1// SPDX-License-Identifier: GPL-2.0
2/* Copyright (c)  2018 Intel Corporation */
3
4#include <linux/pci.h>
5#include <linux/delay.h>
6
7#include "igc_mac.h"
8#include "igc_hw.h"
9
10/**
11 * igc_disable_pcie_master - Disables PCI-express master access
12 * @hw: pointer to the HW structure
13 *
14 * Returns 0 (0) if successful, else returns -10
15 * (-IGC_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not caused
16 * the master requests to be disabled.
17 *
18 * Disables PCI-Express master access and verifies there are no pending
19 * requests.
20 */
21s32 igc_disable_pcie_master(struct igc_hw *hw)
22{
23	s32 timeout = MASTER_DISABLE_TIMEOUT;
24	s32 ret_val = 0;
25	u32 ctrl;
26
27	ctrl = rd32(IGC_CTRL);
28	ctrl |= IGC_CTRL_GIO_MASTER_DISABLE;
29	wr32(IGC_CTRL, ctrl);
30
31	while (timeout) {
32		if (!(rd32(IGC_STATUS) &
33		    IGC_STATUS_GIO_MASTER_ENABLE))
34			break;
35		usleep_range(2000, 3000);
36		timeout--;
37	}
38
39	if (!timeout) {
40		hw_dbg("Master requests are pending.\n");
41		ret_val = -IGC_ERR_MASTER_REQUESTS_PENDING;
42		goto out;
43	}
44
45out:
46	return ret_val;
47}
48
49/**
50 * igc_init_rx_addrs - Initialize receive addresses
51 * @hw: pointer to the HW structure
52 * @rar_count: receive address registers
53 *
54 * Setup the receive address registers by setting the base receive address
55 * register to the devices MAC address and clearing all the other receive
56 * address registers to 0.
57 */
58void igc_init_rx_addrs(struct igc_hw *hw, u16 rar_count)
59{
60	u8 mac_addr[ETH_ALEN] = {0};
61	u32 i;
62
63	/* Setup the receive address */
64	hw_dbg("Programming MAC Address into RAR[0]\n");
65
66	hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
67
68	/* Zero out the other (rar_entry_count - 1) receive addresses */
69	hw_dbg("Clearing RAR[1-%u]\n", rar_count - 1);
70	for (i = 1; i < rar_count; i++)
71		hw->mac.ops.rar_set(hw, mac_addr, i);
72}
73
74/**
75 * igc_set_fc_watermarks - Set flow control high/low watermarks
76 * @hw: pointer to the HW structure
77 *
78 * Sets the flow control high/low threshold (watermark) registers.  If
79 * flow control XON frame transmission is enabled, then set XON frame
80 * transmission as well.
81 */
82static s32 igc_set_fc_watermarks(struct igc_hw *hw)
83{
84	u32 fcrtl = 0, fcrth = 0;
85
86	/* Set the flow control receive threshold registers.  Normally,
87	 * these registers will be set to a default threshold that may be
88	 * adjusted later by the driver's runtime code.  However, if the
89	 * ability to transmit pause frames is not enabled, then these
90	 * registers will be set to 0.
91	 */
92	if (hw->fc.current_mode & igc_fc_tx_pause) {
93		/* We need to set up the Receive Threshold high and low water
94		 * marks as well as (optionally) enabling the transmission of
95		 * XON frames.
96		 */
97		fcrtl = hw->fc.low_water;
98		if (hw->fc.send_xon)
99			fcrtl |= IGC_FCRTL_XONE;
100
101		fcrth = hw->fc.high_water;
102	}
103	wr32(IGC_FCRTL, fcrtl);
104	wr32(IGC_FCRTH, fcrth);
105
106	return 0;
107}
108
109/**
110 * igc_setup_link - Setup flow control and link settings
111 * @hw: pointer to the HW structure
112 *
113 * Determines which flow control settings to use, then configures flow
114 * control.  Calls the appropriate media-specific link configuration
115 * function.  Assuming the adapter has a valid link partner, a valid link
116 * should be established.  Assumes the hardware has previously been reset
117 * and the transmitter and receiver are not enabled.
