1// SPDX-License-Identifier: GPL-2.0
2/* Copyright(c) 2013 - 2018 Intel Corporation. */
3
4#include <linux/bpf_trace.h>
5#include <linux/prefetch.h>
6#include <linux/sctp.h>
7#include <net/mpls.h>
8#include <net/xdp.h>
9#include "i40e_txrx_common.h"
10#include "i40e_trace.h"
11#include "i40e_xsk.h"
12
13#define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
14/**
15 * i40e_fdir - Generate a Flow Director descriptor based on fdata
16 * @tx_ring: Tx ring to send buffer on
17 * @fdata: Flow director filter data
18 * @add: Indicate if we are adding a rule or deleting one
19 *
20 **/
21static void i40e_fdir(struct i40e_ring *tx_ring,
22		      struct i40e_fdir_filter *fdata, bool add)
23{
24	struct i40e_filter_program_desc *fdir_desc;
25	struct i40e_pf *pf = tx_ring->vsi->back;
26	u32 flex_ptype, dtype_cmd;
27	u16 i;
28
29	/* grab the next descriptor */
30	i = tx_ring->next_to_use;
31	fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
32
33	i++;
34	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
35
36	flex_ptype = FIELD_PREP(I40E_TXD_FLTR_QW0_QINDEX_MASK, fdata->q_index);
37
38	flex_ptype |= FIELD_PREP(I40E_TXD_FLTR_QW0_FLEXOFF_MASK,
39				 fdata->flex_off);
40
41	flex_ptype |= FIELD_PREP(I40E_TXD_FLTR_QW0_PCTYPE_MASK, fdata->pctype);
42
43	/* Use LAN VSI Id if not programmed by user */
44	flex_ptype |= FIELD_PREP(I40E_TXD_FLTR_QW0_DEST_VSI_MASK,
45				 fdata->dest_vsi ? : pf->vsi[pf->lan_vsi]->id);
46
47	dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
48
49	dtype_cmd |= add ?
50		     I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
51		     I40E_TXD_FLTR_QW1_PCMD_SHIFT :
52		     I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
53		     I40E_TXD_FLTR_QW1_PCMD_SHIFT;
54
55	dtype_cmd |= FIELD_PREP(I40E_TXD_FLTR_QW1_DEST_MASK, fdata->dest_ctl);
56
57	dtype_cmd |= FIELD_PREP(I40E_TXD_FLTR_QW1_FD_STATUS_MASK,
58				fdata->fd_status);
59
60	if (fdata->cnt_index) {
61		dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
62		dtype_cmd |= FIELD_PREP(I40E_TXD_FLTR_QW1_CNTINDEX_MASK,
63					fdata->cnt_index);
64	}
65
66	fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
67	fdir_desc->rsvd = cpu_to_le32(0);
68	fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
69	fdir_desc->fd_id = cpu_to_le32(fdata->fd_id);
70}
71
72#define I40E_FD_CLEAN_DELAY 10
73/**
74 * i40e_program_fdir_filter - Program a Flow Director filter
75 * @fdir_data: Packet data that will be filter parameters
76 * @raw_packet: the pre-allocated packet buffer for FDir
77 * @pf: The PF pointer
78 * @add: True for add/update, False for remove
79 **/
80static int i40e_program_fdir_filter(struct i40e_fdir_filter *fdir_data,
81				    u8 *raw_packet, struct i40e_pf *pf,
82				    bool add)
83{
84	struct i40e_tx_buffer *tx_buf, *first;
85	struct i40e_tx_desc *tx_desc;
86	struct i40e_ring *tx_ring;
87	struct i40e_vsi *vsi;
88	struct device *dev;
89	dma_addr_t dma;
90	u32 td_cmd = 0;
91	u16 i;
92
93	/* find existing FDIR VSI */
94	vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR);
95	if (!vsi)
96		return -ENOENT;
97
98	tx_ring = vsi->tx_rings[0];
99	dev = tx_ring->dev;
100
101	/* we need two descriptors to add/del a filter and we can wait */
102	for (i = I40E_FD_CLEAN_DELAY; I40E_DESC_UNUSED(tx_ring) < 2; i--) {
103		if (!i)
104			return -EAGAIN;
105		msleep_interruptible(1);
106	}
107
108	dma = dma_map_single(dev, raw_packet,
109			     I40E_FDIR_MAX_RAW_PACKET_SIZE, DMA_TO_DEVICE);
110	if (dma_mapping_error(dev, dma))
111		goto dma_fail;
112
113	/* grab the next descriptor */
114	i = tx_ring->next_to_use;
115	first = &tx_ring->tx_bi[i];
116	i40e_fdir(tx_ring, fdir_data, add);
117
118	/* Now program a dummy descriptor */
119	i = tx_ring->next_to_use;
120	tx_desc = I40E_TX_DESC(tx_ring, i);
121	tx_buf = &tx_ring->tx_bi[i];
122
123	tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0;
124
125	memset(tx_buf, 0, sizeof(struct i40e_tx_buffer));
126
127	/* record length, and DMA address */
128	dma_unmap_len_set(tx_buf, len, I40E_FDIR_MAX_RAW_PACKET_SIZE);
129	dma_unmap_addr_set(tx_buf, dma, dma);
130
131	tx_desc->buffer_addr = cpu_to_le64(dma);
132	td_cmd = I40E_TXD_CMD | I40E_TX_DESC_CMD_DUMMY;
133
134	tx_buf->tx_flags = I40E_TX_FLAGS_FD_SB;
135	tx_buf->raw_buf = (void *)raw_packet;
136
137	tx_desc->cmd_type_offset_bsz =
138		build_ctob(td_cmd, 0, I40E_FDIR_MAX_RAW_PACKET_SIZE, 0);
139
140	/* Force memory writes to complete before letting h/w
141	 * know there are new descriptors to fetch.
142	 */
143	wmb();
144
145	/* Mark the data descriptor to be watched */
146	first->next_to_watch = tx_desc;
147
148	writel(tx_ring->next_to_use, tx_ring->tail);
149	return 0;
150
151dma_fail:
152	return -1;
153}
154
155/**
156 * i40e_create_dummy_packet - Constructs dummy packet for HW
157 * @dummy_packet: preallocated space for dummy packet
158 * @ipv4: is layer 3 packet of version 4 or 6
159 * @l4proto: next level protocol used in data portion of l3
160 * @data: filter data
161 *
162 * Returns address of layer 4 protocol dummy packet.
163 **/
164static char *i40e_create_dummy_packet(u8 *dummy_packet, bool ipv4, u8 l4proto,
165				      struct i40e_fdir_filter *data)
166{
167	bool is_vlan = !!data->vlan_tag;
168	struct vlan_hdr vlan = {};
169	struct ipv6hdr ipv6 = {};
170	struct ethhdr eth = {};
171	struct iphdr ip = {};
172	u8 *tmp;
173
174	if (ipv4) {
175		eth.h_proto = cpu_to_be16(ETH_P_IP);
176		ip.protocol = l4proto;
177		ip.version = 0x4;
178		ip.ihl = 0x5;
179
180		ip.daddr = data->dst_ip;
181		ip.saddr = data->src_ip;
182	} else {
183		eth.h_proto = cpu_to_be16(ETH_P_IPV6);
184		ipv6.nexthdr = l4proto;
185		ipv6.version = 0x6;
186
187		memcpy(&ipv6.saddr.in6_u.u6_addr32, data->src_ip6,
188		       sizeof(__be32) * 4);
189		memcpy(&ipv6.daddr.in6_u.u6_addr32, data->dst_ip6,
190		       sizeof(__be32) * 4);
191	}
192
193	if (is_vlan) {
194		vlan.h_vlan_TCI = data->vlan_tag;
195		vlan.h_vlan_encapsulated_proto = eth.h_proto;
196		eth.h_proto = data->vlan_etype;
197	}
198
199	tmp = dummy_packet;
200	memcpy(tmp, &eth, sizeof(eth));
201	tmp += sizeof(eth);
202
203	if (is_vlan) {
204		memcpy(tmp, &vlan, sizeof(vlan));
205		tmp += sizeof(vlan);
206	}
207
208	if (ipv4) {
209		memcpy(tmp, &ip, sizeof(ip));
210		tmp += sizeof(ip);
211	} else {
212		memcpy(tmp, &ipv6, sizeof(ipv6));
213		tmp += sizeof(ipv6);
214	}
215
216	return tmp;
217}
218
219/**
220 * i40e_create_dummy_udp_packet - helper function to create UDP packet
221 * @raw_packet: preallocated space for dummy packet
222 * @ipv4: is layer 3 packet of version 4 or 6
223 * @l4proto: next level protocol used in data portion of l3
224 * @data: filter data
225 *
226 * Helper function to populate udp fields.
227 **/
228static void i40e_create_dummy_udp_packet(u8 *raw_packet, bool ipv4, u8 l4proto,
229					 struct i40e_fdir_filter *data)
230{
231	struct udphdr *udp;
232	u8 *tmp;
233
234	tmp = i40e_create_dummy_packet(raw_packet, ipv4, IPPROTO_UDP, data);
235	udp = (struct udphdr *)(tmp);
236	udp->dest = data->dst_port;
237	udp->source = data->src_port;
238}
239
240/**
241 * i40e_create_dummy_tcp_packet - helper function to create TCP packet
242 * @raw_packet: preallocated space for dummy packet
243 * @ipv4: is layer 3 packet of version 4 or 6
244 * @l4proto: next level protocol used in data portion of l3
245 * @data: filter data
246 *
247 * Helper function to populate tcp fields.
248 **/
249static void i40e_create_dummy_tcp_packet(u8 *raw_packet, bool ipv4, u8 l4proto,
250					 struct i40e_fdir_filter *data)
251{
252	struct tcphdr *tcp;
253	u8 *tmp;
254	/* Dummy tcp packet */
255	static const char tcp_packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
256		0x50, 0x11, 0x0, 0x72, 0, 0, 0, 0};
257
258	tmp = i40e_create_dummy_packet(raw_packet, ipv4, IPPROTO_TCP, data);
259
260	tcp = (struct tcphdr *)tmp;
261	memcpy(tcp, tcp_packet, sizeof(tcp_packet));
262	tcp->dest = data->dst_port;
263	tcp->source = data->src_port;
264}
265
266/**
267 * i40e_create_dummy_sctp_packet - helper function to create SCTP packet
268 * @raw_packet: preallocated space for dummy packet
269 * @ipv4: is layer 3 packet of version 4 or 6
270 * @l4proto: next level protocol used in data portion of l3
271 * @data: filter data
272 *
273 * Helper function to populate sctp fields.
274 **/
275static void i40e_create_dummy_sctp_packet(u8 *raw_packet, bool ipv4,
276					  u8 l4proto,
277					  struct i40e_fdir_filter *data)
278{
279	struct sctphdr *sctp;
280	u8 *tmp;
281
282	tmp = i40e_create_dummy_packet(raw_packet, ipv4, IPPROTO_SCTP, data);
283
284	sctp = (struct sctphdr *)tmp;
285	sctp->dest = data->dst_port;
286	sctp->source = data->src_port;
287}
288
289/**
290 * i40e_prepare_fdir_filter - Prepare and program fdir filter
291 * @pf: physical function to attach filter to
292 * @fd_data: filter data
293 * @add: add or delete filter
294 * @packet_addr: address of dummy packet, used in filtering
295 * @payload_offset: offset from dummy packet address to user defined data
296 * @pctype: Packet type for which filter is used
297 *
298 * Helper function to offset data of dummy packet, program it and
299 * handle errors.
300 **/
301static int i40e_prepare_fdir_filter(struct i40e_pf *pf,
302				    struct i40e_fdir_filter *fd_data,
303				    bool add, char *packet_addr,
304				    int payload_offset, u8 pctype)
305{
306	int ret;
307
308	if (fd_data->flex_filter) {
309		u8 *payload;
310		__be16 pattern = fd_data->flex_word;
311		u16 off = fd_data->flex_offset;
312
313		payload = packet_addr + payload_offset;
314
315		/* If user provided vlan, offset payload by vlan header length */
316		if (!!fd_data->vlan_tag)
317			payload += VLAN_HLEN;
318
319		*((__force __be16 *)(payload + off)) = pattern;
320	}
321
322	fd_data->pctype = pctype;
323	ret = i40e_program_fdir_filter(fd_data, packet_addr, pf, add);
324	if (ret) {
325		dev_info(&pf->pdev->dev,
326			 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
327			 fd_data->pctype, fd_data->fd_id, ret);
328		/* Free the packet buffer since it wasn't added to the ring */
329		return -EOPNOTSUPP;
330	} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
331		if (add)
332			dev_info(&pf->pdev->dev,
333				 "Filter OK for PCTYPE %d loc = %d\n",
334				 fd_data->pctype, fd_data->fd_id);
335		else
336			dev_info(&pf->pdev->dev,
337				 "Filter deleted for PCTYPE %d loc = %d\n",
338				 fd_data->pctype, fd_data->fd_id);
339	}
340
341	return ret;
342}
343
344/**
345 * i40e_change_filter_num - Prepare and program fdir filter
346 * @ipv4: is layer 3 packet of version 4 or 6
347 * @add: add or delete filter
348 * @ipv4_filter_num: field to update
349 * @ipv6_filter_num: field to update
350 *
351 * Update filter number field for pf.
352 **/
353static void i40e_change_filter_num(bool ipv4, bool add, u16 *ipv4_filter_num,
354				   u16 *ipv6_filter_num)
355{
356	if (add) {
357		if (ipv4)
358			(*ipv4_filter_num)++;
359		else
360			(*ipv6_filter_num)++;
361	} else {
362		if (ipv4)
363			(*ipv4_filter_num)--;
364		else
365			(*ipv6_filter_num)--;
366	}
367}
368
369#define I40E_UDPIP_DUMMY_PACKET_LEN	42
370#define I40E_UDPIP6_DUMMY_PACKET_LEN	62
371/**
372 * i40e_add_del_fdir_udp - Add/Remove UDP filters
373 * @vsi: pointer to the targeted VSI
374 * @fd_data: the flow director data required for the FDir descriptor
375 * @add: true adds a filter, false removes it
376 * @ipv4: true is v4, false is v6
377 *
378 * Returns 0 if the filters were successfully added or removed
379 **/
380static int i40e_add_del_fdir_udp(struct i40e_vsi *vsi,
381				 struct i40e_fdir_filter *fd_data,
382				 bool add,
383				 bool ipv4)
384{
385	struct i40e_pf *pf = vsi->back;
386	u8 *raw_packet;
387	int ret;
388
389	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
390	if (!raw_packet)
391		return -ENOMEM;
392
393	i40e_create_dummy_udp_packet(raw_packet, ipv4, IPPROTO_UDP, fd_data);
394
395	if (ipv4)
396		ret = i40e_prepare_fdir_filter
397			(pf, fd_data, add, raw_packet,
398			 I40E_UDPIP_DUMMY_PACKET_LEN,
399			 I40E_FILTER_PCTYPE_NONF_IPV4_UDP);
400	else
401		ret = i40e_prepare_fdir_filter
402			(pf, fd_data, add, raw_packet,
403			 I40E_UDPIP6_DUMMY_PACKET_LEN,
404			 I40E_FILTER_PCTYPE_NONF_IPV6_UDP);
405
406	if (ret) {
407		kfree(raw_packet);
408		return ret;
409	}
410
411	i40e_change_filter_num(ipv4, add, &pf->fd_udp4_filter_cnt,
412			       &pf->fd_udp6_filter_cnt);
413
414	return 0;
415}
416
417#define I40E_TCPIP_DUMMY_PACKET_LEN	54
418#define I40E_TCPIP6_DUMMY_PACKET_LEN	74
419/**
420 * i40e_add_del_fdir_tcp - Add/Remove TCPv4 filters
421 * @vsi: pointer to the targeted VSI
422 * @fd_data: the flow director data required for the FDir descriptor
423 * @add: true adds a filter, false removes it
424 * @ipv4: true is v4, false is v6
425 *
426 * Returns 0 if the filters were successfully added or removed
427 **/
428static int i40e_add_del_fdir_tcp(struct i40e_vsi *vsi,
429				 struct i40e_fdir_filter *fd_data,
430				 bool add,
431				 bool ipv4)
432{
433	struct i40e_pf *pf = vsi->back;
434	u8 *raw_packet;
435	int ret;
436
437	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
438	if (!raw_packet)
439		return -ENOMEM;
440
441	i40e_create_dummy_tcp_packet(raw_packet, ipv4, IPPROTO_TCP, fd_data);
442	if (ipv4)
443		ret = i40e_prepare_fdir_filter
444			(pf, fd_data, add, raw_packet,
445			 I40E_TCPIP_DUMMY_PACKET_LEN,
446			 I40E_FILTER_PCTYPE_NONF_IPV4_TCP);
447	else
448		ret = i40e_prepare_fdir_filter
449			(pf, fd_data, add, raw_packet,
450			 I40E_TCPIP6_DUMMY_PACKET_LEN,
451			 I40E_FILTER_PCTYPE_NONF_IPV6_TCP);
452
453	if (ret) {
454		kfree(raw_packet);
455		return ret;
456	}
457
458	i40e_change_filter_num(ipv4, add, &pf->fd_tcp4_filter_cnt,
459			       &pf->fd_tcp6_filter_cnt);
460
461	if (add) {
462		if (test_bit(I40E_FLAG_FD_ATR_ENA, pf->flags) &&
463		    I40E_DEBUG_FD & pf->hw.debug_mask)
464			dev_info(&pf->pdev->dev, "Forcing ATR off, sideband rules for TCP/IPv4 flow being applied\n");
465		set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state);
466	}
467	return 0;
468}
469
470#define I40E_SCTPIP_DUMMY_PACKET_LEN	46
471#define I40E_SCTPIP6_DUMMY_PACKET_LEN	66
472/**
473 * i40e_add_del_fdir_sctp - Add/Remove SCTPv4 Flow Director filters for
474 * a specific flow spec
475 * @vsi: pointer to the targeted VSI
476 * @fd_data: the flow director data required for the FDir descriptor
477 * @add: true adds a filter, false removes it
478 * @ipv4: true is v4, false is v6
479 *
480 * Returns 0 if the filters were successfully added or removed
481 **/
482static int i40e_add_del_fdir_sctp(struct i40e_vsi *vsi,
483				  struct i40e_fdir_filter *fd_data,
484				  bool add,
485				  bool ipv4)
486{
487	struct i40e_pf *pf = vsi->back;
488	u8 *raw_packet;
489	int ret;
490
491	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
492	if (!raw_packet)
493		return -ENOMEM;
494
495	i40e_create_dummy_sctp_packet(raw_packet, ipv4, IPPROTO_SCTP, fd_data);
496
497	if (ipv4)
498		ret = i40e_prepare_fdir_filter
499			(pf, fd_data, add, raw_packet,
500			 I40E_SCTPIP_DUMMY_PACKET_LEN,
501			 I40E_FILTER_PCTYPE_NONF_IPV4_SCTP);
502	else
503		ret = i40e_prepare_fdir_filter
504			(pf, fd_data, add, raw_packet,
505			 I40E_SCTPIP6_DUMMY_PACKET_LEN,
506			 I40E_FILTER_PCTYPE_NONF_IPV6_SCTP);
507
508	if (ret) {
509		kfree(raw_packet);
510		return ret;
511	}
512
513	i40e_change_filter_num(ipv4, add, &pf->fd_sctp4_filter_cnt,
514			       &pf->fd_sctp6_filter_cnt);
515
516	return 0;
517}
518
519#define I40E_IP_DUMMY_PACKET_LEN	34
520#define I40E_IP6_DUMMY_PACKET_LEN	54
521/**
522 * i40e_add_del_fdir_ip - Add/Remove IPv4 Flow Director filters for
523 * a specific flow spec
524 * @vsi: pointer to the targeted VSI
525 * @fd_data: the flow director data required for the FDir descriptor
526 * @add: true adds a filter, false removes it
527 * @ipv4: true is v4, false is v6
528 *
529 * Returns 0 if the filters were successfully added or removed
530 **/
531static int i40e_add_del_fdir_ip(struct i40e_vsi *vsi,
532				struct i40e_fdir_filter *fd_data,
533				bool add,
534				bool ipv4)
535{
536	struct i40e_pf *pf = vsi->back;
537	int payload_offset;
538	u8 *raw_packet;
539	int iter_start;
540	int iter_end;
541	int ret;
542	int i;
543
544	if (ipv4) {
545		iter_start = I40E_FILTER_PCTYPE_NONF_IPV4_OTHER;
546		iter_end = I40E_FILTER_PCTYPE_FRAG_IPV4;
547	} else {
548		iter_start = I40E_FILTER_PCTYPE_NONF_IPV6_OTHER;
549		iter_end = I40E_FILTER_PCTYPE_FRAG_IPV6;
550	}
551
552	for (i = iter_start; i <= iter_end; i++) {
553		raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
554		if (!raw_packet)
555			return -ENOMEM;
556
557		/* IPv6 no header option differs from IPv4 */
558		(void)i40e_create_dummy_packet
559			(raw_packet, ipv4, (ipv4) ? IPPROTO_IP : IPPROTO_NONE,
560			 fd_data);
561
562		payload_offset = (ipv4) ? I40E_IP_DUMMY_PACKET_LEN :
563			I40E_IP6_DUMMY_PACKET_LEN;
564		ret = i40e_prepare_fdir_filter(pf, fd_data, add, raw_packet,
565					       payload_offset, i);
566		if (ret)
567			goto err;
568	}
569
570	i40e_change_filter_num(ipv4, add, &pf->fd_ip4_filter_cnt,
571			       &pf->fd_ip6_filter_cnt);
572
573	return 0;
574err:
575	kfree(raw_packet);
576	return ret;
577}
578
579/**
580 * i40e_add_del_fdir - Build raw packets to add/del fdir filter
581 * @vsi: pointer to the targeted VSI
582 * @input: filter to add or delete
583 * @add: true adds a filter, false removes it
584 *
585 **/
586int i40e_add_del_fdir(struct i40e_vsi *vsi,
587		      struct i40e_fdir_filter *input, bool add)
588{
589	enum ip_ver { ipv6 = 0, ipv4 = 1 };
590	struct i40e_pf *pf = vsi->back;
591	int ret;
592
593	switch (input->flow_type & ~FLOW_EXT) {
594	case TCP_V4_FLOW:
595		ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv4);
596		break;
597	case UDP_V4_FLOW:
598		ret = i40e_add_del_fdir_udp(vsi, input, add, ipv4);
599		break;
600	case SCTP_V4_FLOW:
601		ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv4);
602		break;
603	case TCP_V6_FLOW:
604		ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv6);
605		break;
606	case UDP_V6_FLOW:
607		ret = i40e_add_del_fdir_udp(vsi, input, add, ipv6);
608		break;
609	case SCTP_V6_FLOW:
610		ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv6);
611		break;
612	case IP_USER_FLOW:
613		switch (input->ipl4_proto) {
614		case IPPROTO_TCP:
615			ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv4);
616			break;
617		case IPPROTO_UDP:
618			ret = i40e_add_del_fdir_udp(vsi, input, add, ipv4);
619			break;
620		case IPPROTO_SCTP:
621			ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv4);
622			break;
623		case IPPROTO_IP:
624			ret = i40e_add_del_fdir_ip(vsi, input, add, ipv4);
625			break;
626		default:
627			/* We cannot support masking based on protocol */
628			dev_info(&pf->pdev->dev, "Unsupported IPv4 protocol 0x%02x\n",
629				 input->ipl4_proto);
630			return -EINVAL;
631		}
632		break;
633	case IPV6_USER_FLOW:
634		switch (input->ipl4_proto) {
635		case IPPROTO_TCP:
636			ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv6);
637			break;
638		case IPPROTO_UDP:
639			ret = i40e_add_del_fdir_udp(vsi, input, add, ipv6);
640			break;
641		case IPPROTO_SCTP:
642			ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv6);
643			break;
644		case IPPROTO_IP:
645			ret = i40e_add_del_fdir_ip(vsi, input, add, ipv6);
646			break;
647		default:
648			/* We cannot support masking based on protocol */
649			dev_info(&pf->pdev->dev, "Unsupported IPv6 protocol 0x%02x\n",
650				 input->ipl4_proto);
651			return -EINVAL;
652		}
653		break;
654	default:
655		dev_info(&pf->pdev->dev, "Unsupported flow type 0x%02x\n",
656			 input->flow_type);
657		return -EINVAL;
658	}
659
660	/* The buffer allocated here will be normally be freed by
661	 * i40e_clean_fdir_tx_irq() as it reclaims resources after transmit
662	 * completion. In the event of an error adding the buffer to the FDIR
663	 * ring, it will immediately be freed. It may also be freed by
664	 * i40e_clean_tx_ring() when closing the VSI.
