1// SPDX-License-Identifier: GPL-2.0
2/* Copyright(c) 2007 - 2018 Intel Corporation. */
3
4#include <linux/bitfield.h>
5#include <linux/if_ether.h>
6#include <linux/delay.h>
7#include <linux/pci.h>
8#include <linux/netdevice.h>
9#include <linux/etherdevice.h>
10
11#include "e1000_mac.h"
12
13#include "igb.h"
14
15static s32 igb_set_default_fc(struct e1000_hw *hw);
16static void igb_set_fc_watermarks(struct e1000_hw *hw);
17
18/**
19 *  igb_get_bus_info_pcie - Get PCIe bus information
20 *  @hw: pointer to the HW structure
21 *
22 *  Determines and stores the system bus information for a particular
23 *  network interface.  The following bus information is determined and stored:
24 *  bus speed, bus width, type (PCIe), and PCIe function.
25 **/
26s32 igb_get_bus_info_pcie(struct e1000_hw *hw)
27{
28	struct e1000_bus_info *bus = &hw->bus;
29	s32 ret_val;
30	u32 reg;
31	u16 pcie_link_status;
32
33	bus->type = e1000_bus_type_pci_express;
34
35	ret_val = igb_read_pcie_cap_reg(hw,
36					PCI_EXP_LNKSTA,
37					&pcie_link_status);
38	if (ret_val) {
39		bus->width = e1000_bus_width_unknown;
40		bus->speed = e1000_bus_speed_unknown;
41	} else {
42		switch (pcie_link_status & PCI_EXP_LNKSTA_CLS) {
43		case PCI_EXP_LNKSTA_CLS_2_5GB:
44			bus->speed = e1000_bus_speed_2500;
45			break;
46		case PCI_EXP_LNKSTA_CLS_5_0GB:
47			bus->speed = e1000_bus_speed_5000;
48			break;
49		default:
50			bus->speed = e1000_bus_speed_unknown;
51			break;
52		}
53
54		bus->width = (enum e1000_bus_width)FIELD_GET(PCI_EXP_LNKSTA_NLW,
55							     pcie_link_status);
56	}
57
58	reg = rd32(E1000_STATUS);
59	bus->func = FIELD_GET(E1000_STATUS_FUNC_MASK, reg);
60
61	return 0;
62}
63
64/**
65 *  igb_clear_vfta - Clear VLAN filter table
66 *  @hw: pointer to the HW structure
67 *
68 *  Clears the register array which contains the VLAN filter table by
69 *  setting all the values to 0.
70 **/
71void igb_clear_vfta(struct e1000_hw *hw)
72{
73	u32 offset;
74
75	for (offset = E1000_VLAN_FILTER_TBL_SIZE; offset--;)
76		hw->mac.ops.write_vfta(hw, offset, 0);
77}
78
79/**
80 *  igb_write_vfta - Write value to VLAN filter table
81 *  @hw: pointer to the HW structure
82 *  @offset: register offset in VLAN filter table
83 *  @value: register value written to VLAN filter table
84 *
85 *  Writes value at the given offset in the register array which stores
86 *  the VLAN filter table.
87 **/
88void igb_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
89{
90	struct igb_adapter *adapter = hw->back;
91
92	array_wr32(E1000_VFTA, offset, value);
93	wrfl();
94
95	adapter->shadow_vfta[offset] = value;
96}
97
98/**
99 *  igb_init_rx_addrs - Initialize receive address's
100 *  @hw: pointer to the HW structure
101 *  @rar_count: receive address registers
102 *
103 *  Setups the receive address registers by setting the base receive address
104 *  register to the devices MAC address and clearing all the other receive
105 *  address registers to 0.
106 **/
107void igb_init_rx_addrs(struct e1000_hw *hw, u16 rar_count)
108{
109	u32 i;
110	u8 mac_addr[ETH_ALEN] = {0};
111
112	/* Setup the receive address */
113	hw_dbg("Programming MAC Address into RAR[0]\n");
114
115	hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
116
117	/* Zero out the other (rar_entry_count - 1) receive addresses */
118	hw_dbg("Clearing RAR[1-%u]\n", rar_count-1);
119	for (i = 1; i < rar_count; i++)
120		hw->mac.ops.rar_set(hw, mac_addr, i);
121}
122
123/**
124 *  igb_find_vlvf_slot - find the VLAN id or the first empty slot
125 *  @hw: pointer to hardware structure
126 *  @vlan: VLAN id to write to VLAN filter
127 *  @vlvf_bypass: skip VLVF if no match is found
128 *
129 *  return the VLVF index where this VLAN id should be placed
130 *
131 **/
132static s32 igb_find_vlvf_slot(struct e1000_hw *hw, u32 vlan, bool vlvf_bypass)
133{
134	s32 regindex, first_empty_slot;
135	u32 bits;
136
137	/* short cut the special case */
138	if (vlan == 0)
139		return 0;
140
141	/* if vlvf_bypass is set we don't want to use an empty slot, we
142	 * will simply bypass the VLVF if there are no entries present in the
143	 * VLVF that contain our VLAN
144	 */
145	first_empty_slot = vlvf_bypass ? -E1000_ERR_NO_SPACE : 0;
146
147	/* Search for the VLAN id in the VLVF entries. Save off the first empty
148	 * slot found along the way.
149	 *
150	 * pre-decrement loop covering (IXGBE_VLVF_ENTRIES - 1) .. 1
151	 */
152	for (regindex = E1000_VLVF_ARRAY_SIZE; --regindex > 0;) {
153		bits = rd32(E1000_VLVF(regindex)) & E1000_VLVF_VLANID_MASK;
154		if (bits == vlan)
155			return regindex;
156		if (!first_empty_slot && !bits)
157			first_empty_slot = regindex;
158	}
159
160	return first_empty_slot ? : -E1000_ERR_NO_SPACE;
161}
162
163/**
164 *  igb_vfta_set - enable or disable vlan in VLAN filter table
165 *  @hw: pointer to the HW structure
166 *  @vlan: VLAN id to add or remove
167 *  @vind: VMDq output index that maps queue to VLAN id
168 *  @vlan_on: if true add filter, if false remove
169 *  @vlvf_bypass: skip VLVF if no match is found
170 *
171 *  Sets or clears a bit in the VLAN filter table array based on VLAN id
172 *  and if we are adding or removing the filter
173 **/
174s32 igb_vfta_set(struct e1000_hw *hw, u32 vlan, u32 vind,
175		 bool vlan_on, bool vlvf_bypass)
176{
177	struct igb_adapter *adapter = hw->back;
178	u32 regidx, vfta_delta, vfta, bits;
179	s32 vlvf_index;
180
181	if ((vlan > 4095) || (vind > 7))
182		return -E1000_ERR_PARAM;
183
184	/* this is a 2 part operation - first the VFTA, then the
185	 * VLVF and VLVFB if VT Mode is set
186	 * We don't write the VFTA until we know the VLVF part succeeded.
187	 */
188
189	/* Part 1
190	 * The VFTA is a bitstring made up of 128 32-bit registers
191	 * that enable the particular VLAN id, much like the MTA:
192	 *    bits[11-5]: which register
193	 *    bits[4-0]:  which bit in the register
194	 */
195	regidx = vlan / 32;
196	vfta_delta = BIT(vlan % 32);
197	vfta = adapter->shadow_vfta[regidx];
198
199	/* vfta_delta represents the difference between the current value
200	 * of vfta and the value we want in the register.  Since the diff
201	 * is an XOR mask we can just update vfta using an XOR.
