1// SPDX-License-Identifier: GPL-2.0-or-later
2/*  D-Link DL2000-based Gigabit Ethernet Adapter Linux driver */
3/*
4    Copyright (c) 2001, 2002 by D-Link Corporation
5    Written by Edward Peng.<edward_peng@dlink.com.tw>
6    Created 03-May-2001, base on Linux' sundance.c.
7
8*/
9
10#include "dl2k.h"
11#include <linux/dma-mapping.h>
12
13#define dw32(reg, val)	iowrite32(val, ioaddr + (reg))
14#define dw16(reg, val)	iowrite16(val, ioaddr + (reg))
15#define dw8(reg, val)	iowrite8(val, ioaddr + (reg))
16#define dr32(reg)	ioread32(ioaddr + (reg))
17#define dr16(reg)	ioread16(ioaddr + (reg))
18#define dr8(reg)	ioread8(ioaddr + (reg))
19
20#define MAX_UNITS 8
21static int mtu[MAX_UNITS];
22static int vlan[MAX_UNITS];
23static int jumbo[MAX_UNITS];
24static char *media[MAX_UNITS];
25static int tx_flow=-1;
26static int rx_flow=-1;
27static int copy_thresh;
28static int rx_coalesce=10;	/* Rx frame count each interrupt */
29static int rx_timeout=200;	/* Rx DMA wait time in 640ns increments */
30static int tx_coalesce=16;	/* HW xmit count each TxDMAComplete */
31
32
33MODULE_AUTHOR ("Edward Peng");
34MODULE_DESCRIPTION ("D-Link DL2000-based Gigabit Ethernet Adapter");
35MODULE_LICENSE("GPL");
36module_param_array(mtu, int, NULL, 0);
37module_param_array(media, charp, NULL, 0);
38module_param_array(vlan, int, NULL, 0);
39module_param_array(jumbo, int, NULL, 0);
40module_param(tx_flow, int, 0);
41module_param(rx_flow, int, 0);
42module_param(copy_thresh, int, 0);
43module_param(rx_coalesce, int, 0);	/* Rx frame count each interrupt */
44module_param(rx_timeout, int, 0);	/* Rx DMA wait time in 64ns increments */
45module_param(tx_coalesce, int, 0); /* HW xmit count each TxDMAComplete */
46
47
48/* Enable the default interrupts */
49#define DEFAULT_INTR (RxDMAComplete | HostError | IntRequested | TxDMAComplete| \
50       UpdateStats | LinkEvent)
51
52static void dl2k_enable_int(struct netdev_private *np)
53{
54	void __iomem *ioaddr = np->ioaddr;
55
56	dw16(IntEnable, DEFAULT_INTR);
57}
58
59static const int max_intrloop = 50;
60static const int multicast_filter_limit = 0x40;
61
62static int rio_open (struct net_device *dev);
63static void rio_timer (struct timer_list *t);
64static void rio_tx_timeout (struct net_device *dev, unsigned int txqueue);
65static netdev_tx_t start_xmit (struct sk_buff *skb, struct net_device *dev);
66static irqreturn_t rio_interrupt (int irq, void *dev_instance);
67static void rio_free_tx (struct net_device *dev, int irq);
68static void tx_error (struct net_device *dev, int tx_status);
69static int receive_packet (struct net_device *dev);
70static void rio_error (struct net_device *dev, int int_status);
71static void set_multicast (struct net_device *dev);
72static struct net_device_stats *get_stats (struct net_device *dev);
73static int clear_stats (struct net_device *dev);
74static int rio_ioctl (struct net_device *dev, struct ifreq *rq, int cmd);
75static int rio_close (struct net_device *dev);
76static int find_miiphy (struct net_device *dev);
77static int parse_eeprom (struct net_device *dev);
78static int read_eeprom (struct netdev_private *, int eep_addr);
79static int mii_wait_link (struct net_device *dev, int wait);
80static int mii_set_media (struct net_device *dev);
81static int mii_get_media (struct net_device *dev);
82static int mii_set_media_pcs (struct net_device *dev);
83static int mii_get_media_pcs (struct net_device *dev);
84static int mii_read (struct net_device *dev, int phy_addr, int reg_num);
85static int mii_write (struct net_device *dev, int phy_addr, int reg_num,
86		      u16 data);
87
88static const struct ethtool_ops ethtool_ops;
89
90static const struct net_device_ops netdev_ops = {
91	.ndo_open		= rio_open,
92	.ndo_start_xmit	= start_xmit,
93	.ndo_stop		= rio_close,
94	.ndo_get_stats		= get_stats,
95	.ndo_validate_addr	= eth_validate_addr,
96	.ndo_set_mac_address 	= eth_mac_addr,
97	.ndo_set_rx_mode	= set_multicast,
98	.ndo_eth_ioctl		= rio_ioctl,
99	.ndo_tx_timeout		= rio_tx_timeout,
100};
101
102static int
103rio_probe1 (struct pci_dev *pdev, const struct pci_device_id *ent)
104{
105	struct net_device *dev;
106	struct netdev_private *np;
107	static int card_idx;
108	int chip_idx = ent->driver_data;
109	int err, irq;
110	void __iomem *ioaddr;
111	void *ring_space;
112	dma_addr_t ring_dma;
113
114	err = pci_enable_device (pdev);
115	if (err)
116		return err;
117
118	irq = pdev->irq;
119	err = pci_request_regions (pdev, "dl2k");
120	if (err)
121		goto err_out_disable;
122
123	pci_set_master (pdev);
124
125	err = -ENOMEM;
126
127	dev = alloc_etherdev (sizeof (*np));
128	if (!dev)
129		goto err_out_res;
130	SET_NETDEV_DEV(dev, &pdev->dev);
131
132	np = netdev_priv(dev);
133
134	/* IO registers range. */
135	ioaddr = pci_iomap(pdev, 0, 0);
136	if (!ioaddr)
137		goto err_out_dev;
138	np->eeprom_addr = ioaddr;
139
140#ifdef MEM_MAPPING
141	/* MM registers range. */
142	ioaddr = pci_iomap(pdev, 1, 0);
143	if (!ioaddr)
144		goto err_out_iounmap;
145#endif
146	np->ioaddr = ioaddr;
147	np->chip_id = chip_idx;
148	np->pdev = pdev;
149	spin_lock_init (&np->tx_lock);
150	spin_lock_init (&np->rx_lock);
151
152	/* Parse manual configuration */
153	np->an_enable = 1;
154	np->tx_coalesce = 1;
155	if (card_idx < MAX_UNITS) {
156		if (media[card_idx] != NULL) {
157			np->an_enable = 0;
158			if (strcmp (media[card_idx], "auto") == 0 ||
159			    strcmp (media[card_idx], "autosense") == 0 ||
160			    strcmp (media[card_idx], "0") == 0 ) {
161				np->an_enable = 2;
162			} else if (strcmp (media[card_idx], "100mbps_fd") == 0 ||
163			    strcmp (media[card_idx], "4") == 0) {
164				np->speed = 100;
165				np->full_duplex = 1;
166			} else if (strcmp (media[card_idx], "100mbps_hd") == 0 ||
167				   strcmp (media[card_idx], "3") == 0) {
168				np->speed = 100;
169				np->full_duplex = 0;
170			} else if (strcmp (media[card_idx], "10mbps_fd") == 0 ||
171				   strcmp (media[card_idx], "2") == 0) {
172				np->speed = 10;
173				np->full_duplex = 1;
174			} else if (strcmp (media[card_idx], "10mbps_hd") == 0 ||
175				   strcmp (media[card_idx], "1") == 0) {
176				np->speed = 10;
177				np->full_duplex = 0;
178			} else if (strcmp (media[card_idx], "1000mbps_fd") == 0 ||
179				 strcmp (media[card_idx], "6") == 0) {
180				np->speed=1000;
181				np->full_duplex=1;
182			} else if (strcmp (media[card_idx], "1000mbps_hd") == 0 ||
183				 strcmp (media[card_idx], "5") == 0) {
184				np->speed = 1000;
185				np->full_duplex = 0;
186			} else {
187				np->an_enable = 1;
188			}
189		}
190		if (jumbo[card_idx] != 0) {
191			np->jumbo = 1;
192			dev->mtu = MAX_JUMBO;
193		} else {
194			np->jumbo = 0;
195			if (mtu[card_idx] > 0 && mtu[card_idx] < PACKET_SIZE)
196				dev->mtu = mtu[card_idx];
197		}
198		np->vlan = (vlan[card_idx] > 0 && vlan[card_idx] < 4096) ?
