1// SPDX-License-Identifier: GPL-2.0
2/* Copyright (c)  2018 Intel Corporation */
3
4#include <linux/bitfield.h>
5#include <linux/delay.h>
6
7#include "igc_hw.h"
8
9/**
10 * igc_acquire_nvm_i225 - Acquire exclusive access to EEPROM
11 * @hw: pointer to the HW structure
12 *
13 * Acquire the necessary semaphores for exclusive access to the EEPROM.
14 * Set the EEPROM access request bit and wait for EEPROM access grant bit.
15 * Return successful if access grant bit set, else clear the request for
16 * EEPROM access and return -IGC_ERR_NVM (-1).
17 */
18static s32 igc_acquire_nvm_i225(struct igc_hw *hw)
19{
20	return igc_acquire_swfw_sync_i225(hw, IGC_SWFW_EEP_SM);
21}
22
23/**
24 * igc_release_nvm_i225 - Release exclusive access to EEPROM
25 * @hw: pointer to the HW structure
26 *
27 * Stop any current commands to the EEPROM and clear the EEPROM request bit,
28 * then release the semaphores acquired.
29 */
30static void igc_release_nvm_i225(struct igc_hw *hw)
31{
32	igc_release_swfw_sync_i225(hw, IGC_SWFW_EEP_SM);
33}
34
35/**
36 * igc_get_hw_semaphore_i225 - Acquire hardware semaphore
37 * @hw: pointer to the HW structure
38 *
39 * Acquire the HW semaphore to access the PHY or NVM
40 */
41static s32 igc_get_hw_semaphore_i225(struct igc_hw *hw)
42{
43	s32 timeout = hw->nvm.word_size + 1;
44	s32 i = 0;
45	u32 swsm;
46
47	/* Get the SW semaphore */
48	while (i < timeout) {
49		swsm = rd32(IGC_SWSM);
50		if (!(swsm & IGC_SWSM_SMBI))
51			break;
52
53		usleep_range(500, 600);
54		i++;
55	}
56
57	if (i == timeout) {
58		/* In rare circumstances, the SW semaphore may already be held
59		 * unintentionally. Clear the semaphore once before giving up.
60		 */
61		if (hw->dev_spec._base.clear_semaphore_once) {
62			hw->dev_spec._base.clear_semaphore_once = false;
63			igc_put_hw_semaphore(hw);
64			for (i = 0; i < timeout; i++) {
65				swsm = rd32(IGC_SWSM);
66				if (!(swsm & IGC_SWSM_SMBI))
67					break;
68
69				usleep_range(500, 600);
70			}
71		}
72
73		/* If we do not have the semaphore here, we have to give up. */
74		if (i == timeout) {
75			hw_dbg("Driver can't access device - SMBI bit is set.\n");
76			return -IGC_ERR_NVM;
77		}
78	}
79
80	/* Get the FW semaphore. */
81	for (i = 0; i < timeout; i++) {
82		swsm = rd32(IGC_SWSM);
83		wr32(IGC_SWSM, swsm | IGC_SWSM_SWESMBI);
84
85		/* Semaphore acquired if bit latched */
86		if (rd32(IGC_SWSM) & IGC_SWSM_SWESMBI)
87			break;
88
89		usleep_range(500, 600);
90	}
91
92	if (i == timeout) {
93		/* Release semaphores */
94		igc_put_hw_semaphore(hw);
95		hw_dbg("Driver can't access the NVM\n");
96		return -IGC_ERR_NVM;
97	}
98
99	return 0;
100}
101
102/**
103 * igc_acquire_swfw_sync_i225 - Acquire SW/FW semaphore
104 * @hw: pointer to the HW structure
105 * @mask: specifies which semaphore to acquire
106 *
107 * Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
108 * will also specify which port we're acquiring the lock for.
