1// SPDX-License-Identifier: GPL-2.0
2/* Copyright(c) 1999 - 2006 Intel Corporation. */
3
4/* ethtool support for e1000 */
5
6#include "e1000.h"
7#include <linux/jiffies.h>
8#include <linux/uaccess.h>
9
10enum {NETDEV_STATS, E1000_STATS};
11
12struct e1000_stats {
13	char stat_string[ETH_GSTRING_LEN];
14	int type;
15	int sizeof_stat;
16	int stat_offset;
17};
18
19#define E1000_STAT(m)		E1000_STATS, \
20				sizeof(((struct e1000_adapter *)0)->m), \
21				offsetof(struct e1000_adapter, m)
22#define E1000_NETDEV_STAT(m)	NETDEV_STATS, \
23				sizeof(((struct net_device *)0)->m), \
24				offsetof(struct net_device, m)
25
26static const struct e1000_stats e1000_gstrings_stats[] = {
27	{ "rx_packets", E1000_STAT(stats.gprc) },
28	{ "tx_packets", E1000_STAT(stats.gptc) },
29	{ "rx_bytes", E1000_STAT(stats.gorcl) },
30	{ "tx_bytes", E1000_STAT(stats.gotcl) },
31	{ "rx_broadcast", E1000_STAT(stats.bprc) },
32	{ "tx_broadcast", E1000_STAT(stats.bptc) },
33	{ "rx_multicast", E1000_STAT(stats.mprc) },
34	{ "tx_multicast", E1000_STAT(stats.mptc) },
35	{ "rx_errors", E1000_STAT(stats.rxerrc) },
36	{ "tx_errors", E1000_STAT(stats.txerrc) },
37	{ "tx_dropped", E1000_NETDEV_STAT(stats.tx_dropped) },
38	{ "multicast", E1000_STAT(stats.mprc) },
39	{ "collisions", E1000_STAT(stats.colc) },
40	{ "rx_length_errors", E1000_STAT(stats.rlerrc) },
41	{ "rx_over_errors", E1000_NETDEV_STAT(stats.rx_over_errors) },
42	{ "rx_crc_errors", E1000_STAT(stats.crcerrs) },
43	{ "rx_frame_errors", E1000_NETDEV_STAT(stats.rx_frame_errors) },
44	{ "rx_no_buffer_count", E1000_STAT(stats.rnbc) },
45	{ "rx_missed_errors", E1000_STAT(stats.mpc) },
46	{ "tx_aborted_errors", E1000_STAT(stats.ecol) },
47	{ "tx_carrier_errors", E1000_STAT(stats.tncrs) },
48	{ "tx_fifo_errors", E1000_NETDEV_STAT(stats.tx_fifo_errors) },
49	{ "tx_heartbeat_errors", E1000_NETDEV_STAT(stats.tx_heartbeat_errors) },
50	{ "tx_window_errors", E1000_STAT(stats.latecol) },
51	{ "tx_abort_late_coll", E1000_STAT(stats.latecol) },
52	{ "tx_deferred_ok", E1000_STAT(stats.dc) },
53	{ "tx_single_coll_ok", E1000_STAT(stats.scc) },
54	{ "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
55	{ "tx_timeout_count", E1000_STAT(tx_timeout_count) },
56	{ "tx_restart_queue", E1000_STAT(restart_queue) },
57	{ "rx_long_length_errors", E1000_STAT(stats.roc) },
58	{ "rx_short_length_errors", E1000_STAT(stats.ruc) },
59	{ "rx_align_errors", E1000_STAT(stats.algnerrc) },
60	{ "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
61	{ "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
62	{ "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
63	{ "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
64	{ "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
65	{ "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
66	{ "rx_long_byte_count", E1000_STAT(stats.gorcl) },
67	{ "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
68	{ "rx_csum_offload_errors", E1000_STAT(hw_csum_err) },
69	{ "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) },
70	{ "tx_smbus", E1000_STAT(stats.mgptc) },
71	{ "rx_smbus", E1000_STAT(stats.mgprc) },
72	{ "dropped_smbus", E1000_STAT(stats.mgpdc) },
73};
74
75#define E1000_QUEUE_STATS_LEN 0
76#define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats)
77#define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN + E1000_QUEUE_STATS_LEN)
78static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
79	"Register test  (offline)", "Eeprom test    (offline)",
80	"Interrupt test (offline)", "Loopback test  (offline)",
81	"Link test   (on/offline)"
82};
83
84#define E1000_TEST_LEN	ARRAY_SIZE(e1000_gstrings_test)
85
86static int e1000_get_link_ksettings(struct net_device *netdev,
87				    struct ethtool_link_ksettings *cmd)
88{
89	struct e1000_adapter *adapter = netdev_priv(netdev);
90	struct e1000_hw *hw = &adapter->hw;
91	u32 supported, advertising;
92
93	if (hw->media_type == e1000_media_type_copper) {
94		supported = (SUPPORTED_10baseT_Half |
95			     SUPPORTED_10baseT_Full |
96			     SUPPORTED_100baseT_Half |
97			     SUPPORTED_100baseT_Full |
98			     SUPPORTED_1000baseT_Full|
99			     SUPPORTED_Autoneg |
100			     SUPPORTED_TP);
101		advertising = ADVERTISED_TP;
102
103		if (hw->autoneg == 1) {
104			advertising |= ADVERTISED_Autoneg;
105			/* the e1000 autoneg seems to match ethtool nicely */
106			advertising |= hw->autoneg_advertised;
107		}
108
109		cmd->base.port = PORT_TP;
110		cmd->base.phy_address = hw->phy_addr;
111	} else {
112		supported   = (SUPPORTED_1000baseT_Full |
113			       SUPPORTED_FIBRE |
114			       SUPPORTED_Autoneg);
115
116		advertising = (ADVERTISED_1000baseT_Full |
117			       ADVERTISED_FIBRE |
118			       ADVERTISED_Autoneg);
119
120		cmd->base.port = PORT_FIBRE;
121	}
122
123	if (er32(STATUS) & E1000_STATUS_LU) {
124		e1000_get_speed_and_duplex(hw, &adapter->link_speed,
125					   &adapter->link_duplex);
126		cmd->base.speed = adapter->link_speed;
127
128		/* unfortunately FULL_DUPLEX != DUPLEX_FULL
129		 * and HALF_DUPLEX != DUPLEX_HALF
130		 */
131		if (adapter->link_duplex == FULL_DUPLEX)
132			cmd->base.duplex = DUPLEX_FULL;
133		else
134			cmd->base.duplex = DUPLEX_HALF;
135	} else {
136		cmd->base.speed = SPEED_UNKNOWN;
137		cmd->base.duplex = DUPLEX_UNKNOWN;
138	}
139
140	cmd->base.autoneg = ((hw->media_type == e1000_media_type_fiber) ||
141			 hw->autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
142
143	/* MDI-X => 1; MDI => 0 */
144	if ((hw->media_type == e1000_media_type_copper) &&
145	    netif_carrier_ok(netdev))
146		cmd->base.eth_tp_mdix = (!!adapter->phy_info.mdix_mode ?
147				     ETH_TP_MDI_X : ETH_TP_MDI);
148	else
149		cmd->base.eth_tp_mdix = ETH_TP_MDI_INVALID;
150
151	if (hw->mdix == AUTO_ALL_MODES)
152		cmd->base.eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
153	else
154		cmd->base.eth_tp_mdix_ctrl = hw->mdix;
155
156	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
157						supported);
158	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
159						advertising);
160
161	return 0;
162}
163
164static int e1000_set_link_ksettings(struct net_device *netdev,
165				    const struct ethtool_link_ksettings *cmd)
166{
167	struct e1000_adapter *adapter = netdev_priv(netdev);
168	struct e1000_hw *hw = &adapter->hw;
169	u32 advertising;
170
171	ethtool_convert_link_mode_to_legacy_u32(&advertising,
172						cmd->link_modes.advertising);
173
174	/* MDI setting is only allowed when autoneg enabled because
175	 * some hardware doesn't allow MDI setting when speed or
176	 * duplex is forced.