665	 */
666	return ret;
667}
668
669/**
670 * i40e_fd_handle_status - check the Programming Status for FD
671 * @rx_ring: the Rx ring for this descriptor
672 * @qword0_raw: qword0
673 * @qword1: qword1 after le_to_cpu
674 * @prog_id: the id originally used for programming
675 *
676 * This is used to verify if the FD programming or invalidation
677 * requested by SW to the HW is successful or not and take actions accordingly.
678 **/
679static void i40e_fd_handle_status(struct i40e_ring *rx_ring, u64 qword0_raw,
680				  u64 qword1, u8 prog_id)
681{
682	struct i40e_pf *pf = rx_ring->vsi->back;
683	struct pci_dev *pdev = pf->pdev;
684	struct i40e_16b_rx_wb_qw0 *qw0;
685	u32 fcnt_prog, fcnt_avail;
686	u32 error;
687
688	qw0 = (struct i40e_16b_rx_wb_qw0 *)&qword0_raw;
689	error = FIELD_GET(I40E_RX_PROG_STATUS_DESC_QW1_ERROR_MASK, qword1);
690
691	if (error == BIT(I40E_RX_PROG_STATUS_DESC_FD_TBL_FULL_SHIFT)) {
692		pf->fd_inv = le32_to_cpu(qw0->hi_dword.fd_id);
693		if (qw0->hi_dword.fd_id != 0 ||
694		    (I40E_DEBUG_FD & pf->hw.debug_mask))
695			dev_warn(&pdev->dev, "ntuple filter loc = %d, could not be added\n",
696				 pf->fd_inv);
697
698		/* Check if the programming error is for ATR.
699		 * If so, auto disable ATR and set a state for
700		 * flush in progress. Next time we come here if flush is in
701		 * progress do nothing, once flush is complete the state will
702		 * be cleared.
703		 */
704		if (test_bit(__I40E_FD_FLUSH_REQUESTED, pf->state))
705			return;
706
707		pf->fd_add_err++;
708		/* store the current atr filter count */
709		pf->fd_atr_cnt = i40e_get_current_atr_cnt(pf);
710
711		if (qw0->hi_dword.fd_id == 0 &&
712		    test_bit(__I40E_FD_SB_AUTO_DISABLED, pf->state)) {
713			/* These set_bit() calls aren't atomic with the
714			 * test_bit() here, but worse case we potentially
715			 * disable ATR and queue a flush right after SB
716			 * support is re-enabled. That shouldn't cause an
717			 * issue in practice
718			 */
719			set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state);
720			set_bit(__I40E_FD_FLUSH_REQUESTED, pf->state);
721		}
722
723		/* filter programming failed most likely due to table full */
724		fcnt_prog = i40e_get_global_fd_count(pf);
725		fcnt_avail = pf->fdir_pf_filter_count;
726		/* If ATR is running fcnt_prog can quickly change,
727		 * if we are very close to full, it makes sense to disable
728		 * FD ATR/SB and then re-enable it when there is room.
729		 */
730		if (fcnt_prog >= (fcnt_avail - I40E_FDIR_BUFFER_FULL_MARGIN)) {
731			if (test_bit(I40E_FLAG_FD_SB_ENA, pf->flags) &&
732			    !test_and_set_bit(__I40E_FD_SB_AUTO_DISABLED,
733					      pf->state))
734				if (I40E_DEBUG_FD & pf->hw.debug_mask)
735					dev_warn(&pdev->dev, "FD filter space full, new ntuple rules will not be added\n");
736		}
737	} else if (error == BIT(I40E_RX_PROG_STATUS_DESC_NO_FD_ENTRY_SHIFT)) {
738		if (I40E_DEBUG_FD & pf->hw.debug_mask)
739			dev_info(&pdev->dev, "ntuple filter fd_id = %d, could not be removed\n",
740				 qw0->hi_dword.fd_id);
741	}
742}
743
744/**
745 * i40e_unmap_and_free_tx_resource - Release a Tx buffer
746 * @ring:      the ring that owns the buffer
747 * @tx_buffer: the buffer to free
748 **/
749static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
750					    struct i40e_tx_buffer *tx_buffer)
751{
752	if (tx_buffer->skb) {
753		if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
754			kfree(tx_buffer->raw_buf);
755		else if (ring_is_xdp(ring))
756			xdp_return_frame(tx_buffer->xdpf);
757		else
758			dev_kfree_skb_any(tx_buffer->skb);
759		if (dma_unmap_len(tx_buffer, len))
760			dma_unmap_single(ring->dev,
761					 dma_unmap_addr(tx_buffer, dma),
762					 dma_unmap_len(tx_buffer, len),
763					 DMA_TO_DEVICE);
764	} else if (dma_unmap_len(tx_buffer, len)) {
765		dma_unmap_page(ring->dev,
766			       dma_unmap_addr(tx_buffer, dma),
767			       dma_unmap_len(tx_buffer, len),
768			       DMA_TO_DEVICE);
769	}
770
771	tx_buffer->next_to_watch = NULL;
772	tx_buffer->skb = NULL;
773	dma_unmap_len_set(tx_buffer, len, 0);
774	/* tx_buffer must be completely set up in the transmit path */
775}
776
777/**
778 * i40e_clean_tx_ring - Free any empty Tx buffers
779 * @tx_ring: ring to be cleaned
780 **/
781void i40e_clean_tx_ring(struct i40e_ring *tx_ring)
782{
783	unsigned long bi_size;
784	u16 i;
785
786	if (ring_is_xdp(tx_ring) && tx_ring->xsk_pool) {
787		i40e_xsk_clean_tx_ring(tx_ring);
788	} else {
789		/* ring already cleared, nothing to do */
790		if (!tx_ring->tx_bi)
791			return;
792
793		/* Free all the Tx ring sk_buffs */
794		for (i = 0; i < tx_ring->count; i++)
795			i40e_unmap_and_free_tx_resource(tx_ring,
796							&tx_ring->tx_bi[i]);
797	}
798
799	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
800	memset(tx_ring->tx_bi, 0, bi_size);
801
802	/* Zero out the descriptor ring */
803	memset(tx_ring->desc, 0, tx_ring->size);
804
805	tx_ring->next_to_use = 0;
806	tx_ring->next_to_clean = 0;
807
808	if (!tx_ring->netdev)
809		return;
810
811	/* cleanup Tx queue statistics */
812	netdev_tx_reset_queue(txring_txq(tx_ring));
813}
814
815/**
816 * i40e_free_tx_resources - Free Tx resources per queue
817 * @tx_ring: Tx descriptor ring for a specific queue
818 *
819 * Free all transmit software resources
820 **/
821void i40e_free_tx_resources(struct i40e_ring *tx_ring)
822{
823	i40e_clean_tx_ring(tx_ring);
824	kfree(tx_ring->tx_bi);
825	tx_ring->tx_bi = NULL;
826
827	if (tx_ring->desc) {
828		dma_free_coherent(tx_ring->dev, tx_ring->size,
829				  tx_ring->desc, tx_ring->dma);
830		tx_ring->desc = NULL;
831	}
832}
833
834/**
835 * i40e_get_tx_pending - how many tx descriptors not processed
836 * @ring: the ring of descriptors
837 * @in_sw: use SW variables
838 *
839 * Since there is no access to the ring head register
840 * in XL710, we need to use our local copies
841 **/
842u32 i40e_get_tx_pending(struct i40e_ring *ring, bool in_sw)
843{
844	u32 head, tail;
845
846	if (!in_sw) {
847		head = i40e_get_head(ring);
848		tail = readl(ring->tail);
849	} else {
850		head = ring->next_to_clean;
851		tail = ring->next_to_use;
852	}
853
854	if (head != tail)
855		return (head < tail) ?
856			tail - head : (tail + ring->count - head);
857
858	return 0;
859}
860
861/**
862 * i40e_detect_recover_hung - Function to detect and recover hung_queues
863 * @vsi:  pointer to vsi struct with tx queues
864 *
865 * VSI has netdev and netdev has TX queues. This function is to check each of
866 * those TX queues if they are hung, trigger recovery by issuing SW interrupt.
867 **/
868void i40e_detect_recover_hung(struct i40e_vsi *vsi)
869{
870	struct i40e_ring *tx_ring = NULL;
871	struct net_device *netdev;
872	unsigned int i;
873	int packets;
874
875	if (!vsi)
876		return;
877
878	if (test_bit(__I40E_VSI_DOWN, vsi->state))
879		return;
880
881	netdev = vsi->netdev;
882	if (!netdev)
883		return;
884
885	if (!netif_carrier_ok(netdev))
886		return;
887
888	for (i = 0; i < vsi->num_queue_pairs; i++) {
889		tx_ring = vsi->tx_rings[i];
890		if (tx_ring && tx_ring->desc) {
891			/* If packet counter has not changed the queue is
892			 * likely stalled, so force an interrupt for this
893			 * queue.
894			 *
895			 * prev_pkt_ctr would be negative if there was no
896			 * pending work.
897			 */
898			packets = tx_ring->stats.packets & INT_MAX;
899			if (tx_ring->tx_stats.prev_pkt_ctr == packets) {
900				i40e_force_wb(vsi, tx_ring->q_vector);
901				continue;
902			}
903
904			/* Memory barrier between read of packet count and call
905			 * to i40e_get_tx_pending()
906			 */
907			smp_rmb();
908			tx_ring->tx_stats.prev_pkt_ctr =
909			    i40e_get_tx_pending(tx_ring, true) ? packets : -1;
910		}
911	}
912}
913
914/**
915 * i40e_clean_tx_irq - Reclaim resources after transmit completes
916 * @vsi: the VSI we care about
917 * @tx_ring: Tx ring to clean
918 * @napi_budget: Used to determine if we are in netpoll
919 * @tx_cleaned: Out parameter set to the number of TXes cleaned
920 *
921 * Returns true if there's any budget left (e.g. the clean is finished)
922 **/
923static bool i40e_clean_tx_irq(struct i40e_vsi *vsi,
924			      struct i40e_ring *tx_ring, int napi_budget,
925			      unsigned int *tx_cleaned)
926{
927	int i = tx_ring->next_to_clean;
928	struct i40e_tx_buffer *tx_buf;
929	struct i40e_tx_desc *tx_head;
930	struct i40e_tx_desc *tx_desc;
931	unsigned int total_bytes = 0, total_packets = 0;
932	unsigned int budget = vsi->work_limit;
933
934	tx_buf = &tx_ring->tx_bi[i];
935	tx_desc = I40E_TX_DESC(tx_ring, i);
936	i -= tx_ring->count;
937
938	tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));
939
940	do {
941		struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
942
943		/* if next_to_watch is not set then there is no work pending */
944		if (!eop_desc)
945			break;
946
947		/* prevent any other reads prior to eop_desc */
948		smp_rmb();
949
950		i40e_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf);
951		/* we have caught up to head, no work left to do */
952		if (tx_head == tx_desc)
953			break;
954
955		/* clear next_to_watch to prevent false hangs */
956		tx_buf->next_to_watch = NULL;
957
958		/* update the statistics for this packet */
959		total_bytes += tx_buf->bytecount;
960		total_packets += tx_buf->gso_segs;
961
962		/* free the skb/XDP data */
963		if (ring_is_xdp(tx_ring))
964			xdp_return_frame(tx_buf->xdpf);
965		else
966			napi_consume_skb(tx_buf->skb, napi_budget);
967
968		/* unmap skb header data */
969		dma_unmap_single(tx_ring->dev,
970				 dma_unmap_addr(tx_buf, dma),
971				 dma_unmap_len(tx_buf, len),
972				 DMA_TO_DEVICE);
973
974		/* clear tx_buffer data */
975		tx_buf->skb = NULL;
976		dma_unmap_len_set(tx_buf, len, 0);
977
978		/* unmap remaining buffers */
979		while (tx_desc != eop_desc) {
980			i40e_trace(clean_tx_irq_unmap,
981				   tx_ring, tx_desc, tx_buf);
982
983			tx_buf++;
984			tx_desc++;
985			i++;
986			if (unlikely(!i)) {
987				i -= tx_ring->count;
988				tx_buf = tx_ring->tx_bi;
989				tx_desc = I40E_TX_DESC(tx_ring, 0);
990			}
991
992			/* unmap any remaining paged data */
993			if (dma_unmap_len(tx_buf, len)) {
994				dma_unmap_page(tx_ring->dev,
995					       dma_unmap_addr(tx_buf, dma),
996					       dma_unmap_len(tx_buf, len),
997					       DMA_TO_DEVICE);
998				dma_unmap_len_set(tx_buf, len, 0);
999			}
1000		}
1001
1002		/* move us one more past the eop_desc for start of next pkt */
1003		tx_buf++;
1004		tx_desc++;
1005		i++;
1006		if (unlikely(!i)) {
1007			i -= tx_ring->count;
1008			tx_buf = tx_ring->tx_bi;
1009			tx_desc = I40E_TX_DESC(tx_ring, 0);
1010		}
1011
1012		prefetch(tx_desc);
1013
1014		/* update budget accounting */
1015		budget--;
1016	} while (likely(budget));
1017
1018	i += tx_ring->count;
1019	tx_ring->next_to_clean = i;
1020	i40e_update_tx_stats(tx_ring, total_packets, total_bytes);
1021	i40e_arm_wb(tx_ring, vsi, budget);
1022
1023	if (ring_is_xdp(tx_ring))
1024		return !!budget;
1025
1026	/* notify netdev of completed buffers */
1027	netdev_tx_completed_queue(txring_txq(tx_ring),
1028				  total_packets, total_bytes);
1029
1030#define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2))
1031	if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
1032		     (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
1033		/* Make sure that anybody stopping the queue after this
1034		 * sees the new next_to_clean.
