1/*
2	Written 1998-2000 by Donald Becker.
3
4	This software may be used and distributed according to the terms of
5	the GNU General Public License (GPL), incorporated herein by reference.
6	Drivers based on or derived from this code fall under the GPL and must
7	retain the authorship, copyright and license notice.  This file is not
8	a complete program and may only be used when the entire operating
9	system is licensed under the GPL.
10
11	The author may be reached as becker@scyld.com, or C/O
12	Scyld Computing Corporation
13	410 Severn Ave., Suite 210
14	Annapolis MD 21403
15
16	Support information and updates available at
17	http://www.scyld.com/network/pci-skeleton.html
18
19	Linux kernel updates:
20
21	Version 2.51, Nov 17, 2001 (jgarzik):
22	- Add ethtool support
23	- Replace some MII-related magic numbers with constants
24
25*/
26
27#define DRV_NAME	"fealnx"
28
29static int debug;		/* 1-> print debug message */
30static int max_interrupt_work = 20;
31
32/* Maximum number of multicast addresses to filter (vs. Rx-all-multicast). */
33static int multicast_filter_limit = 32;
34
35/* Set the copy breakpoint for the copy-only-tiny-frames scheme. */
36/* Setting to > 1518 effectively disables this feature.          */
37static int rx_copybreak;
38
39/* Used to pass the media type, etc.                            */
40/* Both 'options[]' and 'full_duplex[]' should exist for driver */
41/* interoperability.                                            */
42/* The media type is usually passed in 'options[]'.             */
43#define MAX_UNITS 8		/* More are supported, limit only on options */
44static int options[MAX_UNITS] = { -1, -1, -1, -1, -1, -1, -1, -1 };
45static int full_duplex[MAX_UNITS] = { -1, -1, -1, -1, -1, -1, -1, -1 };
46
47/* Operational parameters that are set at compile time.                 */
48/* Keep the ring sizes a power of two for compile efficiency.           */
49/* The compiler will convert <unsigned>'%'<2^N> into a bit mask.        */
50/* Making the Tx ring too large decreases the effectiveness of channel  */
51/* bonding and packet priority.                                         */
52/* There are no ill effects from too-large receive rings.               */
53// 88-12-9 modify,
54// #define TX_RING_SIZE    16
55// #define RX_RING_SIZE    32
56#define TX_RING_SIZE    6
57#define RX_RING_SIZE    12
58#define TX_TOTAL_SIZE	TX_RING_SIZE*sizeof(struct fealnx_desc)
59#define RX_TOTAL_SIZE	RX_RING_SIZE*sizeof(struct fealnx_desc)
60
61/* Operational parameters that usually are not changed. */
62/* Time in jiffies before concluding the transmitter is hung. */
63#define TX_TIMEOUT      (2*HZ)
64
65#define PKT_BUF_SZ      1536	/* Size of each temporary Rx buffer. */
66
67
68/* Include files, designed to support most kernel versions 2.0.0 and later. */
69#include <linux/module.h>
70#include <linux/kernel.h>
71#include <linux/string.h>
72#include <linux/timer.h>
73#include <linux/errno.h>
74#include <linux/ioport.h>
75#include <linux/interrupt.h>
76#include <linux/pci.h>
77#include <linux/netdevice.h>
78#include <linux/etherdevice.h>
79#include <linux/skbuff.h>
80#include <linux/init.h>
81#include <linux/mii.h>
82#include <linux/ethtool.h>
83#include <linux/crc32.h>
84#include <linux/delay.h>
85#include <linux/bitops.h>
86
87#include <asm/processor.h>	/* Processor type for cache alignment. */
88#include <asm/io.h>
89#include <linux/uaccess.h>
90#include <asm/byteorder.h>
91
92/* This driver was written to use PCI memory space, however some x86 systems
93   work only with I/O space accesses. */
94#ifndef __alpha__
95#define USE_IO_OPS
96#endif
97
98/* Kernel compatibility defines, some common to David Hinds' PCMCIA package. */
99/* This is only in the support-all-kernels source code. */
100
101#define RUN_AT(x) (jiffies + (x))
102
103MODULE_AUTHOR("Myson or whoever");
104MODULE_DESCRIPTION("Myson MTD-8xx 100/10M Ethernet PCI Adapter Driver");
105MODULE_LICENSE("GPL");
106module_param(max_interrupt_work, int, 0);
107module_param(debug, int, 0);
108module_param(rx_copybreak, int, 0);
109module_param(multicast_filter_limit, int, 0);
110module_param_array(options, int, NULL, 0);
111module_param_array(full_duplex, int, NULL, 0);
112MODULE_PARM_DESC(max_interrupt_work, "fealnx maximum events handled per interrupt");
113MODULE_PARM_DESC(debug, "fealnx enable debugging (0-1)");
114MODULE_PARM_DESC(rx_copybreak, "fealnx copy breakpoint for copy-only-tiny-frames");
115MODULE_PARM_DESC(multicast_filter_limit, "fealnx maximum number of filtered multicast addresses");
116MODULE_PARM_DESC(options, "fealnx: Bits 0-3: media type, bit 17: full duplex");
117MODULE_PARM_DESC(full_duplex, "fealnx full duplex setting(s) (1)");
118
119enum {
120	MIN_REGION_SIZE		= 136,
121};
122
123/* A chip capabilities table, matching the entries in pci_tbl[] above. */
124enum chip_capability_flags {
125	HAS_MII_XCVR,
126	HAS_CHIP_XCVR,
127};
128
129/* 89/6/13 add, */
130/* for different PHY */
131enum phy_type_flags {
132	MysonPHY = 1,
133	AhdocPHY = 2,
134	SeeqPHY = 3,
135	MarvellPHY = 4,
136	Myson981 = 5,
137	LevelOnePHY = 6,
138	OtherPHY = 10,
139};
140
141struct chip_info {
142	char *chip_name;
143	int flags;
144};
145
146static const struct chip_info skel_netdrv_tbl[] = {
147	{ "100/10M Ethernet PCI Adapter",	HAS_MII_XCVR },
148	{ "100/10M Ethernet PCI Adapter",	HAS_CHIP_XCVR },
149	{ "1000/100/10M Ethernet PCI Adapter",	HAS_MII_XCVR },
150};
151
152/* Offsets to the Command and Status Registers. */
153enum fealnx_offsets {
154	PAR0 = 0x0,		/* physical address 0-3 */
155	PAR1 = 0x04,		/* physical address 4-5 */
156	MAR0 = 0x08,		/* multicast address 0-3 */
157	MAR1 = 0x0C,		/* multicast address 4-7 */
158	FAR0 = 0x10,		/* flow-control address 0-3 */
159	FAR1 = 0x14,		/* flow-control address 4-5 */
160	TCRRCR = 0x18,		/* receive & transmit configuration */
161	BCR = 0x1C,		/* bus command */
162	TXPDR = 0x20,		/* transmit polling demand */
163	RXPDR = 0x24,		/* receive polling demand */
164	RXCWP = 0x28,		/* receive current word pointer */
165	TXLBA = 0x2C,		/* transmit list base address */
166	RXLBA = 0x30,		/* receive list base address */
167	ISR = 0x34,		/* interrupt status */
168	IMR = 0x38,		/* interrupt mask */
169	FTH = 0x3C,		/* flow control high/low threshold */
170	MANAGEMENT = 0x40,	/* bootrom/eeprom and mii management */
171	TALLY = 0x44,		/* tally counters for crc and mpa */
172	TSR = 0x48,		/* tally counter for transmit status */
173	BMCRSR = 0x4c,		/* basic mode control and status */
174	PHYIDENTIFIER = 0x50,	/* phy identifier */
175	ANARANLPAR = 0x54,	/* auto-negotiation advertisement and link
176				   partner ability */
177	ANEROCR = 0x58,		/* auto-negotiation expansion and pci conf. */
178	BPREMRPSR = 0x5c,	/* bypass & receive error mask and phy status */
179};
180
181/* Bits in the interrupt status/enable registers. */
182/* The bits in the Intr Status/Enable registers, mostly interrupt sources. */
183enum intr_status_bits {
184	RFCON = 0x00020000,	/* receive flow control xon packet */
185	RFCOFF = 0x00010000,	/* receive flow control xoff packet */
186	LSCStatus = 0x00008000,	/* link status change */
187	ANCStatus = 0x00004000,	/* autonegotiation completed */
188	FBE = 0x00002000,	/* fatal bus error */
189	FBEMask = 0x00001800,	/* mask bit12-11 */
190	ParityErr = 0x00000000,	/* parity error */
191	TargetErr = 0x00001000,	/* target abort */
192	MasterErr = 0x00000800,	/* master error */
193	TUNF = 0x00000400,	/* transmit underflow */
194	ROVF = 0x00000200,	/* receive overflow */
195	ETI = 0x00000100,	/* transmit early int */
196	ERI = 0x00000080,	/* receive early int */
197	CNTOVF = 0x00000040,	/* counter overflow */