177	 */
178	if (cmd->base.eth_tp_mdix_ctrl) {
179		if (hw->media_type != e1000_media_type_copper)
180			return -EOPNOTSUPP;
181
182		if ((cmd->base.eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
183		    (cmd->base.autoneg != AUTONEG_ENABLE)) {
184			e_err(drv, "forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
185			return -EINVAL;
186		}
187	}
188
189	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
190		msleep(1);
191
192	if (cmd->base.autoneg == AUTONEG_ENABLE) {
193		hw->autoneg = 1;
194		if (hw->media_type == e1000_media_type_fiber)
195			hw->autoneg_advertised = ADVERTISED_1000baseT_Full |
196						 ADVERTISED_FIBRE |
197						 ADVERTISED_Autoneg;
198		else
199			hw->autoneg_advertised = advertising |
200						 ADVERTISED_TP |
201						 ADVERTISED_Autoneg;
202	} else {
203		u32 speed = cmd->base.speed;
204		/* calling this overrides forced MDI setting */
205		if (e1000_set_spd_dplx(adapter, speed, cmd->base.duplex)) {
206			clear_bit(__E1000_RESETTING, &adapter->flags);
207			return -EINVAL;
208		}
209	}
210
211	/* MDI-X => 2; MDI => 1; Auto => 3 */
212	if (cmd->base.eth_tp_mdix_ctrl) {
213		if (cmd->base.eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
214			hw->mdix = AUTO_ALL_MODES;
215		else
216			hw->mdix = cmd->base.eth_tp_mdix_ctrl;
217	}
218
219	/* reset the link */
220
221	if (netif_running(adapter->netdev)) {
222		e1000_down(adapter);
223		e1000_up(adapter);
224	} else {
225		e1000_reset(adapter);
226	}
227	clear_bit(__E1000_RESETTING, &adapter->flags);
228	return 0;
229}
230
231static u32 e1000_get_link(struct net_device *netdev)
232{
233	struct e1000_adapter *adapter = netdev_priv(netdev);
234
235	/* If the link is not reported up to netdev, interrupts are disabled,
236	 * and so the physical link state may have changed since we last
237	 * looked. Set get_link_status to make sure that the true link
238	 * state is interrogated, rather than pulling a cached and possibly
239	 * stale link state from the driver.
240	 */
241	if (!netif_carrier_ok(netdev))
242		adapter->hw.get_link_status = 1;
243
244	return e1000_has_link(adapter);
245}
246
247static void e1000_get_pauseparam(struct net_device *netdev,
248				 struct ethtool_pauseparam *pause)
249{
250	struct e1000_adapter *adapter = netdev_priv(netdev);
251	struct e1000_hw *hw = &adapter->hw;
252
253	pause->autoneg =
254		(adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
255
256	if (hw->fc == E1000_FC_RX_PAUSE) {
257		pause->rx_pause = 1;
258	} else if (hw->fc == E1000_FC_TX_PAUSE) {
259		pause->tx_pause = 1;
260	} else if (hw->fc == E1000_FC_FULL) {
261		pause->rx_pause = 1;
262		pause->tx_pause = 1;
263	}
264}
265
266static int e1000_set_pauseparam(struct net_device *netdev,
267				struct ethtool_pauseparam *pause)
268{
269	struct e1000_adapter *adapter = netdev_priv(netdev);
270	struct e1000_hw *hw = &adapter->hw;
271	int retval = 0;
272
273	adapter->fc_autoneg = pause->autoneg;
274
275	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
276		msleep(1);
277
278	if (pause->rx_pause && pause->tx_pause)
279		hw->fc = E1000_FC_FULL;
280	else if (pause->rx_pause && !pause->tx_pause)
281		hw->fc = E1000_FC_RX_PAUSE;
282	else if (!pause->rx_pause && pause->tx_pause)
283		hw->fc = E1000_FC_TX_PAUSE;
284	else if (!pause->rx_pause && !pause->tx_pause)
285		hw->fc = E1000_FC_NONE;
286
287	hw->original_fc = hw->fc;
288
289	if (adapter->fc_autoneg == AUTONEG_ENABLE) {
290		if (netif_running(adapter->netdev)) {
291			e1000_down(adapter);
292			e1000_up(adapter);
293		} else {
294			e1000_reset(adapter);
295		}
296	} else
297		retval = ((hw->media_type == e1000_media_type_fiber) ?
298			  e1000_setup_link(hw) : e1000_force_mac_fc(hw));
299
300	clear_bit(__E1000_RESETTING, &adapter->flags);
301	return retval;
302}
303
304static u32 e1000_get_msglevel(struct net_device *netdev)
305{
306	struct e1000_adapter *adapter = netdev_priv(netdev);
307
308	return adapter->msg_enable;
309}
310
311static void e1000_set_msglevel(struct net_device *netdev, u32 data)
312{
313	struct e1000_adapter *adapter = netdev_priv(netdev);
314
315	adapter->msg_enable = data;
316}
317
318static int e1000_get_regs_len(struct net_device *netdev)
319{
320#define E1000_REGS_LEN 32
321	return E1000_REGS_LEN * sizeof(u32);
322}
323
324static void e1000_get_regs(struct net_device *netdev, struct ethtool_regs *regs,
325			   void *p)
326{
327	struct e1000_adapter *adapter = netdev_priv(netdev);
328	struct e1000_hw *hw = &adapter->hw;
329	u32 *regs_buff = p;
330	u16 phy_data;
331
332	memset(p, 0, E1000_REGS_LEN * sizeof(u32));
333
334	regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
335
336	regs_buff[0]  = er32(CTRL);
337	regs_buff[1]  = er32(STATUS);
338
339	regs_buff[2]  = er32(RCTL);
340	regs_buff[3]  = er32(RDLEN);
341	regs_buff[4]  = er32(RDH);
342	regs_buff[5]  = er32(RDT);
343	regs_buff[6]  = er32(RDTR);
344
345	regs_buff[7]  = er32(TCTL);
346	regs_buff[8]  = er32(TDLEN);
347	regs_buff[9]  = er32(TDH);
348	regs_buff[10] = er32(TDT);
349	regs_buff[11] = er32(TIDV);
350
351	regs_buff[12] = hw->phy_type;  /* PHY type (IGP=1, M88=0) */
352	if (hw->phy_type == e1000_phy_igp) {
353		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
354				    IGP01E1000_PHY_AGC_A);
355		e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_A &
356				   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
357		regs_buff[13] = (u32)phy_data; /* cable length */
358		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
359				    IGP01E1000_PHY_AGC_B);
360		e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_B &
361				   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
362		regs_buff[14] = (u32)phy_data; /* cable length */
363		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
364				    IGP01E1000_PHY_AGC_C);
365		e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_C &
366				   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
367		regs_buff[15] = (u32)phy_data; /* cable length */
368		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
369				    IGP01E1000_PHY_AGC_D);
370		e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_D &
371				   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
372		regs_buff[16] = (u32)phy_data; /* cable length */
373		regs_buff[17] = 0; /* extended 10bt distance (not needed) */
374		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
375		e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS &
376				   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
377		regs_buff[18] = (u32)phy_data; /* cable polarity */
378		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
379				    IGP01E1000_PHY_PCS_INIT_REG);
380		e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG &
381				   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
382		regs_buff[19] = (u32)phy_data; /* cable polarity */
383		regs_buff[20] = 0; /* polarity correction enabled (always) */
384		regs_buff[22] = 0; /* phy receive errors (unavailable) */
385		regs_buff[23] = regs_buff[18]; /* mdix mode */
386		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
387	} else {
388		e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
389		regs_buff[13] = (u32)phy_data; /* cable length */
390		regs_buff[14] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
391		regs_buff[15] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
392		regs_buff[16] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
393		e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
394		regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
395		regs_buff[18] = regs_buff[13]; /* cable polarity */
396		regs_buff[19] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
397		regs_buff[20] = regs_buff[17]; /* polarity correction */
398		/* phy receive errors */
399		regs_buff[22] = adapter->phy_stats.receive_errors;
400		regs_buff[23] = regs_buff[13]; /* mdix mode */
401	}
402	regs_buff[21] = adapter->phy_stats.idle_errors;  /* phy idle errors */
403	e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
404	regs_buff[24] = (u32)phy_data;  /* phy local receiver status */
405	regs_buff[25] = regs_buff[24];  /* phy remote receiver status */
406	if (hw->mac_type >= e1000_82540 &&
407	    hw->media_type == e1000_media_type_copper) {
408		regs_buff[26] = er32(MANC);
409	}
410}
411
412static int e1000_get_eeprom_len(struct net_device *netdev)
413{
414	struct e1000_adapter *adapter = netdev_priv(netdev);
415	struct e1000_hw *hw = &adapter->hw;
416
417	return hw->eeprom.word_size * 2;
418}
419
420static int e1000_get_eeprom(struct net_device *netdev,
421			    struct ethtool_eeprom *eeprom, u8 *bytes)
422{
423	struct e1000_adapter *adapter = netdev_priv(netdev);
424	struct e1000_hw *hw = &adapter->hw;
425	u16 *eeprom_buff;
426	int first_word, last_word;
427	int ret_val = 0;
428	u16 i;
429
430	if (eeprom->len == 0)
431		return -EINVAL;
432
433	eeprom->magic = hw->vendor_id | (hw->device_id << 16);
