1// SPDX-License-Identifier: GPL-2.0
2/* Copyright(c) 2007 - 2018 Intel Corporation. */
3
4#include <linux/bitfield.h>
5#include <linux/delay.h>
6#include <linux/if_ether.h>
7#include "e1000_mac.h"
8#include "e1000_phy.h"
9
10static s32  igb_phy_setup_autoneg(struct e1000_hw *hw);
11static void igb_phy_force_speed_duplex_setup(struct e1000_hw *hw,
12					     u16 *phy_ctrl);
13static s32  igb_wait_autoneg(struct e1000_hw *hw);
14static s32  igb_set_master_slave_mode(struct e1000_hw *hw);
15
16/* Cable length tables */
17static const u16 e1000_m88_cable_length_table[] = {
18	0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED };
19
20static const u16 e1000_igp_2_cable_length_table[] = {
21	0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21,
22	0, 0, 0, 3, 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41,
23	6, 10, 14, 18, 22, 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61,
24	21, 26, 31, 35, 40, 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82,
25	40, 45, 51, 56, 61, 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104,
26	60, 66, 72, 77, 82, 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121,
27	83, 89, 95, 100, 105, 109, 113, 116, 119, 122, 124,
28	104, 109, 114, 118, 121, 124};
29
30/**
31 *  igb_check_reset_block - Check if PHY reset is blocked
32 *  @hw: pointer to the HW structure
33 *
34 *  Read the PHY management control register and check whether a PHY reset
35 *  is blocked.  If a reset is not blocked return 0, otherwise
36 *  return E1000_BLK_PHY_RESET (12).
37 **/
38s32 igb_check_reset_block(struct e1000_hw *hw)
39{
40	u32 manc;
41
42	manc = rd32(E1000_MANC);
43
44	return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ? E1000_BLK_PHY_RESET : 0;
45}
46
47/**
48 *  igb_get_phy_id - Retrieve the PHY ID and revision
49 *  @hw: pointer to the HW structure
50 *
51 *  Reads the PHY registers and stores the PHY ID and possibly the PHY
52 *  revision in the hardware structure.
53 **/
54s32 igb_get_phy_id(struct e1000_hw *hw)
55{
56	struct e1000_phy_info *phy = &hw->phy;
57	s32 ret_val = 0;
58	u16 phy_id;
59
60	/* ensure PHY page selection to fix misconfigured i210 */
61	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
62		phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, 0);
63
64	ret_val = phy->ops.read_reg(hw, PHY_ID1, &phy_id);
65	if (ret_val)
66		goto out;
67
68	phy->id = (u32)(phy_id << 16);
69	udelay(20);
70	ret_val = phy->ops.read_reg(hw, PHY_ID2, &phy_id);
71	if (ret_val)
72		goto out;
73
74	phy->id |= (u32)(phy_id & PHY_REVISION_MASK);
75	phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
76
77out:
78	return ret_val;
79}
80
81/**
82 *  igb_phy_reset_dsp - Reset PHY DSP
83 *  @hw: pointer to the HW structure
84 *
85 *  Reset the digital signal processor.
86 **/
87static s32 igb_phy_reset_dsp(struct e1000_hw *hw)
88{
89	s32 ret_val = 0;
90
91	if (!(hw->phy.ops.write_reg))
92		goto out;
93
94	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xC1);
95	if (ret_val)
96		goto out;
97
98	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0);
99
100out:
101	return ret_val;
102}
103
104/**
105 *  igb_read_phy_reg_mdic - Read MDI control register
106 *  @hw: pointer to the HW structure
107 *  @offset: register offset to be read
108 *  @data: pointer to the read data
109 *
110 *  Reads the MDI control register in the PHY at offset and stores the
111 *  information read to data.
112 **/
113s32 igb_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data)
114{
115	struct e1000_phy_info *phy = &hw->phy;
116	u32 i, mdic = 0;
117	s32 ret_val = 0;
118
119	if (offset > MAX_PHY_REG_ADDRESS) {
120		hw_dbg("PHY Address %d is out of range\n", offset);
121		ret_val = -E1000_ERR_PARAM;
122		goto out;
123	}
124
125	/* Set up Op-code, Phy Address, and register offset in the MDI
126	 * Control register.  The MAC will take care of interfacing with the
127	 * PHY to retrieve the desired data.
128	 */
129	mdic = ((offset << E1000_MDIC_REG_SHIFT) |
130		(phy->addr << E1000_MDIC_PHY_SHIFT) |
131		(E1000_MDIC_OP_READ));
132
133	wr32(E1000_MDIC, mdic);
134
135	/* Poll the ready bit to see if the MDI read completed
136	 * Increasing the time out as testing showed failures with
137	 * the lower time out
138	 */
139	for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
140		udelay(50);
141		mdic = rd32(E1000_MDIC);
142		if (mdic & E1000_MDIC_READY)
143			break;
144	}
145	if (!(mdic & E1000_MDIC_READY)) {
146		hw_dbg("MDI Read did not complete\n");
147		ret_val = -E1000_ERR_PHY;
148		goto out;
149	}
150	if (mdic & E1000_MDIC_ERROR) {
151		hw_dbg("MDI Error\n");
152		ret_val = -E1000_ERR_PHY;
153		goto out;
154	}
155	*data = (u16) mdic;
156
157out:
158	return ret_val;
159}
160
161/**
162 *  igb_write_phy_reg_mdic - Write MDI control register
163 *  @hw: pointer to the HW structure
164 *  @offset: register offset to write to
165 *  @data: data to write to register at offset
166 *
167 *  Writes data to MDI control register in the PHY at offset.
168 **/
169s32 igb_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data)
170{
171	struct e1000_phy_info *phy = &hw->phy;
172	u32 i, mdic = 0;
173	s32 ret_val = 0;
174
175	if (offset > MAX_PHY_REG_ADDRESS) {
176		hw_dbg("PHY Address %d is out of range\n", offset);
177		ret_val = -E1000_ERR_PARAM;
178		goto out;
179	}
180
181	/* Set up Op-code, Phy Address, and register offset in the MDI
182	 * Control register.  The MAC will take care of interfacing with the
183	 * PHY to retrieve the desired data.
184	 */
185	mdic = (((u32)data) |
186		(offset << E1000_MDIC_REG_SHIFT) |
187		(phy->addr << E1000_MDIC_PHY_SHIFT) |
188		(E1000_MDIC_OP_WRITE));
189
190	wr32(E1000_MDIC, mdic);
191
192	/* Poll the ready bit to see if the MDI read completed
193	 * Increasing the time out as testing showed failures with
194	 * the lower time out
195	 */
196	for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
197		udelay(50);
198		mdic = rd32(E1000_MDIC);
199		if (mdic & E1000_MDIC_READY)
200			break;
201	}
202	if (!(mdic & E1000_MDIC_READY)) {
203		hw_dbg("MDI Write did not complete\n");
204		ret_val = -E1000_ERR_PHY;
205		goto out;
206	}
207	if (mdic & E1000_MDIC_ERROR) {
208		hw_dbg("MDI Error\n");
209		ret_val = -E1000_ERR_PHY;
210		goto out;
211	}
212
213out:
214	return ret_val;
215}
216
217/**
218 *  igb_read_phy_reg_i2c - Read PHY register using i2c
219 *  @hw: pointer to the HW structure
220 *  @offset: register offset to be read
221 *  @data: pointer to the read data
222 *
223 *  Reads the PHY register at offset using the i2c interface and stores the
224 *  retrieved information in data.
225 **/
226s32 igb_read_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 *data)
227{
228	struct e1000_phy_info *phy = &hw->phy;
229	u32 i, i2ccmd = 0;
230
231	/* Set up Op-code, Phy Address, and register address in the I2CCMD
232	 * register.  The MAC will take care of interfacing with the
233	 * PHY to retrieve the desired data.
234	 */
235	i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
236		  (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) |
237		  (E1000_I2CCMD_OPCODE_READ));
238
239	wr32(E1000_I2CCMD, i2ccmd);
240
241	/* Poll the ready bit to see if the I2C read completed */
242	for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
243		udelay(50);
244		i2ccmd = rd32(E1000_I2CCMD);
245		if (i2ccmd & E1000_I2CCMD_READY)
246			break;
247	}
248	if (!(i2ccmd & E1000_I2CCMD_READY)) {
249		hw_dbg("I2CCMD Read did not complete\n");
250		return -E1000_ERR_PHY;
251	}
252	if (i2ccmd & E1000_I2CCMD_ERROR) {
253		hw_dbg("I2CCMD Error bit set\n");
254		return -E1000_ERR_PHY;
255	}
256
257	/* Need to byte-swap the 16-bit value. */
258	*data = ((i2ccmd >> 8) & 0x00FF) | FIELD_PREP(0xFF00, i2ccmd);
259
260	return 0;
261}
262
263/**
264 *  igb_write_phy_reg_i2c - Write PHY register using i2c
265 *  @hw: pointer to the HW structure
266 *  @offset: register offset to write to
267 *  @data: data to write at register offset
268 *
269 *  Writes the data to PHY register at the offset using the i2c interface.
270 **/
271s32 igb_write_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 data)
272{
273	struct e1000_phy_info *phy = &hw->phy;
274	u32 i, i2ccmd = 0;
275	u16 phy_data_swapped;
276
277	/* Prevent overwriting SFP I2C EEPROM which is at A0 address.*/
278	if ((hw->phy.addr == 0) || (hw->phy.addr > 7)) {
279		hw_dbg("PHY I2C Address %d is out of range.\n",
280			  hw->phy.addr);
281		return -E1000_ERR_CONFIG;
282	}
283
284	/* Swap the data bytes for the I2C interface */
285	phy_data_swapped = ((data >> 8) & 0x00FF) | FIELD_PREP(0xFF00, data);
286
287	/* Set up Op-code, Phy Address, and register address in the I2CCMD
288	 * register.  The MAC will take care of interfacing with the
289	 * PHY to retrieve the desired data.
290	 */
291	i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
292		  (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) |
293		  E1000_I2CCMD_OPCODE_WRITE |
294		  phy_data_swapped);
295
296	wr32(E1000_I2CCMD, i2ccmd);
297
298	/* Poll the ready bit to see if the I2C read completed */
299	for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
300		udelay(50);
301		i2ccmd = rd32(E1000_I2CCMD);
302		if (i2ccmd & E1000_I2CCMD_READY)
303			break;
304	}
305	if (!(i2ccmd & E1000_I2CCMD_READY)) {
306		hw_dbg("I2CCMD Write did not complete\n");
307		return -E1000_ERR_PHY;
308	}
309	if (i2ccmd & E1000_I2CCMD_ERROR) {
310		hw_dbg("I2CCMD Error bit set\n");
311		return -E1000_ERR_PHY;
312	}
313
314	return 0;
315}
316
317/**
318 *  igb_read_sfp_data_byte - Reads SFP module data.
319 *  @hw: pointer to the HW structure
320 *  @offset: byte location offset to be read
321 *  @data: read data buffer pointer
322 *
323 *  Reads one byte from SFP module data stored
324 *  in SFP resided EEPROM memory or SFP diagnostic area.