202	 */
203	vfta_delta &= vlan_on ? ~vfta : vfta;
204	vfta ^= vfta_delta;
205
206	/* Part 2
207	 * If VT Mode is set
208	 *   Either vlan_on
209	 *     make sure the VLAN is in VLVF
210	 *     set the vind bit in the matching VLVFB
211	 *   Or !vlan_on
212	 *     clear the pool bit and possibly the vind
213	 */
214	if (!adapter->vfs_allocated_count)
215		goto vfta_update;
216
217	vlvf_index = igb_find_vlvf_slot(hw, vlan, vlvf_bypass);
218	if (vlvf_index < 0) {
219		if (vlvf_bypass)
220			goto vfta_update;
221		return vlvf_index;
222	}
223
224	bits = rd32(E1000_VLVF(vlvf_index));
225
226	/* set the pool bit */
227	bits |= BIT(E1000_VLVF_POOLSEL_SHIFT + vind);
228	if (vlan_on)
229		goto vlvf_update;
230
231	/* clear the pool bit */
232	bits ^= BIT(E1000_VLVF_POOLSEL_SHIFT + vind);
233
234	if (!(bits & E1000_VLVF_POOLSEL_MASK)) {
235		/* Clear VFTA first, then disable VLVF.  Otherwise
236		 * we run the risk of stray packets leaking into
237		 * the PF via the default pool
238		 */
239		if (vfta_delta)
240			hw->mac.ops.write_vfta(hw, regidx, vfta);
241
242		/* disable VLVF and clear remaining bit from pool */
243		wr32(E1000_VLVF(vlvf_index), 0);
244
245		return 0;
246	}
247
248	/* If there are still bits set in the VLVFB registers
249	 * for the VLAN ID indicated we need to see if the
250	 * caller is requesting that we clear the VFTA entry bit.
251	 * If the caller has requested that we clear the VFTA
252	 * entry bit but there are still pools/VFs using this VLAN
253	 * ID entry then ignore the request.  We're not worried
254	 * about the case where we're turning the VFTA VLAN ID
255	 * entry bit on, only when requested to turn it off as
256	 * there may be multiple pools and/or VFs using the
257	 * VLAN ID entry.  In that case we cannot clear the
258	 * VFTA bit until all pools/VFs using that VLAN ID have also
259	 * been cleared.  This will be indicated by "bits" being
260	 * zero.
261	 */
262	vfta_delta = 0;
263
264vlvf_update:
265	/* record pool change and enable VLAN ID if not already enabled */
266	wr32(E1000_VLVF(vlvf_index), bits | vlan | E1000_VLVF_VLANID_ENABLE);
267
268vfta_update:
269	/* bit was set/cleared before we started */
270	if (vfta_delta)
271		hw->mac.ops.write_vfta(hw, regidx, vfta);
272
273	return 0;
274}
275
276/**
277 *  igb_check_alt_mac_addr - Check for alternate MAC addr
278 *  @hw: pointer to the HW structure
279 *
280 *  Checks the nvm for an alternate MAC address.  An alternate MAC address
281 *  can be setup by pre-boot software and must be treated like a permanent
282 *  address and must override the actual permanent MAC address.  If an
283 *  alternate MAC address is found it is saved in the hw struct and
284 *  programmed into RAR0 and the function returns success, otherwise the
285 *  function returns an error.
286 **/
287s32 igb_check_alt_mac_addr(struct e1000_hw *hw)
288{
289	u32 i;
290	s32 ret_val = 0;
291	u16 offset, nvm_alt_mac_addr_offset, nvm_data;
292	u8 alt_mac_addr[ETH_ALEN];
293
294	/* Alternate MAC address is handled by the option ROM for 82580
295	 * and newer. SW support not required.
296	 */
297	if (hw->mac.type >= e1000_82580)
298		goto out;
299
300	ret_val = hw->nvm.ops.read(hw, NVM_ALT_MAC_ADDR_PTR, 1,
301				 &nvm_alt_mac_addr_offset);
302	if (ret_val) {
303		hw_dbg("NVM Read Error\n");
304		goto out;
305	}
306
307	if ((nvm_alt_mac_addr_offset == 0xFFFF) ||
308	    (nvm_alt_mac_addr_offset == 0x0000))
309		/* There is no Alternate MAC Address */
310		goto out;
311
312	if (hw->bus.func == E1000_FUNC_1)
313		nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN1;
314	if (hw->bus.func == E1000_FUNC_2)
315		nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN2;
316
317	if (hw->bus.func == E1000_FUNC_3)
318		nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN3;
319	for (i = 0; i < ETH_ALEN; i += 2) {
320		offset = nvm_alt_mac_addr_offset + (i >> 1);
321		ret_val = hw->nvm.ops.read(hw, offset, 1, &nvm_data);
322		if (ret_val) {
323			hw_dbg("NVM Read Error\n");
324			goto out;
325		}
326
327		alt_mac_addr[i] = (u8)(nvm_data & 0xFF);
328		alt_mac_addr[i + 1] = (u8)(nvm_data >> 8);
329	}
330
331	/* if multicast bit is set, the alternate address will not be used */
332	if (is_multicast_ether_addr(alt_mac_addr)) {
333		hw_dbg("Ignoring Alternate Mac Address with MC bit set\n");
334		goto out;
335	}
336
337	/* We have a valid alternate MAC address, and we want to treat it the
338	 * same as the normal permanent MAC address stored by the HW into the
339	 * RAR. Do this by mapping this address into RAR0.
340	 */
341	hw->mac.ops.rar_set(hw, alt_mac_addr, 0);
342
343out:
344	return ret_val;
345}
346
347/**
348 *  igb_rar_set - Set receive address register
349 *  @hw: pointer to the HW structure
350 *  @addr: pointer to the receive address
351 *  @index: receive address array register
352 *
353 *  Sets the receive address array register at index to the address passed
354 *  in by addr.
355 **/
356void igb_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
357{
358	u32 rar_low, rar_high;
359
360	/* HW expects these in little endian so we reverse the byte order
361	 * from network order (big endian) to little endian
362	 */
363	rar_low = ((u32) addr[0] |
364		   ((u32) addr[1] << 8) |
365		    ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
366
367	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
368
369	/* If MAC address zero, no need to set the AV bit */
370	if (rar_low || rar_high)
371		rar_high |= E1000_RAH_AV;
372
373	/* Some bridges will combine consecutive 32-bit writes into
374	 * a single burst write, which will malfunction on some parts.
375	 * The flushes avoid this.
376	 */
377	wr32(E1000_RAL(index), rar_low);
378	wrfl();
379	wr32(E1000_RAH(index), rar_high);
380	wrfl();
381}
382
383/**
384 *  igb_mta_set - Set multicast filter table address
385 *  @hw: pointer to the HW structure
386 *  @hash_value: determines the MTA register and bit to set
387 *
388 *  The multicast table address is a register array of 32-bit registers.
389 *  The hash_value is used to determine what register the bit is in, the
390 *  current value is read, the new bit is OR'd in and the new value is
391 *  written back into the register.
392 **/
393void igb_mta_set(struct e1000_hw *hw, u32 hash_value)
394{
395	u32 hash_bit, hash_reg, mta;
396
397	/* The MTA is a register array of 32-bit registers. It is
398	 * treated like an array of (32*mta_reg_count) bits.  We want to
399	 * set bit BitArray[hash_value]. So we figure out what register
400	 * the bit is in, read it, OR in the new bit, then write
401	 * back the new value.  The (hw->mac.mta_reg_count - 1) serves as a
402	 * mask to bits 31:5 of the hash value which gives us the
403	 * register we're modifying.  The hash bit within that register
404	 * is determined by the lower 5 bits of the hash value.
405	 */
406	hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
407	hash_bit = hash_value & 0x1F;
408
409	mta = array_rd32(E1000_MTA, hash_reg);
410
411	mta |= BIT(hash_bit);
412
413	array_wr32(E1000_MTA, hash_reg, mta);
414	wrfl();
415}
416
417/**
418 *  igb_hash_mc_addr - Generate a multicast hash value
419 *  @hw: pointer to the HW structure
420 *  @mc_addr: pointer to a multicast address
421 *
422 *  Generates a multicast address hash value which is used to determine
423 *  the multicast filter table array address and new table value.  See
424 *  igb_mta_set()
425 **/
426static u32 igb_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
427{
428	u32 hash_value, hash_mask;
429	u8 bit_shift = 1;
430
431	/* Register count multiplied by bits per register */
432	hash_mask = (hw->mac.mta_reg_count * 32) - 1;
433
434	/* For a mc_filter_type of 0, bit_shift is the number of left-shifts
435	 * where 0xFF would still fall within the hash mask.
