1// SPDX-License-Identifier: GPL-2.0
2/* Copyright (c) 2018-2023, Intel Corporation. */
3
4#include "ice_common.h"
5#include "ice_sched.h"
6#include "ice_adminq_cmd.h"
7#include "ice_flow.h"
8#include "ice_ptp_hw.h"
9
10#define ICE_PF_RESET_WAIT_COUNT	300
11#define ICE_MAX_NETLIST_SIZE	10
12
13static const char * const ice_link_mode_str_low[] = {
14	[0] = "100BASE_TX",
15	[1] = "100M_SGMII",
16	[2] = "1000BASE_T",
17	[3] = "1000BASE_SX",
18	[4] = "1000BASE_LX",
19	[5] = "1000BASE_KX",
20	[6] = "1G_SGMII",
21	[7] = "2500BASE_T",
22	[8] = "2500BASE_X",
23	[9] = "2500BASE_KX",
24	[10] = "5GBASE_T",
25	[11] = "5GBASE_KR",
26	[12] = "10GBASE_T",
27	[13] = "10G_SFI_DA",
28	[14] = "10GBASE_SR",
29	[15] = "10GBASE_LR",
30	[16] = "10GBASE_KR_CR1",
31	[17] = "10G_SFI_AOC_ACC",
32	[18] = "10G_SFI_C2C",
33	[19] = "25GBASE_T",
34	[20] = "25GBASE_CR",
35	[21] = "25GBASE_CR_S",
36	[22] = "25GBASE_CR1",
37	[23] = "25GBASE_SR",
38	[24] = "25GBASE_LR",
39	[25] = "25GBASE_KR",
40	[26] = "25GBASE_KR_S",
41	[27] = "25GBASE_KR1",
42	[28] = "25G_AUI_AOC_ACC",
43	[29] = "25G_AUI_C2C",
44	[30] = "40GBASE_CR4",
45	[31] = "40GBASE_SR4",
46	[32] = "40GBASE_LR4",
47	[33] = "40GBASE_KR4",
48	[34] = "40G_XLAUI_AOC_ACC",
49	[35] = "40G_XLAUI",
50	[36] = "50GBASE_CR2",
51	[37] = "50GBASE_SR2",
52	[38] = "50GBASE_LR2",
53	[39] = "50GBASE_KR2",
54	[40] = "50G_LAUI2_AOC_ACC",
55	[41] = "50G_LAUI2",
56	[42] = "50G_AUI2_AOC_ACC",
57	[43] = "50G_AUI2",
58	[44] = "50GBASE_CP",
59	[45] = "50GBASE_SR",
60	[46] = "50GBASE_FR",
61	[47] = "50GBASE_LR",
62	[48] = "50GBASE_KR_PAM4",
63	[49] = "50G_AUI1_AOC_ACC",
64	[50] = "50G_AUI1",
65	[51] = "100GBASE_CR4",
66	[52] = "100GBASE_SR4",
67	[53] = "100GBASE_LR4",
68	[54] = "100GBASE_KR4",
69	[55] = "100G_CAUI4_AOC_ACC",
70	[56] = "100G_CAUI4",
71	[57] = "100G_AUI4_AOC_ACC",
72	[58] = "100G_AUI4",
73	[59] = "100GBASE_CR_PAM4",
74	[60] = "100GBASE_KR_PAM4",
75	[61] = "100GBASE_CP2",
76	[62] = "100GBASE_SR2",
77	[63] = "100GBASE_DR",
78};
79
80static const char * const ice_link_mode_str_high[] = {
81	[0] = "100GBASE_KR2_PAM4",
82	[1] = "100G_CAUI2_AOC_ACC",
83	[2] = "100G_CAUI2",
84	[3] = "100G_AUI2_AOC_ACC",
85	[4] = "100G_AUI2",
86};
87
88/**
89 * ice_dump_phy_type - helper function to dump phy_type
90 * @hw: pointer to the HW structure
91 * @low: 64 bit value for phy_type_low
92 * @high: 64 bit value for phy_type_high
93 * @prefix: prefix string to differentiate multiple dumps
94 */
95static void
96ice_dump_phy_type(struct ice_hw *hw, u64 low, u64 high, const char *prefix)
97{
98	ice_debug(hw, ICE_DBG_PHY, "%s: phy_type_low: 0x%016llx\n", prefix, low);
99
100	for (u32 i = 0; i < BITS_PER_TYPE(typeof(low)); i++) {
101		if (low & BIT_ULL(i))
102			ice_debug(hw, ICE_DBG_PHY, "%s:   bit(%d): %s\n",
103				  prefix, i, ice_link_mode_str_low[i]);
104	}
105
106	ice_debug(hw, ICE_DBG_PHY, "%s: phy_type_high: 0x%016llx\n", prefix, high);
107
108	for (u32 i = 0; i < BITS_PER_TYPE(typeof(high)); i++) {
109		if (high & BIT_ULL(i))
110			ice_debug(hw, ICE_DBG_PHY, "%s:   bit(%d): %s\n",
111				  prefix, i, ice_link_mode_str_high[i]);
112	}
113}
114
115/**
116 * ice_set_mac_type - Sets MAC type
117 * @hw: pointer to the HW structure
118 *
119 * This function sets the MAC type of the adapter based on the
120 * vendor ID and device ID stored in the HW structure.
121 */
122static int ice_set_mac_type(struct ice_hw *hw)
123{
124	if (hw->vendor_id != PCI_VENDOR_ID_INTEL)
125		return -ENODEV;
126
127	switch (hw->device_id) {
128	case ICE_DEV_ID_E810C_BACKPLANE:
129	case ICE_DEV_ID_E810C_QSFP:
130	case ICE_DEV_ID_E810C_SFP:
131	case ICE_DEV_ID_E810_XXV_BACKPLANE:
132	case ICE_DEV_ID_E810_XXV_QSFP:
133	case ICE_DEV_ID_E810_XXV_SFP:
134		hw->mac_type = ICE_MAC_E810;
135		break;
136	case ICE_DEV_ID_E823C_10G_BASE_T:
137	case ICE_DEV_ID_E823C_BACKPLANE:
138	case ICE_DEV_ID_E823C_QSFP:
139	case ICE_DEV_ID_E823C_SFP:
140	case ICE_DEV_ID_E823C_SGMII:
141	case ICE_DEV_ID_E822C_10G_BASE_T:
142	case ICE_DEV_ID_E822C_BACKPLANE:
143	case ICE_DEV_ID_E822C_QSFP:
144	case ICE_DEV_ID_E822C_SFP:
145	case ICE_DEV_ID_E822C_SGMII:
146	case ICE_DEV_ID_E822L_10G_BASE_T:
147	case ICE_DEV_ID_E822L_BACKPLANE:
148	case ICE_DEV_ID_E822L_SFP:
149	case ICE_DEV_ID_E822L_SGMII:
150	case ICE_DEV_ID_E823L_10G_BASE_T:
151	case ICE_DEV_ID_E823L_1GBE:
152	case ICE_DEV_ID_E823L_BACKPLANE:
153	case ICE_DEV_ID_E823L_QSFP:
154	case ICE_DEV_ID_E823L_SFP:
155		hw->mac_type = ICE_MAC_GENERIC;
156		break;
157	case ICE_DEV_ID_E825C_BACKPLANE:
158	case ICE_DEV_ID_E825C_QSFP:
159	case ICE_DEV_ID_E825C_SFP:
160	case ICE_DEV_ID_E825C_SGMII:
161		hw->mac_type = ICE_MAC_GENERIC_3K_E825;
162		break;
163	case ICE_DEV_ID_E830_BACKPLANE:
164	case ICE_DEV_ID_E830_QSFP56:
165	case ICE_DEV_ID_E830_SFP:
166	case ICE_DEV_ID_E830_SFP_DD:
167		hw->mac_type = ICE_MAC_E830;
168		break;
169	default:
170		hw->mac_type = ICE_MAC_UNKNOWN;
171		break;
172	}
173
174	ice_debug(hw, ICE_DBG_INIT, "mac_type: %d\n", hw->mac_type);
175	return 0;
176}
177
178/**
179 * ice_is_generic_mac - check if device's mac_type is generic
180 * @hw: pointer to the hardware structure
181 *
182 * Return: true if mac_type is generic (with SBQ support), false if not
183 */
184bool ice_is_generic_mac(struct ice_hw *hw)
185{
186	return (hw->mac_type == ICE_MAC_GENERIC ||
187		hw->mac_type == ICE_MAC_GENERIC_3K_E825);
188}
189
190/**
191 * ice_is_e810
192 * @hw: pointer to the hardware structure
193 *
194 * returns true if the device is E810 based, false if not.
195 */
196bool ice_is_e810(struct ice_hw *hw)
197{
198	return hw->mac_type == ICE_MAC_E810;
199}
200
201/**
202 * ice_is_e810t
203 * @hw: pointer to the hardware structure
204 *
205 * returns true if the device is E810T based, false if not.
206 */
207bool ice_is_e810t(struct ice_hw *hw)
208{
209	switch (hw->device_id) {
210	case ICE_DEV_ID_E810C_SFP:
211		switch (hw->subsystem_device_id) {
212		case ICE_SUBDEV_ID_E810T:
213		case ICE_SUBDEV_ID_E810T2:
214		case ICE_SUBDEV_ID_E810T3:
215		case ICE_SUBDEV_ID_E810T4:
216		case ICE_SUBDEV_ID_E810T6:
217		case ICE_SUBDEV_ID_E810T7:
218			return true;
219		}
220		break;
221	case ICE_DEV_ID_E810C_QSFP:
222		switch (hw->subsystem_device_id) {
223		case ICE_SUBDEV_ID_E810T2:
224		case ICE_SUBDEV_ID_E810T3:
225		case ICE_SUBDEV_ID_E810T5:
226			return true;
227		}
228		break;
229	default:
230		break;
231	}
232
233	return false;
234}
235
236/**
237 * ice_is_e823
238 * @hw: pointer to the hardware structure
239 *
240 * returns true if the device is E823-L or E823-C based, false if not.
241 */
242bool ice_is_e823(struct ice_hw *hw)
243{
244	switch (hw->device_id) {
245	case ICE_DEV_ID_E823L_BACKPLANE:
246	case ICE_DEV_ID_E823L_SFP:
247	case ICE_DEV_ID_E823L_10G_BASE_T:
248	case ICE_DEV_ID_E823L_1GBE:
249	case ICE_DEV_ID_E823L_QSFP:
250	case ICE_DEV_ID_E823C_BACKPLANE:
251	case ICE_DEV_ID_E823C_QSFP:
252	case ICE_DEV_ID_E823C_SFP:
253	case ICE_DEV_ID_E823C_10G_BASE_T:
254	case ICE_DEV_ID_E823C_SGMII:
255		return true;
256	default:
257		return false;
258	}
259}
260
261/**
262 * ice_is_e825c - Check if a device is E825C family device
263 * @hw: pointer to the hardware structure
264 *
265 * Return: true if the device is E825-C based, false if not.
266 */
267bool ice_is_e825c(struct ice_hw *hw)
268{
269	switch (hw->device_id) {
270	case ICE_DEV_ID_E825C_BACKPLANE:
271	case ICE_DEV_ID_E825C_QSFP:
272	case ICE_DEV_ID_E825C_SFP:
273	case ICE_DEV_ID_E825C_SGMII:
274		return true;
275	default:
276		return false;
277	}
278}
279
280/**
281 * ice_clear_pf_cfg - Clear PF configuration
282 * @hw: pointer to the hardware structure
283 *
284 * Clears any existing PF configuration (VSIs, VSI lists, switch rules, port
285 * configuration, flow director filters, etc.).
286 */
287int ice_clear_pf_cfg(struct ice_hw *hw)
288{
289	struct ice_aq_desc desc;
290
291	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pf_cfg);
292
293	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
294}
295
296/**
297 * ice_aq_manage_mac_read - manage MAC address read command
298 * @hw: pointer to the HW struct
299 * @buf: a virtual buffer to hold the manage MAC read response
300 * @buf_size: Size of the virtual buffer
301 * @cd: pointer to command details structure or NULL
302 *
303 * This function is used to return per PF station MAC address (0x0107).
304 * NOTE: Upon successful completion of this command, MAC address information
305 * is returned in user specified buffer. Please interpret user specified
306 * buffer as "manage_mac_read" response.
307 * Response such as various MAC addresses are stored in HW struct (port.mac)
308 * ice_discover_dev_caps is expected to be called before this function is
309 * called.
310 */
311static int
312ice_aq_manage_mac_read(struct ice_hw *hw, void *buf, u16 buf_size,
313		       struct ice_sq_cd *cd)
314{
315	struct ice_aqc_manage_mac_read_resp *resp;
316	struct ice_aqc_manage_mac_read *cmd;
317	struct ice_aq_desc desc;
318	int status;
319	u16 flags;
320	u8 i;
321
322	cmd = &desc.params.mac_read;
323
324	if (buf_size < sizeof(*resp))
325		return -EINVAL;
326
327	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_read);
328
329	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
330	if (status)
331		return status;
332
333	resp = buf;
334	flags = le16_to_cpu(cmd->flags) & ICE_AQC_MAN_MAC_READ_M;
335
336	if (!(flags & ICE_AQC_MAN_MAC_LAN_ADDR_VALID)) {
337		ice_debug(hw, ICE_DBG_LAN, "got invalid MAC address\n");
338		return -EIO;
339	}
340
341	/* A single port can report up to two (LAN and WoL) addresses */
342	for (i = 0; i < cmd->num_addr; i++)
343		if (resp[i].addr_type == ICE_AQC_MAN_MAC_ADDR_TYPE_LAN) {
344			ether_addr_copy(hw->port_info->mac.lan_addr,
345					resp[i].mac_addr);
346			ether_addr_copy(hw->port_info->mac.perm_addr,
347					resp[i].mac_addr);
348			break;
349		}
350
351	return 0;
352}
353
354/**
355 * ice_aq_get_phy_caps - returns PHY capabilities
356 * @pi: port information structure
357 * @qual_mods: report qualified modules
358 * @report_mode: report mode capabilities
359 * @pcaps: structure for PHY capabilities to be filled
360 * @cd: pointer to command details structure or NULL
361 *
362 * Returns the various PHY capabilities supported on the Port (0x0600)
363 */
364int
365ice_aq_get_phy_caps(struct ice_port_info *pi, bool qual_mods, u8 report_mode,
366		    struct ice_aqc_get_phy_caps_data *pcaps,
367		    struct ice_sq_cd *cd)
368{
369	struct ice_aqc_get_phy_caps *cmd;
370	u16 pcaps_size = sizeof(*pcaps);
371	struct ice_aq_desc desc;
372	const char *prefix;
373	struct ice_hw *hw;
374	int status;
375
376	cmd = &desc.params.get_phy;
377
378	if (!pcaps || (report_mode & ~ICE_AQC_REPORT_MODE_M) || !pi)
379		return -EINVAL;
380	hw = pi->hw;
381
382	if (report_mode == ICE_AQC_REPORT_DFLT_CFG &&
383	    !ice_fw_supports_report_dflt_cfg(hw))
384		return -EINVAL;
385
386	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_phy_caps);
387
388	if (qual_mods)
389		cmd->param0 |= cpu_to_le16(ICE_AQC_GET_PHY_RQM);
390
391	cmd->param0 |= cpu_to_le16(report_mode);
392	status = ice_aq_send_cmd(hw, &desc, pcaps, pcaps_size, cd);
393
394	ice_debug(hw, ICE_DBG_LINK, "get phy caps dump\n");
395
396	switch (report_mode) {
397	case ICE_AQC_REPORT_TOPO_CAP_MEDIA:
398		prefix = "phy_caps_media";
399		break;
400	case ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA:
401		prefix = "phy_caps_no_media";
402		break;
403	case ICE_AQC_REPORT_ACTIVE_CFG:
404		prefix = "phy_caps_active";
405		break;
406	case ICE_AQC_REPORT_DFLT_CFG:
407		prefix = "phy_caps_default";
408		break;
409	default:
410		prefix = "phy_caps_invalid";
411	}
412
413	ice_dump_phy_type(hw, le64_to_cpu(pcaps->phy_type_low),
414			  le64_to_cpu(pcaps->phy_type_high), prefix);
415
416	ice_debug(hw, ICE_DBG_LINK, "%s: report_mode = 0x%x\n",
417		  prefix, report_mode);
418	ice_debug(hw, ICE_DBG_LINK, "%s: caps = 0x%x\n", prefix, pcaps->caps);
419	ice_debug(hw, ICE_DBG_LINK, "%s: low_power_ctrl_an = 0x%x\n", prefix,
420		  pcaps->low_power_ctrl_an);
421	ice_debug(hw, ICE_DBG_LINK, "%s: eee_cap = 0x%x\n", prefix,
422		  pcaps->eee_cap);
423	ice_debug(hw, ICE_DBG_LINK, "%s: eeer_value = 0x%x\n", prefix,
424		  pcaps->eeer_value);
425	ice_debug(hw, ICE_DBG_LINK, "%s: link_fec_options = 0x%x\n", prefix,
426		  pcaps->link_fec_options);
427	ice_debug(hw, ICE_DBG_LINK, "%s: module_compliance_enforcement = 0x%x\n",
428		  prefix, pcaps->module_compliance_enforcement);
429	ice_debug(hw, ICE_DBG_LINK, "%s: extended_compliance_code = 0x%x\n",
430		  prefix, pcaps->extended_compliance_code);
431	ice_debug(hw, ICE_DBG_LINK, "%s: module_type[0] = 0x%x\n", prefix,
432		  pcaps->module_type[0]);
433	ice_debug(hw, ICE_DBG_LINK, "%s: module_type[1] = 0x%x\n", prefix,
434		  pcaps->module_type[1]);
435	ice_debug(hw, ICE_DBG_LINK, "%s: module_type[2] = 0x%x\n", prefix,
436		  pcaps->module_type[2]);
437
438	if (!status && report_mode == ICE_AQC_REPORT_TOPO_CAP_MEDIA) {
439		pi->phy.phy_type_low = le64_to_cpu(pcaps->phy_type_low);
440		pi->phy.phy_type_high = le64_to_cpu(pcaps->phy_type_high);
441		memcpy(pi->phy.link_info.module_type, &pcaps->module_type,
442		       sizeof(pi->phy.link_info.module_type));
443	}
444
445	return status;
446}
447
448/**
449 * ice_aq_get_link_topo_handle - get link topology node return status
450 * @pi: port information structure
451 * @node_type: requested node type
452 * @cd: pointer to command details structure or NULL
453 *
454 * Get link topology node return status for specified node type (0x06E0)
455 *
456 * Node type cage can be used to determine if cage is present. If AQC
457 * returns error (ENOENT), then no cage present. If no cage present, then
458 * connection type is backplane or BASE-T.
459 */
460static int
461ice_aq_get_link_topo_handle(struct ice_port_info *pi, u8 node_type,
462			    struct ice_sq_cd *cd)
463{
464	struct ice_aqc_get_link_topo *cmd;
465	struct ice_aq_desc desc;
466
467	cmd = &desc.params.get_link_topo;
468
469	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_topo);
470
471	cmd->addr.topo_params.node_type_ctx =
472		(ICE_AQC_LINK_TOPO_NODE_CTX_PORT <<
473		 ICE_AQC_LINK_TOPO_NODE_CTX_S);
474
475	/* set node type */
476	cmd->addr.topo_params.node_type_ctx |=
477		(ICE_AQC_LINK_TOPO_NODE_TYPE_M & node_type);
478
479	return ice_aq_send_cmd(pi->hw, &desc, NULL, 0, cd);
480}
481
482/**
483 * ice_aq_get_netlist_node
484 * @hw: pointer to the hw struct
485 * @cmd: get_link_topo AQ structure
486 * @node_part_number: output node part number if node found
487 * @node_handle: output node handle parameter if node found
488 *
489 * Get netlist node handle.
490 */
491int
492ice_aq_get_netlist_node(struct ice_hw *hw, struct ice_aqc_get_link_topo *cmd,
493			u8 *node_part_number, u16 *node_handle)
494{
495	struct ice_aq_desc desc;
496
497	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_topo);
498	desc.params.get_link_topo = *cmd;
499
500	if (ice_aq_send_cmd(hw, &desc, NULL, 0, NULL))
501		return -EINTR;
502
503	if (node_handle)
504		*node_handle =
505			le16_to_cpu(desc.params.get_link_topo.addr.handle);
506	if (node_part_number)
507		*node_part_number = desc.params.get_link_topo.node_part_num;
508
509	return 0;
510}
511
512/**
513 * ice_find_netlist_node
514 * @hw: pointer to the hw struct
515 * @node_type_ctx: type of netlist node to look for
516 * @node_part_number: node part number to look for
517 * @node_handle: output parameter if node found - optional
518 *
519 * Scan the netlist for a node handle of the given node type and part number.
520 *
521 * If node_handle is non-NULL it will be modified on function exit. It is only
522 * valid if the function returns zero, and should be ignored on any non-zero
523 * return value.
524 *
525 * Returns: 0 if the node is found, -ENOENT if no handle was found, and
526 * a negative error code on failure to access the AQ.
527 */
528static int ice_find_netlist_node(struct ice_hw *hw, u8 node_type_ctx,
529				 u8 node_part_number, u16 *node_handle)
530{
531	u8 idx;
532
533	for (idx = 0; idx < ICE_MAX_NETLIST_SIZE; idx++) {
534		struct ice_aqc_get_link_topo cmd = {};
535		u8 rec_node_part_number;
536		int status;
537
538		cmd.addr.topo_params.node_type_ctx =
539			FIELD_PREP(ICE_AQC_LINK_TOPO_NODE_TYPE_M,
540				   node_type_ctx);
541		cmd.addr.topo_params.index = idx;
542
543		status = ice_aq_get_netlist_node(hw, &cmd,
544						 &rec_node_part_number,
545						 node_handle);
546		if (status)
547			return status;
548
549		if (rec_node_part_number == node_part_number)
550			return 0;
551	}
552
553	return -ENOENT;
554}
555
556/**
557 * ice_is_media_cage_present
558 * @pi: port information structure
559 *
560 * Returns true if media cage is present, else false. If no cage, then
561 * media type is backplane or BASE-T.
562 */
563static bool ice_is_media_cage_present(struct ice_port_info *pi)
564{
565	/* Node type cage can be used to determine if cage is present. If AQC
566	 * returns error (ENOENT), then no cage present. If no cage present then
567	 * connection type is backplane or BASE-T.
568	 */
569	return !ice_aq_get_link_topo_handle(pi,
570					    ICE_AQC_LINK_TOPO_NODE_TYPE_CAGE,
571					    NULL);
572}
573
574/**
575 * ice_get_media_type - Gets media type
576 * @pi: port information structure
577 */
578static enum ice_media_type ice_get_media_type(struct ice_port_info *pi)
579{
580	struct ice_link_status *hw_link_info;
581
582	if (!pi)
583		return ICE_MEDIA_UNKNOWN;
584
585	hw_link_info = &pi->phy.link_info;
586	if (hw_link_info->phy_type_low && hw_link_info->phy_type_high)
587		/* If more than one media type is selected, report unknown */
588		return ICE_MEDIA_UNKNOWN;
589
590	if (hw_link_info->phy_type_low) {
591		/* 1G SGMII is a special case where some DA cable PHYs
592		 * may show this as an option when it really shouldn't
593		 * be since SGMII is meant to be between a MAC and a PHY
594		 * in a backplane. Try to detect this case and handle it
595		 */
596		if (hw_link_info->phy_type_low == ICE_PHY_TYPE_LOW_1G_SGMII &&
597		    (hw_link_info->module_type[ICE_AQC_MOD_TYPE_IDENT] ==
598		    ICE_AQC_MOD_TYPE_BYTE1_SFP_PLUS_CU_ACTIVE ||
599		    hw_link_info->module_type[ICE_AQC_MOD_TYPE_IDENT] ==
600		    ICE_AQC_MOD_TYPE_BYTE1_SFP_PLUS_CU_PASSIVE))
601			return ICE_MEDIA_DA;
602
603		switch (hw_link_info->phy_type_low) {
604		case ICE_PHY_TYPE_LOW_1000BASE_SX:
605		case ICE_PHY_TYPE_LOW_1000BASE_LX:
606		case ICE_PHY_TYPE_LOW_10GBASE_SR:
607		case ICE_PHY_TYPE_LOW_10GBASE_LR:
608		case ICE_PHY_TYPE_LOW_10G_SFI_C2C:
609		case ICE_PHY_TYPE_LOW_25GBASE_SR:
610		case ICE_PHY_TYPE_LOW_25GBASE_LR:
611		case ICE_PHY_TYPE_LOW_40GBASE_SR4:
612		case ICE_PHY_TYPE_LOW_40GBASE_LR4:
613		case ICE_PHY_TYPE_LOW_50GBASE_SR2:
614		case ICE_PHY_TYPE_LOW_50GBASE_LR2:
615		case ICE_PHY_TYPE_LOW_50GBASE_SR:
616		case ICE_PHY_TYPE_LOW_50GBASE_FR:
617		case ICE_PHY_TYPE_LOW_50GBASE_LR:
618		case ICE_PHY_TYPE_LOW_100GBASE_SR4:
619		case ICE_PHY_TYPE_LOW_100GBASE_LR4:
620		case ICE_PHY_TYPE_LOW_100GBASE_SR2:
621		case ICE_PHY_TYPE_LOW_100GBASE_DR:
622		case ICE_PHY_TYPE_LOW_10G_SFI_AOC_ACC:
623		case ICE_PHY_TYPE_LOW_25G_AUI_AOC_ACC:
624		case ICE_PHY_TYPE_LOW_40G_XLAUI_AOC_ACC:
625		case ICE_PHY_TYPE_LOW_50G_LAUI2_AOC_ACC:
626		case ICE_PHY_TYPE_LOW_50G_AUI2_AOC_ACC:
627		case ICE_PHY_TYPE_LOW_50G_AUI1_AOC_ACC:
628		case ICE_PHY_TYPE_LOW_100G_CAUI4_AOC_ACC:
629		case ICE_PHY_TYPE_LOW_100G_AUI4_AOC_ACC:
630			return ICE_MEDIA_FIBER;
631		case ICE_PHY_TYPE_LOW_100BASE_TX:
632		case ICE_PHY_TYPE_LOW_1000BASE_T:
633		case ICE_PHY_TYPE_LOW_2500BASE_T:
634		case ICE_PHY_TYPE_LOW_5GBASE_T:
635		case ICE_PHY_TYPE_LOW_10GBASE_T:
636		case ICE_PHY_TYPE_LOW_25GBASE_T:
637			return ICE_MEDIA_BASET;
638		case ICE_PHY_TYPE_LOW_10G_SFI_DA:
639		case ICE_PHY_TYPE_LOW_25GBASE_CR:
640		case ICE_PHY_TYPE_LOW_25GBASE_CR_S:
641		case ICE_PHY_TYPE_LOW_25GBASE_CR1:
642		case ICE_PHY_TYPE_LOW_40GBASE_CR4:
643		case ICE_PHY_TYPE_LOW_50GBASE_CR2:
644		case ICE_PHY_TYPE_LOW_50GBASE_CP:
645		case ICE_PHY_TYPE_LOW_100GBASE_CR4:
646		case ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4:
647		case ICE_PHY_TYPE_LOW_100GBASE_CP2:
648			return ICE_MEDIA_DA;
649		case ICE_PHY_TYPE_LOW_25G_AUI_C2C:
650		case ICE_PHY_TYPE_LOW_40G_XLAUI:
651		case ICE_PHY_TYPE_LOW_50G_LAUI2:
652		case ICE_PHY_TYPE_LOW_50G_AUI2:
653		case ICE_PHY_TYPE_LOW_50G_AUI1:
654		case ICE_PHY_TYPE_LOW_100G_AUI4:
655		case ICE_PHY_TYPE_LOW_100G_CAUI4:
656			if (ice_is_media_cage_present(pi))
657				return ICE_MEDIA_DA;
658			fallthrough;
659		case ICE_PHY_TYPE_LOW_1000BASE_KX:
660		case ICE_PHY_TYPE_LOW_2500BASE_KX:
661		case ICE_PHY_TYPE_LOW_2500BASE_X:
662		case ICE_PHY_TYPE_LOW_5GBASE_KR:
663		case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1:
664		case ICE_PHY_TYPE_LOW_25GBASE_KR:
665		case ICE_PHY_TYPE_LOW_25GBASE_KR1:
666		case ICE_PHY_TYPE_LOW_25GBASE_KR_S:
667		case ICE_PHY_TYPE_LOW_40GBASE_KR4:
668		case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4:
669		case ICE_PHY_TYPE_LOW_50GBASE_KR2:
670		case ICE_PHY_TYPE_LOW_100GBASE_KR4:
671		case ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4:
672			return ICE_MEDIA_BACKPLANE;
673		}
674	} else {
675		switch (hw_link_info->phy_type_high) {
676		case ICE_PHY_TYPE_HIGH_100G_AUI2:
677		case ICE_PHY_TYPE_HIGH_100G_CAUI2:
678			if (ice_is_media_cage_present(pi))
679				return ICE_MEDIA_DA;
680			fallthrough;
681		case ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4:
682			return ICE_MEDIA_BACKPLANE;
683		case ICE_PHY_TYPE_HIGH_100G_CAUI2_AOC_ACC:
684		case ICE_PHY_TYPE_HIGH_100G_AUI2_AOC_ACC:
685			return ICE_MEDIA_FIBER;
686		}
687	}
688	return ICE_MEDIA_UNKNOWN;
689}
690
691/**
692 * ice_get_link_status_datalen
693 * @hw: pointer to the HW struct
694 *
695 * Returns datalength for the Get Link Status AQ command, which is bigger for
696 * newer adapter families handled by ice driver.
697 */
698static u16 ice_get_link_status_datalen(struct ice_hw *hw)
699{
700	switch (hw->mac_type) {
701	case ICE_MAC_E830:
702		return ICE_AQC_LS_DATA_SIZE_V2;
703	case ICE_MAC_E810:
704	default:
705		return ICE_AQC_LS_DATA_SIZE_V1;
706	}
707}
708
709/**
710 * ice_aq_get_link_info
711 * @pi: port information structure
712 * @ena_lse: enable/disable LinkStatusEvent reporting
713 * @link: pointer to link status structure - optional
714 * @cd: pointer to command details structure or NULL
715 *
716 * Get Link Status (0x607). Returns the link status of the adapter.
