1/*
2 * This file is part of the Chelsio T4 PCI-E SR-IOV Virtual Function Ethernet
3 * driver for Linux.
4 *
5 * Copyright (c) 2009-2010 Chelsio Communications, Inc. All rights reserved.
6 *
7 * This software is available to you under a choice of one of two
8 * licenses.  You may choose to be licensed under the terms of the GNU
9 * General Public License (GPL) Version 2, available from the file
10 * COPYING in the main directory of this source tree, or the
11 * OpenIB.org BSD license below:
12 *
13 *     Redistribution and use in source and binary forms, with or
14 *     without modification, are permitted provided that the following
15 *     conditions are met:
16 *
17 *      - Redistributions of source code must retain the above
18 *        copyright notice, this list of conditions and the following
19 *        disclaimer.
20 *
21 *      - Redistributions in binary form must reproduce the above
22 *        copyright notice, this list of conditions and the following
23 *        disclaimer in the documentation and/or other materials
24 *        provided with the distribution.
25 *
26 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
27 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
28 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
29 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
30 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
31 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
32 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
33 * SOFTWARE.
34 */
35
36#include <linux/skbuff.h>
37#include <linux/netdevice.h>
38#include <linux/etherdevice.h>
39#include <linux/if_vlan.h>
40#include <linux/ip.h>
41#include <net/ipv6.h>
42#include <net/tcp.h>
43#include <linux/dma-mapping.h>
44#include <linux/prefetch.h>
45
46#include "t4vf_common.h"
47#include "t4vf_defs.h"
48
49#include "../cxgb4/t4_regs.h"
50#include "../cxgb4/t4_values.h"
51#include "../cxgb4/t4fw_api.h"
52#include "../cxgb4/t4_msg.h"
53
54/*
55 * Constants ...
56 */
57enum {
58	/*
59	 * Egress Queue sizes, producer and consumer indices are all in units
60	 * of Egress Context Units bytes.  Note that as far as the hardware is
61	 * concerned, the free list is an Egress Queue (the host produces free
62	 * buffers which the hardware consumes) and free list entries are
63	 * 64-bit PCI DMA addresses.
64	 */
65	EQ_UNIT = SGE_EQ_IDXSIZE,
66	FL_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64),
67	TXD_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64),
68
69	/*
70	 * Max number of TX descriptors we clean up at a time.  Should be
71	 * modest as freeing skbs isn't cheap and it happens while holding
72	 * locks.  We just need to free packets faster than they arrive, we
73	 * eventually catch up and keep the amortized cost reasonable.
74	 */
75	MAX_TX_RECLAIM = 16,
76
77	/*
78	 * Max number of Rx buffers we replenish at a time.  Again keep this
79	 * modest, allocating buffers isn't cheap either.
80	 */
81	MAX_RX_REFILL = 16,
82
83	/*
84	 * Period of the Rx queue check timer.  This timer is infrequent as it
85	 * has something to do only when the system experiences severe memory
86	 * shortage.
87	 */
88	RX_QCHECK_PERIOD = (HZ / 2),
89
90	/*
91	 * Period of the TX queue check timer and the maximum number of TX
92	 * descriptors to be reclaimed by the TX timer.
93	 */
94	TX_QCHECK_PERIOD = (HZ / 2),
95	MAX_TIMER_TX_RECLAIM = 100,
96
97	/*
98	 * Suspend an Ethernet TX queue with fewer available descriptors than
99	 * this.  We always want to have room for a maximum sized packet:
100	 * inline immediate data + MAX_SKB_FRAGS. This is the same as
101	 * calc_tx_flits() for a TSO packet with nr_frags == MAX_SKB_FRAGS
102	 * (see that function and its helpers for a description of the
103	 * calculation).