434
435	first_word = eeprom->offset >> 1;
436	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
437
438	eeprom_buff = kmalloc_array(last_word - first_word + 1, sizeof(u16),
439				    GFP_KERNEL);
440	if (!eeprom_buff)
441		return -ENOMEM;
442
443	if (hw->eeprom.type == e1000_eeprom_spi)
444		ret_val = e1000_read_eeprom(hw, first_word,
445					    last_word - first_word + 1,
446					    eeprom_buff);
447	else {
448		for (i = 0; i < last_word - first_word + 1; i++) {
449			ret_val = e1000_read_eeprom(hw, first_word + i, 1,
450						    &eeprom_buff[i]);
451			if (ret_val)
452				break;
453		}
454	}
455
456	/* Device's eeprom is always little-endian, word addressable */
457	for (i = 0; i < last_word - first_word + 1; i++)
458		le16_to_cpus(&eeprom_buff[i]);
459
460	memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
461	       eeprom->len);
462	kfree(eeprom_buff);
463
464	return ret_val;
465}
466
467static int e1000_set_eeprom(struct net_device *netdev,
468			    struct ethtool_eeprom *eeprom, u8 *bytes)
469{
470	struct e1000_adapter *adapter = netdev_priv(netdev);
471	struct e1000_hw *hw = &adapter->hw;
472	u16 *eeprom_buff;
473	void *ptr;
474	int max_len, first_word, last_word, ret_val = 0;
475	u16 i;
476
477	if (eeprom->len == 0)
478		return -EOPNOTSUPP;
479
480	if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
481		return -EFAULT;
482
483	max_len = hw->eeprom.word_size * 2;
484
485	first_word = eeprom->offset >> 1;
486	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
487	eeprom_buff = kmalloc(max_len, GFP_KERNEL);
488	if (!eeprom_buff)
489		return -ENOMEM;
490
491	ptr = (void *)eeprom_buff;
492
493	if (eeprom->offset & 1) {
494		/* need read/modify/write of first changed EEPROM word
495		 * only the second byte of the word is being modified
496		 */
497		ret_val = e1000_read_eeprom(hw, first_word, 1,
498					    &eeprom_buff[0]);
499		ptr++;
500	}
501	if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
502		/* need read/modify/write of last changed EEPROM word
503		 * only the first byte of the word is being modified
504		 */
505		ret_val = e1000_read_eeprom(hw, last_word, 1,
506					    &eeprom_buff[last_word - first_word]);
507	}
508
509	/* Device's eeprom is always little-endian, word addressable */
510	for (i = 0; i < last_word - first_word + 1; i++)
511		le16_to_cpus(&eeprom_buff[i]);
512
513	memcpy(ptr, bytes, eeprom->len);
514
515	for (i = 0; i < last_word - first_word + 1; i++)
516		cpu_to_le16s(&eeprom_buff[i]);
517
518	ret_val = e1000_write_eeprom(hw, first_word,
519				     last_word - first_word + 1, eeprom_buff);
520
521	/* Update the checksum over the first part of the EEPROM if needed */
522	if ((ret_val == 0) && (first_word <= EEPROM_CHECKSUM_REG))
523		e1000_update_eeprom_checksum(hw);
524
525	kfree(eeprom_buff);
526	return ret_val;
527}
528
529static void e1000_get_drvinfo(struct net_device *netdev,
530			      struct ethtool_drvinfo *drvinfo)
531{
532	struct e1000_adapter *adapter = netdev_priv(netdev);
533
534	strscpy(drvinfo->driver,  e1000_driver_name,
535		sizeof(drvinfo->driver));
536
537	strscpy(drvinfo->bus_info, pci_name(adapter->pdev),
538		sizeof(drvinfo->bus_info));
539}
540
541static void e1000_get_ringparam(struct net_device *netdev,
542				struct ethtool_ringparam *ring,
543				struct kernel_ethtool_ringparam *kernel_ring,
544				struct netlink_ext_ack *extack)
545{
546	struct e1000_adapter *adapter = netdev_priv(netdev);
547	struct e1000_hw *hw = &adapter->hw;
548	e1000_mac_type mac_type = hw->mac_type;
549	struct e1000_tx_ring *txdr = adapter->tx_ring;
550	struct e1000_rx_ring *rxdr = adapter->rx_ring;
551
552	ring->rx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_RXD :
553		E1000_MAX_82544_RXD;
554	ring->tx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_TXD :
555		E1000_MAX_82544_TXD;
556	ring->rx_pending = rxdr->count;
557	ring->tx_pending = txdr->count;
558}
559
560static int e1000_set_ringparam(struct net_device *netdev,
561			       struct ethtool_ringparam *ring,
562			       struct kernel_ethtool_ringparam *kernel_ring,
563			       struct netlink_ext_ack *extack)
564{
565	struct e1000_adapter *adapter = netdev_priv(netdev);
566	struct e1000_hw *hw = &adapter->hw;
567	e1000_mac_type mac_type = hw->mac_type;
568	struct e1000_tx_ring *txdr, *tx_old;
569	struct e1000_rx_ring *rxdr, *rx_old;
570	int i, err;
571
572	if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
573		return -EINVAL;
574
575	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
576		msleep(1);
577
578	if (netif_running(adapter->netdev))
579		e1000_down(adapter);
580
581	tx_old = adapter->tx_ring;
582	rx_old = adapter->rx_ring;
583
584	err = -ENOMEM;
585	txdr = kcalloc(adapter->num_tx_queues, sizeof(struct e1000_tx_ring),
586		       GFP_KERNEL);
587	if (!txdr)
588		goto err_alloc_tx;
589
590	rxdr = kcalloc(adapter->num_rx_queues, sizeof(struct e1000_rx_ring),
591		       GFP_KERNEL);
592	if (!rxdr)
593		goto err_alloc_rx;
594
595	adapter->tx_ring = txdr;
596	adapter->rx_ring = rxdr;
597
598	rxdr->count = max(ring->rx_pending, (u32)E1000_MIN_RXD);
599	rxdr->count = min(rxdr->count, (u32)(mac_type < e1000_82544 ?
600			  E1000_MAX_RXD : E1000_MAX_82544_RXD));
601	rxdr->count = ALIGN(rxdr->count, REQ_RX_DESCRIPTOR_MULTIPLE);
602	txdr->count = max(ring->tx_pending, (u32)E1000_MIN_TXD);
603	txdr->count = min(txdr->count, (u32)(mac_type < e1000_82544 ?
604			  E1000_MAX_TXD : E1000_MAX_82544_TXD));
605	txdr->count = ALIGN(txdr->count, REQ_TX_DESCRIPTOR_MULTIPLE);
606
607	for (i = 0; i < adapter->num_tx_queues; i++)
608		txdr[i].count = txdr->count;
609	for (i = 0; i < adapter->num_rx_queues; i++)
610		rxdr[i].count = rxdr->count;
611
612	err = 0;
613	if (netif_running(adapter->netdev)) {
614		/* Try to get new resources before deleting old */
615		err = e1000_setup_all_rx_resources(adapter);
616		if (err)
617			goto err_setup_rx;
618		err = e1000_setup_all_tx_resources(adapter);
619		if (err)
620			goto err_setup_tx;
621
622		/* save the new, restore the old in order to free it,
623		 * then restore the new back again
624		 */
625
626		adapter->rx_ring = rx_old;
627		adapter->tx_ring = tx_old;
628		e1000_free_all_rx_resources(adapter);
629		e1000_free_all_tx_resources(adapter);
630		adapter->rx_ring = rxdr;
631		adapter->tx_ring = txdr;
632		err = e1000_up(adapter);
633	}
634	kfree(tx_old);
635	kfree(rx_old);
636
637	clear_bit(__E1000_RESETTING, &adapter->flags);
638	return err;
639
640err_setup_tx:
641	e1000_free_all_rx_resources(adapter);
642err_setup_rx:
643	adapter->rx_ring = rx_old;
644	adapter->tx_ring = tx_old;
645	kfree(rxdr);
646err_alloc_rx:
647	kfree(txdr);
648err_alloc_tx:
649	if (netif_running(adapter->netdev))
650		e1000_up(adapter);
651	clear_bit(__E1000_RESETTING, &adapter->flags);
652	return err;
653}
654
655static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data, int reg,
656			     u32 mask, u32 write)
657{
658	struct e1000_hw *hw = &adapter->hw;
659	static const u32 test[] = {
660		0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF
661	};
662	u8 __iomem *address = hw->hw_addr + reg;
663	u32 read;
664	int i;
665
666	for (i = 0; i < ARRAY_SIZE(test); i++) {
667		writel(write & test[i], address);
668		read = readl(address);
669		if (read != (write & test[i] & mask)) {
670			e_err(drv, "pattern test reg %04X failed: "
671			      "got 0x%08X expected 0x%08X\n",
672			      reg, read, (write & test[i] & mask));
673			*data = reg;
674			return true;
675		}
676	}
677	return false;
678}
679
680static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data, int reg,
681			      u32 mask, u32 write)
682{
683	struct e1000_hw *hw = &adapter->hw;
684	u8 __iomem *address = hw->hw_addr + reg;
685	u32 read;
686
687	writel(write & mask, address);
688	read = readl(address);
689	if ((read & mask) != (write & mask)) {
690		e_err(drv, "set/check reg %04X test failed: "
691		      "got 0x%08X expected 0x%08X\n",
692		      reg, (read & mask), (write & mask));
693		*data = reg;
694		return true;
695	}
696	return false;
697}
698
699#define REG_PATTERN_TEST(reg, mask, write)			     \
700	do {							     \
701		if (reg_pattern_test(adapter, data,		     \
702			     (hw->mac_type >= e1000_82543)   \
703			     ? E1000_##reg : E1000_82542_##reg,	     \
704			     mask, write))			     \
705			return 1;				     \
706	} while (0)
707
708#define REG_SET_AND_CHECK(reg, mask, write)			     \
709	do {							     \
710		if (reg_set_and_check(adapter, data,		     \
711			      (hw->mac_type >= e1000_82543)  \
712			      ? E1000_##reg : E1000_82542_##reg,     \
713			      mask, write))			     \
714			return 1;				     \
715	} while (0)
716
717static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
718{
719	u32 value, before, after;
720	u32 i, toggle;
721	struct e1000_hw *hw = &adapter->hw;
722
723	/* The status register is Read Only, so a write should fail.
