1// SPDX-License-Identifier: GPL-2.0
2/* Copyright(c) 1999 - 2018 Intel Corporation. */
3
4#include <linux/bitfield.h>
5
6#include "e1000.h"
7
8/**
9 *  e1000e_get_bus_info_pcie - Get PCIe bus information
10 *  @hw: pointer to the HW structure
11 *
12 *  Determines and stores the system bus information for a particular
13 *  network interface.  The following bus information is determined and stored:
14 *  bus speed, bus width, type (PCIe), and PCIe function.
15 **/
16s32 e1000e_get_bus_info_pcie(struct e1000_hw *hw)
17{
18	struct pci_dev *pdev = hw->adapter->pdev;
19	struct e1000_mac_info *mac = &hw->mac;
20	struct e1000_bus_info *bus = &hw->bus;
21	u16 pcie_link_status;
22
23	if (!pci_pcie_cap(pdev)) {
24		bus->width = e1000_bus_width_unknown;
25	} else {
26		pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &pcie_link_status);
27		bus->width = (enum e1000_bus_width)FIELD_GET(PCI_EXP_LNKSTA_NLW,
28							     pcie_link_status);
29	}
30
31	mac->ops.set_lan_id(hw);
32
33	return 0;
34}
35
36/**
37 *  e1000_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
38 *
39 *  @hw: pointer to the HW structure
40 *
41 *  Determines the LAN function id by reading memory-mapped registers
42 *  and swaps the port value if requested.
43 **/
44void e1000_set_lan_id_multi_port_pcie(struct e1000_hw *hw)
45{
46	struct e1000_bus_info *bus = &hw->bus;
47	u32 reg;
48
49	/* The status register reports the correct function number
50	 * for the device regardless of function swap state.
51	 */
52	reg = er32(STATUS);
53	bus->func = FIELD_GET(E1000_STATUS_FUNC_MASK, reg);
54}
55
56/**
57 *  e1000_set_lan_id_single_port - Set LAN id for a single port device
58 *  @hw: pointer to the HW structure
59 *
60 *  Sets the LAN function id to zero for a single port device.
61 **/
62void e1000_set_lan_id_single_port(struct e1000_hw *hw)
63{
64	struct e1000_bus_info *bus = &hw->bus;
65
66	bus->func = 0;
67}
68
69/**
70 *  e1000_clear_vfta_generic - Clear VLAN filter table
71 *  @hw: pointer to the HW structure
72 *
73 *  Clears the register array which contains the VLAN filter table by
74 *  setting all the values to 0.
75 **/
76void e1000_clear_vfta_generic(struct e1000_hw *hw)
77{
78	u32 offset;
79
80	for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
81		E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, 0);
82		e1e_flush();
83	}
84}
85
86/**
87 *  e1000_write_vfta_generic - Write value to VLAN filter table
88 *  @hw: pointer to the HW structure
89 *  @offset: register offset in VLAN filter table
90 *  @value: register value written to VLAN filter table
91 *
92 *  Writes value at the given offset in the register array which stores
93 *  the VLAN filter table.
94 **/
95void e1000_write_vfta_generic(struct e1000_hw *hw, u32 offset, u32 value)
96{
97	E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, value);
98	e1e_flush();
99}
100
101/**
102 *  e1000e_init_rx_addrs - Initialize receive address's
103 *  @hw: pointer to the HW structure
104 *  @rar_count: receive address registers
105 *
106 *  Setup the receive address registers by setting the base receive address
107 *  register to the devices MAC address and clearing all the other receive
108 *  address registers to 0.
109 **/
110void e1000e_init_rx_addrs(struct e1000_hw *hw, u16 rar_count)
111{
112	u32 i;
113	u8 mac_addr[ETH_ALEN] = { 0 };
114
115	/* Setup the receive address */
116	e_dbg("Programming MAC Address into RAR[0]\n");
117
118	hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
119
120	/* Zero out the other (rar_entry_count - 1) receive addresses */
121	e_dbg("Clearing RAR[1-%u]\n", rar_count - 1);
122	for (i = 1; i < rar_count; i++)
123		hw->mac.ops.rar_set(hw, mac_addr, i);
124}
125
126/**
127 *  e1000_check_alt_mac_addr_generic - Check for alternate MAC addr
128 *  @hw: pointer to the HW structure
129 *
130 *  Checks the nvm for an alternate MAC address.  An alternate MAC address
131 *  can be setup by pre-boot software and must be treated like a permanent
132 *  address and must override the actual permanent MAC address. If an
133 *  alternate MAC address is found it is programmed into RAR0, replacing
134 *  the permanent address that was installed into RAR0 by the Si on reset.
135 *  This function will return SUCCESS unless it encounters an error while
136 *  reading the EEPROM.
137 **/
138s32 e1000_check_alt_mac_addr_generic(struct e1000_hw *hw)
139{
140	u32 i;
141	s32 ret_val;
142	u16 offset, nvm_alt_mac_addr_offset, nvm_data;
143	u8 alt_mac_addr[ETH_ALEN];
144
145	ret_val = e1000_read_nvm(hw, NVM_COMPAT, 1, &nvm_data);
146	if (ret_val)
147		return ret_val;
148
149	/* not supported on 82573 */
150	if (hw->mac.type == e1000_82573)
151		return 0;
152
153	ret_val = e1000_read_nvm(hw, NVM_ALT_MAC_ADDR_PTR, 1,
154				 &nvm_alt_mac_addr_offset);
155	if (ret_val) {
156		e_dbg("NVM Read Error\n");
157		return ret_val;
158	}
159
160	if ((nvm_alt_mac_addr_offset == 0xFFFF) ||
161	    (nvm_alt_mac_addr_offset == 0x0000))
162		/* There is no Alternate MAC Address */
163		return 0;
164
165	if (hw->bus.func == E1000_FUNC_1)
166		nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN1;
167	for (i = 0; i < ETH_ALEN; i += 2) {
168		offset = nvm_alt_mac_addr_offset + (i >> 1);
169		ret_val = e1000_read_nvm(hw, offset, 1, &nvm_data);
170		if (ret_val) {
171			e_dbg("NVM Read Error\n");
172			return ret_val;
173		}
174
175		alt_mac_addr[i] = (u8)(nvm_data & 0xFF);
176		alt_mac_addr[i + 1] = (u8)(nvm_data >> 8);
177	}
178
179	/* if multicast bit is set, the alternate address will not be used */
180	if (is_multicast_ether_addr(alt_mac_addr)) {
181		e_dbg("Ignoring Alternate Mac Address with MC bit set\n");
182		return 0;
183	}
184
185	/* We have a valid alternate MAC address, and we want to treat it the
186	 * same as the normal permanent MAC address stored by the HW into the
187	 * RAR. Do this by mapping this address into RAR0.
188	 */
189	hw->mac.ops.rar_set(hw, alt_mac_addr, 0);
190
191	return 0;
192}
193
194u32 e1000e_rar_get_count_generic(struct e1000_hw *hw)
195{
196	return hw->mac.rar_entry_count;
197}
198
199/**
200 *  e1000e_rar_set_generic - Set receive address register
201 *  @hw: pointer to the HW structure
202 *  @addr: pointer to the receive address
203 *  @index: receive address array register
204 *
205 *  Sets the receive address array register at index to the address passed
206 *  in by addr.
207 **/
208int e1000e_rar_set_generic(struct e1000_hw *hw, u8 *addr, u32 index)
209{
210	u32 rar_low, rar_high;
211
212	/* HW expects these in little endian so we reverse the byte order
213	 * from network order (big endian) to little endian
214	 */
215	rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
216		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
217
218	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
219
220	/* If MAC address zero, no need to set the AV bit */
221	if (rar_low || rar_high)
222		rar_high |= E1000_RAH_AV;
223
224	/* Some bridges will combine consecutive 32-bit writes into
225	 * a single burst write, which will malfunction on some parts.
226	 * The flushes avoid this.
227	 */
228	ew32(RAL(index), rar_low);
229	e1e_flush();
230	ew32(RAH(index), rar_high);
231	e1e_flush();
232
233	return 0;
234}
235
236/**
237 *  e1000_hash_mc_addr - Generate a multicast hash value
238 *  @hw: pointer to the HW structure
239 *  @mc_addr: pointer to a multicast address
240 *
241 *  Generates a multicast address hash value which is used to determine
242 *  the multicast filter table array address and new table value.