717 */
718int
719ice_aq_get_link_info(struct ice_port_info *pi, bool ena_lse,
720		     struct ice_link_status *link, struct ice_sq_cd *cd)
721{
722	struct ice_aqc_get_link_status_data link_data = { 0 };
723	struct ice_aqc_get_link_status *resp;
724	struct ice_link_status *li_old, *li;
725	enum ice_media_type *hw_media_type;
726	struct ice_fc_info *hw_fc_info;
727	bool tx_pause, rx_pause;
728	struct ice_aq_desc desc;
729	struct ice_hw *hw;
730	u16 cmd_flags;
731	int status;
732
733	if (!pi)
734		return -EINVAL;
735	hw = pi->hw;
736	li_old = &pi->phy.link_info_old;
737	hw_media_type = &pi->phy.media_type;
738	li = &pi->phy.link_info;
739	hw_fc_info = &pi->fc;
740
741	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_status);
742	cmd_flags = (ena_lse) ? ICE_AQ_LSE_ENA : ICE_AQ_LSE_DIS;
743	resp = &desc.params.get_link_status;
744	resp->cmd_flags = cpu_to_le16(cmd_flags);
745	resp->lport_num = pi->lport;
746
747	status = ice_aq_send_cmd(hw, &desc, &link_data,
748				 ice_get_link_status_datalen(hw), cd);
749	if (status)
750		return status;
751
752	/* save off old link status information */
753	*li_old = *li;
754
755	/* update current link status information */
756	li->link_speed = le16_to_cpu(link_data.link_speed);
757	li->phy_type_low = le64_to_cpu(link_data.phy_type_low);
758	li->phy_type_high = le64_to_cpu(link_data.phy_type_high);
759	*hw_media_type = ice_get_media_type(pi);
760	li->link_info = link_data.link_info;
761	li->link_cfg_err = link_data.link_cfg_err;
762	li->an_info = link_data.an_info;
763	li->ext_info = link_data.ext_info;
764	li->max_frame_size = le16_to_cpu(link_data.max_frame_size);
765	li->fec_info = link_data.cfg & ICE_AQ_FEC_MASK;
766	li->topo_media_conflict = link_data.topo_media_conflict;
767	li->pacing = link_data.cfg & (ICE_AQ_CFG_PACING_M |
768				      ICE_AQ_CFG_PACING_TYPE_M);
769
770	/* update fc info */
771	tx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_TX);
772	rx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_RX);
773	if (tx_pause && rx_pause)
774		hw_fc_info->current_mode = ICE_FC_FULL;
775	else if (tx_pause)
776		hw_fc_info->current_mode = ICE_FC_TX_PAUSE;
777	else if (rx_pause)
778		hw_fc_info->current_mode = ICE_FC_RX_PAUSE;
779	else
780		hw_fc_info->current_mode = ICE_FC_NONE;
781
782	li->lse_ena = !!(resp->cmd_flags & cpu_to_le16(ICE_AQ_LSE_IS_ENABLED));
783
784	ice_debug(hw, ICE_DBG_LINK, "get link info\n");
785	ice_debug(hw, ICE_DBG_LINK, "	link_speed = 0x%x\n", li->link_speed);
786	ice_debug(hw, ICE_DBG_LINK, "	phy_type_low = 0x%llx\n",
787		  (unsigned long long)li->phy_type_low);
788	ice_debug(hw, ICE_DBG_LINK, "	phy_type_high = 0x%llx\n",
789		  (unsigned long long)li->phy_type_high);
790	ice_debug(hw, ICE_DBG_LINK, "	media_type = 0x%x\n", *hw_media_type);
791	ice_debug(hw, ICE_DBG_LINK, "	link_info = 0x%x\n", li->link_info);
792	ice_debug(hw, ICE_DBG_LINK, "	link_cfg_err = 0x%x\n", li->link_cfg_err);
793	ice_debug(hw, ICE_DBG_LINK, "	an_info = 0x%x\n", li->an_info);
794	ice_debug(hw, ICE_DBG_LINK, "	ext_info = 0x%x\n", li->ext_info);
795	ice_debug(hw, ICE_DBG_LINK, "	fec_info = 0x%x\n", li->fec_info);
796	ice_debug(hw, ICE_DBG_LINK, "	lse_ena = 0x%x\n", li->lse_ena);
797	ice_debug(hw, ICE_DBG_LINK, "	max_frame = 0x%x\n",
798		  li->max_frame_size);
799	ice_debug(hw, ICE_DBG_LINK, "	pacing = 0x%x\n", li->pacing);
800
801	/* save link status information */
802	if (link)
803		*link = *li;
804
805	/* flag cleared so calling functions don't call AQ again */
806	pi->phy.get_link_info = false;
807
808	return 0;
809}
810
811/**
812 * ice_fill_tx_timer_and_fc_thresh
813 * @hw: pointer to the HW struct
814 * @cmd: pointer to MAC cfg structure
815 *
816 * Add Tx timer and FC refresh threshold info to Set MAC Config AQ command
817 * descriptor
818 */
819static void
820ice_fill_tx_timer_and_fc_thresh(struct ice_hw *hw,
821				struct ice_aqc_set_mac_cfg *cmd)
822{
823	u32 val, fc_thres_m;
824
825	/* We read back the transmit timer and FC threshold value of
826	 * LFC. Thus, we will use index =
827	 * PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA_MAX_INDEX.
828	 *
829	 * Also, because we are operating on transmit timer and FC
830	 * threshold of LFC, we don't turn on any bit in tx_tmr_priority
831	 */
832#define E800_IDX_OF_LFC E800_PRTMAC_HSEC_CTL_TX_PS_QNT_MAX
833#define E800_REFRESH_TMR E800_PRTMAC_HSEC_CTL_TX_PS_RFSH_TMR
834
835	if (hw->mac_type == ICE_MAC_E830) {
836		/* Retrieve the transmit timer */
837		val = rd32(hw, E830_PRTMAC_CL01_PS_QNT);
838		cmd->tx_tmr_value =
839			le16_encode_bits(val, E830_PRTMAC_CL01_PS_QNT_CL0_M);
840
841		/* Retrieve the fc threshold */
842		val = rd32(hw, E830_PRTMAC_CL01_QNT_THR);
843		fc_thres_m = E830_PRTMAC_CL01_QNT_THR_CL0_M;
844	} else {
845		/* Retrieve the transmit timer */
846		val = rd32(hw,
847			   E800_PRTMAC_HSEC_CTL_TX_PS_QNT(E800_IDX_OF_LFC));
848		cmd->tx_tmr_value =
849			le16_encode_bits(val,
850					 E800_PRTMAC_HSEC_CTL_TX_PS_QNT_M);
851
852		/* Retrieve the fc threshold */
853		val = rd32(hw,
854			   E800_REFRESH_TMR(E800_IDX_OF_LFC));
855		fc_thres_m = E800_PRTMAC_HSEC_CTL_TX_PS_RFSH_TMR_M;
856	}
857	cmd->fc_refresh_threshold = le16_encode_bits(val, fc_thres_m);
858}
859
860/**
861 * ice_aq_set_mac_cfg
862 * @hw: pointer to the HW struct
863 * @max_frame_size: Maximum Frame Size to be supported
864 * @cd: pointer to command details structure or NULL
865 *
866 * Set MAC configuration (0x0603)
867 */
868int
869ice_aq_set_mac_cfg(struct ice_hw *hw, u16 max_frame_size, struct ice_sq_cd *cd)
870{
871	struct ice_aqc_set_mac_cfg *cmd;
872	struct ice_aq_desc desc;
873
874	cmd = &desc.params.set_mac_cfg;
875
876	if (max_frame_size == 0)
877		return -EINVAL;
878
879	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_mac_cfg);
880
881	cmd->max_frame_size = cpu_to_le16(max_frame_size);
882
883	ice_fill_tx_timer_and_fc_thresh(hw, cmd);
884
885	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
886}
887
888/**
889 * ice_init_fltr_mgmt_struct - initializes filter management list and locks
890 * @hw: pointer to the HW struct
891 */
892static int ice_init_fltr_mgmt_struct(struct ice_hw *hw)
893{
894	struct ice_switch_info *sw;
895	int status;
896
897	hw->switch_info = devm_kzalloc(ice_hw_to_dev(hw),
898				       sizeof(*hw->switch_info), GFP_KERNEL);
899	sw = hw->switch_info;
900
901	if (!sw)
902		return -ENOMEM;
903
904	INIT_LIST_HEAD(&sw->vsi_list_map_head);
905	sw->prof_res_bm_init = 0;
906
907	status = ice_init_def_sw_recp(hw);
908	if (status) {
909		devm_kfree(ice_hw_to_dev(hw), hw->switch_info);
910		return status;
911	}
912	return 0;
913}
914
915/**
916 * ice_cleanup_fltr_mgmt_struct - cleanup filter management list and locks
917 * @hw: pointer to the HW struct
918 */
919static void ice_cleanup_fltr_mgmt_struct(struct ice_hw *hw)
920{
921	struct ice_switch_info *sw = hw->switch_info;
922	struct ice_vsi_list_map_info *v_pos_map;
923	struct ice_vsi_list_map_info *v_tmp_map;
924	struct ice_sw_recipe *recps;
925	u8 i;
926
927	list_for_each_entry_safe(v_pos_map, v_tmp_map, &sw->vsi_list_map_head,
928				 list_entry) {
929		list_del(&v_pos_map->list_entry);
930		devm_kfree(ice_hw_to_dev(hw), v_pos_map);
931	}
932	recps = sw->recp_list;
933	for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
934		struct ice_recp_grp_entry *rg_entry, *tmprg_entry;
935
936		recps[i].root_rid = i;
937		list_for_each_entry_safe(rg_entry, tmprg_entry,
938					 &recps[i].rg_list, l_entry) {
939			list_del(&rg_entry->l_entry);
940			devm_kfree(ice_hw_to_dev(hw), rg_entry);
941		}
942
943		if (recps[i].adv_rule) {
944			struct ice_adv_fltr_mgmt_list_entry *tmp_entry;
945			struct ice_adv_fltr_mgmt_list_entry *lst_itr;
946
947			mutex_destroy(&recps[i].filt_rule_lock);
948			list_for_each_entry_safe(lst_itr, tmp_entry,
949						 &recps[i].filt_rules,
950						 list_entry) {
951				list_del(&lst_itr->list_entry);
952				devm_kfree(ice_hw_to_dev(hw), lst_itr->lkups);
953				devm_kfree(ice_hw_to_dev(hw), lst_itr);
954			}
955		} else {
956			struct ice_fltr_mgmt_list_entry *lst_itr, *tmp_entry;
957
958			mutex_destroy(&recps[i].filt_rule_lock);
959			list_for_each_entry_safe(lst_itr, tmp_entry,
960						 &recps[i].filt_rules,
961						 list_entry) {
962				list_del(&lst_itr->list_entry);
963				devm_kfree(ice_hw_to_dev(hw), lst_itr);
964			}
965		}
966		devm_kfree(ice_hw_to_dev(hw), recps[i].root_buf);
967	}
968	ice_rm_all_sw_replay_rule_info(hw);
969	devm_kfree(ice_hw_to_dev(hw), sw->recp_list);
970	devm_kfree(ice_hw_to_dev(hw), sw);
971}
972
973/**
974 * ice_get_itr_intrl_gran
975 * @hw: pointer to the HW struct
976 *
977 * Determines the ITR/INTRL granularities based on the maximum aggregate
978 * bandwidth according to the device's configuration during power-on.
979 */
980static void ice_get_itr_intrl_gran(struct ice_hw *hw)
981{
982	u8 max_agg_bw = FIELD_GET(GL_PWR_MODE_CTL_CAR_MAX_BW_M,
983				  rd32(hw, GL_PWR_MODE_CTL));
984
985	switch (max_agg_bw) {
986	case ICE_MAX_AGG_BW_200G:
987	case ICE_MAX_AGG_BW_100G:
988	case ICE_MAX_AGG_BW_50G:
989		hw->itr_gran = ICE_ITR_GRAN_ABOVE_25;
990		hw->intrl_gran = ICE_INTRL_GRAN_ABOVE_25;
991		break;
992	case ICE_MAX_AGG_BW_25G:
993		hw->itr_gran = ICE_ITR_GRAN_MAX_25;
994		hw->intrl_gran = ICE_INTRL_GRAN_MAX_25;
995		break;
996	}
997}
998
999/**
1000 * ice_init_hw - main hardware initialization routine
1001 * @hw: pointer to the hardware structure
1002 */
1003int ice_init_hw(struct ice_hw *hw)
1004{
1005	struct ice_aqc_get_phy_caps_data *pcaps __free(kfree) = NULL;
1006	void *mac_buf __free(kfree) = NULL;
1007	u16 mac_buf_len;
1008	int status;
1009
1010	/* Set MAC type based on DeviceID */
1011	status = ice_set_mac_type(hw);
1012	if (status)
1013		return status;
1014
1015	hw->pf_id = FIELD_GET(PF_FUNC_RID_FUNC_NUM_M, rd32(hw, PF_FUNC_RID));
1016
1017	status = ice_reset(hw, ICE_RESET_PFR);
1018	if (status)
1019		return status;
1020
1021	ice_get_itr_intrl_gran(hw);
1022
1023	status = ice_create_all_ctrlq(hw);
1024	if (status)
1025		goto err_unroll_cqinit;
1026
1027	status = ice_fwlog_init(hw);
1028	if (status)
1029		ice_debug(hw, ICE_DBG_FW_LOG, "Error initializing FW logging: %d\n",
1030			  status);
1031
1032	status = ice_clear_pf_cfg(hw);
1033	if (status)
1034		goto err_unroll_cqinit;
1035
1036	/* Set bit to enable Flow Director filters */
1037	wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M);
1038	INIT_LIST_HEAD(&hw->fdir_list_head);
1039
1040	ice_clear_pxe_mode(hw);
1041
1042	status = ice_init_nvm(hw);
1043	if (status)
1044		goto err_unroll_cqinit;
1045
1046	status = ice_get_caps(hw);
1047	if (status)
1048		goto err_unroll_cqinit;
1049
1050	if (!hw->port_info)
1051		hw->port_info = devm_kzalloc(ice_hw_to_dev(hw),
1052					     sizeof(*hw->port_info),
1053					     GFP_KERNEL);
1054	if (!hw->port_info) {
1055		status = -ENOMEM;
1056		goto err_unroll_cqinit;
1057	}
1058
1059	/* set the back pointer to HW */
1060	hw->port_info->hw = hw;
1061
1062	/* Initialize port_info struct with switch configuration data */
1063	status = ice_get_initial_sw_cfg(hw);
1064	if (status)
1065		goto err_unroll_alloc;
1066
1067	hw->evb_veb = true;
1068
1069	/* init xarray for identifying scheduling nodes uniquely */
1070	xa_init_flags(&hw->port_info->sched_node_ids, XA_FLAGS_ALLOC);
1071
1072	/* Query the allocated resources for Tx scheduler */
1073	status = ice_sched_query_res_alloc(hw);
1074	if (status) {
1075		ice_debug(hw, ICE_DBG_SCHED, "Failed to get scheduler allocated resources\n");
1076		goto err_unroll_alloc;
1077	}
1078	ice_sched_get_psm_clk_freq(hw);
1079
1080	/* Initialize port_info struct with scheduler data */
1081	status = ice_sched_init_port(hw->port_info);
1082	if (status)
1083		goto err_unroll_sched;
1084
1085	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1086	if (!pcaps) {
1087		status = -ENOMEM;
1088		goto err_unroll_sched;
1089	}
1090
1091	/* Initialize port_info struct with PHY capabilities */
1092	status = ice_aq_get_phy_caps(hw->port_info, false,
1093				     ICE_AQC_REPORT_TOPO_CAP_MEDIA, pcaps,
1094				     NULL);
1095	if (status)
1096		dev_warn(ice_hw_to_dev(hw), "Get PHY capabilities failed status = %d, continuing anyway\n",
1097			 status);
1098
1099	/* Initialize port_info struct with link information */
1100	status = ice_aq_get_link_info(hw->port_info, false, NULL, NULL);
1101	if (status)
1102		goto err_unroll_sched;
1103
1104	/* need a valid SW entry point to build a Tx tree */
1105	if (!hw->sw_entry_point_layer) {
1106		ice_debug(hw, ICE_DBG_SCHED, "invalid sw entry point\n");
1107		status = -EIO;
1108		goto err_unroll_sched;
1109	}
1110	INIT_LIST_HEAD(&hw->agg_list);
1111	/* Initialize max burst size */
1112	if (!hw->max_burst_size)
1113		ice_cfg_rl_burst_size(hw, ICE_SCHED_DFLT_BURST_SIZE);
1114
1115	status = ice_init_fltr_mgmt_struct(hw);
1116	if (status)
1117		goto err_unroll_sched;
1118
1119	/* Get MAC information */
1120	/* A single port can report up to two (LAN and WoL) addresses */
1121	mac_buf = kcalloc(2, sizeof(struct ice_aqc_manage_mac_read_resp),
1122			  GFP_KERNEL);
1123	if (!mac_buf) {
1124		status = -ENOMEM;
1125		goto err_unroll_fltr_mgmt_struct;
1126	}
1127
1128	mac_buf_len = 2 * sizeof(struct ice_aqc_manage_mac_read_resp);
1129	status = ice_aq_manage_mac_read(hw, mac_buf, mac_buf_len, NULL);
1130
1131	if (status)
1132		goto err_unroll_fltr_mgmt_struct;
1133	/* enable jumbo frame support at MAC level */
1134	status = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL);
1135	if (status)
1136		goto err_unroll_fltr_mgmt_struct;
1137	/* Obtain counter base index which would be used by flow director */
1138	status = ice_alloc_fd_res_cntr(hw, &hw->fd_ctr_base);
1139	if (status)
1140		goto err_unroll_fltr_mgmt_struct;
1141	status = ice_init_hw_tbls(hw);
1142	if (status)
1143		goto err_unroll_fltr_mgmt_struct;
1144	mutex_init(&hw->tnl_lock);
1145	return 0;
1146
1147err_unroll_fltr_mgmt_struct:
1148	ice_cleanup_fltr_mgmt_struct(hw);
1149err_unroll_sched:
1150	ice_sched_cleanup_all(hw);
1151err_unroll_alloc:
1152	devm_kfree(ice_hw_to_dev(hw), hw->port_info);
1153err_unroll_cqinit:
1154	ice_destroy_all_ctrlq(hw);
1155	return status;
1156}
1157
1158/**
1159 * ice_deinit_hw - unroll initialization operations done by ice_init_hw
1160 * @hw: pointer to the hardware structure
1161 *
1162 * This should be called only during nominal operation, not as a result of
1163 * ice_init_hw() failing since ice_init_hw() will take care of unrolling
1164 * applicable initializations if it fails for any reason.
1165 */
1166void ice_deinit_hw(struct ice_hw *hw)
1167{
1168	ice_free_fd_res_cntr(hw, hw->fd_ctr_base);
1169	ice_cleanup_fltr_mgmt_struct(hw);
1170
1171	ice_sched_cleanup_all(hw);
1172	ice_sched_clear_agg(hw);
1173	ice_free_seg(hw);
1174	ice_free_hw_tbls(hw);
1175	mutex_destroy(&hw->tnl_lock);
1176
1177	ice_fwlog_deinit(hw);
1178	ice_destroy_all_ctrlq(hw);
1179
1180	/* Clear VSI contexts if not already cleared */
1181	ice_clear_all_vsi_ctx(hw);
1182}
1183
1184/**
1185 * ice_check_reset - Check to see if a global reset is complete
1186 * @hw: pointer to the hardware structure
1187 */
1188int ice_check_reset(struct ice_hw *hw)
1189{
1190	u32 cnt, reg = 0, grst_timeout, uld_mask;
1191
1192	/* Poll for Device Active state in case a recent CORER, GLOBR,
1193	 * or EMPR has occurred. The grst delay value is in 100ms units.
1194	 * Add 1sec for outstanding AQ commands that can take a long time.
1195	 */
1196	grst_timeout = FIELD_GET(GLGEN_RSTCTL_GRSTDEL_M,
1197				 rd32(hw, GLGEN_RSTCTL)) + 10;
1198
1199	for (cnt = 0; cnt < grst_timeout; cnt++) {
1200		mdelay(100);
1201		reg = rd32(hw, GLGEN_RSTAT);
1202		if (!(reg & GLGEN_RSTAT_DEVSTATE_M))
1203			break;
1204	}
1205
1206	if (cnt == grst_timeout) {
1207		ice_debug(hw, ICE_DBG_INIT, "Global reset polling failed to complete.\n");
1208		return -EIO;
1209	}
1210
1211#define ICE_RESET_DONE_MASK	(GLNVM_ULD_PCIER_DONE_M |\
1212				 GLNVM_ULD_PCIER_DONE_1_M |\
1213				 GLNVM_ULD_CORER_DONE_M |\
1214				 GLNVM_ULD_GLOBR_DONE_M |\
1215				 GLNVM_ULD_POR_DONE_M |\
1216				 GLNVM_ULD_POR_DONE_1_M |\
1217				 GLNVM_ULD_PCIER_DONE_2_M)
1218
1219	uld_mask = ICE_RESET_DONE_MASK | (hw->func_caps.common_cap.rdma ?
1220					  GLNVM_ULD_PE_DONE_M : 0);
1221
1222	/* Device is Active; check Global Reset processes are done */
1223	for (cnt = 0; cnt < ICE_PF_RESET_WAIT_COUNT; cnt++) {
1224		reg = rd32(hw, GLNVM_ULD) & uld_mask;
1225		if (reg == uld_mask) {
1226			ice_debug(hw, ICE_DBG_INIT, "Global reset processes done. %d\n", cnt);
1227			break;
1228		}
1229		mdelay(10);
1230	}
1231
1232	if (cnt == ICE_PF_RESET_WAIT_COUNT) {
1233		ice_debug(hw, ICE_DBG_INIT, "Wait for Reset Done timed out. GLNVM_ULD = 0x%x\n",
1234			  reg);
1235		return -EIO;
1236	}
1237
1238	return 0;
1239}
1240
1241/**
1242 * ice_pf_reset - Reset the PF
1243 * @hw: pointer to the hardware structure
1244 *
1245 * If a global reset has been triggered, this function checks
1246 * for its completion and then issues the PF reset
1247 */
1248static int ice_pf_reset(struct ice_hw *hw)
1249{
1250	u32 cnt, reg;
1251
1252	/* If at function entry a global reset was already in progress, i.e.
1253	 * state is not 'device active' or any of the reset done bits are not
1254	 * set in GLNVM_ULD, there is no need for a PF Reset; poll until the
1255	 * global reset is done.
1256	 */
1257	if ((rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_DEVSTATE_M) ||
1258	    (rd32(hw, GLNVM_ULD) & ICE_RESET_DONE_MASK) ^ ICE_RESET_DONE_MASK) {
1259		/* poll on global reset currently in progress until done */
1260		if (ice_check_reset(hw))
1261			return -EIO;
1262
1263		return 0;
1264	}
1265
1266	/* Reset the PF */
1267	reg = rd32(hw, PFGEN_CTRL);
1268
1269	wr32(hw, PFGEN_CTRL, (reg | PFGEN_CTRL_PFSWR_M));
1270
1271	/* Wait for the PFR to complete. The wait time is the global config lock
1272	 * timeout plus the PFR timeout which will account for a possible reset
1273	 * that is occurring during a download package operation.
1274	 */
1275	for (cnt = 0; cnt < ICE_GLOBAL_CFG_LOCK_TIMEOUT +
1276	     ICE_PF_RESET_WAIT_COUNT; cnt++) {
1277		reg = rd32(hw, PFGEN_CTRL);
1278		if (!(reg & PFGEN_CTRL_PFSWR_M))
1279			break;
1280
1281		mdelay(1);
1282	}
1283
1284	if (cnt == ICE_PF_RESET_WAIT_COUNT) {
1285		ice_debug(hw, ICE_DBG_INIT, "PF reset polling failed to complete.\n");
1286		return -EIO;
1287	}
1288
1289	return 0;
1290}
1291
1292/**
1293 * ice_reset - Perform different types of reset
1294 * @hw: pointer to the hardware structure
1295 * @req: reset request
1296 *
1297 * This function triggers a reset as specified by the req parameter.
1298 *
1299 * Note:
1300 * If anything other than a PF reset is triggered, PXE mode is restored.
1301 * This has to be cleared using ice_clear_pxe_mode again, once the AQ
1302 * interface has been restored in the rebuild flow.
1303 */
1304int ice_reset(struct ice_hw *hw, enum ice_reset_req req)
1305{
1306	u32 val = 0;
1307
1308	switch (req) {
1309	case ICE_RESET_PFR:
1310		return ice_pf_reset(hw);
1311	case ICE_RESET_CORER:
1312		ice_debug(hw, ICE_DBG_INIT, "CoreR requested\n");
1313		val = GLGEN_RTRIG_CORER_M;
1314		break;
1315	case ICE_RESET_GLOBR:
1316		ice_debug(hw, ICE_DBG_INIT, "GlobalR requested\n");
1317		val = GLGEN_RTRIG_GLOBR_M;
1318		break;
1319	default:
1320		return -EINVAL;
1321	}
1322
1323	val |= rd32(hw, GLGEN_RTRIG);
1324	wr32(hw, GLGEN_RTRIG, val);
1325	ice_flush(hw);
1326
1327	/* wait for the FW to be ready */
1328	return ice_check_reset(hw);
1329}
1330
1331/**
1332 * ice_copy_rxq_ctx_to_hw
1333 * @hw: pointer to the hardware structure
1334 * @ice_rxq_ctx: pointer to the rxq context
1335 * @rxq_index: the index of the Rx queue
1336 *
1337 * Copies rxq context from dense structure to HW register space
1338 */
1339static int
1340ice_copy_rxq_ctx_to_hw(struct ice_hw *hw, u8 *ice_rxq_ctx, u32 rxq_index)
1341{
1342	u8 i;
1343
1344	if (!ice_rxq_ctx)
1345		return -EINVAL;
1346
1347	if (rxq_index > QRX_CTRL_MAX_INDEX)
1348		return -EINVAL;
1349
1350	/* Copy each dword separately to HW */
1351	for (i = 0; i < ICE_RXQ_CTX_SIZE_DWORDS; i++) {
1352		wr32(hw, QRX_CONTEXT(i, rxq_index),
1353		     *((u32 *)(ice_rxq_ctx + (i * sizeof(u32)))));
1354
1355		ice_debug(hw, ICE_DBG_QCTX, "qrxdata[%d]: %08X\n", i,
1356			  *((u32 *)(ice_rxq_ctx + (i * sizeof(u32)))));
1357	}
1358
1359	return 0;
1360}
1361
1362/* LAN Rx Queue Context */
1363static const struct ice_ctx_ele ice_rlan_ctx_info[] = {
1364	/* Field		Width	LSB */
1365	ICE_CTX_STORE(ice_rlan_ctx, head,		13,	0),
1366	ICE_CTX_STORE(ice_rlan_ctx, cpuid,		8,	13),
1367	ICE_CTX_STORE(ice_rlan_ctx, base,		57,	32),
1368	ICE_CTX_STORE(ice_rlan_ctx, qlen,		13,	89),
1369	ICE_CTX_STORE(ice_rlan_ctx, dbuf,		7,	102),
1370	ICE_CTX_STORE(ice_rlan_ctx, hbuf,		5,	109),
1371	ICE_CTX_STORE(ice_rlan_ctx, dtype,		2,	114),
1372	ICE_CTX_STORE(ice_rlan_ctx, dsize,		1,	116),
1373	ICE_CTX_STORE(ice_rlan_ctx, crcstrip,		1,	117),
1374	ICE_CTX_STORE(ice_rlan_ctx, l2tsel,		1,	119),
1375	ICE_CTX_STORE(ice_rlan_ctx, hsplit_0,		4,	120),
1376	ICE_CTX_STORE(ice_rlan_ctx, hsplit_1,		2,	124),
1377	ICE_CTX_STORE(ice_rlan_ctx, showiv,		1,	127),
1378	ICE_CTX_STORE(ice_rlan_ctx, rxmax,		14,	174),
1379	ICE_CTX_STORE(ice_rlan_ctx, tphrdesc_ena,	1,	193),
1380	ICE_CTX_STORE(ice_rlan_ctx, tphwdesc_ena,	1,	194),
1381	ICE_CTX_STORE(ice_rlan_ctx, tphdata_ena,	1,	195),
1382	ICE_CTX_STORE(ice_rlan_ctx, tphhead_ena,	1,	196),
1383	ICE_CTX_STORE(ice_rlan_ctx, lrxqthresh,		3,	198),
1384	ICE_CTX_STORE(ice_rlan_ctx, prefena,		1,	201),
1385	{ 0 }
1386};
1387
1388/**
1389 * ice_write_rxq_ctx
1390 * @hw: pointer to the hardware structure
1391 * @rlan_ctx: pointer to the rxq context
1392 * @rxq_index: the index of the Rx queue
1393 *
1394 * Converts rxq context from sparse to dense structure and then writes
1395 * it to HW register space and enables the hardware to prefetch descriptors
1396 * instead of only fetching them on demand
1397 */
1398int ice_write_rxq_ctx(struct ice_hw *hw, struct ice_rlan_ctx *rlan_ctx,
1399		      u32 rxq_index)
1400{
1401	u8 ctx_buf[ICE_RXQ_CTX_SZ] = { 0 };
1402
1403	if (!rlan_ctx)
1404		return -EINVAL;
1405
1406	rlan_ctx->prefena = 1;
1407
1408	ice_set_ctx(hw, (u8 *)rlan_ctx, ctx_buf, ice_rlan_ctx_info);
1409	return ice_copy_rxq_ctx_to_hw(hw, ctx_buf, rxq_index);
1410}
1411
1412/* LAN Tx Queue Context */
1413const struct ice_ctx_ele ice_tlan_ctx_info[] = {
1414				    /* Field			Width	LSB */
1415	ICE_CTX_STORE(ice_tlan_ctx, base,			57,	0),
1416	ICE_CTX_STORE(ice_tlan_ctx, port_num,			3,	57),
1417	ICE_CTX_STORE(ice_tlan_ctx, cgd_num,			5,	60),
1418	ICE_CTX_STORE(ice_tlan_ctx, pf_num,			3,	65),
1419	ICE_CTX_STORE(ice_tlan_ctx, vmvf_num,			10,	68),
1420	ICE_CTX_STORE(ice_tlan_ctx, vmvf_type,			2,	78),
1421	ICE_CTX_STORE(ice_tlan_ctx, src_vsi,			10,	80),
1422	ICE_CTX_STORE(ice_tlan_ctx, tsyn_ena,			1,	90),
1423	ICE_CTX_STORE(ice_tlan_ctx, internal_usage_flag,	1,	91),
1424	ICE_CTX_STORE(ice_tlan_ctx, alt_vlan,			1,	92),
1425	ICE_CTX_STORE(ice_tlan_ctx, cpuid,			8,	93),
1426	ICE_CTX_STORE(ice_tlan_ctx, wb_mode,			1,	101),
1427	ICE_CTX_STORE(ice_tlan_ctx, tphrd_desc,			1,	102),
1428	ICE_CTX_STORE(ice_tlan_ctx, tphrd,			1,	103),
1429	ICE_CTX_STORE(ice_tlan_ctx, tphwr_desc,			1,	104),
1430	ICE_CTX_STORE(ice_tlan_ctx, cmpq_id,			9,	105),
1431	ICE_CTX_STORE(ice_tlan_ctx, qnum_in_func,		14,	114),
1432	ICE_CTX_STORE(ice_tlan_ctx, itr_notification_mode,	1,	128),
1433	ICE_CTX_STORE(ice_tlan_ctx, adjust_prof_id,		6,	129),
1434	ICE_CTX_STORE(ice_tlan_ctx, qlen,			13,	135),
1435	ICE_CTX_STORE(ice_tlan_ctx, quanta_prof_idx,		4,	148),
1436	ICE_CTX_STORE(ice_tlan_ctx, tso_ena,			1,	152),
1437	ICE_CTX_STORE(ice_tlan_ctx, tso_qnum,			11,	153),
1438	ICE_CTX_STORE(ice_tlan_ctx, legacy_int,			1,	164),
1439	ICE_CTX_STORE(ice_tlan_ctx, drop_ena,			1,	165),
1440	ICE_CTX_STORE(ice_tlan_ctx, cache_prof_idx,		2,	166),
1441	ICE_CTX_STORE(ice_tlan_ctx, pkt_shaper_prof_idx,	3,	168),
1442	ICE_CTX_STORE(ice_tlan_ctx, int_q_state,		122,	171),
1443	{ 0 }
1444};
1445
1446/* Sideband Queue command wrappers */
1447
1448/**
1449 * ice_sbq_send_cmd - send Sideband Queue command to Sideband Queue
1450 * @hw: pointer to the HW struct
1451 * @desc: descriptor describing the command
1452 * @buf: buffer to use for indirect commands (NULL for direct commands)
1453 * @buf_size: size of buffer for indirect commands (0 for direct commands)
1454 * @cd: pointer to command details structure
1455 */
1456static int
1457ice_sbq_send_cmd(struct ice_hw *hw, struct ice_sbq_cmd_desc *desc,
1458		 void *buf, u16 buf_size, struct ice_sq_cd *cd)
1459{
1460	return ice_sq_send_cmd(hw, ice_get_sbq(hw),
1461			       (struct ice_aq_desc *)desc, buf, buf_size, cd);
1462}
1463
1464/**
1465 * ice_sbq_rw_reg - Fill Sideband Queue command
1466 * @hw: pointer to the HW struct
1467 * @in: message info to be filled in descriptor
1468 */
1469int ice_sbq_rw_reg(struct ice_hw *hw, struct ice_sbq_msg_input *in)
1470{
1471	struct ice_sbq_cmd_desc desc = {0};
1472	struct ice_sbq_msg_req msg = {0};
1473	u16 msg_len;
1474	int status;
1475
1476	msg_len = sizeof(msg);
1477
1478	msg.dest_dev = in->dest_dev;
1479	msg.opcode = in->opcode;
1480	msg.flags = ICE_SBQ_MSG_FLAGS;
1481	msg.sbe_fbe = ICE_SBQ_MSG_SBE_FBE;
1482	msg.msg_addr_low = cpu_to_le16(in->msg_addr_low);
1483	msg.msg_addr_high = cpu_to_le32(in->msg_addr_high);
1484
1485	if (in->opcode)
1486		msg.data = cpu_to_le32(in->data);
1487	else
1488		/* data read comes back in completion, so shorten the struct by
1489		 * sizeof(msg.data)
1490		 */
1491		msg_len -= sizeof(msg.data);
1492
1493	desc.flags = cpu_to_le16(ICE_AQ_FLAG_RD);
1494	desc.opcode = cpu_to_le16(ice_sbq_opc_neigh_dev_req);
1495	desc.param0.cmd_len = cpu_to_le16(msg_len);
1496	status = ice_sbq_send_cmd(hw, &desc, &msg, msg_len, NULL);
1497	if (!status && !in->opcode)
1498		in->data = le32_to_cpu
1499			(((struct ice_sbq_msg_cmpl *)&msg)->data);
1500	return status;
1501}
1502
1503/* FW Admin Queue command wrappers */
1504
1505/* Software lock/mutex that is meant to be held while the Global Config Lock
1506 * in firmware is acquired by the software to prevent most (but not all) types
1507 * of AQ commands from being sent to FW
1508 */
1509DEFINE_MUTEX(ice_global_cfg_lock_sw);
1510
1511/**
1512 * ice_should_retry_sq_send_cmd
1513 * @opcode: AQ opcode
1514 *
1515 * Decide if we should retry the send command routine for the ATQ, depending
1516 * on the opcode.