118 */
119s32 igc_setup_link(struct igc_hw *hw)
120{
121	s32 ret_val = 0;
122
123	/* In the case of the phy reset being blocked, we already have a link.
124	 * We do not need to set it up again.
125	 */
126	if (igc_check_reset_block(hw))
127		goto out;
128
129	/* If requested flow control is set to default, set flow control
130	 * to the both 'rx' and 'tx' pause frames.
131	 */
132	if (hw->fc.requested_mode == igc_fc_default)
133		hw->fc.requested_mode = igc_fc_full;
134
135	/* We want to save off the original Flow Control configuration just
136	 * in case we get disconnected and then reconnected into a different
137	 * hub or switch with different Flow Control capabilities.
138	 */
139	hw->fc.current_mode = hw->fc.requested_mode;
140
141	hw_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
142
143	/* Call the necessary media_type subroutine to configure the link. */
144	ret_val = hw->mac.ops.setup_physical_interface(hw);
145	if (ret_val)
146		goto out;
147
148	/* Initialize the flow control address, type, and PAUSE timer
149	 * registers to their default values.  This is done even if flow
150	 * control is disabled, because it does not hurt anything to
151	 * initialize these registers.
152	 */
153	hw_dbg("Initializing the Flow Control address, type and timer regs\n");
154	wr32(IGC_FCT, FLOW_CONTROL_TYPE);
155	wr32(IGC_FCAH, FLOW_CONTROL_ADDRESS_HIGH);
156	wr32(IGC_FCAL, FLOW_CONTROL_ADDRESS_LOW);
157
158	wr32(IGC_FCTTV, hw->fc.pause_time);
159
160	ret_val = igc_set_fc_watermarks(hw);
161
162out:
163	return ret_val;
164}
165
166/**
167 * igc_force_mac_fc - Force the MAC's flow control settings
168 * @hw: pointer to the HW structure
169 *
170 * Force the MAC's flow control settings.  Sets the TFCE and RFCE bits in the
171 * device control register to reflect the adapter settings.  TFCE and RFCE
172 * need to be explicitly set by software when a copper PHY is used because
173 * autonegotiation is managed by the PHY rather than the MAC.  Software must
174 * also configure these bits when link is forced on a fiber connection.
175 */
176s32 igc_force_mac_fc(struct igc_hw *hw)
177{
178	s32 ret_val = 0;
179	u32 ctrl;
180
181	ctrl = rd32(IGC_CTRL);
182
183	/* Because we didn't get link via the internal auto-negotiation
184	 * mechanism (we either forced link or we got link via PHY
185	 * auto-neg), we have to manually enable/disable transmit an
186	 * receive flow control.
187	 *
188	 * The "Case" statement below enables/disable flow control
189	 * according to the "hw->fc.current_mode" parameter.
190	 *
191	 * The possible values of the "fc" parameter are:
192	 *      0:  Flow control is completely disabled
193	 *      1:  Rx flow control is enabled (we can receive pause
194	 *          frames but not send pause frames).
195	 *      2:  Tx flow control is enabled (we can send pause frames
196	 *          but we do not receive pause frames).
197	 *      3:  Both Rx and TX flow control (symmetric) is enabled.
198	 *  other:  No other values should be possible at this point.
199	 */
200	hw_dbg("hw->fc.current_mode = %u\n", hw->fc.current_mode);
201
202	switch (hw->fc.current_mode) {
203	case igc_fc_none:
204		ctrl &= (~(IGC_CTRL_TFCE | IGC_CTRL_RFCE));
205		break;
206	case igc_fc_rx_pause:
207		ctrl &= (~IGC_CTRL_TFCE);
208		ctrl |= IGC_CTRL_RFCE;
209		break;
210	case igc_fc_tx_pause:
211		ctrl &= (~IGC_CTRL_RFCE);
212		ctrl |= IGC_CTRL_TFCE;
213		break;
214	case igc_fc_full:
215		ctrl |= (IGC_CTRL_TFCE | IGC_CTRL_RFCE);
216		break;
217	default:
218		hw_dbg("Flow control param set incorrectly\n");
219		ret_val = -IGC_ERR_CONFIG;
220		goto out;
221	}
222
223	wr32(IGC_CTRL, ctrl);
224
225out:
226	return ret_val;
227}
228
229/**
230 * igc_clear_hw_cntrs_base - Clear base hardware counters
231 * @hw: pointer to the HW structure
232 *
233 * Clears the base hardware counters by reading the counter registers.