325 *  Function should be called with
326 *  E1000_I2CCMD_SFP_DATA_ADDR(<byte offset>) for SFP module database access
327 *  E1000_I2CCMD_SFP_DIAG_ADDR(<byte offset>) for SFP diagnostics parameters
328 *  access
329 **/
330s32 igb_read_sfp_data_byte(struct e1000_hw *hw, u16 offset, u8 *data)
331{
332	u32 i = 0;
333	u32 i2ccmd = 0;
334	u32 data_local = 0;
335
336	if (offset > E1000_I2CCMD_SFP_DIAG_ADDR(255)) {
337		hw_dbg("I2CCMD command address exceeds upper limit\n");
338		return -E1000_ERR_PHY;
339	}
340
341	/* Set up Op-code, EEPROM Address,in the I2CCMD
342	 * register. The MAC will take care of interfacing with the
343	 * EEPROM to retrieve the desired data.
344	 */
345	i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
346		  E1000_I2CCMD_OPCODE_READ);
347
348	wr32(E1000_I2CCMD, i2ccmd);
349
350	/* Poll the ready bit to see if the I2C read completed */
351	for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
352		udelay(50);
353		data_local = rd32(E1000_I2CCMD);
354		if (data_local & E1000_I2CCMD_READY)
355			break;
356	}
357	if (!(data_local & E1000_I2CCMD_READY)) {
358		hw_dbg("I2CCMD Read did not complete\n");
359		return -E1000_ERR_PHY;
360	}
361	if (data_local & E1000_I2CCMD_ERROR) {
362		hw_dbg("I2CCMD Error bit set\n");
363		return -E1000_ERR_PHY;
364	}
365	*data = (u8) data_local & 0xFF;
366
367	return 0;
368}
369
370/**
371 *  igb_read_phy_reg_igp - Read igp PHY register
372 *  @hw: pointer to the HW structure
373 *  @offset: register offset to be read
374 *  @data: pointer to the read data
375 *
376 *  Acquires semaphore, if necessary, then reads the PHY register at offset
377 *  and storing the retrieved information in data.  Release any acquired
378 *  semaphores before exiting.
379 **/
380s32 igb_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data)
381{
382	s32 ret_val = 0;
383
384	if (!(hw->phy.ops.acquire))
385		goto out;
386
387	ret_val = hw->phy.ops.acquire(hw);
388	if (ret_val)
389		goto out;
390
391	if (offset > MAX_PHY_MULTI_PAGE_REG) {
392		ret_val = igb_write_phy_reg_mdic(hw,
393						 IGP01E1000_PHY_PAGE_SELECT,
394						 (u16)offset);
395		if (ret_val) {
396			hw->phy.ops.release(hw);
397			goto out;
398		}
399	}
400
401	ret_val = igb_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
402					data);
403
404	hw->phy.ops.release(hw);
405
406out:
407	return ret_val;
408}
409
410/**
411 *  igb_write_phy_reg_igp - Write igp PHY register
412 *  @hw: pointer to the HW structure
413 *  @offset: register offset to write to
414 *  @data: data to write at register offset
415 *
416 *  Acquires semaphore, if necessary, then writes the data to PHY register
417 *  at the offset.  Release any acquired semaphores before exiting.
418 **/
419s32 igb_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data)
420{
421	s32 ret_val = 0;
422
423	if (!(hw->phy.ops.acquire))
424		goto out;
425
426	ret_val = hw->phy.ops.acquire(hw);
427	if (ret_val)
428		goto out;
429
430	if (offset > MAX_PHY_MULTI_PAGE_REG) {
431		ret_val = igb_write_phy_reg_mdic(hw,
432						 IGP01E1000_PHY_PAGE_SELECT,
433						 (u16)offset);
434		if (ret_val) {
435			hw->phy.ops.release(hw);
436			goto out;
437		}
438	}
439
440	ret_val = igb_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
441					 data);
442
443	hw->phy.ops.release(hw);
444
445out:
446	return ret_val;
447}
448
449/**
450 *  igb_copper_link_setup_82580 - Setup 82580 PHY for copper link
451 *  @hw: pointer to the HW structure
452 *
453 *  Sets up Carrier-sense on Transmit and downshift values.
454 **/
455s32 igb_copper_link_setup_82580(struct e1000_hw *hw)
456{
457	struct e1000_phy_info *phy = &hw->phy;
458	s32 ret_val;
459	u16 phy_data;
460
461	if (phy->reset_disable) {
462		ret_val = 0;
463		goto out;
464	}
465
466	if (phy->type == e1000_phy_82580) {
467		ret_val = hw->phy.ops.reset(hw);
468		if (ret_val) {
469			hw_dbg("Error resetting the PHY.\n");
470			goto out;
471		}
472	}
473
474	/* Enable CRS on TX. This must be set for half-duplex operation. */
475	ret_val = phy->ops.read_reg(hw, I82580_CFG_REG, &phy_data);
476	if (ret_val)
477		goto out;
478
479	phy_data |= I82580_CFG_ASSERT_CRS_ON_TX;
480
481	/* Enable downshift */
482	phy_data |= I82580_CFG_ENABLE_DOWNSHIFT;
483
484	ret_val = phy->ops.write_reg(hw, I82580_CFG_REG, phy_data);
485	if (ret_val)
486		goto out;
487
488	/* Set MDI/MDIX mode */
489	ret_val = phy->ops.read_reg(hw, I82580_PHY_CTRL_2, &phy_data);
490	if (ret_val)
491		goto out;
492	phy_data &= ~I82580_PHY_CTRL2_MDIX_CFG_MASK;
493	/* Options:
494	 *   0 - Auto (default)
495	 *   1 - MDI mode
496	 *   2 - MDI-X mode
497	 */
498	switch (hw->phy.mdix) {
499	case 1:
500		break;
501	case 2:
502		phy_data |= I82580_PHY_CTRL2_MANUAL_MDIX;
503		break;
504	case 0:
505	default:
506		phy_data |= I82580_PHY_CTRL2_AUTO_MDI_MDIX;
507		break;
508	}
509	ret_val = hw->phy.ops.write_reg(hw, I82580_PHY_CTRL_2, phy_data);
510
511out:
512	return ret_val;
513}
514
515/**
516 *  igb_copper_link_setup_m88 - Setup m88 PHY's for copper link
517 *  @hw: pointer to the HW structure
518 *
519 *  Sets up MDI/MDI-X and polarity for m88 PHY's.  If necessary, transmit clock
520 *  and downshift values are set also.
521 **/
522s32 igb_copper_link_setup_m88(struct e1000_hw *hw)
523{
524	struct e1000_phy_info *phy = &hw->phy;
525	s32 ret_val;
526	u16 phy_data;
527
528	if (phy->reset_disable) {
529		ret_val = 0;
530		goto out;
531	}
532
533	/* Enable CRS on TX. This must be set for half-duplex operation. */
534	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
535	if (ret_val)
536		goto out;
537
538	phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
539
540	/* Options:
541	 *   MDI/MDI-X = 0 (default)
542	 *   0 - Auto for all speeds
543	 *   1 - MDI mode
544	 *   2 - MDI-X mode
545	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
546	 */
547	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
548
549	switch (phy->mdix) {
550	case 1:
551		phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
552		break;
553	case 2:
554		phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
555		break;
556	case 3:
557		phy_data |= M88E1000_PSCR_AUTO_X_1000T;
558		break;
559	case 0:
560	default:
561		phy_data |= M88E1000_PSCR_AUTO_X_MODE;
562		break;
563	}
564
565	/* Options:
566	 *   disable_polarity_correction = 0 (default)
567	 *       Automatic Correction for Reversed Cable Polarity
568	 *   0 - Disabled
569	 *   1 - Enabled
570	 */
571	phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
572	if (phy->disable_polarity_correction == 1)
573		phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
574
575	ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
576	if (ret_val)
577		goto out;
578
579	if (phy->revision < E1000_REVISION_4) {
580		/* Force TX_CLK in the Extended PHY Specific Control Register
581		 * to 25MHz clock.
582		 */
583		ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
584					    &phy_data);
585		if (ret_val)
586			goto out;
587
588		phy_data |= M88E1000_EPSCR_TX_CLK_25;
589
590		if ((phy->revision == E1000_REVISION_2) &&
591		    (phy->id == M88E1111_I_PHY_ID)) {
592			/* 82573L PHY - set the downshift counter to 5x. */
593			phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK;
594			phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
595		} else {
596			/* Configure Master and Slave downshift values */
597			phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
598				      M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
599			phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
600				     M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
601		}
602		ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
603					     phy_data);
604		if (ret_val)
605			goto out;
606	}
607
608	/* Commit the changes. */
609	ret_val = igb_phy_sw_reset(hw);
610	if (ret_val) {
611		hw_dbg("Error committing the PHY changes\n");
612		goto out;
613	}
614
615out:
616	return ret_val;
617}
618
619/**
620 *  igb_copper_link_setup_m88_gen2 - Setup m88 PHY's for copper link
621 *  @hw: pointer to the HW structure
622 *
623 *  Sets up MDI/MDI-X and polarity for i347-AT4, m88e1322 and m88e1112 PHY's.
624 *  Also enables and sets the downshift parameters.
625 **/
626s32 igb_copper_link_setup_m88_gen2(struct e1000_hw *hw)
627{
628	struct e1000_phy_info *phy = &hw->phy;
629	s32 ret_val;
630	u16 phy_data;
631
632	if (phy->reset_disable)
633		return 0;
634
635	/* Enable CRS on Tx. This must be set for half-duplex operation. */
636	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
637	if (ret_val)
638		return ret_val;
639
640	/* Options:
641	 *   MDI/MDI-X = 0 (default)
642	 *   0 - Auto for all speeds
643	 *   1 - MDI mode
644	 *   2 - MDI-X mode
645	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
646	 */
647	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
648
649	switch (phy->mdix) {
650	case 1:
651		phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
652		break;
653	case 2:
654		phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
655		break;
656	case 3:
657		/* M88E1112 does not support this mode) */
658		if (phy->id != M88E1112_E_PHY_ID) {
659			phy_data |= M88E1000_PSCR_AUTO_X_1000T;
660			break;
661		}
662		fallthrough;
663	case 0:
664	default:
665		phy_data |= M88E1000_PSCR_AUTO_X_MODE;
666		break;
667	}
668
669	/* Options:
670	 *   disable_polarity_correction = 0 (default)
671	 *       Automatic Correction for Reversed Cable Polarity
672	 *   0 - Disabled
673	 *   1 - Enabled
674	 */
675	phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
676	if (phy->disable_polarity_correction == 1)
677		phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
678
679	/* Enable downshift and setting it to X6 */
680	if (phy->id == M88E1543_E_PHY_ID) {
681		phy_data &= ~I347AT4_PSCR_DOWNSHIFT_ENABLE;
682		ret_val =
683		    phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
684		if (ret_val)
685			return ret_val;
686
687		ret_val = igb_phy_sw_reset(hw);
688		if (ret_val) {
689			hw_dbg("Error committing the PHY changes\n");
690			return ret_val;
691		}
692	}
693
694	phy_data &= ~I347AT4_PSCR_DOWNSHIFT_MASK;
695	phy_data |= I347AT4_PSCR_DOWNSHIFT_6X;
696	phy_data |= I347AT4_PSCR_DOWNSHIFT_ENABLE;
697
698	ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
699	if (ret_val)
700		return ret_val;
701
702	/* Commit the changes. */
703	ret_val = igb_phy_sw_reset(hw);
704	if (ret_val) {
705		hw_dbg("Error committing the PHY changes\n");
706		return ret_val;
707	}
708	ret_val = igb_set_master_slave_mode(hw);
709	if (ret_val)
710		return ret_val;
711
712	return 0;
713}
714
715/**
716 *  igb_copper_link_setup_igp - Setup igp PHY's for copper link
717 *  @hw: pointer to the HW structure
718 *
719 *  Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for
720 *  igp PHY's.