436	 */
437	while (hash_mask >> bit_shift != 0xFF && bit_shift < 4)
438		bit_shift++;
439
440	/* The portion of the address that is used for the hash table
441	 * is determined by the mc_filter_type setting.
442	 * The algorithm is such that there is a total of 8 bits of shifting.
443	 * The bit_shift for a mc_filter_type of 0 represents the number of
444	 * left-shifts where the MSB of mc_addr[5] would still fall within
445	 * the hash_mask.  Case 0 does this exactly.  Since there are a total
446	 * of 8 bits of shifting, then mc_addr[4] will shift right the
447	 * remaining number of bits. Thus 8 - bit_shift.  The rest of the
448	 * cases are a variation of this algorithm...essentially raising the
449	 * number of bits to shift mc_addr[5] left, while still keeping the
450	 * 8-bit shifting total.
451	 *
452	 * For example, given the following Destination MAC Address and an
453	 * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask),
454	 * we can see that the bit_shift for case 0 is 4.  These are the hash
455	 * values resulting from each mc_filter_type...
456	 * [0] [1] [2] [3] [4] [5]
457	 * 01  AA  00  12  34  56
458	 * LSB                 MSB
459	 *
460	 * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563
461	 * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6
462	 * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163
463	 * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634
464	 */
465	switch (hw->mac.mc_filter_type) {
466	default:
467	case 0:
468		break;
469	case 1:
470		bit_shift += 1;
471		break;
472	case 2:
473		bit_shift += 2;
474		break;
475	case 3:
476		bit_shift += 4;
477		break;
478	}
479
480	hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
481				  (((u16) mc_addr[5]) << bit_shift)));
482
483	return hash_value;
484}
485
486/**
487 * igb_i21x_hw_doublecheck - double checks potential HW issue in i21X
488 * @hw: pointer to the HW structure
489 *
490 * Checks if multicast array is wrote correctly
491 * If not then rewrites again to register
492 **/
493static void igb_i21x_hw_doublecheck(struct e1000_hw *hw)
494{
495	int failed_cnt = 3;
496	bool is_failed;
497	int i;
498
499	do {
500		is_failed = false;
501		for (i = hw->mac.mta_reg_count - 1; i >= 0; i--) {
502			if (array_rd32(E1000_MTA, i) != hw->mac.mta_shadow[i]) {
503				is_failed = true;
504				array_wr32(E1000_MTA, i, hw->mac.mta_shadow[i]);
505				wrfl();
506			}
507		}
508		if (is_failed && --failed_cnt <= 0) {
509			hw_dbg("Failed to update MTA_REGISTER, too many retries");
510			break;
511		}
512	} while (is_failed);
513}
514
515/**
516 *  igb_update_mc_addr_list - Update Multicast addresses
517 *  @hw: pointer to the HW structure
518 *  @mc_addr_list: array of multicast addresses to program
519 *  @mc_addr_count: number of multicast addresses to program
520 *
521 *  Updates entire Multicast Table Array.
522 *  The caller must have a packed mc_addr_list of multicast addresses.
523 **/
524void igb_update_mc_addr_list(struct e1000_hw *hw,
525			     u8 *mc_addr_list, u32 mc_addr_count)
526{
527	u32 hash_value, hash_bit, hash_reg;
528	int i;
529
530	/* clear mta_shadow */
531	memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
532
533	/* update mta_shadow from mc_addr_list */
534	for (i = 0; (u32) i < mc_addr_count; i++) {
535		hash_value = igb_hash_mc_addr(hw, mc_addr_list);
536
537		hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
538		hash_bit = hash_value & 0x1F;
539
540		hw->mac.mta_shadow[hash_reg] |= BIT(hash_bit);
541		mc_addr_list += (ETH_ALEN);
542	}
543
544	/* replace the entire MTA table */
545	for (i = hw->mac.mta_reg_count - 1; i >= 0; i--)
546		array_wr32(E1000_MTA, i, hw->mac.mta_shadow[i]);
547	wrfl();
548	if (hw->mac.type == e1000_i210 || hw->mac.type == e1000_i211)
549		igb_i21x_hw_doublecheck(hw);
550}
551
552/**
553 *  igb_clear_hw_cntrs_base - Clear base hardware counters
554 *  @hw: pointer to the HW structure
555 *
556 *  Clears the base hardware counters by reading the counter registers.
557 **/
558void igb_clear_hw_cntrs_base(struct e1000_hw *hw)
559{
560	rd32(E1000_CRCERRS);
561	rd32(E1000_SYMERRS);
562	rd32(E1000_MPC);
563	rd32(E1000_SCC);
564	rd32(E1000_ECOL);
565	rd32(E1000_MCC);
566	rd32(E1000_LATECOL);
567	rd32(E1000_COLC);
568	rd32(E1000_DC);
569	rd32(E1000_SEC);
570	rd32(E1000_RLEC);
571	rd32(E1000_XONRXC);
572	rd32(E1000_XONTXC);
573	rd32(E1000_XOFFRXC);
574	rd32(E1000_XOFFTXC);
575	rd32(E1000_FCRUC);
576	rd32(E1000_GPRC);
577	rd32(E1000_BPRC);
578	rd32(E1000_MPRC);
579	rd32(E1000_GPTC);
580	rd32(E1000_GORCL);
581	rd32(E1000_GORCH);
582	rd32(E1000_GOTCL);
583	rd32(E1000_GOTCH);
584	rd32(E1000_RNBC);
585	rd32(E1000_RUC);
586	rd32(E1000_RFC);
587	rd32(E1000_ROC);
588	rd32(E1000_RJC);
589	rd32(E1000_TORL);
590	rd32(E1000_TORH);
591	rd32(E1000_TOTL);
592	rd32(E1000_TOTH);
593	rd32(E1000_TPR);
594	rd32(E1000_TPT);
595	rd32(E1000_MPTC);
596	rd32(E1000_BPTC);
597}
598
599/**
600 *  igb_check_for_copper_link - Check for link (Copper)
601 *  @hw: pointer to the HW structure
602 *
603 *  Checks to see of the link status of the hardware has changed.  If a
604 *  change in link status has been detected, then we read the PHY registers
605 *  to get the current speed/duplex if link exists.
606 **/
607s32 igb_check_for_copper_link(struct e1000_hw *hw)
608{
609	struct e1000_mac_info *mac = &hw->mac;
610	s32 ret_val;
611	bool link;
612
613	/* We only want to go out to the PHY registers to see if Auto-Neg
614	 * has completed and/or if our link status has changed.  The
615	 * get_link_status flag is set upon receiving a Link Status
616	 * Change or Rx Sequence Error interrupt.
617	 */
618	if (!mac->get_link_status) {
619		ret_val = 0;
620		goto out;
621	}
622
623	/* First we want to see if the MII Status Register reports
624	 * link.  If so, then we want to get the current speed/duplex
625	 * of the PHY.
626	 */
627	ret_val = igb_phy_has_link(hw, 1, 0, &link);
628	if (ret_val)
629		goto out;
630
631	if (!link)
632		goto out; /* No link detected */
633
634	mac->get_link_status = false;
635
636	/* Check if there was DownShift, must be checked
637	 * immediately after link-up
638	 */
639	igb_check_downshift(hw);
640
641	/* If we are forcing speed/duplex, then we simply return since
642	 * we have already determined whether we have link or not.