234 */
235void igc_clear_hw_cntrs_base(struct igc_hw *hw)
236{
237	rd32(IGC_CRCERRS);
238	rd32(IGC_MPC);
239	rd32(IGC_SCC);
240	rd32(IGC_ECOL);
241	rd32(IGC_MCC);
242	rd32(IGC_LATECOL);
243	rd32(IGC_COLC);
244	rd32(IGC_RERC);
245	rd32(IGC_DC);
246	rd32(IGC_RLEC);
247	rd32(IGC_XONRXC);
248	rd32(IGC_XONTXC);
249	rd32(IGC_XOFFRXC);
250	rd32(IGC_XOFFTXC);
251	rd32(IGC_FCRUC);
252	rd32(IGC_GPRC);
253	rd32(IGC_BPRC);
254	rd32(IGC_MPRC);
255	rd32(IGC_GPTC);
256	rd32(IGC_GORCL);
257	rd32(IGC_GORCH);
258	rd32(IGC_GOTCL);
259	rd32(IGC_GOTCH);
260	rd32(IGC_RNBC);
261	rd32(IGC_RUC);
262	rd32(IGC_RFC);
263	rd32(IGC_ROC);
264	rd32(IGC_RJC);
265	rd32(IGC_TORL);
266	rd32(IGC_TORH);
267	rd32(IGC_TOTL);
268	rd32(IGC_TOTH);
269	rd32(IGC_TPR);
270	rd32(IGC_TPT);
271	rd32(IGC_MPTC);
272	rd32(IGC_BPTC);
273
274	rd32(IGC_PRC64);
275	rd32(IGC_PRC127);
276	rd32(IGC_PRC255);
277	rd32(IGC_PRC511);
278	rd32(IGC_PRC1023);
279	rd32(IGC_PRC1522);
280	rd32(IGC_PTC64);
281	rd32(IGC_PTC127);
282	rd32(IGC_PTC255);
283	rd32(IGC_PTC511);
284	rd32(IGC_PTC1023);
285	rd32(IGC_PTC1522);
286
287	rd32(IGC_ALGNERRC);
288	rd32(IGC_RXERRC);
289	rd32(IGC_TNCRS);
290	rd32(IGC_HTDPMC);
291	rd32(IGC_TSCTC);
292
293	rd32(IGC_MGTPRC);
294	rd32(IGC_MGTPDC);
295	rd32(IGC_MGTPTC);
296
297	rd32(IGC_IAC);
298
299	rd32(IGC_RPTHC);
300	rd32(IGC_TLPIC);
301	rd32(IGC_RLPIC);
302	rd32(IGC_HGPTC);
303	rd32(IGC_RXDMTC);
304	rd32(IGC_HGORCL);
305	rd32(IGC_HGORCH);
306	rd32(IGC_HGOTCL);
307	rd32(IGC_HGOTCH);
308	rd32(IGC_LENERRS);
309}
310
311/**
312 * igc_rar_set - Set receive address register
313 * @hw: pointer to the HW structure
314 * @addr: pointer to the receive address
315 * @index: receive address array register
316 *
317 * Sets the receive address array register at index to the address passed
318 * in by addr.