724	 * Some bits that get toggled are ignored.
725	 */
726
727	/* there are several bits on newer hardware that are r/w */
728	toggle = 0xFFFFF833;
729
730	before = er32(STATUS);
731	value = (er32(STATUS) & toggle);
732	ew32(STATUS, toggle);
733	after = er32(STATUS) & toggle;
734	if (value != after) {
735		e_err(drv, "failed STATUS register test got: "
736		      "0x%08X expected: 0x%08X\n", after, value);
737		*data = 1;
738		return 1;
739	}
740	/* restore previous status */
741	ew32(STATUS, before);
742
743	REG_PATTERN_TEST(FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
744	REG_PATTERN_TEST(FCAH, 0x0000FFFF, 0xFFFFFFFF);
745	REG_PATTERN_TEST(FCT, 0x0000FFFF, 0xFFFFFFFF);
746	REG_PATTERN_TEST(VET, 0x0000FFFF, 0xFFFFFFFF);
747
748	REG_PATTERN_TEST(RDTR, 0x0000FFFF, 0xFFFFFFFF);
749	REG_PATTERN_TEST(RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
750	REG_PATTERN_TEST(RDLEN, 0x000FFF80, 0x000FFFFF);
751	REG_PATTERN_TEST(RDH, 0x0000FFFF, 0x0000FFFF);
752	REG_PATTERN_TEST(RDT, 0x0000FFFF, 0x0000FFFF);
753	REG_PATTERN_TEST(FCRTH, 0x0000FFF8, 0x0000FFF8);
754	REG_PATTERN_TEST(FCTTV, 0x0000FFFF, 0x0000FFFF);
755	REG_PATTERN_TEST(TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
756	REG_PATTERN_TEST(TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
757	REG_PATTERN_TEST(TDLEN, 0x000FFF80, 0x000FFFFF);
758
759	REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x00000000);
760
761	before = 0x06DFB3FE;
762	REG_SET_AND_CHECK(RCTL, before, 0x003FFFFB);
763	REG_SET_AND_CHECK(TCTL, 0xFFFFFFFF, 0x00000000);
764
765	if (hw->mac_type >= e1000_82543) {
766		REG_SET_AND_CHECK(RCTL, before, 0xFFFFFFFF);
767		REG_PATTERN_TEST(RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
768		REG_PATTERN_TEST(TXCW, 0xC000FFFF, 0x0000FFFF);
769		REG_PATTERN_TEST(TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
770		REG_PATTERN_TEST(TIDV, 0x0000FFFF, 0x0000FFFF);
771		value = E1000_RAR_ENTRIES;
772		for (i = 0; i < value; i++) {
773			REG_PATTERN_TEST(RA + (((i << 1) + 1) << 2),
774					 0x8003FFFF, 0xFFFFFFFF);
775		}
776	} else {
777		REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x01FFFFFF);
778		REG_PATTERN_TEST(RDBAL, 0xFFFFF000, 0xFFFFFFFF);
779		REG_PATTERN_TEST(TXCW, 0x0000FFFF, 0x0000FFFF);
780		REG_PATTERN_TEST(TDBAL, 0xFFFFF000, 0xFFFFFFFF);
781	}
782
783	value = E1000_MC_TBL_SIZE;
784	for (i = 0; i < value; i++)
785		REG_PATTERN_TEST(MTA + (i << 2), 0xFFFFFFFF, 0xFFFFFFFF);
786
787	*data = 0;
788	return 0;
789}
790
791static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
792{
793	struct e1000_hw *hw = &adapter->hw;
794	u16 temp;
795	u16 checksum = 0;
796	u16 i;
797
798	*data = 0;
799	/* Read and add up the contents of the EEPROM */
800	for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
801		if ((e1000_read_eeprom(hw, i, 1, &temp)) < 0) {
802			*data = 1;
803			break;
804		}
805		checksum += temp;
806	}
807
808	/* If Checksum is not Correct return error else test passed */
809	if ((checksum != (u16)EEPROM_SUM) && !(*data))
810		*data = 2;
811
812	return *data;
813}
814
815static irqreturn_t e1000_test_intr(int irq, void *data)
816{
817	struct net_device *netdev = (struct net_device *)data;
818	struct e1000_adapter *adapter = netdev_priv(netdev);
819	struct e1000_hw *hw = &adapter->hw;
820
821	adapter->test_icr |= er32(ICR);
822
823	return IRQ_HANDLED;
824}
825
826static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
827{
828	struct net_device *netdev = adapter->netdev;
829	u32 mask, i = 0;
830	bool shared_int = true;
831	u32 irq = adapter->pdev->irq;
832	struct e1000_hw *hw = &adapter->hw;
833
834	*data = 0;
835
836	/* NOTE: we don't test MSI interrupts here, yet
837	 * Hook up test interrupt handler just for this test
838	 */
839	if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
840			 netdev))
841		shared_int = false;
842	else if (request_irq(irq, e1000_test_intr, IRQF_SHARED,
843			     netdev->name, netdev)) {
844		*data = 1;
845		return -1;
846	}
847	e_info(hw, "testing %s interrupt\n", (shared_int ?
848	       "shared" : "unshared"));
849
850	/* Disable all the interrupts */
851	ew32(IMC, 0xFFFFFFFF);
852	E1000_WRITE_FLUSH();
853	msleep(10);
854
855	/* Test each interrupt */
856	for (; i < 10; i++) {
857		/* Interrupt to test */
858		mask = 1 << i;
859
860		if (!shared_int) {
861			/* Disable the interrupt to be reported in
862			 * the cause register and then force the same
863			 * interrupt and see if one gets posted.  If
864			 * an interrupt was posted to the bus, the
865			 * test failed.
866			 */
867			adapter->test_icr = 0;
868			ew32(IMC, mask);
869			ew32(ICS, mask);
870			E1000_WRITE_FLUSH();
871			msleep(10);
872
873			if (adapter->test_icr & mask) {
874				*data = 3;
875				break;
876			}
877		}
878
879		/* Enable the interrupt to be reported in
880		 * the cause register and then force the same
881		 * interrupt and see if one gets posted.  If
882		 * an interrupt was not posted to the bus, the
883		 * test failed.
884		 */
885		adapter->test_icr = 0;
886		ew32(IMS, mask);
887		ew32(ICS, mask);
888		E1000_WRITE_FLUSH();
889		msleep(10);
890
891		if (!(adapter->test_icr & mask)) {
892			*data = 4;
893			break;
894		}
895
896		if (!shared_int) {
897			/* Disable the other interrupts to be reported in
898			 * the cause register and then force the other
899			 * interrupts and see if any get posted.  If
900			 * an interrupt was posted to the bus, the
901			 * test failed.
