1// SPDX-License-Identifier: GPL-2.0
2/* Copyright(c) 1999 - 2018 Intel Corporation. */
3
4/* 80003ES2LAN Gigabit Ethernet Controller (Copper)
5 * 80003ES2LAN Gigabit Ethernet Controller (Serdes)
6 */
7
8#include "e1000.h"
9
10/* A table for the GG82563 cable length where the range is defined
11 * with a lower bound at "index" and the upper bound at
12 * "index + 5".
13 */
14static const u16 e1000_gg82563_cable_length_table[] = {
15	0, 60, 115, 150, 150, 60, 115, 150, 180, 180, 0xFF
16};
17
18#define GG82563_CABLE_LENGTH_TABLE_SIZE \
19		ARRAY_SIZE(e1000_gg82563_cable_length_table)
20
21static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw);
22static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask);
23static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask);
24static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw);
25static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw);
26static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw);
27static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex);
28static s32 e1000_read_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
29					   u16 *data);
30static s32 e1000_write_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
31					    u16 data);
32static void e1000_power_down_phy_copper_80003es2lan(struct e1000_hw *hw);
33
34/**
35 *  e1000_init_phy_params_80003es2lan - Init ESB2 PHY func ptrs.
36 *  @hw: pointer to the HW structure
37 **/
38static s32 e1000_init_phy_params_80003es2lan(struct e1000_hw *hw)
39{
40	struct e1000_phy_info *phy = &hw->phy;
41	s32 ret_val;
42
43	if (hw->phy.media_type != e1000_media_type_copper) {
44		phy->type = e1000_phy_none;
45		return 0;
46	} else {
47		phy->ops.power_up = e1000_power_up_phy_copper;
48		phy->ops.power_down = e1000_power_down_phy_copper_80003es2lan;
49	}
50
51	phy->addr = 1;
52	phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
53	phy->reset_delay_us = 100;
54	phy->type = e1000_phy_gg82563;
55
56	/* This can only be done after all function pointers are setup. */
57	ret_val = e1000e_get_phy_id(hw);
58
59	/* Verify phy id */
60	if (phy->id != GG82563_E_PHY_ID)
61		return -E1000_ERR_PHY;
62
63	return ret_val;
64}
65
66/**
67 *  e1000_init_nvm_params_80003es2lan - Init ESB2 NVM func ptrs.
68 *  @hw: pointer to the HW structure
69 **/
70static s32 e1000_init_nvm_params_80003es2lan(struct e1000_hw *hw)
71{
72	struct e1000_nvm_info *nvm = &hw->nvm;
73	u32 eecd = er32(EECD);
74	u16 size;
75
76	nvm->opcode_bits = 8;
77	nvm->delay_usec = 1;
78	switch (nvm->override) {
79	case e1000_nvm_override_spi_large:
80		nvm->page_size = 32;
81		nvm->address_bits = 16;
82		break;
83	case e1000_nvm_override_spi_small:
84		nvm->page_size = 8;
85		nvm->address_bits = 8;
86		break;
87	default:
88		nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
89		nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
90		break;
91	}
92
93	nvm->type = e1000_nvm_eeprom_spi;
94
95	size = (u16)FIELD_GET(E1000_EECD_SIZE_EX_MASK, eecd);
96
97	/* Added to a constant, "size" becomes the left-shift value
98	 * for setting word_size.
99	 */
100	size += NVM_WORD_SIZE_BASE_SHIFT;
101
102	/* EEPROM access above 16k is unsupported */
103	if (size > 14)
104		size = 14;
105	nvm->word_size = BIT(size);
106
107	return 0;
108}
109
110/**
111 *  e1000_init_mac_params_80003es2lan - Init ESB2 MAC func ptrs.
112 *  @hw: pointer to the HW structure
113 **/
114static s32 e1000_init_mac_params_80003es2lan(struct e1000_hw *hw)
115{
116	struct e1000_mac_info *mac = &hw->mac;
117
118	/* Set media type and media-dependent function pointers */
119	switch (hw->adapter->pdev->device) {
120	case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
121		hw->phy.media_type = e1000_media_type_internal_serdes;
122		mac->ops.check_for_link = e1000e_check_for_serdes_link;
123		mac->ops.setup_physical_interface =
124		    e1000e_setup_fiber_serdes_link;
125		break;
126	default:
127		hw->phy.media_type = e1000_media_type_copper;
128		mac->ops.check_for_link = e1000e_check_for_copper_link;
129		mac->ops.setup_physical_interface =
130		    e1000_setup_copper_link_80003es2lan;
131		break;
132	}
133
134	/* Set mta register count */
135	mac->mta_reg_count = 128;
136	/* Set rar entry count */
137	mac->rar_entry_count = E1000_RAR_ENTRIES;
138	/* FWSM register */
139	mac->has_fwsm = true;
140	/* ARC supported; valid only if manageability features are enabled. */
141	mac->arc_subsystem_valid = !!(er32(FWSM) & E1000_FWSM_MODE_MASK);
142	/* Adaptive IFS not supported */
143	mac->adaptive_ifs = false;
144
145	/* set lan id for port to determine which phy lock to use */
146	hw->mac.ops.set_lan_id(hw);
147
148	return 0;
149}
150
151static s32 e1000_get_variants_80003es2lan(struct e1000_adapter *adapter)
152{
153	struct e1000_hw *hw = &adapter->hw;
154	s32 rc;
155
156	rc = e1000_init_mac_params_80003es2lan(hw);
157	if (rc)
158		return rc;
159
160	rc = e1000_init_nvm_params_80003es2lan(hw);
161	if (rc)
162		return rc;
163
164	rc = e1000_init_phy_params_80003es2lan(hw);
165	if (rc)
166		return rc;
167
168	return 0;
169}
170
171/**
172 *  e1000_acquire_phy_80003es2lan - Acquire rights to access PHY
173 *  @hw: pointer to the HW structure
174 *
175 *  A wrapper to acquire access rights to the correct PHY.
176 **/
177static s32 e1000_acquire_phy_80003es2lan(struct e1000_hw *hw)
178{
179	u16 mask;
180
181	mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
182	return e1000_acquire_swfw_sync_80003es2lan(hw, mask);
183}
184
185/**
186 *  e1000_release_phy_80003es2lan - Release rights to access PHY
187 *  @hw: pointer to the HW structure
188 *
189 *  A wrapper to release access rights to the correct PHY.