199		    vlan[card_idx] : 0;
200		if (rx_coalesce > 0 && rx_timeout > 0) {
201			np->rx_coalesce = rx_coalesce;
202			np->rx_timeout = rx_timeout;
203			np->coalesce = 1;
204		}
205		np->tx_flow = (tx_flow == 0) ? 0 : 1;
206		np->rx_flow = (rx_flow == 0) ? 0 : 1;
207
208		if (tx_coalesce < 1)
209			tx_coalesce = 1;
210		else if (tx_coalesce > TX_RING_SIZE-1)
211			tx_coalesce = TX_RING_SIZE - 1;
212	}
213	dev->netdev_ops = &netdev_ops;
214	dev->watchdog_timeo = TX_TIMEOUT;
215	dev->ethtool_ops = &ethtool_ops;
216#if 0
217	dev->features = NETIF_F_IP_CSUM;
218#endif
219	/* MTU range: 68 - 1536 or 8000 */
220	dev->min_mtu = ETH_MIN_MTU;
221	dev->max_mtu = np->jumbo ? MAX_JUMBO : PACKET_SIZE;
222
223	pci_set_drvdata (pdev, dev);
224
225	ring_space = dma_alloc_coherent(&pdev->dev, TX_TOTAL_SIZE, &ring_dma,
226					GFP_KERNEL);
227	if (!ring_space)
228		goto err_out_iounmap;
229	np->tx_ring = ring_space;
230	np->tx_ring_dma = ring_dma;
231
232	ring_space = dma_alloc_coherent(&pdev->dev, RX_TOTAL_SIZE, &ring_dma,
233					GFP_KERNEL);
234	if (!ring_space)
235		goto err_out_unmap_tx;
236	np->rx_ring = ring_space;
237	np->rx_ring_dma = ring_dma;
238
239	/* Parse eeprom data */
240	parse_eeprom (dev);
241
242	/* Find PHY address */
243	err = find_miiphy (dev);
244	if (err)
245		goto err_out_unmap_rx;
246
247	/* Fiber device? */
248	np->phy_media = (dr16(ASICCtrl) & PhyMedia) ? 1 : 0;
249	np->link_status = 0;
250	/* Set media and reset PHY */
251	if (np->phy_media) {
252		/* default Auto-Negotiation for fiber deivices */
253	 	if (np->an_enable == 2) {
254			np->an_enable = 1;
255		}
256	} else {
257		/* Auto-Negotiation is mandatory for 1000BASE-T,
258		   IEEE 802.3ab Annex 28D page 14 */
259		if (np->speed == 1000)
260			np->an_enable = 1;
261	}
262
263	err = register_netdev (dev);
264	if (err)
265		goto err_out_unmap_rx;
266
267	card_idx++;
268
269	printk (KERN_INFO "%s: %s, %pM, IRQ %d\n",
270		dev->name, np->name, dev->dev_addr, irq);
271	if (tx_coalesce > 1)
272		printk(KERN_INFO "tx_coalesce:\t%d packets\n",
273				tx_coalesce);
274	if (np->coalesce)
275		printk(KERN_INFO
276		       "rx_coalesce:\t%d packets\n"
277		       "rx_timeout: \t%d ns\n",
278				np->rx_coalesce, np->rx_timeout*640);
279	if (np->vlan)
280		printk(KERN_INFO "vlan(id):\t%d\n", np->vlan);
281	return 0;
282
283err_out_unmap_rx:
284	dma_free_coherent(&pdev->dev, RX_TOTAL_SIZE, np->rx_ring,
285			  np->rx_ring_dma);
286err_out_unmap_tx:
287	dma_free_coherent(&pdev->dev, TX_TOTAL_SIZE, np->tx_ring,
288			  np->tx_ring_dma);
289err_out_iounmap:
290#ifdef MEM_MAPPING
291	pci_iounmap(pdev, np->ioaddr);
292#endif
293	pci_iounmap(pdev, np->eeprom_addr);
294err_out_dev:
295	free_netdev (dev);
296err_out_res:
297	pci_release_regions (pdev);
298err_out_disable:
299	pci_disable_device (pdev);
300	return err;
301}
302
303static int
304find_miiphy (struct net_device *dev)
305{
306	struct netdev_private *np = netdev_priv(dev);
307	int i, phy_found = 0;
308
309	np->phy_addr = 1;
310
311	for (i = 31; i >= 0; i--) {
312		int mii_status = mii_read (dev, i, 1);
313		if (mii_status != 0xffff && mii_status != 0x0000) {
314			np->phy_addr = i;
315			phy_found++;
316		}
317	}
318	if (!phy_found) {
319		printk (KERN_ERR "%s: No MII PHY found!\n", dev->name);
320		return -ENODEV;
321	}
322	return 0;
323}
324
325static int
326parse_eeprom (struct net_device *dev)
327{
328	struct netdev_private *np = netdev_priv(dev);
329	void __iomem *ioaddr = np->ioaddr;
330	int i, j;
331	u8 sromdata[256];
332	u8 *psib;
333	u32 crc;
334	PSROM_t psrom = (PSROM_t) sromdata;
335
336	int cid, next;
337
338	for (i = 0; i < 128; i++)
339		((__le16 *) sromdata)[i] = cpu_to_le16(read_eeprom(np, i));
340
341	if (np->pdev->vendor == PCI_VENDOR_ID_DLINK) {	/* D-Link Only */
342		/* Check CRC */
343		crc = ~ether_crc_le (256 - 4, sromdata);
344		if (psrom->crc != cpu_to_le32(crc)) {
345			printk (KERN_ERR "%s: EEPROM data CRC error.\n",
346					dev->name);
347			return -1;
348		}
349	}
350
351	/* Set MAC address */
352	eth_hw_addr_set(dev, psrom->mac_addr);
353
354	if (np->chip_id == CHIP_IP1000A) {
355		np->led_mode = psrom->led_mode;
356		return 0;
357	}
358
359	if (np->pdev->vendor != PCI_VENDOR_ID_DLINK) {
360		return 0;
361	}
362
363	/* Parse Software Information Block */
364	i = 0x30;
365	psib = (u8 *) sromdata;
366	do {
367		cid = psib[i++];
368		next = psib[i++];
369		if ((cid == 0 && next == 0) || (cid == 0xff && next == 0xff)) {
370			printk (KERN_ERR "Cell data error\n");
371			return -1;
372		}
373		switch (cid) {
374		case 0:	/* Format version */
375			break;
376		case 1:	/* End of cell */
377			return 0;
378		case 2:	/* Duplex Polarity */
379			np->duplex_polarity = psib[i];
380			dw8(PhyCtrl, dr8(PhyCtrl) | psib[i]);
381			break;
382		case 3:	/* Wake Polarity */
383			np->wake_polarity = psib[i];
384			break;
385		case 9:	/* Adapter description */
386			j = (next - i > 255) ? 255 : next - i;
387			memcpy (np->name, &(psib[i]), j);
388			break;
389		case 4:
390		case 5:
391		case 6:
392		case 7:
393		case 8:	/* Reversed */
394			break;
395		default:	/* Unknown cell */
396			return -1;
397		}
398		i = next;
399	} while (1);
400
401	return 0;
402}
403
404static void rio_set_led_mode(struct net_device *dev)
405{
406	struct netdev_private *np = netdev_priv(dev);
407	void __iomem *ioaddr = np->ioaddr;
408	u32 mode;
409
410	if (np->chip_id != CHIP_IP1000A)
411		return;
412
413	mode = dr32(ASICCtrl);
414	mode &= ~(IPG_AC_LED_MODE_BIT_1 | IPG_AC_LED_MODE | IPG_AC_LED_SPEED);
415
416	if (np->led_mode & 0x01)
417		mode |= IPG_AC_LED_MODE;
418	if (np->led_mode & 0x02)
419		mode |= IPG_AC_LED_MODE_BIT_1;
420	if (np->led_mode & 0x08)
421		mode |= IPG_AC_LED_SPEED;
422
423	dw32(ASICCtrl, mode);
424}
425
426static inline dma_addr_t desc_to_dma(struct netdev_desc *desc)
427{
428	return le64_to_cpu(desc->fraginfo) & DMA_BIT_MASK(48);
429}
430
431static void free_list(struct net_device *dev)
432{
433	struct netdev_private *np = netdev_priv(dev);
434	struct sk_buff *skb;
435	int i;
436
437	/* Free all the skbuffs in the queue. */
438	for (i = 0; i < RX_RING_SIZE; i++) {
439		skb = np->rx_skbuff[i];
440		if (skb) {
441			dma_unmap_single(&np->pdev->dev,
442					 desc_to_dma(&np->rx_ring[i]),
443					 skb->len, DMA_FROM_DEVICE);
444			dev_kfree_skb(skb);
445			np->rx_skbuff[i] = NULL;
446		}
447		np->rx_ring[i].status = 0;
448		np->rx_ring[i].fraginfo = 0;
449	}
450	for (i = 0; i < TX_RING_SIZE; i++) {
451		skb = np->tx_skbuff[i];
452		if (skb) {
453			dma_unmap_single(&np->pdev->dev,
454					 desc_to_dma(&np->tx_ring[i]),
455					 skb->len, DMA_TO_DEVICE);
456			dev_kfree_skb(skb);
457			np->tx_skbuff[i] = NULL;
458		}
459	}
460}
461
462static void rio_reset_ring(struct netdev_private *np)
463{
464	int i;
465
466	np->cur_rx = 0;
467	np->cur_tx = 0;
468	np->old_rx = 0;
469	np->old_tx = 0;
470