198	RBU = 0x00000020,	/* receive buffer unavailable */
199	TBU = 0x00000010,	/* transmit buffer unavilable */
200	TI = 0x00000008,	/* transmit interrupt */
201	RI = 0x00000004,	/* receive interrupt */
202	RxErr = 0x00000002,	/* receive error */
203};
204
205/* Bits in the NetworkConfig register, W for writing, R for reading */
206/* FIXME: some names are invented by me. Marked with (name?) */
207/* If you have docs and know bit names, please fix 'em */
208enum rx_mode_bits {
209	CR_W_ENH	= 0x02000000,	/* enhanced mode (name?) */
210	CR_W_FD		= 0x00100000,	/* full duplex */
211	CR_W_PS10	= 0x00080000,	/* 10 mbit */
212	CR_W_TXEN	= 0x00040000,	/* tx enable (name?) */
213	CR_W_PS1000	= 0x00010000,	/* 1000 mbit */
214     /* CR_W_RXBURSTMASK= 0x00000e00, Im unsure about this */
215	CR_W_RXMODEMASK	= 0x000000e0,
216	CR_W_PROM	= 0x00000080,	/* promiscuous mode */
217	CR_W_AB		= 0x00000040,	/* accept broadcast */
218	CR_W_AM		= 0x00000020,	/* accept mutlicast */
219	CR_W_ARP	= 0x00000008,	/* receive runt pkt */
220	CR_W_ALP	= 0x00000004,	/* receive long pkt */
221	CR_W_SEP	= 0x00000002,	/* receive error pkt */
222	CR_W_RXEN	= 0x00000001,	/* rx enable (unicast?) (name?) */
223
224	CR_R_TXSTOP	= 0x04000000,	/* tx stopped (name?) */
225	CR_R_FD		= 0x00100000,	/* full duplex detected */
226	CR_R_PS10	= 0x00080000,	/* 10 mbit detected */
227	CR_R_RXSTOP	= 0x00008000,	/* rx stopped (name?) */
228};
229
230/* The Tulip Rx and Tx buffer descriptors. */
231struct fealnx_desc {
232	s32 status;
233	s32 control;
234	u32 buffer;
235	u32 next_desc;
236	struct fealnx_desc *next_desc_logical;
237	struct sk_buff *skbuff;
238	u32 reserved1;
239	u32 reserved2;
240};
241
242/* Bits in network_desc.status */
243enum rx_desc_status_bits {
244	RXOWN = 0x80000000,	/* own bit */
245	FLNGMASK = 0x0fff0000,	/* frame length */
246	FLNGShift = 16,
247	MARSTATUS = 0x00004000,	/* multicast address received */
248	BARSTATUS = 0x00002000,	/* broadcast address received */
249	PHYSTATUS = 0x00001000,	/* physical address received */
250	RXFSD = 0x00000800,	/* first descriptor */
251	RXLSD = 0x00000400,	/* last descriptor */
252	ErrorSummary = 0x80,	/* error summary */
253	RUNTPKT = 0x40,		/* runt packet received */
254	LONGPKT = 0x20,		/* long packet received */
255	FAE = 0x10,		/* frame align error */
256	CRC = 0x08,		/* crc error */
257	RXER = 0x04,		/* receive error */
258};
259
260enum rx_desc_control_bits {
261	RXIC = 0x00800000,	/* interrupt control */
262	RBSShift = 0,
263};
264
265enum tx_desc_status_bits {
266	TXOWN = 0x80000000,	/* own bit */
267	JABTO = 0x00004000,	/* jabber timeout */
268	CSL = 0x00002000,	/* carrier sense lost */
269	LC = 0x00001000,	/* late collision */
270	EC = 0x00000800,	/* excessive collision */
271	UDF = 0x00000400,	/* fifo underflow */
272	DFR = 0x00000200,	/* deferred */
273	HF = 0x00000100,	/* heartbeat fail */
274	NCRMask = 0x000000ff,	/* collision retry count */
275	NCRShift = 0,
276};
277
278enum tx_desc_control_bits {
279	TXIC = 0x80000000,	/* interrupt control */
280	ETIControl = 0x40000000,	/* early transmit interrupt */
281	TXLD = 0x20000000,	/* last descriptor */
282	TXFD = 0x10000000,	/* first descriptor */
283	CRCEnable = 0x08000000,	/* crc control */
284	PADEnable = 0x04000000,	/* padding control */
285	RetryTxLC = 0x02000000,	/* retry late collision */
286	PKTSMask = 0x3ff800,	/* packet size bit21-11 */
287	PKTSShift = 11,
288	TBSMask = 0x000007ff,	/* transmit buffer bit 10-0 */
289	TBSShift = 0,
290};
291
292/* BootROM/EEPROM/MII Management Register */
293#define MASK_MIIR_MII_READ       0x00000000
294#define MASK_MIIR_MII_WRITE      0x00000008
295#define MASK_MIIR_MII_MDO        0x00000004
296#define MASK_MIIR_MII_MDI        0x00000002
297#define MASK_MIIR_MII_MDC        0x00000001
298
299/* ST+OP+PHYAD+REGAD+TA */
300#define OP_READ             0x6000	/* ST:01+OP:10+PHYAD+REGAD+TA:Z0 */
301#define OP_WRITE            0x5002	/* ST:01+OP:01+PHYAD+REGAD+TA:10 */
302
303/* ------------------------------------------------------------------------- */
304/*      Constants for Myson PHY                                              */
305/* ------------------------------------------------------------------------- */
306#define MysonPHYID      0xd0000302
307/* 89-7-27 add, (begin) */
308#define MysonPHYID0     0x0302
309#define StatusRegister  18
310#define SPEED100        0x0400	// bit10
311#define FULLMODE        0x0800	// bit11
312/* 89-7-27 add, (end) */
313
314/* ------------------------------------------------------------------------- */
315/*      Constants for Seeq 80225 PHY                                         */
316/* ------------------------------------------------------------------------- */
317#define SeeqPHYID0      0x0016
318
319#define MIIRegister18   18
320#define SPD_DET_100     0x80
321#define DPLX_DET_FULL   0x40
322
323/* ------------------------------------------------------------------------- */
324/*      Constants for Ahdoc 101 PHY                                          */
325/* ------------------------------------------------------------------------- */
326#define AhdocPHYID0     0x0022
327
328#define DiagnosticReg   18
329#define DPLX_FULL       0x0800
330#define Speed_100       0x0400
331
332/* 89/6/13 add, */
333/* -------------------------------------------------------------------------- */
334/*      Constants                                                             */
335/* -------------------------------------------------------------------------- */
336#define MarvellPHYID0           0x0141
337#define LevelOnePHYID0		0x0013
338
339#define MII1000BaseTControlReg  9
340#define MII1000BaseTStatusReg   10
341#define SpecificReg		17
342
343/* for 1000BaseT Control Register */
344#define PHYAbletoPerform1000FullDuplex  0x0200
345#define PHYAbletoPerform1000HalfDuplex  0x0100
346#define PHY1000AbilityMask              0x300
347
348// for phy specific status register, marvell phy.
349#define SpeedMask       0x0c000
350#define Speed_1000M     0x08000
351#define Speed_100M      0x4000
352#define Speed_10M       0
353#define Full_Duplex     0x2000
354
355// 89/12/29 add, for phy specific status register, levelone phy, (begin)
356#define LXT1000_100M    0x08000
357#define LXT1000_1000M   0x0c000
358#define LXT1000_Full    0x200
359// 89/12/29 add, for phy specific status register, levelone phy, (end)
360
361/* for 3-in-1 case, BMCRSR register */
362#define LinkIsUp2	0x00040000
363
364/* for PHY */
365#define LinkIsUp        0x0004
366
367
368struct netdev_private {
369	/* Descriptor rings first for alignment. */
370	struct fealnx_desc *rx_ring;
371	struct fealnx_desc *tx_ring;
372
373	dma_addr_t rx_ring_dma;
374	dma_addr_t tx_ring_dma;
375
376	spinlock_t lock;
377
378	/* Media monitoring timer. */
379	struct timer_list timer;
380
381	/* Reset timer */
382	struct timer_list reset_timer;
383	int reset_timer_armed;
384	unsigned long crvalue_sv;
385	unsigned long imrvalue_sv;
386
387	/* Frequently used values: keep some adjacent for cache effect. */
388	int flags;
389	struct pci_dev *pci_dev;
390	unsigned long crvalue;
391	unsigned long bcrvalue;
392	unsigned long imrvalue;
393	struct fealnx_desc *cur_rx;
394	struct fealnx_desc *lack_rxbuf;
395	int really_rx_count;
396	struct fealnx_desc *cur_tx;
397	struct fealnx_desc *cur_tx_copy;
398	int really_tx_count;
399	int free_tx_count;
400	unsigned int rx_buf_sz;	/* Based on MTU+slack. */
401
402	/* These values are keep track of the transceiver/media in use. */
403	unsigned int linkok;
404	unsigned int line_speed;
405	unsigned int duplexmode;
406	unsigned int default_port:4;	/* Last dev->if_port value. */
407	unsigned int PHYType;
408
409	/* MII transceiver section. */
