1// SPDX-License-Identifier: GPL-2.0
2/* Copyright(c) 2013 - 2018 Intel Corporation. */
3
4#include <linux/ptp_classify.h>
5#include <linux/posix-clock.h>
6#include "i40e.h"
7#include "i40e_devids.h"
8
9/* The XL710 timesync is very much like Intel's 82599 design when it comes to
10 * the fundamental clock design. However, the clock operations are much simpler
11 * in the XL710 because the device supports a full 64 bits of nanoseconds.
12 * Because the field is so wide, we can forgo the cycle counter and just
13 * operate with the nanosecond field directly without fear of overflow.
14 *
15 * Much like the 82599, the update period is dependent upon the link speed:
16 * At 40Gb, 25Gb, or no link, the period is 1.6ns.
17 * At 10Gb or 5Gb link, the period is multiplied by 2. (3.2ns)
18 * At 1Gb link, the period is multiplied by 20. (32ns)
19 * 1588 functionality is not supported at 100Mbps.
20 */
21#define I40E_PTP_40GB_INCVAL		0x0199999999ULL
22#define I40E_PTP_10GB_INCVAL_MULT	2
23#define I40E_PTP_5GB_INCVAL_MULT	2
24#define I40E_PTP_1GB_INCVAL_MULT	20
25#define I40E_ISGN			0x80000000
26
27#define I40E_PRTTSYN_CTL1_TSYNTYPE_V1  BIT(I40E_PRTTSYN_CTL1_TSYNTYPE_SHIFT)
28#define I40E_PRTTSYN_CTL1_TSYNTYPE_V2  (2 << \
29					I40E_PRTTSYN_CTL1_TSYNTYPE_SHIFT)
30#define I40E_SUBDEV_ID_25G_PTP_PIN	0xB
31
32enum i40e_ptp_pin {
33	SDP3_2 = 0,
34	SDP3_3,
35	GPIO_4
36};
37
38enum i40e_can_set_pins {
39	CANT_DO_PINS = -1,
40	CAN_SET_PINS,
41	CAN_DO_PINS
42};
43
44static struct ptp_pin_desc sdp_desc[] = {
45	/* name     idx      func      chan */
46	{"SDP3_2", SDP3_2, PTP_PF_NONE, 0},
47	{"SDP3_3", SDP3_3, PTP_PF_NONE, 1},
48	{"GPIO_4", GPIO_4, PTP_PF_NONE, 1},
49};
50
51enum i40e_ptp_gpio_pin_state {
52	end = -2,
53	invalid,
54	off,
55	in_A,
56	in_B,
57	out_A,
58	out_B,
59};
60
61static const char * const i40e_ptp_gpio_pin_state2str[] = {
62	"off", "in_A", "in_B", "out_A", "out_B"
63};
64
65enum i40e_ptp_led_pin_state {
66	led_end = -2,
67	low = 0,
68	high,
69};
70
71struct i40e_ptp_pins_settings {
72	enum i40e_ptp_gpio_pin_state sdp3_2;
73	enum i40e_ptp_gpio_pin_state sdp3_3;
74	enum i40e_ptp_gpio_pin_state gpio_4;
75	enum i40e_ptp_led_pin_state led2_0;
76	enum i40e_ptp_led_pin_state led2_1;
77	enum i40e_ptp_led_pin_state led3_0;
78	enum i40e_ptp_led_pin_state led3_1;
79};
80
81static const struct i40e_ptp_pins_settings
82	i40e_ptp_pin_led_allowed_states[] = {
83	{off,	off,	off,		high,	high,	high,	high},
84	{off,	in_A,	off,		high,	high,	high,	low},
85	{off,	out_A,	off,		high,	low,	high,	high},
86	{off,	in_B,	off,		high,	high,	high,	low},
87	{off,	out_B,	off,		high,	low,	high,	high},
88	{in_A,	off,	off,		high,	high,	high,	low},
89	{in_A,	in_B,	off,		high,	high,	high,	low},
90	{in_A,	out_B,	off,		high,	low,	high,	high},
91	{out_A,	off,	off,		high,	low,	high,	high},
92	{out_A,	in_B,	off,		high,	low,	high,	high},
93	{in_B,	off,	off,		high,	high,	high,	low},
94	{in_B,	in_A,	off,		high,	high,	high,	low},
95	{in_B,	out_A,	off,		high,	low,	high,	high},
96	{out_B,	off,	off,		high,	low,	high,	high},
97	{out_B,	in_A,	off,		high,	low,	high,	high},
98	{off,	off,	in_A,		high,	high,	low,	high},
99	{off,	out_A,	in_A,		high,	low,	low,	high},
100	{off,	in_B,	in_A,		high,	high,	low,	low},
101	{off,	out_B,	in_A,		high,	low,	low,	high},
102	{out_A,	off,	in_A,		high,	low,	low,	high},
103	{out_A,	in_B,	in_A,		high,	low,	low,	high},
104	{in_B,	off,	in_A,		high,	high,	low,	low},
105	{in_B,	out_A,	in_A,		high,	low,	low,	high},
106	{out_B,	off,	in_A,		high,	low,	low,	high},
107	{off,	off,	out_A,		low,	high,	high,	high},
108	{off,	in_A,	out_A,		low,	high,	high,	low},
109	{off,	in_B,	out_A,		low,	high,	high,	low},
110	{off,	out_B,	out_A,		low,	low,	high,	high},
111	{in_A,	off,	out_A,		low,	high,	high,	low},
112	{in_A,	in_B,	out_A,		low,	high,	high,	low},
113	{in_A,	out_B,	out_A,		low,	low,	high,	high},
114	{in_B,	off,	out_A,		low,	high,	high,	low},
115	{in_B,	in_A,	out_A,		low,	high,	high,	low},
116	{out_B,	off,	out_A,		low,	low,	high,	high},
117	{out_B,	in_A,	out_A,		low,	low,	high,	high},
118	{off,	off,	in_B,		high,	high,	low,	high},
119	{off,	in_A,	in_B,		high,	high,	low,	low},
120	{off,	out_A,	in_B,		high,	low,	low,	high},
121	{off,	out_B,	in_B,		high,	low,	low,	high},
122	{in_A,	off,	in_B,		high,	high,	low,	low},
123	{in_A,	out_B,	in_B,		high,	low,	low,	high},
124	{out_A,	off,	in_B,		high,	low,	low,	high},
125	{out_B,	off,	in_B,		high,	low,	low,	high},
126	{out_B,	in_A,	in_B,		high,	low,	low,	high},
127	{off,	off,	out_B,		low,	high,	high,	high},
128	{off,	in_A,	out_B,		low,	high,	high,	low},
129	{off,	out_A,	out_B,		low,	low,	high,	high},
130	{off,	in_B,	out_B,		low,	high,	high,	low},
131	{in_A,	off,	out_B,		low,	high,	high,	low},
132	{in_A,	in_B,	out_B,		low,	high,	high,	low},
133	{out_A,	off,	out_B,		low,	low,	high,	high},
134	{out_A,	in_B,	out_B,		low,	low,	high,	high},
135	{in_B,	off,	out_B,		low,	high,	high,	low},
136	{in_B,	in_A,	out_B,		low,	high,	high,	low},
137	{in_B,	out_A,	out_B,		low,	low,	high,	high},
138	{end,	end,	end,	led_end, led_end, led_end, led_end}
139};
140
141static int i40e_ptp_set_pins(struct i40e_pf *pf,
142			     struct i40e_ptp_pins_settings *pins);
143
144/**
145 * i40e_ptp_extts0_work - workqueue task function
146 * @work: workqueue task structure
147 *
148 * Service for PTP external clock event
149 **/
150static void i40e_ptp_extts0_work(struct work_struct *work)
151{
152	struct i40e_pf *pf = container_of(work, struct i40e_pf,
153					  ptp_extts0_work);
154	struct i40e_hw *hw = &pf->hw;
155	struct ptp_clock_event event;
156	u32 hi, lo;
157
158	/* Event time is captured by one of the two matched registers
159	 *      PRTTSYN_EVNT_L: 32 LSB of sampled time event
160	 *      PRTTSYN_EVNT_H: 32 MSB of sampled time event
161	 * Event is defined in PRTTSYN_EVNT_0 register
162	 */
163	lo = rd32(hw, I40E_PRTTSYN_EVNT_L(0));
164	hi = rd32(hw, I40E_PRTTSYN_EVNT_H(0));
165
166	event.timestamp = (((u64)hi) << 32) | lo;
167
168	event.type = PTP_CLOCK_EXTTS;
169	event.index = hw->pf_id;
170
171	/* fire event */
172	ptp_clock_event(pf->ptp_clock, &event);
173}
174
175/**
176 * i40e_is_ptp_pin_dev - check if device supports PTP pins
177 * @hw: pointer to the hardware structure
178 *
179 * Return true if device supports PTP pins, false otherwise.