243 **/
244static u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
245{
246	u32 hash_value, hash_mask;
247	u8 bit_shift = 0;
248
249	/* Register count multiplied by bits per register */
250	hash_mask = (hw->mac.mta_reg_count * 32) - 1;
251
252	/* For a mc_filter_type of 0, bit_shift is the number of left-shifts
253	 * where 0xFF would still fall within the hash mask.
254	 */
255	while (hash_mask >> bit_shift != 0xFF)
256		bit_shift++;
257
258	/* The portion of the address that is used for the hash table
259	 * is determined by the mc_filter_type setting.
260	 * The algorithm is such that there is a total of 8 bits of shifting.
261	 * The bit_shift for a mc_filter_type of 0 represents the number of
262	 * left-shifts where the MSB of mc_addr[5] would still fall within
263	 * the hash_mask.  Case 0 does this exactly.  Since there are a total
264	 * of 8 bits of shifting, then mc_addr[4] will shift right the
265	 * remaining number of bits. Thus 8 - bit_shift.  The rest of the
266	 * cases are a variation of this algorithm...essentially raising the
267	 * number of bits to shift mc_addr[5] left, while still keeping the
268	 * 8-bit shifting total.
269	 *
270	 * For example, given the following Destination MAC Address and an
271	 * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask),
272	 * we can see that the bit_shift for case 0 is 4.  These are the hash
273	 * values resulting from each mc_filter_type...
274	 * [0] [1] [2] [3] [4] [5]
275	 * 01  AA  00  12  34  56
276	 * LSB           MSB
277	 *
278	 * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563
279	 * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6
280	 * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163
281	 * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634
282	 */
283	switch (hw->mac.mc_filter_type) {
284	default:
285	case 0:
286		break;
287	case 1:
288		bit_shift += 1;
289		break;
290	case 2:
291		bit_shift += 2;
292		break;
293	case 3:
294		bit_shift += 4;
295		break;
296	}
297
298	hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
299				   (((u16)mc_addr[5]) << bit_shift)));
300
301	return hash_value;
302}
303
304/**
305 *  e1000e_update_mc_addr_list_generic - Update Multicast addresses
306 *  @hw: pointer to the HW structure
307 *  @mc_addr_list: array of multicast addresses to program
308 *  @mc_addr_count: number of multicast addresses to program
309 *
310 *  Updates entire Multicast Table Array.
311 *  The caller must have a packed mc_addr_list of multicast addresses.
312 **/
313void e1000e_update_mc_addr_list_generic(struct e1000_hw *hw,
314					u8 *mc_addr_list, u32 mc_addr_count)
315{
316	u32 hash_value, hash_bit, hash_reg;
317	int i;
318
319	/* clear mta_shadow */
320	memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
321
322	/* update mta_shadow from mc_addr_list */
323	for (i = 0; (u32)i < mc_addr_count; i++) {
324		hash_value = e1000_hash_mc_addr(hw, mc_addr_list);
325
326		hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
327		hash_bit = hash_value & 0x1F;
328
329		hw->mac.mta_shadow[hash_reg] |= BIT(hash_bit);
330		mc_addr_list += (ETH_ALEN);
331	}
332
333	/* replace the entire MTA table */
334	for (i = hw->mac.mta_reg_count - 1; i >= 0; i--)
335		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, hw->mac.mta_shadow[i]);
336	e1e_flush();
337}
338
339/**
340 *  e1000e_clear_hw_cntrs_base - Clear base hardware counters
341 *  @hw: pointer to the HW structure
342 *
343 *  Clears the base hardware counters by reading the counter registers.
344 **/
345void e1000e_clear_hw_cntrs_base(struct e1000_hw *hw)
346{
347	er32(CRCERRS);
348	er32(SYMERRS);
349	er32(MPC);
350	er32(SCC);
351	er32(ECOL);
352	er32(MCC);
353	er32(LATECOL);
354	er32(COLC);
355	er32(DC);
356	er32(SEC);
357	er32(RLEC);
358	er32(XONRXC);
359	er32(XONTXC);
360	er32(XOFFRXC);
361	er32(XOFFTXC);
362	er32(FCRUC);
363	er32(GPRC);
364	er32(BPRC);
365	er32(MPRC);
366	er32(GPTC);
367	er32(GORCL);
368	er32(GORCH);
369	er32(GOTCL);
370	er32(GOTCH);
371	er32(RNBC);
372	er32(RUC);
373	er32(RFC);
374	er32(ROC);
375	er32(RJC);
376	er32(TORL);
377	er32(TORH);
378	er32(TOTL);
379	er32(TOTH);
380	er32(TPR);
381	er32(TPT);
382	er32(MPTC);
383	er32(BPTC);
384}
385
386/**
387 *  e1000e_check_for_copper_link - Check for link (Copper)
388 *  @hw: pointer to the HW structure
389 *
390 *  Checks to see of the link status of the hardware has changed.  If a
391 *  change in link status has been detected, then we read the PHY registers
392 *  to get the current speed/duplex if link exists.
393 **/
394s32 e1000e_check_for_copper_link(struct e1000_hw *hw)
395{
396	struct e1000_mac_info *mac = &hw->mac;
397	s32 ret_val;
398	bool link;
399
400	/* We only want to go out to the PHY registers to see if Auto-Neg
401	 * has completed and/or if our link status has changed.  The
402	 * get_link_status flag is set upon receiving a Link Status
403	 * Change or Rx Sequence Error interrupt.
404	 */
405	if (!mac->get_link_status)
406		return 0;
407	mac->get_link_status = false;
408
409	/* First we want to see if the MII Status Register reports
410	 * link.  If so, then we want to get the current speed/duplex
411	 * of the PHY.
412	 */
413	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
414	if (ret_val || !link)
415		goto out;
416
417	/* Check if there was DownShift, must be checked
418	 * immediately after link-up
419	 */
420	e1000e_check_downshift(hw);
421
422	/* If we are forcing speed/duplex, then we simply return since
423	 * we have already determined whether we have link or not.
424	 */
425	if (!mac->autoneg)
426		return -E1000_ERR_CONFIG;
427
428	/* Auto-Neg is enabled.  Auto Speed Detection takes care
429	 * of MAC speed/duplex configuration.  So we only need to
430	 * configure Collision Distance in the MAC.
431	 */
432	mac->ops.config_collision_dist(hw);
433
434	/* Configure Flow Control now that Auto-Neg has completed.
435	 * First, we need to restore the desired flow control
436	 * settings because we may have had to re-autoneg with a
437	 * different link partner.
438	 */
439	ret_val = e1000e_config_fc_after_link_up(hw);
440	if (ret_val)
441		e_dbg("Error configuring flow control\n");
442
443	return ret_val;
444
445out:
446	mac->get_link_status = true;
447	return ret_val;
448}
449
450/**
451 *  e1000e_check_for_fiber_link - Check for link (Fiber)
452 *  @hw: pointer to the HW structure
453 *
454 *  Checks for link up on the hardware.  If link is not up and we have
455 *  a signal, then we need to force link up.
456 **/
457s32 e1000e_check_for_fiber_link(struct e1000_hw *hw)
458{
459	struct e1000_mac_info *mac = &hw->mac;
460	u32 rxcw;
461	u32 ctrl;
462	u32 status;
463	s32 ret_val;
464
465	ctrl = er32(CTRL);
466	status = er32(STATUS);
467	rxcw = er32(RXCW);
468
469	/* If we don't have link (auto-negotiation failed or link partner
470	 * cannot auto-negotiate), the cable is plugged in (we have signal),
471	 * and our link partner is not trying to auto-negotiate with us (we
472	 * are receiving idles or data), we need to force link up. We also
473	 * need to give auto-negotiation time to complete, in case the cable
474	 * was just plugged in. The autoneg_failed flag does this.