1035		 */
1036		smp_mb();
1037		if (__netif_subqueue_stopped(tx_ring->netdev,
1038					     tx_ring->queue_index) &&
1039		   !test_bit(__I40E_VSI_DOWN, vsi->state)) {
1040			netif_wake_subqueue(tx_ring->netdev,
1041					    tx_ring->queue_index);
1042			++tx_ring->tx_stats.restart_queue;
1043		}
1044	}
1045
1046	*tx_cleaned = total_packets;
1047	return !!budget;
1048}
1049
1050/**
1051 * i40e_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled
1052 * @vsi: the VSI we care about
1053 * @q_vector: the vector on which to enable writeback
1054 *
1055 **/
1056static void i40e_enable_wb_on_itr(struct i40e_vsi *vsi,
1057				  struct i40e_q_vector *q_vector)
1058{
1059	u16 flags = q_vector->tx.ring[0].flags;
1060	u32 val;
1061
1062	if (!(flags & I40E_TXR_FLAGS_WB_ON_ITR))
1063		return;
1064
1065	if (q_vector->arm_wb_state)
1066		return;
1067
1068	if (test_bit(I40E_FLAG_MSIX_ENA, vsi->back->flags)) {
1069		val = I40E_PFINT_DYN_CTLN_WB_ON_ITR_MASK |
1070		      I40E_PFINT_DYN_CTLN_ITR_INDX_MASK; /* set noitr */
1071
1072		wr32(&vsi->back->hw,
1073		     I40E_PFINT_DYN_CTLN(q_vector->reg_idx),
1074		     val);
1075	} else {
1076		val = I40E_PFINT_DYN_CTL0_WB_ON_ITR_MASK |
1077		      I40E_PFINT_DYN_CTL0_ITR_INDX_MASK; /* set noitr */
1078
1079		wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
1080	}
1081	q_vector->arm_wb_state = true;
1082}
1083
1084/**
1085 * i40e_force_wb - Issue SW Interrupt so HW does a wb
1086 * @vsi: the VSI we care about
1087 * @q_vector: the vector  on which to force writeback
1088 *
1089 **/
1090void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
1091{
1092	if (test_bit(I40E_FLAG_MSIX_ENA, vsi->back->flags)) {
1093		u32 val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
1094			  I40E_PFINT_DYN_CTLN_ITR_INDX_MASK | /* set noitr */
1095			  I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK |
1096			  I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK;
1097			  /* allow 00 to be written to the index */
1098
1099		wr32(&vsi->back->hw,
1100		     I40E_PFINT_DYN_CTLN(q_vector->reg_idx), val);
1101	} else {
1102		u32 val = I40E_PFINT_DYN_CTL0_INTENA_MASK |
1103			  I40E_PFINT_DYN_CTL0_ITR_INDX_MASK | /* set noitr */
1104			  I40E_PFINT_DYN_CTL0_SWINT_TRIG_MASK |
1105			  I40E_PFINT_DYN_CTL0_SW_ITR_INDX_ENA_MASK;
1106			/* allow 00 to be written to the index */
1107
1108		wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
1109	}
1110}
1111
1112static inline bool i40e_container_is_rx(struct i40e_q_vector *q_vector,
1113					struct i40e_ring_container *rc)
1114{
1115	return &q_vector->rx == rc;
1116}
1117
1118static inline unsigned int i40e_itr_divisor(struct i40e_q_vector *q_vector)
1119{
1120	unsigned int divisor;
1121
1122	switch (q_vector->vsi->back->hw.phy.link_info.link_speed) {
1123	case I40E_LINK_SPEED_40GB:
1124		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 1024;
1125		break;
1126	case I40E_LINK_SPEED_25GB:
1127	case I40E_LINK_SPEED_20GB:
1128		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 512;
1129		break;
1130	default:
1131	case I40E_LINK_SPEED_10GB:
1132		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 256;
1133		break;
1134	case I40E_LINK_SPEED_1GB:
1135	case I40E_LINK_SPEED_100MB:
1136		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 32;
1137		break;
1138	}
1139
1140	return divisor;
1141}
1142
1143/**
1144 * i40e_update_itr - update the dynamic ITR value based on statistics
1145 * @q_vector: structure containing interrupt and ring information
1146 * @rc: structure containing ring performance data
1147 *
1148 * Stores a new ITR value based on packets and byte
1149 * counts during the last interrupt.  The advantage of per interrupt
1150 * computation is faster updates and more accurate ITR for the current
1151 * traffic pattern.  Constants in this function were computed
1152 * based on theoretical maximum wire speed and thresholds were set based
1153 * on testing data as well as attempting to minimize response time
1154 * while increasing bulk throughput.
1155 **/
1156static void i40e_update_itr(struct i40e_q_vector *q_vector,
1157			    struct i40e_ring_container *rc)
1158{
1159	unsigned int avg_wire_size, packets, bytes, itr;
1160	unsigned long next_update = jiffies;
1161
1162	/* If we don't have any rings just leave ourselves set for maximum
1163	 * possible latency so we take ourselves out of the equation.
1164	 */
1165	if (!rc->ring || !ITR_IS_DYNAMIC(rc->ring->itr_setting))
1166		return;
1167
1168	/* For Rx we want to push the delay up and default to low latency.
1169	 * for Tx we want to pull the delay down and default to high latency.
1170	 */
1171	itr = i40e_container_is_rx(q_vector, rc) ?
1172	      I40E_ITR_ADAPTIVE_MIN_USECS | I40E_ITR_ADAPTIVE_LATENCY :
1173	      I40E_ITR_ADAPTIVE_MAX_USECS | I40E_ITR_ADAPTIVE_LATENCY;
1174
1175	/* If we didn't update within up to 1 - 2 jiffies we can assume
1176	 * that either packets are coming in so slow there hasn't been
1177	 * any work, or that there is so much work that NAPI is dealing
1178	 * with interrupt moderation and we don't need to do anything.
1179	 */
1180	if (time_after(next_update, rc->next_update))
1181		goto clear_counts;
1182
1183	/* If itr_countdown is set it means we programmed an ITR within
1184	 * the last 4 interrupt cycles. This has a side effect of us
1185	 * potentially firing an early interrupt. In order to work around
1186	 * this we need to throw out any data received for a few
1187	 * interrupts following the update.
1188	 */
1189	if (q_vector->itr_countdown) {
1190		itr = rc->target_itr;
1191		goto clear_counts;
1192	}
1193
1194	packets = rc->total_packets;
1195	bytes = rc->total_bytes;
1196
1197	if (i40e_container_is_rx(q_vector, rc)) {
1198		/* If Rx there are 1 to 4 packets and bytes are less than
1199		 * 9000 assume insufficient data to use bulk rate limiting
1200		 * approach unless Tx is already in bulk rate limiting. We
1201		 * are likely latency driven.
1202		 */
1203		if (packets && packets < 4 && bytes < 9000 &&
1204		    (q_vector->tx.target_itr & I40E_ITR_ADAPTIVE_LATENCY)) {
1205			itr = I40E_ITR_ADAPTIVE_LATENCY;
1206			goto adjust_by_size;
1207		}
1208	} else if (packets < 4) {
1209		/* If we have Tx and Rx ITR maxed and Tx ITR is running in
1210		 * bulk mode and we are receiving 4 or fewer packets just
1211		 * reset the ITR_ADAPTIVE_LATENCY bit for latency mode so
1212		 * that the Rx can relax.
1213		 */
1214		if (rc->target_itr == I40E_ITR_ADAPTIVE_MAX_USECS &&
1215		    (q_vector->rx.target_itr & I40E_ITR_MASK) ==
1216		     I40E_ITR_ADAPTIVE_MAX_USECS)
1217			goto clear_counts;
1218	} else if (packets > 32) {
1219		/* If we have processed over 32 packets in a single interrupt
1220		 * for Tx assume we need to switch over to "bulk" mode.
1221		 */
1222		rc->target_itr &= ~I40E_ITR_ADAPTIVE_LATENCY;
1223	}
1224
1225	/* We have no packets to actually measure against. This means
1226	 * either one of the other queues on this vector is active or
1227	 * we are a Tx queue doing TSO with too high of an interrupt rate.
1228	 *
1229	 * Between 4 and 56 we can assume that our current interrupt delay
1230	 * is only slightly too low. As such we should increase it by a small
1231	 * fixed amount.
1232	 */
1233	if (packets < 56) {
1234		itr = rc->target_itr + I40E_ITR_ADAPTIVE_MIN_INC;
1235		if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) {
1236			itr &= I40E_ITR_ADAPTIVE_LATENCY;
1237			itr += I40E_ITR_ADAPTIVE_MAX_USECS;
1238		}
1239		goto clear_counts;
1240	}
1241
1242	if (packets <= 256) {
1243		itr = min(q_vector->tx.current_itr, q_vector->rx.current_itr);
1244		itr &= I40E_ITR_MASK;
1245
1246		/* Between 56 and 112 is our "goldilocks" zone where we are
1247		 * working out "just right". Just report that our current
1248		 * ITR is good for us.
1249		 */
1250		if (packets <= 112)
1251			goto clear_counts;
1252
1253		/* If packet count is 128 or greater we are likely looking
1254		 * at a slight overrun of the delay we want. Try halving
1255		 * our delay to see if that will cut the number of packets
1256		 * in half per interrupt.
1257		 */
1258		itr /= 2;
1259		itr &= I40E_ITR_MASK;
1260		if (itr < I40E_ITR_ADAPTIVE_MIN_USECS)
1261			itr = I40E_ITR_ADAPTIVE_MIN_USECS;
1262
1263		goto clear_counts;
1264	}
1265
1266	/* The paths below assume we are dealing with a bulk ITR since
1267	 * number of packets is greater than 256. We are just going to have
1268	 * to compute a value and try to bring the count under control,
1269	 * though for smaller packet sizes there isn't much we can do as
1270	 * NAPI polling will likely be kicking in sooner rather than later.
1271	 */
1272	itr = I40E_ITR_ADAPTIVE_BULK;
1273
1274adjust_by_size:
1275	/* If packet counts are 256 or greater we can assume we have a gross
1276	 * overestimation of what the rate should be. Instead of trying to fine
1277	 * tune it just use the formula below to try and dial in an exact value
1278	 * give the current packet size of the frame.
1279	 */
1280	avg_wire_size = bytes / packets;
1281
1282	/* The following is a crude approximation of:
1283	 *  wmem_default / (size + overhead) = desired_pkts_per_int
1284	 *  rate / bits_per_byte / (size + ethernet overhead) = pkt_rate
1285	 *  (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value
1286	 *
1287	 * Assuming wmem_default is 212992 and overhead is 640 bytes per
1288	 * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the
1289	 * formula down to
1290	 *
1291	 *  (170 * (size + 24)) / (size + 640) = ITR
1292	 *
1293	 * We first do some math on the packet size and then finally bitshift
1294	 * by 8 after rounding up. We also have to account for PCIe link speed
1295	 * difference as ITR scales based on this.
1296	 */
1297	if (avg_wire_size <= 60) {
1298		/* Start at 250k ints/sec */
1299		avg_wire_size = 4096;
1300	} else if (avg_wire_size <= 380) {
1301		/* 250K ints/sec to 60K ints/sec */
1302		avg_wire_size *= 40;
1303		avg_wire_size += 1696;
1304	} else if (avg_wire_size <= 1084) {
1305		/* 60K ints/sec to 36K ints/sec */
1306		avg_wire_size *= 15;
1307		avg_wire_size += 11452;
1308	} else if (avg_wire_size <= 1980) {
1309		/* 36K ints/sec to 30K ints/sec */
1310		avg_wire_size *= 5;
1311		avg_wire_size += 22420;
1312	} else {
1313		/* plateau at a limit of 30K ints/sec */
1314		avg_wire_size = 32256;
1315	}
1316
1317	/* If we are in low latency mode halve our delay which doubles the
1318	 * rate to somewhere between 100K to 16K ints/sec
1319	 */
1320	if (itr & I40E_ITR_ADAPTIVE_LATENCY)
1321		avg_wire_size /= 2;
1322
1323	/* Resultant value is 256 times larger than it needs to be. This
1324	 * gives us room to adjust the value as needed to either increase
1325	 * or decrease the value based on link speeds of 10G, 2.5G, 1G, etc.
1326	 *
1327	 * Use addition as we have already recorded the new latency flag
1328	 * for the ITR value.
1329	 */
1330	itr += DIV_ROUND_UP(avg_wire_size, i40e_itr_divisor(q_vector)) *
1331	       I40E_ITR_ADAPTIVE_MIN_INC;
1332
1333	if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) {
1334		itr &= I40E_ITR_ADAPTIVE_LATENCY;
1335		itr += I40E_ITR_ADAPTIVE_MAX_USECS;
1336	}
1337
1338clear_counts:
1339	/* write back value */
1340	rc->target_itr = itr;
1341
1342	/* next update should occur within next jiffy */
1343	rc->next_update = next_update + 1;
1344
1345	rc->total_bytes = 0;
1346	rc->total_packets = 0;
1347}
1348
1349static struct i40e_rx_buffer *i40e_rx_bi(struct i40e_ring *rx_ring, u32 idx)
1350{
1351	return &rx_ring->rx_bi[idx];
1352}
1353
1354/**
1355 * i40e_reuse_rx_page - page flip buffer and store it back on the ring
1356 * @rx_ring: rx descriptor ring to store buffers on
1357 * @old_buff: donor buffer to have page reused
1358 *
1359 * Synchronizes page for reuse by the adapter
1360 **/
1361static void i40e_reuse_rx_page(struct i40e_ring *rx_ring,
1362			       struct i40e_rx_buffer *old_buff)
1363{
1364	struct i40e_rx_buffer *new_buff;
1365	u16 nta = rx_ring->next_to_alloc;
1366
1367	new_buff = i40e_rx_bi(rx_ring, nta);
1368
1369	/* update, and store next to alloc */
1370	nta++;
1371	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
1372
1373	/* transfer page from old buffer to new buffer */
1374	new_buff->dma		= old_buff->dma;
1375	new_buff->page		= old_buff->page;
1376	new_buff->page_offset	= old_buff->page_offset;
1377	new_buff->pagecnt_bias	= old_buff->pagecnt_bias;
1378
1379	/* clear contents of buffer_info */
1380	old_buff->page = NULL;
1381}
1382
1383/**
1384 * i40e_clean_programming_status - clean the programming status descriptor
1385 * @rx_ring: the rx ring that has this descriptor
1386 * @qword0_raw: qword0
1387 * @qword1: qword1 representing status_error_len in CPU ordering
1388 *
1389 * Flow director should handle FD_FILTER_STATUS to check its filter programming
1390 * status being successful or not and take actions accordingly. FCoE should
1391 * handle its context/filter programming/invalidation status and take actions.
1392 *
1393 * Returns an i40e_rx_buffer to reuse if the cleanup occurred, otherwise NULL.
1394 **/
1395void i40e_clean_programming_status(struct i40e_ring *rx_ring, u64 qword0_raw,
1396				   u64 qword1)
1397{
1398	u8 id;
1399
1400	id = FIELD_GET(I40E_RX_PROG_STATUS_DESC_QW1_PROGID_MASK, qword1);
1401
1402	if (id == I40E_RX_PROG_STATUS_DESC_FD_FILTER_STATUS)
1403		i40e_fd_handle_status(rx_ring, qword0_raw, qword1, id);
1404}
1405
1406/**
1407 * i40e_setup_tx_descriptors - Allocate the Tx descriptors
1408 * @tx_ring: the tx ring to set up
1409 *
1410 * Return 0 on success, negative on error
1411 **/
1412int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring)
1413{
1414	struct device *dev = tx_ring->dev;
1415	int bi_size;
1416
1417	if (!dev)
1418		return -ENOMEM;
1419
1420	/* warn if we are about to overwrite the pointer */
1421	WARN_ON(tx_ring->tx_bi);
1422	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
1423	tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
1424	if (!tx_ring->tx_bi)
1425		goto err;
1426
1427	u64_stats_init(&tx_ring->syncp);
1428
1429	/* round up to nearest 4K */
1430	tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
1431	/* add u32 for head writeback, align after this takes care of
1432	 * guaranteeing this is at least one cache line in size
1433	 */
1434	tx_ring->size += sizeof(u32);
1435	tx_ring->size = ALIGN(tx_ring->size, 4096);
1436	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
1437					   &tx_ring->dma, GFP_KERNEL);
1438	if (!tx_ring->desc) {
1439		dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
1440			 tx_ring->size);
1441		goto err;
1442	}
1443
1444	tx_ring->next_to_use = 0;
1445	tx_ring->next_to_clean = 0;
1446	tx_ring->tx_stats.prev_pkt_ctr = -1;
1447	return 0;
1448
1449err:
1450	kfree(tx_ring->tx_bi);
1451	tx_ring->tx_bi = NULL;
1452	return -ENOMEM;
1453}
1454
1455static void i40e_clear_rx_bi(struct i40e_ring *rx_ring)
1456{
1457	memset(rx_ring->rx_bi, 0, sizeof(*rx_ring->rx_bi) * rx_ring->count);
1458}
1459
1460/**
1461 * i40e_clean_rx_ring - Free Rx buffers
1462 * @rx_ring: ring to be cleaned
1463 **/
1464void i40e_clean_rx_ring(struct i40e_ring *rx_ring)
1465{
1466	u16 i;
1467
1468	/* ring already cleared, nothing to do */
1469	if (!rx_ring->rx_bi)
1470		return;
1471
1472	if (rx_ring->xsk_pool) {
1473		i40e_xsk_clean_rx_ring(rx_ring);
1474		goto skip_free;
1475	}
1476
1477	/* Free all the Rx ring sk_buffs */
1478	for (i = 0; i < rx_ring->count; i++) {
1479		struct i40e_rx_buffer *rx_bi = i40e_rx_bi(rx_ring, i);
1480
1481		if (!rx_bi->page)
1482			continue;
1483
1484		/* Invalidate cache lines that may have been written to by
1485		 * device so that we avoid corrupting memory.
1486		 */
1487		dma_sync_single_range_for_cpu(rx_ring->dev,
1488					      rx_bi->dma,
1489					      rx_bi->page_offset,
1490					      rx_ring->rx_buf_len,
1491					      DMA_FROM_DEVICE);
1492
1493		/* free resources associated with mapping */
1494		dma_unmap_page_attrs(rx_ring->dev, rx_bi->dma,
1495				     i40e_rx_pg_size(rx_ring),
1496				     DMA_FROM_DEVICE,
1497				     I40E_RX_DMA_ATTR);
1498
1499		__page_frag_cache_drain(rx_bi->page, rx_bi->pagecnt_bias);
1500
1501		rx_bi->page = NULL;
1502		rx_bi->page_offset = 0;
1503	}
1504
1505skip_free:
1506	if (rx_ring->xsk_pool)
1507		i40e_clear_rx_bi_zc(rx_ring);
1508	else
1509		i40e_clear_rx_bi(rx_ring);
1510
1511	/* Zero out the descriptor ring */
1512	memset(rx_ring->desc, 0, rx_ring->size);
1513
1514	rx_ring->next_to_alloc = 0;
1515	rx_ring->next_to_clean = 0;
1516	rx_ring->next_to_process = 0;
1517	rx_ring->next_to_use = 0;
1518}
1519
1520/**
1521 * i40e_free_rx_resources - Free Rx resources
1522 * @rx_ring: ring to clean the resources from
1523 *
1524 * Free all receive software resources
1525 **/
1526void i40e_free_rx_resources(struct i40e_ring *rx_ring)
1527{
1528	i40e_clean_rx_ring(rx_ring);
1529	if (rx_ring->vsi->type == I40E_VSI_MAIN)
1530		xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
1531	rx_ring->xdp_prog = NULL;
1532	kfree(rx_ring->rx_bi);
1533	rx_ring->rx_bi = NULL;
1534
1535	if (rx_ring->desc) {
1536		dma_free_coherent(rx_ring->dev, rx_ring->size,
1537				  rx_ring->desc, rx_ring->dma);
1538		rx_ring->desc = NULL;
1539	}
1540}
1541
1542/**
1543 * i40e_setup_rx_descriptors - Allocate Rx descriptors
1544 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
1545 *
1546 * Returns 0 on success, negative on failure
1547 **/
1548int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring)
1549{
1550	struct device *dev = rx_ring->dev;
1551
1552	u64_stats_init(&rx_ring->syncp);
1553
1554	/* Round up to nearest 4K */
1555	rx_ring->size = rx_ring->count * sizeof(union i40e_rx_desc);
1556	rx_ring->size = ALIGN(rx_ring->size, 4096);
1557	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
1558					   &rx_ring->dma, GFP_KERNEL);
1559
1560	if (!rx_ring->desc) {
1561		dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
1562			 rx_ring->size);
1563		return -ENOMEM;
1564	}
1565
1566	rx_ring->next_to_alloc = 0;
1567	rx_ring->next_to_clean = 0;
1568	rx_ring->next_to_process = 0;
1569	rx_ring->next_to_use = 0;
1570
1571	rx_ring->xdp_prog = rx_ring->vsi->xdp_prog;
1572
1573	rx_ring->rx_bi =
1574		kcalloc(rx_ring->count, sizeof(*rx_ring->rx_bi), GFP_KERNEL);
1575	if (!rx_ring->rx_bi)
1576		return -ENOMEM;
1577
1578	return 0;
1579}
1580
1581/**
1582 * i40e_release_rx_desc - Store the new tail and head values
1583 * @rx_ring: ring to bump
1584 * @val: new head index
1585 **/
1586void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
1587{
1588	rx_ring->next_to_use = val;
1589
1590	/* update next to alloc since we have filled the ring */
1591	rx_ring->next_to_alloc = val;
1592
1593	/* Force memory writes to complete before letting h/w
1594	 * know there are new descriptors to fetch.  (Only
1595	 * applicable for weak-ordered memory model archs,
1596	 * such as IA-64).
