break;
1685		case MVPP22_CLS_HEK_OPT_VLAN:
1686			info->data |= RXH_VLAN;
1687			break;
1688		case MVPP22_CLS_HEK_OPT_L3_PROTO:
1689			info->data |= RXH_L3_PROTO;
1690			break;
1691		case MVPP22_CLS_HEK_OPT_IP4SA:
1692		case MVPP22_CLS_HEK_OPT_IP6SA:
1693			info->data |= RXH_IP_SRC;
1694			break;
1695		case MVPP22_CLS_HEK_OPT_IP4DA:
1696		case MVPP22_CLS_HEK_OPT_IP6DA:
1697			info->data |= RXH_IP_DST;
1698			break;
1699		case MVPP22_CLS_HEK_OPT_L4SIP:
1700			info->data |= RXH_L4_B_0_1;
1701			break;
1702		case MVPP22_CLS_HEK_OPT_L4DIP:
1703			info->data |= RXH_L4_B_2_3;
1704			break;
1705		default:
1706			return -EINVAL;
1707		}
1708	}
1709	return 0;
1710}
1711
1712int mvpp22_port_rss_init(struct mvpp2_port *port)
1713{
1714	struct mvpp2_rss_table *table;
1715	u32 context = 0;
1716	int i, ret;
1717
1718	for (i = 0; i < MVPP22_N_RSS_TABLES; i++)
1719		port->rss_ctx[i] = -1;
1720
1721	ret = mvpp22_rss_context_create(port, &context);
1722	if (ret)
1723		return ret;
1724
1725	table = mvpp22_rss_table_get(port->priv, context);
1726	if (!table)
1727		return -EINVAL;
1728
1729	port->rss_ctx[0] = context;
1730
1731	/* Configure the first table to evenly distribute the packets across
1732	 * real Rx Queues. The table entries map a hash to a port Rx Queue.
1733	 */
1734	for (i = 0; i < MVPP22_RSS_TABLE_ENTRIES; i++)
1735		table->indir[i] = ethtool_rxfh_indir_default(i, port->nrxqs);
1736
1737	mvpp22_rss_fill_table(port, table, mvpp22_rss_ctx(port, 0));
1738
1739	/* Configure default flows */
1740	mvpp2_port_rss_hash_opts_set(port, MVPP22_FLOW_IP4, MVPP22_CLS_HEK_IP4_2T);
1741	mvpp2_port_rss_hash_opts_set(port, MVPP22_FLOW_IP6, MVPP22_CLS_HEK_IP6_2T);
1742	mvpp2_port_rss_hash_opts_set(port, MVPP22_FLOW_TCP4, MVPP22_CLS_HEK_IP4_5T);
1743	mvpp2_port_rss_hash_opts_set(port, MVPP22_FLOW_TCP6, MVPP22_CLS_HEK_IP6_5T);
1744	mvpp2_port_rss_hash_opts_set(port, MVPP22_FLOW_UDP4, MVPP22_CLS_HEK_IP4_5T);
1745	mvpp2_port_rss_hash_opts_set(port, MVPP22_FLOW_UDP6, MVPP22_CLS_HEK_IP6_5T);
1746
1747	return 0;
1748}
1749