471	for (i = 0; i < TX_RING_SIZE; i++)
472		np->tx_ring[i].status = cpu_to_le64(TFDDone);
473
474	for (i = 0; i < RX_RING_SIZE; i++)
475		np->rx_ring[i].status = 0;
476}
477
478 /* allocate and initialize Tx and Rx descriptors */
479static int alloc_list(struct net_device *dev)
480{
481	struct netdev_private *np = netdev_priv(dev);
482	int i;
483
484	rio_reset_ring(np);
485	np->rx_buf_sz = (dev->mtu <= 1500 ? PACKET_SIZE : dev->mtu + 32);
486
487	/* Initialize Tx descriptors, TFDListPtr leaves in start_xmit(). */
488	for (i = 0; i < TX_RING_SIZE; i++) {
489		np->tx_skbuff[i] = NULL;
490		np->tx_ring[i].next_desc = cpu_to_le64(np->tx_ring_dma +
491					      ((i + 1) % TX_RING_SIZE) *
492					      sizeof(struct netdev_desc));
493	}
494
495	/* Initialize Rx descriptors & allocate buffers */
496	for (i = 0; i < RX_RING_SIZE; i++) {
497		/* Allocated fixed size of skbuff */
498		struct sk_buff *skb;
499
500		skb = netdev_alloc_skb_ip_align(dev, np->rx_buf_sz);
501		np->rx_skbuff[i] = skb;
502		if (!skb) {
503			free_list(dev);
504			return -ENOMEM;
505		}
506
507		np->rx_ring[i].next_desc = cpu_to_le64(np->rx_ring_dma +
508						((i + 1) % RX_RING_SIZE) *
509						sizeof(struct netdev_desc));
510		/* Rubicon now supports 40 bits of addressing space. */
511		np->rx_ring[i].fraginfo =
512		    cpu_to_le64(dma_map_single(&np->pdev->dev, skb->data,
513					       np->rx_buf_sz, DMA_FROM_DEVICE));
514		np->rx_ring[i].fraginfo |= cpu_to_le64((u64)np->rx_buf_sz << 48);
515	}
516
517	return 0;
518}
519
520static void rio_hw_init(struct net_device *dev)
521{
522	struct netdev_private *np = netdev_priv(dev);
523	void __iomem *ioaddr = np->ioaddr;
524	int i;
525	u16 macctrl;
526
527	/* Reset all logic functions */
528	dw16(ASICCtrl + 2,
529	     GlobalReset | DMAReset | FIFOReset | NetworkReset | HostReset);
530	mdelay(10);
531
532	rio_set_led_mode(dev);
533
534	/* DebugCtrl bit 4, 5, 9 must set */
535	dw32(DebugCtrl, dr32(DebugCtrl) | 0x0230);
536
537	if (np->chip_id == CHIP_IP1000A &&
538	    (np->pdev->revision == 0x40 || np->pdev->revision == 0x41)) {
539		/* PHY magic taken from ipg driver, undocumented registers */
540		mii_write(dev, np->phy_addr, 31, 0x0001);
541		mii_write(dev, np->phy_addr, 27, 0x01e0);
542		mii_write(dev, np->phy_addr, 31, 0x0002);
543		mii_write(dev, np->phy_addr, 27, 0xeb8e);
544		mii_write(dev, np->phy_addr, 31, 0x0000);
545		mii_write(dev, np->phy_addr, 30, 0x005e);
546		/* advertise 1000BASE-T half & full duplex, prefer MASTER */
547		mii_write(dev, np->phy_addr, MII_CTRL1000, 0x0700);
548	}
549
550	if (np->phy_media)
551		mii_set_media_pcs(dev);
552	else
553		mii_set_media(dev);
554
555	/* Jumbo frame */
556	if (np->jumbo != 0)
557		dw16(MaxFrameSize, MAX_JUMBO+14);
558
559	/* Set RFDListPtr */
560	dw32(RFDListPtr0, np->rx_ring_dma);
561	dw32(RFDListPtr1, 0);
562
563	/* Set station address */
564	/* 16 or 32-bit access is required by TC9020 datasheet but 8-bit works
565	 * too. However, it doesn't work on IP1000A so we use 16-bit access.
566	 */
567	for (i = 0; i < 3; i++)
568		dw16(StationAddr0 + 2 * i, get_unaligned_le16(&dev->dev_addr[2 * i]));
569
570	set_multicast (dev);
571	if (np->coalesce) {
572		dw32(RxDMAIntCtrl, np->rx_coalesce | np->rx_timeout << 16);
573	}
574	/* Set RIO to poll every N*320nsec. */
575	dw8(RxDMAPollPeriod, 0x20);
576	dw8(TxDMAPollPeriod, 0xff);
577	dw8(RxDMABurstThresh, 0x30);
578	dw8(RxDMAUrgentThresh, 0x30);
579	dw32(RmonStatMask, 0x0007ffff);
580	/* clear statistics */
581	clear_stats (dev);
582
583	/* VLAN supported */
584	if (np->vlan) {
585		/* priority field in RxDMAIntCtrl  */
586		dw32(RxDMAIntCtrl, dr32(RxDMAIntCtrl) | 0x7 << 10);
587		/* VLANId */
588		dw16(VLANId, np->vlan);
589		/* Length/Type should be 0x8100 */
590		dw32(VLANTag, 0x8100 << 16 | np->vlan);
591		/* Enable AutoVLANuntagging, but disable AutoVLANtagging.
592		   VLAN information tagged by TFC' VID, CFI fields. */
593		dw32(MACCtrl, dr32(MACCtrl) | AutoVLANuntagging);
594	}
595
596	/* Start Tx/Rx */
597	dw32(MACCtrl, dr32(MACCtrl) | StatsEnable | RxEnable | TxEnable);
598
599	macctrl = 0;
600	macctrl |= (np->vlan) ? AutoVLANuntagging : 0;
601	macctrl |= (np->full_duplex) ? DuplexSelect : 0;
602	macctrl |= (np->tx_flow) ? TxFlowControlEnable : 0;
603	macctrl |= (np->rx_flow) ? RxFlowControlEnable : 0;
604	dw16(MACCtrl, macctrl);
605}
606
607static void rio_hw_stop(struct net_device *dev)
608{
609	struct netdev_private *np = netdev_priv(dev);
610	void __iomem *ioaddr = np->ioaddr;
611
612	/* Disable interrupts */
613	dw16(IntEnable, 0);
614
615	/* Stop Tx and Rx logics */
616	dw32(MACCtrl, TxDisable | RxDisable | StatsDisable);
617}
618
619static int rio_open(struct net_device *dev)
620{
621	struct netdev_private *np = netdev_priv(dev);
622	const int irq = np->pdev->irq;
623	int i;
624
625	i = alloc_list(dev);
626	if (i)
627		return i;
628
629	rio_hw_init(dev);
630
631	i = request_irq(irq, rio_interrupt, IRQF_SHARED, dev->name, dev);
632	if (i) {
633		rio_hw_stop(dev);
634		free_list(dev);
635		return i;
636	}
637
638	timer_setup(&np->timer, rio_timer, 0);
639	np->timer.expires = jiffies + 1 * HZ;
640	add_timer(&np->timer);
641
642	netif_start_queue (dev);
643
644	dl2k_enable_int(np);
645	return 0;
646}
647
648static void
649rio_timer (struct timer_list *t)
650{
651	struct netdev_private *np = from_timer(np, t, timer);
652	struct net_device *dev = pci_get_drvdata(np->pdev);
653	unsigned int entry;
654	int next_tick = 1*HZ;
655	unsigned long flags;
656
657	spin_lock_irqsave(&np->rx_lock, flags);
658	/* Recover rx ring exhausted error */
659	if (np->cur_rx - np->old_rx >= RX_RING_SIZE) {
660		printk(KERN_INFO "Try to recover rx ring exhausted...\n");
661		/* Re-allocate skbuffs to fill the descriptor ring */
662		for (; np->cur_rx - np->old_rx > 0; np->old_rx++) {
663			struct sk_buff *skb;
664			entry = np->old_rx % RX_RING_SIZE;
665			/* Dropped packets don't need to re-allocate */
666			if (np->rx_skbuff[entry] == NULL) {
667				skb = netdev_alloc_skb_ip_align(dev,
668								np->rx_buf_sz);
669				if (skb == NULL) {
670					np->rx_ring[entry].fraginfo = 0;
671					printk (KERN_INFO
672						"%s: Still unable to re-allocate Rx skbuff.#%d\n",
673						dev->name, entry);
674					break;
675				}
676				np->rx_skbuff[entry] = skb;
677				np->rx_ring[entry].fraginfo =
678				    cpu_to_le64 (dma_map_single(&np->pdev->dev, skb->data,
679								np->rx_buf_sz, DMA_FROM_DEVICE));
680			}
681			np->rx_ring[entry].fraginfo |=
682			    cpu_to_le64((u64)np->rx_buf_sz << 48);
683			np->rx_ring[entry].status = 0;
684		} /* end for */
685	} /* end if */
686	spin_unlock_irqrestore (&np->rx_lock, flags);
687	np->timer.expires = jiffies + next_tick;
688	add_timer(&np->timer);
689}
690
691static void
692rio_tx_timeout (struct net_device *dev, unsigned int txqueue)
693{
694	struct netdev_private *np = netdev_priv(dev);