410	int mii_cnt;		/* MII device addresses. */
411	unsigned char phys[2];	/* MII device addresses. */
412	struct mii_if_info mii;
413	void __iomem *mem;
414};
415
416
417static int mdio_read(struct net_device *dev, int phy_id, int location);
418static void mdio_write(struct net_device *dev, int phy_id, int location, int value);
419static int netdev_open(struct net_device *dev);
420static void getlinktype(struct net_device *dev);
421static void getlinkstatus(struct net_device *dev);
422static void netdev_timer(struct timer_list *t);
423static void reset_timer(struct timer_list *t);
424static void fealnx_tx_timeout(struct net_device *dev, unsigned int txqueue);
425static void init_ring(struct net_device *dev);
426static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev);
427static irqreturn_t intr_handler(int irq, void *dev_instance);
428static int netdev_rx(struct net_device *dev);
429static void set_rx_mode(struct net_device *dev);
430static void __set_rx_mode(struct net_device *dev);
431static struct net_device_stats *get_stats(struct net_device *dev);
432static int mii_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
433static const struct ethtool_ops netdev_ethtool_ops;
434static int netdev_close(struct net_device *dev);
435static void reset_rx_descriptors(struct net_device *dev);
436static void reset_tx_descriptors(struct net_device *dev);
437
438static void stop_nic_rx(void __iomem *ioaddr, long crvalue)
439{
440	int delay = 0x1000;
441	iowrite32(crvalue & ~(CR_W_RXEN), ioaddr + TCRRCR);
442	while (--delay) {
443		if ( (ioread32(ioaddr + TCRRCR) & CR_R_RXSTOP) == CR_R_RXSTOP)
444			break;
445	}
446}
447
448
449static void stop_nic_rxtx(void __iomem *ioaddr, long crvalue)
450{
451	int delay = 0x1000;
452	iowrite32(crvalue & ~(CR_W_RXEN+CR_W_TXEN), ioaddr + TCRRCR);
453	while (--delay) {
454		if ( (ioread32(ioaddr + TCRRCR) & (CR_R_RXSTOP+CR_R_TXSTOP))
455					    == (CR_R_RXSTOP+CR_R_TXSTOP) )
456			break;
457	}
458}
459
460static const struct net_device_ops netdev_ops = {
461	.ndo_open		= netdev_open,
462	.ndo_stop		= netdev_close,
463	.ndo_start_xmit		= start_tx,
464	.ndo_get_stats 		= get_stats,
465	.ndo_set_rx_mode	= set_rx_mode,
466	.ndo_eth_ioctl		= mii_ioctl,
467	.ndo_tx_timeout		= fealnx_tx_timeout,
468	.ndo_set_mac_address 	= eth_mac_addr,
469	.ndo_validate_addr	= eth_validate_addr,
470};
471
472static int fealnx_init_one(struct pci_dev *pdev,
473			   const struct pci_device_id *ent)
474{
475	struct netdev_private *np;
476	int i, option, err, irq;
477	static int card_idx = -1;
478	char boardname[12];
479	void __iomem *ioaddr;
480	unsigned long len;
481	unsigned int chip_id = ent->driver_data;
482	struct net_device *dev;
483	void *ring_space;
484	dma_addr_t ring_dma;
485	u8 addr[ETH_ALEN];
486#ifdef USE_IO_OPS
487	int bar = 0;
488#else
489	int bar = 1;
490#endif
491
492	card_idx++;
493	sprintf(boardname, "fealnx%d", card_idx);
494
495	option = card_idx < MAX_UNITS ? options[card_idx] : 0;
496
497	i = pci_enable_device(pdev);
498	if (i) return i;
499	pci_set_master(pdev);
500
501	len = pci_resource_len(pdev, bar);
502	if (len < MIN_REGION_SIZE) {
503		dev_err(&pdev->dev,
504			   "region size %ld too small, aborting\n", len);
505		return -ENODEV;
506	}
507
508	i = pci_request_regions(pdev, boardname);
509	if (i)
510		return i;
511
512	irq = pdev->irq;
513
514	ioaddr = pci_iomap(pdev, bar, len);
515	if (!ioaddr) {
516		err = -ENOMEM;
517		goto err_out_res;
518	}
519
520	dev = alloc_etherdev(sizeof(struct netdev_private));
521	if (!dev) {
522		err = -ENOMEM;
523		goto err_out_unmap;
524	}
525	SET_NETDEV_DEV(dev, &pdev->dev);
526
527	/* read ethernet id */
528	for (i = 0; i < 6; ++i)
529		addr[i] = ioread8(ioaddr + PAR0 + i);
530	eth_hw_addr_set(dev, addr);
531
532	/* Reset the chip to erase previous misconfiguration. */
533	iowrite32(0x00000001, ioaddr + BCR);
534
535	/* Make certain the descriptor lists are aligned. */
536	np = netdev_priv(dev);
537	np->mem = ioaddr;
538	spin_lock_init(&np->lock);
539	np->pci_dev = pdev;
540	np->flags = skel_netdrv_tbl[chip_id].flags;
541	pci_set_drvdata(pdev, dev);
542	np->mii.dev = dev;
543	np->mii.mdio_read = mdio_read;
544	np->mii.mdio_write = mdio_write;
545	np->mii.phy_id_mask = 0x1f;
546	np->mii.reg_num_mask = 0x1f;
547
548	ring_space = dma_alloc_coherent(&pdev->dev, RX_TOTAL_SIZE, &ring_dma,
549					GFP_KERNEL);
550	if (!ring_space) {
551		err = -ENOMEM;
552		goto err_out_free_dev;
553	}
554	np->rx_ring = ring_space;
555	np->rx_ring_dma = ring_dma;
556
557	ring_space = dma_alloc_coherent(&pdev->dev, TX_TOTAL_SIZE, &ring_dma,
558					GFP_KERNEL);
559	if (!ring_space) {
560		err = -ENOMEM;
561		goto err_out_free_rx;
562	}
563	np->tx_ring = ring_space;
564	np->tx_ring_dma = ring_dma;
565
566	/* find the connected MII xcvrs */
567	if (np->flags == HAS_MII_XCVR) {
568		int phy, phy_idx = 0;
569
570		for (phy = 1; phy < 32 && phy_idx < ARRAY_SIZE(np->phys);
571			       phy++) {
572			int mii_status = mdio_read(dev, phy, 1);
573
574			if (mii_status != 0xffff && mii_status != 0x0000) {
575				np->phys[phy_idx++] = phy;
576				dev_info(&pdev->dev,
577				       "MII PHY found at address %d, status "
578				       "0x%4.4x.\n", phy, mii_status);
579				/* get phy type */
580				{
581					unsigned int data;
582
583					data = mdio_read(dev, np->phys[0], 2);
584					if (data == SeeqPHYID0)
585						np->PHYType = SeeqPHY;
586					else if (data == AhdocPHYID0)
587						np->PHYType = AhdocPHY;
588					else if (data == MarvellPHYID0)
589						np->PHYType = MarvellPHY;
590					else if (data == MysonPHYID0)
591						np->PHYType = Myson981;
592					else if (data == LevelOnePHYID0)
593						np->PHYType = LevelOnePHY;
594					else
595						np->PHYType = OtherPHY;
596				}
597			}
598		}
599
600		np->mii_cnt = phy_idx;
601		if (phy_idx == 0)
602			dev_warn(&pdev->dev,
603				"MII PHY not found -- this device may "
604			       "not operate correctly.\n");
605	} else {
606		np->phys[0] = 32;
607/* 89/6/23 add, (begin) */
608		/* get phy type */
609		if (ioread32(ioaddr + PHYIDENTIFIER) == MysonPHYID)
610			np->PHYType = MysonPHY;
611		else
612			np->PHYType = OtherPHY;
613	}
614	np->mii.phy_id = np->phys[0];
615
616	if (dev->mem_start)
617		option = dev->mem_start;
618
619	/* The lower four bits are the media type. */
620	if (option > 0) {
621		if (option & 0x200)
622			np->mii.full_duplex = 1;
623		np->default_port = option & 15;
624	}
625
626	if (card_idx < MAX_UNITS && full_duplex[card_idx] > 0)
627		np->mii.full_duplex = full_duplex[card_idx];
628
629	if (np->mii.full_duplex) {
630		dev_info(&pdev->dev, "Media type forced to Full Duplex.\n");
631/* 89/6/13 add, (begin) */
632//      if (np->PHYType==MarvellPHY)
633		if ((np->PHYType == MarvellPHY) || (np->PHYType == LevelOnePHY)) {
634			unsigned int data;
635
636			data = mdio_read(dev, np->phys[0], 9);
637			data = (data & 0xfcff) | 0x0200;
638			mdio_write(dev, np->phys[0], 9, data);
639		}
640/* 89/6/13 add, (end) */
641		if (np->flags == HAS_MII_XCVR)
642			mdio_write(dev, np->phys[0], MII_ADVERTISE, ADVERTISE_FULL);
643		else
644			iowrite32(ADVERTISE_FULL, ioaddr + ANARANLPAR);
645		np->mii.force_media = 1;
646	}
647
648	dev->netdev_ops = &netdev_ops;
649	dev->ethtool_ops = &netdev_ethtool_ops;
650	dev->watchdog_timeo = TX_TIMEOUT;
651
652	err = register_netdev(dev);
653	if (err)
654		goto err_out_free_tx;
655
656	printk(KERN_INFO "%s: %s at %p, %pM, IRQ %d.\n",
657	       dev->name, skel_netdrv_tbl[chip_id].chip_name, ioaddr,
658	       dev->dev_addr, irq);
659
660	return 0;
661
662err_out_free_tx:
663	dma_free_coherent(&pdev->dev, TX_TOTAL_SIZE, np->tx_ring,
664			  np->tx_ring_dma);
665err_out_free_rx:
666	dma_free_coherent(&pdev->dev, RX_TOTAL_SIZE, np->rx_ring,
667			  np->rx_ring_dma);
668err_out_free_dev:
669	free_netdev(dev);
670err_out_unmap:
671	pci_iounmap(pdev, ioaddr);
672err_out_res:
673	pci_release_regions(pdev);
674	return err;
675}
676
677
678static void fealnx_remove_one(struct pci_dev *pdev)
679{
680	struct net_device *dev = pci_get_drvdata(pdev);
681
682	if (dev) {
683		struct netdev_private *np = netdev_priv(dev);
684
685		dma_free_coherent(&pdev->dev, TX_TOTAL_SIZE, np->tx_ring,
686				  np->tx_ring_dma);
687		dma_free_coherent(&pdev->dev, RX_TOTAL_SIZE, np->rx_ring,
688				  np->rx_ring_dma);
689		unregister_netdev(dev);
690		pci_iounmap(pdev, np->mem);
691		free_netdev(dev);
692		pci_release_regions(pdev);
693	} else
694		printk(KERN_ERR "fealnx: remove for unknown device\n");
695}
696
697
698static ulong m80x_send_cmd_to_phy(void __iomem *miiport, int opcode, int phyad, int regad)
699{
700	ulong miir;
701	int i;
702	unsigned int mask, data;
703
704	/* enable MII output */
705	miir = (ulong) ioread32(miiport);
706	miir &= 0xfffffff0;
707
708	miir |= MASK_MIIR_MII_WRITE + MASK_MIIR_MII_MDO;
709
710	/* send 32 1's preamble */
711	for (i = 0; i < 32; i++) {
712		/* low MDC; MDO is already high (miir) */
713		miir &= ~MASK_MIIR_MII_MDC;
714		iowrite32(miir, miiport);
715
716		/* high MDC */
717		miir |= MASK_MIIR_MII_MDC;
718		iowrite32(miir, miiport);
719	}
720
721	/* calculate ST+OP+PHYAD+REGAD+TA */
722	data = opcode | (phyad << 7) | (regad << 2);
723
724	/* sent out */
725	mask = 0x8000;
726	while (mask) {
727		/* low MDC, prepare MDO */
728		miir &= ~(MASK_MIIR_MII_MDC + MASK_MIIR_MII_MDO);
729		if (mask & data)
730			miir |= MASK_MIIR_MII_MDO;
731
732		iowrite32(miir, miiport);
733		/* high MDC */
734		miir |= MASK_MIIR_MII_MDC;
735		iowrite32(miir, miiport);
736		udelay(30);
737
738		/* next */
739		mask >>= 1;
740		if (mask == 0x2 && opcode == OP_READ)
741			miir &= ~MASK_MIIR_MII_WRITE;
742	}
743	return miir;
744}
745
746
747static int mdio_read(struct net_device *dev, int phyad, int regad)
748{
749	struct netdev_private *np = netdev_priv(dev);
750	void __iomem *miiport = np->mem + MANAGEMENT;
751	ulong miir;
752	unsigned int mask, data;
753
754	miir = m80x_send_cmd_to_phy(miiport, OP_READ, phyad, regad);
755
756	/* read data */
757	mask = 0x8000;
758	data = 0;
759	while (mask) {
760		/* low MDC */
761		miir &= ~MASK_MIIR_MII_MDC;
762		iowrite32(miir, miiport);
763
764		/* read MDI */
765		miir = ioread32(miiport);
766		if (miir & MASK_MIIR_MII_MDI)
767			data |= mask;
768
769		/* high MDC, and wait */
770		miir |= MASK_MIIR_MII_MDC;
771		iowrite32(miir, miiport);
772		udelay(30);
773
774		/* next */
775		mask >>= 1;
776	}
777
778	/* low MDC */
779	miir &= ~MASK_MIIR_MII_MDC;
780	iowrite32(miir, miiport);
781
782	return data & 0xffff;
783}
784
785
786static void mdio_write(struct net_device *dev, int phyad, int regad, int data)
787{
788	struct netdev_private *np = netdev_priv(dev);
789	void __iomem *miiport = np->mem + MANAGEMENT;
790	ulong miir;
791	unsigned int mask;
792
793	miir = m80x_send_cmd_to_phy(miiport, OP_WRITE, phyad, regad);
794
795	/* write data */
796	mask = 0x8000;
797	while (mask) {
798		/* low MDC, prepare MDO */
799		miir &= ~(MASK_MIIR_MII_MDC + MASK_MIIR_MII_MDO);
800		if (mask & data)
801			miir |= MASK_MIIR_MII_MDO;
802		iowrite32(miir, miiport);
803
804		/* high MDC */
805		miir |= MASK_MIIR_MII_MDC;
806		iowrite32(miir, miiport);
807
808		/* next */
809		mask >>= 1;
810	}
811
812	/* low MDC */
813	miir &= ~MASK_MIIR_MII_MDC;
814	iowrite32(miir, miiport);
815}
816
817
818static int netdev_open(struct net_device *dev)
819{
820	struct netdev_private *np = netdev_priv(dev);
821	void __iomem *ioaddr = np->mem;
822	const int irq = np->pci_dev->irq;
823	int rc, i;
824
825	iowrite32(0x00000001, ioaddr + BCR);	/* Reset */
826
827	rc = request_irq(irq, intr_handler, IRQF_SHARED, dev->name, dev);
828	if (rc)
829		return -EAGAIN;
830
831	for (i = 0; i < 3; i++)
832		iowrite16(((const unsigned short *)dev->dev_addr)[i],
833				ioaddr + PAR0 + i*2);
834
835	init_ring(dev);
836
837	iowrite32(np->rx_ring_dma, ioaddr + RXLBA);
838	iowrite32(np->tx_ring_dma, ioaddr + TXLBA);
839
840	/* Initialize other registers. */
841	/* Configure the PCI bus bursts and FIFO thresholds.
842	   486: Set 8 longword burst.
843	   586: no burst limit.
844	   Burst length 5:3
845	   0 0 0   1
846	   0 0 1   4
847	   0 1 0   8
848	   0 1 1   16
849	   1 0 0   32
850	   1 0 1   64
851	   1 1 0   128
852	   1 1 1   256
853	   Wait the specified 50 PCI cycles after a reset by initializing
854	   Tx and Rx queues and the address filter list.
855	   FIXME (Ueimor): optimistic for alpha + posted writes ? */
856
857	np->bcrvalue = 0x10;	/* little-endian, 8 burst length */
858#ifdef __BIG_ENDIAN
859	np->bcrvalue |= 0x04;	/* big-endian */
860#endif
861
862#if defined(__i386__) && !defined(MODULE) && !defined(CONFIG_UML)
863	if (boot_cpu_data.x86 <= 4)
864		np->crvalue = 0xa00;
865	else
866#endif
867		np->crvalue = 0xe00;	/* rx 128 burst length */
868
869
870// 89/12/29 add,
871// 90/1/16 modify,
872//   np->imrvalue=FBE|TUNF|CNTOVF|RBU|TI|RI;
873	np->imrvalue = TUNF | CNTOVF | RBU | TI | RI;
874	if (np->pci_dev->device == 0x891) {
875		np->bcrvalue |= 0x200;	/* set PROG bit */
876		np->crvalue |= CR_W_ENH;	/* set enhanced bit */
877		np->imrvalue |= ETI;
878	}
879	iowrite32(np->bcrvalue, ioaddr + BCR);
880
881	if (dev->if_port == 0)
882		dev->if_port = np->default_port;
883
884	iowrite32(0, ioaddr + RXPDR);
885// 89/9/1 modify,
886//   np->crvalue = 0x00e40001;    /* tx store and forward, tx/rx enable */
887	np->crvalue |= 0x00e40001;	/* tx store and forward, tx/rx enable */
888	np->mii.full_duplex = np->mii.force_media;
889	getlinkstatus(dev);
890	if (np->linkok)
891		getlinktype(dev);
892	__set_rx_mode(dev);
893
894	netif_start_queue(dev);
895
896	/* Clear and Enable interrupts by setting the interrupt mask. */
897	iowrite32(FBE | TUNF | CNTOVF | RBU | TI | RI, ioaddr + ISR);
898	iowrite32(np->imrvalue, ioaddr + IMR);
899
900	if (debug)
901		printk(KERN_DEBUG "%s: Done netdev_open().\n", dev->name);
902
903	/* Set the timer to check for link beat. */
904	timer_setup(&np->timer, netdev_timer, 0);
905	np->timer.expires = RUN_AT(3 * HZ);
906
907	/* timer handler */
908	add_timer(&np->timer);
909
910	timer_setup(&np->reset_timer, reset_timer, 0);
911	np->reset_timer_armed = 0;
912	return rc;
913}
914
915
916static void getlinkstatus(struct net_device *dev)
917/* function: Routine will read MII Status Register to get link status.       */
918/* input   : dev... pointer to the adapter block.                            */
919/* output  : none.                                                           */
920{
921	struct netdev_private *np = netdev_priv(dev);
922	unsigned int i, DelayTime = 0x1000;
923
924	np->linkok = 0;
925
926	if (np->PHYType == MysonPHY) {
927		for (i = 0; i < DelayTime; ++i) {
928			if (ioread32(np->mem + BMCRSR) & LinkIsUp2) {
929				np->linkok = 1;
930				return;
931			}
932			udelay(100);
933		}
934	} else {
935		for (i = 0; i < DelayTime; ++i) {
936			if (mdio_read(dev, np->phys[0], MII_BMSR) & BMSR_LSTATUS) {
937				np->linkok = 1;
938				return;
939			}
940			udelay(100);
941		}
942	}
943}
944
945
946static void getlinktype(struct net_device *dev)
947{
948	struct netdev_private *np = netdev_priv(dev);
949
950	if (np->PHYType == MysonPHY) {	/* 3-in-1 case */
951		if (ioread32(np->mem + TCRRCR) & CR_R_FD)
952			np->duplexmode = 2;	/* full duplex */
953		else
954			np->duplexmode = 1;	/* half duplex */
955		if (ioread32(np->mem + TCRRCR) & CR_R_PS10)
956			np->line_speed = 1;	/* 10M */
957		else
958			np->line_speed = 2;	/* 100M */