319 */
320void igc_rar_set(struct igc_hw *hw, u8 *addr, u32 index)
321{
322	u32 rar_low, rar_high;
323
324	/* HW expects these in little endian so we reverse the byte order
325	 * from network order (big endian) to little endian
326	 */
327	rar_low = ((u32)addr[0] |
328		   ((u32)addr[1] << 8) |
329		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
330
331	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
332
333	/* If MAC address zero, no need to set the AV bit */
334	if (rar_low || rar_high)
335		rar_high |= IGC_RAH_AV;
336
337	/* Some bridges will combine consecutive 32-bit writes into
338	 * a single burst write, which will malfunction on some parts.
339	 * The flushes avoid this.
340	 */
341	wr32(IGC_RAL(index), rar_low);
342	wrfl();
343	wr32(IGC_RAH(index), rar_high);
344	wrfl();
345}
346
347/**
348 * igc_check_for_copper_link - Check for link (Copper)
349 * @hw: pointer to the HW structure
350 *
351 * Checks to see of the link status of the hardware has changed.  If a
352 * change in link status has been detected, then we read the PHY registers
353 * to get the current speed/duplex if link exists.
354 */
355s32 igc_check_for_copper_link(struct igc_hw *hw)
356{
357	struct igc_mac_info *mac = &hw->mac;
358	bool link = false;
359	s32 ret_val;
360
361	/* We only want to go out to the PHY registers to see if Auto-Neg
362	 * has completed and/or if our link status has changed.  The
363	 * get_link_status flag is set upon receiving a Link Status
364	 * Change or Rx Sequence Error interrupt.
365	 */
366	if (!mac->get_link_status) {
367		ret_val = 0;
368		goto out;
369	}
370
371	/* First we want to see if the MII Status Register reports
372	 * link.  If so, then we want to get the current speed/duplex
373	 * of the PHY.
374	 */
375	ret_val = igc_phy_has_link(hw, 1, 0, &link);
376	if (ret_val)
377		goto out;
378
379	if (!link)
380		goto out; /* No link detected */
381
382	mac->get_link_status = false;
383
384	/* Check if there was DownShift, must be checked
385	 * immediately after link-up
386	 */
387	igc_check_downshift(hw);
388
389	/* If we are forcing speed/duplex, then we simply return since
390	 * we have already determined whether we have link or not.
391	 */
392	if (!mac->autoneg) {
393		ret_val = -IGC_ERR_CONFIG;
394		goto out;
395	}
396
397	/* Auto-Neg is enabled.  Auto Speed Detection takes care
398	 * of MAC speed/duplex configuration.  So we only need to
399	 * configure Collision Distance in the MAC.
400	 */
401	igc_config_collision_dist(hw);
402
403	/* Configure Flow Control now that Auto-Neg has completed.
404	 * First, we need to restore the desired flow control
405	 * settings because we may have had to re-autoneg with a
406	 * different link partner.
407	 */
408	ret_val = igc_config_fc_after_link_up(hw);
409	if (ret_val)
410		hw_dbg("Error configuring flow control\n");
411
412out:
413	/* Now that we are aware of our link settings, we can set the LTR
414	 * thresholds.
415	 */
416	ret_val = igc_set_ltr_i225(hw, link);
417
418	return ret_val;
419}
420
421/**
422 * igc_config_collision_dist - Configure collision distance
423 * @hw: pointer to the HW structure
424 *
425 * Configures the collision distance to the default value and is used
426 * during link setup. Currently no func pointer exists and all
427 * implementations are handled in the generic version of this function.
428 */
429void igc_config_collision_dist(struct igc_hw *hw)
430{
431	u32 tctl;
432
433	tctl = rd32(IGC_TCTL);
434
435	tctl &= ~IGC_TCTL_COLD;
436	tctl |= IGC_COLLISION_DISTANCE << IGC_COLD_SHIFT;
437
438	wr32(IGC_TCTL, tctl);
439	wrfl();
440}
441
442/**
443 * igc_config_fc_after_link_up - Configures flow control after link
444 * @hw: pointer to the HW structure
445 *
446 * Checks the status of auto-negotiation after link up to ensure that the
447 * speed and duplex were not forced.  If the link needed to be forced, then
448 * flow control needs to be forced also.  If auto-negotiation is enabled
449 * and did not fail, then we configure flow control based on our link
450 * partner.