695	void __iomem *ioaddr = np->ioaddr;
696
697	printk (KERN_INFO "%s: Tx timed out (%4.4x), is buffer full?\n",
698		dev->name, dr32(TxStatus));
699	rio_free_tx(dev, 0);
700	dev->if_port = 0;
701	netif_trans_update(dev); /* prevent tx timeout */
702}
703
704static netdev_tx_t
705start_xmit (struct sk_buff *skb, struct net_device *dev)
706{
707	struct netdev_private *np = netdev_priv(dev);
708	void __iomem *ioaddr = np->ioaddr;
709	struct netdev_desc *txdesc;
710	unsigned entry;
711	u64 tfc_vlan_tag = 0;
712
713	if (np->link_status == 0) {	/* Link Down */
714		dev_kfree_skb(skb);
715		return NETDEV_TX_OK;
716	}
717	entry = np->cur_tx % TX_RING_SIZE;
718	np->tx_skbuff[entry] = skb;
719	txdesc = &np->tx_ring[entry];
720
721#if 0
722	if (skb->ip_summed == CHECKSUM_PARTIAL) {
723		txdesc->status |=
724		    cpu_to_le64 (TCPChecksumEnable | UDPChecksumEnable |
725				 IPChecksumEnable);
726	}
727#endif
728	if (np->vlan) {
729		tfc_vlan_tag = VLANTagInsert |
730		    ((u64)np->vlan << 32) |
731		    ((u64)skb->priority << 45);
732	}
733	txdesc->fraginfo = cpu_to_le64 (dma_map_single(&np->pdev->dev, skb->data,
734						       skb->len, DMA_TO_DEVICE));
735	txdesc->fraginfo |= cpu_to_le64((u64)skb->len << 48);
736
737	/* DL2K bug: DMA fails to get next descriptor ptr in 10Mbps mode
738	 * Work around: Always use 1 descriptor in 10Mbps mode */
739	if (entry % np->tx_coalesce == 0 || np->speed == 10)
740		txdesc->status = cpu_to_le64 (entry | tfc_vlan_tag |
741					      WordAlignDisable |
742					      TxDMAIndicate |
743					      (1 << FragCountShift));
744	else
745		txdesc->status = cpu_to_le64 (entry | tfc_vlan_tag |
746					      WordAlignDisable |
747					      (1 << FragCountShift));
748
749	/* TxDMAPollNow */
750	dw32(DMACtrl, dr32(DMACtrl) | 0x00001000);
751	/* Schedule ISR */
752	dw32(CountDown, 10000);
753	np->cur_tx = (np->cur_tx + 1) % TX_RING_SIZE;
754	if ((np->cur_tx - np->old_tx + TX_RING_SIZE) % TX_RING_SIZE
755			< TX_QUEUE_LEN - 1 && np->speed != 10) {
756		/* do nothing */
757	} else if (!netif_queue_stopped(dev)) {
758		netif_stop_queue (dev);
759	}
760
761	/* The first TFDListPtr */
762	if (!dr32(TFDListPtr0)) {
763		dw32(TFDListPtr0, np->tx_ring_dma +
764		     entry * sizeof (struct netdev_desc));
765		dw32(TFDListPtr1, 0);
766	}
767
768	return NETDEV_TX_OK;
769}
770
771static irqreturn_t
772rio_interrupt (int irq, void *dev_instance)
773{
774	struct net_device *dev = dev_instance;
775	struct netdev_private *np = netdev_priv(dev);
776	void __iomem *ioaddr = np->ioaddr;
777	unsigned int_status;
778	int cnt = max_intrloop;
779	int handled = 0;
780
781	while (1) {
782		int_status = dr16(IntStatus);
783		dw16(IntStatus, int_status);
784		int_status &= DEFAULT_INTR;
785		if (int_status == 0 || --cnt < 0)
786			break;
787		handled = 1;
788		/* Processing received packets */
789		if (int_status & RxDMAComplete)
790			receive_packet (dev);
791		/* TxDMAComplete interrupt */
792		if ((int_status & (TxDMAComplete|IntRequested))) {
793			int tx_status;
794			tx_status = dr32(TxStatus);
795			if (tx_status & 0x01)
796				tx_error (dev, tx_status);
797			/* Free used tx skbuffs */
798			rio_free_tx (dev, 1);
799		}
800
801		/* Handle uncommon events */
802		if (int_status &
803		    (HostError | LinkEvent | UpdateStats))
804			rio_error (dev, int_status);
805	}
806	if (np->cur_tx != np->old_tx)
807		dw32(CountDown, 100);
808	return IRQ_RETVAL(handled);
809}
810
811static void
812rio_free_tx (struct net_device *dev, int irq)
813{
814	struct netdev_private *np = netdev_priv(dev);
815	int entry = np->old_tx % TX_RING_SIZE;
816	unsigned long flag = 0;
817
818	if (irq)
819		spin_lock(&np->tx_lock);
820	else
821		spin_lock_irqsave(&np->tx_lock, flag);
822
823	/* Free used tx skbuffs */
824	while (entry != np->cur_tx) {
825		struct sk_buff *skb;
826
827		if (!(np->tx_ring[entry].status & cpu_to_le64(TFDDone)))
828			break;
829		skb = np->tx_skbuff[entry];
830		dma_unmap_single(&np->pdev->dev,
831				 desc_to_dma(&np->tx_ring[entry]), skb->len,
832				 DMA_TO_DEVICE);
833		if (irq)
834			dev_consume_skb_irq(skb);
835		else
836			dev_kfree_skb(skb);
837
838		np->tx_skbuff[entry] = NULL;
839		entry = (entry + 1) % TX_RING_SIZE;
840	}
841	if (irq)
842		spin_unlock(&np->tx_lock);
843	else
844		spin_unlock_irqrestore(&np->tx_lock, flag);
845	np->old_tx = entry;
846
847	/* If the ring is no longer full, clear tx_full and
848	   call netif_wake_queue() */
849
850	if (netif_queue_stopped(dev) &&
851	    ((np->cur_tx - np->old_tx + TX_RING_SIZE) % TX_RING_SIZE
852	    < TX_QUEUE_LEN - 1 || np->speed == 10)) {
853		netif_wake_queue (dev);
854	}
855}
856
857static void
858tx_error (struct net_device *dev, int tx_status)
859{
860	struct netdev_private *np = netdev_priv(dev);
861	void __iomem *ioaddr = np->ioaddr;
862	int frame_id;
863	int i;
864
865	frame_id = (tx_status & 0xffff0000);
866	printk (KERN_ERR "%s: Transmit error, TxStatus %4.4x, FrameId %d.\n",
867		dev->name, tx_status, frame_id);
868	dev->stats.tx_errors++;
869	/* Ttransmit Underrun */
870	if (tx_status & 0x10) {
871		dev->stats.tx_fifo_errors++;
872		dw16(TxStartThresh, dr16(TxStartThresh) + 0x10);
873		/* Transmit Underrun need to set TxReset, DMARest, FIFOReset */
874		dw16(ASICCtrl + 2,
875		     TxReset | DMAReset | FIFOReset | NetworkReset);
876		/* Wait for ResetBusy bit clear */
877		for (i = 50; i > 0; i--) {
878			if (!(dr16(ASICCtrl + 2) & ResetBusy))
879				break;
880			mdelay (1);
881		}
882		rio_set_led_mode(dev);
883		rio_free_tx (dev, 1);
884		/* Reset TFDListPtr */
885		dw32(TFDListPtr0, np->tx_ring_dma +
886		     np->old_tx * sizeof (struct netdev_desc));
887		dw32(TFDListPtr1, 0);
888
889		/* Let TxStartThresh stay default value */
890	}
891	/* Late Collision */
892	if (tx_status & 0x04) {
893		dev->stats.tx_fifo_errors++;
894		/* TxReset and clear FIFO */
895		dw16(ASICCtrl + 2, TxReset | FIFOReset);
896		/* Wait reset done */
897		for (i = 50; i > 0; i--) {
898			if (!(dr16(ASICCtrl + 2) & ResetBusy))
899				break;
900			mdelay (1);
901		}
902		rio_set_led_mode(dev);
903		/* Let TxStartThresh stay default value */
904	}
905	/* Maximum Collisions */
906	if (tx_status & 0x08)
907		dev->stats.collisions++;
908	/* Restart the Tx */
909	dw32(MACCtrl, dr16(MACCtrl) | TxEnable);
910}
911
912static int
913receive_packet (struct net_device *dev)
914{
915	struct netdev_private *np = netdev_priv(dev);
916	int entry = np->cur_rx % RX_RING_SIZE;
917	int cnt = 30;
918
919	/* If RFDDone, FrameStart and FrameEnd set, there is a new packet in. */
920	while (1) {
921		struct netdev_desc *desc = &np->rx_ring[entry];
922		int pkt_len;
923		u64 frame_status;
924
925		if (!(desc->status & cpu_to_le64(RFDDone)) ||
926		    !(desc->status & cpu_to_le64(FrameStart)) ||
927		    !(desc->status & cpu_to_le64(FrameEnd)))
928			break;
929