959	} else {
960		if (np->PHYType == SeeqPHY) {	/* this PHY is SEEQ 80225 */
961			unsigned int data;
962
963			data = mdio_read(dev, np->phys[0], MIIRegister18);
964			if (data & SPD_DET_100)
965				np->line_speed = 2;	/* 100M */
966			else
967				np->line_speed = 1;	/* 10M */
968			if (data & DPLX_DET_FULL)
969				np->duplexmode = 2;	/* full duplex mode */
970			else
971				np->duplexmode = 1;	/* half duplex mode */
972		} else if (np->PHYType == AhdocPHY) {
973			unsigned int data;
974
975			data = mdio_read(dev, np->phys[0], DiagnosticReg);
976			if (data & Speed_100)
977				np->line_speed = 2;	/* 100M */
978			else
979				np->line_speed = 1;	/* 10M */
980			if (data & DPLX_FULL)
981				np->duplexmode = 2;	/* full duplex mode */
982			else
983				np->duplexmode = 1;	/* half duplex mode */
984		}
985/* 89/6/13 add, (begin) */
986		else if (np->PHYType == MarvellPHY) {
987			unsigned int data;
988
989			data = mdio_read(dev, np->phys[0], SpecificReg);
990			if (data & Full_Duplex)
991				np->duplexmode = 2;	/* full duplex mode */
992			else
993				np->duplexmode = 1;	/* half duplex mode */
994			data &= SpeedMask;
995			if (data == Speed_1000M)
996				np->line_speed = 3;	/* 1000M */
997			else if (data == Speed_100M)
998				np->line_speed = 2;	/* 100M */
999			else
1000				np->line_speed = 1;	/* 10M */
1001		}
1002/* 89/6/13 add, (end) */
1003/* 89/7/27 add, (begin) */
1004		else if (np->PHYType == Myson981) {
1005			unsigned int data;
1006
1007			data = mdio_read(dev, np->phys[0], StatusRegister);
1008
1009			if (data & SPEED100)
1010				np->line_speed = 2;
1011			else
1012				np->line_speed = 1;
1013
1014			if (data & FULLMODE)
1015				np->duplexmode = 2;
1016			else
1017				np->duplexmode = 1;
1018		}
1019/* 89/7/27 add, (end) */
1020/* 89/12/29 add */
1021		else if (np->PHYType == LevelOnePHY) {
1022			unsigned int data;
1023
1024			data = mdio_read(dev, np->phys[0], SpecificReg);
1025			if (data & LXT1000_Full)
1026				np->duplexmode = 2;	/* full duplex mode */
1027			else
1028				np->duplexmode = 1;	/* half duplex mode */
1029			data &= SpeedMask;
1030			if (data == LXT1000_1000M)
1031				np->line_speed = 3;	/* 1000M */
1032			else if (data == LXT1000_100M)
1033				np->line_speed = 2;	/* 100M */
1034			else
1035				np->line_speed = 1;	/* 10M */
1036		}
1037		np->crvalue &= (~CR_W_PS10) & (~CR_W_FD) & (~CR_W_PS1000);
1038		if (np->line_speed == 1)
1039			np->crvalue |= CR_W_PS10;
1040		else if (np->line_speed == 3)
1041			np->crvalue |= CR_W_PS1000;
1042		if (np->duplexmode == 2)
1043			np->crvalue |= CR_W_FD;
1044	}
1045}
1046
1047
1048/* Take lock before calling this */
1049static void allocate_rx_buffers(struct net_device *dev)
1050{
1051	struct netdev_private *np = netdev_priv(dev);
1052
1053	/*  allocate skb for rx buffers */
1054	while (np->really_rx_count != RX_RING_SIZE) {
1055		struct sk_buff *skb;
1056
1057		skb = netdev_alloc_skb(dev, np->rx_buf_sz);
1058		if (skb == NULL)
1059			break;	/* Better luck next round. */
1060
1061		while (np->lack_rxbuf->skbuff)
1062			np->lack_rxbuf = np->lack_rxbuf->next_desc_logical;
1063
1064		np->lack_rxbuf->skbuff = skb;
1065		np->lack_rxbuf->buffer = dma_map_single(&np->pci_dev->dev,
1066							skb->data,
1067							np->rx_buf_sz,
1068							DMA_FROM_DEVICE);
1069		np->lack_rxbuf->status = RXOWN;
1070		++np->really_rx_count;
1071	}
1072}
1073
1074
1075static void netdev_timer(struct timer_list *t)
1076{
1077	struct netdev_private *np = from_timer(np, t, timer);
1078	struct net_device *dev = np->mii.dev;
1079	void __iomem *ioaddr = np->mem;
1080	int old_crvalue = np->crvalue;
1081	unsigned int old_linkok = np->linkok;
1082	unsigned long flags;
1083
1084	if (debug)
1085		printk(KERN_DEBUG "%s: Media selection timer tick, status %8.8x "
1086		       "config %8.8x.\n", dev->name, ioread32(ioaddr + ISR),
1087		       ioread32(ioaddr + TCRRCR));
1088
1089	spin_lock_irqsave(&np->lock, flags);
1090
1091	if (np->flags == HAS_MII_XCVR) {
1092		getlinkstatus(dev);
1093		if ((old_linkok == 0) && (np->linkok == 1)) {	/* we need to detect the media type again */
1094			getlinktype(dev);
1095			if (np->crvalue != old_crvalue) {
1096				stop_nic_rxtx(ioaddr, np->crvalue);
1097				iowrite32(np->crvalue, ioaddr + TCRRCR);
1098			}
1099		}
1100	}
1101
1102	allocate_rx_buffers(dev);
1103
1104	spin_unlock_irqrestore(&np->lock, flags);
1105
1106	np->timer.expires = RUN_AT(10 * HZ);
1107	add_timer(&np->timer);
1108}
1109
1110
1111/* Take lock before calling */
1112/* Reset chip and disable rx, tx and interrupts */
1113static void reset_and_disable_rxtx(struct net_device *dev)
1114{
1115	struct netdev_private *np = netdev_priv(dev);
1116	void __iomem *ioaddr = np->mem;
1117	int delay=51;
1118
1119	/* Reset the chip's Tx and Rx processes. */
1120	stop_nic_rxtx(ioaddr, 0);
1121
1122	/* Disable interrupts by clearing the interrupt mask. */
1123	iowrite32(0, ioaddr + IMR);
1124
1125	/* Reset the chip to erase previous misconfiguration. */
1126	iowrite32(0x00000001, ioaddr + BCR);
1127
1128	/* Ueimor: wait for 50 PCI cycles (and flush posted writes btw).
1129	   We surely wait too long (address+data phase). Who cares? */
1130	while (--delay) {
1131		ioread32(ioaddr + BCR);
1132		rmb();
1133	}
1134}
1135
1136
1137/* Take lock before calling */
1138/* Restore chip after reset */
1139static void enable_rxtx(struct net_device *dev)
1140{
1141	struct netdev_private *np = netdev_priv(dev);
1142	void __iomem *ioaddr = np->mem;
1143
1144	reset_rx_descriptors(dev);
1145
1146	iowrite32(np->tx_ring_dma + ((char*)np->cur_tx - (char*)np->tx_ring),
1147		ioaddr + TXLBA);
1148	iowrite32(np->rx_ring_dma + ((char*)np->cur_rx - (char*)np->rx_ring),
1149		ioaddr + RXLBA);
1150
1151	iowrite32(np->bcrvalue, ioaddr + BCR);
1152
1153	iowrite32(0, ioaddr + RXPDR);
1154	__set_rx_mode(dev); /* changes np->crvalue, writes it into TCRRCR */
1155
1156	/* Clear and Enable interrupts by setting the interrupt mask. */
1157	iowrite32(FBE | TUNF | CNTOVF | RBU | TI | RI, ioaddr + ISR);
1158	iowrite32(np->imrvalue, ioaddr + IMR);
1159
1160	iowrite32(0, ioaddr + TXPDR);
1161}
1162
1163
1164static void reset_timer(struct timer_list *t)
1165{
1166	struct netdev_private *np = from_timer(np, t, reset_timer);
1167	struct net_device *dev = np->mii.dev;
1168	unsigned long flags;
1169
1170	printk(KERN_WARNING "%s: resetting tx and rx machinery\n", dev->name);
1171
1172	spin_lock_irqsave(&np->lock, flags);
1173	np->crvalue = np->crvalue_sv;
1174	np->imrvalue = np->imrvalue_sv;
1175
1176	reset_and_disable_rxtx(dev);
1177	/* works for me without this:
1178	reset_tx_descriptors(dev); */
1179	enable_rxtx(dev);
1180	netif_start_queue(dev); /* FIXME: or netif_wake_queue(dev); ? */
1181
1182	np->reset_timer_armed = 0;
1183
1184	spin_unlock_irqrestore(&np->lock, flags);
1185}
1186
1187
1188static void fealnx_tx_timeout(struct net_device *dev, unsigned int txqueue)
1189{
1190	struct netdev_private *np = netdev_priv(dev);
1191	void __iomem *ioaddr = np->mem;
1192	unsigned long flags;
1193	int i;
1194
1195	printk(KERN_WARNING
1196	       "%s: Transmit timed out, status %8.8x, resetting...\n",
1197	       dev->name, ioread32(ioaddr + ISR));
1198
1199	{
1200		printk(KERN_DEBUG "  Rx ring %p: ", np->rx_ring);
1201		for (i = 0; i < RX_RING_SIZE; i++)
1202			printk(KERN_CONT " %8.8x",
1203			       (unsigned int) np->rx_ring[i].status);
1204		printk(KERN_CONT "\n");
1205		printk(KERN_DEBUG "  Tx ring %p: ", np->tx_ring);
1206		for (i = 0; i < TX_RING_SIZE; i++)
1207			printk(KERN_CONT " %4.4x", np->tx_ring[i].status);
1208		printk(KERN_CONT "\n");
1209	}
1210
1211	spin_lock_irqsave(&np->lock, flags);
1212
1213	reset_and_disable_rxtx(dev);