721 **/
722s32 igb_copper_link_setup_igp(struct e1000_hw *hw)
723{
724	struct e1000_phy_info *phy = &hw->phy;
725	s32 ret_val;
726	u16 data;
727
728	if (phy->reset_disable) {
729		ret_val = 0;
730		goto out;
731	}
732
733	ret_val = phy->ops.reset(hw);
734	if (ret_val) {
735		hw_dbg("Error resetting the PHY.\n");
736		goto out;
737	}
738
739	/* Wait 100ms for MAC to configure PHY from NVM settings, to avoid
740	 * timeout issues when LFS is enabled.
741	 */
742	msleep(100);
743
744	/* The NVM settings will configure LPLU in D3 for
745	 * non-IGP1 PHYs.
746	 */
747	if (phy->type == e1000_phy_igp) {
748		/* disable lplu d3 during driver init */
749		if (phy->ops.set_d3_lplu_state)
750			ret_val = phy->ops.set_d3_lplu_state(hw, false);
751		if (ret_val) {
752			hw_dbg("Error Disabling LPLU D3\n");
753			goto out;
754		}
755	}
756
757	/* disable lplu d0 during driver init */
758	ret_val = phy->ops.set_d0_lplu_state(hw, false);
759	if (ret_val) {
760		hw_dbg("Error Disabling LPLU D0\n");
761		goto out;
762	}
763	/* Configure mdi-mdix settings */
764	ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CTRL, &data);
765	if (ret_val)
766		goto out;
767
768	data &= ~IGP01E1000_PSCR_AUTO_MDIX;
769
770	switch (phy->mdix) {
771	case 1:
772		data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
773		break;
774	case 2:
775		data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
776		break;
777	case 0:
778	default:
779		data |= IGP01E1000_PSCR_AUTO_MDIX;
780		break;
781	}
782	ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CTRL, data);
783	if (ret_val)
784		goto out;
785
786	/* set auto-master slave resolution settings */
787	if (hw->mac.autoneg) {
788		/* when autonegotiation advertisement is only 1000Mbps then we
789		 * should disable SmartSpeed and enable Auto MasterSlave
790		 * resolution as hardware default.
791		 */
792		if (phy->autoneg_advertised == ADVERTISE_1000_FULL) {
793			/* Disable SmartSpeed */
794			ret_val = phy->ops.read_reg(hw,
795						    IGP01E1000_PHY_PORT_CONFIG,
796						    &data);
797			if (ret_val)
798				goto out;
799
800			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
801			ret_val = phy->ops.write_reg(hw,
802						     IGP01E1000_PHY_PORT_CONFIG,
803						     data);
804			if (ret_val)
805				goto out;
806
807			/* Set auto Master/Slave resolution process */
808			ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL, &data);
809			if (ret_val)
810				goto out;
811
812			data &= ~CR_1000T_MS_ENABLE;
813			ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL, data);
814			if (ret_val)
815				goto out;
816		}
817
818		ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL, &data);
819		if (ret_val)
820			goto out;
821
822		/* load defaults for future use */
823		phy->original_ms_type = (data & CR_1000T_MS_ENABLE) ?
824			((data & CR_1000T_MS_VALUE) ?
825			e1000_ms_force_master :
826			e1000_ms_force_slave) :
827			e1000_ms_auto;
828
829		switch (phy->ms_type) {
830		case e1000_ms_force_master:
831			data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
832			break;
833		case e1000_ms_force_slave:
834			data |= CR_1000T_MS_ENABLE;
835			data &= ~(CR_1000T_MS_VALUE);
836			break;
837		case e1000_ms_auto:
838			data &= ~CR_1000T_MS_ENABLE;
839			break;
840		default:
841			break;
842		}
843		ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL, data);
844		if (ret_val)
845			goto out;
846	}
847
848out:
849	return ret_val;
850}
851
852/**
853 *  igb_copper_link_autoneg - Setup/Enable autoneg for copper link
854 *  @hw: pointer to the HW structure
855 *
856 *  Performs initial bounds checking on autoneg advertisement parameter, then
857 *  configure to advertise the full capability.  Setup the PHY to autoneg
858 *  and restart the negotiation process between the link partner.  If
859 *  autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
860 **/
861static s32 igb_copper_link_autoneg(struct e1000_hw *hw)
862{
863	struct e1000_phy_info *phy = &hw->phy;
864	s32 ret_val;
865	u16 phy_ctrl;
866
867	/* Perform some bounds checking on the autoneg advertisement
868	 * parameter.
869	 */
870	phy->autoneg_advertised &= phy->autoneg_mask;
871
872	/* If autoneg_advertised is zero, we assume it was not defaulted
873	 * by the calling code so we set to advertise full capability.
874	 */
875	if (phy->autoneg_advertised == 0)
876		phy->autoneg_advertised = phy->autoneg_mask;
877
878	hw_dbg("Reconfiguring auto-neg advertisement params\n");
879	ret_val = igb_phy_setup_autoneg(hw);
880	if (ret_val) {
881		hw_dbg("Error Setting up Auto-Negotiation\n");
882		goto out;
883	}
884	hw_dbg("Restarting Auto-Neg\n");
885
886	/* Restart auto-negotiation by setting the Auto Neg Enable bit and
887	 * the Auto Neg Restart bit in the PHY control register.
888	 */
889	ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_ctrl);
890	if (ret_val)
891		goto out;
892
893	phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
894	ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_ctrl);
895	if (ret_val)
896		goto out;
897
898	/* Does the user want to wait for Auto-Neg to complete here, or
899	 * check at a later time (for example, callback routine).
900	 */
901	if (phy->autoneg_wait_to_complete) {
902		ret_val = igb_wait_autoneg(hw);
903		if (ret_val) {
904			hw_dbg("Error while waiting for autoneg to complete\n");
905			goto out;
906		}
907	}
908
909	hw->mac.get_link_status = true;
910
911out:
912	return ret_val;
913}
914
915/**
916 *  igb_phy_setup_autoneg - Configure PHY for auto-negotiation
917 *  @hw: pointer to the HW structure
918 *
919 *  Reads the MII auto-neg advertisement register and/or the 1000T control
920 *  register and if the PHY is already setup for auto-negotiation, then
921 *  return successful.  Otherwise, setup advertisement and flow control to
922 *  the appropriate values for the wanted auto-negotiation.
923 **/
924static s32 igb_phy_setup_autoneg(struct e1000_hw *hw)
925{
926	struct e1000_phy_info *phy = &hw->phy;
927	s32 ret_val;
928	u16 mii_autoneg_adv_reg;
929	u16 mii_1000t_ctrl_reg = 0;
930
931	phy->autoneg_advertised &= phy->autoneg_mask;
932
933	/* Read the MII Auto-Neg Advertisement Register (Address 4). */
934	ret_val = phy->ops.read_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
935	if (ret_val)
936		goto out;
937
938	if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
939		/* Read the MII 1000Base-T Control Register (Address 9). */
940		ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL,
941					    &mii_1000t_ctrl_reg);
942		if (ret_val)
943			goto out;
944	}
945
946	/* Need to parse both autoneg_advertised and fc and set up
947	 * the appropriate PHY registers.  First we will parse for
948	 * autoneg_advertised software override.  Since we can advertise
949	 * a plethora of combinations, we need to check each bit
950	 * individually.
951	 */
952
953	/* First we clear all the 10/100 mb speed bits in the Auto-Neg
954	 * Advertisement Register (Address 4) and the 1000 mb speed bits in
955	 * the  1000Base-T Control Register (Address 9).
956	 */
957	mii_autoneg_adv_reg &= ~(NWAY_AR_100TX_FD_CAPS |
958				 NWAY_AR_100TX_HD_CAPS |
959				 NWAY_AR_10T_FD_CAPS   |
960				 NWAY_AR_10T_HD_CAPS);
961	mii_1000t_ctrl_reg &= ~(CR_1000T_HD_CAPS | CR_1000T_FD_CAPS);
962
963	hw_dbg("autoneg_advertised %x\n", phy->autoneg_advertised);
964
965	/* Do we want to advertise 10 Mb Half Duplex? */
966	if (phy->autoneg_advertised & ADVERTISE_10_HALF) {
967		hw_dbg("Advertise 10mb Half duplex\n");
968		mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
969	}
970
971	/* Do we want to advertise 10 Mb Full Duplex? */
972	if (phy->autoneg_advertised & ADVERTISE_10_FULL) {
973		hw_dbg("Advertise 10mb Full duplex\n");
974		mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
975	}
976
977	/* Do we want to advertise 100 Mb Half Duplex? */
978	if (phy->autoneg_advertised & ADVERTISE_100_HALF) {
979		hw_dbg("Advertise 100mb Half duplex\n");
980		mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
981	}
982
983	/* Do we want to advertise 100 Mb Full Duplex? */
984	if (phy->autoneg_advertised & ADVERTISE_100_FULL) {
985		hw_dbg("Advertise 100mb Full duplex\n");
986		mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
987	}
988
989	/* We do not allow the Phy to advertise 1000 Mb Half Duplex */
990	if (phy->autoneg_advertised & ADVERTISE_1000_HALF)
991		hw_dbg("Advertise 1000mb Half duplex request denied!\n");
992
993	/* Do we want to advertise 1000 Mb Full Duplex? */
994	if (phy->autoneg_advertised & ADVERTISE_1000_FULL) {
995		hw_dbg("Advertise 1000mb Full duplex\n");
996		mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
997	}
998
999	/* Check for a software override of the flow control settings, and
1000	 * setup the PHY advertisement registers accordingly.  If
1001	 * auto-negotiation is enabled, then software will have to set the
1002	 * "PAUSE" bits to the correct value in the Auto-Negotiation
1003	 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-
1004	 * negotiation.
1005	 *
1006	 * The possible values of the "fc" parameter are:
1007	 *      0:  Flow control is completely disabled
1008	 *      1:  Rx flow control is enabled (we can receive pause frames
1009	 *          but not send pause frames).
1010	 *      2:  Tx flow control is enabled (we can send pause frames
1011	 *          but we do not support receiving pause frames).
1012	 *      3:  Both Rx and TX flow control (symmetric) are enabled.
1013	 *  other:  No software override.  The flow control configuration
1014	 *          in the EEPROM is used.