643	 */
644	if (!mac->autoneg) {
645		ret_val = -E1000_ERR_CONFIG;
646		goto out;
647	}
648
649	/* Auto-Neg is enabled.  Auto Speed Detection takes care
650	 * of MAC speed/duplex configuration.  So we only need to
651	 * configure Collision Distance in the MAC.
652	 */
653	igb_config_collision_dist(hw);
654
655	/* Configure Flow Control now that Auto-Neg has completed.
656	 * First, we need to restore the desired flow control
657	 * settings because we may have had to re-autoneg with a
658	 * different link partner.
659	 */
660	ret_val = igb_config_fc_after_link_up(hw);
661	if (ret_val)
662		hw_dbg("Error configuring flow control\n");
663
664out:
665	return ret_val;
666}
667
668/**
669 *  igb_setup_link - Setup flow control and link settings
670 *  @hw: pointer to the HW structure
671 *
672 *  Determines which flow control settings to use, then configures flow
673 *  control.  Calls the appropriate media-specific link configuration
674 *  function.  Assuming the adapter has a valid link partner, a valid link
675 *  should be established.  Assumes the hardware has previously been reset
676 *  and the transmitter and receiver are not enabled.
677 **/
678s32 igb_setup_link(struct e1000_hw *hw)
679{
680	s32 ret_val = 0;
681
682	/* In the case of the phy reset being blocked, we already have a link.
683	 * We do not need to set it up again.
684	 */
685	if (igb_check_reset_block(hw))
686		goto out;
687
688	/* If requested flow control is set to default, set flow control
689	 * based on the EEPROM flow control settings.
690	 */
691	if (hw->fc.requested_mode == e1000_fc_default) {
692		ret_val = igb_set_default_fc(hw);
693		if (ret_val)
694			goto out;
695	}
696
697	/* We want to save off the original Flow Control configuration just
698	 * in case we get disconnected and then reconnected into a different
699	 * hub or switch with different Flow Control capabilities.
700	 */
701	hw->fc.current_mode = hw->fc.requested_mode;
702
703	hw_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
704
705	/* Call the necessary media_type subroutine to configure the link. */
706	ret_val = hw->mac.ops.setup_physical_interface(hw);
707	if (ret_val)
708		goto out;
709
710	/* Initialize the flow control address, type, and PAUSE timer
711	 * registers to their default values.  This is done even if flow
712	 * control is disabled, because it does not hurt anything to
713	 * initialize these registers.
714	 */
715	hw_dbg("Initializing the Flow Control address, type and timer regs\n");
716	wr32(E1000_FCT, FLOW_CONTROL_TYPE);
717	wr32(E1000_FCAH, FLOW_CONTROL_ADDRESS_HIGH);
718	wr32(E1000_FCAL, FLOW_CONTROL_ADDRESS_LOW);
719
720	wr32(E1000_FCTTV, hw->fc.pause_time);
721
722	igb_set_fc_watermarks(hw);
723
724out:
725
726	return ret_val;
727}
728
729/**
730 *  igb_config_collision_dist - Configure collision distance
731 *  @hw: pointer to the HW structure
732 *
733 *  Configures the collision distance to the default value and is used
734 *  during link setup. Currently no func pointer exists and all
735 *  implementations are handled in the generic version of this function.
736 **/
737void igb_config_collision_dist(struct e1000_hw *hw)
738{
739	u32 tctl;
740
741	tctl = rd32(E1000_TCTL);
742
743	tctl &= ~E1000_TCTL_COLD;
744	tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT;
745
746	wr32(E1000_TCTL, tctl);
747	wrfl();
748}
749
750/**
751 *  igb_set_fc_watermarks - Set flow control high/low watermarks
752 *  @hw: pointer to the HW structure
753 *
754 *  Sets the flow control high/low threshold (watermark) registers.  If
755 *  flow control XON frame transmission is enabled, then set XON frame
756 *  tansmission as well.
757 **/
758static void igb_set_fc_watermarks(struct e1000_hw *hw)
759{
760	u32 fcrtl = 0, fcrth = 0;
761
762	/* Set the flow control receive threshold registers.  Normally,
763	 * these registers will be set to a default threshold that may be
764	 * adjusted later by the driver's runtime code.  However, if the
765	 * ability to transmit pause frames is not enabled, then these
766	 * registers will be set to 0.
767	 */
768	if (hw->fc.current_mode & e1000_fc_tx_pause) {
769		/* We need to set up the Receive Threshold high and low water
770		 * marks as well as (optionally) enabling the transmission of
771		 * XON frames.
772		 */
773		fcrtl = hw->fc.low_water;
774		if (hw->fc.send_xon)
775			fcrtl |= E1000_FCRTL_XONE;
776
777		fcrth = hw->fc.high_water;
778	}
779	wr32(E1000_FCRTL, fcrtl);
780	wr32(E1000_FCRTH, fcrth);
781}
782
783/**
784 *  igb_set_default_fc - Set flow control default values
785 *  @hw: pointer to the HW structure
786 *
787 *  Read the EEPROM for the default values for flow control and store the
788 *  values.
789 **/
790static s32 igb_set_default_fc(struct e1000_hw *hw)
791{
792	s32 ret_val = 0;
793	u16 lan_offset;
794	u16 nvm_data;
795
796	/* Read and store word 0x0F of the EEPROM. This word contains bits
797	 * that determine the hardware's default PAUSE (flow control) mode,
798	 * a bit that determines whether the HW defaults to enabling or
799	 * disabling auto-negotiation, and the direction of the
800	 * SW defined pins. If there is no SW over-ride of the flow
801	 * control setting, then the variable hw->fc will
802	 * be initialized based on a value in the EEPROM.
803	 */
804	if (hw->mac.type == e1000_i350)
805		lan_offset = NVM_82580_LAN_FUNC_OFFSET(hw->bus.func);
806	else
807		lan_offset = 0;
808
809	ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL2_REG + lan_offset,
810				   1, &nvm_data);
811	if (ret_val) {
812		hw_dbg("NVM Read Error\n");
813		goto out;
814	}
815
816	if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == 0)
817		hw->fc.requested_mode = e1000_fc_none;
818	else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == NVM_WORD0F_ASM_DIR)
819		hw->fc.requested_mode = e1000_fc_tx_pause;
820	else
821		hw->fc.requested_mode = e1000_fc_full;
822
823out:
824	return ret_val;
825}
826
827/**
828 *  igb_force_mac_fc - Force the MAC's flow control settings
829 *  @hw: pointer to the HW structure
830 *
831 *  Force the MAC's flow control settings.  Sets the TFCE and RFCE bits in the
832 *  device control register to reflect the adapter settings.  TFCE and RFCE
833 *  need to be explicitly set by software when a copper PHY is used because
834 *  autonegotiation is managed by the PHY rather than the MAC.  Software must
835 *  also configure these bits when link is forced on a fiber connection.
836 **/
837s32 igb_force_mac_fc(struct e1000_hw *hw)
838{
839	u32 ctrl;
840	s32 ret_val = 0;
841
842	ctrl = rd32(E1000_CTRL);
843
844	/* Because we didn't get link via the internal auto-negotiation
845	 * mechanism (we either forced link or we got link via PHY
846	 * auto-neg), we have to manually enable/disable transmit an
847	 * receive flow control.
848	 *
849	 * The "Case" statement below enables/disable flow control
850	 * according to the "hw->fc.current_mode" parameter.
851	 *
852	 * The possible values of the "fc" parameter are:
853	 *      0:  Flow control is completely disabled
854	 *      1:  Rx flow control is enabled (we can receive pause
855	 *          frames but not send pause frames).
856	 *      2:  Tx flow control is enabled (we can send pause frames
857	 *          but we do not receive pause frames).
858	 *      3:  Both Rx and TX flow control (symmetric) is enabled.
859	 *  other:  No other values should be possible at this point.