475	 */
476	/* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
477	if ((ctrl & E1000_CTRL_SWDPIN1) && !(status & E1000_STATUS_LU) &&
478	    !(rxcw & E1000_RXCW_C)) {
479		if (!mac->autoneg_failed) {
480			mac->autoneg_failed = true;
481			return 0;
482		}
483		e_dbg("NOT Rx'ing /C/, disable AutoNeg and force link.\n");
484
485		/* Disable auto-negotiation in the TXCW register */
486		ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
487
488		/* Force link-up and also force full-duplex. */
489		ctrl = er32(CTRL);
490		ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
491		ew32(CTRL, ctrl);
492
493		/* Configure Flow Control after forcing link up. */
494		ret_val = e1000e_config_fc_after_link_up(hw);
495		if (ret_val) {
496			e_dbg("Error configuring flow control\n");
497			return ret_val;
498		}
499	} else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
500		/* If we are forcing link and we are receiving /C/ ordered
501		 * sets, re-enable auto-negotiation in the TXCW register
502		 * and disable forced link in the Device Control register
503		 * in an attempt to auto-negotiate with our link partner.
504		 */
505		e_dbg("Rx'ing /C/, enable AutoNeg and stop forcing link.\n");
506		ew32(TXCW, mac->txcw);
507		ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
508
509		mac->serdes_has_link = true;
510	}
511
512	return 0;
513}
514
515/**
516 *  e1000e_check_for_serdes_link - Check for link (Serdes)
517 *  @hw: pointer to the HW structure
518 *
519 *  Checks for link up on the hardware.  If link is not up and we have
520 *  a signal, then we need to force link up.
521 **/
522s32 e1000e_check_for_serdes_link(struct e1000_hw *hw)
523{
524	struct e1000_mac_info *mac = &hw->mac;
525	u32 rxcw;
526	u32 ctrl;
527	u32 status;
528	s32 ret_val;
529
530	ctrl = er32(CTRL);
531	status = er32(STATUS);
532	rxcw = er32(RXCW);
533
534	/* If we don't have link (auto-negotiation failed or link partner
535	 * cannot auto-negotiate), and our link partner is not trying to
536	 * auto-negotiate with us (we are receiving idles or data),
537	 * we need to force link up. We also need to give auto-negotiation
538	 * time to complete.
539	 */
540	/* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
541	if (!(status & E1000_STATUS_LU) && !(rxcw & E1000_RXCW_C)) {
542		if (!mac->autoneg_failed) {
543			mac->autoneg_failed = true;
544			return 0;
545		}
546		e_dbg("NOT Rx'ing /C/, disable AutoNeg and force link.\n");
547
548		/* Disable auto-negotiation in the TXCW register */
549		ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
550
551		/* Force link-up and also force full-duplex. */
552		ctrl = er32(CTRL);
553		ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
554		ew32(CTRL, ctrl);
555
556		/* Configure Flow Control after forcing link up. */
557		ret_val = e1000e_config_fc_after_link_up(hw);
558		if (ret_val) {
559			e_dbg("Error configuring flow control\n");
560			return ret_val;
561		}
562	} else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
563		/* If we are forcing link and we are receiving /C/ ordered
564		 * sets, re-enable auto-negotiation in the TXCW register
565		 * and disable forced link in the Device Control register
566		 * in an attempt to auto-negotiate with our link partner.
567		 */
568		e_dbg("Rx'ing /C/, enable AutoNeg and stop forcing link.\n");
569		ew32(TXCW, mac->txcw);
570		ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
571
572		mac->serdes_has_link = true;
573	} else if (!(E1000_TXCW_ANE & er32(TXCW))) {
574		/* If we force link for non-auto-negotiation switch, check
575		 * link status based on MAC synchronization for internal
576		 * serdes media type.
577		 */
578		/* SYNCH bit and IV bit are sticky. */
579		usleep_range(10, 20);
580		rxcw = er32(RXCW);
581		if (rxcw & E1000_RXCW_SYNCH) {
582			if (!(rxcw & E1000_RXCW_IV)) {
583				mac->serdes_has_link = true;
584				e_dbg("SERDES: Link up - forced.\n");
585			}
586		} else {
587			mac->serdes_has_link = false;
588			e_dbg("SERDES: Link down - force failed.\n");
589		}
590	}
591
592	if (E1000_TXCW_ANE & er32(TXCW)) {
593		status = er32(STATUS);
594		if (status & E1000_STATUS_LU) {
595			/* SYNCH bit and IV bit are sticky, so reread rxcw. */
596			usleep_range(10, 20);
597			rxcw = er32(RXCW);
598			if (rxcw & E1000_RXCW_SYNCH) {
599				if (!(rxcw & E1000_RXCW_IV)) {
600					mac->serdes_has_link = true;
601					e_dbg("SERDES: Link up - autoneg completed successfully.\n");
602				} else {
603					mac->serdes_has_link = false;
604					e_dbg("SERDES: Link down - invalid codewords detected in autoneg.\n");
605				}
606			} else {
607				mac->serdes_has_link = false;
608				e_dbg("SERDES: Link down - no sync.\n");
609			}
610		} else {
611			mac->serdes_has_link = false;
612			e_dbg("SERDES: Link down - autoneg failed\n");
613		}
614	}
615
616	return 0;
617}
618
619/**
620 *  e1000_set_default_fc_generic - Set flow control default values
621 *  @hw: pointer to the HW structure
622 *
623 *  Read the EEPROM for the default values for flow control and store the
624 *  values.
625 **/
626static s32 e1000_set_default_fc_generic(struct e1000_hw *hw)
627{
628	s32 ret_val;
629	u16 nvm_data;
630
631	/* Read and store word 0x0F of the EEPROM. This word contains bits
632	 * that determine the hardware's default PAUSE (flow control) mode,
633	 * a bit that determines whether the HW defaults to enabling or
634	 * disabling auto-negotiation, and the direction of the
635	 * SW defined pins. If there is no SW over-ride of the flow
636	 * control setting, then the variable hw->fc will
637	 * be initialized based on a value in the EEPROM.
638	 */
639	ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &nvm_data);
640
641	if (ret_val) {
642		e_dbg("NVM Read Error\n");
643		return ret_val;
644	}
645
646	if (!(nvm_data & NVM_WORD0F_PAUSE_MASK))
647		hw->fc.requested_mode = e1000_fc_none;
648	else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == NVM_WORD0F_ASM_DIR)
649		hw->fc.requested_mode = e1000_fc_tx_pause;
650	else
651		hw->fc.requested_mode = e1000_fc_full;
652
653	return 0;
654}
655
656/**
657 *  e1000e_setup_link_generic - Setup flow control and link settings
658 *  @hw: pointer to the HW structure
659 *
660 *  Determines which flow control settings to use, then configures flow
661 *  control.  Calls the appropriate media-specific link configuration
662 *  function.  Assuming the adapter has a valid link partner, a valid link
663 *  should be established.  Assumes the hardware has previously been reset
664 *  and the transmitter and receiver are not enabled.
665 **/
666s32 e1000e_setup_link_generic(struct e1000_hw *hw)
667{
668	s32 ret_val;
669
670	/* In the case of the phy reset being blocked, we already have a link.
671	 * We do not need to set it up again.
672	 */
673	if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw))
674		return 0;
675
676	/* If requested flow control is set to default, set flow control
677	 * based on the EEPROM flow control settings.
678	 */
679	if (hw->fc.requested_mode == e1000_fc_default) {
680		ret_val = e1000_set_default_fc_generic(hw);
681		if (ret_val)
682			return ret_val;
683	}
684
685	/* Save off the requested flow control mode for use later.  Depending
686	 * on the link partner's capabilities, we may or may not use this mode.
687	 */
688	hw->fc.current_mode = hw->fc.requested_mode;
689
690	e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
691
692	/* Call the necessary media_type subroutine to configure the link. */
693	ret_val = hw->mac.ops.setup_physical_interface(hw);
694	if (ret_val)
695		return ret_val;
696
697	/* Initialize the flow control address, type, and PAUSE timer
698	 * registers to their default values.  This is done even if flow
699	 * control is disabled, because it does not hurt anything to
700	 * initialize these registers.
701	 */
702	e_dbg("Initializing the Flow Control address, type and timer regs\n");
703	ew32(FCT, FLOW_CONTROL_TYPE);
704	ew32(FCAH, FLOW_CONTROL_ADDRESS_HIGH);
705	ew32(FCAL, FLOW_CONTROL_ADDRESS_LOW);
706
707	ew32(FCTTV, hw->fc.pause_time);
708
709	return e1000e_set_fc_watermarks(hw);
710}
711
712/**
713 *  e1000_commit_fc_settings_generic - Configure flow control
714 *  @hw: pointer to the HW structure
715 *
716 *  Write the flow control settings to the Transmit Config Word Register (TXCW)
717 *  base on the flow control settings in e1000_mac_info.