1015	 */
1016	switch (hw->fc.current_mode) {
1017	case e1000_fc_none:
1018		/* Flow control (RX & TX) is completely disabled by a
1019		 * software over-ride.
1020		 */
1021		mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1022		break;
1023	case e1000_fc_rx_pause:
1024		/* RX Flow control is enabled, and TX Flow control is
1025		 * disabled, by a software over-ride.
1026		 *
1027		 * Since there really isn't a way to advertise that we are
1028		 * capable of RX Pause ONLY, we will advertise that we
1029		 * support both symmetric and asymmetric RX PAUSE.  Later
1030		 * (in e1000_config_fc_after_link_up) we will disable the
1031		 * hw's ability to send PAUSE frames.
1032		 */
1033		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1034		break;
1035	case e1000_fc_tx_pause:
1036		/* TX Flow control is enabled, and RX Flow control is
1037		 * disabled, by a software over-ride.
1038		 */
1039		mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
1040		mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
1041		break;
1042	case e1000_fc_full:
1043		/* Flow control (both RX and TX) is enabled by a software
1044		 * over-ride.
1045		 */
1046		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1047		break;
1048	default:
1049		hw_dbg("Flow control param set incorrectly\n");
1050		ret_val = -E1000_ERR_CONFIG;
1051		goto out;
1052	}
1053
1054	ret_val = phy->ops.write_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
1055	if (ret_val)
1056		goto out;
1057
1058	hw_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
1059
1060	if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
1061		ret_val = phy->ops.write_reg(hw,
1062					     PHY_1000T_CTRL,
1063					     mii_1000t_ctrl_reg);
1064		if (ret_val)
1065			goto out;
1066	}
1067
1068out:
1069	return ret_val;
1070}
1071
1072/**
1073 *  igb_setup_copper_link - Configure copper link settings
1074 *  @hw: pointer to the HW structure
1075 *
1076 *  Calls the appropriate function to configure the link for auto-neg or forced
1077 *  speed and duplex.  Then we check for link, once link is established calls
1078 *  to configure collision distance and flow control are called.  If link is
1079 *  not established, we return -E1000_ERR_PHY (-2).
1080 **/
1081s32 igb_setup_copper_link(struct e1000_hw *hw)
1082{
1083	s32 ret_val;
1084	bool link;
1085
1086	if (hw->mac.autoneg) {
1087		/* Setup autoneg and flow control advertisement and perform
1088		 * autonegotiation.
1089		 */
1090		ret_val = igb_copper_link_autoneg(hw);
1091		if (ret_val)
1092			goto out;
1093	} else {
1094		/* PHY will be set to 10H, 10F, 100H or 100F
1095		 * depending on user settings.
1096		 */
1097		hw_dbg("Forcing Speed and Duplex\n");
1098		ret_val = hw->phy.ops.force_speed_duplex(hw);
1099		if (ret_val) {
1100			hw_dbg("Error Forcing Speed and Duplex\n");
1101			goto out;
1102		}
1103	}
1104
1105	/* Check link status. Wait up to 100 microseconds for link to become
1106	 * valid.
1107	 */
1108	ret_val = igb_phy_has_link(hw, COPPER_LINK_UP_LIMIT, 10, &link);
1109	if (ret_val)
1110		goto out;
1111
1112	if (link) {
1113		hw_dbg("Valid link established!!!\n");
1114		igb_config_collision_dist(hw);
1115		ret_val = igb_config_fc_after_link_up(hw);
1116	} else {
1117		hw_dbg("Unable to establish link!!!\n");
1118	}
1119
1120out:
1121	return ret_val;
1122}
1123
1124/**
1125 *  igb_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY
1126 *  @hw: pointer to the HW structure
1127 *
1128 *  Calls the PHY setup function to force speed and duplex.  Clears the
1129 *  auto-crossover to force MDI manually.  Waits for link and returns
1130 *  successful if link up is successful, else -E1000_ERR_PHY (-2).
1131 **/
1132s32 igb_phy_force_speed_duplex_igp(struct e1000_hw *hw)
1133{
1134	struct e1000_phy_info *phy = &hw->phy;
1135	s32 ret_val;
1136	u16 phy_data;
1137	bool link;
1138
1139	ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
1140	if (ret_val)
1141		goto out;
1142
1143	igb_phy_force_speed_duplex_setup(hw, &phy_data);
1144
1145	ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
1146	if (ret_val)
1147		goto out;
1148
1149	/* Clear Auto-Crossover to force MDI manually.  IGP requires MDI
1150	 * forced whenever speed and duplex are forced.
1151	 */
1152	ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
1153	if (ret_val)
1154		goto out;
1155
1156	phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
1157	phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
1158
1159	ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
1160	if (ret_val)
1161		goto out;
1162
1163	hw_dbg("IGP PSCR: %X\n", phy_data);
1164
1165	udelay(1);
1166
1167	if (phy->autoneg_wait_to_complete) {
1168		hw_dbg("Waiting for forced speed/duplex link on IGP phy.\n");
1169
1170		ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 10000, &link);
1171		if (ret_val)
1172			goto out;
1173
1174		if (!link)
1175			hw_dbg("Link taking longer than expected.\n");
1176
1177		/* Try once more */
1178		ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 10000, &link);
1179		if (ret_val)
1180			goto out;
1181	}
1182
1183out:
1184	return ret_val;
1185}
1186
1187/**
1188 *  igb_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY
1189 *  @hw: pointer to the HW structure
1190 *
1191 *  Calls the PHY setup function to force speed and duplex.  Clears the
1192 *  auto-crossover to force MDI manually.  Resets the PHY to commit the
1193 *  changes.  If time expires while waiting for link up, we reset the DSP.
1194 *  After reset, TX_CLK and CRS on TX must be set.  Return successful upon
1195 *  successful completion, else return corresponding error code.
1196 **/
1197s32 igb_phy_force_speed_duplex_m88(struct e1000_hw *hw)
1198{
1199	struct e1000_phy_info *phy = &hw->phy;
1200	s32 ret_val;
1201	u16 phy_data;
1202	bool link;
1203
1204	/* I210 and I211 devices support Auto-Crossover in forced operation. */
1205	if (phy->type != e1000_phy_i210) {
1206		/* Clear Auto-Crossover to force MDI manually.  M88E1000
1207		 * requires MDI forced whenever speed and duplex are forced.
1208		 */
1209		ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL,
1210					    &phy_data);
1211		if (ret_val)
1212			goto out;
1213
1214		phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1215		ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL,
1216					     phy_data);
1217		if (ret_val)
1218			goto out;
1219
1220		hw_dbg("M88E1000 PSCR: %X\n", phy_data);
1221	}
1222
1223	ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
1224	if (ret_val)
1225		goto out;
1226
1227	igb_phy_force_speed_duplex_setup(hw, &phy_data);
1228
1229	ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
1230	if (ret_val)
1231		goto out;
1232
1233	/* Reset the phy to commit changes. */
1234	ret_val = igb_phy_sw_reset(hw);
1235	if (ret_val)
1236		goto out;
1237
1238	if (phy->autoneg_wait_to_complete) {
1239		hw_dbg("Waiting for forced speed/duplex link on M88 phy.\n");
1240
1241		ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 100000, &link);
1242		if (ret_val)
1243			goto out;
1244
1245		if (!link) {
1246			bool reset_dsp = true;
1247
1248			switch (hw->phy.id) {
1249			case I347AT4_E_PHY_ID:
1250			case M88E1112_E_PHY_ID:
1251			case M88E1543_E_PHY_ID:
1252			case M88E1512_E_PHY_ID:
1253			case I210_I_PHY_ID:
1254				reset_dsp = false;
1255				break;
1256			default:
1257				if (hw->phy.type != e1000_phy_m88)
1258					reset_dsp = false;
1259				break;
1260			}
1261			if (!reset_dsp) {
1262				hw_dbg("Link taking longer than expected.\n");
1263			} else {
1264				/* We didn't get link.
1265				 * Reset the DSP and cross our fingers.
1266				 */
1267				ret_val = phy->ops.write_reg(hw,
1268						M88E1000_PHY_PAGE_SELECT,
1269						0x001d);
1270				if (ret_val)
1271					goto out;
1272				ret_val = igb_phy_reset_dsp(hw);
1273				if (ret_val)
1274					goto out;
1275			}
1276		}
1277
1278		/* Try once more */
1279		ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT,
1280					   100000, &link);
1281		if (ret_val)
1282			goto out;
1283	}
1284
1285	if (hw->phy.type != e1000_phy_m88 ||
1286	    hw->phy.id == I347AT4_E_PHY_ID ||
1287	    hw->phy.id == M88E1112_E_PHY_ID ||
1288	    hw->phy.id == M88E1543_E_PHY_ID ||
1289	    hw->phy.id == M88E1512_E_PHY_ID ||
1290	    hw->phy.id == I210_I_PHY_ID)
1291		goto out;
1292
1293	ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
1294	if (ret_val)
1295		goto out;
1296
1297	/* Resetting the phy means we need to re-force TX_CLK in the
1298	 * Extended PHY Specific Control Register to 25MHz clock from
1299	 * the reset value of 2.5MHz.
1300	 */
1301	phy_data |= M88E1000_EPSCR_TX_CLK_25;
1302	ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
1303	if (ret_val)
1304		goto out;
1305
1306	/* In addition, we must re-enable CRS on Tx for both half and full
1307	 * duplex.
1308	 */
1309	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1310	if (ret_val)
1311		goto out;
1312
1313	phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1314	ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1315
1316out:
1317	return ret_val;
1318}
1319
1320/**
1321 *  igb_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex
1322 *  @hw: pointer to the HW structure
1323 *  @phy_ctrl: pointer to current value of PHY_CONTROL
1324 *
1325 *  Forces speed and duplex on the PHY by doing the following: disable flow
1326 *  control, force speed/duplex on the MAC, disable auto speed detection,
1327 *  disable auto-negotiation, configure duplex, configure speed, configure
1328 *  the collision distance, write configuration to CTRL register.  The
1329 *  caller must write to the PHY_CONTROL register for these settings to
1330 *  take affect.