1214	reset_tx_descriptors(dev);
1215	enable_rxtx(dev);
1216
1217	spin_unlock_irqrestore(&np->lock, flags);
1218
1219	netif_trans_update(dev); /* prevent tx timeout */
1220	dev->stats.tx_errors++;
1221	netif_wake_queue(dev); /* or .._start_.. ?? */
1222}
1223
1224
1225/* Initialize the Rx and Tx rings, along with various 'dev' bits. */
1226static void init_ring(struct net_device *dev)
1227{
1228	struct netdev_private *np = netdev_priv(dev);
1229	int i;
1230
1231	/* initialize rx variables */
1232	np->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
1233	np->cur_rx = &np->rx_ring[0];
1234	np->lack_rxbuf = np->rx_ring;
1235	np->really_rx_count = 0;
1236
1237	/* initial rx descriptors. */
1238	for (i = 0; i < RX_RING_SIZE; i++) {
1239		np->rx_ring[i].status = 0;
1240		np->rx_ring[i].control = np->rx_buf_sz << RBSShift;
1241		np->rx_ring[i].next_desc = np->rx_ring_dma +
1242			(i + 1)*sizeof(struct fealnx_desc);
1243		np->rx_ring[i].next_desc_logical = &np->rx_ring[i + 1];
1244		np->rx_ring[i].skbuff = NULL;
1245	}
1246
1247	/* for the last rx descriptor */
1248	np->rx_ring[i - 1].next_desc = np->rx_ring_dma;
1249	np->rx_ring[i - 1].next_desc_logical = np->rx_ring;
1250
1251	/* allocate skb for rx buffers */
1252	for (i = 0; i < RX_RING_SIZE; i++) {
1253		struct sk_buff *skb = netdev_alloc_skb(dev, np->rx_buf_sz);
1254
1255		if (skb == NULL) {
1256			np->lack_rxbuf = &np->rx_ring[i];
1257			break;
1258		}
1259
1260		++np->really_rx_count;
1261		np->rx_ring[i].skbuff = skb;
1262		np->rx_ring[i].buffer = dma_map_single(&np->pci_dev->dev,
1263						       skb->data,
1264						       np->rx_buf_sz,
1265						       DMA_FROM_DEVICE);
1266		np->rx_ring[i].status = RXOWN;
1267		np->rx_ring[i].control |= RXIC;
1268	}
1269
1270	/* initialize tx variables */
1271	np->cur_tx = &np->tx_ring[0];
1272	np->cur_tx_copy = &np->tx_ring[0];
1273	np->really_tx_count = 0;
1274	np->free_tx_count = TX_RING_SIZE;
1275
1276	for (i = 0; i < TX_RING_SIZE; i++) {
1277		np->tx_ring[i].status = 0;
1278		/* do we need np->tx_ring[i].control = XXX; ?? */
1279		np->tx_ring[i].next_desc = np->tx_ring_dma +
1280			(i + 1)*sizeof(struct fealnx_desc);
1281		np->tx_ring[i].next_desc_logical = &np->tx_ring[i + 1];
1282		np->tx_ring[i].skbuff = NULL;
1283	}
1284
1285	/* for the last tx descriptor */
1286	np->tx_ring[i - 1].next_desc = np->tx_ring_dma;
1287	np->tx_ring[i - 1].next_desc_logical = &np->tx_ring[0];
1288}
1289
1290
1291static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev)
1292{
1293	struct netdev_private *np = netdev_priv(dev);
1294	unsigned long flags;
1295
1296	spin_lock_irqsave(&np->lock, flags);
1297
1298	np->cur_tx_copy->skbuff = skb;
1299
1300#define one_buffer
1301#define BPT 1022
1302#if defined(one_buffer)
1303	np->cur_tx_copy->buffer = dma_map_single(&np->pci_dev->dev, skb->data,
1304						 skb->len, DMA_TO_DEVICE);
1305	np->cur_tx_copy->control = TXIC | TXLD | TXFD | CRCEnable | PADEnable;
1306	np->cur_tx_copy->control |= (skb->len << PKTSShift);	/* pkt size */
1307	np->cur_tx_copy->control |= (skb->len << TBSShift);	/* buffer size */
1308// 89/12/29 add,
1309	if (np->pci_dev->device == 0x891)
1310		np->cur_tx_copy->control |= ETIControl | RetryTxLC;
1311	np->cur_tx_copy->status = TXOWN;
1312	np->cur_tx_copy = np->cur_tx_copy->next_desc_logical;
1313	--np->free_tx_count;
1314#elif defined(two_buffer)
1315	if (skb->len > BPT) {
1316		struct fealnx_desc *next;
1317
1318		/* for the first descriptor */
1319		np->cur_tx_copy->buffer = dma_map_single(&np->pci_dev->dev,
1320							 skb->data, BPT,
1321							 DMA_TO_DEVICE);
1322		np->cur_tx_copy->control = TXIC | TXFD | CRCEnable | PADEnable;
1323		np->cur_tx_copy->control |= (skb->len << PKTSShift);	/* pkt size */
1324		np->cur_tx_copy->control |= (BPT << TBSShift);	/* buffer size */
1325
1326		/* for the last descriptor */
1327		next = np->cur_tx_copy->next_desc_logical;
1328		next->skbuff = skb;
1329		next->control = TXIC | TXLD | CRCEnable | PADEnable;
1330		next->control |= (skb->len << PKTSShift);	/* pkt size */
1331		next->control |= ((skb->len - BPT) << TBSShift);	/* buf size */
1332// 89/12/29 add,
1333		if (np->pci_dev->device == 0x891)
1334			np->cur_tx_copy->control |= ETIControl | RetryTxLC;
1335		next->buffer = dma_map_single(&ep->pci_dev->dev,
1336					      skb->data + BPT, skb->len - BPT,
1337					      DMA_TO_DEVICE);
1338
1339		next->status = TXOWN;
1340		np->cur_tx_copy->status = TXOWN;
1341
1342		np->cur_tx_copy = next->next_desc_logical;
1343		np->free_tx_count -= 2;
1344	} else {
1345		np->cur_tx_copy->buffer = dma_map_single(&np->pci_dev->dev,
1346							 skb->data, skb->len,
1347							 DMA_TO_DEVICE);
1348		np->cur_tx_copy->control = TXIC | TXLD | TXFD | CRCEnable | PADEnable;
1349		np->cur_tx_copy->control |= (skb->len << PKTSShift);	/* pkt size */
1350		np->cur_tx_copy->control |= (skb->len << TBSShift);	/* buffer size */
1351// 89/12/29 add,
1352		if (np->pci_dev->device == 0x891)
1353			np->cur_tx_copy->control |= ETIControl | RetryTxLC;
1354		np->cur_tx_copy->status = TXOWN;
1355		np->cur_tx_copy = np->cur_tx_copy->next_desc_logical;
1356		--np->free_tx_count;
1357	}
1358#endif
1359
1360	if (np->free_tx_count < 2)
1361		netif_stop_queue(dev);
1362	++np->really_tx_count;
1363	iowrite32(0, np->mem + TXPDR);
1364
1365	spin_unlock_irqrestore(&np->lock, flags);
1366	return NETDEV_TX_OK;
1367}
1368
1369
1370/* Take lock before calling */
1371/* Chip probably hosed tx ring. Clean up. */
1372static void reset_tx_descriptors(struct net_device *dev)
1373{
1374	struct netdev_private *np = netdev_priv(dev);
1375	struct fealnx_desc *cur;
1376	int i;
1377
1378	/* initialize tx variables */
1379	np->cur_tx = &np->tx_ring[0];
1380	np->cur_tx_copy = &np->tx_ring[0];
1381	np->really_tx_count = 0;
1382	np->free_tx_count = TX_RING_SIZE;
1383
1384	for (i = 0; i < TX_RING_SIZE; i++) {
1385		cur = &np->tx_ring[i];
1386		if (cur->skbuff) {
1387			dma_unmap_single(&np->pci_dev->dev, cur->buffer,
1388					 cur->skbuff->len, DMA_TO_DEVICE);
1389			dev_kfree_skb_any(cur->skbuff);
1390			cur->skbuff = NULL;
1391		}
1392		cur->status = 0;
1393		cur->control = 0;	/* needed? */
1394		/* probably not needed. We do it for purely paranoid reasons */
1395		cur->next_desc = np->tx_ring_dma +
1396			(i + 1)*sizeof(struct fealnx_desc);
1397		cur->next_desc_logical = &np->tx_ring[i + 1];
1398	}
1399	/* for the last tx descriptor */
1400	np->tx_ring[TX_RING_SIZE - 1].next_desc = np->tx_ring_dma;
1401	np->tx_ring[TX_RING_SIZE - 1].next_desc_logical = &np->tx_ring[0];
1402}
1403
1404
1405/* Take lock and stop rx before calling this */
1406static void reset_rx_descriptors(struct net_device *dev)
1407{
1408	struct netdev_private *np = netdev_priv(dev);
1409	struct fealnx_desc *cur = np->cur_rx;
1410	int i;
1411
1412	allocate_rx_buffers(dev);
1413
1414	for (i = 0; i < RX_RING_SIZE; i++) {
1415		if (cur->skbuff)
1416			cur->status = RXOWN;
1417		cur = cur->next_desc_logical;
1418	}
1419
1420	iowrite32(np->rx_ring_dma + ((char*)np->cur_rx - (char*)np->rx_ring),
1421		np->mem + RXLBA);
1422}
1423
1424
1425/* The interrupt handler does all of the Rx thread work and cleans up
1426   after the Tx thread. */
1427static irqreturn_t intr_handler(int irq, void *dev_instance)
1428{
1429	struct net_device *dev = (struct net_device *) dev_instance;
1430	struct netdev_private *np = netdev_priv(dev);
1431	void __iomem *ioaddr = np->mem;
1432	long boguscnt = max_interrupt_work;
1433	unsigned int num_tx = 0;
1434	int handled = 0;
1435
1436	spin_lock(&np->lock);
1437
1438	iowrite32(0, ioaddr + IMR);
1439
1440	do {
1441		u32 intr_status = ioread32(ioaddr + ISR);
1442
1443		/* Acknowledge all of the current interrupt sources ASAP. */