902			 */
903			adapter->test_icr = 0;
904			ew32(IMC, ~mask & 0x00007FFF);
905			ew32(ICS, ~mask & 0x00007FFF);
906			E1000_WRITE_FLUSH();
907			msleep(10);
908
909			if (adapter->test_icr) {
910				*data = 5;
911				break;
912			}
913		}
914	}
915
916	/* Disable all the interrupts */
917	ew32(IMC, 0xFFFFFFFF);
918	E1000_WRITE_FLUSH();
919	msleep(10);
920
921	/* Unhook test interrupt handler */
922	free_irq(irq, netdev);
923
924	return *data;
925}
926
927static void e1000_free_desc_rings(struct e1000_adapter *adapter)
928{
929	struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
930	struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
931	struct pci_dev *pdev = adapter->pdev;
932	int i;
933
934	if (txdr->desc && txdr->buffer_info) {
935		for (i = 0; i < txdr->count; i++) {
936			if (txdr->buffer_info[i].dma)
937				dma_unmap_single(&pdev->dev,
938						 txdr->buffer_info[i].dma,
939						 txdr->buffer_info[i].length,
940						 DMA_TO_DEVICE);
941			dev_kfree_skb(txdr->buffer_info[i].skb);
942		}
943	}
944
945	if (rxdr->desc && rxdr->buffer_info) {
946		for (i = 0; i < rxdr->count; i++) {
947			if (rxdr->buffer_info[i].dma)
948				dma_unmap_single(&pdev->dev,
949						 rxdr->buffer_info[i].dma,
950						 E1000_RXBUFFER_2048,
951						 DMA_FROM_DEVICE);
952			kfree(rxdr->buffer_info[i].rxbuf.data);
953		}
954	}
955
956	if (txdr->desc) {
957		dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
958				  txdr->dma);
959		txdr->desc = NULL;
960	}
961	if (rxdr->desc) {
962		dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
963				  rxdr->dma);
964		rxdr->desc = NULL;
965	}
966
967	kfree(txdr->buffer_info);
968	txdr->buffer_info = NULL;
969	kfree(rxdr->buffer_info);
970	rxdr->buffer_info = NULL;
971}
972
973static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
974{
975	struct e1000_hw *hw = &adapter->hw;
976	struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
977	struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
978	struct pci_dev *pdev = adapter->pdev;
979	u32 rctl;
980	int i, ret_val;
981
982	/* Setup Tx descriptor ring and Tx buffers */
983
984	if (!txdr->count)
985		txdr->count = E1000_DEFAULT_TXD;
986
987	txdr->buffer_info = kcalloc(txdr->count, sizeof(struct e1000_tx_buffer),
988				    GFP_KERNEL);
989	if (!txdr->buffer_info) {
990		ret_val = 1;
991		goto err_nomem;
992	}
993
994	txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
995	txdr->size = ALIGN(txdr->size, 4096);
996	txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
997					GFP_KERNEL);
998	if (!txdr->desc) {
999		ret_val = 2;
1000		goto err_nomem;
1001	}
1002	txdr->next_to_use = txdr->next_to_clean = 0;
1003
1004	ew32(TDBAL, ((u64)txdr->dma & 0x00000000FFFFFFFF));
1005	ew32(TDBAH, ((u64)txdr->dma >> 32));
1006	ew32(TDLEN, txdr->count * sizeof(struct e1000_tx_desc));
1007	ew32(TDH, 0);
1008	ew32(TDT, 0);
1009	ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN |
1010	     E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1011	     E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1012
1013	for (i = 0; i < txdr->count; i++) {
1014		struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*txdr, i);
1015		struct sk_buff *skb;
1016		unsigned int size = 1024;
1017
1018		skb = alloc_skb(size, GFP_KERNEL);
1019		if (!skb) {
1020			ret_val = 3;
1021			goto err_nomem;
1022		}
1023		skb_put(skb, size);
1024		txdr->buffer_info[i].skb = skb;
1025		txdr->buffer_info[i].length = skb->len;
1026		txdr->buffer_info[i].dma =
1027			dma_map_single(&pdev->dev, skb->data, skb->len,
1028				       DMA_TO_DEVICE);
1029		if (dma_mapping_error(&pdev->dev, txdr->buffer_info[i].dma)) {
1030			ret_val = 4;
1031			goto err_nomem;
1032		}
1033		tx_desc->buffer_addr = cpu_to_le64(txdr->buffer_info[i].dma);
1034		tx_desc->lower.data = cpu_to_le32(skb->len);
1035		tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1036						   E1000_TXD_CMD_IFCS |
1037						   E1000_TXD_CMD_RPS);
1038		tx_desc->upper.data = 0;
1039	}
1040
1041	/* Setup Rx descriptor ring and Rx buffers */
1042
1043	if (!rxdr->count)
1044		rxdr->count = E1000_DEFAULT_RXD;
1045
1046	rxdr->buffer_info = kcalloc(rxdr->count, sizeof(struct e1000_rx_buffer),
1047				    GFP_KERNEL);
1048	if (!rxdr->buffer_info) {
1049		ret_val = 5;
1050		goto err_nomem;
1051	}
1052
1053	rxdr->size = rxdr->count * sizeof(struct e1000_rx_desc);
1054	rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
1055					GFP_KERNEL);
1056	if (!rxdr->desc) {
1057		ret_val = 6;
1058		goto err_nomem;
1059	}
1060	rxdr->next_to_use = rxdr->next_to_clean = 0;
1061
1062	rctl = er32(RCTL);
1063	ew32(RCTL, rctl & ~E1000_RCTL_EN);
1064	ew32(RDBAL, ((u64)rxdr->dma & 0xFFFFFFFF));
1065	ew32(RDBAH, ((u64)rxdr->dma >> 32));
1066	ew32(RDLEN, rxdr->size);
1067	ew32(RDH, 0);
1068	ew32(RDT, 0);
1069	rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1070		E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1071		(hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1072	ew32(RCTL, rctl);
1073
1074	for (i = 0; i < rxdr->count; i++) {
1075		struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rxdr, i);
1076		u8 *buf;
1077
1078		buf = kzalloc(E1000_RXBUFFER_2048 + NET_SKB_PAD + NET_IP_ALIGN,
1079			      GFP_KERNEL);
1080		if (!buf) {
1081			ret_val = 7;
1082			goto err_nomem;
1083		}
1084		rxdr->buffer_info[i].rxbuf.data = buf;
1085
1086		rxdr->buffer_info[i].dma =
1087			dma_map_single(&pdev->dev,
1088				       buf + NET_SKB_PAD + NET_IP_ALIGN,
1089				       E1000_RXBUFFER_2048, DMA_FROM_DEVICE);
1090		if (dma_mapping_error(&pdev->dev, rxdr->buffer_info[i].dma)) {
1091			ret_val = 8;
1092			goto err_nomem;
1093		}
1094		rx_desc->buffer_addr = cpu_to_le64(rxdr->buffer_info[i].dma);
1095	}
1096
1097	return 0;
1098
1099err_nomem:
1100	e1000_free_desc_rings(adapter);
1101	return ret_val;
1102}
1103
1104static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1105{
1106	struct e1000_hw *hw = &adapter->hw;
1107
1108	/* Write out to PHY registers 29 and 30 to disable the Receiver. */
1109	e1000_write_phy_reg(hw, 29, 0x001F);
1110	e1000_write_phy_reg(hw, 30, 0x8FFC);
1111	e1000_write_phy_reg(hw, 29, 0x001A);
1112	e1000_write_phy_reg(hw, 30, 0x8FF0);
1113}
1114
1115static void e1000_phy_reset_clk_and_crs(struct e1000_adapter *adapter)
1116{
1117	struct e1000_hw *hw = &adapter->hw;
1118	u16 phy_reg;
1119
1120	/* Because we reset the PHY above, we need to re-force TX_CLK in the
1121	 * Extended PHY Specific Control Register to 25MHz clock.  This
1122	 * value defaults back to a 2.5MHz clock when the PHY is reset.
1123	 */
1124	e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1125	phy_reg |= M88E1000_EPSCR_TX_CLK_25;
1126	e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_reg);
1127
1128	/* In addition, because of the s/w reset above, we need to enable
1129	 * CRS on TX.  This must be set for both full and half duplex
1130	 * operation.
1131	 */
1132	e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1133	phy_reg |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1134	e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_reg);
1135}
1136
1137static int e1000_nonintegrated_phy_loopback(struct e1000_adapter *adapter)
1138{
1139	struct e1000_hw *hw = &adapter->hw;
1140	u32 ctrl_reg;
1141	u16 phy_reg;
1142
1143	/* Setup the Device Control Register for PHY loopback test. */
1144
1145	ctrl_reg = er32(CTRL);
1146	ctrl_reg |= (E1000_CTRL_ILOS |		/* Invert Loss-Of-Signal */
1147		     E1000_CTRL_FRCSPD |	/* Set the Force Speed Bit */
1148		     E1000_CTRL_FRCDPX |	/* Set the Force Duplex Bit */
1149		     E1000_CTRL_SPD_1000 |	/* Force Speed to 1000 */
1150		     E1000_CTRL_FD);		/* Force Duplex to FULL */
1151
1152	ew32(CTRL, ctrl_reg);
1153
1154	/* Read the PHY Specific Control Register (0x10) */
1155	e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1156
1157	/* Clear Auto-Crossover bits in PHY Specific Control Register
1158	 * (bits 6:5).