180 **/
181static bool i40e_is_ptp_pin_dev(struct i40e_hw *hw)
182{
183	return hw->device_id == I40E_DEV_ID_25G_SFP28 &&
184	       hw->subsystem_device_id == I40E_SUBDEV_ID_25G_PTP_PIN;
185}
186
187/**
188 * i40e_can_set_pins - check possibility of manipulating the pins
189 * @pf: board private structure
190 *
191 * Check if all conditions are satisfied to manipulate PTP pins.
192 * Return CAN_SET_PINS if pins can be set on a specific PF or
193 * return CAN_DO_PINS if pins can be manipulated within a NIC or
194 * return CANT_DO_PINS otherwise.
195 **/
196static enum i40e_can_set_pins i40e_can_set_pins(struct i40e_pf *pf)
197{
198	if (!i40e_is_ptp_pin_dev(&pf->hw)) {
199		dev_warn(&pf->pdev->dev,
200			 "PTP external clock not supported.\n");
201		return CANT_DO_PINS;
202	}
203
204	if (!pf->ptp_pins) {
205		dev_warn(&pf->pdev->dev,
206			 "PTP PIN manipulation not allowed.\n");
207		return CANT_DO_PINS;
208	}
209
210	if (pf->hw.pf_id) {
211		dev_warn(&pf->pdev->dev,
212			 "PTP PINs should be accessed via PF0.\n");
213		return CAN_DO_PINS;
214	}
215
216	return CAN_SET_PINS;
217}
218
219/**
220 * i40_ptp_reset_timing_events - Reset PTP timing events
221 * @pf: Board private structure
222 *
223 * This function resets timing events for pf.
224 **/
225static void i40_ptp_reset_timing_events(struct i40e_pf *pf)
226{
227	u32 i;
228
229	spin_lock_bh(&pf->ptp_rx_lock);
230	for (i = 0; i <= I40E_PRTTSYN_RXTIME_L_MAX_INDEX; i++) {
231		/* reading and automatically clearing timing events registers */
232		rd32(&pf->hw, I40E_PRTTSYN_RXTIME_L(i));
233		rd32(&pf->hw, I40E_PRTTSYN_RXTIME_H(i));
234		pf->latch_events[i] = 0;
235	}
236	/* reading and automatically clearing timing events registers */
237	rd32(&pf->hw, I40E_PRTTSYN_TXTIME_L);
238	rd32(&pf->hw, I40E_PRTTSYN_TXTIME_H);
239
240	pf->tx_hwtstamp_timeouts = 0;
241	pf->tx_hwtstamp_skipped = 0;
242	pf->rx_hwtstamp_cleared = 0;
243	pf->latch_event_flags = 0;
244	spin_unlock_bh(&pf->ptp_rx_lock);
245}
246
247/**
248 * i40e_ptp_verify - check pins
249 * @ptp: ptp clock
250 * @pin: pin index
251 * @func: assigned function
252 * @chan: channel
253 *
254 * Check pins consistency.
255 * Return 0 on success or error on failure.
256 **/
257static int i40e_ptp_verify(struct ptp_clock_info *ptp, unsigned int pin,
258			   enum ptp_pin_function func, unsigned int chan)
259{
260	switch (func) {
261	case PTP_PF_NONE:
262	case PTP_PF_EXTTS:
263	case PTP_PF_PEROUT:
264		break;
265	case PTP_PF_PHYSYNC:
266		return -EOPNOTSUPP;
267	}
268	return 0;
269}
270
271/**
272 * i40e_ptp_read - Read the PHC time from the device
273 * @pf: Board private structure
274 * @ts: timespec structure to hold the current time value
275 * @sts: structure to hold the system time before and after reading the PHC
276 *
277 * This function reads the PRTTSYN_TIME registers and stores them in a
278 * timespec. However, since the registers are 64 bits of nanoseconds, we must
279 * convert the result to a timespec before we can return.
280 **/
281static void i40e_ptp_read(struct i40e_pf *pf, struct timespec64 *ts,
282			  struct ptp_system_timestamp *sts)
283{
284	struct i40e_hw *hw = &pf->hw;
285	u32 hi, lo;
286	u64 ns;
287
288	/* The timer latches on the lowest register read. */
289	ptp_read_system_prets(sts);
290	lo = rd32(hw, I40E_PRTTSYN_TIME_L);
291	ptp_read_system_postts(sts);
292	hi = rd32(hw, I40E_PRTTSYN_TIME_H);
293
294	ns = (((u64)hi) << 32) | lo;
295
296	*ts = ns_to_timespec64(ns);
297}
298
299/**
300 * i40e_ptp_write - Write the PHC time to the device
301 * @pf: Board private structure
302 * @ts: timespec structure that holds the new time value
303 *
304 * This function writes the PRTTSYN_TIME registers with the user value. Since
305 * we receive a timespec from the stack, we must convert that timespec into
306 * nanoseconds before programming the registers.
307 **/
308static void i40e_ptp_write(struct i40e_pf *pf, const struct timespec64 *ts)
309{
310	struct i40e_hw *hw = &pf->hw;
311	u64 ns = timespec64_to_ns(ts);
312
313	/* The timer will not update until the high register is written, so
314	 * write the low register first.
315	 */
316	wr32(hw, I40E_PRTTSYN_TIME_L, ns & 0xFFFFFFFF);
317	wr32(hw, I40E_PRTTSYN_TIME_H, ns >> 32);
318}
319
320/**
321 * i40e_ptp_convert_to_hwtstamp - Convert device clock to system time
322 * @hwtstamps: Timestamp structure to update
323 * @timestamp: Timestamp from the hardware
324 *
325 * We need to convert the NIC clock value into a hwtstamp which can be used by
326 * the upper level timestamping functions. Since the timestamp is simply a 64-
327 * bit nanosecond value, we can call ns_to_ktime directly to handle this.
328 **/
329static void i40e_ptp_convert_to_hwtstamp(struct skb_shared_hwtstamps *hwtstamps,
330					 u64 timestamp)
331{
332	memset(hwtstamps, 0, sizeof(*hwtstamps));
333
334	hwtstamps->hwtstamp = ns_to_ktime(timestamp);
335}
336
337/**
338 * i40e_ptp_adjfine - Adjust the PHC frequency
339 * @ptp: The PTP clock structure
340 * @scaled_ppm: Scaled parts per million adjustment from base
341 *
342 * Adjust the frequency of the PHC by the indicated delta from the base
343 * frequency.
344 *
345 * Scaled parts per million is ppm with a 16 bit binary fractional field.