1517 */
1518static bool ice_should_retry_sq_send_cmd(u16 opcode)
1519{
1520	switch (opcode) {
1521	case ice_aqc_opc_get_link_topo:
1522	case ice_aqc_opc_lldp_stop:
1523	case ice_aqc_opc_lldp_start:
1524	case ice_aqc_opc_lldp_filter_ctrl:
1525		return true;
1526	}
1527
1528	return false;
1529}
1530
1531/**
1532 * ice_sq_send_cmd_retry - send command to Control Queue (ATQ)
1533 * @hw: pointer to the HW struct
1534 * @cq: pointer to the specific Control queue
1535 * @desc: prefilled descriptor describing the command
1536 * @buf: buffer to use for indirect commands (or NULL for direct commands)
1537 * @buf_size: size of buffer for indirect commands (or 0 for direct commands)
1538 * @cd: pointer to command details structure
1539 *
1540 * Retry sending the FW Admin Queue command, multiple times, to the FW Admin
1541 * Queue if the EBUSY AQ error is returned.
1542 */
1543static int
1544ice_sq_send_cmd_retry(struct ice_hw *hw, struct ice_ctl_q_info *cq,
1545		      struct ice_aq_desc *desc, void *buf, u16 buf_size,
1546		      struct ice_sq_cd *cd)
1547{
1548	struct ice_aq_desc desc_cpy;
1549	bool is_cmd_for_retry;
1550	u8 idx = 0;
1551	u16 opcode;
1552	int status;
1553
1554	opcode = le16_to_cpu(desc->opcode);
1555	is_cmd_for_retry = ice_should_retry_sq_send_cmd(opcode);
1556	memset(&desc_cpy, 0, sizeof(desc_cpy));
1557
1558	if (is_cmd_for_retry) {
1559		/* All retryable cmds are direct, without buf. */
1560		WARN_ON(buf);
1561
1562		memcpy(&desc_cpy, desc, sizeof(desc_cpy));
1563	}
1564
1565	do {
1566		status = ice_sq_send_cmd(hw, cq, desc, buf, buf_size, cd);
1567
1568		if (!is_cmd_for_retry || !status ||
1569		    hw->adminq.sq_last_status != ICE_AQ_RC_EBUSY)
1570			break;
1571
1572		memcpy(desc, &desc_cpy, sizeof(desc_cpy));
1573
1574		msleep(ICE_SQ_SEND_DELAY_TIME_MS);
1575
1576	} while (++idx < ICE_SQ_SEND_MAX_EXECUTE);
1577
1578	return status;
1579}
1580
1581/**
1582 * ice_aq_send_cmd - send FW Admin Queue command to FW Admin Queue
1583 * @hw: pointer to the HW struct
1584 * @desc: descriptor describing the command
1585 * @buf: buffer to use for indirect commands (NULL for direct commands)
1586 * @buf_size: size of buffer for indirect commands (0 for direct commands)
1587 * @cd: pointer to command details structure
1588 *
1589 * Helper function to send FW Admin Queue commands to the FW Admin Queue.
1590 */
1591int
1592ice_aq_send_cmd(struct ice_hw *hw, struct ice_aq_desc *desc, void *buf,
1593		u16 buf_size, struct ice_sq_cd *cd)
1594{
1595	struct ice_aqc_req_res *cmd = &desc->params.res_owner;
1596	bool lock_acquired = false;
1597	int status;
1598
1599	/* When a package download is in process (i.e. when the firmware's
1600	 * Global Configuration Lock resource is held), only the Download
1601	 * Package, Get Version, Get Package Info List, Upload Section,
1602	 * Update Package, Set Port Parameters, Get/Set VLAN Mode Parameters,
1603	 * Add Recipe, Set Recipes to Profile Association, Get Recipe, and Get
1604	 * Recipes to Profile Association, and Release Resource (with resource
1605	 * ID set to Global Config Lock) AdminQ commands are allowed; all others
1606	 * must block until the package download completes and the Global Config
1607	 * Lock is released.  See also ice_acquire_global_cfg_lock().
1608	 */
1609	switch (le16_to_cpu(desc->opcode)) {
1610	case ice_aqc_opc_download_pkg:
1611	case ice_aqc_opc_get_pkg_info_list:
1612	case ice_aqc_opc_get_ver:
1613	case ice_aqc_opc_upload_section:
1614	case ice_aqc_opc_update_pkg:
1615	case ice_aqc_opc_set_port_params:
1616	case ice_aqc_opc_get_vlan_mode_parameters:
1617	case ice_aqc_opc_set_vlan_mode_parameters:
1618	case ice_aqc_opc_add_recipe:
1619	case ice_aqc_opc_recipe_to_profile:
1620	case ice_aqc_opc_get_recipe:
1621	case ice_aqc_opc_get_recipe_to_profile:
1622		break;
1623	case ice_aqc_opc_release_res:
1624		if (le16_to_cpu(cmd->res_id) == ICE_AQC_RES_ID_GLBL_LOCK)
1625			break;
1626		fallthrough;
1627	default:
1628		mutex_lock(&ice_global_cfg_lock_sw);
1629		lock_acquired = true;
1630		break;
1631	}
1632
1633	status = ice_sq_send_cmd_retry(hw, &hw->adminq, desc, buf, buf_size, cd);
1634	if (lock_acquired)
1635		mutex_unlock(&ice_global_cfg_lock_sw);
1636
1637	return status;
1638}
1639
1640/**
1641 * ice_aq_get_fw_ver
1642 * @hw: pointer to the HW struct
1643 * @cd: pointer to command details structure or NULL
1644 *
1645 * Get the firmware version (0x0001) from the admin queue commands
1646 */
1647int ice_aq_get_fw_ver(struct ice_hw *hw, struct ice_sq_cd *cd)
1648{
1649	struct ice_aqc_get_ver *resp;
1650	struct ice_aq_desc desc;
1651	int status;
1652
1653	resp = &desc.params.get_ver;
1654
1655	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_ver);
1656
1657	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1658
1659	if (!status) {
1660		hw->fw_branch = resp->fw_branch;
1661		hw->fw_maj_ver = resp->fw_major;
1662		hw->fw_min_ver = resp->fw_minor;
1663		hw->fw_patch = resp->fw_patch;
1664		hw->fw_build = le32_to_cpu(resp->fw_build);
1665		hw->api_branch = resp->api_branch;
1666		hw->api_maj_ver = resp->api_major;
1667		hw->api_min_ver = resp->api_minor;
1668		hw->api_patch = resp->api_patch;
1669	}
1670
1671	return status;
1672}
1673
1674/**
1675 * ice_aq_send_driver_ver
1676 * @hw: pointer to the HW struct
1677 * @dv: driver's major, minor version
1678 * @cd: pointer to command details structure or NULL
1679 *
1680 * Send the driver version (0x0002) to the firmware
1681 */
1682int
1683ice_aq_send_driver_ver(struct ice_hw *hw, struct ice_driver_ver *dv,
1684		       struct ice_sq_cd *cd)
1685{
1686	struct ice_aqc_driver_ver *cmd;
1687	struct ice_aq_desc desc;
1688	u16 len;
1689
1690	cmd = &desc.params.driver_ver;
1691
1692	if (!dv)
1693		return -EINVAL;
1694
1695	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_driver_ver);
1696
1697	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1698	cmd->major_ver = dv->major_ver;
1699	cmd->minor_ver = dv->minor_ver;
1700	cmd->build_ver = dv->build_ver;
1701	cmd->subbuild_ver = dv->subbuild_ver;
1702
1703	len = 0;
1704	while (len < sizeof(dv->driver_string) &&
1705	       isascii(dv->driver_string[len]) && dv->driver_string[len])
1706		len++;
1707
1708	return ice_aq_send_cmd(hw, &desc, dv->driver_string, len, cd);
1709}
1710
1711/**
1712 * ice_aq_q_shutdown
1713 * @hw: pointer to the HW struct
1714 * @unloading: is the driver unloading itself
1715 *
1716 * Tell the Firmware that we're shutting down the AdminQ and whether
1717 * or not the driver is unloading as well (0x0003).
1718 */
1719int ice_aq_q_shutdown(struct ice_hw *hw, bool unloading)
1720{
1721	struct ice_aqc_q_shutdown *cmd;
1722	struct ice_aq_desc desc;
1723
1724	cmd = &desc.params.q_shutdown;
1725
1726	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_q_shutdown);
1727
1728	if (unloading)
1729		cmd->driver_unloading = ICE_AQC_DRIVER_UNLOADING;
1730
1731	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
1732}
1733
1734/**
1735 * ice_aq_req_res
1736 * @hw: pointer to the HW struct
1737 * @res: resource ID
1738 * @access: access type
1739 * @sdp_number: resource number
1740 * @timeout: the maximum time in ms that the driver may hold the resource
1741 * @cd: pointer to command details structure or NULL
1742 *
1743 * Requests common resource using the admin queue commands (0x0008).
1744 * When attempting to acquire the Global Config Lock, the driver can
1745 * learn of three states:
1746 *  1) 0 -         acquired lock, and can perform download package
1747 *  2) -EIO -      did not get lock, driver should fail to load
1748 *  3) -EALREADY - did not get lock, but another driver has
1749 *                 successfully downloaded the package; the driver does
1750 *                 not have to download the package and can continue
1751 *                 loading
1752 *
1753 * Note that if the caller is in an acquire lock, perform action, release lock
1754 * phase of operation, it is possible that the FW may detect a timeout and issue
1755 * a CORER. In this case, the driver will receive a CORER interrupt and will
1756 * have to determine its cause. The calling thread that is handling this flow
1757 * will likely get an error propagated back to it indicating the Download
1758 * Package, Update Package or the Release Resource AQ commands timed out.
1759 */
1760static int
1761ice_aq_req_res(struct ice_hw *hw, enum ice_aq_res_ids res,
1762	       enum ice_aq_res_access_type access, u8 sdp_number, u32 *timeout,
1763	       struct ice_sq_cd *cd)
1764{
1765	struct ice_aqc_req_res *cmd_resp;
1766	struct ice_aq_desc desc;
1767	int status;
1768
1769	cmd_resp = &desc.params.res_owner;
1770
1771	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_req_res);
1772
1773	cmd_resp->res_id = cpu_to_le16(res);
1774	cmd_resp->access_type = cpu_to_le16(access);
1775	cmd_resp->res_number = cpu_to_le32(sdp_number);
1776	cmd_resp->timeout = cpu_to_le32(*timeout);
1777	*timeout = 0;
1778
1779	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1780
1781	/* The completion specifies the maximum time in ms that the driver
1782	 * may hold the resource in the Timeout field.
1783	 */
1784
1785	/* Global config lock response utilizes an additional status field.
1786	 *
1787	 * If the Global config lock resource is held by some other driver, the
1788	 * command completes with ICE_AQ_RES_GLBL_IN_PROG in the status field
1789	 * and the timeout field indicates the maximum time the current owner
1790	 * of the resource has to free it.
1791	 */
1792	if (res == ICE_GLOBAL_CFG_LOCK_RES_ID) {
1793		if (le16_to_cpu(cmd_resp->status) == ICE_AQ_RES_GLBL_SUCCESS) {
1794			*timeout = le32_to_cpu(cmd_resp->timeout);
1795			return 0;
1796		} else if (le16_to_cpu(cmd_resp->status) ==
1797			   ICE_AQ_RES_GLBL_IN_PROG) {
1798			*timeout = le32_to_cpu(cmd_resp->timeout);
1799			return -EIO;
1800		} else if (le16_to_cpu(cmd_resp->status) ==
1801			   ICE_AQ_RES_GLBL_DONE) {
1802			return -EALREADY;
1803		}
1804
1805		/* invalid FW response, force a timeout immediately */
1806		*timeout = 0;
1807		return -EIO;
1808	}
1809
1810	/* If the resource is held by some other driver, the command completes
1811	 * with a busy return value and the timeout field indicates the maximum
1812	 * time the current owner of the resource has to free it.
1813	 */
1814	if (!status || hw->adminq.sq_last_status == ICE_AQ_RC_EBUSY)
1815		*timeout = le32_to_cpu(cmd_resp->timeout);
1816
1817	return status;
1818}
1819
1820/**
1821 * ice_aq_release_res
1822 * @hw: pointer to the HW struct
1823 * @res: resource ID
1824 * @sdp_number: resource number
1825 * @cd: pointer to command details structure or NULL
1826 *
1827 * release common resource using the admin queue commands (0x0009)
1828 */
1829static int
1830ice_aq_release_res(struct ice_hw *hw, enum ice_aq_res_ids res, u8 sdp_number,
1831		   struct ice_sq_cd *cd)
1832{
1833	struct ice_aqc_req_res *cmd;
1834	struct ice_aq_desc desc;
1835
1836	cmd = &desc.params.res_owner;
1837
1838	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_release_res);
1839
1840	cmd->res_id = cpu_to_le16(res);
1841	cmd->res_number = cpu_to_le32(sdp_number);
1842
1843	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1844}
1845
1846/**
1847 * ice_acquire_res
1848 * @hw: pointer to the HW structure
1849 * @res: resource ID
1850 * @access: access type (read or write)
1851 * @timeout: timeout in milliseconds
1852 *
1853 * This function will attempt to acquire the ownership of a resource.
1854 */
1855int
1856ice_acquire_res(struct ice_hw *hw, enum ice_aq_res_ids res,
1857		enum ice_aq_res_access_type access, u32 timeout)
1858{
1859#define ICE_RES_POLLING_DELAY_MS	10
1860	u32 delay = ICE_RES_POLLING_DELAY_MS;
1861	u32 time_left = timeout;
1862	int status;
1863
1864	status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL);
1865
1866	/* A return code of -EALREADY means that another driver has
1867	 * previously acquired the resource and performed any necessary updates;
1868	 * in this case the caller does not obtain the resource and has no
1869	 * further work to do.
1870	 */
1871	if (status == -EALREADY)
1872		goto ice_acquire_res_exit;
1873
1874	if (status)
1875		ice_debug(hw, ICE_DBG_RES, "resource %d acquire type %d failed.\n", res, access);
1876
1877	/* If necessary, poll until the current lock owner timeouts */
1878	timeout = time_left;
1879	while (status && timeout && time_left) {
1880		mdelay(delay);
1881		timeout = (timeout > delay) ? timeout - delay : 0;
1882		status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL);
1883
1884		if (status == -EALREADY)
1885			/* lock free, but no work to do */
1886			break;
1887
1888		if (!status)
1889			/* lock acquired */
1890			break;
1891	}
1892	if (status && status != -EALREADY)
1893		ice_debug(hw, ICE_DBG_RES, "resource acquire timed out.\n");
1894
1895ice_acquire_res_exit:
1896	if (status == -EALREADY) {
1897		if (access == ICE_RES_WRITE)
1898			ice_debug(hw, ICE_DBG_RES, "resource indicates no work to do.\n");
1899		else
1900			ice_debug(hw, ICE_DBG_RES, "Warning: -EALREADY not expected\n");
1901	}
1902	return status;
1903}
1904
1905/**
1906 * ice_release_res
1907 * @hw: pointer to the HW structure
1908 * @res: resource ID
1909 *
1910 * This function will release a resource using the proper Admin Command.
1911 */
1912void ice_release_res(struct ice_hw *hw, enum ice_aq_res_ids res)
1913{
1914	unsigned long timeout;
1915	int status;
1916
1917	/* there are some rare cases when trying to release the resource
1918	 * results in an admin queue timeout, so handle them correctly
1919	 */
1920	timeout = jiffies + 10 * ICE_CTL_Q_SQ_CMD_TIMEOUT;
1921	do {
1922		status = ice_aq_release_res(hw, res, 0, NULL);
1923		if (status != -EIO)
1924			break;
1925		usleep_range(1000, 2000);
1926	} while (time_before(jiffies, timeout));
1927}
1928
1929/**
1930 * ice_aq_alloc_free_res - command to allocate/free resources
1931 * @hw: pointer to the HW struct
1932 * @buf: Indirect buffer to hold data parameters and response
1933 * @buf_size: size of buffer for indirect commands
1934 * @opc: pass in the command opcode
1935 *
1936 * Helper function to allocate/free resources using the admin queue commands
1937 */
1938int ice_aq_alloc_free_res(struct ice_hw *hw,
1939			  struct ice_aqc_alloc_free_res_elem *buf, u16 buf_size,
1940			  enum ice_adminq_opc opc)
1941{
1942	struct ice_aqc_alloc_free_res_cmd *cmd;
1943	struct ice_aq_desc desc;
1944
1945	cmd = &desc.params.sw_res_ctrl;
1946
1947	if (!buf || buf_size < flex_array_size(buf, elem, 1))
1948		return -EINVAL;
1949
1950	ice_fill_dflt_direct_cmd_desc(&desc, opc);
1951
1952	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1953
1954	cmd->num_entries = cpu_to_le16(1);
1955
1956	return ice_aq_send_cmd(hw, &desc, buf, buf_size, NULL);
1957}
1958
1959/**
1960 * ice_alloc_hw_res - allocate resource
1961 * @hw: pointer to the HW struct
1962 * @type: type of resource
1963 * @num: number of resources to allocate
1964 * @btm: allocate from bottom
1965 * @res: pointer to array that will receive the resources
1966 */
1967int
1968ice_alloc_hw_res(struct ice_hw *hw, u16 type, u16 num, bool btm, u16 *res)
1969{
1970	struct ice_aqc_alloc_free_res_elem *buf;
1971	u16 buf_len;
1972	int status;
1973
1974	buf_len = struct_size(buf, elem, num);
1975	buf = kzalloc(buf_len, GFP_KERNEL);
1976	if (!buf)
1977		return -ENOMEM;
1978
1979	/* Prepare buffer to allocate resource. */
1980	buf->num_elems = cpu_to_le16(num);
1981	buf->res_type = cpu_to_le16(type | ICE_AQC_RES_TYPE_FLAG_DEDICATED |
1982				    ICE_AQC_RES_TYPE_FLAG_IGNORE_INDEX);
1983	if (btm)
1984		buf->res_type |= cpu_to_le16(ICE_AQC_RES_TYPE_FLAG_SCAN_BOTTOM);
1985
1986	status = ice_aq_alloc_free_res(hw, buf, buf_len, ice_aqc_opc_alloc_res);
1987	if (status)
1988		goto ice_alloc_res_exit;
1989
1990	memcpy(res, buf->elem, sizeof(*buf->elem) * num);
1991
1992ice_alloc_res_exit:
1993	kfree(buf);
1994	return status;
1995}
1996
1997/**
1998 * ice_free_hw_res - free allocated HW resource
1999 * @hw: pointer to the HW struct
2000 * @type: type of resource to free
2001 * @num: number of resources
2002 * @res: pointer to array that contains the resources to free
2003 */
2004int ice_free_hw_res(struct ice_hw *hw, u16 type, u16 num, u16 *res)
2005{
2006	struct ice_aqc_alloc_free_res_elem *buf;
2007	u16 buf_len;
2008	int status;
2009
2010	buf_len = struct_size(buf, elem, num);
2011	buf = kzalloc(buf_len, GFP_KERNEL);
2012	if (!buf)
2013		return -ENOMEM;
2014
2015	/* Prepare buffer to free resource. */
2016	buf->num_elems = cpu_to_le16(num);
2017	buf->res_type = cpu_to_le16(type);
2018	memcpy(buf->elem, res, sizeof(*buf->elem) * num);
2019
2020	status = ice_aq_alloc_free_res(hw, buf, buf_len, ice_aqc_opc_free_res);
2021	if (status)
2022		ice_debug(hw, ICE_DBG_SW, "CQ CMD Buffer:\n");
2023
2024	kfree(buf);
2025	return status;
2026}
2027
2028/**
2029 * ice_get_num_per_func - determine number of resources per PF
2030 * @hw: pointer to the HW structure
2031 * @max: value to be evenly split between each PF
2032 *
2033 * Determine the number of valid functions by going through the bitmap returned
2034 * from parsing capabilities and use this to calculate the number of resources
2035 * per PF based on the max value passed in.
2036 */
2037static u32 ice_get_num_per_func(struct ice_hw *hw, u32 max)
2038{
2039	u8 funcs;
2040
2041#define ICE_CAPS_VALID_FUNCS_M	0xFF
2042	funcs = hweight8(hw->dev_caps.common_cap.valid_functions &
2043			 ICE_CAPS_VALID_FUNCS_M);
2044
2045	if (!funcs)
2046		return 0;
2047
2048	return max / funcs;
2049}
2050
2051/**
2052 * ice_parse_common_caps - parse common device/function capabilities
2053 * @hw: pointer to the HW struct
2054 * @caps: pointer to common capabilities structure
2055 * @elem: the capability element to parse
2056 * @prefix: message prefix for tracing capabilities
2057 *
2058 * Given a capability element, extract relevant details into the common
2059 * capability structure.
2060 *
2061 * Returns: true if the capability matches one of the common capability ids,
2062 * false otherwise.
2063 */
2064static bool
2065ice_parse_common_caps(struct ice_hw *hw, struct ice_hw_common_caps *caps,
2066		      struct ice_aqc_list_caps_elem *elem, const char *prefix)
2067{
2068	u32 logical_id = le32_to_cpu(elem->logical_id);
2069	u32 phys_id = le32_to_cpu(elem->phys_id);
2070	u32 number = le32_to_cpu(elem->number);
2071	u16 cap = le16_to_cpu(elem->cap);
2072	bool found = true;
2073
2074	switch (cap) {
2075	case ICE_AQC_CAPS_VALID_FUNCTIONS:
2076		caps->valid_functions = number;
2077		ice_debug(hw, ICE_DBG_INIT, "%s: valid_functions (bitmap) = %d\n", prefix,
2078			  caps->valid_functions);
2079		break;
2080	case ICE_AQC_CAPS_SRIOV:
2081		caps->sr_iov_1_1 = (number == 1);
2082		ice_debug(hw, ICE_DBG_INIT, "%s: sr_iov_1_1 = %d\n", prefix,
2083			  caps->sr_iov_1_1);
2084		break;
2085	case ICE_AQC_CAPS_DCB:
2086		caps->dcb = (number == 1);
2087		caps->active_tc_bitmap = logical_id;
2088		caps->maxtc = phys_id;
2089		ice_debug(hw, ICE_DBG_INIT, "%s: dcb = %d\n", prefix, caps->dcb);
2090		ice_debug(hw, ICE_DBG_INIT, "%s: active_tc_bitmap = %d\n", prefix,
2091			  caps->active_tc_bitmap);
2092		ice_debug(hw, ICE_DBG_INIT, "%s: maxtc = %d\n", prefix, caps->maxtc);
2093		break;
2094	case ICE_AQC_CAPS_RSS:
2095		caps->rss_table_size = number;
2096		caps->rss_table_entry_width = logical_id;
2097		ice_debug(hw, ICE_DBG_INIT, "%s: rss_table_size = %d\n", prefix,
2098			  caps->rss_table_size);
2099		ice_debug(hw, ICE_DBG_INIT, "%s: rss_table_entry_width = %d\n", prefix,
2100			  caps->rss_table_entry_width);
2101		break;
2102	case ICE_AQC_CAPS_RXQS:
2103		caps->num_rxq = number;
2104		caps->rxq_first_id = phys_id;
2105		ice_debug(hw, ICE_DBG_INIT, "%s: num_rxq = %d\n", prefix,
2106			  caps->num_rxq);
2107		ice_debug(hw, ICE_DBG_INIT, "%s: rxq_first_id = %d\n", prefix,
2108			  caps->rxq_first_id);
2109		break;
2110	case ICE_AQC_CAPS_TXQS:
2111		caps->num_txq = number;
2112		caps->txq_first_id = phys_id;
2113		ice_debug(hw, ICE_DBG_INIT, "%s: num_txq = %d\n", prefix,
2114			  caps->num_txq);
2115		ice_debug(hw, ICE_DBG_INIT, "%s: txq_first_id = %d\n", prefix,
2116			  caps->txq_first_id);
2117		break;
2118	case ICE_AQC_CAPS_MSIX:
2119		caps->num_msix_vectors = number;
2120		caps->msix_vector_first_id = phys_id;
2121		ice_debug(hw, ICE_DBG_INIT, "%s: num_msix_vectors = %d\n", prefix,
2122			  caps->num_msix_vectors);
2123		ice_debug(hw, ICE_DBG_INIT, "%s: msix_vector_first_id = %d\n", prefix,
2124			  caps->msix_vector_first_id);
2125		break;
2126	case ICE_AQC_CAPS_PENDING_NVM_VER:
2127		caps->nvm_update_pending_nvm = true;
2128		ice_debug(hw, ICE_DBG_INIT, "%s: update_pending_nvm\n", prefix);
2129		break;
2130	case ICE_AQC_CAPS_PENDING_OROM_VER:
2131		caps->nvm_update_pending_orom = true;
2132		ice_debug(hw, ICE_DBG_INIT, "%s: update_pending_orom\n", prefix);
2133		break;
2134	case ICE_AQC_CAPS_PENDING_NET_VER:
2135		caps->nvm_update_pending_netlist = true;
2136		ice_debug(hw, ICE_DBG_INIT, "%s: update_pending_netlist\n", prefix);
2137		break;
2138	case ICE_AQC_CAPS_NVM_MGMT:
2139		caps->nvm_unified_update =
2140			(number & ICE_NVM_MGMT_UNIFIED_UPD_SUPPORT) ?