1331 **/
1332static void igb_phy_force_speed_duplex_setup(struct e1000_hw *hw,
1333					     u16 *phy_ctrl)
1334{
1335	struct e1000_mac_info *mac = &hw->mac;
1336	u32 ctrl;
1337
1338	/* Turn off flow control when forcing speed/duplex */
1339	hw->fc.current_mode = e1000_fc_none;
1340
1341	/* Force speed/duplex on the mac */
1342	ctrl = rd32(E1000_CTRL);
1343	ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1344	ctrl &= ~E1000_CTRL_SPD_SEL;
1345
1346	/* Disable Auto Speed Detection */
1347	ctrl &= ~E1000_CTRL_ASDE;
1348
1349	/* Disable autoneg on the phy */
1350	*phy_ctrl &= ~MII_CR_AUTO_NEG_EN;
1351
1352	/* Forcing Full or Half Duplex? */
1353	if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) {
1354		ctrl &= ~E1000_CTRL_FD;
1355		*phy_ctrl &= ~MII_CR_FULL_DUPLEX;
1356		hw_dbg("Half Duplex\n");
1357	} else {
1358		ctrl |= E1000_CTRL_FD;
1359		*phy_ctrl |= MII_CR_FULL_DUPLEX;
1360		hw_dbg("Full Duplex\n");
1361	}
1362
1363	/* Forcing 10mb or 100mb? */
1364	if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) {
1365		ctrl |= E1000_CTRL_SPD_100;
1366		*phy_ctrl |= MII_CR_SPEED_100;
1367		*phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
1368		hw_dbg("Forcing 100mb\n");
1369	} else {
1370		ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1371		*phy_ctrl |= MII_CR_SPEED_10;
1372		*phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
1373		hw_dbg("Forcing 10mb\n");
1374	}
1375
1376	igb_config_collision_dist(hw);
1377
1378	wr32(E1000_CTRL, ctrl);
1379}
1380
1381/**
1382 *  igb_set_d3_lplu_state - Sets low power link up state for D3
1383 *  @hw: pointer to the HW structure
1384 *  @active: boolean used to enable/disable lplu
1385 *
1386 *  Success returns 0, Failure returns 1
1387 *
1388 *  The low power link up (lplu) state is set to the power management level D3
1389 *  and SmartSpeed is disabled when active is true, else clear lplu for D3
1390 *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1391 *  is used during Dx states where the power conservation is most important.
1392 *  During driver activity, SmartSpeed should be enabled so performance is
1393 *  maintained.
1394 **/
1395s32 igb_set_d3_lplu_state(struct e1000_hw *hw, bool active)
1396{
1397	struct e1000_phy_info *phy = &hw->phy;
1398	s32 ret_val = 0;
1399	u16 data;
1400
1401	if (!(hw->phy.ops.read_reg))
1402		goto out;
1403
1404	ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
1405	if (ret_val)
1406		goto out;
1407
1408	if (!active) {
1409		data &= ~IGP02E1000_PM_D3_LPLU;
1410		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
1411					     data);
1412		if (ret_val)
1413			goto out;
1414		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1415		 * during Dx states where the power conservation is most
1416		 * important.  During driver activity we should enable
1417		 * SmartSpeed, so performance is maintained.
1418		 */
1419		if (phy->smart_speed == e1000_smart_speed_on) {
1420			ret_val = phy->ops.read_reg(hw,
1421						    IGP01E1000_PHY_PORT_CONFIG,
1422						    &data);
1423			if (ret_val)
1424				goto out;
1425
1426			data |= IGP01E1000_PSCFR_SMART_SPEED;
1427			ret_val = phy->ops.write_reg(hw,
1428						     IGP01E1000_PHY_PORT_CONFIG,
1429						     data);
1430			if (ret_val)
1431				goto out;
1432		} else if (phy->smart_speed == e1000_smart_speed_off) {
1433			ret_val = phy->ops.read_reg(hw,
1434						     IGP01E1000_PHY_PORT_CONFIG,
1435						     &data);
1436			if (ret_val)
1437				goto out;
1438
1439			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1440			ret_val = phy->ops.write_reg(hw,
1441						     IGP01E1000_PHY_PORT_CONFIG,
1442						     data);
1443			if (ret_val)
1444				goto out;
1445		}
1446	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1447		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1448		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1449		data |= IGP02E1000_PM_D3_LPLU;
1450		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
1451					      data);
1452		if (ret_val)
1453			goto out;
1454
1455		/* When LPLU is enabled, we should disable SmartSpeed */
1456		ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
1457					    &data);
1458		if (ret_val)
1459			goto out;
1460
1461		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1462		ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
1463					     data);
1464	}
1465
1466out:
1467	return ret_val;
1468}
1469
1470/**
1471 *  igb_check_downshift - Checks whether a downshift in speed occurred
1472 *  @hw: pointer to the HW structure
1473 *
1474 *  Success returns 0, Failure returns 1
1475 *
1476 *  A downshift is detected by querying the PHY link health.
1477 **/
1478s32 igb_check_downshift(struct e1000_hw *hw)
1479{
1480	struct e1000_phy_info *phy = &hw->phy;
1481	s32 ret_val;
1482	u16 phy_data, offset, mask;
1483
1484	switch (phy->type) {
1485	case e1000_phy_i210:
1486	case e1000_phy_m88:
1487	case e1000_phy_gg82563:
1488		offset	= M88E1000_PHY_SPEC_STATUS;
1489		mask	= M88E1000_PSSR_DOWNSHIFT;
1490		break;
1491	case e1000_phy_igp_2:
1492	case e1000_phy_igp:
1493	case e1000_phy_igp_3:
1494		offset	= IGP01E1000_PHY_LINK_HEALTH;
1495		mask	= IGP01E1000_PLHR_SS_DOWNGRADE;
1496		break;
1497	default:
1498		/* speed downshift not supported */
1499		phy->speed_downgraded = false;
1500		ret_val = 0;
1501		goto out;
1502	}
1503
1504	ret_val = phy->ops.read_reg(hw, offset, &phy_data);
1505
1506	if (!ret_val)
1507		phy->speed_downgraded = (phy_data & mask) ? true : false;
1508
1509out:
1510	return ret_val;
1511}
1512
1513/**
1514 *  igb_check_polarity_m88 - Checks the polarity.
1515 *  @hw: pointer to the HW structure
1516 *
1517 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1518 *
1519 *  Polarity is determined based on the PHY specific status register.
1520 **/
1521s32 igb_check_polarity_m88(struct e1000_hw *hw)
1522{
1523	struct e1000_phy_info *phy = &hw->phy;
1524	s32 ret_val;
1525	u16 data;
1526
1527	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &data);
1528
1529	if (!ret_val)
1530		phy->cable_polarity = (data & M88E1000_PSSR_REV_POLARITY)
1531				      ? e1000_rev_polarity_reversed
1532				      : e1000_rev_polarity_normal;
1533
1534	return ret_val;
1535}
1536
1537/**
1538 *  igb_check_polarity_igp - Checks the polarity.
1539 *  @hw: pointer to the HW structure
1540 *
1541 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1542 *
1543 *  Polarity is determined based on the PHY port status register, and the
1544 *  current speed (since there is no polarity at 100Mbps).
1545 **/
1546static s32 igb_check_polarity_igp(struct e1000_hw *hw)
1547{
1548	struct e1000_phy_info *phy = &hw->phy;
1549	s32 ret_val;
1550	u16 data, offset, mask;
1551
1552	/* Polarity is determined based on the speed of
1553	 * our connection.
1554	 */
1555	ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_STATUS, &data);
1556	if (ret_val)
1557		goto out;
1558
1559	if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
1560	    IGP01E1000_PSSR_SPEED_1000MBPS) {
1561		offset	= IGP01E1000_PHY_PCS_INIT_REG;
1562		mask	= IGP01E1000_PHY_POLARITY_MASK;
1563	} else {
1564		/* This really only applies to 10Mbps since
1565		 * there is no polarity for 100Mbps (always 0).
1566		 */
1567		offset	= IGP01E1000_PHY_PORT_STATUS;
1568		mask	= IGP01E1000_PSSR_POLARITY_REVERSED;
1569	}
1570
1571	ret_val = phy->ops.read_reg(hw, offset, &data);
1572
1573	if (!ret_val)
1574		phy->cable_polarity = (data & mask)
1575				      ? e1000_rev_polarity_reversed
1576				      : e1000_rev_polarity_normal;
1577
1578out:
1579	return ret_val;
1580}
1581
1582/**
1583 *  igb_wait_autoneg - Wait for auto-neg completion
1584 *  @hw: pointer to the HW structure
1585 *
1586 *  Waits for auto-negotiation to complete or for the auto-negotiation time
1587 *  limit to expire, which ever happens first.
1588 **/
1589static s32 igb_wait_autoneg(struct e1000_hw *hw)
1590{
1591	s32 ret_val = 0;
1592	u16 i, phy_status;
1593
1594	/* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
1595	for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) {
1596		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
1597		if (ret_val)
1598			break;
1599		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
1600		if (ret_val)
1601			break;
1602		if (phy_status & MII_SR_AUTONEG_COMPLETE)
1603			break;
1604		msleep(100);
1605	}
1606
1607	/* PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
1608	 * has completed.
1609	 */
1610	return ret_val;
1611}
1612
1613/**
1614 *  igb_phy_has_link - Polls PHY for link
1615 *  @hw: pointer to the HW structure
1616 *  @iterations: number of times to poll for link
1617 *  @usec_interval: delay between polling attempts
1618 *  @success: pointer to whether polling was successful or not
1619 *
1620 *  Polls the PHY status register for link, 'iterations' number of times.
1621 **/
1622s32 igb_phy_has_link(struct e1000_hw *hw, u32 iterations,
1623		     u32 usec_interval, bool *success)
1624{
1625	s32 ret_val = 0;
1626	u16 i, phy_status;
1627
1628	for (i = 0; i < iterations; i++) {
1629		/* Some PHYs require the PHY_STATUS register to be read
1630		 * twice due to the link bit being sticky.  No harm doing
1631		 * it across the board.
1632		 */
1633		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
1634		if (ret_val && usec_interval > 0) {
1635			/* If the first read fails, another entity may have
1636			 * ownership of the resources, wait and try again to
1637			 * see if they have relinquished the resources yet.