718 **/
719static s32 e1000_commit_fc_settings_generic(struct e1000_hw *hw)
720{
721	struct e1000_mac_info *mac = &hw->mac;
722	u32 txcw;
723
724	/* Check for a software override of the flow control settings, and
725	 * setup the device accordingly.  If auto-negotiation is enabled, then
726	 * software will have to set the "PAUSE" bits to the correct value in
727	 * the Transmit Config Word Register (TXCW) and re-start auto-
728	 * negotiation.  However, if auto-negotiation is disabled, then
729	 * software will have to manually configure the two flow control enable
730	 * bits in the CTRL register.
731	 *
732	 * The possible values of the "fc" parameter are:
733	 *      0:  Flow control is completely disabled
734	 *      1:  Rx flow control is enabled (we can receive pause frames,
735	 *          but not send pause frames).
736	 *      2:  Tx flow control is enabled (we can send pause frames but we
737	 *          do not support receiving pause frames).
738	 *      3:  Both Rx and Tx flow control (symmetric) are enabled.
739	 */
740	switch (hw->fc.current_mode) {
741	case e1000_fc_none:
742		/* Flow control completely disabled by a software over-ride. */
743		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
744		break;
745	case e1000_fc_rx_pause:
746		/* Rx Flow control is enabled and Tx Flow control is disabled
747		 * by a software over-ride. Since there really isn't a way to
748		 * advertise that we are capable of Rx Pause ONLY, we will
749		 * advertise that we support both symmetric and asymmetric Rx
750		 * PAUSE.  Later, we will disable the adapter's ability to send
751		 * PAUSE frames.
752		 */
753		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
754		break;
755	case e1000_fc_tx_pause:
756		/* Tx Flow control is enabled, and Rx Flow control is disabled,
757		 * by a software over-ride.
758		 */
759		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
760		break;
761	case e1000_fc_full:
762		/* Flow control (both Rx and Tx) is enabled by a software
763		 * over-ride.
764		 */
765		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
766		break;
767	default:
768		e_dbg("Flow control param set incorrectly\n");
769		return -E1000_ERR_CONFIG;
770	}
771
772	ew32(TXCW, txcw);
773	mac->txcw = txcw;
774
775	return 0;
776}
777
778/**
779 *  e1000_poll_fiber_serdes_link_generic - Poll for link up
780 *  @hw: pointer to the HW structure
781 *
782 *  Polls for link up by reading the status register, if link fails to come
783 *  up with auto-negotiation, then the link is forced if a signal is detected.
784 **/
785static s32 e1000_poll_fiber_serdes_link_generic(struct e1000_hw *hw)
786{
787	struct e1000_mac_info *mac = &hw->mac;
788	u32 i, status;
789	s32 ret_val;
790
791	/* If we have a signal (the cable is plugged in, or assumed true for
792	 * serdes media) then poll for a "Link-Up" indication in the Device
793	 * Status Register.  Time-out if a link isn't seen in 500 milliseconds
794	 * seconds (Auto-negotiation should complete in less than 500
795	 * milliseconds even if the other end is doing it in SW).
796	 */
797	for (i = 0; i < FIBER_LINK_UP_LIMIT; i++) {
798		usleep_range(10000, 11000);
799		status = er32(STATUS);
800		if (status & E1000_STATUS_LU)
801			break;
802	}
803	if (i == FIBER_LINK_UP_LIMIT) {
804		e_dbg("Never got a valid link from auto-neg!!!\n");
805		mac->autoneg_failed = true;
806		/* AutoNeg failed to achieve a link, so we'll call
807		 * mac->check_for_link. This routine will force the
808		 * link up if we detect a signal. This will allow us to
809		 * communicate with non-autonegotiating link partners.
810		 */
811		ret_val = mac->ops.check_for_link(hw);
812		if (ret_val) {
813			e_dbg("Error while checking for link\n");
814			return ret_val;
815		}
816		mac->autoneg_failed = false;
817	} else {
818		mac->autoneg_failed = false;
819		e_dbg("Valid Link Found\n");
820	}
821
822	return 0;
823}
824
825/**
826 *  e1000e_setup_fiber_serdes_link - Setup link for fiber/serdes
827 *  @hw: pointer to the HW structure
828 *
829 *  Configures collision distance and flow control for fiber and serdes
830 *  links.  Upon successful setup, poll for link.
831 **/
832s32 e1000e_setup_fiber_serdes_link(struct e1000_hw *hw)
833{
834	u32 ctrl;
835	s32 ret_val;
836
837	ctrl = er32(CTRL);
838
839	/* Take the link out of reset */
840	ctrl &= ~E1000_CTRL_LRST;
841
842	hw->mac.ops.config_collision_dist(hw);
843
844	ret_val = e1000_commit_fc_settings_generic(hw);
845	if (ret_val)
846		return ret_val;
847
848	/* Since auto-negotiation is enabled, take the link out of reset (the
849	 * link will be in reset, because we previously reset the chip). This
850	 * will restart auto-negotiation.  If auto-negotiation is successful
851	 * then the link-up status bit will be set and the flow control enable
852	 * bits (RFCE and TFCE) will be set according to their negotiated value.
853	 */
854	e_dbg("Auto-negotiation enabled\n");
855
856	ew32(CTRL, ctrl);
857	e1e_flush();
858	usleep_range(1000, 2000);
859
860	/* For these adapters, the SW definable pin 1 is set when the optics
861	 * detect a signal.  If we have a signal, then poll for a "Link-Up"
862	 * indication.
863	 */
864	if (hw->phy.media_type == e1000_media_type_internal_serdes ||
865	    (er32(CTRL) & E1000_CTRL_SWDPIN1)) {
866		ret_val = e1000_poll_fiber_serdes_link_generic(hw);
867	} else {
868		e_dbg("No signal detected\n");
869	}
870
871	return ret_val;
872}
873
874/**
875 *  e1000e_config_collision_dist_generic - Configure collision distance
876 *  @hw: pointer to the HW structure
877 *
878 *  Configures the collision distance to the default value and is used
879 *  during link setup.
880 **/
881void e1000e_config_collision_dist_generic(struct e1000_hw *hw)
882{
883	u32 tctl;
884
885	tctl = er32(TCTL);
886
887	tctl &= ~E1000_TCTL_COLD;
888	tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT;
889
890	ew32(TCTL, tctl);
891	e1e_flush();
892}
893
894/**
895 *  e1000e_set_fc_watermarks - Set flow control high/low watermarks
896 *  @hw: pointer to the HW structure
897 *
898 *  Sets the flow control high/low threshold (watermark) registers.  If
899 *  flow control XON frame transmission is enabled, then set XON frame
900 *  transmission as well.
901 **/
902s32 e1000e_set_fc_watermarks(struct e1000_hw *hw)
903{
904	u32 fcrtl = 0, fcrth = 0;
905
906	/* Set the flow control receive threshold registers.  Normally,
907	 * these registers will be set to a default threshold that may be
908	 * adjusted later by the driver's runtime code.  However, if the
909	 * ability to transmit pause frames is not enabled, then these
910	 * registers will be set to 0.
911	 */
912	if (hw->fc.current_mode & e1000_fc_tx_pause) {
913		/* We need to set up the Receive Threshold high and low water
914		 * marks as well as (optionally) enabling the transmission of
915		 * XON frames.
916		 */
917		fcrtl = hw->fc.low_water;
918		if (hw->fc.send_xon)
919			fcrtl |= E1000_FCRTL_XONE;
920
921		fcrth = hw->fc.high_water;
922	}
923	ew32(FCRTL, fcrtl);
924	ew32(FCRTH, fcrth);
925
926	return 0;
927}
928
929/**
930 *  e1000e_force_mac_fc - Force the MAC's flow control settings
931 *  @hw: pointer to the HW structure
932 *
933 *  Force the MAC's flow control settings.  Sets the TFCE and RFCE bits in the
934 *  device control register to reflect the adapter settings.  TFCE and RFCE
935 *  need to be explicitly set by software when a copper PHY is used because
936 *  autonegotiation is managed by the PHY rather than the MAC.  Software must
937 *  also configure these bits when link is forced on a fiber connection.
938 **/
939s32 e1000e_force_mac_fc(struct e1000_hw *hw)
940{
941	u32 ctrl;
942
943	ctrl = er32(CTRL);
944
945	/* Because we didn't get link via the internal auto-negotiation
946	 * mechanism (we either forced link or we got link via PHY
947	 * auto-neg), we have to manually enable/disable transmit an
948	 * receive flow control.