860	 */
861	hw_dbg("hw->fc.current_mode = %u\n", hw->fc.current_mode);
862
863	switch (hw->fc.current_mode) {
864	case e1000_fc_none:
865		ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
866		break;
867	case e1000_fc_rx_pause:
868		ctrl &= (~E1000_CTRL_TFCE);
869		ctrl |= E1000_CTRL_RFCE;
870		break;
871	case e1000_fc_tx_pause:
872		ctrl &= (~E1000_CTRL_RFCE);
873		ctrl |= E1000_CTRL_TFCE;
874		break;
875	case e1000_fc_full:
876		ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
877		break;
878	default:
879		hw_dbg("Flow control param set incorrectly\n");
880		ret_val = -E1000_ERR_CONFIG;
881		goto out;
882	}
883
884	wr32(E1000_CTRL, ctrl);
885
886out:
887	return ret_val;
888}
889
890/**
891 *  igb_config_fc_after_link_up - Configures flow control after link
892 *  @hw: pointer to the HW structure
893 *
894 *  Checks the status of auto-negotiation after link up to ensure that the
895 *  speed and duplex were not forced.  If the link needed to be forced, then
896 *  flow control needs to be forced also.  If auto-negotiation is enabled
897 *  and did not fail, then we configure flow control based on our link
898 *  partner.
899 **/
900s32 igb_config_fc_after_link_up(struct e1000_hw *hw)
901{
902	struct e1000_mac_info *mac = &hw->mac;
903	s32 ret_val = 0;
904	u32 pcs_status_reg, pcs_adv_reg, pcs_lp_ability_reg, pcs_ctrl_reg;
905	u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg;
906	u16 speed, duplex;
907
908	/* Check for the case where we have fiber media and auto-neg failed
909	 * so we had to force link.  In this case, we need to force the
910	 * configuration of the MAC to match the "fc" parameter.
911	 */
912	if (mac->autoneg_failed) {
913		if (hw->phy.media_type == e1000_media_type_internal_serdes)
914			ret_val = igb_force_mac_fc(hw);
915	} else {
916		if (hw->phy.media_type == e1000_media_type_copper)
917			ret_val = igb_force_mac_fc(hw);
918	}
919
920	if (ret_val) {
921		hw_dbg("Error forcing flow control settings\n");
922		goto out;
923	}
924
925	/* Check for the case where we have copper media and auto-neg is
926	 * enabled.  In this case, we need to check and see if Auto-Neg
927	 * has completed, and if so, how the PHY and link partner has
928	 * flow control configured.
929	 */
930	if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) {
931		/* Read the MII Status Register and check to see if AutoNeg
932		 * has completed.  We read this twice because this reg has
933		 * some "sticky" (latched) bits.
934		 */
935		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS,
936						   &mii_status_reg);
937		if (ret_val)
938			goto out;
939		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS,
940						   &mii_status_reg);
941		if (ret_val)
942			goto out;
943
944		if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) {
945			hw_dbg("Copper PHY and Auto Neg has not completed.\n");
946			goto out;
947		}
948
949		/* The AutoNeg process has completed, so we now need to
950		 * read both the Auto Negotiation Advertisement
951		 * Register (Address 4) and the Auto_Negotiation Base
952		 * Page Ability Register (Address 5) to determine how
953		 * flow control was negotiated.
954		 */
955		ret_val = hw->phy.ops.read_reg(hw, PHY_AUTONEG_ADV,
956					    &mii_nway_adv_reg);
957		if (ret_val)
958			goto out;
959		ret_val = hw->phy.ops.read_reg(hw, PHY_LP_ABILITY,
960					    &mii_nway_lp_ability_reg);
961		if (ret_val)
962			goto out;
963
964		/* Two bits in the Auto Negotiation Advertisement Register
965		 * (Address 4) and two bits in the Auto Negotiation Base
966		 * Page Ability Register (Address 5) determine flow control
967		 * for both the PHY and the link partner.  The following
968		 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
969		 * 1999, describes these PAUSE resolution bits and how flow
970		 * control is determined based upon these settings.
971		 * NOTE:  DC = Don't Care
972		 *
973		 *   LOCAL DEVICE  |   LINK PARTNER
974		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
975		 *-------|---------|-------|---------|--------------------
976		 *   0   |    0    |  DC   |   DC    | e1000_fc_none
977		 *   0   |    1    |   0   |   DC    | e1000_fc_none
978		 *   0   |    1    |   1   |    0    | e1000_fc_none
979		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
980		 *   1   |    0    |   0   |   DC    | e1000_fc_none
981		 *   1   |   DC    |   1   |   DC    | e1000_fc_full
982		 *   1   |    1    |   0   |    0    | e1000_fc_none
983		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
984		 *
985		 * Are both PAUSE bits set to 1?  If so, this implies
986		 * Symmetric Flow Control is enabled at both ends.  The
987		 * ASM_DIR bits are irrelevant per the spec.
988		 *
989		 * For Symmetric Flow Control:
990		 *
991		 *   LOCAL DEVICE  |   LINK PARTNER
992		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
993		 *-------|---------|-------|---------|--------------------
994		 *   1   |   DC    |   1   |   DC    | E1000_fc_full
995		 *
996		 */
997		if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
998		    (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
999			/* Now we need to check if the user selected RX ONLY
1000			 * of pause frames.  In this case, we had to advertise
1001			 * FULL flow control because we could not advertise RX
1002			 * ONLY. Hence, we must now check to see if we need to
1003			 * turn OFF  the TRANSMISSION of PAUSE frames.
1004			 */
1005			if (hw->fc.requested_mode == e1000_fc_full) {
1006				hw->fc.current_mode = e1000_fc_full;
1007				hw_dbg("Flow Control = FULL.\n");
1008			} else {
1009				hw->fc.current_mode = e1000_fc_rx_pause;
1010				hw_dbg("Flow Control = RX PAUSE frames only.\n");
1011			}
1012		}
1013		/* For receiving PAUSE frames ONLY.
1014		 *
1015		 *   LOCAL DEVICE  |   LINK PARTNER
1016		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1017		 *-------|---------|-------|---------|--------------------
1018		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
1019		 */
1020		else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
1021			  (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
1022			  (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
1023			  (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
1024			hw->fc.current_mode = e1000_fc_tx_pause;
1025			hw_dbg("Flow Control = TX PAUSE frames only.\n");
1026		}
1027		/* For transmitting PAUSE frames ONLY.
1028		 *
1029		 *   LOCAL DEVICE  |   LINK PARTNER
1030		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1031		 *-------|---------|-------|---------|--------------------
1032		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
1033		 */
1034		else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
1035			 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
1036			 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
1037			 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
1038			hw->fc.current_mode = e1000_fc_rx_pause;
1039			hw_dbg("Flow Control = RX PAUSE frames only.\n");
1040		}
1041		/* Per the IEEE spec, at this point flow control should be
1042		 * disabled.  However, we want to consider that we could
1043		 * be connected to a legacy switch that doesn't advertise
1044		 * desired flow control, but can be forced on the link
1045		 * partner.  So if we advertised no flow control, that is
1046		 * what we will resolve to.  If we advertised some kind of
1047		 * receive capability (Rx Pause Only or Full Flow Control)
1048		 * and the link partner advertised none, we will configure
1049		 * ourselves to enable Rx Flow Control only.  We can do
1050		 * this safely for two reasons:  If the link partner really
1051		 * didn't want flow control enabled, and we enable Rx, no
1052		 * harm done since we won't be receiving any PAUSE frames
1053		 * anyway.  If the intent on the link partner was to have
1054		 * flow control enabled, then by us enabling RX only, we
1055		 * can at least receive pause frames and process them.
1056		 * This is a good idea because in most cases, since we are
1057		 * predominantly a server NIC, more times than not we will
1058		 * be asked to delay transmission of packets than asking
1059		 * our link partner to pause transmission of frames.