346 **/
347static int i40e_ptp_adjfine(struct ptp_clock_info *ptp, long scaled_ppm)
348{
349	struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps);
350	struct i40e_hw *hw = &pf->hw;
351	u64 adj, base_adj;
352
353	smp_mb(); /* Force any pending update before accessing. */
354	base_adj = I40E_PTP_40GB_INCVAL * READ_ONCE(pf->ptp_adj_mult);
355
356	adj = adjust_by_scaled_ppm(base_adj, scaled_ppm);
357
358	wr32(hw, I40E_PRTTSYN_INC_L, adj & 0xFFFFFFFF);
359	wr32(hw, I40E_PRTTSYN_INC_H, adj >> 32);
360
361	return 0;
362}
363
364/**
365 * i40e_ptp_set_1pps_signal_hw - configure 1PPS PTP signal for pins
366 * @pf: the PF private data structure
367 *
368 * Configure 1PPS signal used for PTP pins
369 **/
370static void i40e_ptp_set_1pps_signal_hw(struct i40e_pf *pf)
371{
372	struct i40e_hw *hw = &pf->hw;
373	struct timespec64 now;
374	u64 ns;
375
376	wr32(hw, I40E_PRTTSYN_AUX_0(1), 0);
377	wr32(hw, I40E_PRTTSYN_AUX_1(1), I40E_PRTTSYN_AUX_1_INSTNT);
378	wr32(hw, I40E_PRTTSYN_AUX_0(1), I40E_PRTTSYN_AUX_0_OUT_ENABLE);
379
380	i40e_ptp_read(pf, &now, NULL);
381	now.tv_sec += I40E_PTP_2_SEC_DELAY;
382	now.tv_nsec = 0;
383	ns = timespec64_to_ns(&now);
384
385	/* I40E_PRTTSYN_TGT_L(1) */
386	wr32(hw, I40E_PRTTSYN_TGT_L(1), ns & 0xFFFFFFFF);
387	/* I40E_PRTTSYN_TGT_H(1) */
388	wr32(hw, I40E_PRTTSYN_TGT_H(1), ns >> 32);
389	wr32(hw, I40E_PRTTSYN_CLKO(1), I40E_PTP_HALF_SECOND);
390	wr32(hw, I40E_PRTTSYN_AUX_1(1), I40E_PRTTSYN_AUX_1_INSTNT);
391	wr32(hw, I40E_PRTTSYN_AUX_0(1),
392	     I40E_PRTTSYN_AUX_0_OUT_ENABLE_CLK_MOD);
393}
394
395/**
396 * i40e_ptp_adjtime - Adjust the PHC time
397 * @ptp: The PTP clock structure
398 * @delta: Offset in nanoseconds to adjust the PHC time by
399 *
400 * Adjust the current clock time by a delta specified in nanoseconds.
401 **/
402static int i40e_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
403{
404	struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps);
405	struct i40e_hw *hw = &pf->hw;
406
407	mutex_lock(&pf->tmreg_lock);
408
409	if (delta > -999999900LL && delta < 999999900LL) {
410		int neg_adj = 0;
411		u32 timadj;
412		u64 tohw;
413
414		if (delta < 0) {
415			neg_adj = 1;
416			tohw = -delta;
417		} else {
418			tohw = delta;
419		}
420
421		timadj = tohw & 0x3FFFFFFF;
422		if (neg_adj)
423			timadj |= I40E_ISGN;
424		wr32(hw, I40E_PRTTSYN_ADJ, timadj);
425	} else {
426		struct timespec64 then, now;
427
428		then = ns_to_timespec64(delta);
429		i40e_ptp_read(pf, &now, NULL);
430		now = timespec64_add(now, then);
431		i40e_ptp_write(pf, (const struct timespec64 *)&now);
432		i40e_ptp_set_1pps_signal_hw(pf);
433	}
434
435	mutex_unlock(&pf->tmreg_lock);
436
437	return 0;
438}
439
440/**
441 * i40e_ptp_gettimex - Get the time of the PHC
442 * @ptp: The PTP clock structure
443 * @ts: timespec structure to hold the current time value
444 * @sts: structure to hold the system time before and after reading the PHC
445 *
446 * Read the device clock and return the correct value on ns, after converting it
447 * into a timespec struct.
448 **/
449static int i40e_ptp_gettimex(struct ptp_clock_info *ptp, struct timespec64 *ts,
450			     struct ptp_system_timestamp *sts)
451{
452	struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps);
453
454	mutex_lock(&pf->tmreg_lock);
455	i40e_ptp_read(pf, ts, sts);
456	mutex_unlock(&pf->tmreg_lock);
457
458	return 0;
459}
460
461/**
462 * i40e_ptp_settime - Set the time of the PHC
463 * @ptp: The PTP clock structure
464 * @ts: timespec64 structure that holds the new time value
465 *
466 * Set the device clock to the user input value. The conversion from timespec
467 * to ns happens in the write function.
468 **/
469static int i40e_ptp_settime(struct ptp_clock_info *ptp,
470			    const struct timespec64 *ts)
471{
472	struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps);
473
474	mutex_lock(&pf->tmreg_lock);
475	i40e_ptp_write(pf, ts);
476	mutex_unlock(&pf->tmreg_lock);
477
478	return 0;
479}
480
481/**
482 * i40e_pps_configure - configure PPS events
483 * @ptp: ptp clock
484 * @rq: clock request
485 * @on: status
486 *
487 * Configure PPS events for external clock source.
488 * Return 0 on success or error on failure.
489 **/
490static int i40e_pps_configure(struct ptp_clock_info *ptp,
491			      struct ptp_clock_request *rq,
492			      int on)
493{
494	struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps);
495
496	if (!!on)
497		i40e_ptp_set_1pps_signal_hw(pf);
498
499	return 0;
500}
501
502/**
503 * i40e_pin_state - determine PIN state
504 * @index: PIN index
505 * @func: function assigned to PIN
506 *
507 * Determine PIN state based on PIN index and function assigned.
508 * Return PIN state.
509 **/
510static enum i40e_ptp_gpio_pin_state i40e_pin_state(int index, int func)
511{
512	enum i40e_ptp_gpio_pin_state state = off;
513
514	if (index == 0 && func == PTP_PF_EXTTS)
515		state = in_A;
516	if (index == 1 && func == PTP_PF_EXTTS)
517		state = in_B;
518	if (index == 0 && func == PTP_PF_PEROUT)
519		state = out_A;
520	if (index == 1 && func == PTP_PF_PEROUT)
521		state = out_B;
522
523	return state;
524}
525
526/**
527 * i40e_ptp_enable_pin - enable PINs.
528 * @pf: private board structure
529 * @chan: channel
530 * @func: PIN function
531 * @on: state
532 *
533 * Enable PTP pins for external clock source.
534 * Return 0 on success or error code on failure.
535 **/
536static int i40e_ptp_enable_pin(struct i40e_pf *pf, unsigned int chan,
537			       enum ptp_pin_function func, int on)
538{
539	enum i40e_ptp_gpio_pin_state *pin = NULL;
540	struct i40e_ptp_pins_settings pins;
541	int pin_index;
542
543	/* Use PF0 to set pins. Return success for user space tools */
544	if (pf->hw.pf_id)
545		return 0;
546
547	/* Preserve previous state of pins that we don't touch */
548	pins.sdp3_2 = pf->ptp_pins->sdp3_2;
549	pins.sdp3_3 = pf->ptp_pins->sdp3_3;
550	pins.gpio_4 = pf->ptp_pins->gpio_4;
551
552	/* To turn on the pin - find the corresponding one based on
553	 * the given index. To to turn the function off - find
554	 * which pin had it assigned. Don't use ptp_find_pin here
555	 * because it tries to lock the pincfg_mux which is locked by
556	 * ptp_pin_store() that calls here.
557	 */
558	if (on) {
559		pin_index = ptp_find_pin(pf->ptp_clock, func, chan);
560		if (pin_index < 0)
561			return -EBUSY;
562
563		switch (pin_index) {
564		case SDP3_2:
565			pin = &pins.sdp3_2;
566			break;
567		case SDP3_3:
568			pin = &pins.sdp3_3;
569			break;
570		case GPIO_4:
571			pin = &pins.gpio_4;
572			break;
573		default:
574			return -EINVAL;
575		}
576
577		*pin = i40e_pin_state(chan, func);
578	} else {
579		pins.sdp3_2 = off;
580		pins.sdp3_3 = off;
581		pins.gpio_4 = off;
582	}
583
584	return i40e_ptp_set_pins(pf, &pins) ? -EINVAL : 0;
585}
586
587/**
588 * i40e_ptp_feature_enable - Enable external clock pins
589 * @ptp: The PTP clock structure
590 * @rq: The PTP clock request structure
591 * @on: To turn feature on/off
592 *
593 * Setting on/off PTP PPS feature for pin.
594 **/
595static int i40e_ptp_feature_enable(struct ptp_clock_info *ptp,
596				   struct ptp_clock_request *rq,
597				   int on)
598{
599	struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps);
600
601	enum ptp_pin_function func;
602	unsigned int chan;
603
604	/* TODO: Implement flags handling for EXTTS and PEROUT */
605	switch (rq->type) {
606	case PTP_CLK_REQ_EXTTS:
607		func = PTP_PF_EXTTS;
608		chan = rq->extts.index;
609		break;
610	case PTP_CLK_REQ_PEROUT:
611		func = PTP_PF_PEROUT;
612		chan = rq->perout.index;
613		break;
614	case PTP_CLK_REQ_PPS:
615		return i40e_pps_configure(ptp, rq, on);
616	default:
617		return -EOPNOTSUPP;
618	}
619
620	return i40e_ptp_enable_pin(pf, chan, func, on);
621}
622
623/**
624 * i40e_ptp_get_rx_events - Read I40E_PRTTSYN_STAT_1 and latch events
625 * @pf: the PF data structure
626 *
627 * This function reads I40E_PRTTSYN_STAT_1 and updates the corresponding timers
628 * for noticed latch events. This allows the driver to keep track of the first
629 * time a latch event was noticed which will be used to help clear out Rx
630 * timestamps for packets that got dropped or lost.