2141			true : false;
2142		ice_debug(hw, ICE_DBG_INIT, "%s: nvm_unified_update = %d\n", prefix,
2143			  caps->nvm_unified_update);
2144		break;
2145	case ICE_AQC_CAPS_RDMA:
2146		caps->rdma = (number == 1);
2147		ice_debug(hw, ICE_DBG_INIT, "%s: rdma = %d\n", prefix, caps->rdma);
2148		break;
2149	case ICE_AQC_CAPS_MAX_MTU:
2150		caps->max_mtu = number;
2151		ice_debug(hw, ICE_DBG_INIT, "%s: max_mtu = %d\n",
2152			  prefix, caps->max_mtu);
2153		break;
2154	case ICE_AQC_CAPS_PCIE_RESET_AVOIDANCE:
2155		caps->pcie_reset_avoidance = (number > 0);
2156		ice_debug(hw, ICE_DBG_INIT,
2157			  "%s: pcie_reset_avoidance = %d\n", prefix,
2158			  caps->pcie_reset_avoidance);
2159		break;
2160	case ICE_AQC_CAPS_POST_UPDATE_RESET_RESTRICT:
2161		caps->reset_restrict_support = (number == 1);
2162		ice_debug(hw, ICE_DBG_INIT,
2163			  "%s: reset_restrict_support = %d\n", prefix,
2164			  caps->reset_restrict_support);
2165		break;
2166	case ICE_AQC_CAPS_FW_LAG_SUPPORT:
2167		caps->roce_lag = !!(number & ICE_AQC_BIT_ROCEV2_LAG);
2168		ice_debug(hw, ICE_DBG_INIT, "%s: roce_lag = %u\n",
2169			  prefix, caps->roce_lag);
2170		caps->sriov_lag = !!(number & ICE_AQC_BIT_SRIOV_LAG);
2171		ice_debug(hw, ICE_DBG_INIT, "%s: sriov_lag = %u\n",
2172			  prefix, caps->sriov_lag);
2173		break;
2174	default:
2175		/* Not one of the recognized common capabilities */
2176		found = false;
2177	}
2178
2179	return found;
2180}
2181
2182/**
2183 * ice_recalc_port_limited_caps - Recalculate port limited capabilities
2184 * @hw: pointer to the HW structure
2185 * @caps: pointer to capabilities structure to fix
2186 *
2187 * Re-calculate the capabilities that are dependent on the number of physical
2188 * ports; i.e. some features are not supported or function differently on
2189 * devices with more than 4 ports.
2190 */
2191static void
2192ice_recalc_port_limited_caps(struct ice_hw *hw, struct ice_hw_common_caps *caps)
2193{
2194	/* This assumes device capabilities are always scanned before function
2195	 * capabilities during the initialization flow.
2196	 */
2197	if (hw->dev_caps.num_funcs > 4) {
2198		/* Max 4 TCs per port */
2199		caps->maxtc = 4;
2200		ice_debug(hw, ICE_DBG_INIT, "reducing maxtc to %d (based on #ports)\n",
2201			  caps->maxtc);
2202		if (caps->rdma) {
2203			ice_debug(hw, ICE_DBG_INIT, "forcing RDMA off\n");
2204			caps->rdma = 0;
2205		}
2206
2207		/* print message only when processing device capabilities
2208		 * during initialization.
2209		 */
2210		if (caps == &hw->dev_caps.common_cap)
2211			dev_info(ice_hw_to_dev(hw), "RDMA functionality is not available with the current device configuration.\n");
2212	}
2213}
2214
2215/**
2216 * ice_parse_vf_func_caps - Parse ICE_AQC_CAPS_VF function caps
2217 * @hw: pointer to the HW struct
2218 * @func_p: pointer to function capabilities structure
2219 * @cap: pointer to the capability element to parse
2220 *
2221 * Extract function capabilities for ICE_AQC_CAPS_VF.
2222 */
2223static void
2224ice_parse_vf_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2225		       struct ice_aqc_list_caps_elem *cap)
2226{
2227	u32 logical_id = le32_to_cpu(cap->logical_id);
2228	u32 number = le32_to_cpu(cap->number);
2229
2230	func_p->num_allocd_vfs = number;
2231	func_p->vf_base_id = logical_id;
2232	ice_debug(hw, ICE_DBG_INIT, "func caps: num_allocd_vfs = %d\n",
2233		  func_p->num_allocd_vfs);
2234	ice_debug(hw, ICE_DBG_INIT, "func caps: vf_base_id = %d\n",
2235		  func_p->vf_base_id);
2236}
2237
2238/**
2239 * ice_parse_vsi_func_caps - Parse ICE_AQC_CAPS_VSI function caps
2240 * @hw: pointer to the HW struct
2241 * @func_p: pointer to function capabilities structure
2242 * @cap: pointer to the capability element to parse
2243 *
2244 * Extract function capabilities for ICE_AQC_CAPS_VSI.
2245 */
2246static void
2247ice_parse_vsi_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2248			struct ice_aqc_list_caps_elem *cap)
2249{
2250	func_p->guar_num_vsi = ice_get_num_per_func(hw, ICE_MAX_VSI);
2251	ice_debug(hw, ICE_DBG_INIT, "func caps: guar_num_vsi (fw) = %d\n",
2252		  le32_to_cpu(cap->number));
2253	ice_debug(hw, ICE_DBG_INIT, "func caps: guar_num_vsi = %d\n",
2254		  func_p->guar_num_vsi);
2255}
2256
2257/**
2258 * ice_parse_1588_func_caps - Parse ICE_AQC_CAPS_1588 function caps
2259 * @hw: pointer to the HW struct
2260 * @func_p: pointer to function capabilities structure
2261 * @cap: pointer to the capability element to parse
2262 *
2263 * Extract function capabilities for ICE_AQC_CAPS_1588.
2264 */
2265static void
2266ice_parse_1588_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2267			 struct ice_aqc_list_caps_elem *cap)
2268{
2269	struct ice_ts_func_info *info = &func_p->ts_func_info;
2270	u32 number = le32_to_cpu(cap->number);
2271
2272	info->ena = ((number & ICE_TS_FUNC_ENA_M) != 0);
2273	func_p->common_cap.ieee_1588 = info->ena;
2274
2275	info->src_tmr_owned = ((number & ICE_TS_SRC_TMR_OWND_M) != 0);
2276	info->tmr_ena = ((number & ICE_TS_TMR_ENA_M) != 0);
2277	info->tmr_index_owned = ((number & ICE_TS_TMR_IDX_OWND_M) != 0);
2278	info->tmr_index_assoc = ((number & ICE_TS_TMR_IDX_ASSOC_M) != 0);
2279
2280	info->clk_freq = FIELD_GET(ICE_TS_CLK_FREQ_M, number);
2281	info->clk_src = ((number & ICE_TS_CLK_SRC_M) != 0);
2282
2283	if (info->clk_freq < NUM_ICE_TIME_REF_FREQ) {
2284		info->time_ref = (enum ice_time_ref_freq)info->clk_freq;
2285	} else {
2286		/* Unknown clock frequency, so assume a (probably incorrect)
2287		 * default to avoid out-of-bounds look ups of frequency
2288		 * related information.
2289		 */
2290		ice_debug(hw, ICE_DBG_INIT, "1588 func caps: unknown clock frequency %u\n",
2291			  info->clk_freq);
2292		info->time_ref = ICE_TIME_REF_FREQ_25_000;
2293	}
2294
2295	ice_debug(hw, ICE_DBG_INIT, "func caps: ieee_1588 = %u\n",
2296		  func_p->common_cap.ieee_1588);
2297	ice_debug(hw, ICE_DBG_INIT, "func caps: src_tmr_owned = %u\n",
2298		  info->src_tmr_owned);
2299	ice_debug(hw, ICE_DBG_INIT, "func caps: tmr_ena = %u\n",
2300		  info->tmr_ena);
2301	ice_debug(hw, ICE_DBG_INIT, "func caps: tmr_index_owned = %u\n",
2302		  info->tmr_index_owned);
2303	ice_debug(hw, ICE_DBG_INIT, "func caps: tmr_index_assoc = %u\n",
2304		  info->tmr_index_assoc);
2305	ice_debug(hw, ICE_DBG_INIT, "func caps: clk_freq = %u\n",
2306		  info->clk_freq);
2307	ice_debug(hw, ICE_DBG_INIT, "func caps: clk_src = %u\n",
2308		  info->clk_src);
2309}
2310
2311/**
2312 * ice_parse_fdir_func_caps - Parse ICE_AQC_CAPS_FD function caps
2313 * @hw: pointer to the HW struct
2314 * @func_p: pointer to function capabilities structure
2315 *
2316 * Extract function capabilities for ICE_AQC_CAPS_FD.
2317 */
2318static void
2319ice_parse_fdir_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p)
2320{
2321	u32 reg_val, gsize, bsize;
2322
2323	reg_val = rd32(hw, GLQF_FD_SIZE);
2324	switch (hw->mac_type) {
2325	case ICE_MAC_E830:
2326		gsize = FIELD_GET(E830_GLQF_FD_SIZE_FD_GSIZE_M, reg_val);
2327		bsize = FIELD_GET(E830_GLQF_FD_SIZE_FD_BSIZE_M, reg_val);
2328		break;
2329	case ICE_MAC_E810:
2330	default:
2331		gsize = FIELD_GET(E800_GLQF_FD_SIZE_FD_GSIZE_M, reg_val);
2332		bsize = FIELD_GET(E800_GLQF_FD_SIZE_FD_BSIZE_M, reg_val);
2333	}
2334	func_p->fd_fltr_guar = ice_get_num_per_func(hw, gsize);
2335	func_p->fd_fltr_best_effort = bsize;
2336
2337	ice_debug(hw, ICE_DBG_INIT, "func caps: fd_fltr_guar = %d\n",
2338		  func_p->fd_fltr_guar);
2339	ice_debug(hw, ICE_DBG_INIT, "func caps: fd_fltr_best_effort = %d\n",
2340		  func_p->fd_fltr_best_effort);
2341}
2342
2343/**
2344 * ice_parse_func_caps - Parse function capabilities
2345 * @hw: pointer to the HW struct
2346 * @func_p: pointer to function capabilities structure
2347 * @buf: buffer containing the function capability records
2348 * @cap_count: the number of capabilities
2349 *
2350 * Helper function to parse function (0x000A) capabilities list. For
2351 * capabilities shared between device and function, this relies on
2352 * ice_parse_common_caps.
2353 *
2354 * Loop through the list of provided capabilities and extract the relevant
2355 * data into the function capabilities structured.
2356 */
2357static void
2358ice_parse_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2359		    void *buf, u32 cap_count)
2360{
2361	struct ice_aqc_list_caps_elem *cap_resp;
2362	u32 i;
2363
2364	cap_resp = buf;
2365
2366	memset(func_p, 0, sizeof(*func_p));
2367
2368	for (i = 0; i < cap_count; i++) {
2369		u16 cap = le16_to_cpu(cap_resp[i].cap);
2370		bool found;
2371
2372		found = ice_parse_common_caps(hw, &func_p->common_cap,
2373					      &cap_resp[i], "func caps");
2374
2375		switch (cap) {
2376		case ICE_AQC_CAPS_VF:
2377			ice_parse_vf_func_caps(hw, func_p, &cap_resp[i]);
2378			break;
2379		case ICE_AQC_CAPS_VSI:
2380			ice_parse_vsi_func_caps(hw, func_p, &cap_resp[i]);
2381			break;
2382		case ICE_AQC_CAPS_1588:
2383			ice_parse_1588_func_caps(hw, func_p, &cap_resp[i]);
2384			break;
2385		case ICE_AQC_CAPS_FD:
2386			ice_parse_fdir_func_caps(hw, func_p);
2387			break;
2388		default:
2389			/* Don't list common capabilities as unknown */
2390			if (!found)
2391				ice_debug(hw, ICE_DBG_INIT, "func caps: unknown capability[%d]: 0x%x\n",
2392					  i, cap);
2393			break;
2394		}
2395	}
2396
2397	ice_recalc_port_limited_caps(hw, &func_p->common_cap);
2398}
2399
2400/**
2401 * ice_parse_valid_functions_cap - Parse ICE_AQC_CAPS_VALID_FUNCTIONS caps
2402 * @hw: pointer to the HW struct
2403 * @dev_p: pointer to device capabilities structure
2404 * @cap: capability element to parse
2405 *
2406 * Parse ICE_AQC_CAPS_VALID_FUNCTIONS for device capabilities.
2407 */
2408static void
2409ice_parse_valid_functions_cap(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2410			      struct ice_aqc_list_caps_elem *cap)
2411{
2412	u32 number = le32_to_cpu(cap->number);
2413
2414	dev_p->num_funcs = hweight32(number);
2415	ice_debug(hw, ICE_DBG_INIT, "dev caps: num_funcs = %d\n",
2416		  dev_p->num_funcs);
2417}
2418
2419/**
2420 * ice_parse_vf_dev_caps - Parse ICE_AQC_CAPS_VF device caps
2421 * @hw: pointer to the HW struct
2422 * @dev_p: pointer to device capabilities structure
2423 * @cap: capability element to parse
2424 *
2425 * Parse ICE_AQC_CAPS_VF for device capabilities.
2426 */
2427static void
2428ice_parse_vf_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2429		      struct ice_aqc_list_caps_elem *cap)
2430{
2431	u32 number = le32_to_cpu(cap->number);
2432
2433	dev_p->num_vfs_exposed = number;
2434	ice_debug(hw, ICE_DBG_INIT, "dev_caps: num_vfs_exposed = %d\n",
2435		  dev_p->num_vfs_exposed);
2436}
2437
2438/**
2439 * ice_parse_vsi_dev_caps - Parse ICE_AQC_CAPS_VSI device caps
2440 * @hw: pointer to the HW struct
2441 * @dev_p: pointer to device capabilities structure
2442 * @cap: capability element to parse
2443 *
2444 * Parse ICE_AQC_CAPS_VSI for device capabilities.
2445 */
2446static void
2447ice_parse_vsi_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2448		       struct ice_aqc_list_caps_elem *cap)
2449{
2450	u32 number = le32_to_cpu(cap->number);
2451
2452	dev_p->num_vsi_allocd_to_host = number;
2453	ice_debug(hw, ICE_DBG_INIT, "dev caps: num_vsi_allocd_to_host = %d\n",
2454		  dev_p->num_vsi_allocd_to_host);
2455}
2456
2457/**
2458 * ice_parse_1588_dev_caps - Parse ICE_AQC_CAPS_1588 device caps
2459 * @hw: pointer to the HW struct
2460 * @dev_p: pointer to device capabilities structure
2461 * @cap: capability element to parse
2462 *
2463 * Parse ICE_AQC_CAPS_1588 for device capabilities.
2464 */
2465static void
2466ice_parse_1588_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2467			struct ice_aqc_list_caps_elem *cap)
2468{
2469	struct ice_ts_dev_info *info = &dev_p->ts_dev_info;
2470	u32 logical_id = le32_to_cpu(cap->logical_id);
2471	u32 phys_id = le32_to_cpu(cap->phys_id);
2472	u32 number = le32_to_cpu(cap->number);
2473
2474	info->ena = ((number & ICE_TS_DEV_ENA_M) != 0);
2475	dev_p->common_cap.ieee_1588 = info->ena;
2476
2477	info->tmr0_owner = number & ICE_TS_TMR0_OWNR_M;
2478	info->tmr0_owned = ((number & ICE_TS_TMR0_OWND_M) != 0);
2479	info->tmr0_ena = ((number & ICE_TS_TMR0_ENA_M) != 0);
2480
2481	info->tmr1_owner = FIELD_GET(ICE_TS_TMR1_OWNR_M, number);
2482	info->tmr1_owned = ((number & ICE_TS_TMR1_OWND_M) != 0);
2483	info->tmr1_ena = ((number & ICE_TS_TMR1_ENA_M) != 0);
2484
2485	info->ts_ll_read = ((number & ICE_TS_LL_TX_TS_READ_M) != 0);
2486	info->ts_ll_int_read = ((number & ICE_TS_LL_TX_TS_INT_READ_M) != 0);
2487
2488	info->ena_ports = logical_id;
2489	info->tmr_own_map = phys_id;
2490
2491	ice_debug(hw, ICE_DBG_INIT, "dev caps: ieee_1588 = %u\n",
2492		  dev_p->common_cap.ieee_1588);
2493	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr0_owner = %u\n",
2494		  info->tmr0_owner);
2495	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr0_owned = %u\n",
2496		  info->tmr0_owned);
2497	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr0_ena = %u\n",
2498		  info->tmr0_ena);
2499	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr1_owner = %u\n",
2500		  info->tmr1_owner);
2501	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr1_owned = %u\n",
2502		  info->tmr1_owned);
2503	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr1_ena = %u\n",
2504		  info->tmr1_ena);
2505	ice_debug(hw, ICE_DBG_INIT, "dev caps: ts_ll_read = %u\n",
2506		  info->ts_ll_read);
2507	ice_debug(hw, ICE_DBG_INIT, "dev caps: ts_ll_int_read = %u\n",
2508		  info->ts_ll_int_read);
2509	ice_debug(hw, ICE_DBG_INIT, "dev caps: ieee_1588 ena_ports = %u\n",
2510		  info->ena_ports);
2511	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr_own_map = %u\n",
2512		  info->tmr_own_map);
2513}
2514
2515/**
2516 * ice_parse_fdir_dev_caps - Parse ICE_AQC_CAPS_FD device caps
2517 * @hw: pointer to the HW struct
2518 * @dev_p: pointer to device capabilities structure
2519 * @cap: capability element to parse
2520 *
2521 * Parse ICE_AQC_CAPS_FD for device capabilities.
2522 */
2523static void
2524ice_parse_fdir_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2525			struct ice_aqc_list_caps_elem *cap)
2526{
2527	u32 number = le32_to_cpu(cap->number);
2528
2529	dev_p->num_flow_director_fltr = number;
2530	ice_debug(hw, ICE_DBG_INIT, "dev caps: num_flow_director_fltr = %d\n",
2531		  dev_p->num_flow_director_fltr);
2532}
2533
2534/**
2535 * ice_parse_sensor_reading_cap - Parse ICE_AQC_CAPS_SENSOR_READING cap
2536 * @hw: pointer to the HW struct
2537 * @dev_p: pointer to device capabilities structure
2538 * @cap: capability element to parse
2539 *
2540 * Parse ICE_AQC_CAPS_SENSOR_READING for device capability for reading
2541 * enabled sensors.
2542 */
2543static void
2544ice_parse_sensor_reading_cap(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2545			     struct ice_aqc_list_caps_elem *cap)
2546{
2547	dev_p->supported_sensors = le32_to_cpu(cap->number);
2548
2549	ice_debug(hw, ICE_DBG_INIT,
2550		  "dev caps: supported sensors (bitmap) = 0x%x\n",
2551		  dev_p->supported_sensors);
2552}
2553
2554/**
2555 * ice_parse_dev_caps - Parse device capabilities
2556 * @hw: pointer to the HW struct
2557 * @dev_p: pointer to device capabilities structure
2558 * @buf: buffer containing the device capability records
2559 * @cap_count: the number of capabilities
2560 *
2561 * Helper device to parse device (0x000B) capabilities list. For
2562 * capabilities shared between device and function, this relies on
2563 * ice_parse_common_caps.
2564 *
2565 * Loop through the list of provided capabilities and extract the relevant
2566 * data into the device capabilities structured.
2567 */
2568static void
2569ice_parse_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2570		   void *buf, u32 cap_count)
2571{
2572	struct ice_aqc_list_caps_elem *cap_resp;
2573	u32 i;
2574
2575	cap_resp = buf;
2576
2577	memset(dev_p, 0, sizeof(*dev_p));
2578
2579	for (i = 0; i < cap_count; i++) {
2580		u16 cap = le16_to_cpu(cap_resp[i].cap);
2581		bool found;
2582
2583		found = ice_parse_common_caps(hw, &dev_p->common_cap,
2584					      &cap_resp[i], "dev caps");
2585
2586		switch (cap) {
2587		case ICE_AQC_CAPS_VALID_FUNCTIONS:
2588			ice_parse_valid_functions_cap(hw, dev_p, &cap_resp[i]);
2589			break;
2590		case ICE_AQC_CAPS_VF:
2591			ice_parse_vf_dev_caps(hw, dev_p, &cap_resp[i]);
2592			break;
2593		case ICE_AQC_CAPS_VSI:
2594			ice_parse_vsi_dev_caps(hw, dev_p, &cap_resp[i]);
2595			break;
2596		case ICE_AQC_CAPS_1588:
2597			ice_parse_1588_dev_caps(hw, dev_p, &cap_resp[i]);
2598			break;
2599		case ICE_AQC_CAPS_FD:
2600			ice_parse_fdir_dev_caps(hw, dev_p, &cap_resp[i]);
2601			break;
2602		case ICE_AQC_CAPS_SENSOR_READING:
2603			ice_parse_sensor_reading_cap(hw, dev_p, &cap_resp[i]);
2604			break;
2605		default:
2606			/* Don't list common capabilities as unknown */
2607			if (!found)
2608				ice_debug(hw, ICE_DBG_INIT, "dev caps: unknown capability[%d]: 0x%x\n",
2609					  i, cap);
2610			break;
2611		}
2612	}
2613
2614	ice_recalc_port_limited_caps(hw, &dev_p->common_cap);
2615}
2616
2617/**
2618 * ice_is_pf_c827 - check if pf contains c827 phy
2619 * @hw: pointer to the hw struct
2620 */
2621bool ice_is_pf_c827(struct ice_hw *hw)
2622{
2623	struct ice_aqc_get_link_topo cmd = {};
2624	u8 node_part_number;
2625	u16 node_handle;
2626	int status;
2627
2628	if (hw->mac_type != ICE_MAC_E810)
2629		return false;
2630
2631	if (hw->device_id != ICE_DEV_ID_E810C_QSFP)
2632		return true;
2633
2634	cmd.addr.topo_params.node_type_ctx =
2635		FIELD_PREP(ICE_AQC_LINK_TOPO_NODE_TYPE_M, ICE_AQC_LINK_TOPO_NODE_TYPE_PHY) |
2636		FIELD_PREP(ICE_AQC_LINK_TOPO_NODE_CTX_M, ICE_AQC_LINK_TOPO_NODE_CTX_PORT);
2637	cmd.addr.topo_params.index = 0;
2638
2639	status = ice_aq_get_netlist_node(hw, &cmd, &node_part_number,
2640					 &node_handle);
2641
2642	if (status || node_part_number != ICE_AQC_GET_LINK_TOPO_NODE_NR_C827)
2643		return false;
2644
2645	if (node_handle == E810C_QSFP_C827_0_HANDLE || node_handle == E810C_QSFP_C827_1_HANDLE)
2646		return true;
2647
2648	return false;
2649}
2650
2651/**
2652 * ice_is_phy_rclk_in_netlist
2653 * @hw: pointer to the hw struct
2654 *
2655 * Check if the PHY Recovered Clock device is present in the netlist
2656 */
2657bool ice_is_phy_rclk_in_netlist(struct ice_hw *hw)
2658{
2659	if (ice_find_netlist_node(hw, ICE_AQC_LINK_TOPO_NODE_TYPE_CLK_CTRL,
2660				  ICE_AQC_GET_LINK_TOPO_NODE_NR_C827, NULL) &&
2661	    ice_find_netlist_node(hw, ICE_AQC_LINK_TOPO_NODE_TYPE_CLK_CTRL,
2662				  ICE_AQC_GET_LINK_TOPO_NODE_NR_E822_PHY, NULL))
2663		return false;
2664
2665	return true;
2666}
2667
2668/**
2669 * ice_is_clock_mux_in_netlist
2670 * @hw: pointer to the hw struct
2671 *
2672 * Check if the Clock Multiplexer device is present in the netlist
2673 */
2674bool ice_is_clock_mux_in_netlist(struct ice_hw *hw)
2675{
2676	if (ice_find_netlist_node(hw, ICE_AQC_LINK_TOPO_NODE_TYPE_CLK_MUX,
2677				  ICE_AQC_GET_LINK_TOPO_NODE_NR_GEN_CLK_MUX,
2678				  NULL))
2679		return false;
2680
2681	return true;
2682}
2683
2684/**
2685 * ice_is_cgu_in_netlist - check for CGU presence
2686 * @hw: pointer to the hw struct
2687 *
2688 * Check if the Clock Generation Unit (CGU) device is present in the netlist.
2689 * Save the CGU part number in the hw structure for later use.
2690 * Return:
2691 * * true - cgu is present
2692 * * false - cgu is not present
2693 */
2694bool ice_is_cgu_in_netlist(struct ice_hw *hw)
2695{
2696	if (!ice_find_netlist_node(hw, ICE_AQC_LINK_TOPO_NODE_TYPE_CLK_CTRL,
2697				   ICE_AQC_GET_LINK_TOPO_NODE_NR_ZL30632_80032,
2698				   NULL)) {
2699		hw->cgu_part_number = ICE_AQC_GET_LINK_TOPO_NODE_NR_ZL30632_80032;
2700		return true;
2701	} else if (!ice_find_netlist_node(hw,
2702					  ICE_AQC_LINK_TOPO_NODE_TYPE_CLK_CTRL,
2703					  ICE_AQC_GET_LINK_TOPO_NODE_NR_SI5383_5384,
2704					  NULL)) {
2705		hw->cgu_part_number = ICE_AQC_GET_LINK_TOPO_NODE_NR_SI5383_5384;
2706		return true;
2707	}
2708
2709	return false;
2710}
2711
2712/**
2713 * ice_is_gps_in_netlist
2714 * @hw: pointer to the hw struct
2715 *
2716 * Check if the GPS generic device is present in the netlist
2717 */
2718bool ice_is_gps_in_netlist(struct ice_hw *hw)
2719{
2720	if (ice_find_netlist_node(hw, ICE_AQC_LINK_TOPO_NODE_TYPE_GPS,
2721				  ICE_AQC_GET_LINK_TOPO_NODE_NR_GEN_GPS, NULL))
2722		return false;
2723
2724	return true;
2725}
2726
2727/**
2728 * ice_aq_list_caps - query function/device capabilities
2729 * @hw: pointer to the HW struct
2730 * @buf: a buffer to hold the capabilities
2731 * @buf_size: size of the buffer
2732 * @cap_count: if not NULL, set to the number of capabilities reported
2733 * @opc: capabilities type to discover, device or function
2734 * @cd: pointer to command details structure or NULL
2735 *
2736 * Get the function (0x000A) or device (0x000B) capabilities description from
2737 * firmware and store it in the buffer.
2738 *
2739 * If the cap_count pointer is not NULL, then it is set to the number of
2740 * capabilities firmware will report. Note that if the buffer size is too
2741 * small, it is possible the command will return ICE_AQ_ERR_ENOMEM. The
2742 * cap_count will still be updated in this case. It is recommended that the
2743 * buffer size be set to ICE_AQ_MAX_BUF_LEN (the largest possible buffer that
2744 * firmware could return) to avoid this.
2745 */
2746int
2747ice_aq_list_caps(struct ice_hw *hw, void *buf, u16 buf_size, u32 *cap_count,
2748		 enum ice_adminq_opc opc, struct ice_sq_cd *cd)
2749{
2750	struct ice_aqc_list_caps *cmd;
2751	struct ice_aq_desc desc;
2752	int status;
2753
2754	cmd = &desc.params.get_cap;
2755
2756	if (opc != ice_aqc_opc_list_func_caps &&
2757	    opc != ice_aqc_opc_list_dev_caps)
2758		return -EINVAL;
2759
2760	ice_fill_dflt_direct_cmd_desc(&desc, opc);
2761	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
2762
2763	if (cap_count)
2764		*cap_count = le32_to_cpu(cmd->count);
2765
2766	return status;
2767}
2768
2769/**
2770 * ice_discover_dev_caps - Read and extract device capabilities
2771 * @hw: pointer to the hardware structure
2772 * @dev_caps: pointer to device capabilities structure
2773 *
2774 * Read the device capabilities and extract them into the dev_caps structure
2775 * for later use.
2776 */
2777int
2778ice_discover_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_caps)
2779{
2780	u32 cap_count = 0;
2781	void *cbuf;
2782	int status;
2783
2784	cbuf = kzalloc(ICE_AQ_MAX_BUF_LEN, GFP_KERNEL);
2785	if (!cbuf)
2786		return -ENOMEM;
2787
2788	/* Although the driver doesn't know the number of capabilities the
2789	 * device will return, we can simply send a 4KB buffer, the maximum
2790	 * possible size that firmware can return.
2791	 */
2792	cap_count = ICE_AQ_MAX_BUF_LEN / sizeof(struct ice_aqc_list_caps_elem);
2793
2794	status = ice_aq_list_caps(hw, cbuf, ICE_AQ_MAX_BUF_LEN, &cap_count,
2795				  ice_aqc_opc_list_dev_caps, NULL);
2796	if (!status)
2797		ice_parse_dev_caps(hw, dev_caps, cbuf, cap_count);
2798	kfree(cbuf);
2799
2800	return status;
2801}
2802
2803/**
2804 * ice_discover_func_caps - Read and extract function capabilities
2805 * @hw: pointer to the hardware structure
2806 * @func_caps: pointer to function capabilities structure
2807 *
2808 * Read the function capabilities and extract them into the func_caps structure
2809 * for later use.
2810 */
2811static int
2812ice_discover_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_caps)
2813{
2814	u32 cap_count = 0;
2815	void *cbuf;
2816	int status;
2817
2818	cbuf = kzalloc(ICE_AQ_MAX_BUF_LEN, GFP_KERNEL);
2819	if (!cbuf)
2820		return -ENOMEM;
2821
2822	/* Although the driver doesn't know the number of capabilities the
2823	 * device will return, we can simply send a 4KB buffer, the maximum
2824	 * possible size that firmware can return.