109 */
110s32 igc_acquire_swfw_sync_i225(struct igc_hw *hw, u16 mask)
111{
112	s32 i = 0, timeout = 200;
113	u32 fwmask = mask << 16;
114	u32 swmask = mask;
115	s32 ret_val = 0;
116	u32 swfw_sync;
117
118	while (i < timeout) {
119		if (igc_get_hw_semaphore_i225(hw)) {
120			ret_val = -IGC_ERR_SWFW_SYNC;
121			goto out;
122		}
123
124		swfw_sync = rd32(IGC_SW_FW_SYNC);
125		if (!(swfw_sync & (fwmask | swmask)))
126			break;
127
128		/* Firmware currently using resource (fwmask) */
129		igc_put_hw_semaphore(hw);
130		mdelay(5);
131		i++;
132	}
133
134	if (i == timeout) {
135		hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
136		ret_val = -IGC_ERR_SWFW_SYNC;
137		goto out;
138	}
139
140	swfw_sync |= swmask;
141	wr32(IGC_SW_FW_SYNC, swfw_sync);
142
143	igc_put_hw_semaphore(hw);
144out:
145	return ret_val;
146}
147
148/**
149 * igc_release_swfw_sync_i225 - Release SW/FW semaphore
150 * @hw: pointer to the HW structure
151 * @mask: specifies which semaphore to acquire
152 *
153 * Release the SW/FW semaphore used to access the PHY or NVM.  The mask
154 * will also specify which port we're releasing the lock for.
155 */
156void igc_release_swfw_sync_i225(struct igc_hw *hw, u16 mask)
157{
158	u32 swfw_sync;
159
160	/* Releasing the resource requires first getting the HW semaphore.
161	 * If we fail to get the semaphore, there is nothing we can do,
162	 * except log an error and quit. We are not allowed to hang here
163	 * indefinitely, as it may cause denial of service or system crash.
164	 */
165	if (igc_get_hw_semaphore_i225(hw)) {
166		hw_dbg("Failed to release SW_FW_SYNC.\n");
167		return;
168	}
169
170	swfw_sync = rd32(IGC_SW_FW_SYNC);
171	swfw_sync &= ~mask;
172	wr32(IGC_SW_FW_SYNC, swfw_sync);
173
174	igc_put_hw_semaphore(hw);
175}
176
177/**
178 * igc_read_nvm_srrd_i225 - Reads Shadow Ram using EERD register
179 * @hw: pointer to the HW structure
180 * @offset: offset of word in the Shadow Ram to read
181 * @words: number of words to read
182 * @data: word read from the Shadow Ram
183 *
184 * Reads a 16 bit word from the Shadow Ram using the EERD register.
185 * Uses necessary synchronization semaphores.
186 */
187static s32 igc_read_nvm_srrd_i225(struct igc_hw *hw, u16 offset, u16 words,
188				  u16 *data)
189{
190	s32 status = 0;
191	u16 i, count;
192
193	/* We cannot hold synchronization semaphores for too long,
194	 * because of forceful takeover procedure. However it is more efficient
195	 * to read in bursts than synchronizing access for each word.
196	 */
197	for (i = 0; i < words; i += IGC_EERD_EEWR_MAX_COUNT) {
198		count = (words - i) / IGC_EERD_EEWR_MAX_COUNT > 0 ?
199			IGC_EERD_EEWR_MAX_COUNT : (words - i);
200
201		status = hw->nvm.ops.acquire(hw);
202		if (status)
203			break;
204
205		status = igc_read_nvm_eerd(hw, offset, count, data + i);
206		hw->nvm.ops.release(hw);
207		if (status)
208			break;
209	}
210
211	return status;
212}
213
214/**
215 * igc_write_nvm_srwr - Write to Shadow Ram using EEWR
216 * @hw: pointer to the HW structure
217 * @offset: offset within the Shadow Ram to be written to
218 * @words: number of words to write
219 * @data: 16 bit word(s) to be written to the Shadow Ram
220 *
221 * Writes data to Shadow Ram at offset using EEWR register.
222 *
223 * If igc_update_nvm_checksum is not called after this function , the
224 * Shadow Ram will most likely contain an invalid checksum.