1638			 */
1639			if (usec_interval >= 1000)
1640				mdelay(usec_interval/1000);
1641			else
1642				udelay(usec_interval);
1643		}
1644		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
1645		if (ret_val)
1646			break;
1647		if (phy_status & MII_SR_LINK_STATUS)
1648			break;
1649		if (usec_interval >= 1000)
1650			mdelay(usec_interval/1000);
1651		else
1652			udelay(usec_interval);
1653	}
1654
1655	*success = (i < iterations) ? true : false;
1656
1657	return ret_val;
1658}
1659
1660/**
1661 *  igb_get_cable_length_m88 - Determine cable length for m88 PHY
1662 *  @hw: pointer to the HW structure
1663 *
1664 *  Reads the PHY specific status register to retrieve the cable length
1665 *  information.  The cable length is determined by averaging the minimum and
1666 *  maximum values to get the "average" cable length.  The m88 PHY has four
1667 *  possible cable length values, which are:
1668 *	Register Value		Cable Length
1669 *	0			< 50 meters
1670 *	1			50 - 80 meters
1671 *	2			80 - 110 meters
1672 *	3			110 - 140 meters
1673 *	4			> 140 meters
1674 **/
1675s32 igb_get_cable_length_m88(struct e1000_hw *hw)
1676{
1677	struct e1000_phy_info *phy = &hw->phy;
1678	s32 ret_val;
1679	u16 phy_data, index;
1680
1681	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1682	if (ret_val)
1683		goto out;
1684
1685	index = FIELD_GET(M88E1000_PSSR_CABLE_LENGTH, phy_data);
1686	if (index >= ARRAY_SIZE(e1000_m88_cable_length_table) - 1) {
1687		ret_val = -E1000_ERR_PHY;
1688		goto out;
1689	}
1690
1691	phy->min_cable_length = e1000_m88_cable_length_table[index];
1692	phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
1693
1694	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1695
1696out:
1697	return ret_val;
1698}
1699
1700s32 igb_get_cable_length_m88_gen2(struct e1000_hw *hw)
1701{
1702	struct e1000_phy_info *phy = &hw->phy;
1703	s32 ret_val;
1704	u16 phy_data, phy_data2, index, default_page, is_cm;
1705	int len_tot = 0;
1706	u16 len_min;
1707	u16 len_max;
1708
1709	switch (hw->phy.id) {
1710	case M88E1543_E_PHY_ID:
1711	case M88E1512_E_PHY_ID:
1712	case I347AT4_E_PHY_ID:
1713	case I210_I_PHY_ID:
1714		/* Remember the original page select and set it to 7 */
1715		ret_val = phy->ops.read_reg(hw, I347AT4_PAGE_SELECT,
1716					    &default_page);
1717		if (ret_val)
1718			goto out;
1719
1720		ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, 0x07);
1721		if (ret_val)
1722			goto out;
1723
1724		/* Check if the unit of cable length is meters or cm */
1725		ret_val = phy->ops.read_reg(hw, I347AT4_PCDC, &phy_data2);
1726		if (ret_val)
1727			goto out;
1728
1729		is_cm = !(phy_data2 & I347AT4_PCDC_CABLE_LENGTH_UNIT);
1730
1731		/* Get cable length from Pair 0 length Regs */
1732		ret_val = phy->ops.read_reg(hw, I347AT4_PCDL0, &phy_data);
1733		if (ret_val)
1734			goto out;
1735
1736		phy->pair_length[0] = phy_data / (is_cm ? 100 : 1);
1737		len_tot = phy->pair_length[0];
1738		len_min = phy->pair_length[0];
1739		len_max = phy->pair_length[0];
1740
1741		/* Get cable length from Pair 1 length Regs */
1742		ret_val = phy->ops.read_reg(hw, I347AT4_PCDL1, &phy_data);
1743		if (ret_val)
1744			goto out;
1745
1746		phy->pair_length[1] = phy_data / (is_cm ? 100 : 1);
1747		len_tot += phy->pair_length[1];
1748		len_min = min(len_min, phy->pair_length[1]);
1749		len_max = max(len_max, phy->pair_length[1]);
1750
1751		/* Get cable length from Pair 2 length Regs */
1752		ret_val = phy->ops.read_reg(hw, I347AT4_PCDL2, &phy_data);
1753		if (ret_val)
1754			goto out;
1755
1756		phy->pair_length[2] = phy_data / (is_cm ? 100 : 1);
1757		len_tot += phy->pair_length[2];
1758		len_min = min(len_min, phy->pair_length[2]);
1759		len_max = max(len_max, phy->pair_length[2]);
1760
1761		/* Get cable length from Pair 3 length Regs */
1762		ret_val = phy->ops.read_reg(hw, I347AT4_PCDL3, &phy_data);
1763		if (ret_val)
1764			goto out;
1765
1766		phy->pair_length[3] = phy_data / (is_cm ? 100 : 1);
1767		len_tot += phy->pair_length[3];
1768		len_min = min(len_min, phy->pair_length[3]);
1769		len_max = max(len_max, phy->pair_length[3]);
1770
1771		/* Populate the phy structure with cable length in meters */
1772		phy->min_cable_length = len_min;
1773		phy->max_cable_length = len_max;
1774		phy->cable_length = len_tot / 4;
1775
1776		/* Reset the page selec to its original value */
1777		ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT,
1778					     default_page);
1779		if (ret_val)
1780			goto out;
1781		break;
1782	case M88E1112_E_PHY_ID:
1783		/* Remember the original page select and set it to 5 */
1784		ret_val = phy->ops.read_reg(hw, I347AT4_PAGE_SELECT,
1785					    &default_page);
1786		if (ret_val)
1787			goto out;
1788
1789		ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, 0x05);
1790		if (ret_val)
1791			goto out;
1792
1793		ret_val = phy->ops.read_reg(hw, M88E1112_VCT_DSP_DISTANCE,
1794					    &phy_data);
1795		if (ret_val)
1796			goto out;
1797
1798		index = FIELD_GET(M88E1000_PSSR_CABLE_LENGTH, phy_data);
1799		if (index >= ARRAY_SIZE(e1000_m88_cable_length_table) - 1) {
1800			ret_val = -E1000_ERR_PHY;
1801			goto out;
1802		}
1803
1804		phy->min_cable_length = e1000_m88_cable_length_table[index];
1805		phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
1806
1807		phy->cable_length = (phy->min_cable_length +
1808				     phy->max_cable_length) / 2;
1809
1810		/* Reset the page select to its original value */
1811		ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT,
1812					     default_page);
1813		if (ret_val)
1814			goto out;
1815
1816		break;
1817	default:
1818		ret_val = -E1000_ERR_PHY;
1819		goto out;
1820	}
1821
1822out:
1823	return ret_val;
1824}
1825
1826/**
1827 *  igb_get_cable_length_igp_2 - Determine cable length for igp2 PHY
1828 *  @hw: pointer to the HW structure
1829 *
1830 *  The automatic gain control (agc) normalizes the amplitude of the
1831 *  received signal, adjusting for the attenuation produced by the
1832 *  cable.  By reading the AGC registers, which represent the
1833 *  combination of coarse and fine gain value, the value can be put
1834 *  into a lookup table to obtain the approximate cable length
1835 *  for each channel.
1836 **/
1837s32 igb_get_cable_length_igp_2(struct e1000_hw *hw)
1838{
1839	struct e1000_phy_info *phy = &hw->phy;
1840	s32 ret_val = 0;
1841	u16 phy_data, i, agc_value = 0;
1842	u16 cur_agc_index, max_agc_index = 0;
1843	u16 min_agc_index = ARRAY_SIZE(e1000_igp_2_cable_length_table) - 1;
1844	static const u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] = {
1845		IGP02E1000_PHY_AGC_A,
1846		IGP02E1000_PHY_AGC_B,
1847		IGP02E1000_PHY_AGC_C,
1848		IGP02E1000_PHY_AGC_D
1849	};
1850
1851	/* Read the AGC registers for all channels */
1852	for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
1853		ret_val = phy->ops.read_reg(hw, agc_reg_array[i], &phy_data);
1854		if (ret_val)
1855			goto out;
1856
1857		/* Getting bits 15:9, which represent the combination of
1858		 * coarse and fine gain values.  The result is a number
1859		 * that can be put into the lookup table to obtain the
1860		 * approximate cable length.
1861		 */
1862		cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
1863				IGP02E1000_AGC_LENGTH_MASK;
1864
1865		/* Array index bound check. */
1866		if ((cur_agc_index >= ARRAY_SIZE(e1000_igp_2_cable_length_table)) ||
1867		    (cur_agc_index == 0)) {
1868			ret_val = -E1000_ERR_PHY;
1869			goto out;
1870		}
1871
1872		/* Remove min & max AGC values from calculation. */
1873		if (e1000_igp_2_cable_length_table[min_agc_index] >
1874		    e1000_igp_2_cable_length_table[cur_agc_index])
1875			min_agc_index = cur_agc_index;
1876		if (e1000_igp_2_cable_length_table[max_agc_index] <
1877		    e1000_igp_2_cable_length_table[cur_agc_index])
1878			max_agc_index = cur_agc_index;
1879
1880		agc_value += e1000_igp_2_cable_length_table[cur_agc_index];
1881	}
1882
1883	agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] +
1884		      e1000_igp_2_cable_length_table[max_agc_index]);
1885	agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);
1886
1887	/* Calculate cable length with the error range of +/- 10 meters. */
1888	phy->min_cable_length = ((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
1889				 (agc_value - IGP02E1000_AGC_RANGE) : 0;
1890	phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE;
1891
1892	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1893
1894out:
1895	return ret_val;
1896}
1897
1898/**
1899 *  igb_get_phy_info_m88 - Retrieve PHY information
1900 *  @hw: pointer to the HW structure
1901 *
1902 *  Valid for only copper links.  Read the PHY status register (sticky read)
1903 *  to verify that link is up.  Read the PHY special control register to
1904 *  determine the polarity and 10base-T extended distance.  Read the PHY
1905 *  special status register to determine MDI/MDIx and current speed.  If
1906 *  speed is 1000, then determine cable length, local and remote receiver.
1907 **/
1908s32 igb_get_phy_info_m88(struct e1000_hw *hw)
1909{
1910	struct e1000_phy_info *phy = &hw->phy;
1911	s32  ret_val;
1912	u16 phy_data;
1913	bool link;
1914
1915	if (phy->media_type != e1000_media_type_copper) {
1916		hw_dbg("Phy info is only valid for copper media\n");
1917		ret_val = -E1000_ERR_CONFIG;
1918		goto out;
1919	}
1920
1921	ret_val = igb_phy_has_link(hw, 1, 0, &link);
1922	if (ret_val)
1923		goto out;
1924
1925	if (!link) {
1926		hw_dbg("Phy info is only valid if link is up\n");
1927		ret_val = -E1000_ERR_CONFIG;
1928		goto out;
1929	}
1930
1931	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1932	if (ret_val)
1933		goto out;
1934
1935	phy->polarity_correction = (phy_data & M88E1000_PSCR_POLARITY_REVERSAL)
1936				   ? true : false;
1937
1938	ret_val = igb_check_polarity_m88(hw);
1939	if (ret_val)
1940		goto out;
1941
1942	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1943	if (ret_val)
1944		goto out;
1945
1946	phy->is_mdix = (phy_data & M88E1000_PSSR_MDIX) ? true : false;
1947
1948	if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
1949		ret_val = phy->ops.get_cable_length(hw);
1950		if (ret_val)
1951			goto out;
1952
1953		ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &phy_data);
1954		if (ret_val)
1955			goto out;
1956
1957		phy->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS)
1958				? e1000_1000t_rx_status_ok
1959				: e1000_1000t_rx_status_not_ok;
1960
1961		phy->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS)
1962				 ? e1000_1000t_rx_status_ok
1963				 : e1000_1000t_rx_status_not_ok;
1964	} else {
1965		/* Set values to "undefined" */
1966		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
1967		phy->local_rx = e1000_1000t_rx_status_undefined;
1968		phy->remote_rx = e1000_1000t_rx_status_undefined;
1969	}
1970
1971out:
1972	return ret_val;
1973}
1974
1975/**
1976 *  igb_get_phy_info_igp - Retrieve igp PHY information
1977 *  @hw: pointer to the HW structure
1978 *
1979 *  Read PHY status to determine if link is up.  If link is up, then
1980 *  set/determine 10base-T extended distance and polarity correction.  Read
1981 *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
1982 *  determine on the cable length, local and remote receiver.