1159	 */
1160	phy_reg &= ~M88E1000_PSCR_AUTO_X_MODE;
1161	e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_reg);
1162
1163	/* Perform software reset on the PHY */
1164	e1000_phy_reset(hw);
1165
1166	/* Have to setup TX_CLK and TX_CRS after software reset */
1167	e1000_phy_reset_clk_and_crs(adapter);
1168
1169	e1000_write_phy_reg(hw, PHY_CTRL, 0x8100);
1170
1171	/* Wait for reset to complete. */
1172	udelay(500);
1173
1174	/* Have to setup TX_CLK and TX_CRS after software reset */
1175	e1000_phy_reset_clk_and_crs(adapter);
1176
1177	/* Write out to PHY registers 29 and 30 to disable the Receiver. */
1178	e1000_phy_disable_receiver(adapter);
1179
1180	/* Set the loopback bit in the PHY control register. */
1181	e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1182	phy_reg |= MII_CR_LOOPBACK;
1183	e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1184
1185	/* Setup TX_CLK and TX_CRS one more time. */
1186	e1000_phy_reset_clk_and_crs(adapter);
1187
1188	/* Check Phy Configuration */
1189	e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1190	if (phy_reg != 0x4100)
1191		return 9;
1192
1193	e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1194	if (phy_reg != 0x0070)
1195		return 10;
1196
1197	e1000_read_phy_reg(hw, 29, &phy_reg);
1198	if (phy_reg != 0x001A)
1199		return 11;
1200
1201	return 0;
1202}
1203
1204static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1205{
1206	struct e1000_hw *hw = &adapter->hw;
1207	u32 ctrl_reg = 0;
1208	u32 stat_reg = 0;
1209
1210	hw->autoneg = false;
1211
1212	if (hw->phy_type == e1000_phy_m88) {
1213		/* Auto-MDI/MDIX Off */
1214		e1000_write_phy_reg(hw,
1215				    M88E1000_PHY_SPEC_CTRL, 0x0808);
1216		/* reset to update Auto-MDI/MDIX */
1217		e1000_write_phy_reg(hw, PHY_CTRL, 0x9140);
1218		/* autoneg off */
1219		e1000_write_phy_reg(hw, PHY_CTRL, 0x8140);
1220	}
1221
1222	ctrl_reg = er32(CTRL);
1223
1224	/* force 1000, set loopback */
1225	e1000_write_phy_reg(hw, PHY_CTRL, 0x4140);
1226
1227	/* Now set up the MAC to the same speed/duplex as the PHY. */
1228	ctrl_reg = er32(CTRL);
1229	ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1230	ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1231			E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1232			E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1233			E1000_CTRL_FD); /* Force Duplex to FULL */
1234
1235	if (hw->media_type == e1000_media_type_copper &&
1236	    hw->phy_type == e1000_phy_m88)
1237		ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1238	else {
1239		/* Set the ILOS bit on the fiber Nic is half
1240		 * duplex link is detected.
1241		 */
1242		stat_reg = er32(STATUS);
1243		if ((stat_reg & E1000_STATUS_FD) == 0)
1244			ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1245	}
1246
1247	ew32(CTRL, ctrl_reg);
1248
1249	/* Disable the receiver on the PHY so when a cable is plugged in, the
1250	 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1251	 */
1252	if (hw->phy_type == e1000_phy_m88)
1253		e1000_phy_disable_receiver(adapter);
1254
1255	udelay(500);
1256
1257	return 0;
1258}
1259
1260static int e1000_set_phy_loopback(struct e1000_adapter *adapter)
1261{
1262	struct e1000_hw *hw = &adapter->hw;
1263	u16 phy_reg = 0;
1264	u16 count = 0;
1265
1266	switch (hw->mac_type) {
1267	case e1000_82543:
1268		if (hw->media_type == e1000_media_type_copper) {
1269			/* Attempt to setup Loopback mode on Non-integrated PHY.
1270			 * Some PHY registers get corrupted at random, so
1271			 * attempt this 10 times.
1272			 */
1273			while (e1000_nonintegrated_phy_loopback(adapter) &&
1274			       count++ < 10);
1275			if (count < 11)
1276				return 0;
1277		}
1278		break;
1279
1280	case e1000_82544:
1281	case e1000_82540:
1282	case e1000_82545:
1283	case e1000_82545_rev_3:
1284	case e1000_82546:
1285	case e1000_82546_rev_3:
1286	case e1000_82541:
1287	case e1000_82541_rev_2:
1288	case e1000_82547:
1289	case e1000_82547_rev_2:
1290		return e1000_integrated_phy_loopback(adapter);
1291	default:
1292		/* Default PHY loopback work is to read the MII
1293		 * control register and assert bit 14 (loopback mode).
1294		 */
1295		e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1296		phy_reg |= MII_CR_LOOPBACK;
1297		e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1298		return 0;
1299	}
1300
1301	return 8;
1302}
1303
1304static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1305{
1306	struct e1000_hw *hw = &adapter->hw;
1307	u32 rctl;
1308
1309	if (hw->media_type == e1000_media_type_fiber ||
1310	    hw->media_type == e1000_media_type_internal_serdes) {
1311		switch (hw->mac_type) {
1312		case e1000_82545:
1313		case e1000_82546:
1314		case e1000_82545_rev_3:
1315		case e1000_82546_rev_3:
1316			return e1000_set_phy_loopback(adapter);
1317		default:
1318			rctl = er32(RCTL);
1319			rctl |= E1000_RCTL_LBM_TCVR;
1320			ew32(RCTL, rctl);
1321			return 0;
1322		}
1323	} else if (hw->media_type == e1000_media_type_copper) {
1324		return e1000_set_phy_loopback(adapter);
1325	}
1326
1327	return 7;
1328}
1329
1330static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1331{
1332	struct e1000_hw *hw = &adapter->hw;
1333	u32 rctl;
1334	u16 phy_reg;
1335
1336	rctl = er32(RCTL);
1337	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1338	ew32(RCTL, rctl);
1339
1340	switch (hw->mac_type) {
1341	case e1000_82545:
1342	case e1000_82546:
1343	case e1000_82545_rev_3:
1344	case e1000_82546_rev_3:
1345	default:
1346		hw->autoneg = true;
1347		e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1348		if (phy_reg & MII_CR_LOOPBACK) {
1349			phy_reg &= ~MII_CR_LOOPBACK;
1350			e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1351			e1000_phy_reset(hw);
1352		}
1353		break;
1354	}
1355}
1356
1357static void e1000_create_lbtest_frame(struct sk_buff *skb,
1358				      unsigned int frame_size)
1359{
1360	memset(skb->data, 0xFF, frame_size);
1361	frame_size &= ~1;
1362	memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1363	skb->data[frame_size / 2 + 10] = 0xBE;
1364	skb->data[frame_size / 2 + 12] = 0xAF;
1365}
1366
1367static int e1000_check_lbtest_frame(const unsigned char *data,
1368				    unsigned int frame_size)
1369{
1370	frame_size &= ~1;
1371	if (*(data + 3) == 0xFF) {
1372		if ((*(data + frame_size / 2 + 10) == 0xBE) &&
1373		    (*(data + frame_size / 2 + 12) == 0xAF)) {
1374			return 0;
1375		}
1376	}
1377	return 13;
1378}
1379
1380static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1381{
1382	struct e1000_hw *hw = &adapter->hw;
1383	struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
1384	struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
1385	struct pci_dev *pdev = adapter->pdev;
1386	int i, j, k, l, lc, good_cnt, ret_val = 0;
1387	unsigned long time;
1388
1389	ew32(RDT, rxdr->count - 1);
1390
1391	/* Calculate the loop count based on the largest descriptor ring
1392	 * The idea is to wrap the largest ring a number of times using 64
1393	 * send/receive pairs during each loop
1394	 */
1395
1396	if (rxdr->count <= txdr->count)
1397		lc = ((txdr->count / 64) * 2) + 1;
1398	else
1399		lc = ((rxdr->count / 64) * 2) + 1;
1400
1401	k = l = 0;
1402	for (j = 0; j <= lc; j++) { /* loop count loop */
1403		for (i = 0; i < 64; i++) { /* send the packets */