451 */
452s32 igc_config_fc_after_link_up(struct igc_hw *hw)
453{
454	u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg;
455	struct igc_mac_info *mac = &hw->mac;
456	u16 speed, duplex;
457	s32 ret_val = 0;
458
459	/* Check for the case where we have fiber media and auto-neg failed
460	 * so we had to force link.  In this case, we need to force the
461	 * configuration of the MAC to match the "fc" parameter.
462	 */
463	if (mac->autoneg_failed)
464		ret_val = igc_force_mac_fc(hw);
465
466	if (ret_val) {
467		hw_dbg("Error forcing flow control settings\n");
468		goto out;
469	}
470
471	/* Check for the case where we have copper media and auto-neg is
472	 * enabled.  In this case, we need to check and see if Auto-Neg
473	 * has completed, and if so, how the PHY and link partner has
474	 * flow control configured.
475	 */
476	if (mac->autoneg) {
477		/* Read the MII Status Register and check to see if AutoNeg
478		 * has completed.  We read this twice because this reg has
479		 * some "sticky" (latched) bits.
480		 */
481		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS,
482					       &mii_status_reg);
483		if (ret_val)
484			goto out;
485		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS,
486					       &mii_status_reg);
487		if (ret_val)
488			goto out;
489
490		if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) {
491			hw_dbg("Copper PHY and Auto Neg has not completed.\n");
492			goto out;
493		}
494
495		/* The AutoNeg process has completed, so we now need to
496		 * read both the Auto Negotiation Advertisement
497		 * Register (Address 4) and the Auto_Negotiation Base
498		 * Page Ability Register (Address 5) to determine how
499		 * flow control was negotiated.
500		 */
501		ret_val = hw->phy.ops.read_reg(hw, PHY_AUTONEG_ADV,
502					       &mii_nway_adv_reg);
503		if (ret_val)
504			goto out;
505		ret_val = hw->phy.ops.read_reg(hw, PHY_LP_ABILITY,
506					       &mii_nway_lp_ability_reg);
507		if (ret_val)
508			goto out;
509		/* Two bits in the Auto Negotiation Advertisement Register
510		 * (Address 4) and two bits in the Auto Negotiation Base
511		 * Page Ability Register (Address 5) determine flow control
512		 * for both the PHY and the link partner.  The following
513		 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
514		 * 1999, describes these PAUSE resolution bits and how flow
515		 * control is determined based upon these settings.
516		 * NOTE:  DC = Don't Care
517		 *
518		 *   LOCAL DEVICE  |   LINK PARTNER
519		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
520		 *-------|---------|-------|---------|--------------------
521		 *   0   |    0    |  DC   |   DC    | igc_fc_none
522		 *   0   |    1    |   0   |   DC    | igc_fc_none
523		 *   0   |    1    |   1   |    0    | igc_fc_none
524		 *   0   |    1    |   1   |    1    | igc_fc_tx_pause
525		 *   1   |    0    |   0   |   DC    | igc_fc_none
526		 *   1   |   DC    |   1   |   DC    | igc_fc_full
527		 *   1   |    1    |   0   |    0    | igc_fc_none
528		 *   1   |    1    |   0   |    1    | igc_fc_rx_pause
529		 *
530		 * Are both PAUSE bits set to 1?  If so, this implies
531		 * Symmetric Flow Control is enabled at both ends.  The
532		 * ASM_DIR bits are irrelevant per the spec.
533		 *
534		 * For Symmetric Flow Control:
535		 *
536		 *   LOCAL DEVICE  |   LINK PARTNER
537		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
538		 *-------|---------|-------|---------|--------------------
539		 *   1   |   DC    |   1   |   DC    | IGC_fc_full
540		 *
541		 */
542		if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
543		    (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
544			/* Now we need to check if the user selected RX ONLY
545			 * of pause frames.  In this case, we had to advertise
546			 * FULL flow control because we could not advertise RX
547			 * ONLY. Hence, we must now check to see if we need to
548			 * turn OFF  the TRANSMISSION of PAUSE frames.