1060		 */
1061		else if ((hw->fc.requested_mode == e1000_fc_none) ||
1062			 (hw->fc.requested_mode == e1000_fc_tx_pause) ||
1063			 (hw->fc.strict_ieee)) {
1064			hw->fc.current_mode = e1000_fc_none;
1065			hw_dbg("Flow Control = NONE.\n");
1066		} else {
1067			hw->fc.current_mode = e1000_fc_rx_pause;
1068			hw_dbg("Flow Control = RX PAUSE frames only.\n");
1069		}
1070
1071		/* Now we need to do one last check...  If we auto-
1072		 * negotiated to HALF DUPLEX, flow control should not be
1073		 * enabled per IEEE 802.3 spec.
1074		 */
1075		ret_val = hw->mac.ops.get_speed_and_duplex(hw, &speed, &duplex);
1076		if (ret_val) {
1077			hw_dbg("Error getting link speed and duplex\n");
1078			goto out;
1079		}
1080
1081		if (duplex == HALF_DUPLEX)
1082			hw->fc.current_mode = e1000_fc_none;
1083
1084		/* Now we call a subroutine to actually force the MAC
1085		 * controller to use the correct flow control settings.
1086		 */
1087		ret_val = igb_force_mac_fc(hw);
1088		if (ret_val) {
1089			hw_dbg("Error forcing flow control settings\n");
1090			goto out;
1091		}
1092	}
1093	/* Check for the case where we have SerDes media and auto-neg is
1094	 * enabled.  In this case, we need to check and see if Auto-Neg
1095	 * has completed, and if so, how the PHY and link partner has
1096	 * flow control configured.
1097	 */
1098	if ((hw->phy.media_type == e1000_media_type_internal_serdes)
1099		&& mac->autoneg) {
1100		/* Read the PCS_LSTS and check to see if AutoNeg
1101		 * has completed.
1102		 */
1103		pcs_status_reg = rd32(E1000_PCS_LSTAT);
1104
1105		if (!(pcs_status_reg & E1000_PCS_LSTS_AN_COMPLETE)) {
1106			hw_dbg("PCS Auto Neg has not completed.\n");
1107			return ret_val;
1108		}
1109
1110		/* The AutoNeg process has completed, so we now need to
1111		 * read both the Auto Negotiation Advertisement
1112		 * Register (PCS_ANADV) and the Auto_Negotiation Base
1113		 * Page Ability Register (PCS_LPAB) to determine how
1114		 * flow control was negotiated.
1115		 */
1116		pcs_adv_reg = rd32(E1000_PCS_ANADV);
1117		pcs_lp_ability_reg = rd32(E1000_PCS_LPAB);
1118
1119		/* Two bits in the Auto Negotiation Advertisement Register
1120		 * (PCS_ANADV) and two bits in the Auto Negotiation Base
1121		 * Page Ability Register (PCS_LPAB) determine flow control
1122		 * for both the PHY and the link partner.  The following
1123		 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
1124		 * 1999, describes these PAUSE resolution bits and how flow
1125		 * control is determined based upon these settings.
1126		 * NOTE:  DC = Don't Care
1127		 *
1128		 *   LOCAL DEVICE  |   LINK PARTNER
1129		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
1130		 *-------|---------|-------|---------|--------------------
1131		 *   0   |    0    |  DC   |   DC    | e1000_fc_none
1132		 *   0   |    1    |   0   |   DC    | e1000_fc_none
1133		 *   0   |    1    |   1   |    0    | e1000_fc_none
1134		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
1135		 *   1   |    0    |   0   |   DC    | e1000_fc_none
1136		 *   1   |   DC    |   1   |   DC    | e1000_fc_full
1137		 *   1   |    1    |   0   |    0    | e1000_fc_none
1138		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
1139		 *
1140		 * Are both PAUSE bits set to 1?  If so, this implies
1141		 * Symmetric Flow Control is enabled at both ends.  The
1142		 * ASM_DIR bits are irrelevant per the spec.
1143		 *
1144		 * For Symmetric Flow Control:
1145		 *
1146		 *   LOCAL DEVICE  |   LINK PARTNER
1147		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1148		 *-------|---------|-------|---------|--------------------
1149		 *   1   |   DC    |   1   |   DC    | e1000_fc_full
1150		 *
1151		 */
1152		if ((pcs_adv_reg & E1000_TXCW_PAUSE) &&
1153		    (pcs_lp_ability_reg & E1000_TXCW_PAUSE)) {
1154			/* Now we need to check if the user selected Rx ONLY
1155			 * of pause frames.  In this case, we had to advertise
1156			 * FULL flow control because we could not advertise Rx
1157			 * ONLY. Hence, we must now check to see if we need to
1158			 * turn OFF the TRANSMISSION of PAUSE frames.
1159			 */
1160			if (hw->fc.requested_mode == e1000_fc_full) {
1161				hw->fc.current_mode = e1000_fc_full;
1162				hw_dbg("Flow Control = FULL.\n");
1163			} else {
1164				hw->fc.current_mode = e1000_fc_rx_pause;
1165				hw_dbg("Flow Control = Rx PAUSE frames only.\n");
1166			}
1167		}
1168		/* For receiving PAUSE frames ONLY.
1169		 *
1170		 *   LOCAL DEVICE  |   LINK PARTNER
1171		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1172		 *-------|---------|-------|---------|--------------------
1173		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
1174		 */
1175		else if (!(pcs_adv_reg & E1000_TXCW_PAUSE) &&
1176			  (pcs_adv_reg & E1000_TXCW_ASM_DIR) &&
1177			  (pcs_lp_ability_reg & E1000_TXCW_PAUSE) &&
1178			  (pcs_lp_ability_reg & E1000_TXCW_ASM_DIR)) {
1179			hw->fc.current_mode = e1000_fc_tx_pause;
1180			hw_dbg("Flow Control = Tx PAUSE frames only.\n");
1181		}
1182		/* For transmitting PAUSE frames ONLY.
1183		 *
1184		 *   LOCAL DEVICE  |   LINK PARTNER
1185		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1186		 *-------|---------|-------|---------|--------------------
1187		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
1188		 */
1189		else if ((pcs_adv_reg & E1000_TXCW_PAUSE) &&
1190			 (pcs_adv_reg & E1000_TXCW_ASM_DIR) &&
1191			 !(pcs_lp_ability_reg & E1000_TXCW_PAUSE) &&
1192			 (pcs_lp_ability_reg & E1000_TXCW_ASM_DIR)) {
1193			hw->fc.current_mode = e1000_fc_rx_pause;
1194			hw_dbg("Flow Control = Rx PAUSE frames only.\n");
1195		} else {
1196			/* Per the IEEE spec, at this point flow control
1197			 * should be disabled.
1198			 */
1199			hw->fc.current_mode = e1000_fc_none;
1200			hw_dbg("Flow Control = NONE.\n");
1201		}
1202
1203		/* Now we call a subroutine to actually force the MAC
1204		 * controller to use the correct flow control settings.
1205		 */
1206		pcs_ctrl_reg = rd32(E1000_PCS_LCTL);
1207		pcs_ctrl_reg |= E1000_PCS_LCTL_FORCE_FCTRL;
1208		wr32(E1000_PCS_LCTL, pcs_ctrl_reg);
1209
1210		ret_val = igb_force_mac_fc(hw);
1211		if (ret_val) {
1212			hw_dbg("Error forcing flow control settings\n");
1213			return ret_val;
1214		}
1215	}
1216
1217out:
1218	return ret_val;
1219}
1220
1221/**
1222 *  igb_get_speed_and_duplex_copper - Retrieve current speed/duplex
1223 *  @hw: pointer to the HW structure
1224 *  @speed: stores the current speed
1225 *  @duplex: stores the current duplex
1226 *
1227 *  Read the status register for the current speed/duplex and store the current
1228 *  speed and duplex for copper connections.