1597	 */
1598	wmb();
1599	writel(val, rx_ring->tail);
1600}
1601
1602#if (PAGE_SIZE >= 8192)
1603static unsigned int i40e_rx_frame_truesize(struct i40e_ring *rx_ring,
1604					   unsigned int size)
1605{
1606	unsigned int truesize;
1607
1608	truesize = rx_ring->rx_offset ?
1609		SKB_DATA_ALIGN(size + rx_ring->rx_offset) +
1610		SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
1611		SKB_DATA_ALIGN(size);
1612	return truesize;
1613}
1614#endif
1615
1616/**
1617 * i40e_alloc_mapped_page - recycle or make a new page
1618 * @rx_ring: ring to use
1619 * @bi: rx_buffer struct to modify
1620 *
1621 * Returns true if the page was successfully allocated or
1622 * reused.
1623 **/
1624static bool i40e_alloc_mapped_page(struct i40e_ring *rx_ring,
1625				   struct i40e_rx_buffer *bi)
1626{
1627	struct page *page = bi->page;
1628	dma_addr_t dma;
1629
1630	/* since we are recycling buffers we should seldom need to alloc */
1631	if (likely(page)) {
1632		rx_ring->rx_stats.page_reuse_count++;
1633		return true;
1634	}
1635
1636	/* alloc new page for storage */
1637	page = dev_alloc_pages(i40e_rx_pg_order(rx_ring));
1638	if (unlikely(!page)) {
1639		rx_ring->rx_stats.alloc_page_failed++;
1640		return false;
1641	}
1642
1643	rx_ring->rx_stats.page_alloc_count++;
1644
1645	/* map page for use */
1646	dma = dma_map_page_attrs(rx_ring->dev, page, 0,
1647				 i40e_rx_pg_size(rx_ring),
1648				 DMA_FROM_DEVICE,
1649				 I40E_RX_DMA_ATTR);
1650
1651	/* if mapping failed free memory back to system since
1652	 * there isn't much point in holding memory we can't use
1653	 */
1654	if (dma_mapping_error(rx_ring->dev, dma)) {
1655		__free_pages(page, i40e_rx_pg_order(rx_ring));
1656		rx_ring->rx_stats.alloc_page_failed++;
1657		return false;
1658	}
1659
1660	bi->dma = dma;
1661	bi->page = page;
1662	bi->page_offset = rx_ring->rx_offset;
1663	page_ref_add(page, USHRT_MAX - 1);
1664	bi->pagecnt_bias = USHRT_MAX;
1665
1666	return true;
1667}
1668
1669/**
1670 * i40e_alloc_rx_buffers - Replace used receive buffers
1671 * @rx_ring: ring to place buffers on
1672 * @cleaned_count: number of buffers to replace
1673 *
1674 * Returns false if all allocations were successful, true if any fail
1675 **/
1676bool i40e_alloc_rx_buffers(struct i40e_ring *rx_ring, u16 cleaned_count)
1677{
1678	u16 ntu = rx_ring->next_to_use;
1679	union i40e_rx_desc *rx_desc;
1680	struct i40e_rx_buffer *bi;
1681
1682	/* do nothing if no valid netdev defined */
1683	if (!rx_ring->netdev || !cleaned_count)
1684		return false;
1685
1686	rx_desc = I40E_RX_DESC(rx_ring, ntu);
1687	bi = i40e_rx_bi(rx_ring, ntu);
1688
1689	do {
1690		if (!i40e_alloc_mapped_page(rx_ring, bi))
1691			goto no_buffers;
1692
1693		/* sync the buffer for use by the device */
1694		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
1695						 bi->page_offset,
1696						 rx_ring->rx_buf_len,
1697						 DMA_FROM_DEVICE);
1698
1699		/* Refresh the desc even if buffer_addrs didn't change
1700		 * because each write-back erases this info.
1701		 */
1702		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
1703
1704		rx_desc++;
1705		bi++;
1706		ntu++;
1707		if (unlikely(ntu == rx_ring->count)) {
1708			rx_desc = I40E_RX_DESC(rx_ring, 0);
1709			bi = i40e_rx_bi(rx_ring, 0);
1710			ntu = 0;
1711		}
1712
1713		/* clear the status bits for the next_to_use descriptor */
1714		rx_desc->wb.qword1.status_error_len = 0;
1715
1716		cleaned_count--;
1717	} while (cleaned_count);
1718
1719	if (rx_ring->next_to_use != ntu)
1720		i40e_release_rx_desc(rx_ring, ntu);
1721
1722	return false;
1723
1724no_buffers:
1725	if (rx_ring->next_to_use != ntu)
1726		i40e_release_rx_desc(rx_ring, ntu);
1727
1728	/* make sure to come back via polling to try again after
1729	 * allocation failure
1730	 */
1731	return true;
1732}
1733
1734/**
1735 * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
1736 * @vsi: the VSI we care about
1737 * @skb: skb currently being received and modified
1738 * @rx_desc: the receive descriptor
1739 **/
1740static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
1741				    struct sk_buff *skb,
1742				    union i40e_rx_desc *rx_desc)
1743{
1744	struct i40e_rx_ptype_decoded decoded;
1745	u32 rx_error, rx_status;
1746	bool ipv4, ipv6;
1747	u8 ptype;
1748	u64 qword;
1749
1750	qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1751	ptype = FIELD_GET(I40E_RXD_QW1_PTYPE_MASK, qword);
1752	rx_error = FIELD_GET(I40E_RXD_QW1_ERROR_MASK, qword);
1753	rx_status = FIELD_GET(I40E_RXD_QW1_STATUS_MASK, qword);
1754	decoded = decode_rx_desc_ptype(ptype);
1755
1756	skb->ip_summed = CHECKSUM_NONE;
1757
1758	skb_checksum_none_assert(skb);
1759
1760	/* Rx csum enabled and ip headers found? */
1761	if (!(vsi->netdev->features & NETIF_F_RXCSUM))
1762		return;
1763
1764	/* did the hardware decode the packet and checksum? */
1765	if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
1766		return;
1767
1768	/* both known and outer_ip must be set for the below code to work */
1769	if (!(decoded.known && decoded.outer_ip))
1770		return;
1771
1772	ipv4 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
1773	       (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4);
1774	ipv6 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
1775	       (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6);
1776
1777	if (ipv4 &&
1778	    (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) |
1779			 BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT))))
1780		goto checksum_fail;
1781
1782	/* likely incorrect csum if alternate IP extension headers found */
1783	if (ipv6 &&
1784	    rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
1785		/* don't increment checksum err here, non-fatal err */
1786		return;
1787
1788	/* there was some L4 error, count error and punt packet to the stack */
1789	if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT))
1790		goto checksum_fail;
1791
1792	/* handle packets that were not able to be checksummed due
1793	 * to arrival speed, in this case the stack can compute
1794	 * the csum.
1795	 */
1796	if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT))
1797		return;
1798
1799	/* If there is an outer header present that might contain a checksum
1800	 * we need to bump the checksum level by 1 to reflect the fact that
1801	 * we are indicating we validated the inner checksum.
1802	 */
1803	if (decoded.tunnel_type >= I40E_RX_PTYPE_TUNNEL_IP_GRENAT)
1804		skb->csum_level = 1;
1805
1806	/* Only report checksum unnecessary for TCP, UDP, or SCTP */
1807	switch (decoded.inner_prot) {
1808	case I40E_RX_PTYPE_INNER_PROT_TCP:
1809	case I40E_RX_PTYPE_INNER_PROT_UDP:
1810	case I40E_RX_PTYPE_INNER_PROT_SCTP:
1811		skb->ip_summed = CHECKSUM_UNNECESSARY;
1812		fallthrough;
1813	default:
1814		break;
1815	}
1816
1817	return;
1818
1819checksum_fail:
1820	vsi->back->hw_csum_rx_error++;
1821}
1822
1823/**
1824 * i40e_ptype_to_htype - get a hash type
1825 * @ptype: the ptype value from the descriptor
1826 *
1827 * Returns a hash type to be used by skb_set_hash
1828 **/
1829static inline int i40e_ptype_to_htype(u8 ptype)
1830{
1831	struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);
1832
1833	if (!decoded.known)
1834		return PKT_HASH_TYPE_NONE;
1835
1836	if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1837	    decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
1838		return PKT_HASH_TYPE_L4;
1839	else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1840		 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
1841		return PKT_HASH_TYPE_L3;
1842	else
1843		return PKT_HASH_TYPE_L2;
1844}
1845
1846/**
1847 * i40e_rx_hash - set the hash value in the skb
1848 * @ring: descriptor ring
1849 * @rx_desc: specific descriptor
1850 * @skb: skb currently being received and modified
1851 * @rx_ptype: Rx packet type
1852 **/
1853static inline void i40e_rx_hash(struct i40e_ring *ring,
1854				union i40e_rx_desc *rx_desc,
1855				struct sk_buff *skb,
1856				u8 rx_ptype)
1857{
1858	u32 hash;
1859	const __le64 rss_mask =
1860		cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
1861			    I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);
1862
1863	if (!(ring->netdev->features & NETIF_F_RXHASH))
1864		return;
1865
1866	if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) {
1867		hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
1868		skb_set_hash(skb, hash, i40e_ptype_to_htype(rx_ptype));
1869	}
1870}
1871
1872/**
1873 * i40e_process_skb_fields - Populate skb header fields from Rx descriptor
1874 * @rx_ring: rx descriptor ring packet is being transacted on
1875 * @rx_desc: pointer to the EOP Rx descriptor
1876 * @skb: pointer to current skb being populated
1877 *
1878 * This function checks the ring, descriptor, and packet information in
1879 * order to populate the hash, checksum, VLAN, protocol, and
1880 * other fields within the skb.
1881 **/
1882void i40e_process_skb_fields(struct i40e_ring *rx_ring,
1883			     union i40e_rx_desc *rx_desc, struct sk_buff *skb)
1884{
1885	u64 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1886	u32 rx_status = FIELD_GET(I40E_RXD_QW1_STATUS_MASK, qword);
1887	u32 tsynvalid = rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK;
1888	u32 tsyn = FIELD_GET(I40E_RXD_QW1_STATUS_TSYNINDX_MASK, rx_status);
1889	u8 rx_ptype = FIELD_GET(I40E_RXD_QW1_PTYPE_MASK, qword);
1890
1891	if (unlikely(tsynvalid))
1892		i40e_ptp_rx_hwtstamp(rx_ring->vsi->back, skb, tsyn);
1893
1894	i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
1895
1896	i40e_rx_checksum(rx_ring->vsi, skb, rx_desc);
1897
1898	skb_record_rx_queue(skb, rx_ring->queue_index);
1899
1900	if (qword & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)) {
1901		__le16 vlan_tag = rx_desc->wb.qword0.lo_dword.l2tag1;
1902
1903		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
1904				       le16_to_cpu(vlan_tag));
1905	}
1906
1907	/* modifies the skb - consumes the enet header */
1908	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1909}
1910
1911/**
1912 * i40e_cleanup_headers - Correct empty headers
1913 * @rx_ring: rx descriptor ring packet is being transacted on
1914 * @skb: pointer to current skb being fixed
1915 * @rx_desc: pointer to the EOP Rx descriptor
1916 *
1917 * In addition if skb is not at least 60 bytes we need to pad it so that
1918 * it is large enough to qualify as a valid Ethernet frame.
1919 *
1920 * Returns true if an error was encountered and skb was freed.
1921 **/
1922static bool i40e_cleanup_headers(struct i40e_ring *rx_ring, struct sk_buff *skb,
1923				 union i40e_rx_desc *rx_desc)
1924
1925{
1926	/* ERR_MASK will only have valid bits if EOP set, and
1927	 * what we are doing here is actually checking
1928	 * I40E_RX_DESC_ERROR_RXE_SHIFT, since it is the zeroth bit in
1929	 * the error field
1930	 */
1931	if (unlikely(i40e_test_staterr(rx_desc,
1932				       BIT(I40E_RXD_QW1_ERROR_SHIFT)))) {
1933		dev_kfree_skb_any(skb);
1934		return true;
1935	}
1936
1937	/* if eth_skb_pad returns an error the skb was freed */
1938	if (eth_skb_pad(skb))
1939		return true;
1940
1941	return false;
1942}
1943
1944/**
1945 * i40e_can_reuse_rx_page - Determine if page can be reused for another Rx
1946 * @rx_buffer: buffer containing the page
1947 * @rx_stats: rx stats structure for the rx ring
1948 *
1949 * If page is reusable, we have a green light for calling i40e_reuse_rx_page,
1950 * which will assign the current buffer to the buffer that next_to_alloc is
1951 * pointing to; otherwise, the DMA mapping needs to be destroyed and
1952 * page freed.
1953 *
1954 * rx_stats will be updated to indicate whether the page was waived
1955 * or busy if it could not be reused.
1956 */
1957static bool i40e_can_reuse_rx_page(struct i40e_rx_buffer *rx_buffer,
1958				   struct i40e_rx_queue_stats *rx_stats)
1959{
1960	unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
1961	struct page *page = rx_buffer->page;
1962
1963	/* Is any reuse possible? */
1964	if (!dev_page_is_reusable(page)) {
1965		rx_stats->page_waive_count++;
1966		return false;
1967	}
1968
1969#if (PAGE_SIZE < 8192)
1970	/* if we are only owner of page we can reuse it */
1971	if (unlikely((rx_buffer->page_count - pagecnt_bias) > 1)) {
1972		rx_stats->page_busy_count++;
1973		return false;
1974	}
1975#else
1976#define I40E_LAST_OFFSET \
1977	(SKB_WITH_OVERHEAD(PAGE_SIZE) - I40E_RXBUFFER_2048)
1978	if (rx_buffer->page_offset > I40E_LAST_OFFSET) {
1979		rx_stats->page_busy_count++;
1980		return false;
1981	}
1982#endif
1983
1984	/* If we have drained the page fragment pool we need to update
1985	 * the pagecnt_bias and page count so that we fully restock the
1986	 * number of references the driver holds.
1987	 */
1988	if (unlikely(pagecnt_bias == 1)) {
1989		page_ref_add(page, USHRT_MAX - 1);
1990		rx_buffer->pagecnt_bias = USHRT_MAX;
1991	}
1992
1993	return true;
1994}
1995
1996/**
1997 * i40e_rx_buffer_flip - adjusted rx_buffer to point to an unused region
1998 * @rx_buffer: Rx buffer to adjust
1999 * @truesize: Size of adjustment
2000 **/
2001static void i40e_rx_buffer_flip(struct i40e_rx_buffer *rx_buffer,
2002				unsigned int truesize)
2003{
2004#if (PAGE_SIZE < 8192)
2005	rx_buffer->page_offset ^= truesize;
2006#else
2007	rx_buffer->page_offset += truesize;
2008#endif
2009}
2010
2011/**
2012 * i40e_get_rx_buffer - Fetch Rx buffer and synchronize data for use
2013 * @rx_ring: rx descriptor ring to transact packets on
2014 * @size: size of buffer to add to skb
2015 *
2016 * This function will pull an Rx buffer from the ring and synchronize it
2017 * for use by the CPU.
2018 */
2019static struct i40e_rx_buffer *i40e_get_rx_buffer(struct i40e_ring *rx_ring,
2020						 const unsigned int size)
2021{
2022	struct i40e_rx_buffer *rx_buffer;
2023
2024	rx_buffer = i40e_rx_bi(rx_ring, rx_ring->next_to_process);
2025	rx_buffer->page_count =
2026#if (PAGE_SIZE < 8192)
2027		page_count(rx_buffer->page);
2028#else
2029		0;
2030#endif
2031	prefetch_page_address(rx_buffer->page);
2032
2033	/* we are reusing so sync this buffer for CPU use */
2034	dma_sync_single_range_for_cpu(rx_ring->dev,
2035				      rx_buffer->dma,
2036				      rx_buffer->page_offset,
2037				      size,
2038				      DMA_FROM_DEVICE);
2039
2040	/* We have pulled a buffer for use, so decrement pagecnt_bias */
2041	rx_buffer->pagecnt_bias--;
2042
2043	return rx_buffer;
2044}
2045
2046/**
2047 * i40e_put_rx_buffer - Clean up used buffer and either recycle or free
2048 * @rx_ring: rx descriptor ring to transact packets on
2049 * @rx_buffer: rx buffer to pull data from
2050 *
2051 * This function will clean up the contents of the rx_buffer.  It will
2052 * either recycle the buffer or unmap it and free the associated resources.