2825	 */
2826	cap_count = ICE_AQ_MAX_BUF_LEN / sizeof(struct ice_aqc_list_caps_elem);
2827
2828	status = ice_aq_list_caps(hw, cbuf, ICE_AQ_MAX_BUF_LEN, &cap_count,
2829				  ice_aqc_opc_list_func_caps, NULL);
2830	if (!status)
2831		ice_parse_func_caps(hw, func_caps, cbuf, cap_count);
2832	kfree(cbuf);
2833
2834	return status;
2835}
2836
2837/**
2838 * ice_set_safe_mode_caps - Override dev/func capabilities when in safe mode
2839 * @hw: pointer to the hardware structure
2840 */
2841void ice_set_safe_mode_caps(struct ice_hw *hw)
2842{
2843	struct ice_hw_func_caps *func_caps = &hw->func_caps;
2844	struct ice_hw_dev_caps *dev_caps = &hw->dev_caps;
2845	struct ice_hw_common_caps cached_caps;
2846	u32 num_funcs;
2847
2848	/* cache some func_caps values that should be restored after memset */
2849	cached_caps = func_caps->common_cap;
2850
2851	/* unset func capabilities */
2852	memset(func_caps, 0, sizeof(*func_caps));
2853
2854#define ICE_RESTORE_FUNC_CAP(name) \
2855	func_caps->common_cap.name = cached_caps.name
2856
2857	/* restore cached values */
2858	ICE_RESTORE_FUNC_CAP(valid_functions);
2859	ICE_RESTORE_FUNC_CAP(txq_first_id);
2860	ICE_RESTORE_FUNC_CAP(rxq_first_id);
2861	ICE_RESTORE_FUNC_CAP(msix_vector_first_id);
2862	ICE_RESTORE_FUNC_CAP(max_mtu);
2863	ICE_RESTORE_FUNC_CAP(nvm_unified_update);
2864	ICE_RESTORE_FUNC_CAP(nvm_update_pending_nvm);
2865	ICE_RESTORE_FUNC_CAP(nvm_update_pending_orom);
2866	ICE_RESTORE_FUNC_CAP(nvm_update_pending_netlist);
2867
2868	/* one Tx and one Rx queue in safe mode */
2869	func_caps->common_cap.num_rxq = 1;
2870	func_caps->common_cap.num_txq = 1;
2871
2872	/* two MSIX vectors, one for traffic and one for misc causes */
2873	func_caps->common_cap.num_msix_vectors = 2;
2874	func_caps->guar_num_vsi = 1;
2875
2876	/* cache some dev_caps values that should be restored after memset */
2877	cached_caps = dev_caps->common_cap;
2878	num_funcs = dev_caps->num_funcs;
2879
2880	/* unset dev capabilities */
2881	memset(dev_caps, 0, sizeof(*dev_caps));
2882
2883#define ICE_RESTORE_DEV_CAP(name) \
2884	dev_caps->common_cap.name = cached_caps.name
2885
2886	/* restore cached values */
2887	ICE_RESTORE_DEV_CAP(valid_functions);
2888	ICE_RESTORE_DEV_CAP(txq_first_id);
2889	ICE_RESTORE_DEV_CAP(rxq_first_id);
2890	ICE_RESTORE_DEV_CAP(msix_vector_first_id);
2891	ICE_RESTORE_DEV_CAP(max_mtu);
2892	ICE_RESTORE_DEV_CAP(nvm_unified_update);
2893	ICE_RESTORE_DEV_CAP(nvm_update_pending_nvm);
2894	ICE_RESTORE_DEV_CAP(nvm_update_pending_orom);
2895	ICE_RESTORE_DEV_CAP(nvm_update_pending_netlist);
2896	dev_caps->num_funcs = num_funcs;
2897
2898	/* one Tx and one Rx queue per function in safe mode */
2899	dev_caps->common_cap.num_rxq = num_funcs;
2900	dev_caps->common_cap.num_txq = num_funcs;
2901
2902	/* two MSIX vectors per function */
2903	dev_caps->common_cap.num_msix_vectors = 2 * num_funcs;
2904}
2905
2906/**
2907 * ice_get_caps - get info about the HW
2908 * @hw: pointer to the hardware structure
2909 */
2910int ice_get_caps(struct ice_hw *hw)
2911{
2912	int status;
2913
2914	status = ice_discover_dev_caps(hw, &hw->dev_caps);
2915	if (status)
2916		return status;
2917
2918	return ice_discover_func_caps(hw, &hw->func_caps);
2919}
2920
2921/**
2922 * ice_aq_manage_mac_write - manage MAC address write command
2923 * @hw: pointer to the HW struct
2924 * @mac_addr: MAC address to be written as LAA/LAA+WoL/Port address
2925 * @flags: flags to control write behavior
2926 * @cd: pointer to command details structure or NULL
2927 *
2928 * This function is used to write MAC address to the NVM (0x0108).
2929 */
2930int
2931ice_aq_manage_mac_write(struct ice_hw *hw, const u8 *mac_addr, u8 flags,
2932			struct ice_sq_cd *cd)
2933{
2934	struct ice_aqc_manage_mac_write *cmd;
2935	struct ice_aq_desc desc;
2936
2937	cmd = &desc.params.mac_write;
2938	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_write);
2939
2940	cmd->flags = flags;
2941	ether_addr_copy(cmd->mac_addr, mac_addr);
2942
2943	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
2944}
2945
2946/**
2947 * ice_aq_clear_pxe_mode
2948 * @hw: pointer to the HW struct
2949 *
2950 * Tell the firmware that the driver is taking over from PXE (0x0110).
2951 */
2952static int ice_aq_clear_pxe_mode(struct ice_hw *hw)
2953{
2954	struct ice_aq_desc desc;
2955
2956	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pxe_mode);
2957	desc.params.clear_pxe.rx_cnt = ICE_AQC_CLEAR_PXE_RX_CNT;
2958
2959	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
2960}
2961
2962/**
2963 * ice_clear_pxe_mode - clear pxe operations mode
2964 * @hw: pointer to the HW struct
2965 *
2966 * Make sure all PXE mode settings are cleared, including things
2967 * like descriptor fetch/write-back mode.
2968 */
2969void ice_clear_pxe_mode(struct ice_hw *hw)
2970{
2971	if (ice_check_sq_alive(hw, &hw->adminq))
2972		ice_aq_clear_pxe_mode(hw);
2973}
2974
2975/**
2976 * ice_aq_set_port_params - set physical port parameters.
2977 * @pi: pointer to the port info struct
2978 * @double_vlan: if set double VLAN is enabled
2979 * @cd: pointer to command details structure or NULL
2980 *
2981 * Set Physical port parameters (0x0203)
2982 */
2983int
2984ice_aq_set_port_params(struct ice_port_info *pi, bool double_vlan,
2985		       struct ice_sq_cd *cd)
2986
2987{
2988	struct ice_aqc_set_port_params *cmd;
2989	struct ice_hw *hw = pi->hw;
2990	struct ice_aq_desc desc;
2991	u16 cmd_flags = 0;
2992
2993	cmd = &desc.params.set_port_params;
2994
2995	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_port_params);
2996	if (double_vlan)
2997		cmd_flags |= ICE_AQC_SET_P_PARAMS_DOUBLE_VLAN_ENA;
2998	cmd->cmd_flags = cpu_to_le16(cmd_flags);
2999
3000	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3001}
3002
3003/**
3004 * ice_is_100m_speed_supported
3005 * @hw: pointer to the HW struct
3006 *
3007 * returns true if 100M speeds are supported by the device,
3008 * false otherwise.
3009 */
3010bool ice_is_100m_speed_supported(struct ice_hw *hw)
3011{
3012	switch (hw->device_id) {
3013	case ICE_DEV_ID_E822C_SGMII:
3014	case ICE_DEV_ID_E822L_SGMII:
3015	case ICE_DEV_ID_E823L_1GBE:
3016	case ICE_DEV_ID_E823C_SGMII:
3017		return true;
3018	default:
3019		return false;
3020	}
3021}
3022
3023/**
3024 * ice_get_link_speed_based_on_phy_type - returns link speed
3025 * @phy_type_low: lower part of phy_type
3026 * @phy_type_high: higher part of phy_type
3027 *
3028 * This helper function will convert an entry in PHY type structure
3029 * [phy_type_low, phy_type_high] to its corresponding link speed.
3030 * Note: In the structure of [phy_type_low, phy_type_high], there should
3031 * be one bit set, as this function will convert one PHY type to its
3032 * speed.
3033 * If no bit gets set, ICE_AQ_LINK_SPEED_UNKNOWN will be returned
3034 * If more than one bit gets set, ICE_AQ_LINK_SPEED_UNKNOWN will be returned
3035 */
3036static u16
3037ice_get_link_speed_based_on_phy_type(u64 phy_type_low, u64 phy_type_high)
3038{
3039	u16 speed_phy_type_high = ICE_AQ_LINK_SPEED_UNKNOWN;
3040	u16 speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN;
3041
3042	switch (phy_type_low) {
3043	case ICE_PHY_TYPE_LOW_100BASE_TX:
3044	case ICE_PHY_TYPE_LOW_100M_SGMII:
3045		speed_phy_type_low = ICE_AQ_LINK_SPEED_100MB;
3046		break;
3047	case ICE_PHY_TYPE_LOW_1000BASE_T:
3048	case ICE_PHY_TYPE_LOW_1000BASE_SX:
3049	case ICE_PHY_TYPE_LOW_1000BASE_LX:
3050	case ICE_PHY_TYPE_LOW_1000BASE_KX:
3051	case ICE_PHY_TYPE_LOW_1G_SGMII:
3052		speed_phy_type_low = ICE_AQ_LINK_SPEED_1000MB;
3053		break;
3054	case ICE_PHY_TYPE_LOW_2500BASE_T:
3055	case ICE_PHY_TYPE_LOW_2500BASE_X:
3056	case ICE_PHY_TYPE_LOW_2500BASE_KX:
3057		speed_phy_type_low = ICE_AQ_LINK_SPEED_2500MB;
3058		break;
3059	case ICE_PHY_TYPE_LOW_5GBASE_T:
3060	case ICE_PHY_TYPE_LOW_5GBASE_KR:
3061		speed_phy_type_low = ICE_AQ_LINK_SPEED_5GB;
3062		break;
3063	case ICE_PHY_TYPE_LOW_10GBASE_T:
3064	case ICE_PHY_TYPE_LOW_10G_SFI_DA:
3065	case ICE_PHY_TYPE_LOW_10GBASE_SR:
3066	case ICE_PHY_TYPE_LOW_10GBASE_LR:
3067	case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1:
3068	case ICE_PHY_TYPE_LOW_10G_SFI_AOC_ACC:
3069	case ICE_PHY_TYPE_LOW_10G_SFI_C2C:
3070		speed_phy_type_low = ICE_AQ_LINK_SPEED_10GB;
3071		break;
3072	case ICE_PHY_TYPE_LOW_25GBASE_T:
3073	case ICE_PHY_TYPE_LOW_25GBASE_CR:
3074	case ICE_PHY_TYPE_LOW_25GBASE_CR_S:
3075	case ICE_PHY_TYPE_LOW_25GBASE_CR1:
3076	case ICE_PHY_TYPE_LOW_25GBASE_SR:
3077	case ICE_PHY_TYPE_LOW_25GBASE_LR:
3078	case ICE_PHY_TYPE_LOW_25GBASE_KR:
3079	case ICE_PHY_TYPE_LOW_25GBASE_KR_S:
3080	case ICE_PHY_TYPE_LOW_25GBASE_KR1:
3081	case ICE_PHY_TYPE_LOW_25G_AUI_AOC_ACC:
3082	case ICE_PHY_TYPE_LOW_25G_AUI_C2C:
3083		speed_phy_type_low = ICE_AQ_LINK_SPEED_25GB;
3084		break;
3085	case ICE_PHY_TYPE_LOW_40GBASE_CR4:
3086	case ICE_PHY_TYPE_LOW_40GBASE_SR4:
3087	case ICE_PHY_TYPE_LOW_40GBASE_LR4:
3088	case ICE_PHY_TYPE_LOW_40GBASE_KR4:
3089	case ICE_PHY_TYPE_LOW_40G_XLAUI_AOC_ACC:
3090	case ICE_PHY_TYPE_LOW_40G_XLAUI:
3091		speed_phy_type_low = ICE_AQ_LINK_SPEED_40GB;
3092		break;
3093	case ICE_PHY_TYPE_LOW_50GBASE_CR2:
3094	case ICE_PHY_TYPE_LOW_50GBASE_SR2:
3095	case ICE_PHY_TYPE_LOW_50GBASE_LR2:
3096	case ICE_PHY_TYPE_LOW_50GBASE_KR2:
3097	case ICE_PHY_TYPE_LOW_50G_LAUI2_AOC_ACC:
3098	case ICE_PHY_TYPE_LOW_50G_LAUI2:
3099	case ICE_PHY_TYPE_LOW_50G_AUI2_AOC_ACC:
3100	case ICE_PHY_TYPE_LOW_50G_AUI2:
3101	case ICE_PHY_TYPE_LOW_50GBASE_CP:
3102	case ICE_PHY_TYPE_LOW_50GBASE_SR:
3103	case ICE_PHY_TYPE_LOW_50GBASE_FR:
3104	case ICE_PHY_TYPE_LOW_50GBASE_LR:
3105	case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4:
3106	case ICE_PHY_TYPE_LOW_50G_AUI1_AOC_ACC:
3107	case ICE_PHY_TYPE_LOW_50G_AUI1:
3108		speed_phy_type_low = ICE_AQ_LINK_SPEED_50GB;
3109		break;
3110	case ICE_PHY_TYPE_LOW_100GBASE_CR4:
3111	case ICE_PHY_TYPE_LOW_100GBASE_SR4:
3112	case ICE_PHY_TYPE_LOW_100GBASE_LR4:
3113	case ICE_PHY_TYPE_LOW_100GBASE_KR4:
3114	case ICE_PHY_TYPE_LOW_100G_CAUI4_AOC_ACC:
3115	case ICE_PHY_TYPE_LOW_100G_CAUI4:
3116	case ICE_PHY_TYPE_LOW_100G_AUI4_AOC_ACC:
3117	case ICE_PHY_TYPE_LOW_100G_AUI4:
3118	case ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4:
3119	case ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4:
3120	case ICE_PHY_TYPE_LOW_100GBASE_CP2:
3121	case ICE_PHY_TYPE_LOW_100GBASE_SR2:
3122	case ICE_PHY_TYPE_LOW_100GBASE_DR:
3123		speed_phy_type_low = ICE_AQ_LINK_SPEED_100GB;
3124		break;
3125	default:
3126		speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN;
3127		break;
3128	}
3129
3130	switch (phy_type_high) {
3131	case ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4:
3132	case ICE_PHY_TYPE_HIGH_100G_CAUI2_AOC_ACC:
3133	case ICE_PHY_TYPE_HIGH_100G_CAUI2:
3134	case ICE_PHY_TYPE_HIGH_100G_AUI2_AOC_ACC:
3135	case ICE_PHY_TYPE_HIGH_100G_AUI2:
3136		speed_phy_type_high = ICE_AQ_LINK_SPEED_100GB;
3137		break;
3138	default:
3139		speed_phy_type_high = ICE_AQ_LINK_SPEED_UNKNOWN;
3140		break;
3141	}
3142
3143	if (speed_phy_type_low == ICE_AQ_LINK_SPEED_UNKNOWN &&
3144	    speed_phy_type_high == ICE_AQ_LINK_SPEED_UNKNOWN)
3145		return ICE_AQ_LINK_SPEED_UNKNOWN;
3146	else if (speed_phy_type_low != ICE_AQ_LINK_SPEED_UNKNOWN &&
3147		 speed_phy_type_high != ICE_AQ_LINK_SPEED_UNKNOWN)
3148		return ICE_AQ_LINK_SPEED_UNKNOWN;
3149	else if (speed_phy_type_low != ICE_AQ_LINK_SPEED_UNKNOWN &&
3150		 speed_phy_type_high == ICE_AQ_LINK_SPEED_UNKNOWN)
3151		return speed_phy_type_low;
3152	else
3153		return speed_phy_type_high;
3154}
3155
3156/**
3157 * ice_update_phy_type
3158 * @phy_type_low: pointer to the lower part of phy_type
3159 * @phy_type_high: pointer to the higher part of phy_type
3160 * @link_speeds_bitmap: targeted link speeds bitmap
3161 *
3162 * Note: For the link_speeds_bitmap structure, you can check it at
3163 * [ice_aqc_get_link_status->link_speed]. Caller can pass in
3164 * link_speeds_bitmap include multiple speeds.
3165 *
3166 * Each entry in this [phy_type_low, phy_type_high] structure will
3167 * present a certain link speed. This helper function will turn on bits
3168 * in [phy_type_low, phy_type_high] structure based on the value of
3169 * link_speeds_bitmap input parameter.
3170 */
3171void
3172ice_update_phy_type(u64 *phy_type_low, u64 *phy_type_high,
3173		    u16 link_speeds_bitmap)
3174{
3175	u64 pt_high;
3176	u64 pt_low;
3177	int index;
3178	u16 speed;
3179
3180	/* We first check with low part of phy_type */
3181	for (index = 0; index <= ICE_PHY_TYPE_LOW_MAX_INDEX; index++) {
3182		pt_low = BIT_ULL(index);
3183		speed = ice_get_link_speed_based_on_phy_type(pt_low, 0);
3184
3185		if (link_speeds_bitmap & speed)
3186			*phy_type_low |= BIT_ULL(index);
3187	}
3188
3189	/* We then check with high part of phy_type */
3190	for (index = 0; index <= ICE_PHY_TYPE_HIGH_MAX_INDEX; index++) {
3191		pt_high = BIT_ULL(index);
3192		speed = ice_get_link_speed_based_on_phy_type(0, pt_high);
3193
3194		if (link_speeds_bitmap & speed)
3195			*phy_type_high |= BIT_ULL(index);
3196	}
3197}
3198
3199/**
3200 * ice_aq_set_phy_cfg
3201 * @hw: pointer to the HW struct
3202 * @pi: port info structure of the interested logical port
3203 * @cfg: structure with PHY configuration data to be set
3204 * @cd: pointer to command details structure or NULL
3205 *
3206 * Set the various PHY configuration parameters supported on the Port.
3207 * One or more of the Set PHY config parameters may be ignored in an MFP
3208 * mode as the PF may not have the privilege to set some of the PHY Config
3209 * parameters. This status will be indicated by the command response (0x0601).
3210 */
3211int
3212ice_aq_set_phy_cfg(struct ice_hw *hw, struct ice_port_info *pi,
3213		   struct ice_aqc_set_phy_cfg_data *cfg, struct ice_sq_cd *cd)
3214{
3215	struct ice_aq_desc desc;
3216	int status;
3217
3218	if (!cfg)
3219		return -EINVAL;
3220
3221	/* Ensure that only valid bits of cfg->caps can be turned on. */
3222	if (cfg->caps & ~ICE_AQ_PHY_ENA_VALID_MASK) {
3223		ice_debug(hw, ICE_DBG_PHY, "Invalid bit is set in ice_aqc_set_phy_cfg_data->caps : 0x%x\n",
3224			  cfg->caps);
3225
3226		cfg->caps &= ICE_AQ_PHY_ENA_VALID_MASK;
3227	}
3228
3229	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_phy_cfg);
3230	desc.params.set_phy.lport_num = pi->lport;
3231	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
3232
3233	ice_debug(hw, ICE_DBG_LINK, "set phy cfg\n");
3234	ice_debug(hw, ICE_DBG_LINK, "	phy_type_low = 0x%llx\n",
3235		  (unsigned long long)le64_to_cpu(cfg->phy_type_low));
3236	ice_debug(hw, ICE_DBG_LINK, "	phy_type_high = 0x%llx\n",
3237		  (unsigned long long)le64_to_cpu(cfg->phy_type_high));
3238	ice_debug(hw, ICE_DBG_LINK, "	caps = 0x%x\n", cfg->caps);
3239	ice_debug(hw, ICE_DBG_LINK, "	low_power_ctrl_an = 0x%x\n",
3240		  cfg->low_power_ctrl_an);
3241	ice_debug(hw, ICE_DBG_LINK, "	eee_cap = 0x%x\n", cfg->eee_cap);
3242	ice_debug(hw, ICE_DBG_LINK, "	eeer_value = 0x%x\n", cfg->eeer_value);
3243	ice_debug(hw, ICE_DBG_LINK, "	link_fec_opt = 0x%x\n",
3244		  cfg->link_fec_opt);
3245
3246	status = ice_aq_send_cmd(hw, &desc, cfg, sizeof(*cfg), cd);
3247	if (hw->adminq.sq_last_status == ICE_AQ_RC_EMODE)
3248		status = 0;
3249
3250	if (!status)
3251		pi->phy.curr_user_phy_cfg = *cfg;
3252
3253	return status;
3254}
3255
3256/**
3257 * ice_update_link_info - update status of the HW network link
3258 * @pi: port info structure of the interested logical port
3259 */
3260int ice_update_link_info(struct ice_port_info *pi)
3261{
3262	struct ice_link_status *li;
3263	int status;
3264
3265	if (!pi)
3266		return -EINVAL;
3267
3268	li = &pi->phy.link_info;
3269
3270	status = ice_aq_get_link_info(pi, true, NULL, NULL);
3271	if (status)
3272		return status;
3273
3274	if (li->link_info & ICE_AQ_MEDIA_AVAILABLE) {
3275		struct ice_aqc_get_phy_caps_data *pcaps __free(kfree) = NULL;
3276
3277		pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
3278		if (!pcaps)
3279			return -ENOMEM;
3280
3281		status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA,
3282					     pcaps, NULL);
3283	}
3284
3285	return status;
3286}
3287
3288/**
3289 * ice_cache_phy_user_req
3290 * @pi: port information structure
3291 * @cache_data: PHY logging data
3292 * @cache_mode: PHY logging mode
3293 *
3294 * Log the user request on (FC, FEC, SPEED) for later use.
3295 */
3296static void
3297ice_cache_phy_user_req(struct ice_port_info *pi,
3298		       struct ice_phy_cache_mode_data cache_data,
3299		       enum ice_phy_cache_mode cache_mode)
3300{
3301	if (!pi)
3302		return;
3303
3304	switch (cache_mode) {
3305	case ICE_FC_MODE:
3306		pi->phy.curr_user_fc_req = cache_data.data.curr_user_fc_req;
3307		break;
3308	case ICE_SPEED_MODE:
3309		pi->phy.curr_user_speed_req =
3310			cache_data.data.curr_user_speed_req;
3311		break;
3312	case ICE_FEC_MODE:
3313		pi->phy.curr_user_fec_req = cache_data.data.curr_user_fec_req;
3314		break;
3315	default:
3316		break;
3317	}
3318}
3319
3320/**
3321 * ice_caps_to_fc_mode
3322 * @caps: PHY capabilities
3323 *
3324 * Convert PHY FC capabilities to ice FC mode
3325 */
3326enum ice_fc_mode ice_caps_to_fc_mode(u8 caps)
3327{
3328	if (caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE &&
3329	    caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE)
3330		return ICE_FC_FULL;
3331
3332	if (caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE)
3333		return ICE_FC_TX_PAUSE;
3334
3335	if (caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE)
3336		return ICE_FC_RX_PAUSE;
3337
3338	return ICE_FC_NONE;
3339}
3340
3341/**
3342 * ice_caps_to_fec_mode
3343 * @caps: PHY capabilities
3344 * @fec_options: Link FEC options
3345 *
3346 * Convert PHY FEC capabilities to ice FEC mode
3347 */
3348enum ice_fec_mode ice_caps_to_fec_mode(u8 caps, u8 fec_options)
3349{
3350	if (caps & ICE_AQC_PHY_EN_AUTO_FEC)
3351		return ICE_FEC_AUTO;
3352
3353	if (fec_options & (ICE_AQC_PHY_FEC_10G_KR_40G_KR4_EN |
3354			   ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ |
3355			   ICE_AQC_PHY_FEC_25G_KR_CLAUSE74_EN |
3356			   ICE_AQC_PHY_FEC_25G_KR_REQ))
3357		return ICE_FEC_BASER;
3358
3359	if (fec_options & (ICE_AQC_PHY_FEC_25G_RS_528_REQ |
3360			   ICE_AQC_PHY_FEC_25G_RS_544_REQ |
3361			   ICE_AQC_PHY_FEC_25G_RS_CLAUSE91_EN))
3362		return ICE_FEC_RS;
3363
3364	return ICE_FEC_NONE;
3365}
3366
3367/**
3368 * ice_cfg_phy_fc - Configure PHY FC data based on FC mode
3369 * @pi: port information structure
3370 * @cfg: PHY configuration data to set FC mode
3371 * @req_mode: FC mode to configure
3372 */
3373int
3374ice_cfg_phy_fc(struct ice_port_info *pi, struct ice_aqc_set_phy_cfg_data *cfg,
3375	       enum ice_fc_mode req_mode)
3376{
3377	struct ice_phy_cache_mode_data cache_data;
3378	u8 pause_mask = 0x0;
3379
3380	if (!pi || !cfg)
3381		return -EINVAL;
3382
3383	switch (req_mode) {
3384	case ICE_FC_FULL:
3385		pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE;
3386		pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE;
3387		break;
3388	case ICE_FC_RX_PAUSE:
3389		pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE;
3390		break;
3391	case ICE_FC_TX_PAUSE:
3392		pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE;
3393		break;
3394	default:
3395		break;
3396	}
3397
3398	/* clear the old pause settings */
3399	cfg->caps &= ~(ICE_AQC_PHY_EN_TX_LINK_PAUSE |
3400		ICE_AQC_PHY_EN_RX_LINK_PAUSE);
3401
3402	/* set the new capabilities */
3403	cfg->caps |= pause_mask;
3404
3405	/* Cache user FC request */
3406	cache_data.data.curr_user_fc_req = req_mode;
3407	ice_cache_phy_user_req(pi, cache_data, ICE_FC_MODE);
3408
3409	return 0;
3410}
3411
3412/**
3413 * ice_set_fc
3414 * @pi: port information structure
3415 * @aq_failures: pointer to status code, specific to ice_set_fc routine
3416 * @ena_auto_link_update: enable automatic link update
3417 *
3418 * Set the requested flow control mode.
3419 */
3420int
3421ice_set_fc(struct ice_port_info *pi, u8 *aq_failures, bool ena_auto_link_update)
3422{
3423	struct ice_aqc_get_phy_caps_data *pcaps __free(kfree) = NULL;
3424	struct ice_aqc_set_phy_cfg_data cfg = { 0 };
3425	struct ice_hw *hw;
3426	int status;
3427
3428	if (!pi || !aq_failures)
3429		return -EINVAL;
3430
3431	*aq_failures = 0;
3432	hw = pi->hw;
3433
3434	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
3435	if (!pcaps)
3436		return -ENOMEM;
3437
3438	/* Get the current PHY config */
3439	status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG,
3440				     pcaps, NULL);
3441	if (status) {
3442		*aq_failures = ICE_SET_FC_AQ_FAIL_GET;
3443		goto out;
3444	}
3445
3446	ice_copy_phy_caps_to_cfg(pi, pcaps, &cfg);
3447
3448	/* Configure the set PHY data */
3449	status = ice_cfg_phy_fc(pi, &cfg, pi->fc.req_mode);
3450	if (status)
3451		goto out;
3452
3453	/* If the capabilities have changed, then set the new config */
3454	if (cfg.caps != pcaps->caps) {
3455		int retry_count, retry_max = 10;
3456
3457		/* Auto restart link so settings take effect */
3458		if (ena_auto_link_update)
3459			cfg.caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
3460
3461		status = ice_aq_set_phy_cfg(hw, pi, &cfg, NULL);
3462		if (status) {
3463			*aq_failures = ICE_SET_FC_AQ_FAIL_SET;
3464			goto out;
3465		}
3466
3467		/* Update the link info
3468		 * It sometimes takes a really long time for link to
3469		 * come back from the atomic reset. Thus, we wait a
3470		 * little bit.
3471		 */
3472		for (retry_count = 0; retry_count < retry_max; retry_count++) {
3473			status = ice_update_link_info(pi);
3474
3475			if (!status)
3476				break;
3477
3478			mdelay(100);
3479		}
3480
3481		if (status)
3482			*aq_failures = ICE_SET_FC_AQ_FAIL_UPDATE;
3483	}
3484
3485out:
3486	return status;
3487}
3488
3489/**
3490 * ice_phy_caps_equals_cfg
3491 * @phy_caps: PHY capabilities
3492 * @phy_cfg: PHY configuration
3493 *
3494 * Helper function to determine if PHY capabilities matches PHY
3495 * configuration
3496 */
3497bool
3498ice_phy_caps_equals_cfg(struct ice_aqc_get_phy_caps_data *phy_caps,
3499			struct ice_aqc_set_phy_cfg_data *phy_cfg)
3500{
3501	u8 caps_mask, cfg_mask;
3502
3503	if (!phy_caps || !phy_cfg)
3504		return false;
3505
3506	/* These bits are not common between capabilities and configuration.
3507	 * Do not use them to determine equality.
3508	 */
3509	caps_mask = ICE_AQC_PHY_CAPS_MASK & ~(ICE_AQC_PHY_AN_MODE |
3510					      ICE_AQC_GET_PHY_EN_MOD_QUAL);
3511	cfg_mask = ICE_AQ_PHY_ENA_VALID_MASK & ~ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
3512
3513	if (phy_caps->phy_type_low != phy_cfg->phy_type_low ||
3514	    phy_caps->phy_type_high != phy_cfg->phy_type_high ||
3515	    ((phy_caps->caps & caps_mask) != (phy_cfg->caps & cfg_mask)) ||
3516	    phy_caps->low_power_ctrl_an != phy_cfg->low_power_ctrl_an ||
3517	    phy_caps->eee_cap != phy_cfg->eee_cap ||
3518	    phy_caps->eeer_value != phy_cfg->eeer_value ||
3519	    phy_caps->link_fec_options != phy_cfg->link_fec_opt)
3520		return false;
3521
3522	return true;
3523}
3524
3525/**
3526 * ice_copy_phy_caps_to_cfg - Copy PHY ability data to configuration data
3527 * @pi: port information structure
3528 * @caps: PHY ability structure to copy date from
3529 * @cfg: PHY configuration structure to copy data to
3530 *
3531 * Helper function to copy AQC PHY get ability data to PHY set configuration
3532 * data structure
3533 */
3534void
3535ice_copy_phy_caps_to_cfg(struct ice_port_info *pi,
3536			 struct ice_aqc_get_phy_caps_data *caps,
3537			 struct ice_aqc_set_phy_cfg_data *cfg)
3538{
3539	if (!pi || !caps || !cfg)
3540		return;
3541
3542	memset(cfg, 0, sizeof(*cfg));
3543	cfg->phy_type_low = caps->phy_type_low;
3544	cfg->phy_type_high = caps->phy_type_high;
3545	cfg->caps = caps->caps;
3546	cfg->low_power_ctrl_an = caps->low_power_ctrl_an;
3547	cfg->eee_cap = caps->eee_cap;
3548	cfg->eeer_value = caps->eeer_value;
3549	cfg->link_fec_opt = caps->link_fec_options;
3550	cfg->module_compliance_enforcement =
3551		caps->module_compliance_enforcement;
3552}
3553
3554/**
3555 * ice_cfg_phy_fec - Configure PHY FEC data based on FEC mode
3556 * @pi: port information structure
3557 * @cfg: PHY configuration data to set FEC mode
3558 * @fec: FEC mode to configure
3559 */
3560int
3561ice_cfg_phy_fec(struct ice_port_info *pi, struct ice_aqc_set_phy_cfg_data *cfg,
3562		enum ice_fec_mode fec)
3563{
3564	struct ice_aqc_get_phy_caps_data *pcaps __free(kfree) = NULL;
3565	struct ice_hw *hw;
3566	int status;
3567
3568	if (!pi || !cfg)
3569		return -EINVAL;
3570
3571	hw = pi->hw;
3572
3573	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
3574	if (!pcaps)
3575		return -ENOMEM;
3576
3577	status = ice_aq_get_phy_caps(pi, false,
3578				     (ice_fw_supports_report_dflt_cfg(hw) ?