1229 **/
1230s32 igb_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed,
1231				      u16 *duplex)
1232{
1233	u32 status;
1234
1235	status = rd32(E1000_STATUS);
1236	if (status & E1000_STATUS_SPEED_1000) {
1237		*speed = SPEED_1000;
1238		hw_dbg("1000 Mbs, ");
1239	} else if (status & E1000_STATUS_SPEED_100) {
1240		*speed = SPEED_100;
1241		hw_dbg("100 Mbs, ");
1242	} else {
1243		*speed = SPEED_10;
1244		hw_dbg("10 Mbs, ");
1245	}
1246
1247	if (status & E1000_STATUS_FD) {
1248		*duplex = FULL_DUPLEX;
1249		hw_dbg("Full Duplex\n");
1250	} else {
1251		*duplex = HALF_DUPLEX;
1252		hw_dbg("Half Duplex\n");
1253	}
1254
1255	return 0;
1256}
1257
1258/**
1259 *  igb_get_hw_semaphore - Acquire hardware semaphore
1260 *  @hw: pointer to the HW structure
1261 *
1262 *  Acquire the HW semaphore to access the PHY or NVM
1263 **/
1264s32 igb_get_hw_semaphore(struct e1000_hw *hw)
1265{
1266	u32 swsm;
1267	s32 ret_val = 0;
1268	s32 timeout = hw->nvm.word_size + 1;
1269	s32 i = 0;
1270
1271	/* Get the SW semaphore */
1272	while (i < timeout) {
1273		swsm = rd32(E1000_SWSM);
1274		if (!(swsm & E1000_SWSM_SMBI))
1275			break;
1276
1277		udelay(50);
1278		i++;
1279	}
1280
1281	if (i == timeout) {
1282		hw_dbg("Driver can't access device - SMBI bit is set.\n");
1283		ret_val = -E1000_ERR_NVM;
1284		goto out;
1285	}
1286
1287	/* Get the FW semaphore. */
1288	for (i = 0; i < timeout; i++) {
1289		swsm = rd32(E1000_SWSM);
1290		wr32(E1000_SWSM, swsm | E1000_SWSM_SWESMBI);
1291
1292		/* Semaphore acquired if bit latched */
1293		if (rd32(E1000_SWSM) & E1000_SWSM_SWESMBI)
1294			break;
1295
1296		udelay(50);
1297	}
1298
1299	if (i == timeout) {
1300		/* Release semaphores */
1301		igb_put_hw_semaphore(hw);
1302		hw_dbg("Driver can't access the NVM\n");
1303		ret_val = -E1000_ERR_NVM;
1304		goto out;
1305	}
1306
1307out:
1308	return ret_val;
1309}
1310
1311/**
1312 *  igb_put_hw_semaphore - Release hardware semaphore
1313 *  @hw: pointer to the HW structure
1314 *
1315 *  Release hardware semaphore used to access the PHY or NVM
1316 **/
1317void igb_put_hw_semaphore(struct e1000_hw *hw)
1318{
1319	u32 swsm;
1320
1321	swsm = rd32(E1000_SWSM);
1322
1323	swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
1324
1325	wr32(E1000_SWSM, swsm);
1326}
1327
1328/**
1329 *  igb_get_auto_rd_done - Check for auto read completion
1330 *  @hw: pointer to the HW structure
1331 *
1332 *  Check EEPROM for Auto Read done bit.
1333 **/
1334s32 igb_get_auto_rd_done(struct e1000_hw *hw)
1335{
1336	s32 i = 0;
1337	s32 ret_val = 0;
1338
1339
1340	while (i < AUTO_READ_DONE_TIMEOUT) {
1341		if (rd32(E1000_EECD) & E1000_EECD_AUTO_RD)
1342			break;
1343		usleep_range(1000, 2000);
1344		i++;
1345	}
1346
1347	if (i == AUTO_READ_DONE_TIMEOUT) {
1348		hw_dbg("Auto read by HW from NVM has not completed.\n");
1349		ret_val = -E1000_ERR_RESET;
1350		goto out;
1351	}
1352
1353out:
1354	return ret_val;
1355}
1356
1357/**
1358 *  igb_valid_led_default - Verify a valid default LED config
1359 *  @hw: pointer to the HW structure
1360 *  @data: pointer to the NVM (EEPROM)
1361 *
1362 *  Read the EEPROM for the current default LED configuration.  If the
1363 *  LED configuration is not valid, set to a valid LED configuration.
1364 **/
1365static s32 igb_valid_led_default(struct e1000_hw *hw, u16 *data)
1366{
1367	s32 ret_val;
1368
1369	ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data);
1370	if (ret_val) {
1371		hw_dbg("NVM Read Error\n");
1372		goto out;
1373	}
1374
1375	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) {
1376		switch (hw->phy.media_type) {
1377		case e1000_media_type_internal_serdes:
1378			*data = ID_LED_DEFAULT_82575_SERDES;
1379			break;
1380		case e1000_media_type_copper:
1381		default:
1382			*data = ID_LED_DEFAULT;
1383			break;
1384		}
1385	}
1386out:
1387	return ret_val;
1388}
1389
1390/**
1391 *  igb_id_led_init -
1392 *  @hw: pointer to the HW structure
1393 *
1394 **/
1395s32 igb_id_led_init(struct e1000_hw *hw)
1396{
1397	struct e1000_mac_info *mac = &hw->mac;
1398	s32 ret_val;
1399	const u32 ledctl_mask = 0x000000FF;
1400	const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
1401	const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
1402	u16 data, i, temp;
1403	const u16 led_mask = 0x0F;
1404
1405	/* i210 and i211 devices have different LED mechanism */
1406	if ((hw->mac.type == e1000_i210) ||
1407	    (hw->mac.type == e1000_i211))
1408		ret_val = igb_valid_led_default_i210(hw, &data);
1409	else
1410		ret_val = igb_valid_led_default(hw, &data);
1411
1412	if (ret_val)
1413		goto out;
1414
1415	mac->ledctl_default = rd32(E1000_LEDCTL);
1416	mac->ledctl_mode1 = mac->ledctl_default;
1417	mac->ledctl_mode2 = mac->ledctl_default;
1418
1419	for (i = 0; i < 4; i++) {
1420		temp = (data >> (i << 2)) & led_mask;
1421		switch (temp) {
1422		case ID_LED_ON1_DEF2:
1423		case ID_LED_ON1_ON2:
1424		case ID_LED_ON1_OFF2:
1425			mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1426			mac->ledctl_mode1 |= ledctl_on << (i << 3);
1427			break;
1428		case ID_LED_OFF1_DEF2:
1429		case ID_LED_OFF1_ON2:
1430		case ID_LED_OFF1_OFF2:
1431			mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1432			mac->ledctl_mode1 |= ledctl_off << (i << 3);
1433			break;
1434		default:
1435			/* Do nothing */
1436			break;
1437		}
1438		switch (temp) {
1439		case ID_LED_DEF1_ON2:
1440		case ID_LED_ON1_ON2:
1441		case ID_LED_OFF1_ON2:
1442			mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1443			mac->ledctl_mode2 |= ledctl_on << (i << 3);
1444			break;
1445		case ID_LED_DEF1_OFF2:
1446		case ID_LED_ON1_OFF2:
1447		case ID_LED_OFF1_OFF2:
1448			mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1449			mac->ledctl_mode2 |= ledctl_off << (i << 3);
1450			break;
1451		default:
1452			/* Do nothing */
1453			break;
1454		}
1455	}
1456
1457out:
1458	return ret_val;
1459}
1460
1461/**
1462 *  igb_cleanup_led - Set LED config to default operation
1463 *  @hw: pointer to the HW structure
1464 *
1465 *  Remove the current LED configuration and set the LED configuration
1466 *  to the default value, saved from the EEPROM.