2053 */
2054static void i40e_put_rx_buffer(struct i40e_ring *rx_ring,
2055			       struct i40e_rx_buffer *rx_buffer)
2056{
2057	if (i40e_can_reuse_rx_page(rx_buffer, &rx_ring->rx_stats)) {
2058		/* hand second half of page back to the ring */
2059		i40e_reuse_rx_page(rx_ring, rx_buffer);
2060	} else {
2061		/* we are not reusing the buffer so unmap it */
2062		dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
2063				     i40e_rx_pg_size(rx_ring),
2064				     DMA_FROM_DEVICE, I40E_RX_DMA_ATTR);
2065		__page_frag_cache_drain(rx_buffer->page,
2066					rx_buffer->pagecnt_bias);
2067		/* clear contents of buffer_info */
2068		rx_buffer->page = NULL;
2069	}
2070}
2071
2072/**
2073 * i40e_process_rx_buffs- Processing of buffers post XDP prog or on error
2074 * @rx_ring: Rx descriptor ring to transact packets on
2075 * @xdp_res: Result of the XDP program
2076 * @xdp: xdp_buff pointing to the data
2077 **/
2078static void i40e_process_rx_buffs(struct i40e_ring *rx_ring, int xdp_res,
2079				  struct xdp_buff *xdp)
2080{
2081	u32 nr_frags = xdp_get_shared_info_from_buff(xdp)->nr_frags;
2082	u32 next = rx_ring->next_to_clean, i = 0;
2083	struct i40e_rx_buffer *rx_buffer;
2084
2085	xdp->flags = 0;
2086
2087	while (1) {
2088		rx_buffer = i40e_rx_bi(rx_ring, next);
2089		if (++next == rx_ring->count)
2090			next = 0;
2091
2092		if (!rx_buffer->page)
2093			continue;
2094
2095		if (xdp_res != I40E_XDP_CONSUMED)
2096			i40e_rx_buffer_flip(rx_buffer, xdp->frame_sz);
2097		else if (i++ <= nr_frags)
2098			rx_buffer->pagecnt_bias++;
2099
2100		/* EOP buffer will be put in i40e_clean_rx_irq() */
2101		if (next == rx_ring->next_to_process)
2102			return;
2103
2104		i40e_put_rx_buffer(rx_ring, rx_buffer);
2105	}
2106}
2107
2108/**
2109 * i40e_construct_skb - Allocate skb and populate it
2110 * @rx_ring: rx descriptor ring to transact packets on
2111 * @xdp: xdp_buff pointing to the data
2112 *
2113 * This function allocates an skb.  It then populates it with the page
2114 * data from the current receive descriptor, taking care to set up the
2115 * skb correctly.
2116 */
2117static struct sk_buff *i40e_construct_skb(struct i40e_ring *rx_ring,
2118					  struct xdp_buff *xdp)
2119{
2120	unsigned int size = xdp->data_end - xdp->data;
2121	struct i40e_rx_buffer *rx_buffer;
2122	struct skb_shared_info *sinfo;
2123	unsigned int headlen;
2124	struct sk_buff *skb;
2125	u32 nr_frags = 0;
2126
2127	/* prefetch first cache line of first page */
2128	net_prefetch(xdp->data);
2129
2130	/* Note, we get here by enabling legacy-rx via:
2131	 *
2132	 *    ethtool --set-priv-flags <dev> legacy-rx on
2133	 *
2134	 * In this mode, we currently get 0 extra XDP headroom as
2135	 * opposed to having legacy-rx off, where we process XDP
2136	 * packets going to stack via i40e_build_skb(). The latter
2137	 * provides us currently with 192 bytes of headroom.
2138	 *
2139	 * For i40e_construct_skb() mode it means that the
2140	 * xdp->data_meta will always point to xdp->data, since
2141	 * the helper cannot expand the head. Should this ever
2142	 * change in future for legacy-rx mode on, then lets also
2143	 * add xdp->data_meta handling here.
2144	 */
2145
2146	/* allocate a skb to store the frags */
2147	skb = __napi_alloc_skb(&rx_ring->q_vector->napi,
2148			       I40E_RX_HDR_SIZE,
2149			       GFP_ATOMIC | __GFP_NOWARN);
2150	if (unlikely(!skb))
2151		return NULL;
2152
2153	/* Determine available headroom for copy */
2154	headlen = size;
2155	if (headlen > I40E_RX_HDR_SIZE)
2156		headlen = eth_get_headlen(skb->dev, xdp->data,
2157					  I40E_RX_HDR_SIZE);
2158
2159	/* align pull length to size of long to optimize memcpy performance */
2160	memcpy(__skb_put(skb, headlen), xdp->data,
2161	       ALIGN(headlen, sizeof(long)));
2162
2163	if (unlikely(xdp_buff_has_frags(xdp))) {
2164		sinfo = xdp_get_shared_info_from_buff(xdp);
2165		nr_frags = sinfo->nr_frags;
2166	}
2167	rx_buffer = i40e_rx_bi(rx_ring, rx_ring->next_to_clean);
2168	/* update all of the pointers */
2169	size -= headlen;
2170	if (size) {
2171		if (unlikely(nr_frags >= MAX_SKB_FRAGS)) {
2172			dev_kfree_skb(skb);
2173			return NULL;
2174		}
2175		skb_add_rx_frag(skb, 0, rx_buffer->page,
2176				rx_buffer->page_offset + headlen,
2177				size, xdp->frame_sz);
2178		/* buffer is used by skb, update page_offset */
2179		i40e_rx_buffer_flip(rx_buffer, xdp->frame_sz);
2180	} else {
2181		/* buffer is unused, reset bias back to rx_buffer */
2182		rx_buffer->pagecnt_bias++;
2183	}
2184
2185	if (unlikely(xdp_buff_has_frags(xdp))) {
2186		struct skb_shared_info *skinfo = skb_shinfo(skb);
2187
2188		memcpy(&skinfo->frags[skinfo->nr_frags], &sinfo->frags[0],
2189		       sizeof(skb_frag_t) * nr_frags);
2190
2191		xdp_update_skb_shared_info(skb, skinfo->nr_frags + nr_frags,
2192					   sinfo->xdp_frags_size,
2193					   nr_frags * xdp->frame_sz,
2194					   xdp_buff_is_frag_pfmemalloc(xdp));
2195
2196		/* First buffer has already been processed, so bump ntc */
2197		if (++rx_ring->next_to_clean == rx_ring->count)
2198			rx_ring->next_to_clean = 0;
2199
2200		i40e_process_rx_buffs(rx_ring, I40E_XDP_PASS, xdp);
2201	}
2202
2203	return skb;
2204}
2205
2206/**
2207 * i40e_build_skb - Build skb around an existing buffer
2208 * @rx_ring: Rx descriptor ring to transact packets on
2209 * @xdp: xdp_buff pointing to the data
2210 *
2211 * This function builds an skb around an existing Rx buffer, taking care
2212 * to set up the skb correctly and avoid any memcpy overhead.
2213 */
2214static struct sk_buff *i40e_build_skb(struct i40e_ring *rx_ring,
2215				      struct xdp_buff *xdp)
2216{
2217	unsigned int metasize = xdp->data - xdp->data_meta;
2218	struct skb_shared_info *sinfo;
2219	struct sk_buff *skb;
2220	u32 nr_frags;
2221
2222	/* Prefetch first cache line of first page. If xdp->data_meta
2223	 * is unused, this points exactly as xdp->data, otherwise we
2224	 * likely have a consumer accessing first few bytes of meta
2225	 * data, and then actual data.
2226	 */
2227	net_prefetch(xdp->data_meta);
2228
2229	if (unlikely(xdp_buff_has_frags(xdp))) {
2230		sinfo = xdp_get_shared_info_from_buff(xdp);
2231		nr_frags = sinfo->nr_frags;
2232	}
2233
2234	/* build an skb around the page buffer */
2235	skb = napi_build_skb(xdp->data_hard_start, xdp->frame_sz);
2236	if (unlikely(!skb))
2237		return NULL;
2238
2239	/* update pointers within the skb to store the data */
2240	skb_reserve(skb, xdp->data - xdp->data_hard_start);
2241	__skb_put(skb, xdp->data_end - xdp->data);
2242	if (metasize)
2243		skb_metadata_set(skb, metasize);
2244
2245	if (unlikely(xdp_buff_has_frags(xdp))) {
2246		xdp_update_skb_shared_info(skb, nr_frags,
2247					   sinfo->xdp_frags_size,
2248					   nr_frags * xdp->frame_sz,
2249					   xdp_buff_is_frag_pfmemalloc(xdp));
2250
2251		i40e_process_rx_buffs(rx_ring, I40E_XDP_PASS, xdp);
2252	} else {
2253		struct i40e_rx_buffer *rx_buffer;
2254
2255		rx_buffer = i40e_rx_bi(rx_ring, rx_ring->next_to_clean);
2256		/* buffer is used by skb, update page_offset */
2257		i40e_rx_buffer_flip(rx_buffer, xdp->frame_sz);
2258	}
2259
2260	return skb;
2261}
2262
2263/**
2264 * i40e_is_non_eop - process handling of non-EOP buffers
2265 * @rx_ring: Rx ring being processed
2266 * @rx_desc: Rx descriptor for current buffer
2267 *
2268 * If the buffer is an EOP buffer, this function exits returning false,
2269 * otherwise return true indicating that this is in fact a non-EOP buffer.
2270 */
2271bool i40e_is_non_eop(struct i40e_ring *rx_ring,
2272		     union i40e_rx_desc *rx_desc)
2273{
2274	/* if we are the last buffer then there is nothing else to do */
2275#define I40E_RXD_EOF BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)
2276	if (likely(i40e_test_staterr(rx_desc, I40E_RXD_EOF)))
2277		return false;
2278
2279	rx_ring->rx_stats.non_eop_descs++;
2280
2281	return true;
2282}
2283
2284static int i40e_xmit_xdp_ring(struct xdp_frame *xdpf,
2285			      struct i40e_ring *xdp_ring);
2286
2287int i40e_xmit_xdp_tx_ring(struct xdp_buff *xdp, struct i40e_ring *xdp_ring)
2288{
2289	struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
2290
2291	if (unlikely(!xdpf))
2292		return I40E_XDP_CONSUMED;
2293
2294	return i40e_xmit_xdp_ring(xdpf, xdp_ring);
2295}
2296
2297/**
2298 * i40e_run_xdp - run an XDP program
2299 * @rx_ring: Rx ring being processed
2300 * @xdp: XDP buffer containing the frame
2301 * @xdp_prog: XDP program to run
2302 **/
2303static int i40e_run_xdp(struct i40e_ring *rx_ring, struct xdp_buff *xdp, struct bpf_prog *xdp_prog)
2304{
2305	int err, result = I40E_XDP_PASS;
2306	struct i40e_ring *xdp_ring;
2307	u32 act;
2308
2309	if (!xdp_prog)
2310		goto xdp_out;
2311
2312	prefetchw(xdp->data_hard_start); /* xdp_frame write */
2313
2314	act = bpf_prog_run_xdp(xdp_prog, xdp);
2315	switch (act) {
2316	case XDP_PASS:
2317		break;
2318	case XDP_TX:
2319		xdp_ring = rx_ring->vsi->xdp_rings[rx_ring->queue_index];
2320		result = i40e_xmit_xdp_tx_ring(xdp, xdp_ring);
2321		if (result == I40E_XDP_CONSUMED)
2322			goto out_failure;
2323		break;
2324	case XDP_REDIRECT:
2325		err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog);
2326		if (err)
2327			goto out_failure;
2328		result = I40E_XDP_REDIR;
2329		break;
2330	default:
2331		bpf_warn_invalid_xdp_action(rx_ring->netdev, xdp_prog, act);
2332		fallthrough;
2333	case XDP_ABORTED:
2334out_failure:
2335		trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
2336		fallthrough; /* handle aborts by dropping packet */
2337	case XDP_DROP:
2338		result = I40E_XDP_CONSUMED;
2339		break;
2340	}
2341xdp_out:
2342	return result;
2343}
2344
2345/**
2346 * i40e_xdp_ring_update_tail - Updates the XDP Tx ring tail register
2347 * @xdp_ring: XDP Tx ring
2348 *
2349 * This function updates the XDP Tx ring tail register.
2350 **/
2351void i40e_xdp_ring_update_tail(struct i40e_ring *xdp_ring)
2352{
2353	/* Force memory writes to complete before letting h/w
2354	 * know there are new descriptors to fetch.
2355	 */
2356	wmb();
2357	writel_relaxed(xdp_ring->next_to_use, xdp_ring->tail);
2358}
2359
2360/**
2361 * i40e_update_rx_stats - Update Rx ring statistics
2362 * @rx_ring: rx descriptor ring
2363 * @total_rx_bytes: number of bytes received
2364 * @total_rx_packets: number of packets received
2365 *
2366 * This function updates the Rx ring statistics.
2367 **/
2368void i40e_update_rx_stats(struct i40e_ring *rx_ring,
2369			  unsigned int total_rx_bytes,
2370			  unsigned int total_rx_packets)
2371{
2372	u64_stats_update_begin(&rx_ring->syncp);
2373	rx_ring->stats.packets += total_rx_packets;
2374	rx_ring->stats.bytes += total_rx_bytes;
2375	u64_stats_update_end(&rx_ring->syncp);
2376	rx_ring->q_vector->rx.total_packets += total_rx_packets;
2377	rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
2378}
2379
2380/**
2381 * i40e_finalize_xdp_rx - Bump XDP Tx tail and/or flush redirect map
2382 * @rx_ring: Rx ring
2383 * @xdp_res: Result of the receive batch
2384 *
2385 * This function bumps XDP Tx tail and/or flush redirect map, and
2386 * should be called when a batch of packets has been processed in the
2387 * napi loop.
2388 **/
2389void i40e_finalize_xdp_rx(struct i40e_ring *rx_ring, unsigned int xdp_res)
2390{
2391	if (xdp_res & I40E_XDP_REDIR)
2392		xdp_do_flush();
2393
2394	if (xdp_res & I40E_XDP_TX) {
2395		struct i40e_ring *xdp_ring =
2396			rx_ring->vsi->xdp_rings[rx_ring->queue_index];
2397
2398		i40e_xdp_ring_update_tail(xdp_ring);
2399	}
2400}
2401
2402/**
2403 * i40e_inc_ntp: Advance the next_to_process index
2404 * @rx_ring: Rx ring
2405 **/
2406static void i40e_inc_ntp(struct i40e_ring *rx_ring)
2407{
2408	u32 ntp = rx_ring->next_to_process + 1;
2409
2410	ntp = (ntp < rx_ring->count) ? ntp : 0;
2411	rx_ring->next_to_process = ntp;
2412	prefetch(I40E_RX_DESC(rx_ring, ntp));
2413}
2414
2415/**
2416 * i40e_add_xdp_frag: Add a frag to xdp_buff
2417 * @xdp: xdp_buff pointing to the data
2418 * @nr_frags: return number of buffers for the packet
2419 * @rx_buffer: rx_buffer holding data of the current frag
2420 * @size: size of data of current frag
2421 */
2422static int i40e_add_xdp_frag(struct xdp_buff *xdp, u32 *nr_frags,
2423			     struct i40e_rx_buffer *rx_buffer, u32 size)
2424{
2425	struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
2426
2427	if (!xdp_buff_has_frags(xdp)) {
2428		sinfo->nr_frags = 0;
2429		sinfo->xdp_frags_size = 0;
2430		xdp_buff_set_frags_flag(xdp);
2431	} else if (unlikely(sinfo->nr_frags >= MAX_SKB_FRAGS)) {
2432		/* Overflowing packet: All frags need to be dropped */
2433		return -ENOMEM;
2434	}
2435
2436	__skb_fill_page_desc_noacc(sinfo, sinfo->nr_frags++, rx_buffer->page,
2437				   rx_buffer->page_offset, size);
2438
2439	sinfo->xdp_frags_size += size;
2440
2441	if (page_is_pfmemalloc(rx_buffer->page))
2442		xdp_buff_set_frag_pfmemalloc(xdp);
2443	*nr_frags = sinfo->nr_frags;
2444
2445	return 0;
2446}
2447
2448/**
2449 * i40e_consume_xdp_buff - Consume all the buffers of the packet and update ntc
2450 * @rx_ring: rx descriptor ring to transact packets on
2451 * @xdp: xdp_buff pointing to the data
2452 * @rx_buffer: rx_buffer of eop desc
2453 */
2454static void i40e_consume_xdp_buff(struct i40e_ring *rx_ring,
2455				  struct xdp_buff *xdp,
2456				  struct i40e_rx_buffer *rx_buffer)
2457{
2458	i40e_process_rx_buffs(rx_ring, I40E_XDP_CONSUMED, xdp);
2459	i40e_put_rx_buffer(rx_ring, rx_buffer);
2460	rx_ring->next_to_clean = rx_ring->next_to_process;
2461	xdp->data = NULL;
2462}
2463
2464/**
2465 * i40e_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
2466 * @rx_ring: rx descriptor ring to transact packets on
2467 * @budget: Total limit on number of packets to process
2468 * @rx_cleaned: Out parameter of the number of packets processed
2469 *
2470 * This function provides a "bounce buffer" approach to Rx interrupt
2471 * processing.  The advantage to this is that on systems that have
2472 * expensive overhead for IOMMU access this provides a means of avoiding
2473 * it by maintaining the mapping of the page to the system.
2474 *
2475 * Returns amount of work completed
2476 **/
2477static int i40e_clean_rx_irq(struct i40e_ring *rx_ring, int budget,
2478			     unsigned int *rx_cleaned)
2479{
2480	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
2481	u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
2482	u16 clean_threshold = rx_ring->count / 2;
2483	unsigned int offset = rx_ring->rx_offset;
2484	struct xdp_buff *xdp = &rx_ring->xdp;
2485	unsigned int xdp_xmit = 0;
2486	struct bpf_prog *xdp_prog;
2487	bool failure = false;
2488	int xdp_res = 0;
2489
2490	xdp_prog = READ_ONCE(rx_ring->xdp_prog);
2491
2492	while (likely(total_rx_packets < (unsigned int)budget)) {
2493		u16 ntp = rx_ring->next_to_process;
2494		struct i40e_rx_buffer *rx_buffer;
2495		union i40e_rx_desc *rx_desc;
2496		struct sk_buff *skb;
2497		unsigned int size;
2498		u32 nfrags = 0;
2499		bool neop;
2500		u64 qword;
2501
2502		/* return some buffers to hardware, one at a time is too slow */
2503		if (cleaned_count >= clean_threshold) {
2504			failure = failure ||
2505				  i40e_alloc_rx_buffers(rx_ring, cleaned_count);
2506			cleaned_count = 0;
2507		}
2508
2509		rx_desc = I40E_RX_DESC(rx_ring, ntp);
2510
2511		/* status_error_len will always be zero for unused descriptors
2512		 * because it's cleared in cleanup, and overlaps with hdr_addr
2513		 * which is always zero because packet split isn't used, if the
2514		 * hardware wrote DD then the length will be non-zero
2515		 */
2516		qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
2517
2518		/* This memory barrier is needed to keep us from reading
2519		 * any other fields out of the rx_desc until we have
2520		 * verified the descriptor has been written back.
2521		 */
2522		dma_rmb();
2523
2524		if (i40e_rx_is_programming_status(qword)) {
2525			i40e_clean_programming_status(rx_ring,
2526						      rx_desc->raw.qword[0],
2527						      qword);
2528			rx_buffer = i40e_rx_bi(rx_ring, ntp);
2529			i40e_inc_ntp(rx_ring);
2530			i40e_reuse_rx_page(rx_ring, rx_buffer);
2531			/* Update ntc and bump cleaned count if not in the
2532			 * middle of mb packet.