930		/* Chip omits the CRC. */
931		frame_status = le64_to_cpu(desc->status);
932		pkt_len = frame_status & 0xffff;
933		if (--cnt < 0)
934			break;
935		/* Update rx error statistics, drop packet. */
936		if (frame_status & RFS_Errors) {
937			dev->stats.rx_errors++;
938			if (frame_status & (RxRuntFrame | RxLengthError))
939				dev->stats.rx_length_errors++;
940			if (frame_status & RxFCSError)
941				dev->stats.rx_crc_errors++;
942			if (frame_status & RxAlignmentError && np->speed != 1000)
943				dev->stats.rx_frame_errors++;
944			if (frame_status & RxFIFOOverrun)
945				dev->stats.rx_fifo_errors++;
946		} else {
947			struct sk_buff *skb;
948
949			/* Small skbuffs for short packets */
950			if (pkt_len > copy_thresh) {
951				dma_unmap_single(&np->pdev->dev,
952						 desc_to_dma(desc),
953						 np->rx_buf_sz,
954						 DMA_FROM_DEVICE);
955				skb_put (skb = np->rx_skbuff[entry], pkt_len);
956				np->rx_skbuff[entry] = NULL;
957			} else if ((skb = netdev_alloc_skb_ip_align(dev, pkt_len))) {
958				dma_sync_single_for_cpu(&np->pdev->dev,
959							desc_to_dma(desc),
960							np->rx_buf_sz,
961							DMA_FROM_DEVICE);
962				skb_copy_to_linear_data (skb,
963						  np->rx_skbuff[entry]->data,
964						  pkt_len);
965				skb_put (skb, pkt_len);
966				dma_sync_single_for_device(&np->pdev->dev,
967							   desc_to_dma(desc),
968							   np->rx_buf_sz,
969							   DMA_FROM_DEVICE);
970			}
971			skb->protocol = eth_type_trans (skb, dev);
972#if 0
973			/* Checksum done by hw, but csum value unavailable. */
974			if (np->pdev->pci_rev_id >= 0x0c &&
975				!(frame_status & (TCPError | UDPError | IPError))) {
976				skb->ip_summed = CHECKSUM_UNNECESSARY;
977			}
978#endif
979			netif_rx (skb);
980		}
981		entry = (entry + 1) % RX_RING_SIZE;
982	}
983	spin_lock(&np->rx_lock);
984	np->cur_rx = entry;
985	/* Re-allocate skbuffs to fill the descriptor ring */
986	entry = np->old_rx;
987	while (entry != np->cur_rx) {
988		struct sk_buff *skb;
989		/* Dropped packets don't need to re-allocate */
990		if (np->rx_skbuff[entry] == NULL) {
991			skb = netdev_alloc_skb_ip_align(dev, np->rx_buf_sz);
992			if (skb == NULL) {
993				np->rx_ring[entry].fraginfo = 0;
994				printk (KERN_INFO
995					"%s: receive_packet: "
996					"Unable to re-allocate Rx skbuff.#%d\n",
997					dev->name, entry);
998				break;
999			}
1000			np->rx_skbuff[entry] = skb;
1001			np->rx_ring[entry].fraginfo =
1002			    cpu_to_le64(dma_map_single(&np->pdev->dev, skb->data,
1003						       np->rx_buf_sz, DMA_FROM_DEVICE));
1004		}
1005		np->rx_ring[entry].fraginfo |=
1006		    cpu_to_le64((u64)np->rx_buf_sz << 48);
1007		np->rx_ring[entry].status = 0;
1008		entry = (entry + 1) % RX_RING_SIZE;
1009	}
1010	np->old_rx = entry;
1011	spin_unlock(&np->rx_lock);
1012	return 0;
1013}
1014
1015static void
1016rio_error (struct net_device *dev, int int_status)
1017{
1018	struct netdev_private *np = netdev_priv(dev);
1019	void __iomem *ioaddr = np->ioaddr;
1020	u16 macctrl;
1021
1022	/* Link change event */
1023	if (int_status & LinkEvent) {
1024		if (mii_wait_link (dev, 10) == 0) {
1025			printk (KERN_INFO "%s: Link up\n", dev->name);
1026			if (np->phy_media)
1027				mii_get_media_pcs (dev);
1028			else
1029				mii_get_media (dev);
1030			if (np->speed == 1000)
1031				np->tx_coalesce = tx_coalesce;
1032			else
1033				np->tx_coalesce = 1;
1034			macctrl = 0;
1035			macctrl |= (np->vlan) ? AutoVLANuntagging : 0;
1036			macctrl |= (np->full_duplex) ? DuplexSelect : 0;
1037			macctrl |= (np->tx_flow) ?
1038				TxFlowControlEnable : 0;
1039			macctrl |= (np->rx_flow) ?
1040				RxFlowControlEnable : 0;
1041			dw16(MACCtrl, macctrl);
1042			np->link_status = 1;
1043			netif_carrier_on(dev);
1044		} else {
1045			printk (KERN_INFO "%s: Link off\n", dev->name);
1046			np->link_status = 0;
1047			netif_carrier_off(dev);
1048		}
1049	}
1050
1051	/* UpdateStats statistics registers */
1052	if (int_status & UpdateStats) {
1053		get_stats (dev);
1054	}
1055
1056	/* PCI Error, a catastronphic error related to the bus interface
1057	   occurs, set GlobalReset and HostReset to reset. */
1058	if (int_status & HostError) {
1059		printk (KERN_ERR "%s: HostError! IntStatus %4.4x.\n",
1060			dev->name, int_status);
1061		dw16(ASICCtrl + 2, GlobalReset | HostReset);
1062		mdelay (500);
1063		rio_set_led_mode(dev);
1064	}
1065}
1066
1067static struct net_device_stats *
1068get_stats (struct net_device *dev)
1069{
1070	struct netdev_private *np = netdev_priv(dev);
1071	void __iomem *ioaddr = np->ioaddr;
1072#ifdef MEM_MAPPING
1073	int i;
1074#endif
1075	unsigned int stat_reg;
1076
1077	/* All statistics registers need to be acknowledged,
1078	   else statistic overflow could cause problems */
1079
1080	dev->stats.rx_packets += dr32(FramesRcvOk);
1081	dev->stats.tx_packets += dr32(FramesXmtOk);
1082	dev->stats.rx_bytes += dr32(OctetRcvOk);
1083	dev->stats.tx_bytes += dr32(OctetXmtOk);
1084
1085	dev->stats.multicast = dr32(McstFramesRcvdOk);
1086	dev->stats.collisions += dr32(SingleColFrames)
1087			     +  dr32(MultiColFrames);
1088
1089	/* detailed tx errors */
1090	stat_reg = dr16(FramesAbortXSColls);
1091	dev->stats.tx_aborted_errors += stat_reg;
1092	dev->stats.tx_errors += stat_reg;
1093
1094	stat_reg = dr16(CarrierSenseErrors);
1095	dev->stats.tx_carrier_errors += stat_reg;
1096	dev->stats.tx_errors += stat_reg;
1097
1098	/* Clear all other statistic register. */
1099	dr32(McstOctetXmtOk);
1100	dr16(BcstFramesXmtdOk);
1101	dr32(McstFramesXmtdOk);
1102	dr16(BcstFramesRcvdOk);
1103	dr16(MacControlFramesRcvd);
1104	dr16(FrameTooLongErrors);
1105	dr16(InRangeLengthErrors);
1106	dr16(FramesCheckSeqErrors);
1107	dr16(FramesLostRxErrors);
1108	dr32(McstOctetXmtOk);
1109	dr32(BcstOctetXmtOk);
1110	dr32(McstFramesXmtdOk);
1111	dr32(FramesWDeferredXmt);
1112	dr32(LateCollisions);
1113	dr16(BcstFramesXmtdOk);
1114	dr16(MacControlFramesXmtd);
1115	dr16(FramesWEXDeferal);
1116
1117#ifdef MEM_MAPPING
1118	for (i = 0x100; i <= 0x150; i += 4)
1119		dr32(i);
1120#endif
1121	dr16(TxJumboFrames);
1122	dr16(RxJumboFrames);
1123	dr16(TCPCheckSumErrors);
1124	dr16(UDPCheckSumErrors);
1125	dr16(IPCheckSumErrors);
1126	return &dev->stats;
1127}
1128
1129static int
1130clear_stats (struct net_device *dev)
1131{
1132	struct netdev_private *np = netdev_priv(dev);
1133	void __iomem *ioaddr = np->ioaddr;
1134#ifdef MEM_MAPPING
1135	int i;
1136#endif
1137
1138	/* All statistics registers need to be acknowledged,
1139	   else statistic overflow could cause problems */
1140	dr32(FramesRcvOk);
1141	dr32(FramesXmtOk);
1142	dr32(OctetRcvOk);
1143	dr32(OctetXmtOk);
1144
1145	dr32(McstFramesRcvdOk);
1146	dr32(SingleColFrames);
1147	dr32(MultiColFrames);
1148	dr32(LateCollisions);
1149	/* detailed rx errors */
1150	dr16(FrameTooLongErrors);
1151	dr16(InRangeLengthErrors);
1152	dr16(FramesCheckSeqErrors);