190 **/
191static void e1000_release_phy_80003es2lan(struct e1000_hw *hw)
192{
193	u16 mask;
194
195	mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
196	e1000_release_swfw_sync_80003es2lan(hw, mask);
197}
198
199/**
200 *  e1000_acquire_mac_csr_80003es2lan - Acquire right to access Kumeran register
201 *  @hw: pointer to the HW structure
202 *
203 *  Acquire the semaphore to access the Kumeran interface.
204 *
205 **/
206static s32 e1000_acquire_mac_csr_80003es2lan(struct e1000_hw *hw)
207{
208	u16 mask;
209
210	mask = E1000_SWFW_CSR_SM;
211
212	return e1000_acquire_swfw_sync_80003es2lan(hw, mask);
213}
214
215/**
216 *  e1000_release_mac_csr_80003es2lan - Release right to access Kumeran Register
217 *  @hw: pointer to the HW structure
218 *
219 *  Release the semaphore used to access the Kumeran interface
220 **/
221static void e1000_release_mac_csr_80003es2lan(struct e1000_hw *hw)
222{
223	u16 mask;
224
225	mask = E1000_SWFW_CSR_SM;
226
227	e1000_release_swfw_sync_80003es2lan(hw, mask);
228}
229
230/**
231 *  e1000_acquire_nvm_80003es2lan - Acquire rights to access NVM
232 *  @hw: pointer to the HW structure
233 *
234 *  Acquire the semaphore to access the EEPROM.
235 **/
236static s32 e1000_acquire_nvm_80003es2lan(struct e1000_hw *hw)
237{
238	s32 ret_val;
239
240	ret_val = e1000_acquire_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
241	if (ret_val)
242		return ret_val;
243
244	ret_val = e1000e_acquire_nvm(hw);
245
246	if (ret_val)
247		e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
248
249	return ret_val;
250}
251
252/**
253 *  e1000_release_nvm_80003es2lan - Relinquish rights to access NVM
254 *  @hw: pointer to the HW structure
255 *
256 *  Release the semaphore used to access the EEPROM.
257 **/
258static void e1000_release_nvm_80003es2lan(struct e1000_hw *hw)
259{
260	e1000e_release_nvm(hw);
261	e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
262}
263
264/**
265 *  e1000_acquire_swfw_sync_80003es2lan - Acquire SW/FW semaphore
266 *  @hw: pointer to the HW structure
267 *  @mask: specifies which semaphore to acquire
268 *
269 *  Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
270 *  will also specify which port we're acquiring the lock for.
271 **/
272static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
273{
274	u32 swfw_sync;
275	u32 swmask = mask;
276	u32 fwmask = mask << 16;
277	s32 i = 0;
278	s32 timeout = 50;
279
280	while (i < timeout) {
281		if (e1000e_get_hw_semaphore(hw))
282			return -E1000_ERR_SWFW_SYNC;
283
284		swfw_sync = er32(SW_FW_SYNC);
285		if (!(swfw_sync & (fwmask | swmask)))
286			break;
287
288		/* Firmware currently using resource (fwmask)
289		 * or other software thread using resource (swmask)
290		 */
291		e1000e_put_hw_semaphore(hw);
292		mdelay(5);
293		i++;
294	}
295
296	if (i == timeout) {
297		e_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
298		return -E1000_ERR_SWFW_SYNC;
299	}
300
301	swfw_sync |= swmask;
302	ew32(SW_FW_SYNC, swfw_sync);
303
304	e1000e_put_hw_semaphore(hw);
305
306	return 0;
307}
308
309/**
310 *  e1000_release_swfw_sync_80003es2lan - Release SW/FW semaphore
311 *  @hw: pointer to the HW structure
312 *  @mask: specifies which semaphore to acquire
313 *
314 *  Release the SW/FW semaphore used to access the PHY or NVM.  The mask
315 *  will also specify which port we're releasing the lock for.
316 **/
317static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
318{
319	u32 swfw_sync;
320
321	while (e1000e_get_hw_semaphore(hw) != 0)
322		; /* Empty */
323
324	swfw_sync = er32(SW_FW_SYNC);
325	swfw_sync &= ~mask;
326	ew32(SW_FW_SYNC, swfw_sync);
327
328	e1000e_put_hw_semaphore(hw);
329}
330
331/**
332 *  e1000_read_phy_reg_gg82563_80003es2lan - Read GG82563 PHY register
333 *  @hw: pointer to the HW structure
334 *  @offset: offset of the register to read
335 *  @data: pointer to the data returned from the operation
336 *
337 *  Read the GG82563 PHY register.
338 **/
339static s32 e1000_read_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
340						  u32 offset, u16 *data)
341{
342	s32 ret_val;
343	u32 page_select;
344	u16 temp;
345
346	ret_val = e1000_acquire_phy_80003es2lan(hw);
347	if (ret_val)
348		return ret_val;
349
350	/* Select Configuration Page */
351	if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
352		page_select = GG82563_PHY_PAGE_SELECT;
353	} else {
354		/* Use Alternative Page Select register to access
355		 * registers 30 and 31
356		 */
357		page_select = GG82563_PHY_PAGE_SELECT_ALT;
358	}
359
360	temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT);
361	ret_val = e1000e_write_phy_reg_mdic(hw, page_select, temp);
362	if (ret_val) {
363		e1000_release_phy_80003es2lan(hw);
364		return ret_val;
365	}
366
367	if (hw->dev_spec.e80003es2lan.mdic_wa_enable) {
368		/* The "ready" bit in the MDIC register may be incorrectly set
369		 * before the device has completed the "Page Select" MDI
370		 * transaction.  So we wait 200us after each MDI command...
371		 */
372		usleep_range(200, 400);
373
374		/* ...and verify the command was successful. */
375		ret_val = e1000e_read_phy_reg_mdic(hw, page_select, &temp);
376
377		if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) {
378			e1000_release_phy_80003es2lan(hw);
379			return -E1000_ERR_PHY;
380		}
381
382		usleep_range(200, 400);
383
384		ret_val = e1000e_read_phy_reg_mdic(hw,
385						   MAX_PHY_REG_ADDRESS & offset,
386						   data);
387
388		usleep_range(200, 400);
389	} else {
390		ret_val = e1000e_read_phy_reg_mdic(hw,
391						   MAX_PHY_REG_ADDRESS & offset,
392						   data);
393	}
394
395	e1000_release_phy_80003es2lan(hw);
396
397	return ret_val;
398}
399
400/**
401 *  e1000_write_phy_reg_gg82563_80003es2lan - Write GG82563 PHY register
402 *  @hw: pointer to the HW structure
403 *  @offset: offset of the register to read
404 *  @data: value to write to the register
405 *
406 *  Write to the GG82563 PHY register.