631 *
632 * This function will return the current value of I40E_PRTTSYN_STAT_1 and is
633 * expected to be called only while under the ptp_rx_lock.
634 **/
635static u32 i40e_ptp_get_rx_events(struct i40e_pf *pf)
636{
637	struct i40e_hw *hw = &pf->hw;
638	u32 prttsyn_stat, new_latch_events;
639	int  i;
640
641	prttsyn_stat = rd32(hw, I40E_PRTTSYN_STAT_1);
642	new_latch_events = prttsyn_stat & ~pf->latch_event_flags;
643
644	/* Update the jiffies time for any newly latched timestamp. This
645	 * ensures that we store the time that we first discovered a timestamp
646	 * was latched by the hardware. The service task will later determine
647	 * if we should free the latch and drop that timestamp should too much
648	 * time pass. This flow ensures that we only update jiffies for new
649	 * events latched since the last time we checked, and not all events
650	 * currently latched, so that the service task accounting remains
651	 * accurate.
652	 */
653	for (i = 0; i < 4; i++) {
654		if (new_latch_events & BIT(i))
655			pf->latch_events[i] = jiffies;
656	}
657
658	/* Finally, we store the current status of the Rx timestamp latches */
659	pf->latch_event_flags = prttsyn_stat;
660
661	return prttsyn_stat;
662}
663
664/**
665 * i40e_ptp_rx_hang - Detect error case when Rx timestamp registers are hung
666 * @pf: The PF private data structure
667 *
668 * This watchdog task is scheduled to detect error case where hardware has
669 * dropped an Rx packet that was timestamped when the ring is full. The
670 * particular error is rare but leaves the device in a state unable to timestamp
671 * any future packets.
672 **/
673void i40e_ptp_rx_hang(struct i40e_pf *pf)
674{
675	struct i40e_hw *hw = &pf->hw;
676	unsigned int i, cleared = 0;
677
678	/* Since we cannot turn off the Rx timestamp logic if the device is
679	 * configured for Tx timestamping, we check if Rx timestamping is
680	 * configured. We don't want to spuriously warn about Rx timestamp
681	 * hangs if we don't care about the timestamps.
682	 */
683	if (!test_bit(I40E_FLAG_PTP_ENA, pf->flags) || !pf->ptp_rx)
684		return;
685
686	spin_lock_bh(&pf->ptp_rx_lock);
687
688	/* Update current latch times for Rx events */
689	i40e_ptp_get_rx_events(pf);
690
691	/* Check all the currently latched Rx events and see whether they have
692	 * been latched for over a second. It is assumed that any timestamp
693	 * should have been cleared within this time, or else it was captured
694	 * for a dropped frame that the driver never received. Thus, we will
695	 * clear any timestamp that has been latched for over 1 second.
696	 */
697	for (i = 0; i < 4; i++) {
698		if ((pf->latch_event_flags & BIT(i)) &&
699		    time_is_before_jiffies(pf->latch_events[i] + HZ)) {
700			rd32(hw, I40E_PRTTSYN_RXTIME_H(i));
701			pf->latch_event_flags &= ~BIT(i);
702			cleared++;
703		}
704	}
705
706	spin_unlock_bh(&pf->ptp_rx_lock);
707
708	/* Log a warning if more than 2 timestamps got dropped in the same
709	 * check. We don't want to warn about all drops because it can occur
710	 * in normal scenarios such as PTP frames on multicast addresses we
711	 * aren't listening to. However, administrator should know if this is
712	 * the reason packets aren't receiving timestamps.
713	 */
714	if (cleared > 2)
715		dev_dbg(&pf->pdev->dev,
716			"Dropped %d missed RXTIME timestamp events\n",
717			cleared);
718
719	/* Finally, update the rx_hwtstamp_cleared counter */
720	pf->rx_hwtstamp_cleared += cleared;
721}
722
723/**
724 * i40e_ptp_tx_hang - Detect error case when Tx timestamp register is hung
725 * @pf: The PF private data structure
726 *
727 * This watchdog task is run periodically to make sure that we clear the Tx
728 * timestamp logic if we don't obtain a timestamp in a reasonable amount of
729 * time. It is unexpected in the normal case but if it occurs it results in
730 * permanently preventing timestamps of future packets.
731 **/
732void i40e_ptp_tx_hang(struct i40e_pf *pf)
733{
734	struct sk_buff *skb;
735
736	if (!test_bit(I40E_FLAG_PTP_ENA, pf->flags) || !pf->ptp_tx)
737		return;
738
739	/* Nothing to do if we're not already waiting for a timestamp */
740	if (!test_bit(__I40E_PTP_TX_IN_PROGRESS, pf->state))
741		return;
742
743	/* We already have a handler routine which is run when we are notified
744	 * of a Tx timestamp in the hardware. If we don't get an interrupt
745	 * within a second it is reasonable to assume that we never will.
746	 */
747	if (time_is_before_jiffies(pf->ptp_tx_start + HZ)) {
748		skb = pf->ptp_tx_skb;
749		pf->ptp_tx_skb = NULL;
750		clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state);
751
752		/* Free the skb after we clear the bitlock */
753		dev_kfree_skb_any(skb);
754		pf->tx_hwtstamp_timeouts++;
755	}
756}
757
758/**
759 * i40e_ptp_tx_hwtstamp - Utility function which returns the Tx timestamp
760 * @pf: Board private structure
761 *
762 * Read the value of the Tx timestamp from the registers, convert it into a
763 * value consumable by the stack, and store that result into the shhwtstamps
764 * struct before returning it up the stack.
765 **/
766void i40e_ptp_tx_hwtstamp(struct i40e_pf *pf)
767{
768	struct skb_shared_hwtstamps shhwtstamps;
769	struct sk_buff *skb = pf->ptp_tx_skb;
770	struct i40e_hw *hw = &pf->hw;
771	u32 hi, lo;
772	u64 ns;
773
774	if (!test_bit(I40E_FLAG_PTP_ENA, pf->flags) || !pf->ptp_tx)
775		return;
776
777	/* don't attempt to timestamp if we don't have an skb */
778	if (!pf->ptp_tx_skb)
779		return;
780
781	lo = rd32(hw, I40E_PRTTSYN_TXTIME_L);
782	hi = rd32(hw, I40E_PRTTSYN_TXTIME_H);
783
784	ns = (((u64)hi) << 32) | lo;
785	i40e_ptp_convert_to_hwtstamp(&shhwtstamps, ns);
786
787	/* Clear the bit lock as soon as possible after reading the register,
788	 * and prior to notifying the stack via skb_tstamp_tx(). Otherwise
789	 * applications might wake up and attempt to request another transmit
790	 * timestamp prior to the bit lock being cleared.
791	 */
792	pf->ptp_tx_skb = NULL;
793	clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state);
794
795	/* Notify the stack and free the skb after we've unlocked */
796	skb_tstamp_tx(skb, &shhwtstamps);
797	dev_kfree_skb_any(skb);
798}
799
800/**
801 * i40e_ptp_rx_hwtstamp - Utility function which checks for an Rx timestamp
802 * @pf: Board private structure
803 * @skb: Particular skb to send timestamp with
804 * @index: Index into the receive timestamp registers for the timestamp
805 *
806 * The XL710 receives a notification in the receive descriptor with an offset
807 * into the set of RXTIME registers where the timestamp is for that skb. This
808 * function goes and fetches the receive timestamp from that offset, if a valid
809 * one exists. The RXTIME registers are in ns, so we must convert the result
810 * first.
811 **/
812void i40e_ptp_rx_hwtstamp(struct i40e_pf *pf, struct sk_buff *skb, u8 index)
813{
814	u32 prttsyn_stat, hi, lo;
815	struct i40e_hw *hw;
816	u64 ns;
817
818	/* Since we cannot turn off the Rx timestamp logic if the device is
819	 * doing Tx timestamping, check if Rx timestamping is configured.