1153	dr16(FramesLostRxErrors);
1154
1155	/* detailed tx errors */
1156	dr16(FramesAbortXSColls);
1157	dr16(CarrierSenseErrors);
1158
1159	/* Clear all other statistic register. */
1160	dr32(McstOctetXmtOk);
1161	dr16(BcstFramesXmtdOk);
1162	dr32(McstFramesXmtdOk);
1163	dr16(BcstFramesRcvdOk);
1164	dr16(MacControlFramesRcvd);
1165	dr32(McstOctetXmtOk);
1166	dr32(BcstOctetXmtOk);
1167	dr32(McstFramesXmtdOk);
1168	dr32(FramesWDeferredXmt);
1169	dr16(BcstFramesXmtdOk);
1170	dr16(MacControlFramesXmtd);
1171	dr16(FramesWEXDeferal);
1172#ifdef MEM_MAPPING
1173	for (i = 0x100; i <= 0x150; i += 4)
1174		dr32(i);
1175#endif
1176	dr16(TxJumboFrames);
1177	dr16(RxJumboFrames);
1178	dr16(TCPCheckSumErrors);
1179	dr16(UDPCheckSumErrors);
1180	dr16(IPCheckSumErrors);
1181	return 0;
1182}
1183
1184static void
1185set_multicast (struct net_device *dev)
1186{
1187	struct netdev_private *np = netdev_priv(dev);
1188	void __iomem *ioaddr = np->ioaddr;
1189	u32 hash_table[2];
1190	u16 rx_mode = 0;
1191
1192	hash_table[0] = hash_table[1] = 0;
1193	/* RxFlowcontrol DA: 01-80-C2-00-00-01. Hash index=0x39 */
1194	hash_table[1] |= 0x02000000;
1195	if (dev->flags & IFF_PROMISC) {
1196		/* Receive all frames promiscuously. */
1197		rx_mode = ReceiveAllFrames;
1198	} else if ((dev->flags & IFF_ALLMULTI) ||
1199			(netdev_mc_count(dev) > multicast_filter_limit)) {
1200		/* Receive broadcast and multicast frames */
1201		rx_mode = ReceiveBroadcast | ReceiveMulticast | ReceiveUnicast;
1202	} else if (!netdev_mc_empty(dev)) {
1203		struct netdev_hw_addr *ha;
1204		/* Receive broadcast frames and multicast frames filtering
1205		   by Hashtable */
1206		rx_mode =
1207		    ReceiveBroadcast | ReceiveMulticastHash | ReceiveUnicast;
1208		netdev_for_each_mc_addr(ha, dev) {
1209			int bit, index = 0;
1210			int crc = ether_crc_le(ETH_ALEN, ha->addr);
1211			/* The inverted high significant 6 bits of CRC are
1212			   used as an index to hashtable */
1213			for (bit = 0; bit < 6; bit++)
1214				if (crc & (1 << (31 - bit)))
1215					index |= (1 << bit);
1216			hash_table[index / 32] |= (1 << (index % 32));
1217		}
1218	} else {
1219		rx_mode = ReceiveBroadcast | ReceiveUnicast;
1220	}
1221	if (np->vlan) {
1222		/* ReceiveVLANMatch field in ReceiveMode */
1223		rx_mode |= ReceiveVLANMatch;
1224	}
1225
1226	dw32(HashTable0, hash_table[0]);
1227	dw32(HashTable1, hash_table[1]);
1228	dw16(ReceiveMode, rx_mode);
1229}
1230
1231static void rio_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1232{
1233	struct netdev_private *np = netdev_priv(dev);
1234
1235	strscpy(info->driver, "dl2k", sizeof(info->driver));
1236	strscpy(info->bus_info, pci_name(np->pdev), sizeof(info->bus_info));
1237}
1238
1239static int rio_get_link_ksettings(struct net_device *dev,
1240				  struct ethtool_link_ksettings *cmd)
1241{
1242	struct netdev_private *np = netdev_priv(dev);
1243	u32 supported, advertising;
1244
1245	if (np->phy_media) {
1246		/* fiber device */
1247		supported = SUPPORTED_Autoneg | SUPPORTED_FIBRE;
1248		advertising = ADVERTISED_Autoneg | ADVERTISED_FIBRE;
1249		cmd->base.port = PORT_FIBRE;
1250	} else {
1251		/* copper device */
1252		supported = SUPPORTED_10baseT_Half |
1253			SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Half
1254			| SUPPORTED_100baseT_Full | SUPPORTED_1000baseT_Full |
1255			SUPPORTED_Autoneg | SUPPORTED_MII;
1256		advertising = ADVERTISED_10baseT_Half |
1257			ADVERTISED_10baseT_Full | ADVERTISED_100baseT_Half |
1258			ADVERTISED_100baseT_Full | ADVERTISED_1000baseT_Full |
1259			ADVERTISED_Autoneg | ADVERTISED_MII;
1260		cmd->base.port = PORT_MII;
1261	}
1262	if (np->link_status) {
1263		cmd->base.speed = np->speed;
1264		cmd->base.duplex = np->full_duplex ? DUPLEX_FULL : DUPLEX_HALF;
1265	} else {
1266		cmd->base.speed = SPEED_UNKNOWN;
1267		cmd->base.duplex = DUPLEX_UNKNOWN;
1268	}
1269	if (np->an_enable)
1270		cmd->base.autoneg = AUTONEG_ENABLE;
1271	else
1272		cmd->base.autoneg = AUTONEG_DISABLE;
1273
1274	cmd->base.phy_address = np->phy_addr;
1275
1276	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
1277						supported);
1278	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
1279						advertising);
1280
1281	return 0;
1282}
1283
1284static int rio_set_link_ksettings(struct net_device *dev,
1285				  const struct ethtool_link_ksettings *cmd)
1286{
1287	struct netdev_private *np = netdev_priv(dev);
1288	u32 speed = cmd->base.speed;
1289	u8 duplex = cmd->base.duplex;
1290
1291	netif_carrier_off(dev);
1292	if (cmd->base.autoneg == AUTONEG_ENABLE) {
1293		if (np->an_enable) {
1294			return 0;
1295		} else {
1296			np->an_enable = 1;
1297			mii_set_media(dev);
1298			return 0;
1299		}
1300	} else {
1301		np->an_enable = 0;
1302		if (np->speed == 1000) {
1303			speed = SPEED_100;
1304			duplex = DUPLEX_FULL;
1305			printk("Warning!! Can't disable Auto negotiation in 1000Mbps, change to Manual 100Mbps, Full duplex.\n");
1306		}
1307		switch (speed) {
1308		case SPEED_10:
1309			np->speed = 10;
1310			np->full_duplex = (duplex == DUPLEX_FULL);
1311			break;
1312		case SPEED_100:
1313			np->speed = 100;
1314			np->full_duplex = (duplex == DUPLEX_FULL);
1315			break;
1316		case SPEED_1000: /* not supported */
1317		default:
1318			return -EINVAL;
1319		}
1320		mii_set_media(dev);
1321	}
1322	return 0;
1323}
1324
1325static u32 rio_get_link(struct net_device *dev)
1326{
1327	struct netdev_private *np = netdev_priv(dev);
1328	return np->link_status;
1329}
1330
1331static const struct ethtool_ops ethtool_ops = {
1332	.get_drvinfo = rio_get_drvinfo,
1333	.get_link = rio_get_link,
1334	.get_link_ksettings = rio_get_link_ksettings,
1335	.set_link_ksettings = rio_set_link_ksettings,
1336};
1337
1338static int
1339rio_ioctl (struct net_device *dev, struct ifreq *rq, int cmd)
1340{
1341	int phy_addr;
1342	struct netdev_private *np = netdev_priv(dev);
1343	struct mii_ioctl_data *miidata = if_mii(rq);
1344
1345	phy_addr = np->phy_addr;
1346	switch (cmd) {
1347	case SIOCGMIIPHY:
1348		miidata->phy_id = phy_addr;
1349		break;
1350	case SIOCGMIIREG:
1351		miidata->val_out = mii_read (dev, phy_addr, miidata->reg_num);
1352		break;
1353	case SIOCSMIIREG:
1354		if (!capable(CAP_NET_ADMIN))
1355			return -EPERM;
1356		mii_write (dev, phy_addr, miidata->reg_num, miidata->val_in);
1357		break;
1358	default:
1359		return -EOPNOTSUPP;
1360	}
1361	return 0;
1362}
1363
1364#define EEP_READ 0x0200
1365#define EEP_BUSY 0x8000
1366/* Read the EEPROM word */
1367/* We use I/O instruction to read/write eeprom to avoid fail on some machines */
1368static int read_eeprom(struct netdev_private *np, int eep_addr)
1369{
1370	void __iomem *ioaddr = np->eeprom_addr;
1371	int i = 1000;
1372
1373	dw16(EepromCtrl, EEP_READ | (eep_addr & 0xff));
1374	while (i-- > 0) {
1375		if (!(dr16(EepromCtrl) & EEP_BUSY))
1376			return dr16(EepromData);