949	 *
950	 * The "Case" statement below enables/disable flow control
951	 * according to the "hw->fc.current_mode" parameter.
952	 *
953	 * The possible values of the "fc" parameter are:
954	 *      0:  Flow control is completely disabled
955	 *      1:  Rx flow control is enabled (we can receive pause
956	 *          frames but not send pause frames).
957	 *      2:  Tx flow control is enabled (we can send pause frames
958	 *          but we do not receive pause frames).
959	 *      3:  Both Rx and Tx flow control (symmetric) is enabled.
960	 *  other:  No other values should be possible at this point.
961	 */
962	e_dbg("hw->fc.current_mode = %u\n", hw->fc.current_mode);
963
964	switch (hw->fc.current_mode) {
965	case e1000_fc_none:
966		ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
967		break;
968	case e1000_fc_rx_pause:
969		ctrl &= (~E1000_CTRL_TFCE);
970		ctrl |= E1000_CTRL_RFCE;
971		break;
972	case e1000_fc_tx_pause:
973		ctrl &= (~E1000_CTRL_RFCE);
974		ctrl |= E1000_CTRL_TFCE;
975		break;
976	case e1000_fc_full:
977		ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
978		break;
979	default:
980		e_dbg("Flow control param set incorrectly\n");
981		return -E1000_ERR_CONFIG;
982	}
983
984	ew32(CTRL, ctrl);
985
986	return 0;
987}
988
989/**
990 *  e1000e_config_fc_after_link_up - Configures flow control after link
991 *  @hw: pointer to the HW structure
992 *
993 *  Checks the status of auto-negotiation after link up to ensure that the
994 *  speed and duplex were not forced.  If the link needed to be forced, then
995 *  flow control needs to be forced also.  If auto-negotiation is enabled
996 *  and did not fail, then we configure flow control based on our link
997 *  partner.
998 **/
999s32 e1000e_config_fc_after_link_up(struct e1000_hw *hw)
1000{
1001	struct e1000_mac_info *mac = &hw->mac;
1002	s32 ret_val = 0;
1003	u32 pcs_status_reg, pcs_adv_reg, pcs_lp_ability_reg, pcs_ctrl_reg;
1004	u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg;
1005	u16 speed, duplex;
1006
1007	/* Check for the case where we have fiber media and auto-neg failed
1008	 * so we had to force link.  In this case, we need to force the
1009	 * configuration of the MAC to match the "fc" parameter.
1010	 */
1011	if (mac->autoneg_failed) {
1012		if (hw->phy.media_type == e1000_media_type_fiber ||
1013		    hw->phy.media_type == e1000_media_type_internal_serdes)
1014			ret_val = e1000e_force_mac_fc(hw);
1015	} else {
1016		if (hw->phy.media_type == e1000_media_type_copper)
1017			ret_val = e1000e_force_mac_fc(hw);
1018	}
1019
1020	if (ret_val) {
1021		e_dbg("Error forcing flow control settings\n");
1022		return ret_val;
1023	}
1024
1025	/* Check for the case where we have copper media and auto-neg is
1026	 * enabled.  In this case, we need to check and see if Auto-Neg
1027	 * has completed, and if so, how the PHY and link partner has
1028	 * flow control configured.
1029	 */
1030	if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) {
1031		/* Read the MII Status Register and check to see if AutoNeg
1032		 * has completed.  We read this twice because this reg has
1033		 * some "sticky" (latched) bits.
1034		 */
1035		ret_val = e1e_rphy(hw, MII_BMSR, &mii_status_reg);
1036		if (ret_val)
1037			return ret_val;
1038		ret_val = e1e_rphy(hw, MII_BMSR, &mii_status_reg);
1039		if (ret_val)
1040			return ret_val;
1041
1042		if (!(mii_status_reg & BMSR_ANEGCOMPLETE)) {
1043			e_dbg("Copper PHY and Auto Neg has not completed.\n");
1044			return ret_val;
1045		}
1046
1047		/* The AutoNeg process has completed, so we now need to
1048		 * read both the Auto Negotiation Advertisement
1049		 * Register (Address 4) and the Auto_Negotiation Base
1050		 * Page Ability Register (Address 5) to determine how
1051		 * flow control was negotiated.
1052		 */
1053		ret_val = e1e_rphy(hw, MII_ADVERTISE, &mii_nway_adv_reg);
1054		if (ret_val)
1055			return ret_val;
1056		ret_val = e1e_rphy(hw, MII_LPA, &mii_nway_lp_ability_reg);
1057		if (ret_val)
1058			return ret_val;
1059
1060		/* Two bits in the Auto Negotiation Advertisement Register
1061		 * (Address 4) and two bits in the Auto Negotiation Base
1062		 * Page Ability Register (Address 5) determine flow control
1063		 * for both the PHY and the link partner.  The following
1064		 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
1065		 * 1999, describes these PAUSE resolution bits and how flow
1066		 * control is determined based upon these settings.
1067		 * NOTE:  DC = Don't Care
1068		 *
1069		 *   LOCAL DEVICE  |   LINK PARTNER
1070		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
1071		 *-------|---------|-------|---------|--------------------
1072		 *   0   |    0    |  DC   |   DC    | e1000_fc_none
1073		 *   0   |    1    |   0   |   DC    | e1000_fc_none
1074		 *   0   |    1    |   1   |    0    | e1000_fc_none
1075		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
1076		 *   1   |    0    |   0   |   DC    | e1000_fc_none
1077		 *   1   |   DC    |   1   |   DC    | e1000_fc_full
1078		 *   1   |    1    |   0   |    0    | e1000_fc_none
1079		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
1080		 *
1081		 * Are both PAUSE bits set to 1?  If so, this implies
1082		 * Symmetric Flow Control is enabled at both ends.  The
1083		 * ASM_DIR bits are irrelevant per the spec.
1084		 *
1085		 * For Symmetric Flow Control:
1086		 *
1087		 *   LOCAL DEVICE  |   LINK PARTNER
1088		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1089		 *-------|---------|-------|---------|--------------------
1090		 *   1   |   DC    |   1   |   DC    | E1000_fc_full
1091		 *
1092		 */
1093		if ((mii_nway_adv_reg & ADVERTISE_PAUSE_CAP) &&
1094		    (mii_nway_lp_ability_reg & LPA_PAUSE_CAP)) {
1095			/* Now we need to check if the user selected Rx ONLY
1096			 * of pause frames.  In this case, we had to advertise
1097			 * FULL flow control because we could not advertise Rx
1098			 * ONLY. Hence, we must now check to see if we need to
1099			 * turn OFF the TRANSMISSION of PAUSE frames.
1100			 */
1101			if (hw->fc.requested_mode == e1000_fc_full) {
1102				hw->fc.current_mode = e1000_fc_full;
1103				e_dbg("Flow Control = FULL.\n");
1104			} else {
1105				hw->fc.current_mode = e1000_fc_rx_pause;
1106				e_dbg("Flow Control = Rx PAUSE frames only.\n");
1107			}
1108		}
1109		/* For receiving PAUSE frames ONLY.
1110		 *
1111		 *   LOCAL DEVICE  |   LINK PARTNER
1112		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1113		 *-------|---------|-------|---------|--------------------
1114		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
1115		 */
1116		else if (!(mii_nway_adv_reg & ADVERTISE_PAUSE_CAP) &&
1117			 (mii_nway_adv_reg & ADVERTISE_PAUSE_ASYM) &&
1118			 (mii_nway_lp_ability_reg & LPA_PAUSE_CAP) &&
1119			 (mii_nway_lp_ability_reg & LPA_PAUSE_ASYM)) {
1120			hw->fc.current_mode = e1000_fc_tx_pause;
1121			e_dbg("Flow Control = Tx PAUSE frames only.\n");
1122		}
1123		/* For transmitting PAUSE frames ONLY.