1983 **/
1984s32 igb_get_phy_info_igp(struct e1000_hw *hw)
1985{
1986	struct e1000_phy_info *phy = &hw->phy;
1987	s32 ret_val;
1988	u16 data;
1989	bool link;
1990
1991	ret_val = igb_phy_has_link(hw, 1, 0, &link);
1992	if (ret_val)
1993		goto out;
1994
1995	if (!link) {
1996		hw_dbg("Phy info is only valid if link is up\n");
1997		ret_val = -E1000_ERR_CONFIG;
1998		goto out;
1999	}
2000
2001	phy->polarity_correction = true;
2002
2003	ret_val = igb_check_polarity_igp(hw);
2004	if (ret_val)
2005		goto out;
2006
2007	ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_STATUS, &data);
2008	if (ret_val)
2009		goto out;
2010
2011	phy->is_mdix = (data & IGP01E1000_PSSR_MDIX) ? true : false;
2012
2013	if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
2014	    IGP01E1000_PSSR_SPEED_1000MBPS) {
2015		ret_val = phy->ops.get_cable_length(hw);
2016		if (ret_val)
2017			goto out;
2018
2019		ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &data);
2020		if (ret_val)
2021			goto out;
2022
2023		phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
2024				? e1000_1000t_rx_status_ok
2025				: e1000_1000t_rx_status_not_ok;
2026
2027		phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
2028				 ? e1000_1000t_rx_status_ok
2029				 : e1000_1000t_rx_status_not_ok;
2030	} else {
2031		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2032		phy->local_rx = e1000_1000t_rx_status_undefined;
2033		phy->remote_rx = e1000_1000t_rx_status_undefined;
2034	}
2035
2036out:
2037	return ret_val;
2038}
2039
2040/**
2041 *  igb_phy_sw_reset - PHY software reset
2042 *  @hw: pointer to the HW structure
2043 *
2044 *  Does a software reset of the PHY by reading the PHY control register and
2045 *  setting/write the control register reset bit to the PHY.
2046 **/
2047s32 igb_phy_sw_reset(struct e1000_hw *hw)
2048{
2049	s32 ret_val = 0;
2050	u16 phy_ctrl;
2051
2052	if (!(hw->phy.ops.read_reg))
2053		goto out;
2054
2055	ret_val = hw->phy.ops.read_reg(hw, PHY_CONTROL, &phy_ctrl);
2056	if (ret_val)
2057		goto out;
2058
2059	phy_ctrl |= MII_CR_RESET;
2060	ret_val = hw->phy.ops.write_reg(hw, PHY_CONTROL, phy_ctrl);
2061	if (ret_val)
2062		goto out;
2063
2064	udelay(1);
2065
2066out:
2067	return ret_val;
2068}
2069
2070/**
2071 *  igb_phy_hw_reset - PHY hardware reset
2072 *  @hw: pointer to the HW structure
2073 *
2074 *  Verify the reset block is not blocking us from resetting.  Acquire
2075 *  semaphore (if necessary) and read/set/write the device control reset
2076 *  bit in the PHY.  Wait the appropriate delay time for the device to
2077 *  reset and release the semaphore (if necessary).
2078 **/
2079s32 igb_phy_hw_reset(struct e1000_hw *hw)
2080{
2081	struct e1000_phy_info *phy = &hw->phy;
2082	s32  ret_val;
2083	u32 ctrl;
2084
2085	ret_val = igb_check_reset_block(hw);
2086	if (ret_val) {
2087		ret_val = 0;
2088		goto out;
2089	}
2090
2091	ret_val = phy->ops.acquire(hw);
2092	if (ret_val)
2093		goto out;
2094
2095	ctrl = rd32(E1000_CTRL);
2096	wr32(E1000_CTRL, ctrl | E1000_CTRL_PHY_RST);
2097	wrfl();
2098
2099	udelay(phy->reset_delay_us);
2100
2101	wr32(E1000_CTRL, ctrl);
2102	wrfl();
2103
2104	udelay(150);
2105
2106	phy->ops.release(hw);
2107
2108	ret_val = phy->ops.get_cfg_done(hw);
2109
2110out:
2111	return ret_val;
2112}
2113
2114/**
2115 *  igb_phy_init_script_igp3 - Inits the IGP3 PHY
2116 *  @hw: pointer to the HW structure
2117 *
2118 *  Initializes a Intel Gigabit PHY3 when an EEPROM is not present.
2119 **/
2120s32 igb_phy_init_script_igp3(struct e1000_hw *hw)
2121{
2122	hw_dbg("Running IGP 3 PHY init script\n");
2123
2124	/* PHY init IGP 3 */
2125	/* Enable rise/fall, 10-mode work in class-A */
2126	hw->phy.ops.write_reg(hw, 0x2F5B, 0x9018);
2127	/* Remove all caps from Replica path filter */
2128	hw->phy.ops.write_reg(hw, 0x2F52, 0x0000);
2129	/* Bias trimming for ADC, AFE and Driver (Default) */
2130	hw->phy.ops.write_reg(hw, 0x2FB1, 0x8B24);
2131	/* Increase Hybrid poly bias */
2132	hw->phy.ops.write_reg(hw, 0x2FB2, 0xF8F0);
2133	/* Add 4% to TX amplitude in Giga mode */
2134	hw->phy.ops.write_reg(hw, 0x2010, 0x10B0);
2135	/* Disable trimming (TTT) */
2136	hw->phy.ops.write_reg(hw, 0x2011, 0x0000);
2137	/* Poly DC correction to 94.6% + 2% for all channels */
2138	hw->phy.ops.write_reg(hw, 0x20DD, 0x249A);
2139	/* ABS DC correction to 95.9% */
2140	hw->phy.ops.write_reg(hw, 0x20DE, 0x00D3);
2141	/* BG temp curve trim */
2142	hw->phy.ops.write_reg(hw, 0x28B4, 0x04CE);
2143	/* Increasing ADC OPAMP stage 1 currents to max */
2144	hw->phy.ops.write_reg(hw, 0x2F70, 0x29E4);
2145	/* Force 1000 ( required for enabling PHY regs configuration) */
2146	hw->phy.ops.write_reg(hw, 0x0000, 0x0140);
2147	/* Set upd_freq to 6 */
2148	hw->phy.ops.write_reg(hw, 0x1F30, 0x1606);
2149	/* Disable NPDFE */
2150	hw->phy.ops.write_reg(hw, 0x1F31, 0xB814);
2151	/* Disable adaptive fixed FFE (Default) */
2152	hw->phy.ops.write_reg(hw, 0x1F35, 0x002A);
2153	/* Enable FFE hysteresis */
2154	hw->phy.ops.write_reg(hw, 0x1F3E, 0x0067);
2155	/* Fixed FFE for short cable lengths */
2156	hw->phy.ops.write_reg(hw, 0x1F54, 0x0065);
2157	/* Fixed FFE for medium cable lengths */
2158	hw->phy.ops.write_reg(hw, 0x1F55, 0x002A);
2159	/* Fixed FFE for long cable lengths */
2160	hw->phy.ops.write_reg(hw, 0x1F56, 0x002A);
2161	/* Enable Adaptive Clip Threshold */
2162	hw->phy.ops.write_reg(hw, 0x1F72, 0x3FB0);
2163	/* AHT reset limit to 1 */
2164	hw->phy.ops.write_reg(hw, 0x1F76, 0xC0FF);
2165	/* Set AHT master delay to 127 msec */
2166	hw->phy.ops.write_reg(hw, 0x1F77, 0x1DEC);
2167	/* Set scan bits for AHT */
2168	hw->phy.ops.write_reg(hw, 0x1F78, 0xF9EF);
2169	/* Set AHT Preset bits */
2170	hw->phy.ops.write_reg(hw, 0x1F79, 0x0210);
2171	/* Change integ_factor of channel A to 3 */
2172	hw->phy.ops.write_reg(hw, 0x1895, 0x0003);
2173	/* Change prop_factor of channels BCD to 8 */
2174	hw->phy.ops.write_reg(hw, 0x1796, 0x0008);
2175	/* Change cg_icount + enable integbp for channels BCD */
2176	hw->phy.ops.write_reg(hw, 0x1798, 0xD008);
2177	/* Change cg_icount + enable integbp + change prop_factor_master
2178	 * to 8 for channel A
2179	 */
2180	hw->phy.ops.write_reg(hw, 0x1898, 0xD918);
2181	/* Disable AHT in Slave mode on channel A */
2182	hw->phy.ops.write_reg(hw, 0x187A, 0x0800);
2183	/* Enable LPLU and disable AN to 1000 in non-D0a states,
2184	 * Enable SPD+B2B
2185	 */
2186	hw->phy.ops.write_reg(hw, 0x0019, 0x008D);
2187	/* Enable restart AN on an1000_dis change */
2188	hw->phy.ops.write_reg(hw, 0x001B, 0x2080);
2189	/* Enable wh_fifo read clock in 10/100 modes */
2190	hw->phy.ops.write_reg(hw, 0x0014, 0x0045);
2191	/* Restart AN, Speed selection is 1000 */
2192	hw->phy.ops.write_reg(hw, 0x0000, 0x1340);
2193
2194	return 0;
2195}
2196
2197/**
2198 *  igb_initialize_M88E1512_phy - Initialize M88E1512 PHY
2199 *  @hw: pointer to the HW structure
2200 *
2201 *  Initialize Marvel 1512 to work correctly with Avoton.
2202 **/
2203s32 igb_initialize_M88E1512_phy(struct e1000_hw *hw)
2204{
2205	struct e1000_phy_info *phy = &hw->phy;
2206	s32 ret_val = 0;
2207
2208	/* Switch to PHY page 0xFF. */
2209	ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x00FF);
2210	if (ret_val)
2211		goto out;
2212
2213	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0x214B);
2214	if (ret_val)
2215		goto out;
2216
2217	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2144);
2218	if (ret_val)
2219		goto out;
2220
2221	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0x0C28);
2222	if (ret_val)
2223		goto out;
2224
2225	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2146);
2226	if (ret_val)
2227		goto out;
2228
2229	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0xB233);
2230	if (ret_val)
2231		goto out;
2232
2233	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x214D);
2234	if (ret_val)
2235		goto out;
2236
2237	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0xCC0C);
2238	if (ret_val)
2239		goto out;
2240
2241	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2159);
2242	if (ret_val)
2243		goto out;
2244
2245	/* Switch to PHY page 0xFB. */
2246	ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x00FB);
2247	if (ret_val)
2248		goto out;
2249
2250	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_3, 0x000D);
2251	if (ret_val)
2252		goto out;
2253
2254	/* Switch to PHY page 0x12. */
2255	ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x12);
2256	if (ret_val)
2257		goto out;
2258
2259	/* Change mode to SGMII-to-Copper */
2260	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_MODE, 0x8001);
2261	if (ret_val)
2262		goto out;
2263
2264	/* Return the PHY to page 0. */
2265	ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0);
2266	if (ret_val)
2267		goto out;
2268
2269	ret_val = igb_phy_sw_reset(hw);
2270	if (ret_val) {
2271		hw_dbg("Error committing the PHY changes\n");
2272		return ret_val;
2273	}
2274
2275	/* msec_delay(1000); */
2276	usleep_range(1000, 2000);
2277out:
2278	return ret_val;
2279}
2280
2281/**
2282 *  igb_initialize_M88E1543_phy - Initialize M88E1512 PHY
2283 *  @hw: pointer to the HW structure
2284 *
2285 *  Initialize Marvell 1543 to work correctly with Avoton.