820	 */
821	if (!test_bit(I40E_FLAG_PTP_ENA, pf->flags) || !pf->ptp_rx)
822		return;
823
824	hw = &pf->hw;
825
826	spin_lock_bh(&pf->ptp_rx_lock);
827
828	/* Get current Rx events and update latch times */
829	prttsyn_stat = i40e_ptp_get_rx_events(pf);
830
831	/* TODO: Should we warn about missing Rx timestamp event? */
832	if (!(prttsyn_stat & BIT(index))) {
833		spin_unlock_bh(&pf->ptp_rx_lock);
834		return;
835	}
836
837	/* Clear the latched event since we're about to read its register */
838	pf->latch_event_flags &= ~BIT(index);
839
840	lo = rd32(hw, I40E_PRTTSYN_RXTIME_L(index));
841	hi = rd32(hw, I40E_PRTTSYN_RXTIME_H(index));
842
843	spin_unlock_bh(&pf->ptp_rx_lock);
844
845	ns = (((u64)hi) << 32) | lo;
846
847	i40e_ptp_convert_to_hwtstamp(skb_hwtstamps(skb), ns);
848}
849
850/**
851 * i40e_ptp_set_increment - Utility function to update clock increment rate
852 * @pf: Board private structure
853 *
854 * During a link change, the DMA frequency that drives the 1588 logic will
855 * change. In order to keep the PRTTSYN_TIME registers in units of nanoseconds,
856 * we must update the increment value per clock tick.
857 **/
858void i40e_ptp_set_increment(struct i40e_pf *pf)
859{
860	struct i40e_link_status *hw_link_info;
861	struct i40e_hw *hw = &pf->hw;
862	u64 incval;
863	u32 mult;
864
865	hw_link_info = &hw->phy.link_info;
866
867	i40e_aq_get_link_info(&pf->hw, true, NULL, NULL);
868
869	switch (hw_link_info->link_speed) {
870	case I40E_LINK_SPEED_10GB:
871		mult = I40E_PTP_10GB_INCVAL_MULT;
872		break;
873	case I40E_LINK_SPEED_5GB:
874		mult = I40E_PTP_5GB_INCVAL_MULT;
875		break;
876	case I40E_LINK_SPEED_1GB:
877		mult = I40E_PTP_1GB_INCVAL_MULT;
878		break;
879	case I40E_LINK_SPEED_100MB:
880	{
881		static int warn_once;
882
883		if (!warn_once) {
884			dev_warn(&pf->pdev->dev,
885				 "1588 functionality is not supported at 100 Mbps. Stopping the PHC.\n");
886			warn_once++;
887		}
888		mult = 0;
889		break;
890	}
891	case I40E_LINK_SPEED_40GB:
892	default:
893		mult = 1;
894		break;
895	}
896
897	/* The increment value is calculated by taking the base 40GbE incvalue
898	 * and multiplying it by a factor based on the link speed.
899	 */
900	incval = I40E_PTP_40GB_INCVAL * mult;
901
902	/* Write the new increment value into the increment register. The
903	 * hardware will not update the clock until both registers have been
904	 * written.
905	 */
906	wr32(hw, I40E_PRTTSYN_INC_L, incval & 0xFFFFFFFF);
907	wr32(hw, I40E_PRTTSYN_INC_H, incval >> 32);
908
909	/* Update the base adjustement value. */
910	WRITE_ONCE(pf->ptp_adj_mult, mult);
911	smp_mb(); /* Force the above update. */
912}
913
914/**
915 * i40e_ptp_get_ts_config - ioctl interface to read the HW timestamping
916 * @pf: Board private structure
917 * @ifr: ioctl data
918 *
919 * Obtain the current hardware timestamping settigs as requested. To do this,
920 * keep a shadow copy of the timestamp settings rather than attempting to
921 * deconstruct it from the registers.
922 **/
923int i40e_ptp_get_ts_config(struct i40e_pf *pf, struct ifreq *ifr)
924{
925	struct hwtstamp_config *config = &pf->tstamp_config;
926
927	if (!test_bit(I40E_FLAG_PTP_ENA, pf->flags))
928		return -EOPNOTSUPP;
929
930	return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ?
931		-EFAULT : 0;
932}
933
934/**
935 * i40e_ptp_free_pins - free memory used by PTP pins
936 * @pf: Board private structure
937 *
938 * Release memory allocated for PTP pins.
939 **/
940static void i40e_ptp_free_pins(struct i40e_pf *pf)
941{
942	if (i40e_is_ptp_pin_dev(&pf->hw)) {
943		kfree(pf->ptp_pins);
944		kfree(pf->ptp_caps.pin_config);
945		pf->ptp_pins = NULL;
946	}
947}
948
949/**
950 * i40e_ptp_set_pin_hw - Set HW GPIO pin
951 * @hw: pointer to the hardware structure
952 * @pin: pin index
953 * @state: pin state
954 *
955 * Set status of GPIO pin for external clock handling.
956 **/
957static void i40e_ptp_set_pin_hw(struct i40e_hw *hw,
958				unsigned int pin,
959				enum i40e_ptp_gpio_pin_state state)
960{
961	switch (state) {
962	case off:
963		wr32(hw, I40E_GLGEN_GPIO_CTL(pin), 0);
964		break;
965	case in_A:
966		wr32(hw, I40E_GLGEN_GPIO_CTL(pin),
967		     I40E_GLGEN_GPIO_CTL_PORT_0_IN_TIMESYNC_0);
968		break;
969	case in_B:
970		wr32(hw, I40E_GLGEN_GPIO_CTL(pin),
971		     I40E_GLGEN_GPIO_CTL_PORT_1_IN_TIMESYNC_0);
972		break;
973	case out_A:
974		wr32(hw, I40E_GLGEN_GPIO_CTL(pin),
975		     I40E_GLGEN_GPIO_CTL_PORT_0_OUT_TIMESYNC_1);
976		break;
977	case out_B:
978		wr32(hw, I40E_GLGEN_GPIO_CTL(pin),
979		     I40E_GLGEN_GPIO_CTL_PORT_1_OUT_TIMESYNC_1);
980		break;
981	default:
982		break;
983	}
984}
985
986/**
987 * i40e_ptp_set_led_hw - Set HW GPIO led
988 * @hw: pointer to the hardware structure
989 * @led: led index
990 * @state: led state
991 *
992 * Set status of GPIO led for external clock handling.
993 **/
994static void i40e_ptp_set_led_hw(struct i40e_hw *hw,
995				unsigned int led,
996				enum i40e_ptp_led_pin_state state)
997{
998	switch (state) {
999	case low:
1000		wr32(hw, I40E_GLGEN_GPIO_SET,
1001		     I40E_GLGEN_GPIO_SET_DRV_SDP_DATA | led);
1002		break;
1003	case high:
1004		wr32(hw, I40E_GLGEN_GPIO_SET,
1005		     I40E_GLGEN_GPIO_SET_DRV_SDP_DATA |
1006		     I40E_GLGEN_GPIO_SET_SDP_DATA_HI | led);
1007		break;
1008	default:
1009		break;
1010	}
1011}
1012
1013/**
1014 * i40e_ptp_init_leds_hw - init LEDs
1015 * @hw: pointer to a hardware structure
1016 *
1017 * Set initial state of LEDs
1018 **/
1019static void i40e_ptp_init_leds_hw(struct i40e_hw *hw)
1020{
1021	wr32(hw, I40E_GLGEN_GPIO_CTL(I40E_LED2_0),
1022	     I40E_GLGEN_GPIO_CTL_LED_INIT);
1023	wr32(hw, I40E_GLGEN_GPIO_CTL(I40E_LED2_1),
1024	     I40E_GLGEN_GPIO_CTL_LED_INIT);
1025	wr32(hw, I40E_GLGEN_GPIO_CTL(I40E_LED3_0),
1026	     I40E_GLGEN_GPIO_CTL_LED_INIT);
1027	wr32(hw, I40E_GLGEN_GPIO_CTL(I40E_LED3_1),
1028	     I40E_GLGEN_GPIO_CTL_LED_INIT);
1029}
1030
1031/**
1032 * i40e_ptp_set_pins_hw - Set HW GPIO pins
1033 * @pf: Board private structure
1034 *
1035 * This function sets GPIO pins for PTP
1036 **/
1037static void i40e_ptp_set_pins_hw(struct i40e_pf *pf)
1038{
1039	const struct i40e_ptp_pins_settings *pins = pf->ptp_pins;
1040	struct i40e_hw *hw = &pf->hw;
1041
1042	/* pin must be disabled before it may be used */
1043	i40e_ptp_set_pin_hw(hw, I40E_SDP3_2, off);
1044	i40e_ptp_set_pin_hw(hw, I40E_SDP3_3, off);
1045	i40e_ptp_set_pin_hw(hw, I40E_GPIO_4, off);
1046
1047	i40e_ptp_set_pin_hw(hw, I40E_SDP3_2, pins->sdp3_2);
1048	i40e_ptp_set_pin_hw(hw, I40E_SDP3_3, pins->sdp3_3);
1049	i40e_ptp_set_pin_hw(hw, I40E_GPIO_4, pins->gpio_4);
1050
1051	i40e_ptp_set_led_hw(hw, I40E_LED2_0, pins->led2_0);
1052	i40e_ptp_set_led_hw(hw, I40E_LED2_1, pins->led2_1);
1053	i40e_ptp_set_led_hw(hw, I40E_LED3_0, pins->led3_0);
1054	i40e_ptp_set_led_hw(hw, I40E_LED3_1, pins->led3_1);
1055
1056	dev_info(&pf->pdev->dev,
1057		 "PTP configuration set to: SDP3_2: %s,  SDP3_3: %s,  GPIO_4: %s.\n",
1058		 i40e_ptp_gpio_pin_state2str[pins->sdp3_2],
1059		 i40e_ptp_gpio_pin_state2str[pins->sdp3_3],
1060		 i40e_ptp_gpio_pin_state2str[pins->gpio_4]);
1061}
1062
1063/**
1064 * i40e_ptp_set_pins - set PTP pins in HW
1065 * @pf: Board private structure
1066 * @pins: PTP pins to be applied
1067 *
1068 * Validate and set PTP pins in HW for specific PF.