1124		 *
1125		 *   LOCAL DEVICE  |   LINK PARTNER
1126		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1127		 *-------|---------|-------|---------|--------------------
1128		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
1129		 */
1130		else if ((mii_nway_adv_reg & ADVERTISE_PAUSE_CAP) &&
1131			 (mii_nway_adv_reg & ADVERTISE_PAUSE_ASYM) &&
1132			 !(mii_nway_lp_ability_reg & LPA_PAUSE_CAP) &&
1133			 (mii_nway_lp_ability_reg & LPA_PAUSE_ASYM)) {
1134			hw->fc.current_mode = e1000_fc_rx_pause;
1135			e_dbg("Flow Control = Rx PAUSE frames only.\n");
1136		} else {
1137			/* Per the IEEE spec, at this point flow control
1138			 * should be disabled.
1139			 */
1140			hw->fc.current_mode = e1000_fc_none;
1141			e_dbg("Flow Control = NONE.\n");
1142		}
1143
1144		/* Now we need to do one last check...  If we auto-
1145		 * negotiated to HALF DUPLEX, flow control should not be
1146		 * enabled per IEEE 802.3 spec.
1147		 */
1148		ret_val = mac->ops.get_link_up_info(hw, &speed, &duplex);
1149		if (ret_val) {
1150			e_dbg("Error getting link speed and duplex\n");
1151			return ret_val;
1152		}
1153
1154		if (duplex == HALF_DUPLEX)
1155			hw->fc.current_mode = e1000_fc_none;
1156
1157		/* Now we call a subroutine to actually force the MAC
1158		 * controller to use the correct flow control settings.
1159		 */
1160		ret_val = e1000e_force_mac_fc(hw);
1161		if (ret_val) {
1162			e_dbg("Error forcing flow control settings\n");
1163			return ret_val;
1164		}
1165	}
1166
1167	/* Check for the case where we have SerDes media and auto-neg is
1168	 * enabled.  In this case, we need to check and see if Auto-Neg
1169	 * has completed, and if so, how the PHY and link partner has
1170	 * flow control configured.
1171	 */
1172	if ((hw->phy.media_type == e1000_media_type_internal_serdes) &&
1173	    mac->autoneg) {
1174		/* Read the PCS_LSTS and check to see if AutoNeg
1175		 * has completed.
1176		 */
1177		pcs_status_reg = er32(PCS_LSTAT);
1178
1179		if (!(pcs_status_reg & E1000_PCS_LSTS_AN_COMPLETE)) {
1180			e_dbg("PCS Auto Neg has not completed.\n");
1181			return ret_val;
1182		}
1183
1184		/* The AutoNeg process has completed, so we now need to
1185		 * read both the Auto Negotiation Advertisement
1186		 * Register (PCS_ANADV) and the Auto_Negotiation Base
1187		 * Page Ability Register (PCS_LPAB) to determine how
1188		 * flow control was negotiated.
1189		 */
1190		pcs_adv_reg = er32(PCS_ANADV);
1191		pcs_lp_ability_reg = er32(PCS_LPAB);
1192
1193		/* Two bits in the Auto Negotiation Advertisement Register
1194		 * (PCS_ANADV) and two bits in the Auto Negotiation Base
1195		 * Page Ability Register (PCS_LPAB) determine flow control
1196		 * for both the PHY and the link partner.  The following
1197		 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
1198		 * 1999, describes these PAUSE resolution bits and how flow
1199		 * control is determined based upon these settings.
1200		 * NOTE:  DC = Don't Care
1201		 *
1202		 *   LOCAL DEVICE  |   LINK PARTNER
1203		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
1204		 *-------|---------|-------|---------|--------------------
1205		 *   0   |    0    |  DC   |   DC    | e1000_fc_none
1206		 *   0   |    1    |   0   |   DC    | e1000_fc_none
1207		 *   0   |    1    |   1   |    0    | e1000_fc_none
1208		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
1209		 *   1   |    0    |   0   |   DC    | e1000_fc_none
1210		 *   1   |   DC    |   1   |   DC    | e1000_fc_full
1211		 *   1   |    1    |   0   |    0    | e1000_fc_none
1212		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
1213		 *
1214		 * Are both PAUSE bits set to 1?  If so, this implies
1215		 * Symmetric Flow Control is enabled at both ends.  The
1216		 * ASM_DIR bits are irrelevant per the spec.
1217		 *
1218		 * For Symmetric Flow Control:
1219		 *
1220		 *   LOCAL DEVICE  |   LINK PARTNER
1221		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1222		 *-------|---------|-------|---------|--------------------
1223		 *   1   |   DC    |   1   |   DC    | e1000_fc_full
1224		 *
1225		 */
1226		if ((pcs_adv_reg & E1000_TXCW_PAUSE) &&
1227		    (pcs_lp_ability_reg & E1000_TXCW_PAUSE)) {
1228			/* Now we need to check if the user selected Rx ONLY
1229			 * of pause frames.  In this case, we had to advertise
1230			 * FULL flow control because we could not advertise Rx
1231			 * ONLY. Hence, we must now check to see if we need to
1232			 * turn OFF the TRANSMISSION of PAUSE frames.
1233			 */
1234			if (hw->fc.requested_mode == e1000_fc_full) {
1235				hw->fc.current_mode = e1000_fc_full;
1236				e_dbg("Flow Control = FULL.\n");
1237			} else {
1238				hw->fc.current_mode = e1000_fc_rx_pause;
1239				e_dbg("Flow Control = Rx PAUSE frames only.\n");
1240			}
1241		}
1242		/* For receiving PAUSE frames ONLY.
1243		 *
1244		 *   LOCAL DEVICE  |   LINK PARTNER
1245		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1246		 *-------|---------|-------|---------|--------------------
1247		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
1248		 */
1249		else if (!(pcs_adv_reg & E1000_TXCW_PAUSE) &&
1250			 (pcs_adv_reg & E1000_TXCW_ASM_DIR) &&
1251			 (pcs_lp_ability_reg & E1000_TXCW_PAUSE) &&
1252			 (pcs_lp_ability_reg & E1000_TXCW_ASM_DIR)) {
1253			hw->fc.current_mode = e1000_fc_tx_pause;
1254			e_dbg("Flow Control = Tx PAUSE frames only.\n");
1255		}
1256		/* For transmitting PAUSE frames ONLY.
1257		 *
1258		 *   LOCAL DEVICE  |   LINK PARTNER
1259		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1260		 *-------|---------|-------|---------|--------------------
1261		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
1262		 */
1263		else if ((pcs_adv_reg & E1000_TXCW_PAUSE) &&
1264			 (pcs_adv_reg & E1000_TXCW_ASM_DIR) &&
1265			 !(pcs_lp_ability_reg & E1000_TXCW_PAUSE) &&
1266			 (pcs_lp_ability_reg & E1000_TXCW_ASM_DIR)) {
1267			hw->fc.current_mode = e1000_fc_rx_pause;
1268			e_dbg("Flow Control = Rx PAUSE frames only.\n");
1269		} else {
1270			/* Per the IEEE spec, at this point flow control
1271			 * should be disabled.
1272			 */
1273			hw->fc.current_mode = e1000_fc_none;
1274			e_dbg("Flow Control = NONE.\n");
1275		}
1276
1277		/* Now we call a subroutine to actually force the MAC
1278		 * controller to use the correct flow control settings.
1279		 */
1280		pcs_ctrl_reg = er32(PCS_LCTL);
1281		pcs_ctrl_reg |= E1000_PCS_LCTL_FORCE_FCTRL;
1282		ew32(PCS_LCTL, pcs_ctrl_reg);
1283
1284		ret_val = e1000e_force_mac_fc(hw);
1285		if (ret_val) {
1286			e_dbg("Error forcing flow control settings\n");
1287			return ret_val;
1288		}
1289	}
1290
1291	return 0;
1292}
1293
1294/**
1295 *  e1000e_get_speed_and_duplex_copper - Retrieve current speed/duplex
1296 *  @hw: pointer to the HW structure
1297 *  @speed: stores the current speed
1298 *  @duplex: stores the current duplex
1299 *
1300 *  Read the status register for the current speed/duplex and store the current
1301 *  speed and duplex for copper connections.