407 **/
408static s32 e1000_write_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
409						   u32 offset, u16 data)
410{
411	s32 ret_val;
412	u32 page_select;
413	u16 temp;
414
415	ret_val = e1000_acquire_phy_80003es2lan(hw);
416	if (ret_val)
417		return ret_val;
418
419	/* Select Configuration Page */
420	if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
421		page_select = GG82563_PHY_PAGE_SELECT;
422	} else {
423		/* Use Alternative Page Select register to access
424		 * registers 30 and 31
425		 */
426		page_select = GG82563_PHY_PAGE_SELECT_ALT;
427	}
428
429	temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT);
430	ret_val = e1000e_write_phy_reg_mdic(hw, page_select, temp);
431	if (ret_val) {
432		e1000_release_phy_80003es2lan(hw);
433		return ret_val;
434	}
435
436	if (hw->dev_spec.e80003es2lan.mdic_wa_enable) {
437		/* The "ready" bit in the MDIC register may be incorrectly set
438		 * before the device has completed the "Page Select" MDI
439		 * transaction.  So we wait 200us after each MDI command...
440		 */
441		usleep_range(200, 400);
442
443		/* ...and verify the command was successful. */
444		ret_val = e1000e_read_phy_reg_mdic(hw, page_select, &temp);
445
446		if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) {
447			e1000_release_phy_80003es2lan(hw);
448			return -E1000_ERR_PHY;
449		}
450
451		usleep_range(200, 400);
452
453		ret_val = e1000e_write_phy_reg_mdic(hw,
454						    MAX_PHY_REG_ADDRESS &
455						    offset, data);
456
457		usleep_range(200, 400);
458	} else {
459		ret_val = e1000e_write_phy_reg_mdic(hw,
460						    MAX_PHY_REG_ADDRESS &
461						    offset, data);
462	}
463
464	e1000_release_phy_80003es2lan(hw);
465
466	return ret_val;
467}
468
469/**
470 *  e1000_write_nvm_80003es2lan - Write to ESB2 NVM
471 *  @hw: pointer to the HW structure
472 *  @offset: offset of the register to read
473 *  @words: number of words to write
474 *  @data: buffer of data to write to the NVM
475 *
476 *  Write "words" of data to the ESB2 NVM.
477 **/
478static s32 e1000_write_nvm_80003es2lan(struct e1000_hw *hw, u16 offset,
479				       u16 words, u16 *data)
480{
481	return e1000e_write_nvm_spi(hw, offset, words, data);
482}
483
484/**
485 *  e1000_get_cfg_done_80003es2lan - Wait for configuration to complete
486 *  @hw: pointer to the HW structure
487 *
488 *  Wait a specific amount of time for manageability processes to complete.
489 *  This is a function pointer entry point called by the phy module.
490 **/
491static s32 e1000_get_cfg_done_80003es2lan(struct e1000_hw *hw)
492{
493	s32 timeout = PHY_CFG_TIMEOUT;
494	u32 mask = E1000_NVM_CFG_DONE_PORT_0;
495
496	if (hw->bus.func == 1)
497		mask = E1000_NVM_CFG_DONE_PORT_1;
498
499	while (timeout) {
500		if (er32(EEMNGCTL) & mask)
501			break;
502		usleep_range(1000, 2000);
503		timeout--;
504	}
505	if (!timeout) {
506		e_dbg("MNG configuration cycle has not completed.\n");
507		return -E1000_ERR_RESET;
508	}
509
510	return 0;
511}
512
513/**
514 *  e1000_phy_force_speed_duplex_80003es2lan - Force PHY speed and duplex
515 *  @hw: pointer to the HW structure
516 *
517 *  Force the speed and duplex settings onto the PHY.  This is a
518 *  function pointer entry point called by the phy module.
519 **/
520static s32 e1000_phy_force_speed_duplex_80003es2lan(struct e1000_hw *hw)
521{
522	s32 ret_val;
523	u16 phy_data;
524	bool link;
525
526	/* Clear Auto-Crossover to force MDI manually.  M88E1000 requires MDI
527	 * forced whenever speed and duplex are forced.
528	 */
529	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
530	if (ret_val)
531		return ret_val;
532
533	phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_AUTO;
534	ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL, phy_data);
535	if (ret_val)
536		return ret_val;
537
538	e_dbg("GG82563 PSCR: %X\n", phy_data);
539
540	ret_val = e1e_rphy(hw, MII_BMCR, &phy_data);
541	if (ret_val)
542		return ret_val;
543
544	e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
545
546	/* Reset the phy to commit changes. */
547	phy_data |= BMCR_RESET;
548
549	ret_val = e1e_wphy(hw, MII_BMCR, phy_data);
550	if (ret_val)
551		return ret_val;
552
553	udelay(1);
554
555	if (hw->phy.autoneg_wait_to_complete) {
556		e_dbg("Waiting for forced speed/duplex link on GG82563 phy.\n");
557
558		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
559						      100000, &link);
560		if (ret_val)
561			return ret_val;
562
563		if (!link) {
564			/* We didn't get link.
565			 * Reset the DSP and cross our fingers.
566			 */
567			ret_val = e1000e_phy_reset_dsp(hw);
568			if (ret_val)
569				return ret_val;
570		}
571
572		/* Try once more */
573		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
574						      100000, &link);
575		if (ret_val)
576			return ret_val;
577	}
578
579	ret_val = e1e_rphy(hw, GG82563_PHY_MAC_SPEC_CTRL, &phy_data);
580	if (ret_val)
581		return ret_val;
582
583	/* Resetting the phy means we need to verify the TX_CLK corresponds
584	 * to the link speed.  10Mbps -> 2.5MHz, else 25MHz.