1069 * Return 0 on success or negative value on error.
1070 **/
1071static int i40e_ptp_set_pins(struct i40e_pf *pf,
1072			     struct i40e_ptp_pins_settings *pins)
1073{
1074	enum i40e_can_set_pins pin_caps = i40e_can_set_pins(pf);
1075	int i = 0;
1076
1077	if (pin_caps == CANT_DO_PINS)
1078		return -EOPNOTSUPP;
1079	else if (pin_caps == CAN_DO_PINS)
1080		return 0;
1081
1082	if (pins->sdp3_2 == invalid)
1083		pins->sdp3_2 = pf->ptp_pins->sdp3_2;
1084	if (pins->sdp3_3 == invalid)
1085		pins->sdp3_3 = pf->ptp_pins->sdp3_3;
1086	if (pins->gpio_4 == invalid)
1087		pins->gpio_4 = pf->ptp_pins->gpio_4;
1088	while (i40e_ptp_pin_led_allowed_states[i].sdp3_2 != end) {
1089		if (pins->sdp3_2 == i40e_ptp_pin_led_allowed_states[i].sdp3_2 &&
1090		    pins->sdp3_3 == i40e_ptp_pin_led_allowed_states[i].sdp3_3 &&
1091		    pins->gpio_4 == i40e_ptp_pin_led_allowed_states[i].gpio_4) {
1092			pins->led2_0 =
1093				i40e_ptp_pin_led_allowed_states[i].led2_0;
1094			pins->led2_1 =
1095				i40e_ptp_pin_led_allowed_states[i].led2_1;
1096			pins->led3_0 =
1097				i40e_ptp_pin_led_allowed_states[i].led3_0;
1098			pins->led3_1 =
1099				i40e_ptp_pin_led_allowed_states[i].led3_1;
1100			break;
1101		}
1102		i++;
1103	}
1104	if (i40e_ptp_pin_led_allowed_states[i].sdp3_2 == end) {
1105		dev_warn(&pf->pdev->dev,
1106			 "Unsupported PTP pin configuration: SDP3_2: %s,  SDP3_3: %s,  GPIO_4: %s.\n",
1107			 i40e_ptp_gpio_pin_state2str[pins->sdp3_2],
1108			 i40e_ptp_gpio_pin_state2str[pins->sdp3_3],
1109			 i40e_ptp_gpio_pin_state2str[pins->gpio_4]);
1110
1111		return -EPERM;
1112	}
1113	memcpy(pf->ptp_pins, pins, sizeof(*pins));
1114	i40e_ptp_set_pins_hw(pf);
1115	i40_ptp_reset_timing_events(pf);
1116
1117	return 0;
1118}
1119
1120/**
1121 * i40e_ptp_alloc_pins - allocate PTP pins structure
1122 * @pf: Board private structure
1123 *
1124 * allocate PTP pins structure
1125 **/
1126int i40e_ptp_alloc_pins(struct i40e_pf *pf)
1127{
1128	if (!i40e_is_ptp_pin_dev(&pf->hw))
1129		return 0;
1130
1131	pf->ptp_pins =
1132		kzalloc(sizeof(struct i40e_ptp_pins_settings), GFP_KERNEL);
1133
1134	if (!pf->ptp_pins) {
1135		dev_warn(&pf->pdev->dev, "Cannot allocate memory for PTP pins structure.\n");
1136		return -ENOMEM;
1137	}
1138
1139	pf->ptp_pins->sdp3_2 = off;
1140	pf->ptp_pins->sdp3_3 = off;
1141	pf->ptp_pins->gpio_4 = off;
1142	pf->ptp_pins->led2_0 = high;
1143	pf->ptp_pins->led2_1 = high;
1144	pf->ptp_pins->led3_0 = high;
1145	pf->ptp_pins->led3_1 = high;
1146
1147	/* Use PF0 to set pins in HW. Return success for user space tools */
1148	if (pf->hw.pf_id)
1149		return 0;
1150
1151	i40e_ptp_init_leds_hw(&pf->hw);
1152	i40e_ptp_set_pins_hw(pf);
1153
1154	return 0;
1155}
1156
1157/**
1158 * i40e_ptp_set_timestamp_mode - setup hardware for requested timestamp mode
1159 * @pf: Board private structure
1160 * @config: hwtstamp settings requested or saved
1161 *
1162 * Control hardware registers to enter the specific mode requested by the
1163 * user. Also used during reset path to ensure that timestamp settings are
1164 * maintained.
1165 *
1166 * Note: modifies config in place, and may update the requested mode to be
1167 * more broad if the specific filter is not directly supported.
1168 **/
1169static int i40e_ptp_set_timestamp_mode(struct i40e_pf *pf,
1170				       struct hwtstamp_config *config)
1171{
1172	struct i40e_hw *hw = &pf->hw;
1173	u32 tsyntype, regval;
1174
1175	/* Selects external trigger to cause event */
1176	regval = rd32(hw, I40E_PRTTSYN_AUX_0(0));
1177	/* Bit 17:16 is EVNTLVL, 01B rising edge */
1178	regval &= 0;
1179	regval |= (1 << I40E_PRTTSYN_AUX_0_EVNTLVL_SHIFT);
1180	/* regval: 0001 0000 0000 0000 0000 */
1181	wr32(hw, I40E_PRTTSYN_AUX_0(0), regval);
1182
1183	/* Enabel interrupts */
1184	regval = rd32(hw, I40E_PRTTSYN_CTL0);
1185	regval |= 1 << I40E_PRTTSYN_CTL0_EVENT_INT_ENA_SHIFT;
1186	wr32(hw, I40E_PRTTSYN_CTL0, regval);
1187
1188	INIT_WORK(&pf->ptp_extts0_work, i40e_ptp_extts0_work);
1189
1190	switch (config->tx_type) {
1191	case HWTSTAMP_TX_OFF:
1192		pf->ptp_tx = false;
1193		break;
1194	case HWTSTAMP_TX_ON:
1195		pf->ptp_tx = true;
1196		break;
1197	default:
1198		return -ERANGE;
1199	}
1200
1201	switch (config->rx_filter) {
1202	case HWTSTAMP_FILTER_NONE:
1203		pf->ptp_rx = false;
1204		/* We set the type to V1, but do not enable UDP packet
1205		 * recognition. In this way, we should be as close to
1206		 * disabling PTP Rx timestamps as possible since V1 packets
1207		 * are always UDP, since L2 packets are a V2 feature.