1302 **/
1303s32 e1000e_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed,
1304				       u16 *duplex)
1305{
1306	u32 status;
1307
1308	status = er32(STATUS);
1309	if (status & E1000_STATUS_SPEED_1000)
1310		*speed = SPEED_1000;
1311	else if (status & E1000_STATUS_SPEED_100)
1312		*speed = SPEED_100;
1313	else
1314		*speed = SPEED_10;
1315
1316	if (status & E1000_STATUS_FD)
1317		*duplex = FULL_DUPLEX;
1318	else
1319		*duplex = HALF_DUPLEX;
1320
1321	e_dbg("%u Mbps, %s Duplex\n",
1322	      *speed == SPEED_1000 ? 1000 : *speed == SPEED_100 ? 100 : 10,
1323	      *duplex == FULL_DUPLEX ? "Full" : "Half");
1324
1325	return 0;
1326}
1327
1328/**
1329 *  e1000e_get_speed_and_duplex_fiber_serdes - Retrieve current speed/duplex
1330 *  @hw: pointer to the HW structure
1331 *  @speed: stores the current speed
1332 *  @duplex: stores the current duplex
1333 *
1334 *  Sets the speed and duplex to gigabit full duplex (the only possible option)
1335 *  for fiber/serdes links.
1336 **/
1337s32 e1000e_get_speed_and_duplex_fiber_serdes(struct e1000_hw __always_unused
1338					     *hw, u16 *speed, u16 *duplex)
1339{
1340	*speed = SPEED_1000;
1341	*duplex = FULL_DUPLEX;
1342
1343	return 0;
1344}
1345
1346/**
1347 *  e1000e_get_hw_semaphore - Acquire hardware semaphore
1348 *  @hw: pointer to the HW structure
1349 *
1350 *  Acquire the HW semaphore to access the PHY or NVM
1351 **/
1352s32 e1000e_get_hw_semaphore(struct e1000_hw *hw)
1353{
1354	u32 swsm;
1355	s32 timeout = hw->nvm.word_size + 1;
1356	s32 i = 0;
1357
1358	/* Get the SW semaphore */
1359	while (i < timeout) {
1360		swsm = er32(SWSM);
1361		if (!(swsm & E1000_SWSM_SMBI))
1362			break;
1363
1364		udelay(100);
1365		i++;
1366	}
1367
1368	if (i == timeout) {
1369		e_dbg("Driver can't access device - SMBI bit is set.\n");
1370		return -E1000_ERR_NVM;
1371	}
1372
1373	/* Get the FW semaphore. */
1374	for (i = 0; i < timeout; i++) {
1375		swsm = er32(SWSM);
1376		ew32(SWSM, swsm | E1000_SWSM_SWESMBI);
1377
1378		/* Semaphore acquired if bit latched */
1379		if (er32(SWSM) & E1000_SWSM_SWESMBI)
1380			break;
1381
1382		udelay(100);
1383	}
1384
1385	if (i == timeout) {
1386		/* Release semaphores */
1387		e1000e_put_hw_semaphore(hw);
1388		e_dbg("Driver can't access the NVM\n");
1389		return -E1000_ERR_NVM;
1390	}
1391
1392	return 0;
1393}
1394
1395/**
1396 *  e1000e_put_hw_semaphore - Release hardware semaphore
1397 *  @hw: pointer to the HW structure
1398 *
1399 *  Release hardware semaphore used to access the PHY or NVM
1400 **/
1401void e1000e_put_hw_semaphore(struct e1000_hw *hw)
1402{
1403	u32 swsm;
1404
1405	swsm = er32(SWSM);
1406	swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
1407	ew32(SWSM, swsm);
1408}
1409
1410/**
1411 *  e1000e_get_auto_rd_done - Check for auto read completion
1412 *  @hw: pointer to the HW structure
1413 *
1414 *  Check EEPROM for Auto Read done bit.
1415 **/
1416s32 e1000e_get_auto_rd_done(struct e1000_hw *hw)
1417{
1418	s32 i = 0;
1419
1420	while (i < AUTO_READ_DONE_TIMEOUT) {
1421		if (er32(EECD) & E1000_EECD_AUTO_RD)
1422			break;
1423		usleep_range(1000, 2000);
1424		i++;
1425	}
1426
1427	if (i == AUTO_READ_DONE_TIMEOUT) {
1428		e_dbg("Auto read by HW from NVM has not completed.\n");
1429		return -E1000_ERR_RESET;
1430	}
1431
1432	return 0;
1433}
1434
1435/**
1436 *  e1000e_valid_led_default - Verify a valid default LED config
1437 *  @hw: pointer to the HW structure
1438 *  @data: pointer to the NVM (EEPROM)
1439 *
1440 *  Read the EEPROM for the current default LED configuration.  If the
1441 *  LED configuration is not valid, set to a valid LED configuration.
1442 **/
1443s32 e1000e_valid_led_default(struct e1000_hw *hw, u16 *data)
1444{
1445	s32 ret_val;
1446
1447	ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
1448	if (ret_val) {
1449		e_dbg("NVM Read Error\n");
1450		return ret_val;
1451	}
1452
1453	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
1454		*data = ID_LED_DEFAULT;
1455
1456	return 0;
1457}
1458
1459/**
1460 *  e1000e_id_led_init_generic -
1461 *  @hw: pointer to the HW structure
1462 *
1463 **/
1464s32 e1000e_id_led_init_generic(struct e1000_hw *hw)
1465{
1466	struct e1000_mac_info *mac = &hw->mac;
1467	s32 ret_val;
1468	const u32 ledctl_mask = 0x000000FF;
1469	const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
1470	const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
1471	u16 data, i, temp;
1472	const u16 led_mask = 0x0F;
1473
1474	ret_val = hw->nvm.ops.valid_led_default(hw, &data);
1475	if (ret_val)
1476		return ret_val;
1477
1478	mac->ledctl_default = er32(LEDCTL);
1479	mac->ledctl_mode1 = mac->ledctl_default;
1480	mac->ledctl_mode2 = mac->ledctl_default;
1481
1482	for (i = 0; i < 4; i++) {
1483		temp = (data >> (i << 2)) & led_mask;
1484		switch (temp) {
1485		case ID_LED_ON1_DEF2:
1486		case ID_LED_ON1_ON2:
1487		case ID_LED_ON1_OFF2:
1488			mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1489			mac->ledctl_mode1 |= ledctl_on << (i << 3);
1490			break;
1491		case ID_LED_OFF1_DEF2:
1492		case ID_LED_OFF1_ON2:
1493		case ID_LED_OFF1_OFF2:
1494			mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1495			mac->ledctl_mode1 |= ledctl_off << (i << 3);
1496			break;
1497		default:
1498			/* Do nothing */
1499			break;
1500		}
1501		switch (temp) {
1502		case ID_LED_DEF1_ON2:
1503		case ID_LED_ON1_ON2:
1504		case ID_LED_OFF1_ON2:
1505			mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1506			mac->ledctl_mode2 |= ledctl_on << (i << 3);
1507			break;
1508		case ID_LED_DEF1_OFF2:
1509		case ID_LED_ON1_OFF2:
1510		case ID_LED_OFF1_OFF2:
1511			mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1512			mac->ledctl_mode2 |= ledctl_off << (i << 3);
1513			break;
1514		default:
1515			/* Do nothing */
1516			break;
1517		}
1518	}
1519
1520	return 0;
1521}
1522
1523/**
1524 *  e1000e_setup_led_generic - Configures SW controllable LED
1525 *  @hw: pointer to the HW structure
1526 *
1527 *  This prepares the SW controllable LED for use and saves the current state
1528 *  of the LED so it can be later restored.
1529 **/
1530s32 e1000e_setup_led_generic(struct e1000_hw *hw)
1531{
1532	u32 ledctl;
1533
1534	if (hw->mac.ops.setup_led != e1000e_setup_led_generic)
1535		return -E1000_ERR_CONFIG;
1536
1537	if (hw->phy.media_type == e1000_media_type_fiber) {
1538		ledctl = er32(LEDCTL);
1539		hw->mac.ledctl_default = ledctl;
1540		/* Turn off LED0 */
1541		ledctl &= ~(E1000_LEDCTL_LED0_IVRT | E1000_LEDCTL_LED0_BLINK |
1542			    E1000_LEDCTL_LED0_MODE_MASK);
1543		ledctl |= (E1000_LEDCTL_MODE_LED_OFF <<
1544			   E1000_LEDCTL_LED0_MODE_SHIFT);
1545		ew32(LEDCTL, ledctl);
1546	} else if (hw->phy.media_type == e1000_media_type_copper) {
1547		ew32(LEDCTL, hw->mac.ledctl_mode1);
1548	}
1549
1550	return 0;
1551}
1552
1553/**
1554 *  e1000e_cleanup_led_generic - Set LED config to default operation
1555 *  @hw: pointer to the HW structure
1556 *
1557 *  Remove the current LED configuration and set the LED configuration
1558 *  to the default value, saved from the EEPROM.