2286 **/
2287s32 igb_initialize_M88E1543_phy(struct e1000_hw *hw)
2288{
2289	struct e1000_phy_info *phy = &hw->phy;
2290	s32 ret_val = 0;
2291
2292	/* Switch to PHY page 0xFF. */
2293	ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x00FF);
2294	if (ret_val)
2295		goto out;
2296
2297	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0x214B);
2298	if (ret_val)
2299		goto out;
2300
2301	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2144);
2302	if (ret_val)
2303		goto out;
2304
2305	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0x0C28);
2306	if (ret_val)
2307		goto out;
2308
2309	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2146);
2310	if (ret_val)
2311		goto out;
2312
2313	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0xB233);
2314	if (ret_val)
2315		goto out;
2316
2317	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x214D);
2318	if (ret_val)
2319		goto out;
2320
2321	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0xDC0C);
2322	if (ret_val)
2323		goto out;
2324
2325	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2159);
2326	if (ret_val)
2327		goto out;
2328
2329	/* Switch to PHY page 0xFB. */
2330	ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x00FB);
2331	if (ret_val)
2332		goto out;
2333
2334	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_3, 0x0C0D);
2335	if (ret_val)
2336		goto out;
2337
2338	/* Switch to PHY page 0x12. */
2339	ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x12);
2340	if (ret_val)
2341		goto out;
2342
2343	/* Change mode to SGMII-to-Copper */
2344	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_MODE, 0x8001);
2345	if (ret_val)
2346		goto out;
2347
2348	/* Switch to PHY page 1. */
2349	ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x1);
2350	if (ret_val)
2351		goto out;
2352
2353	/* Change mode to 1000BASE-X/SGMII and autoneg enable */
2354	ret_val = phy->ops.write_reg(hw, E1000_M88E1543_FIBER_CTRL, 0x9140);
2355	if (ret_val)
2356		goto out;
2357
2358	/* Return the PHY to page 0. */
2359	ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0);
2360	if (ret_val)
2361		goto out;
2362
2363	ret_val = igb_phy_sw_reset(hw);
2364	if (ret_val) {
2365		hw_dbg("Error committing the PHY changes\n");
2366		return ret_val;
2367	}
2368
2369	/* msec_delay(1000); */
2370	usleep_range(1000, 2000);
2371out:
2372	return ret_val;
2373}
2374
2375/**
2376 * igb_power_up_phy_copper - Restore copper link in case of PHY power down
2377 * @hw: pointer to the HW structure
2378 *
2379 * In the case of a PHY power down to save power, or to turn off link during a
2380 * driver unload, restore the link to previous settings.
2381 **/
2382void igb_power_up_phy_copper(struct e1000_hw *hw)
2383{
2384	u16 mii_reg = 0;
2385
2386	/* The PHY will retain its settings across a power down/up cycle */
2387	hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg);
2388	mii_reg &= ~MII_CR_POWER_DOWN;
2389	hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg);
2390}
2391
2392/**
2393 * igb_power_down_phy_copper - Power down copper PHY
2394 * @hw: pointer to the HW structure
2395 *
2396 * Power down PHY to save power when interface is down and wake on lan
2397 * is not enabled.
2398 **/
2399void igb_power_down_phy_copper(struct e1000_hw *hw)
2400{
2401	u16 mii_reg = 0;
2402
2403	/* The PHY will retain its settings across a power down/up cycle */
2404	hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg);
2405	mii_reg |= MII_CR_POWER_DOWN;
2406	hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg);
2407	usleep_range(1000, 2000);
2408}
2409
2410/**
2411 *  igb_check_polarity_82580 - Checks the polarity.
2412 *  @hw: pointer to the HW structure
2413 *
2414 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
2415 *
2416 *  Polarity is determined based on the PHY specific status register.
2417 **/
2418static s32 igb_check_polarity_82580(struct e1000_hw *hw)
2419{
2420	struct e1000_phy_info *phy = &hw->phy;
2421	s32 ret_val;
2422	u16 data;
2423
2424
2425	ret_val = phy->ops.read_reg(hw, I82580_PHY_STATUS_2, &data);
2426
2427	if (!ret_val)
2428		phy->cable_polarity = (data & I82580_PHY_STATUS2_REV_POLARITY)
2429				      ? e1000_rev_polarity_reversed
2430				      : e1000_rev_polarity_normal;
2431
2432	return ret_val;
2433}
2434
2435/**
2436 *  igb_phy_force_speed_duplex_82580 - Force speed/duplex for I82580 PHY
2437 *  @hw: pointer to the HW structure
2438 *
2439 *  Calls the PHY setup function to force speed and duplex.  Clears the
2440 *  auto-crossover to force MDI manually.  Waits for link and returns
2441 *  successful if link up is successful, else -E1000_ERR_PHY (-2).
2442 **/
2443s32 igb_phy_force_speed_duplex_82580(struct e1000_hw *hw)
2444{
2445	struct e1000_phy_info *phy = &hw->phy;
2446	s32 ret_val;
2447	u16 phy_data;
2448	bool link;
2449
2450	ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
2451	if (ret_val)
2452		goto out;
2453
2454	igb_phy_force_speed_duplex_setup(hw, &phy_data);
2455
2456	ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
2457	if (ret_val)
2458		goto out;
2459
2460	/* Clear Auto-Crossover to force MDI manually.  82580 requires MDI
2461	 * forced whenever speed and duplex are forced.
2462	 */
2463	ret_val = phy->ops.read_reg(hw, I82580_PHY_CTRL_2, &phy_data);
2464	if (ret_val)
2465		goto out;
2466
2467	phy_data &= ~I82580_PHY_CTRL2_MDIX_CFG_MASK;
2468
2469	ret_val = phy->ops.write_reg(hw, I82580_PHY_CTRL_2, phy_data);
2470	if (ret_val)
2471		goto out;
2472
2473	hw_dbg("I82580_PHY_CTRL_2: %X\n", phy_data);
2474
2475	udelay(1);
2476
2477	if (phy->autoneg_wait_to_complete) {
2478		hw_dbg("Waiting for forced speed/duplex link on 82580 phy\n");
2479
2480		ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 100000, &link);
2481		if (ret_val)
2482			goto out;
2483
2484		if (!link)
2485			hw_dbg("Link taking longer than expected.\n");
2486
2487		/* Try once more */
2488		ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 100000, &link);
2489		if (ret_val)
2490			goto out;
2491	}
2492
2493out:
2494	return ret_val;
2495}
2496
2497/**
2498 *  igb_get_phy_info_82580 - Retrieve I82580 PHY information
2499 *  @hw: pointer to the HW structure
2500 *
2501 *  Read PHY status to determine if link is up.  If link is up, then
2502 *  set/determine 10base-T extended distance and polarity correction.  Read
2503 *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
2504 *  determine on the cable length, local and remote receiver.
2505 **/
2506s32 igb_get_phy_info_82580(struct e1000_hw *hw)
2507{
2508	struct e1000_phy_info *phy = &hw->phy;
2509	s32 ret_val;
2510	u16 data;
2511	bool link;
2512
2513	ret_val = igb_phy_has_link(hw, 1, 0, &link);
2514	if (ret_val)
2515		goto out;
2516
2517	if (!link) {
2518		hw_dbg("Phy info is only valid if link is up\n");
2519		ret_val = -E1000_ERR_CONFIG;
2520		goto out;
2521	}
2522
2523	phy->polarity_correction = true;
2524
2525	ret_val = igb_check_polarity_82580(hw);
2526	if (ret_val)
2527		goto out;
2528
2529	ret_val = phy->ops.read_reg(hw, I82580_PHY_STATUS_2, &data);
2530	if (ret_val)
2531		goto out;
2532
2533	phy->is_mdix = (data & I82580_PHY_STATUS2_MDIX) ? true : false;
2534
2535	if ((data & I82580_PHY_STATUS2_SPEED_MASK) ==
2536	    I82580_PHY_STATUS2_SPEED_1000MBPS) {
2537		ret_val = hw->phy.ops.get_cable_length(hw);
2538		if (ret_val)
2539			goto out;
2540
2541		ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &data);
2542		if (ret_val)
2543			goto out;
2544
2545		phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
2546				? e1000_1000t_rx_status_ok
2547				: e1000_1000t_rx_status_not_ok;
2548
2549		phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
2550				 ? e1000_1000t_rx_status_ok
2551				 : e1000_1000t_rx_status_not_ok;
2552	} else {
2553		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2554		phy->local_rx = e1000_1000t_rx_status_undefined;
2555		phy->remote_rx = e1000_1000t_rx_status_undefined;
2556	}
2557
2558out:
2559	return ret_val;
2560}
2561
2562/**
2563 *  igb_get_cable_length_82580 - Determine cable length for 82580 PHY
2564 *  @hw: pointer to the HW structure
2565 *
2566 * Reads the diagnostic status register and verifies result is valid before
2567 * placing it in the phy_cable_length field.
2568 **/
2569s32 igb_get_cable_length_82580(struct e1000_hw *hw)
2570{
2571	struct e1000_phy_info *phy = &hw->phy;
2572	s32 ret_val;
2573	u16 phy_data, length;
2574
2575	ret_val = phy->ops.read_reg(hw, I82580_PHY_DIAG_STATUS, &phy_data);
2576	if (ret_val)
2577		goto out;
2578
2579	length = FIELD_GET(I82580_DSTATUS_CABLE_LENGTH, phy_data);
2580
2581	if (length == E1000_CABLE_LENGTH_UNDEFINED)
2582		ret_val = -E1000_ERR_PHY;
2583
2584	phy->cable_length = length;
2585
2586out:
2587	return ret_val;
2588}
2589
2590/**
2591 *  igb_set_master_slave_mode - Setup PHY for Master/slave mode
2592 *  @hw: pointer to the HW structure
2593 *
2594 *  Sets up Master/slave mode
2595 **/
2596static s32 igb_set_master_slave_mode(struct e1000_hw *hw)
2597{
2598	s32 ret_val;
2599	u16 phy_data;
2600
2601	/* Resolve Master/Slave mode */
2602	ret_val = hw->phy.ops.read_reg(hw, PHY_1000T_CTRL, &phy_data);
2603	if (ret_val)
2604		return ret_val;
2605
2606	/* load defaults for future use */
2607	hw->phy.original_ms_type = (phy_data & CR_1000T_MS_ENABLE) ?
2608				   ((phy_data & CR_1000T_MS_VALUE) ?
2609				    e1000_ms_force_master :
2610				    e1000_ms_force_slave) : e1000_ms_auto;
2611
2612	switch (hw->phy.ms_type) {
2613	case e1000_ms_force_master:
2614		phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
2615		break;
2616	case e1000_ms_force_slave:
2617		phy_data |= CR_1000T_MS_ENABLE;
2618		phy_data &= ~(CR_1000T_MS_VALUE);
2619		break;
2620	case e1000_ms_auto:
2621		phy_data &= ~CR_1000T_MS_ENABLE;
2622		fallthrough;
2623	default:
2624		break;
2625	}
2626
2627	return hw->phy.ops.write_reg(hw, PHY_1000T_CTRL, phy_data);
2628}
2629