104	 */
105	ETHTXQ_MAX_FRAGS = MAX_SKB_FRAGS + 1,
106	ETHTXQ_MAX_SGL_LEN = ((3 * (ETHTXQ_MAX_FRAGS-1))/2 +
107				   ((ETHTXQ_MAX_FRAGS-1) & 1) +
108				   2),
109	ETHTXQ_MAX_HDR = (sizeof(struct fw_eth_tx_pkt_vm_wr) +
110			  sizeof(struct cpl_tx_pkt_lso_core) +
111			  sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64),
112	ETHTXQ_MAX_FLITS = ETHTXQ_MAX_SGL_LEN + ETHTXQ_MAX_HDR,
113
114	ETHTXQ_STOP_THRES = 1 + DIV_ROUND_UP(ETHTXQ_MAX_FLITS, TXD_PER_EQ_UNIT),
115
116	/*
117	 * Max TX descriptor space we allow for an Ethernet packet to be
118	 * inlined into a WR.  This is limited by the maximum value which
119	 * we can specify for immediate data in the firmware Ethernet TX
120	 * Work Request.
121	 */
122	MAX_IMM_TX_PKT_LEN = FW_WR_IMMDLEN_M,
123
124	/*
125	 * Max size of a WR sent through a control TX queue.
126	 */
127	MAX_CTRL_WR_LEN = 256,
128
129	/*
130	 * Maximum amount of data which we'll ever need to inline into a
131	 * TX ring: max(MAX_IMM_TX_PKT_LEN, MAX_CTRL_WR_LEN).
132	 */
133	MAX_IMM_TX_LEN = (MAX_IMM_TX_PKT_LEN > MAX_CTRL_WR_LEN
134			  ? MAX_IMM_TX_PKT_LEN
135			  : MAX_CTRL_WR_LEN),
136
137	/*
138	 * For incoming packets less than RX_COPY_THRES, we copy the data into
139	 * an skb rather than referencing the data.  We allocate enough
140	 * in-line room in skb's to accommodate pulling in RX_PULL_LEN bytes
141	 * of the data (header).
142	 */
143	RX_COPY_THRES = 256,
144	RX_PULL_LEN = 128,
145
146	/*
147	 * Main body length for sk_buffs used for RX Ethernet packets with
148	 * fragments.  Should be >= RX_PULL_LEN but possibly bigger to give
149	 * pskb_may_pull() some room.
150	 */
151	RX_SKB_LEN = 512,
152};
153
154/*
155 * Software state per TX descriptor.
156 */
157struct tx_sw_desc {
158	struct sk_buff *skb;		/* socket buffer of TX data source */
159	struct ulptx_sgl *sgl;		/* scatter/gather list in TX Queue */
160};
161
162/*
163 * Software state per RX Free List descriptor.  We keep track of the allocated
164 * FL page, its size, and its PCI DMA address (if the page is mapped).  The FL
165 * page size and its PCI DMA mapped state are stored in the low bits of the
166 * PCI DMA address as per below.
167 */
168struct rx_sw_desc {
169	struct page *page;		/* Free List page buffer */
170	dma_addr_t dma_addr;		/* PCI DMA address (if mapped) */
171					/*   and flags (see below) */
172};
173
174/*
175 * The low bits of rx_sw_desc.dma_addr have special meaning.  Note that the
176 * SGE also uses the low 4 bits to determine the size of the buffer.  It uses
177 * those bits to index into the SGE_FL_BUFFER_SIZE[index] register array.
178 * Since we only use SGE_FL_BUFFER_SIZE0 and SGE_FL_BUFFER_SIZE1, these low 4
179 * bits can only contain a 0 or a 1 to indicate which size buffer we're giving
180 * to the SGE.  Thus, our software state of "is the buffer mapped for DMA" is
181 * maintained in an inverse sense so the hardware never sees that bit high.
182 */
183enum {
184	RX_LARGE_BUF    = 1 << 0,	/* buffer is SGE_FL_BUFFER_SIZE[1] */
185	RX_UNMAPPED_BUF = 1 << 1,	/* buffer is not mapped */
186};
187
188/**
189 *	get_buf_addr - return DMA buffer address of software descriptor
190 *	@sdesc: pointer to the software buffer descriptor
191 *
192 *	Return the DMA buffer address of a software descriptor (stripping out
193 *	our low-order flag bits).