3579				      ICE_AQC_REPORT_DFLT_CFG :
3580				      ICE_AQC_REPORT_TOPO_CAP_MEDIA), pcaps, NULL);
3581	if (status)
3582		goto out;
3583
3584	cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC;
3585	cfg->link_fec_opt = pcaps->link_fec_options;
3586
3587	switch (fec) {
3588	case ICE_FEC_BASER:
3589		/* Clear RS bits, and AND BASE-R ability
3590		 * bits and OR request bits.
3591		 */
3592		cfg->link_fec_opt &= ICE_AQC_PHY_FEC_10G_KR_40G_KR4_EN |
3593			ICE_AQC_PHY_FEC_25G_KR_CLAUSE74_EN;
3594		cfg->link_fec_opt |= ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ |
3595			ICE_AQC_PHY_FEC_25G_KR_REQ;
3596		break;
3597	case ICE_FEC_RS:
3598		/* Clear BASE-R bits, and AND RS ability
3599		 * bits and OR request bits.
3600		 */
3601		cfg->link_fec_opt &= ICE_AQC_PHY_FEC_25G_RS_CLAUSE91_EN;
3602		cfg->link_fec_opt |= ICE_AQC_PHY_FEC_25G_RS_528_REQ |
3603			ICE_AQC_PHY_FEC_25G_RS_544_REQ;
3604		break;
3605	case ICE_FEC_NONE:
3606		/* Clear all FEC option bits. */
3607		cfg->link_fec_opt &= ~ICE_AQC_PHY_FEC_MASK;
3608		break;
3609	case ICE_FEC_AUTO:
3610		/* AND auto FEC bit, and all caps bits. */
3611		cfg->caps &= ICE_AQC_PHY_CAPS_MASK;
3612		cfg->link_fec_opt |= pcaps->link_fec_options;
3613		break;
3614	default:
3615		status = -EINVAL;
3616		break;
3617	}
3618
3619	if (fec == ICE_FEC_AUTO && ice_fw_supports_link_override(hw) &&
3620	    !ice_fw_supports_report_dflt_cfg(hw)) {
3621		struct ice_link_default_override_tlv tlv = { 0 };
3622
3623		status = ice_get_link_default_override(&tlv, pi);
3624		if (status)
3625			goto out;
3626
3627		if (!(tlv.options & ICE_LINK_OVERRIDE_STRICT_MODE) &&
3628		    (tlv.options & ICE_LINK_OVERRIDE_EN))
3629			cfg->link_fec_opt = tlv.fec_options;
3630	}
3631
3632out:
3633	return status;
3634}
3635
3636/**
3637 * ice_get_link_status - get status of the HW network link
3638 * @pi: port information structure
3639 * @link_up: pointer to bool (true/false = linkup/linkdown)
3640 *
3641 * Variable link_up is true if link is up, false if link is down.
3642 * The variable link_up is invalid if status is non zero. As a
3643 * result of this call, link status reporting becomes enabled
3644 */
3645int ice_get_link_status(struct ice_port_info *pi, bool *link_up)
3646{
3647	struct ice_phy_info *phy_info;
3648	int status = 0;
3649
3650	if (!pi || !link_up)
3651		return -EINVAL;
3652
3653	phy_info = &pi->phy;
3654
3655	if (phy_info->get_link_info) {
3656		status = ice_update_link_info(pi);
3657
3658		if (status)
3659			ice_debug(pi->hw, ICE_DBG_LINK, "get link status error, status = %d\n",
3660				  status);
3661	}
3662
3663	*link_up = phy_info->link_info.link_info & ICE_AQ_LINK_UP;
3664
3665	return status;
3666}
3667
3668/**
3669 * ice_aq_set_link_restart_an
3670 * @pi: pointer to the port information structure
3671 * @ena_link: if true: enable link, if false: disable link
3672 * @cd: pointer to command details structure or NULL
3673 *
3674 * Sets up the link and restarts the Auto-Negotiation over the link.
3675 */
3676int
3677ice_aq_set_link_restart_an(struct ice_port_info *pi, bool ena_link,
3678			   struct ice_sq_cd *cd)
3679{
3680	struct ice_aqc_restart_an *cmd;
3681	struct ice_aq_desc desc;
3682
3683	cmd = &desc.params.restart_an;
3684
3685	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_restart_an);
3686
3687	cmd->cmd_flags = ICE_AQC_RESTART_AN_LINK_RESTART;
3688	cmd->lport_num = pi->lport;
3689	if (ena_link)
3690		cmd->cmd_flags |= ICE_AQC_RESTART_AN_LINK_ENABLE;
3691	else
3692		cmd->cmd_flags &= ~ICE_AQC_RESTART_AN_LINK_ENABLE;
3693
3694	return ice_aq_send_cmd(pi->hw, &desc, NULL, 0, cd);
3695}
3696
3697/**
3698 * ice_aq_set_event_mask
3699 * @hw: pointer to the HW struct
3700 * @port_num: port number of the physical function
3701 * @mask: event mask to be set
3702 * @cd: pointer to command details structure or NULL
3703 *
3704 * Set event mask (0x0613)
3705 */
3706int
3707ice_aq_set_event_mask(struct ice_hw *hw, u8 port_num, u16 mask,
3708		      struct ice_sq_cd *cd)
3709{
3710	struct ice_aqc_set_event_mask *cmd;
3711	struct ice_aq_desc desc;
3712
3713	cmd = &desc.params.set_event_mask;
3714
3715	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_event_mask);
3716
3717	cmd->lport_num = port_num;
3718
3719	cmd->event_mask = cpu_to_le16(mask);
3720	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3721}
3722
3723/**
3724 * ice_aq_set_mac_loopback
3725 * @hw: pointer to the HW struct
3726 * @ena_lpbk: Enable or Disable loopback
3727 * @cd: pointer to command details structure or NULL
3728 *
3729 * Enable/disable loopback on a given port
3730 */
3731int
3732ice_aq_set_mac_loopback(struct ice_hw *hw, bool ena_lpbk, struct ice_sq_cd *cd)
3733{
3734	struct ice_aqc_set_mac_lb *cmd;
3735	struct ice_aq_desc desc;
3736
3737	cmd = &desc.params.set_mac_lb;
3738
3739	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_mac_lb);
3740	if (ena_lpbk)
3741		cmd->lb_mode = ICE_AQ_MAC_LB_EN;
3742
3743	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3744}
3745
3746/**
3747 * ice_aq_set_port_id_led
3748 * @pi: pointer to the port information
3749 * @is_orig_mode: is this LED set to original mode (by the net-list)
3750 * @cd: pointer to command details structure or NULL
3751 *
3752 * Set LED value for the given port (0x06e9)
3753 */
3754int
3755ice_aq_set_port_id_led(struct ice_port_info *pi, bool is_orig_mode,
3756		       struct ice_sq_cd *cd)
3757{
3758	struct ice_aqc_set_port_id_led *cmd;
3759	struct ice_hw *hw = pi->hw;
3760	struct ice_aq_desc desc;
3761
3762	cmd = &desc.params.set_port_id_led;
3763
3764	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_port_id_led);
3765
3766	if (is_orig_mode)
3767		cmd->ident_mode = ICE_AQC_PORT_IDENT_LED_ORIG;
3768	else
3769		cmd->ident_mode = ICE_AQC_PORT_IDENT_LED_BLINK;
3770
3771	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3772}
3773
3774/**
3775 * ice_aq_get_port_options
3776 * @hw: pointer to the HW struct
3777 * @options: buffer for the resultant port options
3778 * @option_count: input - size of the buffer in port options structures,
3779 *                output - number of returned port options
3780 * @lport: logical port to call the command with (optional)
3781 * @lport_valid: when false, FW uses port owned by the PF instead of lport,
3782 *               when PF owns more than 1 port it must be true
3783 * @active_option_idx: index of active port option in returned buffer
3784 * @active_option_valid: active option in returned buffer is valid
3785 * @pending_option_idx: index of pending port option in returned buffer
3786 * @pending_option_valid: pending option in returned buffer is valid
3787 *
3788 * Calls Get Port Options AQC (0x06ea) and verifies result.
3789 */
3790int
3791ice_aq_get_port_options(struct ice_hw *hw,
3792			struct ice_aqc_get_port_options_elem *options,
3793			u8 *option_count, u8 lport, bool lport_valid,
3794			u8 *active_option_idx, bool *active_option_valid,
3795			u8 *pending_option_idx, bool *pending_option_valid)
3796{
3797	struct ice_aqc_get_port_options *cmd;
3798	struct ice_aq_desc desc;
3799	int status;
3800	u8 i;
3801
3802	/* options buffer shall be able to hold max returned options */
3803	if (*option_count < ICE_AQC_PORT_OPT_COUNT_M)
3804		return -EINVAL;
3805
3806	cmd = &desc.params.get_port_options;
3807	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_port_options);
3808
3809	if (lport_valid)
3810		cmd->lport_num = lport;
3811	cmd->lport_num_valid = lport_valid;
3812
3813	status = ice_aq_send_cmd(hw, &desc, options,
3814				 *option_count * sizeof(*options), NULL);
3815	if (status)
3816		return status;
3817
3818	/* verify direct FW response & set output parameters */
3819	*option_count = FIELD_GET(ICE_AQC_PORT_OPT_COUNT_M,
3820				  cmd->port_options_count);
3821	ice_debug(hw, ICE_DBG_PHY, "options: %x\n", *option_count);
3822	*active_option_valid = FIELD_GET(ICE_AQC_PORT_OPT_VALID,
3823					 cmd->port_options);
3824	if (*active_option_valid) {
3825		*active_option_idx = FIELD_GET(ICE_AQC_PORT_OPT_ACTIVE_M,
3826					       cmd->port_options);
3827		if (*active_option_idx > (*option_count - 1))
3828			return -EIO;
3829		ice_debug(hw, ICE_DBG_PHY, "active idx: %x\n",
3830			  *active_option_idx);
3831	}
3832
3833	*pending_option_valid = FIELD_GET(ICE_AQC_PENDING_PORT_OPT_VALID,
3834					  cmd->pending_port_option_status);
3835	if (*pending_option_valid) {
3836		*pending_option_idx = FIELD_GET(ICE_AQC_PENDING_PORT_OPT_IDX_M,
3837						cmd->pending_port_option_status);
3838		if (*pending_option_idx > (*option_count - 1))
3839			return -EIO;
3840		ice_debug(hw, ICE_DBG_PHY, "pending idx: %x\n",
3841			  *pending_option_idx);
3842	}
3843
3844	/* mask output options fields */
3845	for (i = 0; i < *option_count; i++) {
3846		options[i].pmd = FIELD_GET(ICE_AQC_PORT_OPT_PMD_COUNT_M,
3847					   options[i].pmd);
3848		options[i].max_lane_speed = FIELD_GET(ICE_AQC_PORT_OPT_MAX_LANE_M,
3849						      options[i].max_lane_speed);
3850		ice_debug(hw, ICE_DBG_PHY, "pmds: %x max speed: %x\n",
3851			  options[i].pmd, options[i].max_lane_speed);
3852	}
3853
3854	return 0;
3855}
3856
3857/**
3858 * ice_aq_set_port_option
3859 * @hw: pointer to the HW struct
3860 * @lport: logical port to call the command with
3861 * @lport_valid: when false, FW uses port owned by the PF instead of lport,
3862 *               when PF owns more than 1 port it must be true
3863 * @new_option: new port option to be written
3864 *
3865 * Calls Set Port Options AQC (0x06eb).
3866 */
3867int
3868ice_aq_set_port_option(struct ice_hw *hw, u8 lport, u8 lport_valid,
3869		       u8 new_option)
3870{
3871	struct ice_aqc_set_port_option *cmd;
3872	struct ice_aq_desc desc;
3873
3874	if (new_option > ICE_AQC_PORT_OPT_COUNT_M)
3875		return -EINVAL;
3876
3877	cmd = &desc.params.set_port_option;
3878	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_port_option);
3879
3880	if (lport_valid)
3881		cmd->lport_num = lport;
3882
3883	cmd->lport_num_valid = lport_valid;
3884	cmd->selected_port_option = new_option;
3885
3886	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
3887}
3888
3889/**
3890 * ice_aq_sff_eeprom
3891 * @hw: pointer to the HW struct
3892 * @lport: bits [7:0] = logical port, bit [8] = logical port valid
3893 * @bus_addr: I2C bus address of the eeprom (typically 0xA0, 0=topo default)
3894 * @mem_addr: I2C offset. lower 8 bits for address, 8 upper bits zero padding.
3895 * @page: QSFP page
3896 * @set_page: set or ignore the page
3897 * @data: pointer to data buffer to be read/written to the I2C device.
3898 * @length: 1-16 for read, 1 for write.
3899 * @write: 0 read, 1 for write.
3900 * @cd: pointer to command details structure or NULL
3901 *
3902 * Read/Write SFF EEPROM (0x06EE)
3903 */
3904int
3905ice_aq_sff_eeprom(struct ice_hw *hw, u16 lport, u8 bus_addr,
3906		  u16 mem_addr, u8 page, u8 set_page, u8 *data, u8 length,
3907		  bool write, struct ice_sq_cd *cd)
3908{
3909	struct ice_aqc_sff_eeprom *cmd;
3910	struct ice_aq_desc desc;
3911	u16 i2c_bus_addr;
3912	int status;
3913
3914	if (!data || (mem_addr & 0xff00))
3915		return -EINVAL;
3916
3917	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_sff_eeprom);
3918	cmd = &desc.params.read_write_sff_param;
3919	desc.flags = cpu_to_le16(ICE_AQ_FLAG_RD);
3920	cmd->lport_num = (u8)(lport & 0xff);
3921	cmd->lport_num_valid = (u8)((lport >> 8) & 0x01);
3922	i2c_bus_addr = FIELD_PREP(ICE_AQC_SFF_I2CBUS_7BIT_M, bus_addr >> 1) |
3923		       FIELD_PREP(ICE_AQC_SFF_SET_EEPROM_PAGE_M, set_page);
3924	if (write)
3925		i2c_bus_addr |= ICE_AQC_SFF_IS_WRITE;
3926	cmd->i2c_bus_addr = cpu_to_le16(i2c_bus_addr);
3927	cmd->i2c_mem_addr = cpu_to_le16(mem_addr & 0xff);
3928	cmd->eeprom_page = le16_encode_bits(page, ICE_AQC_SFF_EEPROM_PAGE_M);
3929
3930	status = ice_aq_send_cmd(hw, &desc, data, length, cd);
3931	return status;
3932}
3933
3934static enum ice_lut_size ice_lut_type_to_size(enum ice_lut_type type)
3935{
3936	switch (type) {
3937	case ICE_LUT_VSI:
3938		return ICE_LUT_VSI_SIZE;
3939	case ICE_LUT_GLOBAL:
3940		return ICE_LUT_GLOBAL_SIZE;
3941	case ICE_LUT_PF:
3942		return ICE_LUT_PF_SIZE;
3943	}
3944	WARN_ONCE(1, "incorrect type passed");
3945	return ICE_LUT_VSI_SIZE;
3946}
3947
3948static enum ice_aqc_lut_flags ice_lut_size_to_flag(enum ice_lut_size size)
3949{
3950	switch (size) {
3951	case ICE_LUT_VSI_SIZE:
3952		return ICE_AQC_LUT_SIZE_SMALL;
3953	case ICE_LUT_GLOBAL_SIZE:
3954		return ICE_AQC_LUT_SIZE_512;
3955	case ICE_LUT_PF_SIZE:
3956		return ICE_AQC_LUT_SIZE_2K;
3957	}
3958	WARN_ONCE(1, "incorrect size passed");
3959	return 0;
3960}
3961
3962/**
3963 * __ice_aq_get_set_rss_lut
3964 * @hw: pointer to the hardware structure
3965 * @params: RSS LUT parameters
3966 * @set: set true to set the table, false to get the table
3967 *
3968 * Internal function to get (0x0B05) or set (0x0B03) RSS look up table
3969 */
3970static int
3971__ice_aq_get_set_rss_lut(struct ice_hw *hw,
3972			 struct ice_aq_get_set_rss_lut_params *params, bool set)
3973{
3974	u16 opcode, vsi_id, vsi_handle = params->vsi_handle, glob_lut_idx = 0;
3975	enum ice_lut_type lut_type = params->lut_type;
3976	struct ice_aqc_get_set_rss_lut *desc_params;
3977	enum ice_aqc_lut_flags flags;
3978	enum ice_lut_size lut_size;
3979	struct ice_aq_desc desc;
3980	u8 *lut = params->lut;
3981
3982
3983	if (!lut || !ice_is_vsi_valid(hw, vsi_handle))
3984		return -EINVAL;
3985
3986	lut_size = ice_lut_type_to_size(lut_type);
3987	if (lut_size > params->lut_size)
3988		return -EINVAL;
3989	else if (set && lut_size != params->lut_size)
3990		return -EINVAL;
3991
3992	opcode = set ? ice_aqc_opc_set_rss_lut : ice_aqc_opc_get_rss_lut;
3993	ice_fill_dflt_direct_cmd_desc(&desc, opcode);
3994	if (set)
3995		desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
3996
3997	desc_params = &desc.params.get_set_rss_lut;
3998	vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
3999	desc_params->vsi_id = cpu_to_le16(vsi_id | ICE_AQC_RSS_VSI_VALID);
4000
4001	if (lut_type == ICE_LUT_GLOBAL)
4002		glob_lut_idx = FIELD_PREP(ICE_AQC_LUT_GLOBAL_IDX,
4003					  params->global_lut_id);
4004
4005	flags = lut_type | glob_lut_idx | ice_lut_size_to_flag(lut_size);
4006	desc_params->flags = cpu_to_le16(flags);
4007
4008	return ice_aq_send_cmd(hw, &desc, lut, lut_size, NULL);
4009}
4010
4011/**
4012 * ice_aq_get_rss_lut
4013 * @hw: pointer to the hardware structure
4014 * @get_params: RSS LUT parameters used to specify which RSS LUT to get
4015 *
4016 * get the RSS lookup table, PF or VSI type
4017 */
4018int
4019ice_aq_get_rss_lut(struct ice_hw *hw, struct ice_aq_get_set_rss_lut_params *get_params)
4020{
4021	return __ice_aq_get_set_rss_lut(hw, get_params, false);
4022}
4023
4024/**
4025 * ice_aq_set_rss_lut
4026 * @hw: pointer to the hardware structure
4027 * @set_params: RSS LUT parameters used to specify how to set the RSS LUT
4028 *
4029 * set the RSS lookup table, PF or VSI type
4030 */
4031int
4032ice_aq_set_rss_lut(struct ice_hw *hw, struct ice_aq_get_set_rss_lut_params *set_params)
4033{
4034	return __ice_aq_get_set_rss_lut(hw, set_params, true);
4035}
4036
4037/**
4038 * __ice_aq_get_set_rss_key
4039 * @hw: pointer to the HW struct
4040 * @vsi_id: VSI FW index
4041 * @key: pointer to key info struct
4042 * @set: set true to set the key, false to get the key
4043 *
4044 * get (0x0B04) or set (0x0B02) the RSS key per VSI
4045 */
4046static int
4047__ice_aq_get_set_rss_key(struct ice_hw *hw, u16 vsi_id,
4048			 struct ice_aqc_get_set_rss_keys *key, bool set)
4049{
4050	struct ice_aqc_get_set_rss_key *desc_params;
4051	u16 key_size = sizeof(*key);
4052	struct ice_aq_desc desc;
4053
4054	if (set) {
4055		ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_rss_key);
4056		desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
4057	} else {
4058		ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_rss_key);
4059	}
4060
4061	desc_params = &desc.params.get_set_rss_key;
4062	desc_params->vsi_id = cpu_to_le16(vsi_id | ICE_AQC_RSS_VSI_VALID);
4063
4064	return ice_aq_send_cmd(hw, &desc, key, key_size, NULL);
4065}
4066
4067/**
4068 * ice_aq_get_rss_key
4069 * @hw: pointer to the HW struct
4070 * @vsi_handle: software VSI handle
4071 * @key: pointer to key info struct
4072 *
4073 * get the RSS key per VSI
4074 */
4075int
4076ice_aq_get_rss_key(struct ice_hw *hw, u16 vsi_handle,
4077		   struct ice_aqc_get_set_rss_keys *key)
4078{
4079	if (!ice_is_vsi_valid(hw, vsi_handle) || !key)
4080		return -EINVAL;
4081
4082	return __ice_aq_get_set_rss_key(hw, ice_get_hw_vsi_num(hw, vsi_handle),
4083					key, false);
4084}
4085
4086/**
4087 * ice_aq_set_rss_key
4088 * @hw: pointer to the HW struct
4089 * @vsi_handle: software VSI handle
4090 * @keys: pointer to key info struct
4091 *
4092 * set the RSS key per VSI
4093 */
4094int
4095ice_aq_set_rss_key(struct ice_hw *hw, u16 vsi_handle,
4096		   struct ice_aqc_get_set_rss_keys *keys)
4097{
4098	if (!ice_is_vsi_valid(hw, vsi_handle) || !keys)
4099		return -EINVAL;
4100
4101	return __ice_aq_get_set_rss_key(hw, ice_get_hw_vsi_num(hw, vsi_handle),
4102					keys, true);
4103}
4104
4105/**
4106 * ice_aq_add_lan_txq
4107 * @hw: pointer to the hardware structure
4108 * @num_qgrps: Number of added queue groups
4109 * @qg_list: list of queue groups to be added
4110 * @buf_size: size of buffer for indirect command
4111 * @cd: pointer to command details structure or NULL
4112 *
4113 * Add Tx LAN queue (0x0C30)
4114 *
4115 * NOTE:
4116 * Prior to calling add Tx LAN queue:
4117 * Initialize the following as part of the Tx queue context:
4118 * Completion queue ID if the queue uses Completion queue, Quanta profile,
4119 * Cache profile and Packet shaper profile.
4120 *
4121 * After add Tx LAN queue AQ command is completed:
4122 * Interrupts should be associated with specific queues,
4123 * Association of Tx queue to Doorbell queue is not part of Add LAN Tx queue
4124 * flow.
4125 */
4126static int
4127ice_aq_add_lan_txq(struct ice_hw *hw, u8 num_qgrps,
4128		   struct ice_aqc_add_tx_qgrp *qg_list, u16 buf_size,
4129		   struct ice_sq_cd *cd)
4130{
4131	struct ice_aqc_add_tx_qgrp *list;
4132	struct ice_aqc_add_txqs *cmd;
4133	struct ice_aq_desc desc;
4134	u16 i, sum_size = 0;
4135
4136	cmd = &desc.params.add_txqs;
4137
4138	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_txqs);
4139
4140	if (!qg_list)
4141		return -EINVAL;
4142
4143	if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS)
4144		return -EINVAL;
4145
4146	for (i = 0, list = qg_list; i < num_qgrps; i++) {
4147		sum_size += struct_size(list, txqs, list->num_txqs);
4148		list = (struct ice_aqc_add_tx_qgrp *)(list->txqs +
4149						      list->num_txqs);
4150	}
4151
4152	if (buf_size != sum_size)
4153		return -EINVAL;
4154
4155	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
4156
4157	cmd->num_qgrps = num_qgrps;
4158
4159	return ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd);
4160}
4161
4162/**
4163 * ice_aq_dis_lan_txq
4164 * @hw: pointer to the hardware structure
4165 * @num_qgrps: number of groups in the list
4166 * @qg_list: the list of groups to disable
4167 * @buf_size: the total size of the qg_list buffer in bytes
4168 * @rst_src: if called due to reset, specifies the reset source
4169 * @vmvf_num: the relative VM or VF number that is undergoing the reset
4170 * @cd: pointer to command details structure or NULL
4171 *
4172 * Disable LAN Tx queue (0x0C31)
4173 */
4174static int
4175ice_aq_dis_lan_txq(struct ice_hw *hw, u8 num_qgrps,
4176		   struct ice_aqc_dis_txq_item *qg_list, u16 buf_size,
4177		   enum ice_disq_rst_src rst_src, u16 vmvf_num,
4178		   struct ice_sq_cd *cd)
4179{
4180	struct ice_aqc_dis_txq_item *item;
4181	struct ice_aqc_dis_txqs *cmd;
4182	struct ice_aq_desc desc;
4183	u16 vmvf_and_timeout;
4184	u16 i, sz = 0;
4185	int status;
4186
4187	cmd = &desc.params.dis_txqs;
4188	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_dis_txqs);
4189
4190	/* qg_list can be NULL only in VM/VF reset flow */
4191	if (!qg_list && !rst_src)
4192		return -EINVAL;
4193
4194	if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS)
4195		return -EINVAL;
4196
4197	cmd->num_entries = num_qgrps;
4198
4199	vmvf_and_timeout = FIELD_PREP(ICE_AQC_Q_DIS_TIMEOUT_M, 5);
4200
4201	switch (rst_src) {
4202	case ICE_VM_RESET:
4203		cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VM_RESET;
4204		vmvf_and_timeout |= vmvf_num & ICE_AQC_Q_DIS_VMVF_NUM_M;
4205		break;
4206	case ICE_VF_RESET:
4207		cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VF_RESET;
4208		/* In this case, FW expects vmvf_num to be absolute VF ID */
4209		vmvf_and_timeout |= (vmvf_num + hw->func_caps.vf_base_id) &
4210				    ICE_AQC_Q_DIS_VMVF_NUM_M;
4211		break;
4212	case ICE_NO_RESET:
4213	default:
4214		break;
4215	}
4216
4217	cmd->vmvf_and_timeout = cpu_to_le16(vmvf_and_timeout);
4218
4219	/* flush pipe on time out */
4220	cmd->cmd_type |= ICE_AQC_Q_DIS_CMD_FLUSH_PIPE;
4221	/* If no queue group info, we are in a reset flow. Issue the AQ */
4222	if (!qg_list)
4223		goto do_aq;
4224
4225	/* set RD bit to indicate that command buffer is provided by the driver
4226	 * and it needs to be read by the firmware
4227	 */
4228	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
4229
4230	for (i = 0, item = qg_list; i < num_qgrps; i++) {
4231		u16 item_size = struct_size(item, q_id, item->num_qs);
4232
4233		/* If the num of queues is even, add 2 bytes of padding */
4234		if ((item->num_qs % 2) == 0)
4235			item_size += 2;
4236
4237		sz += item_size;
4238
4239		item = (struct ice_aqc_dis_txq_item *)((u8 *)item + item_size);
4240	}
4241
4242	if (buf_size != sz)
4243		return -EINVAL;
4244
4245do_aq:
4246	status = ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd);
4247	if (status) {
4248		if (!qg_list)
4249			ice_debug(hw, ICE_DBG_SCHED, "VM%d disable failed %d\n",
4250				  vmvf_num, hw->adminq.sq_last_status);
4251		else
4252			ice_debug(hw, ICE_DBG_SCHED, "disable queue %d failed %d\n",
4253				  le16_to_cpu(qg_list[0].q_id[0]),
4254				  hw->adminq.sq_last_status);
4255	}
4256	return status;
4257}
4258
4259/**
4260 * ice_aq_cfg_lan_txq
4261 * @hw: pointer to the hardware structure
4262 * @buf: buffer for command
4263 * @buf_size: size of buffer in bytes
4264 * @num_qs: number of queues being configured
4265 * @oldport: origination lport
4266 * @newport: destination lport
4267 * @cd: pointer to command details structure or NULL
4268 *
4269 * Move/Configure LAN Tx queue (0x0C32)
4270 *
4271 * There is a better AQ command to use for moving nodes, so only coding
4272 * this one for configuring the node.