1208		 */
1209		tsyntype = I40E_PRTTSYN_CTL1_TSYNTYPE_V1;
1210		break;
1211	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1212	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1213	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1214		if (!test_bit(I40E_HW_CAP_PTP_L4, pf->hw.caps))
1215			return -ERANGE;
1216		pf->ptp_rx = true;
1217		tsyntype = I40E_PRTTSYN_CTL1_V1MESSTYPE0_MASK |
1218			   I40E_PRTTSYN_CTL1_TSYNTYPE_V1 |
1219			   I40E_PRTTSYN_CTL1_UDP_ENA_MASK;
1220		config->rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
1221		break;
1222	case HWTSTAMP_FILTER_PTP_V2_EVENT:
1223	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1224	case HWTSTAMP_FILTER_PTP_V2_SYNC:
1225	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1226	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1227	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1228		if (!test_bit(I40E_HW_CAP_PTP_L4, pf->hw.caps))
1229			return -ERANGE;
1230		fallthrough;
1231	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1232	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1233	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1234		pf->ptp_rx = true;
1235		tsyntype = I40E_PRTTSYN_CTL1_V2MESSTYPE0_MASK |
1236			   I40E_PRTTSYN_CTL1_TSYNTYPE_V2;
1237		if (test_bit(I40E_HW_CAP_PTP_L4, pf->hw.caps)) {
1238			tsyntype |= I40E_PRTTSYN_CTL1_UDP_ENA_MASK;
1239			config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
1240		} else {
1241			config->rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT;
1242		}
1243		break;
1244	case HWTSTAMP_FILTER_NTP_ALL:
1245	case HWTSTAMP_FILTER_ALL:
1246	default:
1247		return -ERANGE;
1248	}
1249
1250	/* Clear out all 1588-related registers to clear and unlatch them. */
1251	spin_lock_bh(&pf->ptp_rx_lock);
1252	rd32(hw, I40E_PRTTSYN_STAT_0);
1253	rd32(hw, I40E_PRTTSYN_TXTIME_H);
1254	rd32(hw, I40E_PRTTSYN_RXTIME_H(0));
1255	rd32(hw, I40E_PRTTSYN_RXTIME_H(1));
1256	rd32(hw, I40E_PRTTSYN_RXTIME_H(2));
1257	rd32(hw, I40E_PRTTSYN_RXTIME_H(3));
1258	pf->latch_event_flags = 0;
1259	spin_unlock_bh(&pf->ptp_rx_lock);
1260
1261	/* Enable/disable the Tx timestamp interrupt based on user input. */
1262	regval = rd32(hw, I40E_PRTTSYN_CTL0);
1263	if (pf->ptp_tx)
1264		regval |= I40E_PRTTSYN_CTL0_TXTIME_INT_ENA_MASK;
1265	else
1266		regval &= ~I40E_PRTTSYN_CTL0_TXTIME_INT_ENA_MASK;
1267	wr32(hw, I40E_PRTTSYN_CTL0, regval);
1268
1269	regval = rd32(hw, I40E_PFINT_ICR0_ENA);
1270	if (pf->ptp_tx)
1271		regval |= I40E_PFINT_ICR0_ENA_TIMESYNC_MASK;
1272	else
1273		regval &= ~I40E_PFINT_ICR0_ENA_TIMESYNC_MASK;
1274	wr32(hw, I40E_PFINT_ICR0_ENA, regval);
1275
1276	/* Although there is no simple on/off switch for Rx, we "disable" Rx
1277	 * timestamps by setting to V1 only mode and clear the UDP
1278	 * recognition. This ought to disable all PTP Rx timestamps as V1
1279	 * packets are always over UDP. Note that software is configured to
1280	 * ignore Rx timestamps via the pf->ptp_rx flag.
1281	 */
1282	regval = rd32(hw, I40E_PRTTSYN_CTL1);
1283	/* clear everything but the enable bit */
1284	regval &= I40E_PRTTSYN_CTL1_TSYNENA_MASK;
1285	/* now enable bits for desired Rx timestamps */
1286	regval |= tsyntype;
1287	wr32(hw, I40E_PRTTSYN_CTL1, regval);
1288
1289	return 0;
1290}
1291
1292/**
1293 * i40e_ptp_set_ts_config - ioctl interface to control the HW timestamping
1294 * @pf: Board private structure
1295 * @ifr: ioctl data
1296 *
1297 * Respond to the user filter requests and make the appropriate hardware
1298 * changes here. The XL710 cannot support splitting of the Tx/Rx timestamping
1299 * logic, so keep track in software of whether to indicate these timestamps
1300 * or not.
1301 *
1302 * It is permissible to "upgrade" the user request to a broader filter, as long
1303 * as the user receives the timestamps they care about and the user is notified
1304 * the filter has been broadened.
1305 **/
1306int i40e_ptp_set_ts_config(struct i40e_pf *pf, struct ifreq *ifr)
1307{
1308	struct hwtstamp_config config;
1309	int err;
1310
1311	if (!test_bit(I40E_FLAG_PTP_ENA, pf->flags))
1312		return -EOPNOTSUPP;
1313
1314	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
1315		return -EFAULT;
1316
1317	err = i40e_ptp_set_timestamp_mode(pf, &config);
1318	if (err)
1319		return err;
1320
1321	/* save these settings for future reference */
1322	pf->tstamp_config = config;
1323
1324	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
1325		-EFAULT : 0;
1326}
1327
1328/**
1329 * i40e_init_pin_config - initialize pins.
1330 * @pf: private board structure
1331 *
1332 * Initialize pins for external clock source.
1333 * Return 0 on success or error code on failure.
1334 **/
1335static int i40e_init_pin_config(struct i40e_pf *pf)
1336{
1337	int i;
1338
1339	pf->ptp_caps.n_pins = 3;
1340	pf->ptp_caps.n_ext_ts = 2;
1341	pf->ptp_caps.pps = 1;
1342	pf->ptp_caps.n_per_out = 2;
1343
1344	pf->ptp_caps.pin_config = kcalloc(pf->ptp_caps.n_pins,
1345					  sizeof(*pf->ptp_caps.pin_config),
1346					  GFP_KERNEL);
1347	if (!pf->ptp_caps.pin_config)
1348		return -ENOMEM;
1349
1350	for (i = 0; i < pf->ptp_caps.n_pins; i++) {
1351		snprintf(pf->ptp_caps.pin_config[i].name,
1352			 sizeof(pf->ptp_caps.pin_config[i].name),
1353			 "%s", sdp_desc[i].name);
1354		pf->ptp_caps.pin_config[i].index = sdp_desc[i].index;
1355		pf->ptp_caps.pin_config[i].func = PTP_PF_NONE;
1356		pf->ptp_caps.pin_config[i].chan = sdp_desc[i].chan;
1357	}
1358
1359	pf->ptp_caps.verify = i40e_ptp_verify;
1360	pf->ptp_caps.enable = i40e_ptp_feature_enable;
1361
1362	pf->ptp_caps.pps = 1;
1363
1364	return 0;
1365}
1366
1367/**
1368 * i40e_ptp_create_clock - Create PTP clock device for userspace
1369 * @pf: Board private structure
1370 *
1371 * This function creates a new PTP clock device. It only creates one if we
1372 * don't already have one, so it is safe to call. Will return error if it
1373 * can't create one, but success if we already have a device. Should be used
1374 * by i40e_ptp_init to create clock initially, and prevent global resets from
1375 * creating new clock devices.
1376 **/
1377static long i40e_ptp_create_clock(struct i40e_pf *pf)
1378{
1379	/* no need to create a clock device if we already have one */
1380	if (!IS_ERR_OR_NULL(pf->ptp_clock))
1381		return 0;
1382
1383	strscpy(pf->ptp_caps.name, i40e_driver_name,
1384		sizeof(pf->ptp_caps.name) - 1);
1385	pf->ptp_caps.owner = THIS_MODULE;
1386	pf->ptp_caps.max_adj = 999999999;
1387	pf->ptp_caps.adjfine = i40e_ptp_adjfine;
1388	pf->ptp_caps.adjtime = i40e_ptp_adjtime;
1389	pf->ptp_caps.gettimex64 = i40e_ptp_gettimex;
1390	pf->ptp_caps.settime64 = i40e_ptp_settime;
1391	if (i40e_is_ptp_pin_dev(&pf->hw)) {
1392		int err = i40e_init_pin_config(pf);
1393
1394		if (err)
1395			return err;
1396	}
1397
1398	/* Attempt to register the clock before enabling the hardware. */
1399	pf->ptp_clock = ptp_clock_register(&pf->ptp_caps, &pf->pdev->dev);
1400	if (IS_ERR(pf->ptp_clock))
1401		return PTR_ERR(pf->ptp_clock);
1402
1403	/* clear the hwtstamp settings here during clock create, instead of
1404	 * during regular init, so that we can maintain settings across a
1405	 * reset or suspend.