1377	}
1378	return 0;
1379}
1380
1381enum phy_ctrl_bits {
1382	MII_READ = 0x00, MII_CLK = 0x01, MII_DATA1 = 0x02, MII_WRITE = 0x04,
1383	MII_DUPLEX = 0x08,
1384};
1385
1386#define mii_delay() dr8(PhyCtrl)
1387static void
1388mii_sendbit (struct net_device *dev, u32 data)
1389{
1390	struct netdev_private *np = netdev_priv(dev);
1391	void __iomem *ioaddr = np->ioaddr;
1392
1393	data = ((data) ? MII_DATA1 : 0) | (dr8(PhyCtrl) & 0xf8) | MII_WRITE;
1394	dw8(PhyCtrl, data);
1395	mii_delay ();
1396	dw8(PhyCtrl, data | MII_CLK);
1397	mii_delay ();
1398}
1399
1400static int
1401mii_getbit (struct net_device *dev)
1402{
1403	struct netdev_private *np = netdev_priv(dev);
1404	void __iomem *ioaddr = np->ioaddr;
1405	u8 data;
1406
1407	data = (dr8(PhyCtrl) & 0xf8) | MII_READ;
1408	dw8(PhyCtrl, data);
1409	mii_delay ();
1410	dw8(PhyCtrl, data | MII_CLK);
1411	mii_delay ();
1412	return (dr8(PhyCtrl) >> 1) & 1;
1413}
1414
1415static void
1416mii_send_bits (struct net_device *dev, u32 data, int len)
1417{
1418	int i;
1419
1420	for (i = len - 1; i >= 0; i--) {
1421		mii_sendbit (dev, data & (1 << i));
1422	}
1423}
1424
1425static int
1426mii_read (struct net_device *dev, int phy_addr, int reg_num)
1427{
1428	u32 cmd;
1429	int i;
1430	u32 retval = 0;
1431
1432	/* Preamble */
1433	mii_send_bits (dev, 0xffffffff, 32);
1434	/* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1435	/* ST,OP = 0110'b for read operation */
1436	cmd = (0x06 << 10 | phy_addr << 5 | reg_num);
1437	mii_send_bits (dev, cmd, 14);
1438	/* Turnaround */
1439	if (mii_getbit (dev))
1440		goto err_out;
1441	/* Read data */
1442	for (i = 0; i < 16; i++) {
1443		retval |= mii_getbit (dev);
1444		retval <<= 1;
1445	}
1446	/* End cycle */
1447	mii_getbit (dev);
1448	return (retval >> 1) & 0xffff;
1449
1450      err_out:
1451	return 0;
1452}
1453static int
1454mii_write (struct net_device *dev, int phy_addr, int reg_num, u16 data)
1455{
1456	u32 cmd;
1457
1458	/* Preamble */
1459	mii_send_bits (dev, 0xffffffff, 32);
1460	/* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1461	/* ST,OP,AAAAA,RRRRR,TA = 0101xxxxxxxxxx10'b = 0x5002 for write */
1462	cmd = (0x5002 << 16) | (phy_addr << 23) | (reg_num << 18) | data;
1463	mii_send_bits (dev, cmd, 32);
1464	/* End cycle */
1465	mii_getbit (dev);
1466	return 0;
1467}
1468static int
1469mii_wait_link (struct net_device *dev, int wait)
1470{
1471	__u16 bmsr;
1472	int phy_addr;
1473	struct netdev_private *np;
1474
1475	np = netdev_priv(dev);
1476	phy_addr = np->phy_addr;
1477
1478	do {
1479		bmsr = mii_read (dev, phy_addr, MII_BMSR);
1480		if (bmsr & BMSR_LSTATUS)
1481			return 0;
1482		mdelay (1);
1483	} while (--wait > 0);
1484	return -1;
1485}
1486static int
1487mii_get_media (struct net_device *dev)
1488{
1489	__u16 negotiate;
1490	__u16 bmsr;
1491	__u16 mscr;
1492	__u16 mssr;
1493	int phy_addr;
1494	struct netdev_private *np;
1495
1496	np = netdev_priv(dev);
1497	phy_addr = np->phy_addr;
1498
1499	bmsr = mii_read (dev, phy_addr, MII_BMSR);
1500	if (np->an_enable) {
1501		if (!(bmsr & BMSR_ANEGCOMPLETE)) {
1502			/* Auto-Negotiation not completed */
1503			return -1;
1504		}
1505		negotiate = mii_read (dev, phy_addr, MII_ADVERTISE) &
1506			mii_read (dev, phy_addr, MII_LPA);
1507		mscr = mii_read (dev, phy_addr, MII_CTRL1000);
1508		mssr = mii_read (dev, phy_addr, MII_STAT1000);
1509		if (mscr & ADVERTISE_1000FULL && mssr & LPA_1000FULL) {
1510			np->speed = 1000;
1511			np->full_duplex = 1;
1512			printk (KERN_INFO "Auto 1000 Mbps, Full duplex\n");
1513		} else if (mscr & ADVERTISE_1000HALF && mssr & LPA_1000HALF) {
1514			np->speed = 1000;
1515			np->full_duplex = 0;
1516			printk (KERN_INFO "Auto 1000 Mbps, Half duplex\n");
1517		} else if (negotiate & ADVERTISE_100FULL) {
1518			np->speed = 100;
1519			np->full_duplex = 1;
1520			printk (KERN_INFO "Auto 100 Mbps, Full duplex\n");
1521		} else if (negotiate & ADVERTISE_100HALF) {
1522			np->speed = 100;
1523			np->full_duplex = 0;
1524			printk (KERN_INFO "Auto 100 Mbps, Half duplex\n");
1525		} else if (negotiate & ADVERTISE_10FULL) {
1526			np->speed = 10;
1527			np->full_duplex = 1;
1528			printk (KERN_INFO "Auto 10 Mbps, Full duplex\n");
1529		} else if (negotiate & ADVERTISE_10HALF) {
1530			np->speed = 10;
1531			np->full_duplex = 0;
1532			printk (KERN_INFO "Auto 10 Mbps, Half duplex\n");
1533		}
1534		if (negotiate & ADVERTISE_PAUSE_CAP) {
1535			np->tx_flow &= 1;
1536			np->rx_flow &= 1;
1537		} else if (negotiate & ADVERTISE_PAUSE_ASYM) {
1538			np->tx_flow = 0;
1539			np->rx_flow &= 1;
1540		}
1541		/* else tx_flow, rx_flow = user select  */
1542	} else {
1543		__u16 bmcr = mii_read (dev, phy_addr, MII_BMCR);
1544		switch (bmcr & (BMCR_SPEED100 | BMCR_SPEED1000)) {
1545		case BMCR_SPEED1000:
1546			printk (KERN_INFO "Operating at 1000 Mbps, ");
1547			break;
1548		case BMCR_SPEED100:
1549			printk (KERN_INFO "Operating at 100 Mbps, ");
1550			break;
1551		case 0:
1552			printk (KERN_INFO "Operating at 10 Mbps, ");
1553		}
1554		if (bmcr & BMCR_FULLDPLX) {
1555			printk (KERN_CONT "Full duplex\n");
1556		} else {
1557			printk (KERN_CONT "Half duplex\n");
1558		}
1559	}
1560	if (np->tx_flow)
1561		printk(KERN_INFO "Enable Tx Flow Control\n");
1562	else
1563		printk(KERN_INFO "Disable Tx Flow Control\n");
1564	if (np->rx_flow)
1565		printk(KERN_INFO "Enable Rx Flow Control\n");
1566	else
1567		printk(KERN_INFO "Disable Rx Flow Control\n");
1568
1569	return 0;
1570}
1571
1572static int
1573mii_set_media (struct net_device *dev)
1574{
1575	__u16 pscr;
1576	__u16 bmcr;
1577	__u16 bmsr;
1578	__u16 anar;
1579	int phy_addr;
1580	struct netdev_private *np;
1581	np = netdev_priv(dev);
1582	phy_addr = np->phy_addr;
1583
1584	/* Does user set speed? */
1585	if (np->an_enable) {
1586		/* Advertise capabilities */
1587		bmsr = mii_read (dev, phy_addr, MII_BMSR);
1588		anar = mii_read (dev, phy_addr, MII_ADVERTISE) &
1589			~(ADVERTISE_100FULL | ADVERTISE_10FULL |
1590			  ADVERTISE_100HALF | ADVERTISE_10HALF |
1591			  ADVERTISE_100BASE4);
1592		if (bmsr & BMSR_100FULL)
1593			anar |= ADVERTISE_100FULL;
1594		if (bmsr & BMSR_100HALF)
1595			anar |= ADVERTISE_100HALF;
1596		if (bmsr & BMSR_100BASE4)
1597			anar |= ADVERTISE_100BASE4;
1598		if (bmsr & BMSR_10FULL)
1599			anar |= ADVERTISE_10FULL;
1600		if (bmsr & BMSR_10HALF)
1601			anar |= ADVERTISE_10HALF;
1602		anar |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
1603		mii_write (dev, phy_addr, MII_ADVERTISE, anar);
1604
1605		/* Enable Auto crossover */
1606		pscr = mii_read (dev, phy_addr, MII_PHY_SCR);
1607		pscr |= 3 << 5;	/* 11'b */
1608		mii_write (dev, phy_addr, MII_PHY_SCR, pscr);
1609
1610		/* Soft reset PHY */
1611		mii_write (dev, phy_addr, MII_BMCR, BMCR_RESET);
1612		bmcr = BMCR_ANENABLE | BMCR_ANRESTART | BMCR_RESET;
1613		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1614		mdelay(1);