1444		iowrite32(intr_status, ioaddr + ISR);
1445
1446		if (debug)
1447			printk(KERN_DEBUG "%s: Interrupt, status %4.4x.\n", dev->name,
1448			       intr_status);
1449
1450		if (!(intr_status & np->imrvalue))
1451			break;
1452
1453		handled = 1;
1454
1455// 90/1/16 delete,
1456//
1457//      if (intr_status & FBE)
1458//      {   /* fatal error */
1459//          stop_nic_tx(ioaddr, 0);
1460//          stop_nic_rx(ioaddr, 0);
1461//          break;
1462//      };
1463
1464		if (intr_status & TUNF)
1465			iowrite32(0, ioaddr + TXPDR);
1466
1467		if (intr_status & CNTOVF) {
1468			/* missed pkts */
1469			dev->stats.rx_missed_errors +=
1470				ioread32(ioaddr + TALLY) & 0x7fff;
1471
1472			/* crc error */
1473			dev->stats.rx_crc_errors +=
1474			    (ioread32(ioaddr + TALLY) & 0x7fff0000) >> 16;
1475		}
1476
1477		if (intr_status & (RI | RBU)) {
1478			if (intr_status & RI)
1479				netdev_rx(dev);
1480			else {
1481				stop_nic_rx(ioaddr, np->crvalue);
1482				reset_rx_descriptors(dev);
1483				iowrite32(np->crvalue, ioaddr + TCRRCR);
1484			}
1485		}
1486
1487		while (np->really_tx_count) {
1488			long tx_status = np->cur_tx->status;
1489			long tx_control = np->cur_tx->control;
1490
1491			if (!(tx_control & TXLD)) {	/* this pkt is combined by two tx descriptors */
1492				struct fealnx_desc *next;
1493
1494				next = np->cur_tx->next_desc_logical;
1495				tx_status = next->status;
1496				tx_control = next->control;
1497			}
1498
1499			if (tx_status & TXOWN)
1500				break;
1501
1502			if (!(np->crvalue & CR_W_ENH)) {
1503				if (tx_status & (CSL | LC | EC | UDF | HF)) {
1504					dev->stats.tx_errors++;
1505					if (tx_status & EC)
1506						dev->stats.tx_aborted_errors++;
1507					if (tx_status & CSL)
1508						dev->stats.tx_carrier_errors++;
1509					if (tx_status & LC)
1510						dev->stats.tx_window_errors++;
1511					if (tx_status & UDF)
1512						dev->stats.tx_fifo_errors++;
1513					if ((tx_status & HF) && np->mii.full_duplex == 0)
1514						dev->stats.tx_heartbeat_errors++;
1515
1516				} else {
1517					dev->stats.tx_bytes +=
1518					    ((tx_control & PKTSMask) >> PKTSShift);
1519
1520					dev->stats.collisions +=
1521					    ((tx_status & NCRMask) >> NCRShift);
1522					dev->stats.tx_packets++;
1523				}
1524			} else {
1525				dev->stats.tx_bytes +=
1526				    ((tx_control & PKTSMask) >> PKTSShift);
1527				dev->stats.tx_packets++;
1528			}
1529
1530			/* Free the original skb. */
1531			dma_unmap_single(&np->pci_dev->dev,
1532					 np->cur_tx->buffer,
1533					 np->cur_tx->skbuff->len,
1534					 DMA_TO_DEVICE);
1535			dev_consume_skb_irq(np->cur_tx->skbuff);
1536			np->cur_tx->skbuff = NULL;
1537			--np->really_tx_count;
1538			if (np->cur_tx->control & TXLD) {
1539				np->cur_tx = np->cur_tx->next_desc_logical;
1540				++np->free_tx_count;
1541			} else {
1542				np->cur_tx = np->cur_tx->next_desc_logical;
1543				np->cur_tx = np->cur_tx->next_desc_logical;
1544				np->free_tx_count += 2;
1545			}
1546			num_tx++;
1547		}		/* end of for loop */
1548
1549		if (num_tx && np->free_tx_count >= 2)
1550			netif_wake_queue(dev);
1551
1552		/* read transmit status for enhanced mode only */
1553		if (np->crvalue & CR_W_ENH) {
1554			long data;
1555
1556			data = ioread32(ioaddr + TSR);
1557			dev->stats.tx_errors += (data & 0xff000000) >> 24;
1558			dev->stats.tx_aborted_errors +=
1559				(data & 0xff000000) >> 24;
1560			dev->stats.tx_window_errors +=
1561				(data & 0x00ff0000) >> 16;
1562			dev->stats.collisions += (data & 0x0000ffff);
1563		}
1564
1565		if (--boguscnt < 0) {
1566			printk(KERN_WARNING "%s: Too much work at interrupt, "
1567			       "status=0x%4.4x.\n", dev->name, intr_status);
1568			if (!np->reset_timer_armed) {
1569				np->reset_timer_armed = 1;
1570				np->reset_timer.expires = RUN_AT(HZ/2);
1571				add_timer(&np->reset_timer);
1572				stop_nic_rxtx(ioaddr, 0);
1573				netif_stop_queue(dev);
1574				/* or netif_tx_disable(dev); ?? */
1575				/* Prevent other paths from enabling tx,rx,intrs */
1576				np->crvalue_sv = np->crvalue;
1577				np->imrvalue_sv = np->imrvalue;
1578				np->crvalue &= ~(CR_W_TXEN | CR_W_RXEN); /* or simply = 0? */
1579				np->imrvalue = 0;
1580			}
1581
1582			break;
1583		}
1584	} while (1);
1585
1586	/* read the tally counters */
1587	/* missed pkts */
1588	dev->stats.rx_missed_errors += ioread32(ioaddr + TALLY) & 0x7fff;
1589
1590	/* crc error */
1591	dev->stats.rx_crc_errors +=
1592		(ioread32(ioaddr + TALLY) & 0x7fff0000) >> 16;
1593
1594	if (debug)
1595		printk(KERN_DEBUG "%s: exiting interrupt, status=%#4.4x.\n",
1596		       dev->name, ioread32(ioaddr + ISR));
1597
1598	iowrite32(np->imrvalue, ioaddr + IMR);
1599
1600	spin_unlock(&np->lock);
1601
1602	return IRQ_RETVAL(handled);
1603}
1604
1605
1606/* This routine is logically part of the interrupt handler, but separated
1607   for clarity and better register allocation. */
1608static int netdev_rx(struct net_device *dev)
1609{
1610	struct netdev_private *np = netdev_priv(dev);
1611	void __iomem *ioaddr = np->mem;
1612
1613	/* If EOP is set on the next entry, it's a new packet. Send it up. */
1614	while (!(np->cur_rx->status & RXOWN) && np->cur_rx->skbuff) {
1615		s32 rx_status = np->cur_rx->status;
1616
1617		if (np->really_rx_count == 0)
1618			break;
1619
1620		if (debug)
1621			printk(KERN_DEBUG "  netdev_rx() status was %8.8x.\n", rx_status);
1622
1623		if ((!((rx_status & RXFSD) && (rx_status & RXLSD))) ||
1624		    (rx_status & ErrorSummary)) {
1625			if (rx_status & ErrorSummary) {	/* there was a fatal error */
1626				if (debug)
1627					printk(KERN_DEBUG
1628					       "%s: Receive error, Rx status %8.8x.\n",
1629					       dev->name, rx_status);
1630
1631				dev->stats.rx_errors++;	/* end of a packet. */
1632				if (rx_status & (LONGPKT | RUNTPKT))
1633					dev->stats.rx_length_errors++;
1634				if (rx_status & RXER)
1635					dev->stats.rx_frame_errors++;
1636				if (rx_status & CRC)
1637					dev->stats.rx_crc_errors++;
1638			} else {
1639				int need_to_reset = 0;
1640				int desno = 0;
1641
1642				if (rx_status & RXFSD) {	/* this pkt is too long, over one rx buffer */
1643					struct fealnx_desc *cur;
1644
1645					/* check this packet is received completely? */
1646					cur = np->cur_rx;
1647					while (desno <= np->really_rx_count) {
1648						++desno;
1649						if ((!(cur->status & RXOWN)) &&
1650						    (cur->status & RXLSD))
1651							break;
1652						/* goto next rx descriptor */
1653						cur = cur->next_desc_logical;
1654					}
1655					if (desno > np->really_rx_count)
1656						need_to_reset = 1;
1657				} else	/* RXLSD did not find, something error */
1658					need_to_reset = 1;
1659
1660				if (need_to_reset == 0) {
1661					int i;
1662
1663					dev->stats.rx_length_errors++;
1664
1665					/* free all rx descriptors related this long pkt */
1666					for (i = 0; i < desno; ++i) {
1667						if (!np->cur_rx->skbuff) {
1668							printk(KERN_DEBUG
1669								"%s: I'm scared\n", dev->name);
1670							break;
1671						}
1672						np->cur_rx->status = RXOWN;
1673						np->cur_rx = np->cur_rx->next_desc_logical;
1674					}
1675					continue;
1676				} else {        /* rx error, need to reset this chip */
1677					stop_nic_rx(ioaddr, np->crvalue);
1678					reset_rx_descriptors(dev);
1679					iowrite32(np->crvalue, ioaddr + TCRRCR);
1680				}
1681				break;	/* exit the while loop */
1682			}
1683		} else {	/* this received pkt is ok */
1684
1685			struct sk_buff *skb;
1686			/* Omit the four octet CRC from the length. */
1687			short pkt_len = ((rx_status & FLNGMASK) >> FLNGShift) - 4;
1688
1689#ifndef final_version
1690			if (debug)
1691				printk(KERN_DEBUG "  netdev_rx() normal Rx pkt length %d"