1406	 */
1407	pf->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
1408	pf->tstamp_config.tx_type = HWTSTAMP_TX_OFF;
1409
1410	/* Set the previous "reset" time to the current Kernel clock time */
1411	ktime_get_real_ts64(&pf->ptp_prev_hw_time);
1412	pf->ptp_reset_start = ktime_get();
1413
1414	return 0;
1415}
1416
1417/**
1418 * i40e_ptp_save_hw_time - Save the current PTP time as ptp_prev_hw_time
1419 * @pf: Board private structure
1420 *
1421 * Read the current PTP time and save it into pf->ptp_prev_hw_time. This should
1422 * be called at the end of preparing to reset, just before hardware reset
1423 * occurs, in order to preserve the PTP time as close as possible across
1424 * resets.
1425 */
1426void i40e_ptp_save_hw_time(struct i40e_pf *pf)
1427{
1428	/* don't try to access the PTP clock if it's not enabled */
1429	if (!test_bit(I40E_FLAG_PTP_ENA, pf->flags))
1430		return;
1431
1432	i40e_ptp_gettimex(&pf->ptp_caps, &pf->ptp_prev_hw_time, NULL);
1433	/* Get a monotonic starting time for this reset */
1434	pf->ptp_reset_start = ktime_get();
1435}
1436
1437/**
1438 * i40e_ptp_restore_hw_time - Restore the ptp_prev_hw_time + delta to PTP regs
1439 * @pf: Board private structure
1440 *
1441 * Restore the PTP hardware clock registers. We previously cached the PTP
1442 * hardware time as pf->ptp_prev_hw_time. To be as accurate as possible,
1443 * update this value based on the time delta since the time was saved, using
1444 * CLOCK_MONOTONIC (via ktime_get()) to calculate the time difference.
1445 *
1446 * This ensures that the hardware clock is restored to nearly what it should
1447 * have been if a reset had not occurred.
1448 */
1449void i40e_ptp_restore_hw_time(struct i40e_pf *pf)
1450{
1451	ktime_t delta = ktime_sub(ktime_get(), pf->ptp_reset_start);
1452
1453	/* Update the previous HW time with the ktime delta */
1454	timespec64_add_ns(&pf->ptp_prev_hw_time, ktime_to_ns(delta));
1455
1456	/* Restore the hardware clock registers */
1457	i40e_ptp_settime(&pf->ptp_caps, &pf->ptp_prev_hw_time);
1458}
1459
1460/**
1461 * i40e_ptp_init - Initialize the 1588 support after device probe or reset
1462 * @pf: Board private structure
1463 *
1464 * This function sets device up for 1588 support. The first time it is run, it
1465 * will create a PHC clock device. It does not create a clock device if one
1466 * already exists. It also reconfigures the device after a reset.
1467 *
1468 * The first time a clock is created, i40e_ptp_create_clock will set
1469 * pf->ptp_prev_hw_time to the current system time. During resets, it is
1470 * expected that this timespec will be set to the last known PTP clock time,
1471 * in order to preserve the clock time as close as possible across a reset.
1472 **/
1473void i40e_ptp_init(struct i40e_pf *pf)
1474{
1475	struct net_device *netdev = pf->vsi[pf->lan_vsi]->netdev;
1476	struct i40e_hw *hw = &pf->hw;
1477	u32 pf_id;
1478	long err;
1479
1480	/* Only one PF is assigned to control 1588 logic per port. Do not
1481	 * enable any support for PFs not assigned via PRTTSYN_CTL0.PF_ID
1482	 */
1483	pf_id = FIELD_GET(I40E_PRTTSYN_CTL0_PF_ID_MASK,
1484			  rd32(hw, I40E_PRTTSYN_CTL0));
1485	if (hw->pf_id != pf_id) {
1486		clear_bit(I40E_FLAG_PTP_ENA, pf->flags);
1487		dev_info(&pf->pdev->dev, "%s: PTP not supported on %s\n",
1488			 __func__,
1489			 netdev->name);
1490		return;
1491	}
1492
1493	mutex_init(&pf->tmreg_lock);
1494	spin_lock_init(&pf->ptp_rx_lock);
1495
1496	/* ensure we have a clock device */
1497	err = i40e_ptp_create_clock(pf);
1498	if (err) {
1499		pf->ptp_clock = NULL;
1500		dev_err(&pf->pdev->dev, "%s: ptp_clock_register failed\n",
1501			__func__);
1502	} else if (pf->ptp_clock) {
1503		u32 regval;
1504
1505		if (pf->hw.debug_mask & I40E_DEBUG_LAN)
1506			dev_info(&pf->pdev->dev, "PHC enabled\n");
1507		set_bit(I40E_FLAG_PTP_ENA, pf->flags);
1508
1509		/* Ensure the clocks are running. */
1510		regval = rd32(hw, I40E_PRTTSYN_CTL0);
1511		regval |= I40E_PRTTSYN_CTL0_TSYNENA_MASK;
1512		wr32(hw, I40E_PRTTSYN_CTL0, regval);
1513		regval = rd32(hw, I40E_PRTTSYN_CTL1);
1514		regval |= I40E_PRTTSYN_CTL1_TSYNENA_MASK;
1515		wr32(hw, I40E_PRTTSYN_CTL1, regval);
1516
1517		/* Set the increment value per clock tick. */
1518		i40e_ptp_set_increment(pf);
1519
1520		/* reset timestamping mode */
1521		i40e_ptp_set_timestamp_mode(pf, &pf->tstamp_config);
1522
1523		/* Restore the clock time based on last known value */
1524		i40e_ptp_restore_hw_time(pf);
1525	}
1526
1527	i40e_ptp_set_1pps_signal_hw(pf);
1528}
1529
1530/**
1531 * i40e_ptp_stop - Disable the driver/hardware support and unregister the PHC
1532 * @pf: Board private structure
1533 *
1534 * This function handles the cleanup work required from the initialization by
1535 * clearing out the important information and unregistering the PHC.
1536 **/
1537void i40e_ptp_stop(struct i40e_pf *pf)
1538{
1539	struct i40e_hw *hw = &pf->hw;
1540	u32 regval;
1541
1542	clear_bit(I40E_FLAG_PTP_ENA, pf->flags);
1543	pf->ptp_tx = false;
1544	pf->ptp_rx = false;
1545
1546	if (pf->ptp_tx_skb) {
1547		struct sk_buff *skb = pf->ptp_tx_skb;
1548
1549		pf->ptp_tx_skb = NULL;
1550		clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state);
1551		dev_kfree_skb_any(skb);
1552	}
1553
1554	if (pf->ptp_clock) {
1555		ptp_clock_unregister(pf->ptp_clock);
1556		pf->ptp_clock = NULL;
1557		dev_info(&pf->pdev->dev, "%s: removed PHC on %s\n", __func__,
1558			 pf->vsi[pf->lan_vsi]->netdev->name);
1559	}
1560
1561	if (i40e_is_ptp_pin_dev(&pf->hw)) {
1562		i40e_ptp_set_pin_hw(hw, I40E_SDP3_2, off);
1563		i40e_ptp_set_pin_hw(hw, I40E_SDP3_3, off);
1564		i40e_ptp_set_pin_hw(hw, I40E_GPIO_4, off);
1565	}
1566
1567	regval = rd32(hw, I40E_PRTTSYN_AUX_0(0));
1568	regval &= ~I40E_PRTTSYN_AUX_0_PTPFLAG_MASK;
1569	wr32(hw, I40E_PRTTSYN_AUX_0(0), regval);
1570
1571	/* Disable interrupts */
1572	regval = rd32(hw, I40E_PRTTSYN_CTL0);
1573	regval &= ~I40E_PRTTSYN_CTL0_EVENT_INT_ENA_MASK;
1574	wr32(hw, I40E_PRTTSYN_CTL0, regval);
1575
1576	i40e_ptp_free_pins(pf);
1577}
1578