585	 */
586	phy_data &= ~GG82563_MSCR_TX_CLK_MASK;
587	if (hw->mac.forced_speed_duplex & E1000_ALL_10_SPEED)
588		phy_data |= GG82563_MSCR_TX_CLK_10MBPS_2_5;
589	else
590		phy_data |= GG82563_MSCR_TX_CLK_100MBPS_25;
591
592	/* In addition, we must re-enable CRS on Tx for both half and full
593	 * duplex.
594	 */
595	phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
596	ret_val = e1e_wphy(hw, GG82563_PHY_MAC_SPEC_CTRL, phy_data);
597
598	return ret_val;
599}
600
601/**
602 *  e1000_get_cable_length_80003es2lan - Set approximate cable length
603 *  @hw: pointer to the HW structure
604 *
605 *  Find the approximate cable length as measured by the GG82563 PHY.
606 *  This is a function pointer entry point called by the phy module.
607 **/
608static s32 e1000_get_cable_length_80003es2lan(struct e1000_hw *hw)
609{
610	struct e1000_phy_info *phy = &hw->phy;
611	s32 ret_val;
612	u16 phy_data, index;
613
614	ret_val = e1e_rphy(hw, GG82563_PHY_DSP_DISTANCE, &phy_data);
615	if (ret_val)
616		return ret_val;
617
618	index = phy_data & GG82563_DSPD_CABLE_LENGTH;
619
620	if (index >= GG82563_CABLE_LENGTH_TABLE_SIZE - 5)
621		return -E1000_ERR_PHY;
622
623	phy->min_cable_length = e1000_gg82563_cable_length_table[index];
624	phy->max_cable_length = e1000_gg82563_cable_length_table[index + 5];
625
626	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
627
628	return 0;
629}
630
631/**
632 *  e1000_get_link_up_info_80003es2lan - Report speed and duplex
633 *  @hw: pointer to the HW structure
634 *  @speed: pointer to speed buffer
635 *  @duplex: pointer to duplex buffer
636 *
637 *  Retrieve the current speed and duplex configuration.
638 **/
639static s32 e1000_get_link_up_info_80003es2lan(struct e1000_hw *hw, u16 *speed,
640					      u16 *duplex)
641{
642	s32 ret_val;
643
644	if (hw->phy.media_type == e1000_media_type_copper) {
645		ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
646		hw->phy.ops.cfg_on_link_up(hw);
647	} else {
648		ret_val = e1000e_get_speed_and_duplex_fiber_serdes(hw,
649								   speed,
650								   duplex);
651	}
652
653	return ret_val;
654}
655
656/**
657 *  e1000_reset_hw_80003es2lan - Reset the ESB2 controller
658 *  @hw: pointer to the HW structure
659 *
660 *  Perform a global reset to the ESB2 controller.
661 **/
662static s32 e1000_reset_hw_80003es2lan(struct e1000_hw *hw)
663{
664	u32 ctrl;
665	s32 ret_val;
666	u16 kum_reg_data;
667
668	/* Prevent the PCI-E bus from sticking if there is no TLP connection
669	 * on the last TLP read/write transaction when MAC is reset.
670	 */
671	ret_val = e1000e_disable_pcie_master(hw);
672	if (ret_val)
673		e_dbg("PCI-E Master disable polling has failed.\n");
674
675	e_dbg("Masking off all interrupts\n");
676	ew32(IMC, 0xffffffff);
677
678	ew32(RCTL, 0);
679	ew32(TCTL, E1000_TCTL_PSP);
680	e1e_flush();
681
682	usleep_range(10000, 11000);
683
684	ctrl = er32(CTRL);
685
686	ret_val = e1000_acquire_phy_80003es2lan(hw);
687	if (ret_val)
688		return ret_val;
689
690	e_dbg("Issuing a global reset to MAC\n");
691	ew32(CTRL, ctrl | E1000_CTRL_RST);
692	e1000_release_phy_80003es2lan(hw);
693
694	/* Disable IBIST slave mode (far-end loopback) */
695	ret_val =
696	    e1000_read_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
697					    &kum_reg_data);
698	if (!ret_val) {
699		kum_reg_data |= E1000_KMRNCTRLSTA_IBIST_DISABLE;
700		ret_val = e1000_write_kmrn_reg_80003es2lan(hw,
701						 E1000_KMRNCTRLSTA_INBAND_PARAM,
702						 kum_reg_data);
703		if (ret_val)
704			e_dbg("Error disabling far-end loopback\n");
705	} else {
706		e_dbg("Error disabling far-end loopback\n");
707	}
708
709	ret_val = e1000e_get_auto_rd_done(hw);
710	if (ret_val)
711		/* We don't want to continue accessing MAC registers. */
712		return ret_val;
713
714	/* Clear any pending interrupt events. */
715	ew32(IMC, 0xffffffff);
716	er32(ICR);
717
718	return e1000_check_alt_mac_addr_generic(hw);
719}
720
721/**
722 *  e1000_init_hw_80003es2lan - Initialize the ESB2 controller
723 *  @hw: pointer to the HW structure
724 *
725 *  Initialize the hw bits, LED, VFTA, MTA, link and hw counters.