1467 **/
1468s32 igb_cleanup_led(struct e1000_hw *hw)
1469{
1470	wr32(E1000_LEDCTL, hw->mac.ledctl_default);
1471	return 0;
1472}
1473
1474/**
1475 *  igb_blink_led - Blink LED
1476 *  @hw: pointer to the HW structure
1477 *
1478 *  Blink the led's which are set to be on.
1479 **/
1480s32 igb_blink_led(struct e1000_hw *hw)
1481{
1482	u32 ledctl_blink = 0;
1483	u32 i;
1484
1485	if (hw->phy.media_type == e1000_media_type_fiber) {
1486		/* always blink LED0 for PCI-E fiber */
1487		ledctl_blink = E1000_LEDCTL_LED0_BLINK |
1488		     (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT);
1489	} else {
1490		/* Set the blink bit for each LED that's "on" (0x0E)
1491		 * (or "off" if inverted) in ledctl_mode2.  The blink
1492		 * logic in hardware only works when mode is set to "on"
1493		 * so it must be changed accordingly when the mode is
1494		 * "off" and inverted.
1495		 */
1496		ledctl_blink = hw->mac.ledctl_mode2;
1497		for (i = 0; i < 32; i += 8) {
1498			u32 mode = (hw->mac.ledctl_mode2 >> i) &
1499			    E1000_LEDCTL_LED0_MODE_MASK;
1500			u32 led_default = hw->mac.ledctl_default >> i;
1501
1502			if ((!(led_default & E1000_LEDCTL_LED0_IVRT) &&
1503			     (mode == E1000_LEDCTL_MODE_LED_ON)) ||
1504			    ((led_default & E1000_LEDCTL_LED0_IVRT) &&
1505			     (mode == E1000_LEDCTL_MODE_LED_OFF))) {
1506				ledctl_blink &=
1507				    ~(E1000_LEDCTL_LED0_MODE_MASK << i);
1508				ledctl_blink |= (E1000_LEDCTL_LED0_BLINK |
1509						 E1000_LEDCTL_MODE_LED_ON) << i;
1510			}
1511		}
1512	}
1513
1514	wr32(E1000_LEDCTL, ledctl_blink);
1515
1516	return 0;
1517}
1518
1519/**
1520 *  igb_led_off - Turn LED off
1521 *  @hw: pointer to the HW structure
1522 *
1523 *  Turn LED off.
1524 **/
1525s32 igb_led_off(struct e1000_hw *hw)
1526{
1527	switch (hw->phy.media_type) {
1528	case e1000_media_type_copper:
1529		wr32(E1000_LEDCTL, hw->mac.ledctl_mode1);
1530		break;
1531	default:
1532		break;
1533	}
1534
1535	return 0;
1536}
1537
1538/**
1539 *  igb_disable_pcie_master - Disables PCI-express master access
1540 *  @hw: pointer to the HW structure
1541 *
1542 *  Returns 0 (0) if successful, else returns -10
1543 *  (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not caused
1544 *  the master requests to be disabled.
1545 *
1546 *  Disables PCI-Express master access and verifies there are no pending
1547 *  requests.
1548 **/
1549s32 igb_disable_pcie_master(struct e1000_hw *hw)
1550{
1551	u32 ctrl;
1552	s32 timeout = MASTER_DISABLE_TIMEOUT;
1553	s32 ret_val = 0;
1554
1555	if (hw->bus.type != e1000_bus_type_pci_express)
1556		goto out;
1557
1558	ctrl = rd32(E1000_CTRL);
1559	ctrl |= E1000_CTRL_GIO_MASTER_DISABLE;
1560	wr32(E1000_CTRL, ctrl);
1561
1562	while (timeout) {
1563		if (!(rd32(E1000_STATUS) &
1564		      E1000_STATUS_GIO_MASTER_ENABLE))
1565			break;
1566		udelay(100);
1567		timeout--;
1568	}
1569
1570	if (!timeout) {
1571		hw_dbg("Master requests are pending.\n");
1572		ret_val = -E1000_ERR_MASTER_REQUESTS_PENDING;
1573		goto out;
1574	}
1575
1576out:
1577	return ret_val;
1578}
1579
1580/**
1581 *  igb_validate_mdi_setting - Verify MDI/MDIx settings
1582 *  @hw: pointer to the HW structure
1583 *
1584 *  Verify that when not using auto-negotitation that MDI/MDIx is correctly
1585 *  set, which is forced to MDI mode only.
1586 **/
1587s32 igb_validate_mdi_setting(struct e1000_hw *hw)
1588{
1589	s32 ret_val = 0;
1590
1591	/* All MDI settings are supported on 82580 and newer. */
1592	if (hw->mac.type >= e1000_82580)
1593		goto out;
1594
1595	if (!hw->mac.autoneg && (hw->phy.mdix == 0 || hw->phy.mdix == 3)) {
1596		hw_dbg("Invalid MDI setting detected\n");
1597		hw->phy.mdix = 1;
1598		ret_val = -E1000_ERR_CONFIG;
1599		goto out;
1600	}
1601
1602out:
1603	return ret_val;
1604}
1605
1606/**
1607 *  igb_write_8bit_ctrl_reg - Write a 8bit CTRL register
1608 *  @hw: pointer to the HW structure
1609 *  @reg: 32bit register offset such as E1000_SCTL
1610 *  @offset: register offset to write to
1611 *  @data: data to write at register offset
1612 *
1613 *  Writes an address/data control type register.  There are several of these
1614 *  and they all have the format address << 8 | data and bit 31 is polled for
1615 *  completion.
1616 **/
1617s32 igb_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg,
1618			      u32 offset, u8 data)
1619{
1620	u32 i, regvalue = 0;
1621	s32 ret_val = 0;
1622
1623	/* Set up the address and data */
1624	regvalue = ((u32)data) | (offset << E1000_GEN_CTL_ADDRESS_SHIFT);
1625	wr32(reg, regvalue);
1626
1627	/* Poll the ready bit to see if the MDI read completed */
1628	for (i = 0; i < E1000_GEN_POLL_TIMEOUT; i++) {
1629		udelay(5);
1630		regvalue = rd32(reg);
1631		if (regvalue & E1000_GEN_CTL_READY)
1632			break;
1633	}
1634	if (!(regvalue & E1000_GEN_CTL_READY)) {
1635		hw_dbg("Reg %08x did not indicate ready\n", reg);
1636		ret_val = -E1000_ERR_PHY;
1637		goto out;
1638	}
1639
1640out:
1641	return ret_val;
1642}
1643
1644/**
1645 *  igb_enable_mng_pass_thru - Enable processing of ARP's
1646 *  @hw: pointer to the HW structure
1647 *
1648 *  Verifies the hardware needs to leave interface enabled so that frames can
1649 *  be directed to and from the management interface.
1650 **/
1651bool igb_enable_mng_pass_thru(struct e1000_hw *hw)
1652{
1653	u32 manc;
1654	u32 fwsm, factps;
1655	bool ret_val = false;
1656
1657	if (!hw->mac.asf_firmware_present)
1658		goto out;
1659
1660	manc = rd32(E1000_MANC);
1661
1662	if (!(manc & E1000_MANC_RCV_TCO_EN))
1663		goto out;
1664
1665	if (hw->mac.arc_subsystem_valid) {
1666		fwsm = rd32(E1000_FWSM);
1667		factps = rd32(E1000_FACTPS);
1668
1669		if (!(factps & E1000_FACTPS_MNGCG) &&
1670		    ((fwsm & E1000_FWSM_MODE_MASK) ==
1671		     (e1000_mng_mode_pt << E1000_FWSM_MODE_SHIFT))) {
1672			ret_val = true;
1673			goto out;
1674		}
1675	} else {
1676		if ((manc & E1000_MANC_SMBUS_EN) &&
1677		    !(manc & E1000_MANC_ASF_EN)) {
1678			ret_val = true;
1679			goto out;
1680		}
1681	}
1682
1683out:
1684	return ret_val;
1685}
1686