1404			e1000_create_lbtest_frame(txdr->buffer_info[i].skb,
1405						  1024);
1406			dma_sync_single_for_device(&pdev->dev,
1407						   txdr->buffer_info[k].dma,
1408						   txdr->buffer_info[k].length,
1409						   DMA_TO_DEVICE);
1410			if (unlikely(++k == txdr->count))
1411				k = 0;
1412		}
1413		ew32(TDT, k);
1414		E1000_WRITE_FLUSH();
1415		msleep(200);
1416		time = jiffies; /* set the start time for the receive */
1417		good_cnt = 0;
1418		do { /* receive the sent packets */
1419			dma_sync_single_for_cpu(&pdev->dev,
1420						rxdr->buffer_info[l].dma,
1421						E1000_RXBUFFER_2048,
1422						DMA_FROM_DEVICE);
1423
1424			ret_val = e1000_check_lbtest_frame(
1425					rxdr->buffer_info[l].rxbuf.data +
1426					NET_SKB_PAD + NET_IP_ALIGN,
1427					1024);
1428			if (!ret_val)
1429				good_cnt++;
1430			if (unlikely(++l == rxdr->count))
1431				l = 0;
1432			/* time + 20 msecs (200 msecs on 2.4) is more than
1433			 * enough time to complete the receives, if it's
1434			 * exceeded, break and error off
1435			 */
1436		} while (good_cnt < 64 && time_after(time + 20, jiffies));
1437
1438		if (good_cnt != 64) {
1439			ret_val = 13; /* ret_val is the same as mis-compare */
1440			break;
1441		}
1442		if (time_after_eq(jiffies, time + 2)) {
1443			ret_val = 14; /* error code for time out error */
1444			break;
1445		}
1446	} /* end loop count loop */
1447	return ret_val;
1448}
1449
1450static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1451{
1452	*data = e1000_setup_desc_rings(adapter);
1453	if (*data)
1454		goto out;
1455	*data = e1000_setup_loopback_test(adapter);
1456	if (*data)
1457		goto err_loopback;
1458	*data = e1000_run_loopback_test(adapter);
1459	e1000_loopback_cleanup(adapter);
1460
1461err_loopback:
1462	e1000_free_desc_rings(adapter);
1463out:
1464	return *data;
1465}
1466
1467static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1468{
1469	struct e1000_hw *hw = &adapter->hw;
1470	*data = 0;
1471	if (hw->media_type == e1000_media_type_internal_serdes) {
1472		int i = 0;
1473
1474		hw->serdes_has_link = false;
1475
1476		/* On some blade server designs, link establishment
1477		 * could take as long as 2-3 minutes
1478		 */
1479		do {
1480			e1000_check_for_link(hw);
1481			if (hw->serdes_has_link)
1482				return *data;
1483			msleep(20);
1484		} while (i++ < 3750);
1485
1486		*data = 1;
1487	} else {
1488		e1000_check_for_link(hw);
1489		if (hw->autoneg)  /* if auto_neg is set wait for it */
1490			msleep(4000);
1491
1492		if (!(er32(STATUS) & E1000_STATUS_LU))
1493			*data = 1;
1494	}
1495	return *data;
1496}
1497
1498static int e1000_get_sset_count(struct net_device *netdev, int sset)
1499{
1500	switch (sset) {
1501	case ETH_SS_TEST:
1502		return E1000_TEST_LEN;
1503	case ETH_SS_STATS:
1504		return E1000_STATS_LEN;
1505	default:
1506		return -EOPNOTSUPP;
1507	}
1508}
1509
1510static void e1000_diag_test(struct net_device *netdev,
1511			    struct ethtool_test *eth_test, u64 *data)
1512{
1513	struct e1000_adapter *adapter = netdev_priv(netdev);
1514	struct e1000_hw *hw = &adapter->hw;
1515	bool if_running = netif_running(netdev);
1516
1517	set_bit(__E1000_TESTING, &adapter->flags);
1518	if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1519		/* Offline tests */
1520
1521		/* save speed, duplex, autoneg settings */
1522		u16 autoneg_advertised = hw->autoneg_advertised;
1523		u8 forced_speed_duplex = hw->forced_speed_duplex;
1524		u8 autoneg = hw->autoneg;
1525
1526		e_info(hw, "offline testing starting\n");
1527
1528		/* Link test performed before hardware reset so autoneg doesn't
1529		 * interfere with test result
1530		 */
1531		if (e1000_link_test(adapter, &data[4]))
1532			eth_test->flags |= ETH_TEST_FL_FAILED;
1533
1534		if (if_running)
1535			/* indicate we're in test mode */
1536			e1000_close(netdev);
1537		else
1538			e1000_reset(adapter);
1539
1540		if (e1000_reg_test(adapter, &data[0]))
1541			eth_test->flags |= ETH_TEST_FL_FAILED;
1542
1543		e1000_reset(adapter);
1544		if (e1000_eeprom_test(adapter, &data[1]))
1545			eth_test->flags |= ETH_TEST_FL_FAILED;
1546
1547		e1000_reset(adapter);
1548		if (e1000_intr_test(adapter, &data[2]))
1549			eth_test->flags |= ETH_TEST_FL_FAILED;
1550
1551		e1000_reset(adapter);
1552		/* make sure the phy is powered up */
1553		e1000_power_up_phy(adapter);
1554		if (e1000_loopback_test(adapter, &data[3]))
1555			eth_test->flags |= ETH_TEST_FL_FAILED;
1556
1557		/* restore speed, duplex, autoneg settings */
1558		hw->autoneg_advertised = autoneg_advertised;
1559		hw->forced_speed_duplex = forced_speed_duplex;
1560		hw->autoneg = autoneg;
1561
1562		e1000_reset(adapter);
1563		clear_bit(__E1000_TESTING, &adapter->flags);
1564		if (if_running)
1565			e1000_open(netdev);
1566	} else {
1567		e_info(hw, "online testing starting\n");
1568		/* Online tests */
1569		if (e1000_link_test(adapter, &data[4]))
1570			eth_test->flags |= ETH_TEST_FL_FAILED;
1571
1572		/* Online tests aren't run; pass by default */
1573		data[0] = 0;
1574		data[1] = 0;
1575		data[2] = 0;
1576		data[3] = 0;
1577
1578		clear_bit(__E1000_TESTING, &adapter->flags);
1579	}
1580	msleep_interruptible(4 * 1000);
1581}
1582
1583static int e1000_wol_exclusion(struct e1000_adapter *adapter,
1584			       struct ethtool_wolinfo *wol)
1585{
1586	struct e1000_hw *hw = &adapter->hw;
1587	int retval = 1; /* fail by default */
1588
1589	switch (hw->device_id) {
1590	case E1000_DEV_ID_82542:
1591	case E1000_DEV_ID_82543GC_FIBER:
1592	case E1000_DEV_ID_82543GC_COPPER:
1593	case E1000_DEV_ID_82544EI_FIBER:
1594	case E1000_DEV_ID_82546EB_QUAD_COPPER:
1595	case E1000_DEV_ID_82545EM_FIBER:
1596	case E1000_DEV_ID_82545EM_COPPER:
1597	case E1000_DEV_ID_82546GB_QUAD_COPPER:
1598	case E1000_DEV_ID_82546GB_PCIE:
1599		/* these don't support WoL at all */
1600		wol->supported = 0;
1601		break;
1602	case E1000_DEV_ID_82546EB_FIBER:
1603	case E1000_DEV_ID_82546GB_FIBER:
1604		/* Wake events not supported on port B */
1605		if (er32(STATUS) & E1000_STATUS_FUNC_1) {
1606			wol->supported = 0;
1607			break;
1608		}
1609		/* return success for non excluded adapter ports */
1610		retval = 0;
1611		break;
1612	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1613		/* quad port adapters only support WoL on port A */
1614		if (!adapter->quad_port_a) {
1615			wol->supported = 0;
1616			break;
1617		}
1618		/* return success for non excluded adapter ports */
1619		retval = 0;
1620		break;
1621	default:
1622		/* dual port cards only support WoL on port A from now on
1623		 * unless it was enabled in the eeprom for port B
1624		 * so exclude FUNC_1 ports from having WoL enabled
1625		 */
1626		if (er32(STATUS) & E1000_STATUS_FUNC_1 &&
1627		    !adapter->eeprom_wol) {
1628			wol->supported = 0;
1629			break;
1630		}
1631
1632		retval = 0;
1633	}
1634
1635	return retval;
1636}
1637
1638static void e1000_get_wol(struct net_device *netdev,
1639			  struct ethtool_wolinfo *wol)
1640{
1641	struct e1000_adapter *adapter = netdev_priv(netdev);
1642	struct e1000_hw *hw = &adapter->hw;
1643
1644	wol->supported = WAKE_UCAST | WAKE_MCAST | WAKE_BCAST | WAKE_MAGIC;
1645	wol->wolopts = 0;
1646
1647	/* this function will set ->supported = 0 and return 1 if wol is not
1648	 * supported by this hardware
1649	 */
1650	if (e1000_wol_exclusion(adapter, wol) ||