726 **/
727static s32 e1000_init_hw_80003es2lan(struct e1000_hw *hw)
728{
729	struct e1000_mac_info *mac = &hw->mac;
730	u32 reg_data;
731	s32 ret_val;
732	u16 kum_reg_data;
733	u16 i;
734
735	e1000_initialize_hw_bits_80003es2lan(hw);
736
737	/* Initialize identification LED */
738	ret_val = mac->ops.id_led_init(hw);
739	/* An error is not fatal and we should not stop init due to this */
740	if (ret_val)
741		e_dbg("Error initializing identification LED\n");
742
743	/* Disabling VLAN filtering */
744	e_dbg("Initializing the IEEE VLAN\n");
745	mac->ops.clear_vfta(hw);
746
747	/* Setup the receive address. */
748	e1000e_init_rx_addrs(hw, mac->rar_entry_count);
749
750	/* Zero out the Multicast HASH table */
751	e_dbg("Zeroing the MTA\n");
752	for (i = 0; i < mac->mta_reg_count; i++)
753		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
754
755	/* Setup link and flow control */
756	ret_val = mac->ops.setup_link(hw);
757	if (ret_val)
758		return ret_val;
759
760	/* Disable IBIST slave mode (far-end loopback) */
761	ret_val =
762	    e1000_read_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
763					    &kum_reg_data);
764	if (!ret_val) {
765		kum_reg_data |= E1000_KMRNCTRLSTA_IBIST_DISABLE;
766		ret_val = e1000_write_kmrn_reg_80003es2lan(hw,
767						 E1000_KMRNCTRLSTA_INBAND_PARAM,
768						 kum_reg_data);
769		if (ret_val)
770			e_dbg("Error disabling far-end loopback\n");
771	} else {
772		e_dbg("Error disabling far-end loopback\n");
773	}
774
775	/* Set the transmit descriptor write-back policy */
776	reg_data = er32(TXDCTL(0));
777	reg_data = ((reg_data & ~E1000_TXDCTL_WTHRESH) |
778		    E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC);
779	ew32(TXDCTL(0), reg_data);
780
781	/* ...for both queues. */
782	reg_data = er32(TXDCTL(1));
783	reg_data = ((reg_data & ~E1000_TXDCTL_WTHRESH) |
784		    E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC);
785	ew32(TXDCTL(1), reg_data);
786
787	/* Enable retransmit on late collisions */
788	reg_data = er32(TCTL);
789	reg_data |= E1000_TCTL_RTLC;
790	ew32(TCTL, reg_data);
791
792	/* Configure Gigabit Carry Extend Padding */
793	reg_data = er32(TCTL_EXT);
794	reg_data &= ~E1000_TCTL_EXT_GCEX_MASK;
795	reg_data |= DEFAULT_TCTL_EXT_GCEX_80003ES2LAN;
796	ew32(TCTL_EXT, reg_data);
797
798	/* Configure Transmit Inter-Packet Gap */
799	reg_data = er32(TIPG);
800	reg_data &= ~E1000_TIPG_IPGT_MASK;
801	reg_data |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN;
802	ew32(TIPG, reg_data);
803
804	reg_data = E1000_READ_REG_ARRAY(hw, E1000_FFLT, 0x0001);
805	reg_data &= ~0x00100000;
806	E1000_WRITE_REG_ARRAY(hw, E1000_FFLT, 0x0001, reg_data);
807
808	/* default to true to enable the MDIC W/A */
809	hw->dev_spec.e80003es2lan.mdic_wa_enable = true;
810
811	ret_val =
812	    e1000_read_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_OFFSET >>
813					    E1000_KMRNCTRLSTA_OFFSET_SHIFT, &i);
814	if (!ret_val) {
815		if ((i & E1000_KMRNCTRLSTA_OPMODE_MASK) ==
816		    E1000_KMRNCTRLSTA_OPMODE_INBAND_MDIO)
817			hw->dev_spec.e80003es2lan.mdic_wa_enable = false;
818	}
819
820	/* Clear all of the statistics registers (clear on read).  It is
821	 * important that we do this after we have tried to establish link
822	 * because the symbol error count will increment wildly if there
823	 * is no link.
824	 */
825	e1000_clear_hw_cntrs_80003es2lan(hw);
826
827	return ret_val;
828}
829
830/**
831 *  e1000_initialize_hw_bits_80003es2lan - Init hw bits of ESB2
832 *  @hw: pointer to the HW structure
833 *
834 *  Initializes required hardware-dependent bits needed for normal operation.
835 **/
836static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw)
837{
838	u32 reg;
839
840	/* Transmit Descriptor Control 0 */
841	reg = er32(TXDCTL(0));
842	reg |= BIT(22);
843	ew32(TXDCTL(0), reg);
844
845	/* Transmit Descriptor Control 1 */
846	reg = er32(TXDCTL(1));
847	reg |= BIT(22);
848	ew32(TXDCTL(1), reg);
849
850	/* Transmit Arbitration Control 0 */
851	reg = er32(TARC(0));
852	reg &= ~(0xF << 27);	/* 30:27 */
853	if (hw->phy.media_type != e1000_media_type_copper)
854		reg &= ~BIT(20);
855	ew32(TARC(0), reg);
856
857	/* Transmit Arbitration Control 1 */
858	reg = er32(TARC(1));
859	if (er32(TCTL) & E1000_TCTL_MULR)
860		reg &= ~BIT(28);
861	else
862		reg |= BIT(28);
863	ew32(TARC(1), reg);
864
865	/* Disable IPv6 extension header parsing because some malformed
866	 * IPv6 headers can hang the Rx.
867	 */
868	reg = er32(RFCTL);
869	reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
870	ew32(RFCTL, reg);
871}
872
873/**
874 *  e1000_copper_link_setup_gg82563_80003es2lan - Configure GG82563 Link
875 *  @hw: pointer to the HW structure
876 *
877 *  Setup some GG82563 PHY registers for obtaining link
878 **/
879static s32 e1000_copper_link_setup_gg82563_80003es2lan(struct e1000_hw *hw)
880{
881	struct e1000_phy_info *phy = &hw->phy;
882	s32 ret_val;
883	u32 reg;
884	u16 data;
885
886	ret_val = e1e_rphy(hw, GG82563_PHY_MAC_SPEC_CTRL, &data);
887	if (ret_val)
888		return ret_val;
889
890	data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
891	/* Use 25MHz for both link down and 1000Base-T for Tx clock. */
892	data |= GG82563_MSCR_TX_CLK_1000MBPS_25;
893
894	ret_val = e1e_wphy(hw, GG82563_PHY_MAC_SPEC_CTRL, data);
895	if (ret_val)
896		return ret_val;
897
898	/* Options:
899	 *   MDI/MDI-X = 0 (default)
900	 *   0 - Auto for all speeds
901	 *   1 - MDI mode
902	 *   2 - MDI-X mode
903	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
904	 */
905	ret_val = e1e_rphy(hw, GG82563_PHY_SPEC_CTRL, &data);
906	if (ret_val)
907		return ret_val;
908
909	data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK;
910
911	switch (phy->mdix) {
912	case 1:
913		data |= GG82563_PSCR_CROSSOVER_MODE_MDI;
914		break;
915	case 2:
916		data |= GG82563_PSCR_CROSSOVER_MODE_MDIX;
917		break;
918	case 0:
919	default:
920		data |= GG82563_PSCR_CROSSOVER_MODE_AUTO;
921		break;
922	}
923
924	/* Options:
925	 *   disable_polarity_correction = 0 (default)
926	 *       Automatic Correction for Reversed Cable Polarity
927	 *   0 - Disabled
928	 *   1 - Enabled
929	 */
930	data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
931	if (phy->disable_polarity_correction)
932		data |= GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
933
934	ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL, data);
935	if (ret_val)
936		return ret_val;
937
938	/* SW Reset the PHY so all changes take effect */
939	ret_val = hw->phy.ops.commit(hw);
940	if (ret_val) {
941		e_dbg("Error Resetting the PHY\n");
942		return ret_val;
943	}
944
945	/* Bypass Rx and Tx FIFO's */
946	reg = E1000_KMRNCTRLSTA_OFFSET_FIFO_CTRL;
947	data = (E1000_KMRNCTRLSTA_FIFO_CTRL_RX_BYPASS |
948		E1000_KMRNCTRLSTA_FIFO_CTRL_TX_BYPASS);
949	ret_val = e1000_write_kmrn_reg_80003es2lan(hw, reg, data);
950	if (ret_val)
951		return ret_val;
952
953	reg = E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE;
954	ret_val = e1000_read_kmrn_reg_80003es2lan(hw, reg, &data);
955	if (ret_val)
956		return ret_val;
957	data |= E1000_KMRNCTRLSTA_OPMODE_E_IDLE;
958	ret_val = e1000_write_kmrn_reg_80003es2lan(hw, reg, data);
959	if (ret_val)
960		return ret_val;
961
962	ret_val = e1e_rphy(hw, GG82563_PHY_SPEC_CTRL_2, &data);
963	if (ret_val)
964		return ret_val;
965
966	data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG;
967	ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL_2, data);
968	if (ret_val)
969		return ret_val;
970
971	reg = er32(CTRL_EXT);
972	reg &= ~E1000_CTRL_EXT_LINK_MODE_MASK;
973	ew32(CTRL_EXT, reg);
974
975	ret_val = e1e_rphy(hw, GG82563_PHY_PWR_MGMT_CTRL, &data);
976	if (ret_val)
977		return ret_val;
978
979	/* Do not init these registers when the HW is in IAMT mode, since the
980	 * firmware will have already initialized them.  We only initialize
981	 * them if the HW is not in IAMT mode.
982	 */
983	if (!hw->mac.ops.check_mng_mode(hw)) {
984		/* Enable Electrical Idle on the PHY */
985		data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE;
986		ret_val = e1e_wphy(hw, GG82563_PHY_PWR_MGMT_CTRL, data);
987		if (ret_val)
988			return ret_val;
989
990		ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &data);
991		if (ret_val)
992			return ret_val;
993
994		data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
995		ret_val = e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, data);
996		if (ret_val)
997			return ret_val;
998	}
999
1000	/* Workaround: Disable padding in Kumeran interface in the MAC
1001	 * and in the PHY to avoid CRC errors.
1002	 */
1003	ret_val = e1e_rphy(hw, GG82563_PHY_INBAND_CTRL, &data);
1004	if (ret_val)
1005		return ret_val;
1006
1007	data |= GG82563_ICR_DIS_PADDING;
1008	ret_val = e1e_wphy(hw, GG82563_PHY_INBAND_CTRL, data);
1009	if (ret_val)
1010		return ret_val;
1011
1012	return 0;
1013}
1014
1015/**
1016 *  e1000_setup_copper_link_80003es2lan - Setup Copper Link for ESB2
1017 *  @hw: pointer to the HW structure
1018 *
1019 *  Essentially a wrapper for setting up all things "copper" related.
1020 *  This is a function pointer entry point called by the mac module.
1021 **/
1022static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw)
1023{
1024	u32 ctrl;
1025	s32 ret_val;
1026	u16 reg_data;
1027
1028	ctrl = er32(CTRL);
1029	ctrl |= E1000_CTRL_SLU;
1030	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1031	ew32(CTRL, ctrl);
1032
1033	/* Set the mac to wait the maximum time between each
1034	 * iteration and increase the max iterations when
1035	 * polling the phy; this fixes erroneous timeouts at 10Mbps.
1036	 */
1037	/* these next three accesses were always meant to use page 0x34 using
1038	 * GG82563_REG(0x34, N) but never did, so we've just corrected the call
1039	 * to not drop bits
1040	 */
1041	ret_val = e1000_write_kmrn_reg_80003es2lan(hw, 4, 0xFFFF);
1042	if (ret_val)
1043		return ret_val;
1044	ret_val = e1000_read_kmrn_reg_80003es2lan(hw, 9, &reg_data);
1045	if (ret_val)
1046		return ret_val;
1047	reg_data |= 0x3F;
1048	ret_val = e1000_write_kmrn_reg_80003es2lan(hw, 9, reg_data);
1049	if (ret_val)
1050		return ret_val;
1051	ret_val =
1052	    e1000_read_kmrn_reg_80003es2lan(hw,
1053					    E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
1054					    &reg_data);
1055	if (ret_val)
1056		return ret_val;
1057	reg_data |= E1000_KMRNCTRLSTA_INB_CTRL_DIS_PADDING;
1058	ret_val =
1059	    e1000_write_kmrn_reg_80003es2lan(hw,
1060					     E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
1061					     reg_data);
1062	if (ret_val)
1063		return ret_val;
1064
1065	ret_val = e1000_copper_link_setup_gg82563_80003es2lan(hw);
1066	if (ret_val)
1067		return ret_val;
1068
1069	return e1000e_setup_copper_link(hw);
1070}
1071
1072/**
1073 *  e1000_cfg_on_link_up_80003es2lan - es2 link configuration after link-up
1074 *  @hw: pointer to the HW structure
1075 *
1076 *  Configure the KMRN interface by applying last minute quirks for
1077 *  10/100 operation.
1078 **/
1079static s32 e1000_cfg_on_link_up_80003es2lan(struct e1000_hw *hw)
1080{
1081	s32 ret_val = 0;
1082	u16 speed;
1083	u16 duplex;
1084
1085	if (hw->phy.media_type == e1000_media_type_copper) {
1086		ret_val = e1000e_get_speed_and_duplex_copper(hw, &speed,
1087							     &duplex);
1088		if (ret_val)
1089			return ret_val;
1090
1091		if (speed == SPEED_1000)
1092			ret_val = e1000_cfg_kmrn_1000_80003es2lan(hw);
1093		else
1094			ret_val = e1000_cfg_kmrn_10_100_80003es2lan(hw, duplex);
1095	}
1096
1097	return ret_val;
1098}
1099
1100/**
1101 *  e1000_cfg_kmrn_10_100_80003es2lan - Apply "quirks" for 10/100 operation
1102 *  @hw: pointer to the HW structure
1103 *  @duplex: current duplex setting
1104 *
1105 *  Configure the KMRN interface by applying last minute quirks for
1106 *  10/100 operation.