194 */
195static inline dma_addr_t get_buf_addr(const struct rx_sw_desc *sdesc)
196{
197	return sdesc->dma_addr & ~(dma_addr_t)(RX_LARGE_BUF | RX_UNMAPPED_BUF);
198}
199
200/**
201 *	is_buf_mapped - is buffer mapped for DMA?
202 *	@sdesc: pointer to the software buffer descriptor
203 *
204 *	Determine whether the buffer associated with a software descriptor in
205 *	mapped for DMA or not.
206 */
207static inline bool is_buf_mapped(const struct rx_sw_desc *sdesc)
208{
209	return !(sdesc->dma_addr & RX_UNMAPPED_BUF);
210}
211
212/**
213 *	need_skb_unmap - does the platform need unmapping of sk_buffs?
214 *
215 *	Returns true if the platform needs sk_buff unmapping.  The compiler
216 *	optimizes away unnecessary code if this returns true.
217 */
218static inline int need_skb_unmap(void)
219{
220#ifdef CONFIG_NEED_DMA_MAP_STATE
221	return 1;
222#else
223	return 0;
224#endif
225}
226
227/**
228 *	txq_avail - return the number of available slots in a TX queue
229 *	@tq: the TX queue
230 *
231 *	Returns the number of available descriptors in a TX queue.
232 */
233static inline unsigned int txq_avail(const struct sge_txq *tq)
234{
235	return tq->size - 1 - tq->in_use;
236}
237
238/**
239 *	fl_cap - return the capacity of a Free List
240 *	@fl: the Free List
241 *
242 *	Returns the capacity of a Free List.  The capacity is less than the
243 *	size because an Egress Queue Index Unit worth of descriptors needs to
244 *	be left unpopulated, otherwise the Producer and Consumer indices PIDX
245 *	and CIDX will match and the hardware will think the FL is empty.
246 */
247static inline unsigned int fl_cap(const struct sge_fl *fl)
248{
249	return fl->size - FL_PER_EQ_UNIT;
250}
251
252/**
253 *	fl_starving - return whether a Free List is starving.
254 *	@adapter: pointer to the adapter
255 *	@fl: the Free List
256 *
257 *	Tests specified Free List to see whether the number of buffers
258 *	available to the hardware has falled below our "starvation"
259 *	threshold.
260 */
261static inline bool fl_starving(const struct adapter *adapter,
262			       const struct sge_fl *fl)
263{
264	const struct sge *s = &adapter->sge;
265
266	return fl->avail - fl->pend_cred <= s->fl_starve_thres;
267}
268
269/**
270 *	map_skb -  map an skb for DMA to the device
271 *	@dev: the egress net device
272 *	@skb: the packet to map
273 *	@addr: a pointer to the base of the DMA mapping array
274 *
275 *	Map an skb for DMA to the device and return an array of DMA addresses.