1651	    !device_can_wakeup(&adapter->pdev->dev))
1652		return;
1653
1654	/* apply any specific unsupported masks here */
1655	switch (hw->device_id) {
1656	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1657		/* KSP3 does not support UCAST wake-ups */
1658		wol->supported &= ~WAKE_UCAST;
1659
1660		if (adapter->wol & E1000_WUFC_EX)
1661			e_err(drv, "Interface does not support directed "
1662			      "(unicast) frame wake-up packets\n");
1663		break;
1664	default:
1665		break;
1666	}
1667
1668	if (adapter->wol & E1000_WUFC_EX)
1669		wol->wolopts |= WAKE_UCAST;
1670	if (adapter->wol & E1000_WUFC_MC)
1671		wol->wolopts |= WAKE_MCAST;
1672	if (adapter->wol & E1000_WUFC_BC)
1673		wol->wolopts |= WAKE_BCAST;
1674	if (adapter->wol & E1000_WUFC_MAG)
1675		wol->wolopts |= WAKE_MAGIC;
1676}
1677
1678static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1679{
1680	struct e1000_adapter *adapter = netdev_priv(netdev);
1681	struct e1000_hw *hw = &adapter->hw;
1682
1683	if (wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE))
1684		return -EOPNOTSUPP;
1685
1686	if (e1000_wol_exclusion(adapter, wol) ||
1687	    !device_can_wakeup(&adapter->pdev->dev))
1688		return wol->wolopts ? -EOPNOTSUPP : 0;
1689
1690	switch (hw->device_id) {
1691	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1692		if (wol->wolopts & WAKE_UCAST) {
1693			e_err(drv, "Interface does not support directed "
1694			      "(unicast) frame wake-up packets\n");
1695			return -EOPNOTSUPP;
1696		}
1697		break;
1698	default:
1699		break;
1700	}
1701
1702	/* these settings will always override what we currently have */
1703	adapter->wol = 0;
1704
1705	if (wol->wolopts & WAKE_UCAST)
1706		adapter->wol |= E1000_WUFC_EX;
1707	if (wol->wolopts & WAKE_MCAST)
1708		adapter->wol |= E1000_WUFC_MC;
1709	if (wol->wolopts & WAKE_BCAST)
1710		adapter->wol |= E1000_WUFC_BC;
1711	if (wol->wolopts & WAKE_MAGIC)
1712		adapter->wol |= E1000_WUFC_MAG;
1713
1714	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1715
1716	return 0;
1717}
1718
1719static int e1000_set_phys_id(struct net_device *netdev,
1720			     enum ethtool_phys_id_state state)
1721{
1722	struct e1000_adapter *adapter = netdev_priv(netdev);
1723	struct e1000_hw *hw = &adapter->hw;
1724
1725	switch (state) {
1726	case ETHTOOL_ID_ACTIVE:
1727		e1000_setup_led(hw);
1728		return 2;
1729
1730	case ETHTOOL_ID_ON:
1731		e1000_led_on(hw);
1732		break;
1733
1734	case ETHTOOL_ID_OFF:
1735		e1000_led_off(hw);
1736		break;
1737
1738	case ETHTOOL_ID_INACTIVE:
1739		e1000_cleanup_led(hw);
1740	}
1741
1742	return 0;
1743}
1744
1745static int e1000_get_coalesce(struct net_device *netdev,
1746			      struct ethtool_coalesce *ec,
1747			      struct kernel_ethtool_coalesce *kernel_coal,
1748			      struct netlink_ext_ack *extack)
1749{
1750	struct e1000_adapter *adapter = netdev_priv(netdev);
1751
1752	if (adapter->hw.mac_type < e1000_82545)
1753		return -EOPNOTSUPP;
1754
1755	if (adapter->itr_setting <= 4)
1756		ec->rx_coalesce_usecs = adapter->itr_setting;
1757	else
1758		ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
1759
1760	return 0;
1761}
1762
1763static int e1000_set_coalesce(struct net_device *netdev,
1764			      struct ethtool_coalesce *ec,
1765			      struct kernel_ethtool_coalesce *kernel_coal,
1766			      struct netlink_ext_ack *extack)
1767{
1768	struct e1000_adapter *adapter = netdev_priv(netdev);
1769	struct e1000_hw *hw = &adapter->hw;
1770
1771	if (hw->mac_type < e1000_82545)
1772		return -EOPNOTSUPP;
1773
1774	if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
1775	    ((ec->rx_coalesce_usecs > 4) &&
1776	     (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
1777	    (ec->rx_coalesce_usecs == 2))
1778		return -EINVAL;
1779
1780	if (ec->rx_coalesce_usecs == 4) {
1781		adapter->itr = adapter->itr_setting = 4;
1782	} else if (ec->rx_coalesce_usecs <= 3) {
1783		adapter->itr = 20000;
1784		adapter->itr_setting = ec->rx_coalesce_usecs;
1785	} else {
1786		adapter->itr = (1000000 / ec->rx_coalesce_usecs);
1787		adapter->itr_setting = adapter->itr & ~3;
1788	}
1789
1790	if (adapter->itr_setting != 0)
1791		ew32(ITR, 1000000000 / (adapter->itr * 256));
1792	else
1793		ew32(ITR, 0);
1794
1795	return 0;
1796}
1797
1798static int e1000_nway_reset(struct net_device *netdev)
1799{
1800	struct e1000_adapter *adapter = netdev_priv(netdev);
1801
1802	if (netif_running(netdev))
1803		e1000_reinit_locked(adapter);
1804	return 0;
1805}
1806
1807static void e1000_get_ethtool_stats(struct net_device *netdev,
1808				    struct ethtool_stats *stats, u64 *data)
1809{
1810	struct e1000_adapter *adapter = netdev_priv(netdev);
1811	int i;
1812	const struct e1000_stats *stat = e1000_gstrings_stats;
1813
1814	e1000_update_stats(adapter);
1815	for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++, stat++) {
1816		char *p;
1817
1818		switch (stat->type) {
1819		case NETDEV_STATS:
1820			p = (char *)netdev + stat->stat_offset;
1821			break;
1822		case E1000_STATS:
1823			p = (char *)adapter + stat->stat_offset;
1824			break;
1825		default:
1826			netdev_WARN_ONCE(netdev, "Invalid E1000 stat type: %u index %d\n",
1827					 stat->type, i);
1828			continue;
1829		}
1830
1831		if (stat->sizeof_stat == sizeof(u64))
1832			data[i] = *(u64 *)p;
1833		else
1834			data[i] = *(u32 *)p;
1835	}
1836/* BUG_ON(i != E1000_STATS_LEN); */
1837}
1838
1839static void e1000_get_strings(struct net_device *netdev, u32 stringset,
1840			      u8 *data)
1841{
1842	u8 *p = data;
1843	int i;
1844
1845	switch (stringset) {
1846	case ETH_SS_TEST:
1847		memcpy(data, e1000_gstrings_test, sizeof(e1000_gstrings_test));
1848		break;
1849	case ETH_SS_STATS:
1850		for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1851			memcpy(p, e1000_gstrings_stats[i].stat_string,
1852			       ETH_GSTRING_LEN);
1853			p += ETH_GSTRING_LEN;
1854		}
1855		/* BUG_ON(p - data != E1000_STATS_LEN * ETH_GSTRING_LEN); */
1856		break;
1857	}
1858}
1859
1860static const struct ethtool_ops e1000_ethtool_ops = {
1861	.supported_coalesce_params = ETHTOOL_COALESCE_RX_USECS,
1862	.get_drvinfo		= e1000_get_drvinfo,
1863	.get_regs_len		= e1000_get_regs_len,
1864	.get_regs		= e1000_get_regs,
1865	.get_wol		= e1000_get_wol,
1866	.set_wol		= e1000_set_wol,
1867	.get_msglevel		= e1000_get_msglevel,
1868	.set_msglevel		= e1000_set_msglevel,
1869	.nway_reset		= e1000_nway_reset,
1870	.get_link		= e1000_get_link,
1871	.get_eeprom_len		= e1000_get_eeprom_len,
1872	.get_eeprom		= e1000_get_eeprom,
1873	.set_eeprom		= e1000_set_eeprom,
1874	.get_ringparam		= e1000_get_ringparam,
1875	.set_ringparam		= e1000_set_ringparam,
1876	.get_pauseparam		= e1000_get_pauseparam,
1877	.set_pauseparam		= e1000_set_pauseparam,
1878	.self_test		= e1000_diag_test,
1879	.get_strings		= e1000_get_strings,
1880	.set_phys_id		= e1000_set_phys_id,
1881	.get_ethtool_stats	= e1000_get_ethtool_stats,
1882	.get_sset_count		= e1000_get_sset_count,
1883	.get_coalesce		= e1000_get_coalesce,
1884	.set_coalesce		= e1000_set_coalesce,
1885	.get_ts_info		= ethtool_op_get_ts_info,
1886	.get_link_ksettings	= e1000_get_link_ksettings,
1887	.set_link_ksettings	= e1000_set_link_ksettings,
1888};
1889
1890void e1000_set_ethtool_ops(struct net_device *netdev)
1891{
1892	netdev->ethtool_ops = &e1000_ethtool_ops;
1893}
1894