1107 **/
1108static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex)
1109{
1110	s32 ret_val;
1111	u32 tipg;
1112	u32 i = 0;
1113	u16 reg_data, reg_data2;
1114
1115	reg_data = E1000_KMRNCTRLSTA_HD_CTRL_10_100_DEFAULT;
1116	ret_val =
1117	    e1000_write_kmrn_reg_80003es2lan(hw,
1118					     E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
1119					     reg_data);
1120	if (ret_val)
1121		return ret_val;
1122
1123	/* Configure Transmit Inter-Packet Gap */
1124	tipg = er32(TIPG);
1125	tipg &= ~E1000_TIPG_IPGT_MASK;
1126	tipg |= DEFAULT_TIPG_IPGT_10_100_80003ES2LAN;
1127	ew32(TIPG, tipg);
1128
1129	do {
1130		ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
1131		if (ret_val)
1132			return ret_val;
1133
1134		ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data2);
1135		if (ret_val)
1136			return ret_val;
1137		i++;
1138	} while ((reg_data != reg_data2) && (i < GG82563_MAX_KMRN_RETRY));
1139
1140	if (duplex == HALF_DUPLEX)
1141		reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
1142	else
1143		reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
1144
1145	return e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
1146}
1147
1148/**
1149 *  e1000_cfg_kmrn_1000_80003es2lan - Apply "quirks" for gigabit operation
1150 *  @hw: pointer to the HW structure
1151 *
1152 *  Configure the KMRN interface by applying last minute quirks for
1153 *  gigabit operation.
1154 **/
1155static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw)
1156{
1157	s32 ret_val;
1158	u16 reg_data, reg_data2;
1159	u32 tipg;
1160	u32 i = 0;
1161
1162	reg_data = E1000_KMRNCTRLSTA_HD_CTRL_1000_DEFAULT;
1163	ret_val =
1164	    e1000_write_kmrn_reg_80003es2lan(hw,
1165					     E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
1166					     reg_data);
1167	if (ret_val)
1168		return ret_val;
1169
1170	/* Configure Transmit Inter-Packet Gap */
1171	tipg = er32(TIPG);
1172	tipg &= ~E1000_TIPG_IPGT_MASK;
1173	tipg |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN;
1174	ew32(TIPG, tipg);
1175
1176	do {
1177		ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
1178		if (ret_val)
1179			return ret_val;
1180
1181		ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data2);
1182		if (ret_val)
1183			return ret_val;
1184		i++;
1185	} while ((reg_data != reg_data2) && (i < GG82563_MAX_KMRN_RETRY));
1186
1187	reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
1188
1189	return e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
1190}
1191
1192/**
1193 *  e1000_read_kmrn_reg_80003es2lan - Read kumeran register
1194 *  @hw: pointer to the HW structure
1195 *  @offset: register offset to be read
1196 *  @data: pointer to the read data
1197 *
1198 *  Acquire semaphore, then read the PHY register at offset
1199 *  using the kumeran interface.  The information retrieved is stored in data.
1200 *  Release the semaphore before exiting.
1201 **/
1202static s32 e1000_read_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
1203					   u16 *data)
1204{
1205	u32 kmrnctrlsta;
1206	s32 ret_val;
1207
1208	ret_val = e1000_acquire_mac_csr_80003es2lan(hw);
1209	if (ret_val)
1210		return ret_val;
1211
1212	kmrnctrlsta = FIELD_PREP(E1000_KMRNCTRLSTA_OFFSET, offset) |
1213		      E1000_KMRNCTRLSTA_REN;
1214	ew32(KMRNCTRLSTA, kmrnctrlsta);
1215	e1e_flush();
1216
1217	udelay(2);
1218
1219	kmrnctrlsta = er32(KMRNCTRLSTA);
1220	*data = (u16)kmrnctrlsta;
1221
1222	e1000_release_mac_csr_80003es2lan(hw);
1223
1224	return ret_val;
1225}
1226
1227/**
1228 *  e1000_write_kmrn_reg_80003es2lan - Write kumeran register
1229 *  @hw: pointer to the HW structure
1230 *  @offset: register offset to write to
1231 *  @data: data to write at register offset
1232 *
1233 *  Acquire semaphore, then write the data to PHY register
1234 *  at the offset using the kumeran interface.  Release semaphore
1235 *  before exiting.
1236 **/
1237static s32 e1000_write_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
1238					    u16 data)
1239{
1240	u32 kmrnctrlsta;
1241	s32 ret_val;
1242
1243	ret_val = e1000_acquire_mac_csr_80003es2lan(hw);
1244	if (ret_val)
1245		return ret_val;
1246
1247	kmrnctrlsta = FIELD_PREP(E1000_KMRNCTRLSTA_OFFSET, offset) | data;
1248	ew32(KMRNCTRLSTA, kmrnctrlsta);
1249	e1e_flush();
1250
1251	udelay(2);
1252
1253	e1000_release_mac_csr_80003es2lan(hw);
1254
1255	return ret_val;
1256}
1257
1258/**
1259 *  e1000_read_mac_addr_80003es2lan - Read device MAC address
1260 *  @hw: pointer to the HW structure
1261 **/
1262static s32 e1000_read_mac_addr_80003es2lan(struct e1000_hw *hw)
1263{
1264	s32 ret_val;
1265
1266	/* If there's an alternate MAC address place it in RAR0
1267	 * so that it will override the Si installed default perm
1268	 * address.
1269	 */
1270	ret_val = e1000_check_alt_mac_addr_generic(hw);
1271	if (ret_val)
1272		return ret_val;
1273
1274	return e1000_read_mac_addr_generic(hw);
1275}
1276
1277/**
1278 * e1000_power_down_phy_copper_80003es2lan - Remove link during PHY power down
1279 * @hw: pointer to the HW structure
1280 *
1281 * In the case of a PHY power down to save power, or to turn off link during a
1282 * driver unload, or wake on lan is not enabled, remove the link.