549			 */
550			if (hw->fc.requested_mode == igc_fc_full) {
551				hw->fc.current_mode = igc_fc_full;
552				hw_dbg("Flow Control = FULL.\n");
553			} else {
554				hw->fc.current_mode = igc_fc_rx_pause;
555				hw_dbg("Flow Control = RX PAUSE frames only.\n");
556			}
557		}
558
559		/* For receiving PAUSE frames ONLY.
560		 *
561		 *   LOCAL DEVICE  |   LINK PARTNER
562		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
563		 *-------|---------|-------|---------|--------------------
564		 *   0   |    1    |   1   |    1    | igc_fc_tx_pause
565		 */
566		else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
567			 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
568			 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
569			 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
570			hw->fc.current_mode = igc_fc_tx_pause;
571			hw_dbg("Flow Control = TX PAUSE frames only.\n");
572		}
573		/* For transmitting PAUSE frames ONLY.
574		 *
575		 *   LOCAL DEVICE  |   LINK PARTNER
576		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
577		 *-------|---------|-------|---------|--------------------
578		 *   1   |    1    |   0   |    1    | igc_fc_rx_pause
579		 */
580		else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
581			 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
582			 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
583			 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
584			hw->fc.current_mode = igc_fc_rx_pause;
585			hw_dbg("Flow Control = RX PAUSE frames only.\n");
586		}
587		/* Per the IEEE spec, at this point flow control should be
588		 * disabled.  However, we want to consider that we could
589		 * be connected to a legacy switch that doesn't advertise
590		 * desired flow control, but can be forced on the link
591		 * partner.  So if we advertised no flow control, that is
592		 * what we will resolve to.  If we advertised some kind of
593		 * receive capability (Rx Pause Only or Full Flow Control)
594		 * and the link partner advertised none, we will configure
595		 * ourselves to enable Rx Flow Control only.  We can do
596		 * this safely for two reasons:  If the link partner really
597		 * didn't want flow control enabled, and we enable Rx, no
598		 * harm done since we won't be receiving any PAUSE frames
599		 * anyway.  If the intent on the link partner was to have
600		 * flow control enabled, then by us enabling RX only, we
601		 * can at least receive pause frames and process them.
602		 * This is a good idea because in most cases, since we are
603		 * predominantly a server NIC, more times than not we will
604		 * be asked to delay transmission of packets than asking
605		 * our link partner to pause transmission of frames.
606		 */
607		else if ((hw->fc.requested_mode == igc_fc_none) ||
608			 (hw->fc.requested_mode == igc_fc_tx_pause) ||
609			 (hw->fc.strict_ieee)) {
610			hw->fc.current_mode = igc_fc_none;
611			hw_dbg("Flow Control = NONE.\n");
612		} else {
613			hw->fc.current_mode = igc_fc_rx_pause;
614			hw_dbg("Flow Control = RX PAUSE frames only.\n");
615		}
616
617		/* Now we need to do one last check...  If we auto-
618		 * negotiated to HALF DUPLEX, flow control should not be
619		 * enabled per IEEE 802.3 spec.
620		 */
621		ret_val = hw->mac.ops.get_speed_and_duplex(hw, &speed, &duplex);
622		if (ret_val) {
623			hw_dbg("Error getting link speed and duplex\n");
624			goto out;
625		}
626
627		if (duplex == HALF_DUPLEX)
628			hw->fc.current_mode = igc_fc_none;
629
630		/* Now we call a subroutine to actually force the MAC
631		 * controller to use the correct flow control settings.
632		 */
633		ret_val = igc_force_mac_fc(hw);
634		if (ret_val) {
635			hw_dbg("Error forcing flow control settings\n");
636			goto out;
637		}
638	}
639
640out:
641	return ret_val;
642}
643
644/**
645 * igc_get_auto_rd_done - Check for auto read completion
646 * @hw: pointer to the HW structure
647 *
648 * Check EEPROM for Auto Read done bit.