4273 */
4274int
4275ice_aq_cfg_lan_txq(struct ice_hw *hw, struct ice_aqc_cfg_txqs_buf *buf,
4276		   u16 buf_size, u16 num_qs, u8 oldport, u8 newport,
4277		   struct ice_sq_cd *cd)
4278{
4279	struct ice_aqc_cfg_txqs *cmd;
4280	struct ice_aq_desc desc;
4281	int status;
4282
4283	cmd = &desc.params.cfg_txqs;
4284	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_cfg_txqs);
4285	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
4286
4287	if (!buf)
4288		return -EINVAL;
4289
4290	cmd->cmd_type = ICE_AQC_Q_CFG_TC_CHNG;
4291	cmd->num_qs = num_qs;
4292	cmd->port_num_chng = (oldport & ICE_AQC_Q_CFG_SRC_PRT_M);
4293	cmd->port_num_chng |= FIELD_PREP(ICE_AQC_Q_CFG_DST_PRT_M, newport);
4294	cmd->time_out = FIELD_PREP(ICE_AQC_Q_CFG_TIMEOUT_M, 5);
4295	cmd->blocked_cgds = 0;
4296
4297	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
4298	if (status)
4299		ice_debug(hw, ICE_DBG_SCHED, "Failed to reconfigure nodes %d\n",
4300			  hw->adminq.sq_last_status);
4301	return status;
4302}
4303
4304/**
4305 * ice_aq_add_rdma_qsets
4306 * @hw: pointer to the hardware structure
4307 * @num_qset_grps: Number of RDMA Qset groups
4308 * @qset_list: list of Qset groups to be added
4309 * @buf_size: size of buffer for indirect command
4310 * @cd: pointer to command details structure or NULL
4311 *
4312 * Add Tx RDMA Qsets (0x0C33)
4313 */
4314static int
4315ice_aq_add_rdma_qsets(struct ice_hw *hw, u8 num_qset_grps,
4316		      struct ice_aqc_add_rdma_qset_data *qset_list,
4317		      u16 buf_size, struct ice_sq_cd *cd)
4318{
4319	struct ice_aqc_add_rdma_qset_data *list;
4320	struct ice_aqc_add_rdma_qset *cmd;
4321	struct ice_aq_desc desc;
4322	u16 i, sum_size = 0;
4323
4324	cmd = &desc.params.add_rdma_qset;
4325
4326	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_rdma_qset);
4327
4328	if (num_qset_grps > ICE_LAN_TXQ_MAX_QGRPS)
4329		return -EINVAL;
4330
4331	for (i = 0, list = qset_list; i < num_qset_grps; i++) {
4332		u16 num_qsets = le16_to_cpu(list->num_qsets);
4333
4334		sum_size += struct_size(list, rdma_qsets, num_qsets);
4335		list = (struct ice_aqc_add_rdma_qset_data *)(list->rdma_qsets +
4336							     num_qsets);
4337	}
4338
4339	if (buf_size != sum_size)
4340		return -EINVAL;
4341
4342	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
4343
4344	cmd->num_qset_grps = num_qset_grps;
4345
4346	return ice_aq_send_cmd(hw, &desc, qset_list, buf_size, cd);
4347}
4348
4349/* End of FW Admin Queue command wrappers */
4350
4351/**
4352 * ice_pack_ctx_byte - write a byte to a packed context structure
4353 * @src_ctx: unpacked source context structure
4354 * @dest_ctx: packed destination context data
4355 * @ce_info: context element description
4356 */
4357static void ice_pack_ctx_byte(u8 *src_ctx, u8 *dest_ctx,
4358			      const struct ice_ctx_ele *ce_info)
4359{
4360	u8 src_byte, dest_byte, mask;
4361	u8 *from, *dest;
4362	u16 shift_width;
4363
4364	/* copy from the next struct field */
4365	from = src_ctx + ce_info->offset;
4366
4367	/* prepare the bits and mask */
4368	shift_width = ce_info->lsb % 8;
4369	mask = GENMASK(ce_info->width - 1 + shift_width, shift_width);
4370
4371	src_byte = *from;
4372	src_byte <<= shift_width;
4373	src_byte &= mask;
4374
4375	/* get the current bits from the target bit string */
4376	dest = dest_ctx + (ce_info->lsb / 8);
4377
4378	memcpy(&dest_byte, dest, sizeof(dest_byte));
4379
4380	dest_byte &= ~mask;	/* get the bits not changing */
4381	dest_byte |= src_byte;	/* add in the new bits */
4382
4383	/* put it all back */
4384	memcpy(dest, &dest_byte, sizeof(dest_byte));
4385}
4386
4387/**
4388 * ice_pack_ctx_word - write a word to a packed context structure
4389 * @src_ctx: unpacked source context structure
4390 * @dest_ctx: packed destination context data
4391 * @ce_info: context element description
4392 */
4393static void ice_pack_ctx_word(u8 *src_ctx, u8 *dest_ctx,
4394			      const struct ice_ctx_ele *ce_info)
4395{
4396	u16 src_word, mask;
4397	__le16 dest_word;
4398	u8 *from, *dest;
4399	u16 shift_width;
4400
4401	/* copy from the next struct field */
4402	from = src_ctx + ce_info->offset;
4403
4404	/* prepare the bits and mask */
4405	shift_width = ce_info->lsb % 8;
4406	mask = GENMASK(ce_info->width - 1 + shift_width, shift_width);
4407
4408	/* don't swizzle the bits until after the mask because the mask bits
4409	 * will be in a different bit position on big endian machines
4410	 */
4411	src_word = *(u16 *)from;
4412	src_word <<= shift_width;
4413	src_word &= mask;
4414
4415	/* get the current bits from the target bit string */
4416	dest = dest_ctx + (ce_info->lsb / 8);
4417
4418	memcpy(&dest_word, dest, sizeof(dest_word));
4419
4420	dest_word &= ~(cpu_to_le16(mask));	/* get the bits not changing */
4421	dest_word |= cpu_to_le16(src_word);	/* add in the new bits */
4422
4423	/* put it all back */
4424	memcpy(dest, &dest_word, sizeof(dest_word));
4425}
4426
4427/**
4428 * ice_pack_ctx_dword - write a dword to a packed context structure
4429 * @src_ctx: unpacked source context structure
4430 * @dest_ctx: packed destination context data
4431 * @ce_info: context element description
4432 */
4433static void ice_pack_ctx_dword(u8 *src_ctx, u8 *dest_ctx,
4434			       const struct ice_ctx_ele *ce_info)
4435{
4436	u32 src_dword, mask;
4437	__le32 dest_dword;
4438	u8 *from, *dest;
4439	u16 shift_width;
4440
4441	/* copy from the next struct field */
4442	from = src_ctx + ce_info->offset;
4443
4444	/* prepare the bits and mask */
4445	shift_width = ce_info->lsb % 8;
4446	mask = GENMASK(ce_info->width - 1 + shift_width, shift_width);
4447
4448	/* don't swizzle the bits until after the mask because the mask bits
4449	 * will be in a different bit position on big endian machines
4450	 */
4451	src_dword = *(u32 *)from;
4452	src_dword <<= shift_width;
4453	src_dword &= mask;
4454
4455	/* get the current bits from the target bit string */
4456	dest = dest_ctx + (ce_info->lsb / 8);
4457
4458	memcpy(&dest_dword, dest, sizeof(dest_dword));
4459
4460	dest_dword &= ~(cpu_to_le32(mask));	/* get the bits not changing */
4461	dest_dword |= cpu_to_le32(src_dword);	/* add in the new bits */
4462
4463	/* put it all back */
4464	memcpy(dest, &dest_dword, sizeof(dest_dword));
4465}
4466
4467/**
4468 * ice_pack_ctx_qword - write a qword to a packed context structure
4469 * @src_ctx: unpacked source context structure
4470 * @dest_ctx: packed destination context data
4471 * @ce_info: context element description
4472 */
4473static void ice_pack_ctx_qword(u8 *src_ctx, u8 *dest_ctx,
4474			       const struct ice_ctx_ele *ce_info)
4475{
4476	u64 src_qword, mask;
4477	__le64 dest_qword;
4478	u8 *from, *dest;
4479	u16 shift_width;
4480
4481	/* copy from the next struct field */
4482	from = src_ctx + ce_info->offset;
4483
4484	/* prepare the bits and mask */
4485	shift_width = ce_info->lsb % 8;
4486	mask = GENMASK_ULL(ce_info->width - 1 + shift_width, shift_width);
4487
4488	/* don't swizzle the bits until after the mask because the mask bits
4489	 * will be in a different bit position on big endian machines
4490	 */
4491	src_qword = *(u64 *)from;
4492	src_qword <<= shift_width;
4493	src_qword &= mask;
4494
4495	/* get the current bits from the target bit string */
4496	dest = dest_ctx + (ce_info->lsb / 8);
4497
4498	memcpy(&dest_qword, dest, sizeof(dest_qword));
4499
4500	dest_qword &= ~(cpu_to_le64(mask));	/* get the bits not changing */
4501	dest_qword |= cpu_to_le64(src_qword);	/* add in the new bits */
4502
4503	/* put it all back */
4504	memcpy(dest, &dest_qword, sizeof(dest_qword));
4505}
4506
4507/**
4508 * ice_set_ctx - set context bits in packed structure
4509 * @hw: pointer to the hardware structure
4510 * @src_ctx:  pointer to a generic non-packed context structure
4511 * @dest_ctx: pointer to memory for the packed structure
4512 * @ce_info: List of Rx context elements
4513 */
4514int ice_set_ctx(struct ice_hw *hw, u8 *src_ctx, u8 *dest_ctx,
4515		const struct ice_ctx_ele *ce_info)
4516{
4517	int f;
4518
4519	for (f = 0; ce_info[f].width; f++) {
4520		/* We have to deal with each element of the FW response
4521		 * using the correct size so that we are correct regardless
4522		 * of the endianness of the machine.
4523		 */
4524		if (ce_info[f].width > (ce_info[f].size_of * BITS_PER_BYTE)) {
4525			ice_debug(hw, ICE_DBG_QCTX, "Field %d width of %d bits larger than size of %d byte(s) ... skipping write\n",
4526				  f, ce_info[f].width, ce_info[f].size_of);
4527			continue;
4528		}
4529		switch (ce_info[f].size_of) {
4530		case sizeof(u8):
4531			ice_pack_ctx_byte(src_ctx, dest_ctx, &ce_info[f]);
4532			break;
4533		case sizeof(u16):
4534			ice_pack_ctx_word(src_ctx, dest_ctx, &ce_info[f]);
4535			break;
4536		case sizeof(u32):
4537			ice_pack_ctx_dword(src_ctx, dest_ctx, &ce_info[f]);
4538			break;
4539		case sizeof(u64):
4540			ice_pack_ctx_qword(src_ctx, dest_ctx, &ce_info[f]);
4541			break;
4542		default:
4543			return -EINVAL;
4544		}
4545	}
4546
4547	return 0;
4548}
4549
4550/**
4551 * ice_get_lan_q_ctx - get the LAN queue context for the given VSI and TC
4552 * @hw: pointer to the HW struct
4553 * @vsi_handle: software VSI handle
4554 * @tc: TC number
4555 * @q_handle: software queue handle
4556 */
4557struct ice_q_ctx *
4558ice_get_lan_q_ctx(struct ice_hw *hw, u16 vsi_handle, u8 tc, u16 q_handle)
4559{
4560	struct ice_vsi_ctx *vsi;
4561	struct ice_q_ctx *q_ctx;
4562
4563	vsi = ice_get_vsi_ctx(hw, vsi_handle);
4564	if (!vsi)
4565		return NULL;
4566	if (q_handle >= vsi->num_lan_q_entries[tc])
4567		return NULL;
4568	if (!vsi->lan_q_ctx[tc])
4569		return NULL;
4570	q_ctx = vsi->lan_q_ctx[tc];
4571	return &q_ctx[q_handle];
4572}
4573
4574/**
4575 * ice_ena_vsi_txq
4576 * @pi: port information structure
4577 * @vsi_handle: software VSI handle
4578 * @tc: TC number
4579 * @q_handle: software queue handle
4580 * @num_qgrps: Number of added queue groups
4581 * @buf: list of queue groups to be added
4582 * @buf_size: size of buffer for indirect command
4583 * @cd: pointer to command details structure or NULL
4584 *
4585 * This function adds one LAN queue
4586 */
4587int
4588ice_ena_vsi_txq(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u16 q_handle,
4589		u8 num_qgrps, struct ice_aqc_add_tx_qgrp *buf, u16 buf_size,
4590		struct ice_sq_cd *cd)
4591{
4592	struct ice_aqc_txsched_elem_data node = { 0 };
4593	struct ice_sched_node *parent;
4594	struct ice_q_ctx *q_ctx;
4595	struct ice_hw *hw;
4596	int status;
4597
4598	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4599		return -EIO;
4600
4601	if (num_qgrps > 1 || buf->num_txqs > 1)
4602		return -ENOSPC;
4603
4604	hw = pi->hw;
4605
4606	if (!ice_is_vsi_valid(hw, vsi_handle))
4607		return -EINVAL;
4608
4609	mutex_lock(&pi->sched_lock);
4610
4611	q_ctx = ice_get_lan_q_ctx(hw, vsi_handle, tc, q_handle);
4612	if (!q_ctx) {
4613		ice_debug(hw, ICE_DBG_SCHED, "Enaq: invalid queue handle %d\n",
4614			  q_handle);
4615		status = -EINVAL;
4616		goto ena_txq_exit;
4617	}
4618
4619	/* find a parent node */
4620	parent = ice_sched_get_free_qparent(pi, vsi_handle, tc,
4621					    ICE_SCHED_NODE_OWNER_LAN);
4622	if (!parent) {
4623		status = -EINVAL;
4624		goto ena_txq_exit;
4625	}
4626
4627	buf->parent_teid = parent->info.node_teid;
4628	node.parent_teid = parent->info.node_teid;
4629	/* Mark that the values in the "generic" section as valid. The default
4630	 * value in the "generic" section is zero. This means that :
4631	 * - Scheduling mode is Bytes Per Second (BPS), indicated by Bit 0.
4632	 * - 0 priority among siblings, indicated by Bit 1-3.
4633	 * - WFQ, indicated by Bit 4.
4634	 * - 0 Adjustment value is used in PSM credit update flow, indicated by
4635	 * Bit 5-6.
4636	 * - Bit 7 is reserved.
4637	 * Without setting the generic section as valid in valid_sections, the
4638	 * Admin queue command will fail with error code ICE_AQ_RC_EINVAL.
4639	 */
4640	buf->txqs[0].info.valid_sections =
4641		ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR |
4642		ICE_AQC_ELEM_VALID_EIR;
4643	buf->txqs[0].info.generic = 0;
4644	buf->txqs[0].info.cir_bw.bw_profile_idx =
4645		cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
4646	buf->txqs[0].info.cir_bw.bw_alloc =
4647		cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
4648	buf->txqs[0].info.eir_bw.bw_profile_idx =
4649		cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
4650	buf->txqs[0].info.eir_bw.bw_alloc =
4651		cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
4652
4653	/* add the LAN queue */
4654	status = ice_aq_add_lan_txq(hw, num_qgrps, buf, buf_size, cd);
4655	if (status) {
4656		ice_debug(hw, ICE_DBG_SCHED, "enable queue %d failed %d\n",
4657			  le16_to_cpu(buf->txqs[0].txq_id),
4658			  hw->adminq.sq_last_status);
4659		goto ena_txq_exit;
4660	}
4661
4662	node.node_teid = buf->txqs[0].q_teid;
4663	node.data.elem_type = ICE_AQC_ELEM_TYPE_LEAF;
4664	q_ctx->q_handle = q_handle;
4665	q_ctx->q_teid = le32_to_cpu(node.node_teid);
4666
4667	/* add a leaf node into scheduler tree queue layer */
4668	status = ice_sched_add_node(pi, hw->num_tx_sched_layers - 1, &node, NULL);
4669	if (!status)
4670		status = ice_sched_replay_q_bw(pi, q_ctx);
4671
4672ena_txq_exit:
4673	mutex_unlock(&pi->sched_lock);
4674	return status;
4675}
4676
4677/**
4678 * ice_dis_vsi_txq
4679 * @pi: port information structure
4680 * @vsi_handle: software VSI handle
4681 * @tc: TC number
4682 * @num_queues: number of queues
4683 * @q_handles: pointer to software queue handle array
4684 * @q_ids: pointer to the q_id array
4685 * @q_teids: pointer to queue node teids
4686 * @rst_src: if called due to reset, specifies the reset source
4687 * @vmvf_num: the relative VM or VF number that is undergoing the reset
4688 * @cd: pointer to command details structure or NULL
4689 *
4690 * This function removes queues and their corresponding nodes in SW DB
4691 */
4692int
4693ice_dis_vsi_txq(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u8 num_queues,
4694		u16 *q_handles, u16 *q_ids, u32 *q_teids,
4695		enum ice_disq_rst_src rst_src, u16 vmvf_num,
4696		struct ice_sq_cd *cd)
4697{
4698	DEFINE_RAW_FLEX(struct ice_aqc_dis_txq_item, qg_list, q_id, 1);
4699	u16 i, buf_size = __struct_size(qg_list);
4700	struct ice_q_ctx *q_ctx;
4701	int status = -ENOENT;
4702	struct ice_hw *hw;
4703
4704	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4705		return -EIO;
4706
4707	hw = pi->hw;
4708
4709	if (!num_queues) {
4710		/* if queue is disabled already yet the disable queue command
4711		 * has to be sent to complete the VF reset, then call
4712		 * ice_aq_dis_lan_txq without any queue information
4713		 */
4714		if (rst_src)
4715			return ice_aq_dis_lan_txq(hw, 0, NULL, 0, rst_src,
4716						  vmvf_num, NULL);
4717		return -EIO;
4718	}
4719
4720	mutex_lock(&pi->sched_lock);
4721
4722	for (i = 0; i < num_queues; i++) {
4723		struct ice_sched_node *node;
4724
4725		node = ice_sched_find_node_by_teid(pi->root, q_teids[i]);
4726		if (!node)
4727			continue;
4728		q_ctx = ice_get_lan_q_ctx(hw, vsi_handle, tc, q_handles[i]);
4729		if (!q_ctx) {
4730			ice_debug(hw, ICE_DBG_SCHED, "invalid queue handle%d\n",
4731				  q_handles[i]);
4732			continue;
4733		}
4734		if (q_ctx->q_handle != q_handles[i]) {
4735			ice_debug(hw, ICE_DBG_SCHED, "Err:handles %d %d\n",
4736				  q_ctx->q_handle, q_handles[i]);
4737			continue;
4738		}
4739		qg_list->parent_teid = node->info.parent_teid;
4740		qg_list->num_qs = 1;
4741		qg_list->q_id[0] = cpu_to_le16(q_ids[i]);
4742		status = ice_aq_dis_lan_txq(hw, 1, qg_list, buf_size, rst_src,
4743					    vmvf_num, cd);
4744
4745		if (status)
4746			break;
4747		ice_free_sched_node(pi, node);
4748		q_ctx->q_handle = ICE_INVAL_Q_HANDLE;
4749		q_ctx->q_teid = ICE_INVAL_TEID;
4750	}
4751	mutex_unlock(&pi->sched_lock);
4752	return status;
4753}
4754
4755/**
4756 * ice_cfg_vsi_qs - configure the new/existing VSI queues
4757 * @pi: port information structure
4758 * @vsi_handle: software VSI handle
4759 * @tc_bitmap: TC bitmap
4760 * @maxqs: max queues array per TC
4761 * @owner: LAN or RDMA
4762 *
4763 * This function adds/updates the VSI queues per TC.
4764 */
4765static int
4766ice_cfg_vsi_qs(struct ice_port_info *pi, u16 vsi_handle, u8 tc_bitmap,
4767	       u16 *maxqs, u8 owner)
4768{
4769	int status = 0;
4770	u8 i;
4771
4772	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4773		return -EIO;
4774
4775	if (!ice_is_vsi_valid(pi->hw, vsi_handle))
4776		return -EINVAL;
4777
4778	mutex_lock(&pi->sched_lock);
4779
4780	ice_for_each_traffic_class(i) {
4781		/* configuration is possible only if TC node is present */
4782		if (!ice_sched_get_tc_node(pi, i))
4783			continue;
4784
4785		status = ice_sched_cfg_vsi(pi, vsi_handle, i, maxqs[i], owner,
4786					   ice_is_tc_ena(tc_bitmap, i));
4787		if (status)
4788			break;
4789	}
4790
4791	mutex_unlock(&pi->sched_lock);
4792	return status;
4793}
4794
4795/**
4796 * ice_cfg_vsi_lan - configure VSI LAN queues
4797 * @pi: port information structure
4798 * @vsi_handle: software VSI handle
4799 * @tc_bitmap: TC bitmap
4800 * @max_lanqs: max LAN queues array per TC
4801 *
4802 * This function adds/updates the VSI LAN queues per TC.
4803 */
4804int
4805ice_cfg_vsi_lan(struct ice_port_info *pi, u16 vsi_handle, u8 tc_bitmap,
4806		u16 *max_lanqs)
4807{
4808	return ice_cfg_vsi_qs(pi, vsi_handle, tc_bitmap, max_lanqs,
4809			      ICE_SCHED_NODE_OWNER_LAN);
4810}
4811
4812/**
4813 * ice_cfg_vsi_rdma - configure the VSI RDMA queues
4814 * @pi: port information structure
4815 * @vsi_handle: software VSI handle
4816 * @tc_bitmap: TC bitmap
4817 * @max_rdmaqs: max RDMA queues array per TC
4818 *
4819 * This function adds/updates the VSI RDMA queues per TC.
4820 */
4821int
4822ice_cfg_vsi_rdma(struct ice_port_info *pi, u16 vsi_handle, u16 tc_bitmap,
4823		 u16 *max_rdmaqs)
4824{
4825	return ice_cfg_vsi_qs(pi, vsi_handle, tc_bitmap, max_rdmaqs,
4826			      ICE_SCHED_NODE_OWNER_RDMA);
4827}
4828
4829/**
4830 * ice_ena_vsi_rdma_qset
4831 * @pi: port information structure
4832 * @vsi_handle: software VSI handle
4833 * @tc: TC number
4834 * @rdma_qset: pointer to RDMA Qset
4835 * @num_qsets: number of RDMA Qsets
4836 * @qset_teid: pointer to Qset node TEIDs
4837 *
4838 * This function adds RDMA Qset
4839 */
4840int
4841ice_ena_vsi_rdma_qset(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
4842		      u16 *rdma_qset, u16 num_qsets, u32 *qset_teid)
4843{
4844	struct ice_aqc_txsched_elem_data node = { 0 };
4845	struct ice_aqc_add_rdma_qset_data *buf;
4846	struct ice_sched_node *parent;
4847	struct ice_hw *hw;
4848	u16 i, buf_size;
4849	int ret;
4850
4851	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4852		return -EIO;
4853	hw = pi->hw;
4854
4855	if (!ice_is_vsi_valid(hw, vsi_handle))
4856		return -EINVAL;
4857
4858	buf_size = struct_size(buf, rdma_qsets, num_qsets);
4859	buf = kzalloc(buf_size, GFP_KERNEL);
4860	if (!buf)
4861		return -ENOMEM;
4862	mutex_lock(&pi->sched_lock);
4863
4864	parent = ice_sched_get_free_qparent(pi, vsi_handle, tc,
4865					    ICE_SCHED_NODE_OWNER_RDMA);
4866	if (!parent) {
4867		ret = -EINVAL;
4868		goto rdma_error_exit;
4869	}
4870	buf->parent_teid = parent->info.node_teid;
4871	node.parent_teid = parent->info.node_teid;
4872
4873	buf->num_qsets = cpu_to_le16(num_qsets);
4874	for (i = 0; i < num_qsets; i++) {
4875		buf->rdma_qsets[i].tx_qset_id = cpu_to_le16(rdma_qset[i]);
4876		buf->rdma_qsets[i].info.valid_sections =
4877			ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR |
4878			ICE_AQC_ELEM_VALID_EIR;
4879		buf->rdma_qsets[i].info.generic = 0;
4880		buf->rdma_qsets[i].info.cir_bw.bw_profile_idx =
4881			cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
4882		buf->rdma_qsets[i].info.cir_bw.bw_alloc =
4883			cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
4884		buf->rdma_qsets[i].info.eir_bw.bw_profile_idx =
4885			cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
4886		buf->rdma_qsets[i].info.eir_bw.bw_alloc =
4887			cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
4888	}
4889	ret = ice_aq_add_rdma_qsets(hw, 1, buf, buf_size, NULL);
4890	if (ret) {
4891		ice_debug(hw, ICE_DBG_RDMA, "add RDMA qset failed\n");
4892		goto rdma_error_exit;
4893	}
4894	node.data.elem_type = ICE_AQC_ELEM_TYPE_LEAF;
4895	for (i = 0; i < num_qsets; i++) {
4896		node.node_teid = buf->rdma_qsets[i].qset_teid;
4897		ret = ice_sched_add_node(pi, hw->num_tx_sched_layers - 1,
4898					 &node, NULL);
4899		if (ret)
4900			break;
4901		qset_teid[i] = le32_to_cpu(node.node_teid);
4902	}
4903rdma_error_exit:
4904	mutex_unlock(&pi->sched_lock);
4905	kfree(buf);
4906	return ret;
4907}
4908
4909/**
4910 * ice_dis_vsi_rdma_qset - free RDMA resources
4911 * @pi: port_info struct
4912 * @count: number of RDMA Qsets to free
4913 * @qset_teid: TEID of Qset node
4914 * @q_id: list of queue IDs being disabled
4915 */
4916int
4917ice_dis_vsi_rdma_qset(struct ice_port_info *pi, u16 count, u32 *qset_teid,
4918		      u16 *q_id)
4919{
4920	DEFINE_RAW_FLEX(struct ice_aqc_dis_txq_item, qg_list, q_id, 1);
4921	u16 qg_size = __struct_size(qg_list);
4922	struct ice_hw *hw;
4923	int status = 0;
4924	int i;
4925
4926	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4927		return -EIO;
4928
4929	hw = pi->hw;
4930
4931	mutex_lock(&pi->sched_lock);
4932
4933	for (i = 0; i < count; i++) {
4934		struct ice_sched_node *node;
4935
4936		node = ice_sched_find_node_by_teid(pi->root, qset_teid[i]);
4937		if (!node)
4938			continue;
4939
4940		qg_list->parent_teid = node->info.parent_teid;
4941		qg_list->num_qs = 1;
4942		qg_list->q_id[0] =
4943			cpu_to_le16(q_id[i] |
4944				    ICE_AQC_Q_DIS_BUF_ELEM_TYPE_RDMA_QSET);
4945
4946		status = ice_aq_dis_lan_txq(hw, 1, qg_list, qg_size,
4947					    ICE_NO_RESET, 0, NULL);
4948		if (status)
4949			break;
4950
4951		ice_free_sched_node(pi, node);
4952	}
4953
4954	mutex_unlock(&pi->sched_lock);
4955	return status;
4956}
4957
4958/**
4959 * ice_aq_get_cgu_abilities - get cgu abilities
4960 * @hw: pointer to the HW struct
4961 * @abilities: CGU abilities
4962 *
4963 * Get CGU abilities (0x0C61)
4964 * Return: 0 on success or negative value on failure.
4965 */
4966int
4967ice_aq_get_cgu_abilities(struct ice_hw *hw,
4968			 struct ice_aqc_get_cgu_abilities *abilities)
4969{
4970	struct ice_aq_desc desc;
4971
4972	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_abilities);
4973	return ice_aq_send_cmd(hw, &desc, abilities, sizeof(*abilities), NULL);
4974}
4975
4976/**
4977 * ice_aq_set_input_pin_cfg - set input pin config
4978 * @hw: pointer to the HW struct
4979 * @input_idx: Input index
4980 * @flags1: Input flags
4981 * @flags2: Input flags
4982 * @freq: Frequency in Hz
4983 * @phase_delay: Delay in ps
4984 *
4985 * Set CGU input config (0x0C62)
4986 * Return: 0 on success or negative value on failure.
4987 */
4988int
4989ice_aq_set_input_pin_cfg(struct ice_hw *hw, u8 input_idx, u8 flags1, u8 flags2,
4990			 u32 freq, s32 phase_delay)
4991{
4992	struct ice_aqc_set_cgu_input_config *cmd;
4993	struct ice_aq_desc desc;
4994
4995	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_cgu_input_config);
4996	cmd = &desc.params.set_cgu_input_config;
4997	cmd->input_idx = input_idx;
4998	cmd->flags1 = flags1;
4999	cmd->flags2 = flags2;
5000	cmd->freq = cpu_to_le32(freq);
5001	cmd->phase_delay = cpu_to_le32(phase_delay);
5002
5003	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5004}
5005
5006/**
5007 * ice_aq_get_input_pin_cfg - get input pin config
5008 * @hw: pointer to the HW struct
5009 * @input_idx: Input index
5010 * @status: Pin status
5011 * @type: Pin type
5012 * @flags1: Input flags
5013 * @flags2: Input flags
5014 * @freq: Frequency in Hz
5015 * @phase_delay: Delay in ps
5016 *
5017 * Get CGU input config (0x0C63)
5018 * Return: 0 on success or negative value on failure.
5019 */
5020int
5021ice_aq_get_input_pin_cfg(struct ice_hw *hw, u8 input_idx, u8 *status, u8 *type,
5022			 u8 *flags1, u8 *flags2, u32 *freq, s32 *phase_delay)
5023{
5024	struct ice_aqc_get_cgu_input_config *cmd;
5025	struct ice_aq_desc desc;
5026	int ret;
5027
5028	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_input_config);
5029	cmd = &desc.params.get_cgu_input_config;
5030	cmd->input_idx = input_idx;
5031
5032	ret = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5033	if (!ret) {
5034		if (status)
5035			*status = cmd->status;
5036		if (type)
5037			*type = cmd->type;
5038		if (flags1)
5039			*flags1 = cmd->flags1;
5040		if (flags2)
5041			*flags2 = cmd->flags2;
5042		if (freq)
5043			*freq = le32_to_cpu(cmd->freq);
5044		if (phase_delay)
5045			*phase_delay = le32_to_cpu(cmd->phase_delay);
5046	}
5047
5048	return ret;
5049}
5050
5051/**
5052 * ice_aq_set_output_pin_cfg - set output pin config
5053 * @hw: pointer to the HW struct
5054 * @output_idx: Output index
5055 * @flags: Output flags
5056 * @src_sel: Index of DPLL block
5057 * @freq: Output frequency
5058 * @phase_delay: Output phase compensation
5059 *
5060 * Set CGU output config (0x0C64)
5061 * Return: 0 on success or negative value on failure.
5062 */
5063int
5064ice_aq_set_output_pin_cfg(struct ice_hw *hw, u8 output_idx, u8 flags,
5065			  u8 src_sel, u32 freq, s32 phase_delay)
5066{
5067	struct ice_aqc_set_cgu_output_config *cmd;
5068	struct ice_aq_desc desc;
5069
5070	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_cgu_output_config);
5071	cmd = &desc.params.set_cgu_output_config;
5072	cmd->output_idx = output_idx;
5073	cmd->flags = flags;
5074	cmd->src_sel = src_sel;
5075	cmd->freq = cpu_to_le32(freq);
5076	cmd->phase_delay = cpu_to_le32(phase_delay);
5077
5078	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5079}
5080
5081/**
5082 * ice_aq_get_output_pin_cfg - get output pin config
5083 * @hw: pointer to the HW struct
5084 * @output_idx: Output index
5085 * @flags: Output flags
5086 * @src_sel: Internal DPLL source
5087 * @freq: Output frequency
5088 * @src_freq: Source frequency
5089 *
5090 * Get CGU output config (0x0C65)
5091 * Return: 0 on success or negative value on failure.
5092 */
5093int
5094ice_aq_get_output_pin_cfg(struct ice_hw *hw, u8 output_idx, u8 *flags,
5095			  u8 *src_sel, u32 *freq, u32 *src_freq)
5096{
5097	struct ice_aqc_get_cgu_output_config *cmd;
5098	struct ice_aq_desc desc;
5099	int ret;
5100
5101	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_output_config);
5102	cmd = &desc.params.get_cgu_output_config;
5103	cmd->output_idx = output_idx;
5104
5105	ret = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5106	if (!ret) {
5107		if (flags)
5108			*flags = cmd->flags;
5109		if (src_sel)
5110			*src_sel = cmd->src_sel;
5111		if (freq)
5112			*freq = le32_to_cpu(cmd->freq);
5113		if (src_freq)
5114			*src_freq = le32_to_cpu(cmd->src_freq);
5115	}
5116
5117	return ret;
5118}
5119
5120/**
5121 * ice_aq_get_cgu_dpll_status - get dpll status
5122 * @hw: pointer to the HW struct
5123 * @dpll_num: DPLL index
5124 * @ref_state: Reference clock state
5125 * @config: current DPLL config
5126 * @dpll_state: current DPLL state
5127 * @phase_offset: Phase offset in ns
5128 * @eec_mode: EEC_mode
5129 *
5130 * Get CGU DPLL status (0x0C66)
5131 * Return: 0 on success or negative value on failure.