225 */
226static s32 igc_write_nvm_srwr(struct igc_hw *hw, u16 offset, u16 words,
227			      u16 *data)
228{
229	struct igc_nvm_info *nvm = &hw->nvm;
230	s32 ret_val = -IGC_ERR_NVM;
231	u32 attempts = 100000;
232	u32 i, k, eewr = 0;
233
234	/* A check for invalid values:  offset too large, too many words,
235	 * too many words for the offset, and not enough words.
236	 */
237	if (offset >= nvm->word_size || (words > (nvm->word_size - offset)) ||
238	    words == 0) {
239		hw_dbg("nvm parameter(s) out of bounds\n");
240		return ret_val;
241	}
242
243	for (i = 0; i < words; i++) {
244		ret_val = -IGC_ERR_NVM;
245		eewr = ((offset + i) << IGC_NVM_RW_ADDR_SHIFT) |
246			(data[i] << IGC_NVM_RW_REG_DATA) |
247			IGC_NVM_RW_REG_START;
248
249		wr32(IGC_SRWR, eewr);
250
251		for (k = 0; k < attempts; k++) {
252			if (IGC_NVM_RW_REG_DONE &
253			    rd32(IGC_SRWR)) {
254				ret_val = 0;
255				break;
256			}
257			udelay(5);
258		}
259
260		if (ret_val) {
261			hw_dbg("Shadow RAM write EEWR timed out\n");
262			break;
263		}
264	}
265
266	return ret_val;
267}
268
269/**
270 * igc_write_nvm_srwr_i225 - Write to Shadow RAM using EEWR
271 * @hw: pointer to the HW structure
272 * @offset: offset within the Shadow RAM to be written to
273 * @words: number of words to write
274 * @data: 16 bit word(s) to be written to the Shadow RAM
275 *
276 * Writes data to Shadow RAM at offset using EEWR register.
277 *
278 * If igc_update_nvm_checksum is not called after this function , the
279 * data will not be committed to FLASH and also Shadow RAM will most likely
280 * contain an invalid checksum.
281 *
282 * If error code is returned, data and Shadow RAM may be inconsistent - buffer
283 * partially written.
284 */
285static s32 igc_write_nvm_srwr_i225(struct igc_hw *hw, u16 offset, u16 words,
286				   u16 *data)
287{
288	s32 status = 0;
289	u16 i, count;
290
291	/* We cannot hold synchronization semaphores for too long,
292	 * because of forceful takeover procedure. However it is more efficient
293	 * to write in bursts than synchronizing access for each word.
294	 */
295	for (i = 0; i < words; i += IGC_EERD_EEWR_MAX_COUNT) {
296		count = (words - i) / IGC_EERD_EEWR_MAX_COUNT > 0 ?
297			IGC_EERD_EEWR_MAX_COUNT : (words - i);
298
299		status = hw->nvm.ops.acquire(hw);
300		if (status)
301			break;
302
303		status = igc_write_nvm_srwr(hw, offset, count, data + i);
304		hw->nvm.ops.release(hw);
305		if (status)
306			break;
307	}
308
309	return status;
310}
311
312/**
313 * igc_validate_nvm_checksum_i225 - Validate EEPROM checksum
314 * @hw: pointer to the HW structure
315 *
316 * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
317 * and then verifies that the sum of the EEPROM is equal to 0xBABA.
318 */
319static s32 igc_validate_nvm_checksum_i225(struct igc_hw *hw)
320{
321	s32 (*read_op_ptr)(struct igc_hw *hw, u16 offset, u16 count,
322			   u16 *data);
323	s32 status = 0;
324
325	status = hw->nvm.ops.acquire(hw);
326	if (status)
327		goto out;
328
329	/* Replace the read function with semaphore grabbing with
330	 * the one that skips this for a while.
331	 * We have semaphore taken already here.