2533			 */
2534			if (rx_ring->next_to_clean == ntp) {
2535				rx_ring->next_to_clean =
2536					rx_ring->next_to_process;
2537				cleaned_count++;
2538			}
2539			continue;
2540		}
2541
2542		size = FIELD_GET(I40E_RXD_QW1_LENGTH_PBUF_MASK, qword);
2543		if (!size)
2544			break;
2545
2546		i40e_trace(clean_rx_irq, rx_ring, rx_desc, xdp);
2547		/* retrieve a buffer from the ring */
2548		rx_buffer = i40e_get_rx_buffer(rx_ring, size);
2549
2550		neop = i40e_is_non_eop(rx_ring, rx_desc);
2551		i40e_inc_ntp(rx_ring);
2552
2553		if (!xdp->data) {
2554			unsigned char *hard_start;
2555
2556			hard_start = page_address(rx_buffer->page) +
2557				     rx_buffer->page_offset - offset;
2558			xdp_prepare_buff(xdp, hard_start, offset, size, true);
2559#if (PAGE_SIZE > 4096)
2560			/* At larger PAGE_SIZE, frame_sz depend on len size */
2561			xdp->frame_sz = i40e_rx_frame_truesize(rx_ring, size);
2562#endif
2563		} else if (i40e_add_xdp_frag(xdp, &nfrags, rx_buffer, size) &&
2564			   !neop) {
2565			/* Overflowing packet: Drop all frags on EOP */
2566			i40e_consume_xdp_buff(rx_ring, xdp, rx_buffer);
2567			break;
2568		}
2569
2570		if (neop)
2571			continue;
2572
2573		xdp_res = i40e_run_xdp(rx_ring, xdp, xdp_prog);
2574
2575		if (xdp_res) {
2576			xdp_xmit |= xdp_res & (I40E_XDP_TX | I40E_XDP_REDIR);
2577
2578			if (unlikely(xdp_buff_has_frags(xdp))) {
2579				i40e_process_rx_buffs(rx_ring, xdp_res, xdp);
2580				size = xdp_get_buff_len(xdp);
2581			} else if (xdp_res & (I40E_XDP_TX | I40E_XDP_REDIR)) {
2582				i40e_rx_buffer_flip(rx_buffer, xdp->frame_sz);
2583			} else {
2584				rx_buffer->pagecnt_bias++;
2585			}
2586			total_rx_bytes += size;
2587		} else {
2588			if (ring_uses_build_skb(rx_ring))
2589				skb = i40e_build_skb(rx_ring, xdp);
2590			else
2591				skb = i40e_construct_skb(rx_ring, xdp);
2592
2593			/* drop if we failed to retrieve a buffer */
2594			if (!skb) {
2595				rx_ring->rx_stats.alloc_buff_failed++;
2596				i40e_consume_xdp_buff(rx_ring, xdp, rx_buffer);
2597				break;
2598			}
2599
2600			if (i40e_cleanup_headers(rx_ring, skb, rx_desc))
2601				goto process_next;
2602
2603			/* probably a little skewed due to removing CRC */
2604			total_rx_bytes += skb->len;
2605
2606			/* populate checksum, VLAN, and protocol */
2607			i40e_process_skb_fields(rx_ring, rx_desc, skb);
2608
2609			i40e_trace(clean_rx_irq_rx, rx_ring, rx_desc, xdp);
2610			napi_gro_receive(&rx_ring->q_vector->napi, skb);
2611		}
2612
2613		/* update budget accounting */
2614		total_rx_packets++;
2615process_next:
2616		cleaned_count += nfrags + 1;
2617		i40e_put_rx_buffer(rx_ring, rx_buffer);
2618		rx_ring->next_to_clean = rx_ring->next_to_process;
2619
2620		xdp->data = NULL;
2621	}
2622
2623	i40e_finalize_xdp_rx(rx_ring, xdp_xmit);
2624
2625	i40e_update_rx_stats(rx_ring, total_rx_bytes, total_rx_packets);
2626
2627	*rx_cleaned = total_rx_packets;
2628
2629	/* guarantee a trip back through this routine if there was a failure */
2630	return failure ? budget : (int)total_rx_packets;
2631}
2632
2633/**
2634 * i40e_buildreg_itr - build a value for writing to I40E_PFINT_DYN_CTLN register
2635 * @itr_idx: interrupt throttling index
2636 * @interval: interrupt throttling interval value in usecs
2637 * @force_swint: force software interrupt
2638 *
2639 * The function builds a value for I40E_PFINT_DYN_CTLN register that
2640 * is used to update interrupt throttling interval for specified ITR index
2641 * and optionally enforces a software interrupt. If the @itr_idx is equal
2642 * to I40E_ITR_NONE then no interval change is applied and only @force_swint
2643 * parameter is taken into account. If the interval change and enforced
2644 * software interrupt are not requested then the built value just enables
2645 * appropriate vector interrupt.
2646 **/
2647static u32 i40e_buildreg_itr(enum i40e_dyn_idx itr_idx, u16 interval,
2648			     bool force_swint)
2649{
2650	u32 val;
2651
2652	/* We don't bother with setting the CLEARPBA bit as the data sheet
2653	 * points out doing so is "meaningless since it was already
2654	 * auto-cleared". The auto-clearing happens when the interrupt is
2655	 * asserted.
2656	 *
2657	 * Hardware errata 28 for also indicates that writing to a
2658	 * xxINT_DYN_CTLx CSR with INTENA_MSK (bit 31) set to 0 will clear
2659	 * an event in the PBA anyway so we need to rely on the automask
2660	 * to hold pending events for us until the interrupt is re-enabled
2661	 *
2662	 * We have to shift the given value as it is reported in microseconds
2663	 * and the register value is recorded in 2 microsecond units.
2664	 */
2665	interval >>= 1;
2666
2667	/* 1. Enable vector interrupt
2668	 * 2. Update the interval for the specified ITR index
2669	 *    (I40E_ITR_NONE in the register is used to indicate that
2670	 *     no interval update is requested)
2671	 */
2672	val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
2673	      FIELD_PREP(I40E_PFINT_DYN_CTLN_ITR_INDX_MASK, itr_idx) |
2674	      FIELD_PREP(I40E_PFINT_DYN_CTLN_INTERVAL_MASK, interval);
2675
2676	/* 3. Enforce software interrupt trigger if requested
2677	 *    (These software interrupts rate is limited by ITR2 that is
2678	 *     set to 20K interrupts per second)
2679	 */
2680	if (force_swint)
2681		val |= I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK |
2682		       I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK |
2683		       FIELD_PREP(I40E_PFINT_DYN_CTLN_SW_ITR_INDX_MASK,
2684				  I40E_SW_ITR);
2685
2686	return val;
2687}
2688
2689/* The act of updating the ITR will cause it to immediately trigger. In order
2690 * to prevent this from throwing off adaptive update statistics we defer the
2691 * update so that it can only happen so often. So after either Tx or Rx are
2692 * updated we make the adaptive scheme wait until either the ITR completely
2693 * expires via the next_update expiration or we have been through at least
2694 * 3 interrupts.
2695 */
2696#define ITR_COUNTDOWN_START 3
2697
2698/**
2699 * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt
2700 * @vsi: the VSI we care about
2701 * @q_vector: q_vector for which itr is being updated and interrupt enabled
2702 *
2703 **/
2704static inline void i40e_update_enable_itr(struct i40e_vsi *vsi,
2705					  struct i40e_q_vector *q_vector)
2706{
2707	enum i40e_dyn_idx itr_idx = I40E_ITR_NONE;
2708	struct i40e_hw *hw = &vsi->back->hw;
2709	u16 interval = 0;
2710	u32 itr_val;
2711
2712	/* If we don't have MSIX, then we only need to re-enable icr0 */
2713	if (!test_bit(I40E_FLAG_MSIX_ENA, vsi->back->flags)) {
2714		i40e_irq_dynamic_enable_icr0(vsi->back);
2715		return;
2716	}
2717
2718	/* These will do nothing if dynamic updates are not enabled */
2719	i40e_update_itr(q_vector, &q_vector->tx);
2720	i40e_update_itr(q_vector, &q_vector->rx);
2721
2722	/* This block of logic allows us to get away with only updating
2723	 * one ITR value with each interrupt. The idea is to perform a
2724	 * pseudo-lazy update with the following criteria.
2725	 *
2726	 * 1. Rx is given higher priority than Tx if both are in same state
2727	 * 2. If we must reduce an ITR that is given highest priority.
2728	 * 3. We then give priority to increasing ITR based on amount.
2729	 */
2730	if (q_vector->rx.target_itr < q_vector->rx.current_itr) {
2731		/* Rx ITR needs to be reduced, this is highest priority */
2732		itr_idx = I40E_RX_ITR;
2733		interval = q_vector->rx.target_itr;
2734		q_vector->rx.current_itr = q_vector->rx.target_itr;
2735		q_vector->itr_countdown = ITR_COUNTDOWN_START;
2736	} else if ((q_vector->tx.target_itr < q_vector->tx.current_itr) ||
2737		   ((q_vector->rx.target_itr - q_vector->rx.current_itr) <
2738		    (q_vector->tx.target_itr - q_vector->tx.current_itr))) {
2739		/* Tx ITR needs to be reduced, this is second priority
2740		 * Tx ITR needs to be increased more than Rx, fourth priority
2741		 */
2742		itr_idx = I40E_TX_ITR;
2743		interval = q_vector->tx.target_itr;
2744		q_vector->tx.current_itr = q_vector->tx.target_itr;
2745		q_vector->itr_countdown = ITR_COUNTDOWN_START;
2746	} else if (q_vector->rx.current_itr != q_vector->rx.target_itr) {
2747		/* Rx ITR needs to be increased, third priority */
2748		itr_idx = I40E_RX_ITR;
2749		interval = q_vector->rx.target_itr;
2750		q_vector->rx.current_itr = q_vector->rx.target_itr;
2751		q_vector->itr_countdown = ITR_COUNTDOWN_START;
2752	} else {
2753		/* No ITR update, lowest priority */
2754		if (q_vector->itr_countdown)
2755			q_vector->itr_countdown--;
2756	}
2757
2758	/* Do not update interrupt control register if VSI is down */
2759	if (test_bit(__I40E_VSI_DOWN, vsi->state))
2760		return;
2761
2762	/* Update ITR interval if necessary and enforce software interrupt
2763	 * if we are exiting busy poll.
2764	 */
2765	if (q_vector->in_busy_poll) {
2766		itr_val = i40e_buildreg_itr(itr_idx, interval, true);
2767		q_vector->in_busy_poll = false;
2768	} else {
2769		itr_val = i40e_buildreg_itr(itr_idx, interval, false);
2770	}
2771	wr32(hw, I40E_PFINT_DYN_CTLN(q_vector->reg_idx), itr_val);
2772}
2773
2774/**
2775 * i40e_napi_poll - NAPI polling Rx/Tx cleanup routine
2776 * @napi: napi struct with our devices info in it
2777 * @budget: amount of work driver is allowed to do this pass, in packets
2778 *
2779 * This function will clean all queues associated with a q_vector.
2780 *
2781 * Returns the amount of work done
2782 **/
2783int i40e_napi_poll(struct napi_struct *napi, int budget)
2784{
2785	struct i40e_q_vector *q_vector =
2786			       container_of(napi, struct i40e_q_vector, napi);
2787	struct i40e_vsi *vsi = q_vector->vsi;
2788	struct i40e_ring *ring;
2789	bool tx_clean_complete = true;
2790	bool rx_clean_complete = true;
2791	unsigned int tx_cleaned = 0;
2792	unsigned int rx_cleaned = 0;
2793	bool clean_complete = true;
2794	bool arm_wb = false;
2795	int budget_per_ring;
2796	int work_done = 0;
2797
2798	if (test_bit(__I40E_VSI_DOWN, vsi->state)) {
2799		napi_complete(napi);
2800		return 0;
2801	}
2802
2803	/* Since the actual Tx work is minimal, we can give the Tx a larger
2804	 * budget and be more aggressive about cleaning up the Tx descriptors.
2805	 */
2806	i40e_for_each_ring(ring, q_vector->tx) {
2807		bool wd = ring->xsk_pool ?
2808			  i40e_clean_xdp_tx_irq(vsi, ring) :
2809			  i40e_clean_tx_irq(vsi, ring, budget, &tx_cleaned);
2810
2811		if (!wd) {
2812			clean_complete = tx_clean_complete = false;
2813			continue;
2814		}
2815		arm_wb |= ring->arm_wb;
2816		ring->arm_wb = false;
2817	}
2818
2819	/* Handle case where we are called by netpoll with a budget of 0 */
2820	if (budget <= 0)
2821		goto tx_only;
2822
2823	/* normally we have 1 Rx ring per q_vector */
2824	if (unlikely(q_vector->num_ringpairs > 1))
2825		/* We attempt to distribute budget to each Rx queue fairly, but
2826		 * don't allow the budget to go below 1 because that would exit
2827		 * polling early.
2828		 */
2829		budget_per_ring = max_t(int, budget / q_vector->num_ringpairs, 1);
2830	else
2831		/* Max of 1 Rx ring in this q_vector so give it the budget */
2832		budget_per_ring = budget;
2833
2834	i40e_for_each_ring(ring, q_vector->rx) {
2835		int cleaned = ring->xsk_pool ?
2836			      i40e_clean_rx_irq_zc(ring, budget_per_ring) :
2837			      i40e_clean_rx_irq(ring, budget_per_ring, &rx_cleaned);
2838
2839		work_done += cleaned;
2840		/* if we clean as many as budgeted, we must not be done */
2841		if (cleaned >= budget_per_ring)
2842			clean_complete = rx_clean_complete = false;
2843	}
2844
2845	if (!i40e_enabled_xdp_vsi(vsi))
2846		trace_i40e_napi_poll(napi, q_vector, budget, budget_per_ring, rx_cleaned,
2847				     tx_cleaned, rx_clean_complete, tx_clean_complete);
2848
2849	/* If work not completed, return budget and polling will return */
2850	if (!clean_complete) {
2851		int cpu_id = smp_processor_id();
2852
2853		/* It is possible that the interrupt affinity has changed but,
2854		 * if the cpu is pegged at 100%, polling will never exit while
2855		 * traffic continues and the interrupt will be stuck on this
2856		 * cpu.  We check to make sure affinity is correct before we
2857		 * continue to poll, otherwise we must stop polling so the
2858		 * interrupt can move to the correct cpu.
2859		 */
2860		if (!cpumask_test_cpu(cpu_id, &q_vector->affinity_mask)) {
2861			/* Tell napi that we are done polling */
2862			napi_complete_done(napi, work_done);
2863
2864			/* Force an interrupt */
2865			i40e_force_wb(vsi, q_vector);
2866
2867			/* Return budget-1 so that polling stops */
2868			return budget - 1;
2869		}
2870tx_only:
2871		if (arm_wb) {
2872			q_vector->tx.ring[0].tx_stats.tx_force_wb++;
2873			i40e_enable_wb_on_itr(vsi, q_vector);
2874		}
2875		return budget;
2876	}
2877
2878	if (q_vector->tx.ring[0].flags & I40E_TXR_FLAGS_WB_ON_ITR)
2879		q_vector->arm_wb_state = false;
2880
2881	/* Exit the polling mode, but don't re-enable interrupts if stack might
2882	 * poll us due to busy-polling
2883	 */
2884	if (likely(napi_complete_done(napi, work_done)))
2885		i40e_update_enable_itr(vsi, q_vector);
2886	else
2887		q_vector->in_busy_poll = true;
2888
2889	return min(work_done, budget - 1);
2890}
2891
2892/**
2893 * i40e_atr - Add a Flow Director ATR filter
2894 * @tx_ring:  ring to add programming descriptor to
2895 * @skb:      send buffer
2896 * @tx_flags: send tx flags
2897 **/
2898static void i40e_atr(struct i40e_ring *tx_ring, struct sk_buff *skb,
2899		     u32 tx_flags)
2900{
2901	struct i40e_filter_program_desc *fdir_desc;
2902	struct i40e_pf *pf = tx_ring->vsi->back;
2903	union {
2904		unsigned char *network;
2905		struct iphdr *ipv4;
2906		struct ipv6hdr *ipv6;
2907	} hdr;
2908	struct tcphdr *th;
2909	unsigned int hlen;
2910	u32 flex_ptype, dtype_cmd;
2911	int l4_proto;
2912	u16 i;
2913
2914	/* make sure ATR is enabled */
2915	if (!test_bit(I40E_FLAG_FD_ATR_ENA, pf->flags))
2916		return;
2917
2918	if (test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state))
2919		return;
2920
2921	/* if sampling is disabled do nothing */
2922	if (!tx_ring->atr_sample_rate)
2923		return;
2924
2925	/* Currently only IPv4/IPv6 with TCP is supported */
2926	if (!(tx_flags & (I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6)))
2927		return;
2928
2929	/* snag network header to get L4 type and address */
2930	hdr.network = (tx_flags & I40E_TX_FLAGS_UDP_TUNNEL) ?
2931		      skb_inner_network_header(skb) : skb_network_header(skb);
2932
2933	/* Note: tx_flags gets modified to reflect inner protocols in
2934	 * tx_enable_csum function if encap is enabled.
2935	 */
2936	if (tx_flags & I40E_TX_FLAGS_IPV4) {
2937		/* access ihl as u8 to avoid unaligned access on ia64 */
2938		hlen = (hdr.network[0] & 0x0F) << 2;
2939		l4_proto = hdr.ipv4->protocol;
2940	} else {
2941		/* find the start of the innermost ipv6 header */
2942		unsigned int inner_hlen = hdr.network - skb->data;
2943		unsigned int h_offset = inner_hlen;
2944
2945		/* this function updates h_offset to the end of the header */
2946		l4_proto =
2947		  ipv6_find_hdr(skb, &h_offset, IPPROTO_TCP, NULL, NULL);
2948		/* hlen will contain our best estimate of the tcp header */
2949		hlen = h_offset - inner_hlen;
2950	}
2951
2952	if (l4_proto != IPPROTO_TCP)
2953		return;
2954
2955	th = (struct tcphdr *)(hdr.network + hlen);
2956
2957	/* Due to lack of space, no more new filters can be programmed */
2958	if (th->syn && test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state))
2959		return;
2960	if (test_bit(I40E_FLAG_HW_ATR_EVICT_ENA, pf->flags)) {
2961		/* HW ATR eviction will take care of removing filters on FIN
2962		 * and RST packets.
2963		 */
2964		if (th->fin || th->rst)
2965			return;
2966	}
2967
2968	tx_ring->atr_count++;
2969
2970	/* sample on all syn/fin/rst packets or once every atr sample rate */
2971	if (!th->fin &&
2972	    !th->syn &&
2973	    !th->rst &&
2974	    (tx_ring->atr_count < tx_ring->atr_sample_rate))
2975		return;
2976
2977	tx_ring->atr_count = 0;
2978
2979	/* grab the next descriptor */
2980	i = tx_ring->next_to_use;
2981	fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
2982
2983	i++;
2984	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2985
2986	flex_ptype = FIELD_PREP(I40E_TXD_FLTR_QW0_QINDEX_MASK,
2987				tx_ring->queue_index);
2988	flex_ptype |= (tx_flags & I40E_TX_FLAGS_IPV4) ?
2989		      (I40E_FILTER_PCTYPE_NONF_IPV4_TCP <<
2990		       I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) :
2991		      (I40E_FILTER_PCTYPE_NONF_IPV6_TCP <<
2992		       I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
2993
2994	flex_ptype |= tx_ring->vsi->id << I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;
2995
2996	dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
2997
2998	dtype_cmd |= (th->fin || th->rst) ?