5132 */
5133int
5134ice_aq_get_cgu_dpll_status(struct ice_hw *hw, u8 dpll_num, u8 *ref_state,
5135			   u8 *dpll_state, u8 *config, s64 *phase_offset,
5136			   u8 *eec_mode)
5137{
5138	struct ice_aqc_get_cgu_dpll_status *cmd;
5139	struct ice_aq_desc desc;
5140	int status;
5141
5142	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_dpll_status);
5143	cmd = &desc.params.get_cgu_dpll_status;
5144	cmd->dpll_num = dpll_num;
5145
5146	status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5147	if (!status) {
5148		*ref_state = cmd->ref_state;
5149		*dpll_state = cmd->dpll_state;
5150		*config = cmd->config;
5151		*phase_offset = le32_to_cpu(cmd->phase_offset_h);
5152		*phase_offset <<= 32;
5153		*phase_offset += le32_to_cpu(cmd->phase_offset_l);
5154		*phase_offset = sign_extend64(*phase_offset, 47);
5155		*eec_mode = cmd->eec_mode;
5156	}
5157
5158	return status;
5159}
5160
5161/**
5162 * ice_aq_set_cgu_dpll_config - set dpll config
5163 * @hw: pointer to the HW struct
5164 * @dpll_num: DPLL index
5165 * @ref_state: Reference clock state
5166 * @config: DPLL config
5167 * @eec_mode: EEC mode
5168 *
5169 * Set CGU DPLL config (0x0C67)
5170 * Return: 0 on success or negative value on failure.
5171 */
5172int
5173ice_aq_set_cgu_dpll_config(struct ice_hw *hw, u8 dpll_num, u8 ref_state,
5174			   u8 config, u8 eec_mode)
5175{
5176	struct ice_aqc_set_cgu_dpll_config *cmd;
5177	struct ice_aq_desc desc;
5178
5179	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_cgu_dpll_config);
5180	cmd = &desc.params.set_cgu_dpll_config;
5181	cmd->dpll_num = dpll_num;
5182	cmd->ref_state = ref_state;
5183	cmd->config = config;
5184	cmd->eec_mode = eec_mode;
5185
5186	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5187}
5188
5189/**
5190 * ice_aq_set_cgu_ref_prio - set input reference priority
5191 * @hw: pointer to the HW struct
5192 * @dpll_num: DPLL index
5193 * @ref_idx: Reference pin index
5194 * @ref_priority: Reference input priority
5195 *
5196 * Set CGU reference priority (0x0C68)
5197 * Return: 0 on success or negative value on failure.
5198 */
5199int
5200ice_aq_set_cgu_ref_prio(struct ice_hw *hw, u8 dpll_num, u8 ref_idx,
5201			u8 ref_priority)
5202{
5203	struct ice_aqc_set_cgu_ref_prio *cmd;
5204	struct ice_aq_desc desc;
5205
5206	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_cgu_ref_prio);
5207	cmd = &desc.params.set_cgu_ref_prio;
5208	cmd->dpll_num = dpll_num;
5209	cmd->ref_idx = ref_idx;
5210	cmd->ref_priority = ref_priority;
5211
5212	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5213}
5214
5215/**
5216 * ice_aq_get_cgu_ref_prio - get input reference priority
5217 * @hw: pointer to the HW struct
5218 * @dpll_num: DPLL index
5219 * @ref_idx: Reference pin index
5220 * @ref_prio: Reference input priority
5221 *
5222 * Get CGU reference priority (0x0C69)
5223 * Return: 0 on success or negative value on failure.
5224 */
5225int
5226ice_aq_get_cgu_ref_prio(struct ice_hw *hw, u8 dpll_num, u8 ref_idx,
5227			u8 *ref_prio)
5228{
5229	struct ice_aqc_get_cgu_ref_prio *cmd;
5230	struct ice_aq_desc desc;
5231	int status;
5232
5233	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_ref_prio);
5234	cmd = &desc.params.get_cgu_ref_prio;
5235	cmd->dpll_num = dpll_num;
5236	cmd->ref_idx = ref_idx;
5237
5238	status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5239	if (!status)
5240		*ref_prio = cmd->ref_priority;
5241
5242	return status;
5243}
5244
5245/**
5246 * ice_aq_get_cgu_info - get cgu info
5247 * @hw: pointer to the HW struct
5248 * @cgu_id: CGU ID
5249 * @cgu_cfg_ver: CGU config version
5250 * @cgu_fw_ver: CGU firmware version
5251 *
5252 * Get CGU info (0x0C6A)
5253 * Return: 0 on success or negative value on failure.
5254 */
5255int
5256ice_aq_get_cgu_info(struct ice_hw *hw, u32 *cgu_id, u32 *cgu_cfg_ver,
5257		    u32 *cgu_fw_ver)
5258{
5259	struct ice_aqc_get_cgu_info *cmd;
5260	struct ice_aq_desc desc;
5261	int status;
5262
5263	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_info);
5264	cmd = &desc.params.get_cgu_info;
5265
5266	status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5267	if (!status) {
5268		*cgu_id = le32_to_cpu(cmd->cgu_id);
5269		*cgu_cfg_ver = le32_to_cpu(cmd->cgu_cfg_ver);
5270		*cgu_fw_ver = le32_to_cpu(cmd->cgu_fw_ver);
5271	}
5272
5273	return status;
5274}
5275
5276/**
5277 * ice_aq_set_phy_rec_clk_out - set RCLK phy out
5278 * @hw: pointer to the HW struct
5279 * @phy_output: PHY reference clock output pin
5280 * @enable: GPIO state to be applied
5281 * @freq: PHY output frequency
5282 *
5283 * Set phy recovered clock as reference (0x0630)
5284 * Return: 0 on success or negative value on failure.
5285 */
5286int
5287ice_aq_set_phy_rec_clk_out(struct ice_hw *hw, u8 phy_output, bool enable,
5288			   u32 *freq)
5289{
5290	struct ice_aqc_set_phy_rec_clk_out *cmd;
5291	struct ice_aq_desc desc;
5292	int status;
5293
5294	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_phy_rec_clk_out);
5295	cmd = &desc.params.set_phy_rec_clk_out;
5296	cmd->phy_output = phy_output;
5297	cmd->port_num = ICE_AQC_SET_PHY_REC_CLK_OUT_CURR_PORT;
5298	cmd->flags = enable & ICE_AQC_SET_PHY_REC_CLK_OUT_OUT_EN;
5299	cmd->freq = cpu_to_le32(*freq);
5300
5301	status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5302	if (!status)
5303		*freq = le32_to_cpu(cmd->freq);
5304
5305	return status;
5306}
5307
5308/**
5309 * ice_aq_get_phy_rec_clk_out - get phy recovered signal info
5310 * @hw: pointer to the HW struct
5311 * @phy_output: PHY reference clock output pin
5312 * @port_num: Port number
5313 * @flags: PHY flags
5314 * @node_handle: PHY output frequency
5315 *
5316 * Get PHY recovered clock output info (0x0631)
5317 * Return: 0 on success or negative value on failure.
5318 */
5319int
5320ice_aq_get_phy_rec_clk_out(struct ice_hw *hw, u8 *phy_output, u8 *port_num,
5321			   u8 *flags, u16 *node_handle)
5322{
5323	struct ice_aqc_get_phy_rec_clk_out *cmd;
5324	struct ice_aq_desc desc;
5325	int status;
5326
5327	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_phy_rec_clk_out);
5328	cmd = &desc.params.get_phy_rec_clk_out;
5329	cmd->phy_output = *phy_output;
5330
5331	status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5332	if (!status) {
5333		*phy_output = cmd->phy_output;
5334		if (port_num)
5335			*port_num = cmd->port_num;
5336		if (flags)
5337			*flags = cmd->flags;
5338		if (node_handle)
5339			*node_handle = le16_to_cpu(cmd->node_handle);
5340	}
5341
5342	return status;
5343}
5344
5345/**
5346 * ice_aq_get_sensor_reading
5347 * @hw: pointer to the HW struct
5348 * @data: pointer to data to be read from the sensor
5349 *
5350 * Get sensor reading (0x0632)
5351 */
5352int ice_aq_get_sensor_reading(struct ice_hw *hw,
5353			      struct ice_aqc_get_sensor_reading_resp *data)
5354{
5355	struct ice_aqc_get_sensor_reading *cmd;
5356	struct ice_aq_desc desc;
5357	int status;
5358
5359	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_sensor_reading);
5360	cmd = &desc.params.get_sensor_reading;
5361#define ICE_INTERNAL_TEMP_SENSOR_FORMAT	0
5362#define ICE_INTERNAL_TEMP_SENSOR	0
5363	cmd->sensor = ICE_INTERNAL_TEMP_SENSOR;
5364	cmd->format = ICE_INTERNAL_TEMP_SENSOR_FORMAT;
5365
5366	status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5367	if (!status)
5368		memcpy(data, &desc.params.get_sensor_reading_resp,
5369		       sizeof(*data));
5370
5371	return status;
5372}
5373
5374/**
5375 * ice_replay_pre_init - replay pre initialization
5376 * @hw: pointer to the HW struct
5377 *
5378 * Initializes required config data for VSI, FD, ACL, and RSS before replay.
5379 */
5380static int ice_replay_pre_init(struct ice_hw *hw)
5381{
5382	struct ice_switch_info *sw = hw->switch_info;
5383	u8 i;
5384
5385	/* Delete old entries from replay filter list head if there is any */
5386	ice_rm_all_sw_replay_rule_info(hw);
5387	/* In start of replay, move entries into replay_rules list, it
5388	 * will allow adding rules entries back to filt_rules list,
5389	 * which is operational list.
5390	 */
5391	for (i = 0; i < ICE_MAX_NUM_RECIPES; i++)
5392		list_replace_init(&sw->recp_list[i].filt_rules,
5393				  &sw->recp_list[i].filt_replay_rules);
5394	ice_sched_replay_agg_vsi_preinit(hw);
5395
5396	return 0;
5397}
5398
5399/**
5400 * ice_replay_vsi - replay VSI configuration
5401 * @hw: pointer to the HW struct
5402 * @vsi_handle: driver VSI handle
5403 *
5404 * Restore all VSI configuration after reset. It is required to call this
5405 * function with main VSI first.
5406 */
5407int ice_replay_vsi(struct ice_hw *hw, u16 vsi_handle)
5408{
5409	int status;
5410
5411	if (!ice_is_vsi_valid(hw, vsi_handle))
5412		return -EINVAL;
5413
5414	/* Replay pre-initialization if there is any */
5415	if (vsi_handle == ICE_MAIN_VSI_HANDLE) {
5416		status = ice_replay_pre_init(hw);
5417		if (status)
5418			return status;
5419	}
5420	/* Replay per VSI all RSS configurations */
5421	status = ice_replay_rss_cfg(hw, vsi_handle);
5422	if (status)
5423		return status;
5424	/* Replay per VSI all filters */
5425	status = ice_replay_vsi_all_fltr(hw, vsi_handle);
5426	if (!status)
5427		status = ice_replay_vsi_agg(hw, vsi_handle);
5428	return status;
5429}
5430
5431/**
5432 * ice_replay_post - post replay configuration cleanup
5433 * @hw: pointer to the HW struct
5434 *
5435 * Post replay cleanup.
5436 */
5437void ice_replay_post(struct ice_hw *hw)
5438{
5439	/* Delete old entries from replay filter list head */
5440	ice_rm_all_sw_replay_rule_info(hw);
5441	ice_sched_replay_agg(hw);
5442}
5443
5444/**
5445 * ice_stat_update40 - read 40 bit stat from the chip and update stat values
5446 * @hw: ptr to the hardware info
5447 * @reg: offset of 64 bit HW register to read from
5448 * @prev_stat_loaded: bool to specify if previous stats are loaded
5449 * @prev_stat: ptr to previous loaded stat value
5450 * @cur_stat: ptr to current stat value
5451 */
5452void
5453ice_stat_update40(struct ice_hw *hw, u32 reg, bool prev_stat_loaded,
5454		  u64 *prev_stat, u64 *cur_stat)
5455{
5456	u64 new_data = rd64(hw, reg) & (BIT_ULL(40) - 1);
5457
5458	/* device stats are not reset at PFR, they likely will not be zeroed
5459	 * when the driver starts. Thus, save the value from the first read
5460	 * without adding to the statistic value so that we report stats which
5461	 * count up from zero.
5462	 */
5463	if (!prev_stat_loaded) {
5464		*prev_stat = new_data;
5465		return;
5466	}
5467
5468	/* Calculate the difference between the new and old values, and then
5469	 * add it to the software stat value.
5470	 */
5471	if (new_data >= *prev_stat)
5472		*cur_stat += new_data - *prev_stat;
5473	else
5474		/* to manage the potential roll-over */
5475		*cur_stat += (new_data + BIT_ULL(40)) - *prev_stat;
5476
5477	/* Update the previously stored value to prepare for next read */
5478	*prev_stat = new_data;
5479}
5480
5481/**
5482 * ice_stat_update32 - read 32 bit stat from the chip and update stat values
5483 * @hw: ptr to the hardware info
5484 * @reg: offset of HW register to read from
5485 * @prev_stat_loaded: bool to specify if previous stats are loaded
5486 * @prev_stat: ptr to previous loaded stat value
5487 * @cur_stat: ptr to current stat value
5488 */
5489void
5490ice_stat_update32(struct ice_hw *hw, u32 reg, bool prev_stat_loaded,
5491		  u64 *prev_stat, u64 *cur_stat)
5492{
5493	u32 new_data;
5494
5495	new_data = rd32(hw, reg);
5496
5497	/* device stats are not reset at PFR, they likely will not be zeroed
5498	 * when the driver starts. Thus, save the value from the first read
5499	 * without adding to the statistic value so that we report stats which
5500	 * count up from zero.
5501	 */
5502	if (!prev_stat_loaded) {
5503		*prev_stat = new_data;
5504		return;
5505	}
5506
5507	/* Calculate the difference between the new and old values, and then
5508	 * add it to the software stat value.
5509	 */
5510	if (new_data >= *prev_stat)
5511		*cur_stat += new_data - *prev_stat;
5512	else
5513		/* to manage the potential roll-over */
5514		*cur_stat += (new_data + BIT_ULL(32)) - *prev_stat;
5515
5516	/* Update the previously stored value to prepare for next read */
5517	*prev_stat = new_data;
5518}
5519
5520/**
5521 * ice_sched_query_elem - query element information from HW
5522 * @hw: pointer to the HW struct
5523 * @node_teid: node TEID to be queried
5524 * @buf: buffer to element information
5525 *
5526 * This function queries HW element information
5527 */
5528int
5529ice_sched_query_elem(struct ice_hw *hw, u32 node_teid,
5530		     struct ice_aqc_txsched_elem_data *buf)
5531{
5532	u16 buf_size, num_elem_ret = 0;
5533	int status;
5534
5535	buf_size = sizeof(*buf);
5536	memset(buf, 0, buf_size);
5537	buf->node_teid = cpu_to_le32(node_teid);
5538	status = ice_aq_query_sched_elems(hw, 1, buf, buf_size, &num_elem_ret,
5539					  NULL);
5540	if (status || num_elem_ret != 1)
5541		ice_debug(hw, ICE_DBG_SCHED, "query element failed\n");
5542	return status;
5543}
5544
5545/**
5546 * ice_aq_read_i2c
5547 * @hw: pointer to the hw struct
5548 * @topo_addr: topology address for a device to communicate with
5549 * @bus_addr: 7-bit I2C bus address
5550 * @addr: I2C memory address (I2C offset) with up to 16 bits
5551 * @params: I2C parameters: bit [7] - Repeated start,
5552 *			    bits [6:5] data offset size,
5553 *			    bit [4] - I2C address type,
5554 *			    bits [3:0] - data size to read (0-16 bytes)
5555 * @data: pointer to data (0 to 16 bytes) to be read from the I2C device
5556 * @cd: pointer to command details structure or NULL
5557 *
5558 * Read I2C (0x06E2)
5559 */
5560int
5561ice_aq_read_i2c(struct ice_hw *hw, struct ice_aqc_link_topo_addr topo_addr,
5562		u16 bus_addr, __le16 addr, u8 params, u8 *data,
5563		struct ice_sq_cd *cd)
5564{
5565	struct ice_aq_desc desc = { 0 };
5566	struct ice_aqc_i2c *cmd;
5567	u8 data_size;
5568	int status;
5569
5570	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_read_i2c);
5571	cmd = &desc.params.read_write_i2c;
5572
5573	if (!data)
5574		return -EINVAL;
5575
5576	data_size = FIELD_GET(ICE_AQC_I2C_DATA_SIZE_M, params);
5577
5578	cmd->i2c_bus_addr = cpu_to_le16(bus_addr);
5579	cmd->topo_addr = topo_addr;
5580	cmd->i2c_params = params;
5581	cmd->i2c_addr = addr;
5582
5583	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
5584	if (!status) {
5585		struct ice_aqc_read_i2c_resp *resp;
5586		u8 i;
5587
5588		resp = &desc.params.read_i2c_resp;
5589		for (i = 0; i < data_size; i++) {
5590			*data = resp->i2c_data[i];
5591			data++;
5592		}
5593	}
5594
5595	return status;
5596}
5597
5598/**
5599 * ice_aq_write_i2c
5600 * @hw: pointer to the hw struct
5601 * @topo_addr: topology address for a device to communicate with
5602 * @bus_addr: 7-bit I2C bus address
5603 * @addr: I2C memory address (I2C offset) with up to 16 bits
5604 * @params: I2C parameters: bit [4] - I2C address type, bits [3:0] - data size to write (0-7 bytes)
5605 * @data: pointer to data (0 to 4 bytes) to be written to the I2C device
5606 * @cd: pointer to command details structure or NULL
5607 *
5608 * Write I2C (0x06E3)
5609 *
5610 * * Return:
5611 * * 0             - Successful write to the i2c device
5612 * * -EINVAL       - Data size greater than 4 bytes
5613 * * -EIO          - FW error
5614 */
5615int
5616ice_aq_write_i2c(struct ice_hw *hw, struct ice_aqc_link_topo_addr topo_addr,
5617		 u16 bus_addr, __le16 addr, u8 params, const u8 *data,
5618		 struct ice_sq_cd *cd)
5619{
5620	struct ice_aq_desc desc = { 0 };
5621	struct ice_aqc_i2c *cmd;
5622	u8 data_size;
5623
5624	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_write_i2c);
5625	cmd = &desc.params.read_write_i2c;
5626
5627	data_size = FIELD_GET(ICE_AQC_I2C_DATA_SIZE_M, params);
5628
5629	/* data_size limited to 4 */
5630	if (data_size > 4)
5631		return -EINVAL;
5632
5633	cmd->i2c_bus_addr = cpu_to_le16(bus_addr);
5634	cmd->topo_addr = topo_addr;
5635	cmd->i2c_params = params;
5636	cmd->i2c_addr = addr;
5637
5638	memcpy(cmd->i2c_data, data, data_size);
5639
5640	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
5641}
5642
5643/**
5644 * ice_aq_set_gpio
5645 * @hw: pointer to the hw struct
5646 * @gpio_ctrl_handle: GPIO controller node handle
5647 * @pin_idx: IO Number of the GPIO that needs to be set
5648 * @value: SW provide IO value to set in the LSB
5649 * @cd: pointer to command details structure or NULL
5650 *
5651 * Sends 0x06EC AQ command to set the GPIO pin state that's part of the topology
5652 */
5653int
5654ice_aq_set_gpio(struct ice_hw *hw, u16 gpio_ctrl_handle, u8 pin_idx, bool value,
5655		struct ice_sq_cd *cd)
5656{
5657	struct ice_aqc_gpio *cmd;
5658	struct ice_aq_desc desc;
5659
5660	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_gpio);
5661	cmd = &desc.params.read_write_gpio;
5662	cmd->gpio_ctrl_handle = cpu_to_le16(gpio_ctrl_handle);
5663	cmd->gpio_num = pin_idx;
5664	cmd->gpio_val = value ? 1 : 0;
5665
5666	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
5667}
5668
5669/**
5670 * ice_aq_get_gpio
5671 * @hw: pointer to the hw struct
5672 * @gpio_ctrl_handle: GPIO controller node handle
5673 * @pin_idx: IO Number of the GPIO that needs to be set
5674 * @value: IO value read
5675 * @cd: pointer to command details structure or NULL
5676 *
5677 * Sends 0x06ED AQ command to get the value of a GPIO signal which is part of
5678 * the topology
5679 */
5680int
5681ice_aq_get_gpio(struct ice_hw *hw, u16 gpio_ctrl_handle, u8 pin_idx,
5682		bool *value, struct ice_sq_cd *cd)
5683{
5684	struct ice_aqc_gpio *cmd;
5685	struct ice_aq_desc desc;
5686	int status;
5687
5688	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_gpio);
5689	cmd = &desc.params.read_write_gpio;
5690	cmd->gpio_ctrl_handle = cpu_to_le16(gpio_ctrl_handle);
5691	cmd->gpio_num = pin_idx;
5692
5693	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
5694	if (status)
5695		return status;
5696
5697	*value = !!cmd->gpio_val;
5698	return 0;
5699}
5700
5701/**
5702 * ice_is_fw_api_min_ver
5703 * @hw: pointer to the hardware structure
5704 * @maj: major version
5705 * @min: minor version
5706 * @patch: patch version
5707 *
5708 * Checks if the firmware API is minimum version
5709 */
5710static bool ice_is_fw_api_min_ver(struct ice_hw *hw, u8 maj, u8 min, u8 patch)
5711{
5712	if (hw->api_maj_ver == maj) {
5713		if (hw->api_min_ver > min)
5714			return true;
5715		if (hw->api_min_ver == min && hw->api_patch >= patch)
5716			return true;
5717	} else if (hw->api_maj_ver > maj) {
5718		return true;
5719	}
5720
5721	return false;
5722}
5723
5724/**
5725 * ice_fw_supports_link_override
5726 * @hw: pointer to the hardware structure
5727 *
5728 * Checks if the firmware supports link override
5729 */
5730bool ice_fw_supports_link_override(struct ice_hw *hw)
5731{
5732	return ice_is_fw_api_min_ver(hw, ICE_FW_API_LINK_OVERRIDE_MAJ,
5733				     ICE_FW_API_LINK_OVERRIDE_MIN,
5734				     ICE_FW_API_LINK_OVERRIDE_PATCH);
5735}
5736
5737/**
5738 * ice_get_link_default_override
5739 * @ldo: pointer to the link default override struct
5740 * @pi: pointer to the port info struct
5741 *
5742 * Gets the link default override for a port
5743 */
5744int
5745ice_get_link_default_override(struct ice_link_default_override_tlv *ldo,
5746			      struct ice_port_info *pi)
5747{
5748	u16 i, tlv, tlv_len, tlv_start, buf, offset;
5749	struct ice_hw *hw = pi->hw;
5750	int status;
5751
5752	status = ice_get_pfa_module_tlv(hw, &tlv, &tlv_len,
5753					ICE_SR_LINK_DEFAULT_OVERRIDE_PTR);
5754	if (status) {
5755		ice_debug(hw, ICE_DBG_INIT, "Failed to read link override TLV.\n");
5756		return status;
5757	}
5758
5759	/* Each port has its own config; calculate for our port */
5760	tlv_start = tlv + pi->lport * ICE_SR_PFA_LINK_OVERRIDE_WORDS +
5761		ICE_SR_PFA_LINK_OVERRIDE_OFFSET;
5762
5763	/* link options first */
5764	status = ice_read_sr_word(hw, tlv_start, &buf);
5765	if (status) {
5766		ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n");
5767		return status;
5768	}
5769	ldo->options = FIELD_GET(ICE_LINK_OVERRIDE_OPT_M, buf);
5770	ldo->phy_config = (buf & ICE_LINK_OVERRIDE_PHY_CFG_M) >>
5771		ICE_LINK_OVERRIDE_PHY_CFG_S;
5772
5773	/* link PHY config */
5774	offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_FEC_OFFSET;
5775	status = ice_read_sr_word(hw, offset, &buf);
5776	if (status) {
5777		ice_debug(hw, ICE_DBG_INIT, "Failed to read override phy config.\n");
5778		return status;
5779	}
5780	ldo->fec_options = buf & ICE_LINK_OVERRIDE_FEC_OPT_M;
5781
5782	/* PHY types low */
5783	offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_PHY_OFFSET;
5784	for (i = 0; i < ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS; i++) {
5785		status = ice_read_sr_word(hw, (offset + i), &buf);
5786		if (status) {
5787			ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n");
5788			return status;
5789		}
5790		/* shift 16 bits at a time to fill 64 bits */
5791		ldo->phy_type_low |= ((u64)buf << (i * 16));
5792	}
5793
5794	/* PHY types high */
5795	offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_PHY_OFFSET +
5796		ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS;
5797	for (i = 0; i < ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS; i++) {
5798		status = ice_read_sr_word(hw, (offset + i), &buf);
5799		if (status) {
5800			ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n");
5801			return status;
5802		}
5803		/* shift 16 bits at a time to fill 64 bits */
5804		ldo->phy_type_high |= ((u64)buf << (i * 16));
5805	}
5806
5807	return status;
5808}
5809
5810/**
5811 * ice_is_phy_caps_an_enabled - check if PHY capabilities autoneg is enabled
5812 * @caps: get PHY capability data
5813 */
5814bool ice_is_phy_caps_an_enabled(struct ice_aqc_get_phy_caps_data *caps)
5815{
5816	if (caps->caps & ICE_AQC_PHY_AN_MODE ||
5817	    caps->low_power_ctrl_an & (ICE_AQC_PHY_AN_EN_CLAUSE28 |
5818				       ICE_AQC_PHY_AN_EN_CLAUSE73 |
5819				       ICE_AQC_PHY_AN_EN_CLAUSE37))
5820		return true;
5821
5822	return false;
5823}
5824
5825/**
5826 * ice_aq_set_lldp_mib - Set the LLDP MIB
5827 * @hw: pointer to the HW struct
5828 * @mib_type: Local, Remote or both Local and Remote MIBs
5829 * @buf: pointer to the caller-supplied buffer to store the MIB block
5830 * @buf_size: size of the buffer (in bytes)
5831 * @cd: pointer to command details structure or NULL
5832 *
5833 * Set the LLDP MIB. (0x0A08)
5834 */
5835int
5836ice_aq_set_lldp_mib(struct ice_hw *hw, u8 mib_type, void *buf, u16 buf_size,
5837		    struct ice_sq_cd *cd)
5838{
5839	struct ice_aqc_lldp_set_local_mib *cmd;
5840	struct ice_aq_desc desc;
5841
5842	cmd = &desc.params.lldp_set_mib;
5843
5844	if (buf_size == 0 || !buf)
5845		return -EINVAL;
5846
5847	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_lldp_set_local_mib);
5848
5849	desc.flags |= cpu_to_le16((u16)ICE_AQ_FLAG_RD);
5850	desc.datalen = cpu_to_le16(buf_size);
5851
5852	cmd->type = mib_type;
5853	cmd->length = cpu_to_le16(buf_size);
5854
5855	return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
5856}
5857
5858/**
5859 * ice_fw_supports_lldp_fltr_ctrl - check NVM version supports lldp_fltr_ctrl
5860 * @hw: pointer to HW struct
5861 */
5862bool ice_fw_supports_lldp_fltr_ctrl(struct ice_hw *hw)
5863{
5864	if (hw->mac_type != ICE_MAC_E810)
5865		return false;
5866
5867	return ice_is_fw_api_min_ver(hw, ICE_FW_API_LLDP_FLTR_MAJ,
5868				     ICE_FW_API_LLDP_FLTR_MIN,
5869				     ICE_FW_API_LLDP_FLTR_PATCH);
5870}
5871
5872/**
5873 * ice_lldp_fltr_add_remove - add or remove a LLDP Rx switch filter
5874 * @hw: pointer to HW struct
5875 * @vsi_num: absolute HW index for VSI
5876 * @add: boolean for if adding or removing a filter
5877 */
5878int
5879ice_lldp_fltr_add_remove(struct ice_hw *hw, u16 vsi_num, bool add)
5880{
5881	struct ice_aqc_lldp_filter_ctrl *cmd;
5882	struct ice_aq_desc desc;
5883
5884	cmd = &desc.params.lldp_filter_ctrl;
5885
5886	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_lldp_filter_ctrl);
5887
5888	if (add)
5889		cmd->cmd_flags = ICE_AQC_LLDP_FILTER_ACTION_ADD;
5890	else
5891		cmd->cmd_flags = ICE_AQC_LLDP_FILTER_ACTION_DELETE;
5892
5893	cmd->vsi_num = cpu_to_le16(vsi_num);
5894
5895	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5896}
5897
5898/**
5899 * ice_lldp_execute_pending_mib - execute LLDP pending MIB request
5900 * @hw: pointer to HW struct
5901 */
5902int ice_lldp_execute_pending_mib(struct ice_hw *hw)
5903{
5904	struct ice_aq_desc desc;
5905
5906	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_lldp_execute_pending_mib);
5907
5908	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5909}
5910
5911/**
5912 * ice_fw_supports_report_dflt_cfg
5913 * @hw: pointer to the hardware structure
5914 *
5915 * Checks if the firmware supports report default configuration
5916 */
5917bool ice_fw_supports_report_dflt_cfg(struct ice_hw *hw)
5918{
5919	return ice_is_fw_api_min_ver(hw, ICE_FW_API_REPORT_DFLT_CFG_MAJ,
5920				     ICE_FW_API_REPORT_DFLT_CFG_MIN,
5921				     ICE_FW_API_REPORT_DFLT_CFG_PATCH);
5922}
5923
5924/* each of the indexes into the following array match the speed of a return
5925 * value from the list of AQ returned speeds like the range:
5926 * ICE_AQ_LINK_SPEED_10MB .. ICE_AQ_LINK_SPEED_100GB excluding
5927 * ICE_AQ_LINK_SPEED_UNKNOWN which is BIT(15) and maps to BIT(14) in this
5928 * array. The array is defined as 15 elements long because the link_speed
5929 * returned by the firmware is a 16 bit * value, but is indexed
5930 * by [fls(speed) - 1]
5931 */
5932static const u32 ice_aq_to_link_speed[] = {
5933	SPEED_10,	/* BIT(0) */
5934	SPEED_100,
5935	SPEED_1000,
5936	SPEED_2500,
5937	SPEED_5000,
5938	SPEED_10000,
5939	SPEED_20000,
5940	SPEED_25000,
5941	SPEED_40000,
5942	SPEED_50000,
5943	SPEED_100000,	/* BIT(10) */
5944	SPEED_200000,
5945};
5946
5947/**
5948 * ice_get_link_speed - get integer speed from table
5949 * @index: array index from fls(aq speed) - 1
5950 *
5951 * Returns: u32 value containing integer speed
5952 */
5953u32 ice_get_link_speed(u16 index)
5954{
5955	if (index >= ARRAY_SIZE(ice_aq_to_link_speed))
5956		return 0;
5957
5958	return ice_aq_to_link_speed[index];
5959}
5960