1283 **/
1284static void e1000_power_down_phy_copper_80003es2lan(struct e1000_hw *hw)
1285{
1286	/* If the management interface is not enabled, then power down */
1287	if (!(hw->mac.ops.check_mng_mode(hw) ||
1288	      hw->phy.ops.check_reset_block(hw)))
1289		e1000_power_down_phy_copper(hw);
1290}
1291
1292/**
1293 *  e1000_clear_hw_cntrs_80003es2lan - Clear device specific hardware counters
1294 *  @hw: pointer to the HW structure
1295 *
1296 *  Clears the hardware counters by reading the counter registers.
1297 **/
1298static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw)
1299{
1300	e1000e_clear_hw_cntrs_base(hw);
1301
1302	er32(PRC64);
1303	er32(PRC127);
1304	er32(PRC255);
1305	er32(PRC511);
1306	er32(PRC1023);
1307	er32(PRC1522);
1308	er32(PTC64);
1309	er32(PTC127);
1310	er32(PTC255);
1311	er32(PTC511);
1312	er32(PTC1023);
1313	er32(PTC1522);
1314
1315	er32(ALGNERRC);
1316	er32(RXERRC);
1317	er32(TNCRS);
1318	er32(CEXTERR);
1319	er32(TSCTC);
1320	er32(TSCTFC);
1321
1322	er32(MGTPRC);
1323	er32(MGTPDC);
1324	er32(MGTPTC);
1325
1326	er32(IAC);
1327	er32(ICRXOC);
1328
1329	er32(ICRXPTC);
1330	er32(ICRXATC);
1331	er32(ICTXPTC);
1332	er32(ICTXATC);
1333	er32(ICTXQEC);
1334	er32(ICTXQMTC);
1335	er32(ICRXDMTC);
1336}
1337
1338static const struct e1000_mac_operations es2_mac_ops = {
1339	.read_mac_addr		= e1000_read_mac_addr_80003es2lan,
1340	.id_led_init		= e1000e_id_led_init_generic,
1341	.blink_led		= e1000e_blink_led_generic,
1342	.check_mng_mode		= e1000e_check_mng_mode_generic,
1343	/* check_for_link dependent on media type */
1344	.cleanup_led		= e1000e_cleanup_led_generic,
1345	.clear_hw_cntrs		= e1000_clear_hw_cntrs_80003es2lan,
1346	.get_bus_info		= e1000e_get_bus_info_pcie,
1347	.set_lan_id		= e1000_set_lan_id_multi_port_pcie,
1348	.get_link_up_info	= e1000_get_link_up_info_80003es2lan,
1349	.led_on			= e1000e_led_on_generic,
1350	.led_off		= e1000e_led_off_generic,
1351	.update_mc_addr_list	= e1000e_update_mc_addr_list_generic,
1352	.write_vfta		= e1000_write_vfta_generic,
1353	.clear_vfta		= e1000_clear_vfta_generic,
1354	.reset_hw		= e1000_reset_hw_80003es2lan,
1355	.init_hw		= e1000_init_hw_80003es2lan,
1356	.setup_link		= e1000e_setup_link_generic,
1357	/* setup_physical_interface dependent on media type */
1358	.setup_led		= e1000e_setup_led_generic,
1359	.config_collision_dist	= e1000e_config_collision_dist_generic,
1360	.rar_set		= e1000e_rar_set_generic,
1361	.rar_get_count		= e1000e_rar_get_count_generic,
1362};
1363
1364static const struct e1000_phy_operations es2_phy_ops = {
1365	.acquire		= e1000_acquire_phy_80003es2lan,
1366	.check_polarity		= e1000_check_polarity_m88,
1367	.check_reset_block	= e1000e_check_reset_block_generic,
1368	.commit			= e1000e_phy_sw_reset,
1369	.force_speed_duplex	= e1000_phy_force_speed_duplex_80003es2lan,
1370	.get_cfg_done		= e1000_get_cfg_done_80003es2lan,
1371	.get_cable_length	= e1000_get_cable_length_80003es2lan,
1372	.get_info		= e1000e_get_phy_info_m88,
1373	.read_reg		= e1000_read_phy_reg_gg82563_80003es2lan,
1374	.release		= e1000_release_phy_80003es2lan,
1375	.reset			= e1000e_phy_hw_reset_generic,
1376	.set_d0_lplu_state	= NULL,
1377	.set_d3_lplu_state	= e1000e_set_d3_lplu_state,
1378	.write_reg		= e1000_write_phy_reg_gg82563_80003es2lan,
1379	.cfg_on_link_up		= e1000_cfg_on_link_up_80003es2lan,
1380};
1381
1382static const struct e1000_nvm_operations es2_nvm_ops = {
1383	.acquire		= e1000_acquire_nvm_80003es2lan,
1384	.read			= e1000e_read_nvm_eerd,
1385	.release		= e1000_release_nvm_80003es2lan,
1386	.reload			= e1000e_reload_nvm_generic,
1387	.update			= e1000e_update_nvm_checksum_generic,
1388	.valid_led_default	= e1000e_valid_led_default,
1389	.validate		= e1000e_validate_nvm_checksum_generic,
1390	.write			= e1000_write_nvm_80003es2lan,
1391};
1392
1393const struct e1000_info e1000_es2_info = {
1394	.mac			= e1000_80003es2lan,
1395	.flags			= FLAG_HAS_HW_VLAN_FILTER
1396				  | FLAG_HAS_JUMBO_FRAMES
1397				  | FLAG_HAS_WOL
1398				  | FLAG_APME_IN_CTRL3
1399				  | FLAG_HAS_CTRLEXT_ON_LOAD
1400				  | FLAG_RX_NEEDS_RESTART /* errata */
1401				  | FLAG_TARC_SET_BIT_ZERO /* errata */
1402				  | FLAG_APME_CHECK_PORT_B
1403				  | FLAG_DISABLE_FC_PAUSE_TIME, /* errata */
1404	.flags2			= FLAG2_DMA_BURST,
1405	.pba			= 38,
1406	.max_hw_frame_size	= DEFAULT_JUMBO,
1407	.get_variants		= e1000_get_variants_80003es2lan,
1408	.mac_ops		= &es2_mac_ops,
1409	.phy_ops		= &es2_phy_ops,
1410	.nvm_ops		= &es2_nvm_ops,
1411};
1412