332	 */
333	read_op_ptr = hw->nvm.ops.read;
334	hw->nvm.ops.read = igc_read_nvm_eerd;
335
336	status = igc_validate_nvm_checksum(hw);
337
338	/* Revert original read operation. */
339	hw->nvm.ops.read = read_op_ptr;
340
341	hw->nvm.ops.release(hw);
342
343out:
344	return status;
345}
346
347/**
348 * igc_pool_flash_update_done_i225 - Pool FLUDONE status
349 * @hw: pointer to the HW structure
350 */
351static s32 igc_pool_flash_update_done_i225(struct igc_hw *hw)
352{
353	s32 ret_val = -IGC_ERR_NVM;
354	u32 i, reg;
355
356	for (i = 0; i < IGC_FLUDONE_ATTEMPTS; i++) {
357		reg = rd32(IGC_EECD);
358		if (reg & IGC_EECD_FLUDONE_I225) {
359			ret_val = 0;
360			break;
361		}
362		udelay(5);
363	}
364
365	return ret_val;
366}
367
368/**
369 * igc_update_flash_i225 - Commit EEPROM to the flash
370 * @hw: pointer to the HW structure
371 */
372static s32 igc_update_flash_i225(struct igc_hw *hw)
373{
374	s32 ret_val = 0;
375	u32 flup;
376
377	ret_val = igc_pool_flash_update_done_i225(hw);
378	if (ret_val == -IGC_ERR_NVM) {
379		hw_dbg("Flash update time out\n");
380		goto out;
381	}
382
383	flup = rd32(IGC_EECD) | IGC_EECD_FLUPD_I225;
384	wr32(IGC_EECD, flup);
385
386	ret_val = igc_pool_flash_update_done_i225(hw);
387	if (ret_val)
388		hw_dbg("Flash update time out\n");
389	else
390		hw_dbg("Flash update complete\n");
391
392out:
393	return ret_val;
394}
395
396/**
397 * igc_update_nvm_checksum_i225 - Update EEPROM checksum
398 * @hw: pointer to the HW structure
399 *
400 * Updates the EEPROM checksum by reading/adding each word of the EEPROM
401 * up to the checksum.  Then calculates the EEPROM checksum and writes the
402 * value to the EEPROM. Next commit EEPROM data onto the Flash.
403 */
404static s32 igc_update_nvm_checksum_i225(struct igc_hw *hw)
405{
406	u16 checksum = 0;
407	s32 ret_val = 0;
408	u16 i, nvm_data;
409
410	/* Read the first word from the EEPROM. If this times out or fails, do
411	 * not continue or we could be in for a very long wait while every
412	 * EEPROM read fails
413	 */
414	ret_val = igc_read_nvm_eerd(hw, 0, 1, &nvm_data);
415	if (ret_val) {
416		hw_dbg("EEPROM read failed\n");
417		goto out;
418	}
419
420	ret_val = hw->nvm.ops.acquire(hw);
421	if (ret_val)
422		goto out;
423
424	/* Do not use hw->nvm.ops.write, hw->nvm.ops.read
425	 * because we do not want to take the synchronization
426	 * semaphores twice here.
427	 */
428
429	for (i = 0; i < NVM_CHECKSUM_REG; i++) {
430		ret_val = igc_read_nvm_eerd(hw, i, 1, &nvm_data);
431		if (ret_val) {
432			hw->nvm.ops.release(hw);
433			hw_dbg("NVM Read Error while updating checksum.\n");
434			goto out;
435		}
436		checksum += nvm_data;
437	}
438	checksum = (u16)NVM_SUM - checksum;
439	ret_val = igc_write_nvm_srwr(hw, NVM_CHECKSUM_REG, 1,
440				     &checksum);
441	if (ret_val) {
442		hw->nvm.ops.release(hw);
443		hw_dbg("NVM Write Error while updating checksum.\n");
444		goto out;
445	}
446
447	hw->nvm.ops.release(hw);
448
449	ret_val = igc_update_flash_i225(hw);
450
451out:
452	return ret_val;
453}
454
455/**
456 * igc_get_flash_presence_i225 - Check if flash device is detected
457 * @hw: pointer to the HW structure
458 */
459bool igc_get_flash_presence_i225(struct igc_hw *hw)
460{
461	bool ret_val = false;
462	u32 eec = 0;
463
464	eec = rd32(IGC_EECD);
465	if (eec & IGC_EECD_FLASH_DETECTED_I225)
466		ret_val = true;
467
468	return ret_val;
469}
470
471/**
472 * igc_init_nvm_params_i225 - Init NVM func ptrs.