2999		     (I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
3000		      I40E_TXD_FLTR_QW1_PCMD_SHIFT) :
3001		     (I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
3002		      I40E_TXD_FLTR_QW1_PCMD_SHIFT);
3003
3004	dtype_cmd |= I40E_FILTER_PROGRAM_DESC_DEST_DIRECT_PACKET_QINDEX <<
3005		     I40E_TXD_FLTR_QW1_DEST_SHIFT;
3006
3007	dtype_cmd |= I40E_FILTER_PROGRAM_DESC_FD_STATUS_FD_ID <<
3008		     I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT;
3009
3010	dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
3011	if (!(tx_flags & I40E_TX_FLAGS_UDP_TUNNEL))
3012		dtype_cmd |=
3013			FIELD_PREP(I40E_TXD_FLTR_QW1_CNTINDEX_MASK,
3014				   I40E_FD_ATR_STAT_IDX(pf->hw.pf_id));
3015	else
3016		dtype_cmd |=
3017			FIELD_PREP(I40E_TXD_FLTR_QW1_CNTINDEX_MASK,
3018				   I40E_FD_ATR_TUNNEL_STAT_IDX(pf->hw.pf_id));
3019
3020	if (test_bit(I40E_FLAG_HW_ATR_EVICT_ENA, pf->flags))
3021		dtype_cmd |= I40E_TXD_FLTR_QW1_ATR_MASK;
3022
3023	fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
3024	fdir_desc->rsvd = cpu_to_le32(0);
3025	fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
3026	fdir_desc->fd_id = cpu_to_le32(0);
3027}
3028
3029/**
3030 * i40e_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
3031 * @skb:     send buffer
3032 * @tx_ring: ring to send buffer on
3033 * @flags:   the tx flags to be set
3034 *
3035 * Checks the skb and set up correspondingly several generic transmit flags
3036 * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
3037 *
3038 * Returns error code indicate the frame should be dropped upon error and the
3039 * otherwise  returns 0 to indicate the flags has been set properly.
3040 **/
3041static inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
3042					     struct i40e_ring *tx_ring,
3043					     u32 *flags)
3044{
3045	__be16 protocol = skb->protocol;
3046	u32  tx_flags = 0;
3047
3048	if (protocol == htons(ETH_P_8021Q) &&
3049	    !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
3050		/* When HW VLAN acceleration is turned off by the user the
3051		 * stack sets the protocol to 8021q so that the driver
3052		 * can take any steps required to support the SW only
3053		 * VLAN handling.  In our case the driver doesn't need
3054		 * to take any further steps so just set the protocol
3055		 * to the encapsulated ethertype.
3056		 */
3057		skb->protocol = vlan_get_protocol(skb);
3058		goto out;
3059	}
3060
3061	/* if we have a HW VLAN tag being added, default to the HW one */
3062	if (skb_vlan_tag_present(skb)) {
3063		tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
3064		tx_flags |= I40E_TX_FLAGS_HW_VLAN;
3065	/* else if it is a SW VLAN, check the next protocol and store the tag */
3066	} else if (protocol == htons(ETH_P_8021Q)) {
3067		struct vlan_hdr *vhdr, _vhdr;
3068
3069		vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
3070		if (!vhdr)
3071			return -EINVAL;
3072
3073		protocol = vhdr->h_vlan_encapsulated_proto;
3074		tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
3075		tx_flags |= I40E_TX_FLAGS_SW_VLAN;
3076	}
3077
3078	if (!test_bit(I40E_FLAG_DCB_ENA, tx_ring->vsi->back->flags))
3079		goto out;
3080
3081	/* Insert 802.1p priority into VLAN header */
3082	if ((tx_flags & (I40E_TX_FLAGS_HW_VLAN | I40E_TX_FLAGS_SW_VLAN)) ||
3083	    (skb->priority != TC_PRIO_CONTROL)) {
3084		tx_flags &= ~I40E_TX_FLAGS_VLAN_PRIO_MASK;
3085		tx_flags |= (skb->priority & 0x7) <<
3086				I40E_TX_FLAGS_VLAN_PRIO_SHIFT;
3087		if (tx_flags & I40E_TX_FLAGS_SW_VLAN) {
3088			struct vlan_ethhdr *vhdr;
3089			int rc;
3090
3091			rc = skb_cow_head(skb, 0);
3092			if (rc < 0)
3093				return rc;
3094			vhdr = skb_vlan_eth_hdr(skb);
3095			vhdr->h_vlan_TCI = htons(tx_flags >>
3096						 I40E_TX_FLAGS_VLAN_SHIFT);
3097		} else {
3098			tx_flags |= I40E_TX_FLAGS_HW_VLAN;
3099		}
3100	}
3101
3102out:
3103	*flags = tx_flags;
3104	return 0;
3105}
3106
3107/**
3108 * i40e_tso - set up the tso context descriptor
3109 * @first:    pointer to first Tx buffer for xmit
3110 * @hdr_len:  ptr to the size of the packet header
3111 * @cd_type_cmd_tso_mss: Quad Word 1
3112 *
3113 * Returns 0 if no TSO can happen, 1 if tso is going, or error
3114 **/
3115static int i40e_tso(struct i40e_tx_buffer *first, u8 *hdr_len,
3116		    u64 *cd_type_cmd_tso_mss)
3117{
3118	struct sk_buff *skb = first->skb;
3119	u64 cd_cmd, cd_tso_len, cd_mss;
3120	__be16 protocol;
3121	union {
3122		struct iphdr *v4;
3123		struct ipv6hdr *v6;
3124		unsigned char *hdr;
3125	} ip;
3126	union {
3127		struct tcphdr *tcp;
3128		struct udphdr *udp;
3129		unsigned char *hdr;
3130	} l4;
3131	u32 paylen, l4_offset;
3132	u16 gso_size;
3133	int err;
3134
3135	if (skb->ip_summed != CHECKSUM_PARTIAL)
3136		return 0;
3137
3138	if (!skb_is_gso(skb))
3139		return 0;
3140
3141	err = skb_cow_head(skb, 0);
3142	if (err < 0)
3143		return err;
3144
3145	protocol = vlan_get_protocol(skb);
3146
3147	if (eth_p_mpls(protocol))
3148		ip.hdr = skb_inner_network_header(skb);
3149	else
3150		ip.hdr = skb_network_header(skb);
3151	l4.hdr = skb_checksum_start(skb);
3152
3153	/* initialize outer IP header fields */
3154	if (ip.v4->version == 4) {
3155		ip.v4->tot_len = 0;
3156		ip.v4->check = 0;
3157
3158		first->tx_flags |= I40E_TX_FLAGS_TSO;
3159	} else {
3160		ip.v6->payload_len = 0;
3161		first->tx_flags |= I40E_TX_FLAGS_TSO;
3162	}
3163
3164	if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
3165					 SKB_GSO_GRE_CSUM |
3166					 SKB_GSO_IPXIP4 |
3167					 SKB_GSO_IPXIP6 |
3168					 SKB_GSO_UDP_TUNNEL |
3169					 SKB_GSO_UDP_TUNNEL_CSUM)) {
3170		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
3171		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
3172			l4.udp->len = 0;
3173
3174			/* determine offset of outer transport header */
3175			l4_offset = l4.hdr - skb->data;
3176
3177			/* remove payload length from outer checksum */
3178			paylen = skb->len - l4_offset;
3179			csum_replace_by_diff(&l4.udp->check,
3180					     (__force __wsum)htonl(paylen));
3181		}
3182
3183		/* reset pointers to inner headers */
3184		ip.hdr = skb_inner_network_header(skb);
3185		l4.hdr = skb_inner_transport_header(skb);
3186
3187		/* initialize inner IP header fields */
3188		if (ip.v4->version == 4) {
3189			ip.v4->tot_len = 0;
3190			ip.v4->check = 0;
3191		} else {
3192			ip.v6->payload_len = 0;
3193		}
3194	}
3195
3196	/* determine offset of inner transport header */
3197	l4_offset = l4.hdr - skb->data;
3198
3199	/* remove payload length from inner checksum */
3200	paylen = skb->len - l4_offset;
3201
3202	if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
3203		csum_replace_by_diff(&l4.udp->check, (__force __wsum)htonl(paylen));
3204		/* compute length of segmentation header */
3205		*hdr_len = sizeof(*l4.udp) + l4_offset;
3206	} else {
3207		csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen));
3208		/* compute length of segmentation header */
3209		*hdr_len = (l4.tcp->doff * 4) + l4_offset;
3210	}
3211
3212	/* pull values out of skb_shinfo */
3213	gso_size = skb_shinfo(skb)->gso_size;
3214
3215	/* update GSO size and bytecount with header size */
3216	first->gso_segs = skb_shinfo(skb)->gso_segs;
3217	first->bytecount += (first->gso_segs - 1) * *hdr_len;
3218
3219	/* find the field values */
3220	cd_cmd = I40E_TX_CTX_DESC_TSO;
3221	cd_tso_len = skb->len - *hdr_len;
3222	cd_mss = gso_size;
3223	*cd_type_cmd_tso_mss |= (cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
3224				(cd_tso_len << I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
3225				(cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
3226	return 1;
3227}
3228
3229/**
3230 * i40e_tsyn - set up the tsyn context descriptor
3231 * @tx_ring:  ptr to the ring to send
3232 * @skb:      ptr to the skb we're sending
3233 * @tx_flags: the collected send information
3234 * @cd_type_cmd_tso_mss: Quad Word 1
3235 *
3236 * Returns 0 if no Tx timestamp can happen and 1 if the timestamp will happen
3237 **/
3238static int i40e_tsyn(struct i40e_ring *tx_ring, struct sk_buff *skb,
3239		     u32 tx_flags, u64 *cd_type_cmd_tso_mss)
3240{
3241	struct i40e_pf *pf;
3242
3243	if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)))
3244		return 0;
3245
3246	/* Tx timestamps cannot be sampled when doing TSO */
3247	if (tx_flags & I40E_TX_FLAGS_TSO)
3248		return 0;
3249
3250	/* only timestamp the outbound packet if the user has requested it and
3251	 * we are not already transmitting a packet to be timestamped
3252	 */
3253	pf = i40e_netdev_to_pf(tx_ring->netdev);
3254	if (!test_bit(I40E_FLAG_PTP_ENA, pf->flags))
3255		return 0;
3256
3257	if (pf->ptp_tx &&
3258	    !test_and_set_bit_lock(__I40E_PTP_TX_IN_PROGRESS, pf->state)) {
3259		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3260		pf->ptp_tx_start = jiffies;
3261		pf->ptp_tx_skb = skb_get(skb);
3262	} else {
3263		pf->tx_hwtstamp_skipped++;
3264		return 0;
3265	}
3266
3267	*cd_type_cmd_tso_mss |= (u64)I40E_TX_CTX_DESC_TSYN <<
3268				I40E_TXD_CTX_QW1_CMD_SHIFT;
3269
3270	return 1;
3271}
3272
3273/**
3274 * i40e_tx_enable_csum - Enable Tx checksum offloads
3275 * @skb: send buffer
3276 * @tx_flags: pointer to Tx flags currently set
3277 * @td_cmd: Tx descriptor command bits to set
3278 * @td_offset: Tx descriptor header offsets to set
3279 * @tx_ring: Tx descriptor ring
3280 * @cd_tunneling: ptr to context desc bits
3281 **/
3282static int i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
3283			       u32 *td_cmd, u32 *td_offset,
3284			       struct i40e_ring *tx_ring,
3285			       u32 *cd_tunneling)
3286{
3287	union {
3288		struct iphdr *v4;
3289		struct ipv6hdr *v6;
3290		unsigned char *hdr;
3291	} ip;
3292	union {
3293		struct tcphdr *tcp;
3294		struct udphdr *udp;
3295		unsigned char *hdr;
3296	} l4;
3297	unsigned char *exthdr;
3298	u32 offset, cmd = 0;
3299	__be16 frag_off;
3300	__be16 protocol;
3301	u8 l4_proto = 0;
3302
3303	if (skb->ip_summed != CHECKSUM_PARTIAL)
3304		return 0;
3305
3306	protocol = vlan_get_protocol(skb);
3307
3308	if (eth_p_mpls(protocol)) {
3309		ip.hdr = skb_inner_network_header(skb);
3310		l4.hdr = skb_checksum_start(skb);
3311	} else {
3312		ip.hdr = skb_network_header(skb);
3313		l4.hdr = skb_transport_header(skb);
3314	}
3315
3316	/* set the tx_flags to indicate the IP protocol type. this is
3317	 * required so that checksum header computation below is accurate.
3318	 */
3319	if (ip.v4->version == 4)
3320		*tx_flags |= I40E_TX_FLAGS_IPV4;
3321	else
3322		*tx_flags |= I40E_TX_FLAGS_IPV6;
3323
3324	/* compute outer L2 header size */
3325	offset = ((ip.hdr - skb->data) / 2) << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
3326
3327	if (skb->encapsulation) {
3328		u32 tunnel = 0;
3329		/* define outer network header type */
3330		if (*tx_flags & I40E_TX_FLAGS_IPV4) {
3331			tunnel |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
3332				  I40E_TX_CTX_EXT_IP_IPV4 :
3333				  I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
3334
3335			l4_proto = ip.v4->protocol;
3336		} else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
3337			int ret;
3338
3339			tunnel |= I40E_TX_CTX_EXT_IP_IPV6;
3340
3341			exthdr = ip.hdr + sizeof(*ip.v6);
3342			l4_proto = ip.v6->nexthdr;
3343			ret = ipv6_skip_exthdr(skb, exthdr - skb->data,
3344					       &l4_proto, &frag_off);
3345			if (ret < 0)
3346				return -1;
3347		}
3348
3349		/* define outer transport */
3350		switch (l4_proto) {
3351		case IPPROTO_UDP:
3352			tunnel |= I40E_TXD_CTX_UDP_TUNNELING;
3353			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3354			break;
3355		case IPPROTO_GRE:
3356			tunnel |= I40E_TXD_CTX_GRE_TUNNELING;
3357			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3358			break;
3359		case IPPROTO_IPIP:
3360		case IPPROTO_IPV6:
3361			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3362			l4.hdr = skb_inner_network_header(skb);
3363			break;
3364		default:
3365			if (*tx_flags & I40E_TX_FLAGS_TSO)
3366				return -1;
3367
3368			skb_checksum_help(skb);
3369			return 0;
3370		}
3371
3372		/* compute outer L3 header size */
3373		tunnel |= ((l4.hdr - ip.hdr) / 4) <<
3374			  I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT;
3375
3376		/* switch IP header pointer from outer to inner header */
3377		ip.hdr = skb_inner_network_header(skb);
3378
3379		/* compute tunnel header size */
3380		tunnel |= ((ip.hdr - l4.hdr) / 2) <<
3381			  I40E_TXD_CTX_QW0_NATLEN_SHIFT;
3382
3383		/* indicate if we need to offload outer UDP header */
3384		if ((*tx_flags & I40E_TX_FLAGS_TSO) &&
3385		    !(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
3386		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
3387			tunnel |= I40E_TXD_CTX_QW0_L4T_CS_MASK;
3388
3389		/* record tunnel offload values */
3390		*cd_tunneling |= tunnel;
3391
3392		/* switch L4 header pointer from outer to inner */
3393		l4.hdr = skb_inner_transport_header(skb);
3394		l4_proto = 0;
3395
3396		/* reset type as we transition from outer to inner headers */
3397		*tx_flags &= ~(I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6);
3398		if (ip.v4->version == 4)
3399			*tx_flags |= I40E_TX_FLAGS_IPV4;
3400		if (ip.v6->version == 6)
3401			*tx_flags |= I40E_TX_FLAGS_IPV6;
3402	}
3403
3404	/* Enable IP checksum offloads */
3405	if (*tx_flags & I40E_TX_FLAGS_IPV4) {
3406		l4_proto = ip.v4->protocol;
3407		/* the stack computes the IP header already, the only time we
3408		 * need the hardware to recompute it is in the case of TSO.
3409		 */
3410		cmd |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
3411		       I40E_TX_DESC_CMD_IIPT_IPV4_CSUM :
3412		       I40E_TX_DESC_CMD_IIPT_IPV4;
3413	} else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
3414		cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
3415
3416		exthdr = ip.hdr + sizeof(*ip.v6);
3417		l4_proto = ip.v6->nexthdr;
3418		if (l4.hdr != exthdr)
3419			ipv6_skip_exthdr(skb, exthdr - skb->data,
3420					 &l4_proto, &frag_off);
3421	}
3422
3423	/* compute inner L3 header size */
3424	offset |= ((l4.hdr - ip.hdr) / 4) << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
3425
3426	/* Enable L4 checksum offloads */
3427	switch (l4_proto) {
3428	case IPPROTO_TCP:
3429		/* enable checksum offloads */
3430		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
3431		offset |= l4.tcp->doff << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3432		break;
3433	case IPPROTO_SCTP:
3434		/* enable SCTP checksum offload */
3435		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
3436		offset |= (sizeof(struct sctphdr) >> 2) <<
3437			  I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3438		break;
3439	case IPPROTO_UDP:
3440		/* enable UDP checksum offload */
3441		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
3442		offset |= (sizeof(struct udphdr) >> 2) <<
3443			  I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3444		break;
3445	default:
3446		if (*tx_flags & I40E_TX_FLAGS_TSO)
3447			return -1;
3448		skb_checksum_help(skb);
3449		return 0;
3450	}
3451
3452	*td_cmd |= cmd;
3453	*td_offset |= offset;
3454
3455	return 1;
3456}
3457
3458/**
3459 * i40e_create_tx_ctx - Build the Tx context descriptor
3460 * @tx_ring:  ring to create the descriptor on
3461 * @cd_type_cmd_tso_mss: Quad Word 1
3462 * @cd_tunneling: Quad Word 0 - bits 0-31
3463 * @cd_l2tag2: Quad Word 0 - bits 32-63
3464 **/
3465static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
3466			       const u64 cd_type_cmd_tso_mss,
3467			       const u32 cd_tunneling, const u32 cd_l2tag2)
3468{
3469	struct i40e_tx_context_desc *context_desc;
3470	int i = tx_ring->next_to_use;
3471
3472	if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
3473	    !cd_tunneling && !cd_l2tag2)
3474		return;
3475
3476	/* grab the next descriptor */
3477	context_desc = I40E_TX_CTXTDESC(tx_ring, i);
3478
3479	i++;
3480	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
3481
3482	/* cpu_to_le32 and assign to struct fields */
3483	context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
3484	context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
3485	context_desc->rsvd = cpu_to_le16(0);
3486	context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
3487}
3488
3489/**
3490 * __i40e_maybe_stop_tx - 2nd level check for tx stop conditions
3491 * @tx_ring: the ring to be checked
3492 * @size:    the size buffer we want to assure is available
3493 *
3494 * Returns -EBUSY if a stop is needed, else 0
3495 **/
3496int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
3497{
3498	netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
3499	/* Memory barrier before checking head and tail */
3500	smp_mb();
3501
3502	++tx_ring->tx_stats.tx_stopped;
3503
3504	/* Check again in a case another CPU has just made room available. */
3505	if (likely(I40E_DESC_UNUSED(tx_ring) < size))
3506		return -EBUSY;
3507
3508	/* A reprieve! - use start_queue because it doesn't call schedule */
3509	netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
3510	++tx_ring->tx_stats.restart_queue;
3511	return 0;
3512}
3513
3514/**
3515 * __i40e_chk_linearize - Check if there are more than 8 buffers per packet
3516 * @skb:      send buffer
3517 *
3518 * Note: Our HW can't DMA more than 8 buffers to build a packet on the wire
3519 * and so we need to figure out the cases where we need to linearize the skb.
3520 *
3521 * For TSO we need to count the TSO header and segment payload separately.
3522 * As such we need to check cases where we have 7 fragments or more as we
3523 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
3524 * the segment payload in the first descriptor, and another 7 for the
3525 * fragments.
3526 **/
3527bool __i40e_chk_linearize(struct sk_buff *skb)
3528{
3529	const skb_frag_t *frag, *stale;
3530	int nr_frags, sum;
3531
3532	/* no need to check if number of frags is less than 7 */
3533	nr_frags = skb_shinfo(skb)->nr_frags;
3534	if (nr_frags < (I40E_MAX_BUFFER_TXD - 1))
3535		return false;
3536
3537	/* We need to walk through the list and validate that each group
3538	 * of 6 fragments totals at least gso_size.