276 */
277static int map_skb(struct device *dev, const struct sk_buff *skb,
278		   dma_addr_t *addr)
279{
280	const skb_frag_t *fp, *end;
281	const struct skb_shared_info *si;
282
283	*addr = dma_map_single(dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE);
284	if (dma_mapping_error(dev, *addr))
285		goto out_err;
286
287	si = skb_shinfo(skb);
288	end = &si->frags[si->nr_frags];
289	for (fp = si->frags; fp < end; fp++) {
290		*++addr = skb_frag_dma_map(dev, fp, 0, skb_frag_size(fp),
291					   DMA_TO_DEVICE);
292		if (dma_mapping_error(dev, *addr))
293			goto unwind;
294	}
295	return 0;
296
297unwind:
298	while (fp-- > si->frags)
299		dma_unmap_page(dev, *--addr, skb_frag_size(fp), DMA_TO_DEVICE);
300	dma_unmap_single(dev, addr[-1], skb_headlen(skb), DMA_TO_DEVICE);
301
302out_err:
303	return -ENOMEM;
304}
305
306static void unmap_sgl(struct device *dev, const struct sk_buff *skb,
307		      const struct ulptx_sgl *sgl, const struct sge_txq *tq)
308{
309	const struct ulptx_sge_pair *p;
310	unsigned int nfrags = skb_shinfo(skb)->nr_frags;
311
312	if (likely(skb_headlen(skb)))
313		dma_unmap_single(dev, be64_to_cpu(sgl->addr0),
314				 be32_to_cpu(sgl->len0), DMA_TO_DEVICE);
315	else {
316		dma_unmap_page(dev, be64_to_cpu(sgl->addr0),
317			       be32_to_cpu(sgl->len0), DMA_TO_DEVICE);
318		nfrags--;
319	}
320
321	/*
322	 * the complexity below is because of the possibility of a wrap-around
323	 * in the middle of an SGL
324	 */
325	for (p = sgl->sge; nfrags >= 2; nfrags -= 2) {
326		if (likely((u8 *)(p + 1) <= (u8 *)tq->stat)) {
327unmap:
328			dma_unmap_page(dev, be64_to_cpu(p->addr[0]),
329				       be32_to_cpu(p->len[0]), DMA_TO_DEVICE);
330			dma_unmap_page(dev, be64_to_cpu(p->addr[1]),
331				       be32_to_cpu(p->len[1]), DMA_TO_DEVICE);
332			p++;
333		} else if ((u8 *)p == (u8 *)tq->stat) {
334			p = (const struct ulptx_sge_pair *)tq->desc;
335			goto unmap;
336		} else if ((u8 *)p + 8 == (u8 *)tq->stat) {
337			const __be64 *addr = (const __be64 *)tq->desc;
338
339			dma_unmap_page(dev, be64_to_cpu(addr[0]),
340				       be32_to_cpu(p->len[0]), DMA_TO_DEVICE);
341			dma_unmap_page(dev, be64_to_cpu(addr[1]),
342				       be32_to_cpu(p->len[1]), DMA_TO_DEVICE);
343			p = (const struct ulptx_sge_pair *)&addr[2];
344		} else {
345			const __be64 *addr = (const __be64 *)tq->desc;
346
347			dma_unmap_page(dev, be64_to_cpu(p->addr[0]),
348				       be32_to_cpu(p->len[0]), DMA_TO_DEVICE);
349			dma_unmap_page(dev, be64_to_cpu(addr[0]),
350				       be32_to_cpu(p->len[1]), DMA_TO_DEVICE);
351			p = (const struct ulptx_sge_pair *)&addr[1];
352		}
353	}
354	if (nfrags) {
355		__be64 addr;
356
357		if ((u8 *)p == (u8 *)tq->stat)
358			p = (const struct ulptx_sge_pair *)tq->desc;
359		addr = ((u8 *)p + 16 <= (u8 *)tq->stat
360			? p->addr[0]
361			: *(const __be64 *)tq->desc);
362		dma_unmap_page(dev, be64_to_cpu(addr), be32_to_cpu(p->len[0]),
363			       DMA_TO_DEVICE);
364	}
365}
366
367/**
368 *	free_tx_desc - reclaims TX descriptors and their buffers
369 *	@adapter: the adapter
370 *	@tq: the TX queue to reclaim descriptors from
371 *	@n: the number of descriptors to reclaim
372 *	@unmap: whether the buffers should be unmapped for DMA
373 *
374 *	Reclaims TX descriptors from an SGE TX queue and frees the associated
375 *	TX buffers.  Called with the TX queue lock held.