473 * @hw: pointer to the HW structure
474 */
475s32 igc_init_nvm_params_i225(struct igc_hw *hw)
476{
477	struct igc_nvm_info *nvm = &hw->nvm;
478
479	nvm->ops.acquire = igc_acquire_nvm_i225;
480	nvm->ops.release = igc_release_nvm_i225;
481
482	/* NVM Function Pointers */
483	if (igc_get_flash_presence_i225(hw)) {
484		nvm->ops.read = igc_read_nvm_srrd_i225;
485		nvm->ops.write = igc_write_nvm_srwr_i225;
486		nvm->ops.validate = igc_validate_nvm_checksum_i225;
487		nvm->ops.update = igc_update_nvm_checksum_i225;
488	} else {
489		nvm->ops.read = igc_read_nvm_eerd;
490		nvm->ops.write = NULL;
491		nvm->ops.validate = NULL;
492		nvm->ops.update = NULL;
493	}
494	return 0;
495}
496
497/**
498 *  igc_set_eee_i225 - Enable/disable EEE support
499 *  @hw: pointer to the HW structure
500 *  @adv2p5G: boolean flag enabling 2.5G EEE advertisement
501 *  @adv1G: boolean flag enabling 1G EEE advertisement
502 *  @adv100M: boolean flag enabling 100M EEE advertisement
503 *
504 *  Enable/disable EEE based on setting in dev_spec structure.
505 **/
506s32 igc_set_eee_i225(struct igc_hw *hw, bool adv2p5G, bool adv1G,
507		     bool adv100M)
508{
509	u32 ipcnfg, eeer;
510
511	ipcnfg = rd32(IGC_IPCNFG);
512	eeer = rd32(IGC_EEER);
513
514	/* enable or disable per user setting */
515	if (hw->dev_spec._base.eee_enable) {
516		u32 eee_su = rd32(IGC_EEE_SU);
517
518		if (adv100M)
519			ipcnfg |= IGC_IPCNFG_EEE_100M_AN;
520		else
521			ipcnfg &= ~IGC_IPCNFG_EEE_100M_AN;
522
523		if (adv1G)
524			ipcnfg |= IGC_IPCNFG_EEE_1G_AN;
525		else
526			ipcnfg &= ~IGC_IPCNFG_EEE_1G_AN;
527
528		if (adv2p5G)
529			ipcnfg |= IGC_IPCNFG_EEE_2_5G_AN;
530		else
531			ipcnfg &= ~IGC_IPCNFG_EEE_2_5G_AN;
532
533		eeer |= (IGC_EEER_TX_LPI_EN | IGC_EEER_RX_LPI_EN |
534			 IGC_EEER_LPI_FC);
535
536		/* This bit should not be set in normal operation. */
537		if (eee_su & IGC_EEE_SU_LPI_CLK_STP)
538			hw_dbg("LPI Clock Stop Bit should not be set!\n");
539	} else {
540		ipcnfg &= ~(IGC_IPCNFG_EEE_2_5G_AN | IGC_IPCNFG_EEE_1G_AN |
541			    IGC_IPCNFG_EEE_100M_AN);
542		eeer &= ~(IGC_EEER_TX_LPI_EN | IGC_EEER_RX_LPI_EN |
543			  IGC_EEER_LPI_FC);
544	}
545	wr32(IGC_IPCNFG, ipcnfg);
546	wr32(IGC_EEER, eeer);
547	rd32(IGC_IPCNFG);
548	rd32(IGC_EEER);
549
550	return IGC_SUCCESS;
551}
552
553/* igc_set_ltr_i225 - Set Latency Tolerance Reporting thresholds
554 * @hw: pointer to the HW structure
555 * @link: bool indicating link status
556 *
557 * Set the LTR thresholds based on the link speed (Mbps), EEE, and DMAC
558 * settings, otherwise specify that there is no LTR requirement.