649 */
650s32 igc_get_auto_rd_done(struct igc_hw *hw)
651{
652	s32 ret_val = 0;
653	s32 i = 0;
654
655	while (i < AUTO_READ_DONE_TIMEOUT) {
656		if (rd32(IGC_EECD) & IGC_EECD_AUTO_RD)
657			break;
658		usleep_range(1000, 2000);
659		i++;
660	}
661
662	if (i == AUTO_READ_DONE_TIMEOUT) {
663		hw_dbg("Auto read by HW from NVM has not completed.\n");
664		ret_val = -IGC_ERR_RESET;
665		goto out;
666	}
667
668out:
669	return ret_val;
670}
671
672/**
673 * igc_get_speed_and_duplex_copper - Retrieve current speed/duplex
674 * @hw: pointer to the HW structure
675 * @speed: stores the current speed
676 * @duplex: stores the current duplex
677 *
678 * Read the status register for the current speed/duplex and store the current
679 * speed and duplex for copper connections.
680 */
681s32 igc_get_speed_and_duplex_copper(struct igc_hw *hw, u16 *speed,
682				    u16 *duplex)
683{
684	u32 status;
685
686	status = rd32(IGC_STATUS);
687	if (status & IGC_STATUS_SPEED_1000) {
688		/* For I225, STATUS will indicate 1G speed in both 1 Gbps
689		 * and 2.5 Gbps link modes. An additional bit is used
690		 * to differentiate between 1 Gbps and 2.5 Gbps.
691		 */
692		if (hw->mac.type == igc_i225 &&
693		    (status & IGC_STATUS_SPEED_2500)) {
694			*speed = SPEED_2500;
695			hw_dbg("2500 Mbs, ");
696		} else {
697			*speed = SPEED_1000;
698			hw_dbg("1000 Mbs, ");
699		}
700	} else if (status & IGC_STATUS_SPEED_100) {
701		*speed = SPEED_100;
702		hw_dbg("100 Mbs, ");
703	} else {
704		*speed = SPEED_10;
705		hw_dbg("10 Mbs, ");
706	}
707
708	if (status & IGC_STATUS_FD) {
709		*duplex = FULL_DUPLEX;
710		hw_dbg("Full Duplex\n");
711	} else {
712		*duplex = HALF_DUPLEX;
713		hw_dbg("Half Duplex\n");
714	}
715
716	return 0;
717}
718
719/**
720 * igc_put_hw_semaphore - Release hardware semaphore
721 * @hw: pointer to the HW structure
722 *
723 * Release hardware semaphore used to access the PHY or NVM
724 */
725void igc_put_hw_semaphore(struct igc_hw *hw)
726{
727	u32 swsm;
728
729	swsm = rd32(IGC_SWSM);
730
731	swsm &= ~(IGC_SWSM_SMBI | IGC_SWSM_SWESMBI);
732
733	wr32(IGC_SWSM, swsm);
734}
735
736/**
737 * igc_enable_mng_pass_thru - Enable processing of ARP's
738 * @hw: pointer to the HW structure
739 *
740 * Verifies the hardware needs to leave interface enabled so that frames can
741 * be directed to and from the management interface.
742 */
743bool igc_enable_mng_pass_thru(struct igc_hw *hw)
744{
745	bool ret_val = false;
746	u32 fwsm, factps;
747	u32 manc;
748
749	if (!hw->mac.asf_firmware_present)
750		goto out;
751
752	manc = rd32(IGC_MANC);
753
754	if (!(manc & IGC_MANC_RCV_TCO_EN))
755		goto out;
756
757	if (hw->mac.arc_subsystem_valid) {
758		fwsm = rd32(IGC_FWSM);
759		factps = rd32(IGC_FACTPS);
760
761		if (!(factps & IGC_FACTPS_MNGCG) &&
762		    ((fwsm & IGC_FWSM_MODE_MASK) ==
763		    (igc_mng_mode_pt << IGC_FWSM_MODE_SHIFT))) {
764			ret_val = true;
765			goto out;
766		}
767	} else {
768		if ((manc & IGC_MANC_SMBUS_EN) &&
769		    !(manc & IGC_MANC_ASF_EN)) {
770			ret_val = true;
771			goto out;
772		}
773	}
774
775out:
776	return ret_val;
777}
778
779/**
780 *  igc_hash_mc_addr - Generate a multicast hash value
781 *  @hw: pointer to the HW structure
782 *  @mc_addr: pointer to a multicast address
783 *
784 *  Generates a multicast address hash value which is used to determine
785 *  the multicast filter table array address and new table value.  See
786 *  igc_mta_set()
787 **/
788static u32 igc_hash_mc_addr(struct igc_hw *hw, u8 *mc_addr)
789{
790	u32 hash_value, hash_mask;
791	u8 bit_shift = 0;
792
793	/* Register count multiplied by bits per register */
794	hash_mask = (hw->mac.mta_reg_count * 32) - 1;
795
796	/* For a mc_filter_type of 0, bit_shift is the number of left-shifts
797	 * where 0xFF would still fall within the hash mask.