1692				       " status %x.\n", pkt_len, rx_status);
1693#endif
1694
1695			/* Check if the packet is long enough to accept without copying
1696			   to a minimally-sized skbuff. */
1697			if (pkt_len < rx_copybreak &&
1698			    (skb = netdev_alloc_skb(dev, pkt_len + 2)) != NULL) {
1699				skb_reserve(skb, 2);	/* 16 byte align the IP header */
1700				dma_sync_single_for_cpu(&np->pci_dev->dev,
1701							np->cur_rx->buffer,
1702							np->rx_buf_sz,
1703							DMA_FROM_DEVICE);
1704				/* Call copy + cksum if available. */
1705
1706#if ! defined(__alpha__)
1707				skb_copy_to_linear_data(skb,
1708					np->cur_rx->skbuff->data, pkt_len);
1709				skb_put(skb, pkt_len);
1710#else
1711				skb_put_data(skb, np->cur_rx->skbuff->data,
1712					     pkt_len);
1713#endif
1714				dma_sync_single_for_device(&np->pci_dev->dev,
1715							   np->cur_rx->buffer,
1716							   np->rx_buf_sz,
1717							   DMA_FROM_DEVICE);
1718			} else {
1719				dma_unmap_single(&np->pci_dev->dev,
1720						 np->cur_rx->buffer,
1721						 np->rx_buf_sz,
1722						 DMA_FROM_DEVICE);
1723				skb_put(skb = np->cur_rx->skbuff, pkt_len);
1724				np->cur_rx->skbuff = NULL;
1725				--np->really_rx_count;
1726			}
1727			skb->protocol = eth_type_trans(skb, dev);
1728			netif_rx(skb);
1729			dev->stats.rx_packets++;
1730			dev->stats.rx_bytes += pkt_len;
1731		}
1732
1733		np->cur_rx = np->cur_rx->next_desc_logical;
1734	}			/* end of while loop */
1735
1736	/*  allocate skb for rx buffers */
1737	allocate_rx_buffers(dev);
1738
1739	return 0;
1740}
1741
1742
1743static struct net_device_stats *get_stats(struct net_device *dev)
1744{
1745	struct netdev_private *np = netdev_priv(dev);
1746	void __iomem *ioaddr = np->mem;
1747
1748	/* The chip only need report frame silently dropped. */
1749	if (netif_running(dev)) {
1750		dev->stats.rx_missed_errors +=
1751			ioread32(ioaddr + TALLY) & 0x7fff;
1752		dev->stats.rx_crc_errors +=
1753			(ioread32(ioaddr + TALLY) & 0x7fff0000) >> 16;
1754	}
1755
1756	return &dev->stats;
1757}
1758
1759
1760/* for dev->set_multicast_list */
1761static void set_rx_mode(struct net_device *dev)
1762{
1763	spinlock_t *lp = &((struct netdev_private *)netdev_priv(dev))->lock;
1764	unsigned long flags;
1765	spin_lock_irqsave(lp, flags);
1766	__set_rx_mode(dev);
1767	spin_unlock_irqrestore(lp, flags);
1768}
1769
1770
1771/* Take lock before calling */
1772static void __set_rx_mode(struct net_device *dev)
1773{
1774	struct netdev_private *np = netdev_priv(dev);
1775	void __iomem *ioaddr = np->mem;
1776	u32 mc_filter[2];	/* Multicast hash filter */
1777	u32 rx_mode;
1778
1779	if (dev->flags & IFF_PROMISC) {	/* Set promiscuous. */
1780		memset(mc_filter, 0xff, sizeof(mc_filter));
1781		rx_mode = CR_W_PROM | CR_W_AB | CR_W_AM;
1782	} else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
1783		   (dev->flags & IFF_ALLMULTI)) {
1784		/* Too many to match, or accept all multicasts. */
1785		memset(mc_filter, 0xff, sizeof(mc_filter));
1786		rx_mode = CR_W_AB | CR_W_AM;
1787	} else {
1788		struct netdev_hw_addr *ha;
1789
1790		memset(mc_filter, 0, sizeof(mc_filter));
1791		netdev_for_each_mc_addr(ha, dev) {
1792			unsigned int bit;
1793			bit = (ether_crc(ETH_ALEN, ha->addr) >> 26) ^ 0x3F;
1794			mc_filter[bit >> 5] |= (1 << bit);
1795		}
1796		rx_mode = CR_W_AB | CR_W_AM;
1797	}
1798
1799	stop_nic_rxtx(ioaddr, np->crvalue);
1800
1801	iowrite32(mc_filter[0], ioaddr + MAR0);
1802	iowrite32(mc_filter[1], ioaddr + MAR1);
1803	np->crvalue &= ~CR_W_RXMODEMASK;
1804	np->crvalue |= rx_mode;
1805	iowrite32(np->crvalue, ioaddr + TCRRCR);
1806}
1807
1808static void netdev_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1809{
1810	struct netdev_private *np = netdev_priv(dev);
1811
1812	strscpy(info->driver, DRV_NAME, sizeof(info->driver));
1813	strscpy(info->bus_info, pci_name(np->pci_dev), sizeof(info->bus_info));
1814}
1815
1816static int netdev_get_link_ksettings(struct net_device *dev,
1817				     struct ethtool_link_ksettings *cmd)
1818{
1819	struct netdev_private *np = netdev_priv(dev);
1820
1821	spin_lock_irq(&np->lock);
1822	mii_ethtool_get_link_ksettings(&np->mii, cmd);
1823	spin_unlock_irq(&np->lock);
1824
1825	return 0;
1826}
1827
1828static int netdev_set_link_ksettings(struct net_device *dev,
1829				     const struct ethtool_link_ksettings *cmd)
1830{
1831	struct netdev_private *np = netdev_priv(dev);
1832	int rc;
1833
1834	spin_lock_irq(&np->lock);
1835	rc = mii_ethtool_set_link_ksettings(&np->mii, cmd);
1836	spin_unlock_irq(&np->lock);
1837
1838	return rc;
1839}
1840
1841static int netdev_nway_reset(struct net_device *dev)
1842{
1843	struct netdev_private *np = netdev_priv(dev);
1844	return mii_nway_restart(&np->mii);
1845}
1846
1847static u32 netdev_get_link(struct net_device *dev)
1848{
1849	struct netdev_private *np = netdev_priv(dev);
1850	return mii_link_ok(&np->mii);
1851}
1852
1853static u32 netdev_get_msglevel(struct net_device *dev)
1854{
1855	return debug;
1856}
1857
1858static void netdev_set_msglevel(struct net_device *dev, u32 value)
1859{
1860	debug = value;
1861}
1862
1863static const struct ethtool_ops netdev_ethtool_ops = {
1864	.get_drvinfo		= netdev_get_drvinfo,
1865	.nway_reset		= netdev_nway_reset,
1866	.get_link		= netdev_get_link,
1867	.get_msglevel		= netdev_get_msglevel,
1868	.set_msglevel		= netdev_set_msglevel,
1869	.get_link_ksettings	= netdev_get_link_ksettings,
1870	.set_link_ksettings	= netdev_set_link_ksettings,
1871};
1872
1873static int mii_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1874{
1875	struct netdev_private *np = netdev_priv(dev);
1876	int rc;
1877
1878	if (!netif_running(dev))
1879		return -EINVAL;
1880
1881	spin_lock_irq(&np->lock);
1882	rc = generic_mii_ioctl(&np->mii, if_mii(rq), cmd, NULL);
1883	spin_unlock_irq(&np->lock);
1884
1885	return rc;
1886}
1887
1888
1889static int netdev_close(struct net_device *dev)
1890{
1891	struct netdev_private *np = netdev_priv(dev);
1892	void __iomem *ioaddr = np->mem;
1893	int i;
1894
1895	netif_stop_queue(dev);
1896
1897	/* Disable interrupts by clearing the interrupt mask. */
1898	iowrite32(0x0000, ioaddr + IMR);
1899
1900	/* Stop the chip's Tx and Rx processes. */
1901	stop_nic_rxtx(ioaddr, 0);
1902
1903	del_timer_sync(&np->timer);
1904	del_timer_sync(&np->reset_timer);
1905
1906	free_irq(np->pci_dev->irq, dev);
1907
1908	/* Free all the skbuffs in the Rx queue. */
1909	for (i = 0; i < RX_RING_SIZE; i++) {
1910		struct sk_buff *skb = np->rx_ring[i].skbuff;
1911
1912		np->rx_ring[i].status = 0;
1913		if (skb) {
1914			dma_unmap_single(&np->pci_dev->dev,
1915					 np->rx_ring[i].buffer, np->rx_buf_sz,
1916					 DMA_FROM_DEVICE);
1917			dev_kfree_skb(skb);
1918			np->rx_ring[i].skbuff = NULL;
1919		}
1920	}
1921
1922	for (i = 0; i < TX_RING_SIZE; i++) {
1923		struct sk_buff *skb = np->tx_ring[i].skbuff;
1924
1925		if (skb) {
1926			dma_unmap_single(&np->pci_dev->dev,
1927					 np->tx_ring[i].buffer, skb->len,
1928					 DMA_TO_DEVICE);
1929			dev_kfree_skb(skb);
1930			np->tx_ring[i].skbuff = NULL;
1931		}
1932	}
1933
1934	return 0;
1935}
1936
1937static const struct pci_device_id fealnx_pci_tbl[] = {
1938	{0x1516, 0x0800, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
1939	{0x1516, 0x0803, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 1},
1940	{0x1516, 0x0891, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 2},
1941	{} /* terminate list */
1942};
1943MODULE_DEVICE_TABLE(pci, fealnx_pci_tbl);
1944
1945
1946static struct pci_driver fealnx_driver = {
1947	.name		= "fealnx",
1948	.id_table	= fealnx_pci_tbl,
1949	.probe		= fealnx_init_one,
1950	.remove		= fealnx_remove_one,
1951};
1952
1953module_pci_driver(fealnx_driver);
1954