3539	 */
3540	nr_frags -= I40E_MAX_BUFFER_TXD - 2;
3541	frag = &skb_shinfo(skb)->frags[0];
3542
3543	/* Initialize size to the negative value of gso_size minus 1.  We
3544	 * use this as the worst case scenerio in which the frag ahead
3545	 * of us only provides one byte which is why we are limited to 6
3546	 * descriptors for a single transmit as the header and previous
3547	 * fragment are already consuming 2 descriptors.
3548	 */
3549	sum = 1 - skb_shinfo(skb)->gso_size;
3550
3551	/* Add size of frags 0 through 4 to create our initial sum */
3552	sum += skb_frag_size(frag++);
3553	sum += skb_frag_size(frag++);
3554	sum += skb_frag_size(frag++);
3555	sum += skb_frag_size(frag++);
3556	sum += skb_frag_size(frag++);
3557
3558	/* Walk through fragments adding latest fragment, testing it, and
3559	 * then removing stale fragments from the sum.
3560	 */
3561	for (stale = &skb_shinfo(skb)->frags[0];; stale++) {
3562		int stale_size = skb_frag_size(stale);
3563
3564		sum += skb_frag_size(frag++);
3565
3566		/* The stale fragment may present us with a smaller
3567		 * descriptor than the actual fragment size. To account
3568		 * for that we need to remove all the data on the front and
3569		 * figure out what the remainder would be in the last
3570		 * descriptor associated with the fragment.
3571		 */
3572		if (stale_size > I40E_MAX_DATA_PER_TXD) {
3573			int align_pad = -(skb_frag_off(stale)) &
3574					(I40E_MAX_READ_REQ_SIZE - 1);
3575
3576			sum -= align_pad;
3577			stale_size -= align_pad;
3578
3579			do {
3580				sum -= I40E_MAX_DATA_PER_TXD_ALIGNED;
3581				stale_size -= I40E_MAX_DATA_PER_TXD_ALIGNED;
3582			} while (stale_size > I40E_MAX_DATA_PER_TXD);
3583		}
3584
3585		/* if sum is negative we failed to make sufficient progress */
3586		if (sum < 0)
3587			return true;
3588
3589		if (!nr_frags--)
3590			break;
3591
3592		sum -= stale_size;
3593	}
3594
3595	return false;
3596}
3597
3598/**
3599 * i40e_tx_map - Build the Tx descriptor
3600 * @tx_ring:  ring to send buffer on
3601 * @skb:      send buffer
3602 * @first:    first buffer info buffer to use
3603 * @tx_flags: collected send information
3604 * @hdr_len:  size of the packet header
3605 * @td_cmd:   the command field in the descriptor
3606 * @td_offset: offset for checksum or crc
3607 *
3608 * Returns 0 on success, -1 on failure to DMA
3609 **/
3610static inline int i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
3611			      struct i40e_tx_buffer *first, u32 tx_flags,
3612			      const u8 hdr_len, u32 td_cmd, u32 td_offset)
3613{
3614	unsigned int data_len = skb->data_len;
3615	unsigned int size = skb_headlen(skb);
3616	skb_frag_t *frag;
3617	struct i40e_tx_buffer *tx_bi;
3618	struct i40e_tx_desc *tx_desc;
3619	u16 i = tx_ring->next_to_use;
3620	u32 td_tag = 0;
3621	dma_addr_t dma;
3622	u16 desc_count = 1;
3623
3624	if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
3625		td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
3626		td_tag = FIELD_GET(I40E_TX_FLAGS_VLAN_MASK, tx_flags);
3627	}
3628
3629	first->tx_flags = tx_flags;
3630
3631	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
3632
3633	tx_desc = I40E_TX_DESC(tx_ring, i);
3634	tx_bi = first;
3635
3636	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
3637		unsigned int max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
3638
3639		if (dma_mapping_error(tx_ring->dev, dma))
3640			goto dma_error;
3641
3642		/* record length, and DMA address */
3643		dma_unmap_len_set(tx_bi, len, size);
3644		dma_unmap_addr_set(tx_bi, dma, dma);
3645
3646		/* align size to end of page */
3647		max_data += -dma & (I40E_MAX_READ_REQ_SIZE - 1);
3648		tx_desc->buffer_addr = cpu_to_le64(dma);
3649
3650		while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
3651			tx_desc->cmd_type_offset_bsz =
3652				build_ctob(td_cmd, td_offset,
3653					   max_data, td_tag);
3654
3655			tx_desc++;
3656			i++;
3657			desc_count++;
3658
3659			if (i == tx_ring->count) {
3660				tx_desc = I40E_TX_DESC(tx_ring, 0);
3661				i = 0;
3662			}
3663
3664			dma += max_data;
3665			size -= max_data;
3666
3667			max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
3668			tx_desc->buffer_addr = cpu_to_le64(dma);
3669		}
3670
3671		if (likely(!data_len))
3672			break;
3673
3674		tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
3675							  size, td_tag);
3676
3677		tx_desc++;
3678		i++;
3679		desc_count++;
3680
3681		if (i == tx_ring->count) {
3682			tx_desc = I40E_TX_DESC(tx_ring, 0);
3683			i = 0;
3684		}
3685
3686		size = skb_frag_size(frag);
3687		data_len -= size;
3688
3689		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
3690				       DMA_TO_DEVICE);
3691
3692		tx_bi = &tx_ring->tx_bi[i];
3693	}
3694
3695	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
3696
3697	i++;
3698	if (i == tx_ring->count)
3699		i = 0;
3700
3701	tx_ring->next_to_use = i;
3702
3703	i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
3704
3705	/* write last descriptor with EOP bit */
3706	td_cmd |= I40E_TX_DESC_CMD_EOP;
3707
3708	/* We OR these values together to check both against 4 (WB_STRIDE)
3709	 * below. This is safe since we don't re-use desc_count afterwards.
3710	 */
3711	desc_count |= ++tx_ring->packet_stride;
3712
3713	if (desc_count >= WB_STRIDE) {
3714		/* write last descriptor with RS bit set */
3715		td_cmd |= I40E_TX_DESC_CMD_RS;
3716		tx_ring->packet_stride = 0;
3717	}
3718
3719	tx_desc->cmd_type_offset_bsz =
3720			build_ctob(td_cmd, td_offset, size, td_tag);
3721
3722	skb_tx_timestamp(skb);
3723
3724	/* Force memory writes to complete before letting h/w know there
3725	 * are new descriptors to fetch.
3726	 *
3727	 * We also use this memory barrier to make certain all of the
3728	 * status bits have been updated before next_to_watch is written.
3729	 */
3730	wmb();
3731
3732	/* set next_to_watch value indicating a packet is present */
3733	first->next_to_watch = tx_desc;
3734
3735	/* notify HW of packet */
3736	if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
3737		writel(i, tx_ring->tail);
3738	}
3739
3740	return 0;
3741
3742dma_error:
3743	dev_info(tx_ring->dev, "TX DMA map failed\n");
3744
3745	/* clear dma mappings for failed tx_bi map */
3746	for (;;) {
3747		tx_bi = &tx_ring->tx_bi[i];
3748		i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
3749		if (tx_bi == first)
3750			break;
3751		if (i == 0)
3752			i = tx_ring->count;
3753		i--;
3754	}
3755
3756	tx_ring->next_to_use = i;
3757
3758	return -1;
3759}
3760
3761static u16 i40e_swdcb_skb_tx_hash(struct net_device *dev,
3762				  const struct sk_buff *skb,
3763				  u16 num_tx_queues)
3764{
3765	u32 jhash_initval_salt = 0xd631614b;
3766	u32 hash;
3767
3768	if (skb->sk && skb->sk->sk_hash)
3769		hash = skb->sk->sk_hash;
3770	else
3771		hash = (__force u16)skb->protocol ^ skb->hash;
3772
3773	hash = jhash_1word(hash, jhash_initval_salt);
3774
3775	return (u16)(((u64)hash * num_tx_queues) >> 32);
3776}
3777
3778u16 i40e_lan_select_queue(struct net_device *netdev,
3779			  struct sk_buff *skb,
3780			  struct net_device __always_unused *sb_dev)
3781{
3782	struct i40e_netdev_priv *np = netdev_priv(netdev);
3783	struct i40e_vsi *vsi = np->vsi;
3784	struct i40e_hw *hw;
3785	u16 qoffset;
3786	u16 qcount;
3787	u8 tclass;
3788	u16 hash;
3789	u8 prio;
3790
3791	/* is DCB enabled at all? */
3792	if (vsi->tc_config.numtc == 1 ||
3793	    i40e_is_tc_mqprio_enabled(vsi->back))
3794		return netdev_pick_tx(netdev, skb, sb_dev);
3795
3796	prio = skb->priority;
3797	hw = &vsi->back->hw;
3798	tclass = hw->local_dcbx_config.etscfg.prioritytable[prio];
3799	/* sanity check */
3800	if (unlikely(!(vsi->tc_config.enabled_tc & BIT(tclass))))
3801		tclass = 0;
3802
3803	/* select a queue assigned for the given TC */
3804	qcount = vsi->tc_config.tc_info[tclass].qcount;
3805	hash = i40e_swdcb_skb_tx_hash(netdev, skb, qcount);
3806
3807	qoffset = vsi->tc_config.tc_info[tclass].qoffset;
3808	return qoffset + hash;
3809}
3810
3811/**
3812 * i40e_xmit_xdp_ring - transmits an XDP buffer to an XDP Tx ring
3813 * @xdpf: data to transmit
3814 * @xdp_ring: XDP Tx ring
3815 **/
3816static int i40e_xmit_xdp_ring(struct xdp_frame *xdpf,
3817			      struct i40e_ring *xdp_ring)
3818{
3819	struct skb_shared_info *sinfo = xdp_get_shared_info_from_frame(xdpf);
3820	u8 nr_frags = unlikely(xdp_frame_has_frags(xdpf)) ? sinfo->nr_frags : 0;
3821	u16 i = 0, index = xdp_ring->next_to_use;
3822	struct i40e_tx_buffer *tx_head = &xdp_ring->tx_bi[index];
3823	struct i40e_tx_buffer *tx_bi = tx_head;
3824	struct i40e_tx_desc *tx_desc = I40E_TX_DESC(xdp_ring, index);
3825	void *data = xdpf->data;
3826	u32 size = xdpf->len;
3827
3828	if (unlikely(I40E_DESC_UNUSED(xdp_ring) < 1 + nr_frags)) {
3829		xdp_ring->tx_stats.tx_busy++;
3830		return I40E_XDP_CONSUMED;
3831	}
3832
3833	tx_head->bytecount = xdp_get_frame_len(xdpf);
3834	tx_head->gso_segs = 1;
3835	tx_head->xdpf = xdpf;
3836
3837	for (;;) {
3838		dma_addr_t dma;
3839
3840		dma = dma_map_single(xdp_ring->dev, data, size, DMA_TO_DEVICE);
3841		if (dma_mapping_error(xdp_ring->dev, dma))
3842			goto unmap;
3843
3844		/* record length, and DMA address */
3845		dma_unmap_len_set(tx_bi, len, size);
3846		dma_unmap_addr_set(tx_bi, dma, dma);
3847
3848		tx_desc->buffer_addr = cpu_to_le64(dma);
3849		tx_desc->cmd_type_offset_bsz =
3850			build_ctob(I40E_TX_DESC_CMD_ICRC, 0, size, 0);
3851
3852		if (++index == xdp_ring->count)
3853			index = 0;
3854
3855		if (i == nr_frags)
3856			break;
3857
3858		tx_bi = &xdp_ring->tx_bi[index];
3859		tx_desc = I40E_TX_DESC(xdp_ring, index);
3860
3861		data = skb_frag_address(&sinfo->frags[i]);
3862		size = skb_frag_size(&sinfo->frags[i]);
3863		i++;
3864	}
3865
3866	tx_desc->cmd_type_offset_bsz |=
3867		cpu_to_le64(I40E_TXD_CMD << I40E_TXD_QW1_CMD_SHIFT);
3868
3869	/* Make certain all of the status bits have been updated
3870	 * before next_to_watch is written.
3871	 */
3872	smp_wmb();
3873
3874	xdp_ring->xdp_tx_active++;
3875
3876	tx_head->next_to_watch = tx_desc;
3877	xdp_ring->next_to_use = index;
3878
3879	return I40E_XDP_TX;
3880
3881unmap:
3882	for (;;) {
3883		tx_bi = &xdp_ring->tx_bi[index];
3884		if (dma_unmap_len(tx_bi, len))
3885			dma_unmap_page(xdp_ring->dev,
3886				       dma_unmap_addr(tx_bi, dma),
3887				       dma_unmap_len(tx_bi, len),
3888				       DMA_TO_DEVICE);
3889		dma_unmap_len_set(tx_bi, len, 0);
3890		if (tx_bi == tx_head)
3891			break;
3892
3893		if (!index)
3894			index += xdp_ring->count;
3895		index--;
3896	}
3897
3898	return I40E_XDP_CONSUMED;
3899}
3900
3901/**
3902 * i40e_xmit_frame_ring - Sends buffer on Tx ring
3903 * @skb:     send buffer
3904 * @tx_ring: ring to send buffer on
3905 *
3906 * Returns NETDEV_TX_OK if sent, else an error code
3907 **/
3908static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
3909					struct i40e_ring *tx_ring)
3910{
3911	u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
3912	u32 cd_tunneling = 0, cd_l2tag2 = 0;
3913	struct i40e_tx_buffer *first;
3914	u32 td_offset = 0;
3915	u32 tx_flags = 0;
3916	u32 td_cmd = 0;
3917	u8 hdr_len = 0;
3918	int tso, count;
3919	int tsyn;
3920
3921	/* prefetch the data, we'll need it later */
3922	prefetch(skb->data);
3923
3924	i40e_trace(xmit_frame_ring, skb, tx_ring);
3925
3926	count = i40e_xmit_descriptor_count(skb);
3927	if (i40e_chk_linearize(skb, count)) {
3928		if (__skb_linearize(skb)) {
3929			dev_kfree_skb_any(skb);
3930			return NETDEV_TX_OK;
3931		}
3932		count = i40e_txd_use_count(skb->len);
3933		tx_ring->tx_stats.tx_linearize++;
3934	}
3935
3936	/* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
3937	 *       + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
3938	 *       + 4 desc gap to avoid the cache line where head is,
3939	 *       + 1 desc for context descriptor,
3940	 * otherwise try next time
3941	 */
3942	if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
3943		tx_ring->tx_stats.tx_busy++;
3944		return NETDEV_TX_BUSY;
3945	}
3946
3947	/* record the location of the first descriptor for this packet */
3948	first = &tx_ring->tx_bi[tx_ring->next_to_use];
3949	first->skb = skb;
3950	first->bytecount = skb->len;
3951	first->gso_segs = 1;
3952
3953	/* prepare the xmit flags */
3954	if (i40e_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
3955		goto out_drop;
3956
3957	tso = i40e_tso(first, &hdr_len, &cd_type_cmd_tso_mss);
3958
3959	if (tso < 0)
3960		goto out_drop;
3961	else if (tso)
3962		tx_flags |= I40E_TX_FLAGS_TSO;
3963
3964	/* Always offload the checksum, since it's in the data descriptor */
3965	tso = i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
3966				  tx_ring, &cd_tunneling);
3967	if (tso < 0)
3968		goto out_drop;
3969
3970	tsyn = i40e_tsyn(tx_ring, skb, tx_flags, &cd_type_cmd_tso_mss);
3971
3972	if (tsyn)
3973		tx_flags |= I40E_TX_FLAGS_TSYN;
3974
3975	/* always enable CRC insertion offload */
3976	td_cmd |= I40E_TX_DESC_CMD_ICRC;
3977
3978	i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
3979			   cd_tunneling, cd_l2tag2);
3980
3981	/* Add Flow Director ATR if it's enabled.
3982	 *
3983	 * NOTE: this must always be directly before the data descriptor.
3984	 */
3985	i40e_atr(tx_ring, skb, tx_flags);
3986
3987	if (i40e_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
3988			td_cmd, td_offset))
3989		goto cleanup_tx_tstamp;
3990
3991	return NETDEV_TX_OK;
3992
3993out_drop:
3994	i40e_trace(xmit_frame_ring_drop, first->skb, tx_ring);
3995	dev_kfree_skb_any(first->skb);
3996	first->skb = NULL;
3997cleanup_tx_tstamp:
3998	if (unlikely(tx_flags & I40E_TX_FLAGS_TSYN)) {
3999		struct i40e_pf *pf = i40e_netdev_to_pf(tx_ring->netdev);
4000
4001		dev_kfree_skb_any(pf->ptp_tx_skb);
4002		pf->ptp_tx_skb = NULL;
4003		clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state);
4004	}
4005
4006	return NETDEV_TX_OK;
4007}
4008
4009/**
4010 * i40e_lan_xmit_frame - Selects the correct VSI and Tx queue to send buffer
4011 * @skb:    send buffer
4012 * @netdev: network interface device structure
4013 *
4014 * Returns NETDEV_TX_OK if sent, else an error code
4015 **/
4016netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
4017{
4018	struct i40e_netdev_priv *np = netdev_priv(netdev);
4019	struct i40e_vsi *vsi = np->vsi;
4020	struct i40e_ring *tx_ring = vsi->tx_rings[skb->queue_mapping];
4021
4022	/* hardware can't handle really short frames, hardware padding works
4023	 * beyond this point
4024	 */
4025	if (skb_put_padto(skb, I40E_MIN_TX_LEN))
4026		return NETDEV_TX_OK;
4027
4028	return i40e_xmit_frame_ring(skb, tx_ring);
4029}
4030
4031/**
4032 * i40e_xdp_xmit - Implements ndo_xdp_xmit
4033 * @dev: netdev
4034 * @n: number of frames
4035 * @frames: array of XDP buffer pointers
4036 * @flags: XDP extra info
4037 *
4038 * Returns number of frames successfully sent. Failed frames
4039 * will be free'ed by XDP core.
4040 *
4041 * For error cases, a negative errno code is returned and no-frames
4042 * are transmitted (caller must handle freeing frames).
4043 **/
4044int i40e_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames,
4045		  u32 flags)
4046{
4047	struct i40e_netdev_priv *np = netdev_priv(dev);
4048	unsigned int queue_index = smp_processor_id();
4049	struct i40e_vsi *vsi = np->vsi;
4050	struct i40e_pf *pf = vsi->back;
4051	struct i40e_ring *xdp_ring;
4052	int nxmit = 0;
4053	int i;
4054
4055	if (test_bit(__I40E_VSI_DOWN, vsi->state))
4056		return -ENETDOWN;
4057
4058	if (!i40e_enabled_xdp_vsi(vsi) || queue_index >= vsi->num_queue_pairs ||
4059	    test_bit(__I40E_CONFIG_BUSY, pf->state))
4060		return -ENXIO;
4061
4062	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
4063		return -EINVAL;
4064
4065	xdp_ring = vsi->xdp_rings[queue_index];
4066
4067	for (i = 0; i < n; i++) {
4068		struct xdp_frame *xdpf = frames[i];
4069		int err;
4070
4071		err = i40e_xmit_xdp_ring(xdpf, xdp_ring);
4072		if (err != I40E_XDP_TX)
4073			break;
4074		nxmit++;
4075	}
4076
4077	if (unlikely(flags & XDP_XMIT_FLUSH))
4078		i40e_xdp_ring_update_tail(xdp_ring);
4079
4080	return nxmit;
4081}
4082