798	 */
799	while (hash_mask >> bit_shift != 0xFF)
800		bit_shift++;
801
802	/* The portion of the address that is used for the hash table
803	 * is determined by the mc_filter_type setting.
804	 * The algorithm is such that there is a total of 8 bits of shifting.
805	 * The bit_shift for a mc_filter_type of 0 represents the number of
806	 * left-shifts where the MSB of mc_addr[5] would still fall within
807	 * the hash_mask.  Case 0 does this exactly.  Since there are a total
808	 * of 8 bits of shifting, then mc_addr[4] will shift right the
809	 * remaining number of bits. Thus 8 - bit_shift.  The rest of the
810	 * cases are a variation of this algorithm...essentially raising the
811	 * number of bits to shift mc_addr[5] left, while still keeping the
812	 * 8-bit shifting total.
813	 *
814	 * For example, given the following Destination MAC Address and an
815	 * MTA register count of 128 (thus a 4096-bit vector and 0xFFF mask),
816	 * we can see that the bit_shift for case 0 is 4.  These are the hash
817	 * values resulting from each mc_filter_type...
818	 * [0] [1] [2] [3] [4] [5]
819	 * 01  AA  00  12  34  56
820	 * LSB                 MSB
821	 *
822	 * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563
823	 * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6
824	 * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163
825	 * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634
826	 */
827	switch (hw->mac.mc_filter_type) {
828	default:
829	case 0:
830		break;
831	case 1:
832		bit_shift += 1;
833		break;
834	case 2:
835		bit_shift += 2;
836		break;
837	case 3:
838		bit_shift += 4;
839		break;
840	}
841
842	hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
843				  (((u16)mc_addr[5]) << bit_shift)));
844
845	return hash_value;
846}
847
848/**
849 *  igc_update_mc_addr_list - Update Multicast addresses
850 *  @hw: pointer to the HW structure
851 *  @mc_addr_list: array of multicast addresses to program
852 *  @mc_addr_count: number of multicast addresses to program
853 *
854 *  Updates entire Multicast Table Array.
855 *  The caller must have a packed mc_addr_list of multicast addresses.
856 **/
857void igc_update_mc_addr_list(struct igc_hw *hw,
858			     u8 *mc_addr_list, u32 mc_addr_count)
859{
860	u32 hash_value, hash_bit, hash_reg;
861	int i;
862
863	/* clear mta_shadow */
864	memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
865
866	/* update mta_shadow from mc_addr_list */
867	for (i = 0; (u32)i < mc_addr_count; i++) {
868		hash_value = igc_hash_mc_addr(hw, mc_addr_list);
869
870		hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
871		hash_bit = hash_value & 0x1F;
872
873		hw->mac.mta_shadow[hash_reg] |= BIT(hash_bit);
874		mc_addr_list += ETH_ALEN;
875	}
876
877	/* replace the entire MTA table */
878	for (i = hw->mac.mta_reg_count - 1; i >= 0; i--)
879		array_wr32(IGC_MTA, i, hw->mac.mta_shadow[i]);
880	wrfl();
881}
882