1559 **/
1560s32 e1000e_cleanup_led_generic(struct e1000_hw *hw)
1561{
1562	ew32(LEDCTL, hw->mac.ledctl_default);
1563	return 0;
1564}
1565
1566/**
1567 *  e1000e_blink_led_generic - Blink LED
1568 *  @hw: pointer to the HW structure
1569 *
1570 *  Blink the LEDs which are set to be on.
1571 **/
1572s32 e1000e_blink_led_generic(struct e1000_hw *hw)
1573{
1574	u32 ledctl_blink = 0;
1575	u32 i;
1576
1577	if (hw->phy.media_type == e1000_media_type_fiber) {
1578		/* always blink LED0 for PCI-E fiber */
1579		ledctl_blink = E1000_LEDCTL_LED0_BLINK |
1580		    (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT);
1581	} else {
1582		/* Set the blink bit for each LED that's "on" (0x0E)
1583		 * (or "off" if inverted) in ledctl_mode2.  The blink
1584		 * logic in hardware only works when mode is set to "on"
1585		 * so it must be changed accordingly when the mode is
1586		 * "off" and inverted.
1587		 */
1588		ledctl_blink = hw->mac.ledctl_mode2;
1589		for (i = 0; i < 32; i += 8) {
1590			u32 mode = (hw->mac.ledctl_mode2 >> i) &
1591			    E1000_LEDCTL_LED0_MODE_MASK;
1592			u32 led_default = hw->mac.ledctl_default >> i;
1593
1594			if ((!(led_default & E1000_LEDCTL_LED0_IVRT) &&
1595			     (mode == E1000_LEDCTL_MODE_LED_ON)) ||
1596			    ((led_default & E1000_LEDCTL_LED0_IVRT) &&
1597			     (mode == E1000_LEDCTL_MODE_LED_OFF))) {
1598				ledctl_blink &=
1599				    ~(E1000_LEDCTL_LED0_MODE_MASK << i);
1600				ledctl_blink |= (E1000_LEDCTL_LED0_BLINK |
1601						 E1000_LEDCTL_MODE_LED_ON) << i;
1602			}
1603		}
1604	}
1605
1606	ew32(LEDCTL, ledctl_blink);
1607
1608	return 0;
1609}
1610
1611/**
1612 *  e1000e_led_on_generic - Turn LED on
1613 *  @hw: pointer to the HW structure
1614 *
1615 *  Turn LED on.
1616 **/
1617s32 e1000e_led_on_generic(struct e1000_hw *hw)
1618{
1619	u32 ctrl;
1620
1621	switch (hw->phy.media_type) {
1622	case e1000_media_type_fiber:
1623		ctrl = er32(CTRL);
1624		ctrl &= ~E1000_CTRL_SWDPIN0;
1625		ctrl |= E1000_CTRL_SWDPIO0;
1626		ew32(CTRL, ctrl);
1627		break;
1628	case e1000_media_type_copper:
1629		ew32(LEDCTL, hw->mac.ledctl_mode2);
1630		break;
1631	default:
1632		break;
1633	}
1634
1635	return 0;
1636}
1637
1638/**
1639 *  e1000e_led_off_generic - Turn LED off
1640 *  @hw: pointer to the HW structure
1641 *
1642 *  Turn LED off.
1643 **/
1644s32 e1000e_led_off_generic(struct e1000_hw *hw)
1645{
1646	u32 ctrl;
1647
1648	switch (hw->phy.media_type) {
1649	case e1000_media_type_fiber:
1650		ctrl = er32(CTRL);
1651		ctrl |= E1000_CTRL_SWDPIN0;
1652		ctrl |= E1000_CTRL_SWDPIO0;
1653		ew32(CTRL, ctrl);
1654		break;
1655	case e1000_media_type_copper:
1656		ew32(LEDCTL, hw->mac.ledctl_mode1);
1657		break;
1658	default:
1659		break;
1660	}
1661
1662	return 0;
1663}
1664
1665/**
1666 *  e1000e_set_pcie_no_snoop - Set PCI-express capabilities
1667 *  @hw: pointer to the HW structure
1668 *  @no_snoop: bitmap of snoop events
1669 *
1670 *  Set the PCI-express register to snoop for events enabled in 'no_snoop'.
1671 **/
1672void e1000e_set_pcie_no_snoop(struct e1000_hw *hw, u32 no_snoop)
1673{
1674	u32 gcr;
1675
1676	if (no_snoop) {
1677		gcr = er32(GCR);
1678		gcr &= ~(PCIE_NO_SNOOP_ALL);
1679		gcr |= no_snoop;
1680		ew32(GCR, gcr);
1681	}
1682}
1683
1684/**
1685 *  e1000e_disable_pcie_master - Disables PCI-express master access
1686 *  @hw: pointer to the HW structure
1687 *
1688 *  Returns 0 if successful, else returns -10
1689 *  (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not caused
1690 *  the master requests to be disabled.
1691 *
1692 *  Disables PCI-Express master access and verifies there are no pending
1693 *  requests.
1694 **/
1695s32 e1000e_disable_pcie_master(struct e1000_hw *hw)
1696{
1697	u32 ctrl;
1698	s32 timeout = MASTER_DISABLE_TIMEOUT;
1699
1700	ctrl = er32(CTRL);
1701	ctrl |= E1000_CTRL_GIO_MASTER_DISABLE;
1702	ew32(CTRL, ctrl);
1703
1704	while (timeout) {
1705		if (!(er32(STATUS) & E1000_STATUS_GIO_MASTER_ENABLE))
1706			break;
1707		usleep_range(100, 200);
1708		timeout--;
1709	}
1710
1711	if (!timeout) {
1712		e_dbg("Master requests are pending.\n");
1713		return -E1000_ERR_MASTER_REQUESTS_PENDING;
1714	}
1715
1716	return 0;
1717}
1718
1719/**
1720 *  e1000e_reset_adaptive - Reset Adaptive Interframe Spacing
1721 *  @hw: pointer to the HW structure
1722 *
1723 *  Reset the Adaptive Interframe Spacing throttle to default values.
1724 **/
1725void e1000e_reset_adaptive(struct e1000_hw *hw)
1726{
1727	struct e1000_mac_info *mac = &hw->mac;
1728
1729	if (!mac->adaptive_ifs) {
1730		e_dbg("Not in Adaptive IFS mode!\n");
1731		return;
1732	}
1733
1734	mac->current_ifs_val = 0;
1735	mac->ifs_min_val = IFS_MIN;
1736	mac->ifs_max_val = IFS_MAX;
1737	mac->ifs_step_size = IFS_STEP;
1738	mac->ifs_ratio = IFS_RATIO;
1739
1740	mac->in_ifs_mode = false;
1741	ew32(AIT, 0);
1742}
1743
1744/**
1745 *  e1000e_update_adaptive - Update Adaptive Interframe Spacing
1746 *  @hw: pointer to the HW structure
1747 *
1748 *  Update the Adaptive Interframe Spacing Throttle value based on the
1749 *  time between transmitted packets and time between collisions.
1750 **/
1751void e1000e_update_adaptive(struct e1000_hw *hw)
1752{
1753	struct e1000_mac_info *mac = &hw->mac;
1754
1755	if (!mac->adaptive_ifs) {
1756		e_dbg("Not in Adaptive IFS mode!\n");
1757		return;
1758	}
1759
1760	if ((mac->collision_delta * mac->ifs_ratio) > mac->tx_packet_delta) {
1761		if (mac->tx_packet_delta > MIN_NUM_XMITS) {
1762			mac->in_ifs_mode = true;
1763			if (mac->current_ifs_val < mac->ifs_max_val) {
1764				if (!mac->current_ifs_val)
1765					mac->current_ifs_val = mac->ifs_min_val;
1766				else
1767					mac->current_ifs_val +=
1768					    mac->ifs_step_size;
1769				ew32(AIT, mac->current_ifs_val);
1770			}
1771		}
1772	} else {
1773		if (mac->in_ifs_mode &&
1774		    (mac->tx_packet_delta <= MIN_NUM_XMITS)) {
1775			mac->current_ifs_val = 0;
1776			mac->in_ifs_mode = false;
1777			ew32(AIT, 0);
1778		}
1779	}
1780}
1781