1615	} else {
1616		/* Force speed setting */
1617		/* 1) Disable Auto crossover */
1618		pscr = mii_read (dev, phy_addr, MII_PHY_SCR);
1619		pscr &= ~(3 << 5);
1620		mii_write (dev, phy_addr, MII_PHY_SCR, pscr);
1621
1622		/* 2) PHY Reset */
1623		bmcr = mii_read (dev, phy_addr, MII_BMCR);
1624		bmcr |= BMCR_RESET;
1625		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1626
1627		/* 3) Power Down */
1628		bmcr = 0x1940;	/* must be 0x1940 */
1629		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1630		mdelay (100);	/* wait a certain time */
1631
1632		/* 4) Advertise nothing */
1633		mii_write (dev, phy_addr, MII_ADVERTISE, 0);
1634
1635		/* 5) Set media and Power Up */
1636		bmcr = BMCR_PDOWN;
1637		if (np->speed == 100) {
1638			bmcr |= BMCR_SPEED100;
1639			printk (KERN_INFO "Manual 100 Mbps, ");
1640		} else if (np->speed == 10) {
1641			printk (KERN_INFO "Manual 10 Mbps, ");
1642		}
1643		if (np->full_duplex) {
1644			bmcr |= BMCR_FULLDPLX;
1645			printk (KERN_CONT "Full duplex\n");
1646		} else {
1647			printk (KERN_CONT "Half duplex\n");
1648		}
1649#if 0
1650		/* Set 1000BaseT Master/Slave setting */
1651		mscr = mii_read (dev, phy_addr, MII_CTRL1000);
1652		mscr |= MII_MSCR_CFG_ENABLE;
1653		mscr &= ~MII_MSCR_CFG_VALUE = 0;
1654#endif
1655		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1656		mdelay(10);
1657	}
1658	return 0;
1659}
1660
1661static int
1662mii_get_media_pcs (struct net_device *dev)
1663{
1664	__u16 negotiate;
1665	__u16 bmsr;
1666	int phy_addr;
1667	struct netdev_private *np;
1668
1669	np = netdev_priv(dev);
1670	phy_addr = np->phy_addr;
1671
1672	bmsr = mii_read (dev, phy_addr, PCS_BMSR);
1673	if (np->an_enable) {
1674		if (!(bmsr & BMSR_ANEGCOMPLETE)) {
1675			/* Auto-Negotiation not completed */
1676			return -1;
1677		}
1678		negotiate = mii_read (dev, phy_addr, PCS_ANAR) &
1679			mii_read (dev, phy_addr, PCS_ANLPAR);
1680		np->speed = 1000;
1681		if (negotiate & PCS_ANAR_FULL_DUPLEX) {
1682			printk (KERN_INFO "Auto 1000 Mbps, Full duplex\n");
1683			np->full_duplex = 1;
1684		} else {
1685			printk (KERN_INFO "Auto 1000 Mbps, half duplex\n");
1686			np->full_duplex = 0;
1687		}
1688		if (negotiate & PCS_ANAR_PAUSE) {
1689			np->tx_flow &= 1;
1690			np->rx_flow &= 1;
1691		} else if (negotiate & PCS_ANAR_ASYMMETRIC) {
1692			np->tx_flow = 0;
1693			np->rx_flow &= 1;
1694		}
1695		/* else tx_flow, rx_flow = user select  */
1696	} else {
1697		__u16 bmcr = mii_read (dev, phy_addr, PCS_BMCR);
1698		printk (KERN_INFO "Operating at 1000 Mbps, ");
1699		if (bmcr & BMCR_FULLDPLX) {
1700			printk (KERN_CONT "Full duplex\n");
1701		} else {
1702			printk (KERN_CONT "Half duplex\n");
1703		}
1704	}
1705	if (np->tx_flow)
1706		printk(KERN_INFO "Enable Tx Flow Control\n");
1707	else
1708		printk(KERN_INFO "Disable Tx Flow Control\n");
1709	if (np->rx_flow)
1710		printk(KERN_INFO "Enable Rx Flow Control\n");
1711	else
1712		printk(KERN_INFO "Disable Rx Flow Control\n");
1713
1714	return 0;
1715}
1716
1717static int
1718mii_set_media_pcs (struct net_device *dev)
1719{
1720	__u16 bmcr;
1721	__u16 esr;
1722	__u16 anar;
1723	int phy_addr;
1724	struct netdev_private *np;
1725	np = netdev_priv(dev);
1726	phy_addr = np->phy_addr;
1727
1728	/* Auto-Negotiation? */
1729	if (np->an_enable) {
1730		/* Advertise capabilities */
1731		esr = mii_read (dev, phy_addr, PCS_ESR);
1732		anar = mii_read (dev, phy_addr, MII_ADVERTISE) &
1733			~PCS_ANAR_HALF_DUPLEX &
1734			~PCS_ANAR_FULL_DUPLEX;
1735		if (esr & (MII_ESR_1000BT_HD | MII_ESR_1000BX_HD))
1736			anar |= PCS_ANAR_HALF_DUPLEX;
1737		if (esr & (MII_ESR_1000BT_FD | MII_ESR_1000BX_FD))
1738			anar |= PCS_ANAR_FULL_DUPLEX;
1739		anar |= PCS_ANAR_PAUSE | PCS_ANAR_ASYMMETRIC;
1740		mii_write (dev, phy_addr, MII_ADVERTISE, anar);
1741
1742		/* Soft reset PHY */
1743		mii_write (dev, phy_addr, MII_BMCR, BMCR_RESET);
1744		bmcr = BMCR_ANENABLE | BMCR_ANRESTART | BMCR_RESET;
1745		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1746		mdelay(1);
1747	} else {
1748		/* Force speed setting */
1749		/* PHY Reset */
1750		bmcr = BMCR_RESET;
1751		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1752		mdelay(10);
1753		if (np->full_duplex) {
1754			bmcr = BMCR_FULLDPLX;
1755			printk (KERN_INFO "Manual full duplex\n");
1756		} else {
1757			bmcr = 0;
1758			printk (KERN_INFO "Manual half duplex\n");
1759		}
1760		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1761		mdelay(10);
1762
1763		/*  Advertise nothing */
1764		mii_write (dev, phy_addr, MII_ADVERTISE, 0);
1765	}
1766	return 0;
1767}
1768
1769
1770static int
1771rio_close (struct net_device *dev)
1772{
1773	struct netdev_private *np = netdev_priv(dev);
1774	struct pci_dev *pdev = np->pdev;
1775
1776	netif_stop_queue (dev);
1777
1778	rio_hw_stop(dev);
1779
1780	free_irq(pdev->irq, dev);
1781	del_timer_sync (&np->timer);
1782
1783	free_list(dev);
1784
1785	return 0;
1786}
1787
1788static void
1789rio_remove1 (struct pci_dev *pdev)
1790{
1791	struct net_device *dev = pci_get_drvdata (pdev);
1792
1793	if (dev) {
1794		struct netdev_private *np = netdev_priv(dev);
1795
1796		unregister_netdev (dev);
1797		dma_free_coherent(&pdev->dev, RX_TOTAL_SIZE, np->rx_ring,
1798				  np->rx_ring_dma);
1799		dma_free_coherent(&pdev->dev, TX_TOTAL_SIZE, np->tx_ring,
1800				  np->tx_ring_dma);
1801#ifdef MEM_MAPPING
1802		pci_iounmap(pdev, np->ioaddr);
1803#endif
1804		pci_iounmap(pdev, np->eeprom_addr);
1805		free_netdev (dev);
1806		pci_release_regions (pdev);
1807		pci_disable_device (pdev);
1808	}
1809}
1810
1811#ifdef CONFIG_PM_SLEEP
1812static int rio_suspend(struct device *device)
1813{
1814	struct net_device *dev = dev_get_drvdata(device);
1815	struct netdev_private *np = netdev_priv(dev);
1816
1817	if (!netif_running(dev))
1818		return 0;
1819
1820	netif_device_detach(dev);
1821	del_timer_sync(&np->timer);
1822	rio_hw_stop(dev);
1823
1824	return 0;
1825}
1826
1827static int rio_resume(struct device *device)
1828{
1829	struct net_device *dev = dev_get_drvdata(device);
1830	struct netdev_private *np = netdev_priv(dev);
1831
1832	if (!netif_running(dev))
1833		return 0;
1834
1835	rio_reset_ring(np);
1836	rio_hw_init(dev);
1837	np->timer.expires = jiffies + 1 * HZ;
1838	add_timer(&np->timer);
1839	netif_device_attach(dev);
1840	dl2k_enable_int(np);
1841
1842	return 0;
1843}
1844
1845static SIMPLE_DEV_PM_OPS(rio_pm_ops, rio_suspend, rio_resume);
1846#define RIO_PM_OPS    (&rio_pm_ops)
1847
1848#else
1849
1850#define RIO_PM_OPS	NULL
1851
1852#endif /* CONFIG_PM_SLEEP */
1853
1854static struct pci_driver rio_driver = {
1855	.name		= "dl2k",
1856	.id_table	= rio_pci_tbl,
1857	.probe		= rio_probe1,
1858	.remove		= rio_remove1,
1859	.driver.pm	= RIO_PM_OPS,
1860};
1861
1862module_pci_driver(rio_driver);
1863
1864/* Read Documentation/networking/device_drivers/ethernet/dlink/dl2k.rst. */
1865