559 */
560s32 igc_set_ltr_i225(struct igc_hw *hw, bool link)
561{
562	u32 tw_system, ltrc, ltrv, ltr_min, ltr_max, scale_min, scale_max;
563	u16 speed, duplex;
564	s32 size;
565
566	/* If we do not have link, LTR thresholds are zero. */
567	if (link) {
568		hw->mac.ops.get_speed_and_duplex(hw, &speed, &duplex);
569
570		/* Check if using copper interface with EEE enabled or if the
571		 * link speed is 10 Mbps.
572		 */
573		if (hw->dev_spec._base.eee_enable &&
574		    speed != SPEED_10) {
575			/* EEE enabled, so send LTRMAX threshold. */
576			ltrc = rd32(IGC_LTRC) |
577			       IGC_LTRC_EEEMS_EN;
578			wr32(IGC_LTRC, ltrc);
579
580			/* Calculate tw_system (nsec). */
581			if (speed == SPEED_100) {
582				tw_system = FIELD_GET(IGC_TW_SYSTEM_100_MASK,
583						      rd32(IGC_EEE_SU)) * 500;
584			} else {
585				tw_system = (rd32(IGC_EEE_SU) &
586					     IGC_TW_SYSTEM_1000_MASK) * 500;
587			}
588		} else {
589			tw_system = 0;
590		}
591
592		/* Get the Rx packet buffer size. */
593		size = rd32(IGC_RXPBS) &
594		       IGC_RXPBS_SIZE_I225_MASK;
595
596		/* Convert size to bytes, subtract the MTU, and then
597		 * convert the size to bits.
598		 */
599		size *= 1024;
600		size *= 8;
601
602		if (size < 0) {
603			hw_dbg("Invalid effective Rx buffer size %d\n",
604			       size);
605			return -IGC_ERR_CONFIG;
606		}
607
608		/* Calculate the thresholds. Since speed is in Mbps, simplify
609		 * the calculation by multiplying size/speed by 1000 for result
610		 * to be in nsec before dividing by the scale in nsec. Set the
611		 * scale such that the LTR threshold fits in the register.
612		 */
613		ltr_min = (1000 * size) / speed;
614		ltr_max = ltr_min + tw_system;
615		scale_min = (ltr_min / 1024) < 1024 ? IGC_LTRMINV_SCALE_1024 :
616			    IGC_LTRMINV_SCALE_32768;
617		scale_max = (ltr_max / 1024) < 1024 ? IGC_LTRMAXV_SCALE_1024 :
618			    IGC_LTRMAXV_SCALE_32768;
619		ltr_min /= scale_min == IGC_LTRMINV_SCALE_1024 ? 1024 : 32768;
620		ltr_min -= 1;
621		ltr_max /= scale_max == IGC_LTRMAXV_SCALE_1024 ? 1024 : 32768;
622		ltr_max -= 1;
623
624		/* Only write the LTR thresholds if they differ from before. */
625		ltrv = rd32(IGC_LTRMINV);
626		if (ltr_min != (ltrv & IGC_LTRMINV_LTRV_MASK)) {
627			ltrv = IGC_LTRMINV_LSNP_REQ | ltr_min |
628			       (scale_min << IGC_LTRMINV_SCALE_SHIFT);
629			wr32(IGC_LTRMINV, ltrv);
630		}
631
632		ltrv = rd32(IGC_LTRMAXV);
633		if (ltr_max != (ltrv & IGC_LTRMAXV_LTRV_MASK)) {
634			ltrv = IGC_LTRMAXV_LSNP_REQ | ltr_max |
635			       (scale_max << IGC_LTRMAXV_SCALE_SHIFT);
636			wr32(IGC_LTRMAXV, ltrv);
637		}
638	}
639
640	return IGC_SUCCESS;
641}
642