376 */
377static void free_tx_desc(struct adapter *adapter, struct sge_txq *tq,
378			 unsigned int n, bool unmap)
379{
380	struct tx_sw_desc *sdesc;
381	unsigned int cidx = tq->cidx;
382	struct device *dev = adapter->pdev_dev;
383
384	const int need_unmap = need_skb_unmap() && unmap;
385
386	sdesc = &tq->sdesc[cidx];
387	while (n--) {
388		/*
389		 * If we kept a reference to the original TX skb, we need to
390		 * unmap it from PCI DMA space (if required) and free it.
391		 */
392		if (sdesc->skb) {
393			if (need_unmap)
394				unmap_sgl(dev, sdesc->skb, sdesc->sgl, tq);
395			dev_consume_skb_any(sdesc->skb);
396			sdesc->skb = NULL;
397		}
398
399		sdesc++;
400		if (++cidx == tq->size) {
401			cidx = 0;
402			sdesc = tq->sdesc;
403		}
404	}
405	tq->cidx = cidx;
406}
407
408/*
409 * Return the number of reclaimable descriptors in a TX queue.
410 */
411static inline int reclaimable(const struct sge_txq *tq)
412{
413	int hw_cidx = be16_to_cpu(tq->stat->cidx);
414	int reclaimable = hw_cidx - tq->cidx;
415	if (reclaimable < 0)
416		reclaimable += tq->size;
417	return reclaimable;
418}
419
420/**
421 *	reclaim_completed_tx - reclaims completed TX descriptors
422 *	@adapter: the adapter
423 *	@tq: the TX queue to reclaim completed descriptors from
424 *	@unmap: whether the buffers should be unmapped for DMA
425 *
426 *	Reclaims TX descriptors that the SGE has indicated it has processed,
427 *	and frees the associated buffers if possible.  Called with the TX
428 *	queue locked.
429 */
430static inline void reclaim_completed_tx(struct adapter *adapter,
431					struct sge_txq *tq,
432					bool unmap)
433{
434	int avail = reclaimable(tq);
435
436	if (avail) {
437		/*
438		 * Limit the amount of clean up work we do at a time to keep
439		 * the TX lock hold time O(1).
440		 */
441		if (avail > MAX_TX_RECLAIM)
442			avail = MAX_TX_RECLAIM;
443
444		free_tx_desc(adapter, tq, avail, unmap);
445		tq->in_use -= avail;
446	}
447}
448
449/**
450 *	get_buf_size - return the size of an RX Free List buffer.
451 *	@adapter: pointer to the associated adapter
452 *	@sdesc: pointer to the software buffer descriptor
453 */
454static inline int get_buf_size(const struct adapter *adapter,
455			       const struct rx_sw_desc *sdesc)
456{
457	const struct sge *s = &adapter->sge;
458
459	return (s->fl_pg_order > 0 && (sdesc->dma_addr & RX_LARGE_BUF)
460		? (PAGE_SIZE << s->fl_pg_order) : PAGE_SIZE);
461}
462
463/**
464 *	free_rx_bufs - free RX buffers on an SGE Free List
465 *	@adapter: the adapter
466 *	@fl: the SGE Free List to free buffers from
467 *	@n: how many buffers to free
468 *
469 *	Release the next @n buffers on an SGE Free List RX queue.   The
470 *	buffers must be made inaccessible to hardware before calling this
471 *	function.
472 */
473static void free_rx_bufs(struct adapter *adapter, struct sge_fl *fl, int n)
474{
475	while (n--) {
476		struct rx_sw_desc *sdesc = &fl->sdesc[fl->cidx];
477
478		if (is_buf_mapped(sdesc))
479			dma_unmap_page(adapter->pdev_dev, get_buf_addr(sdesc),
480				       get_buf_size(adapter, sdesc),
481				       DMA_FROM_DEVICE);
482		put_page(sdesc->page);
483		sdesc->page = NULL;
484		if (++fl->cidx == fl->size)
485			fl->cidx = 0;
486		fl->avail--;
487	}
488}
489
490/**
491 *	unmap_rx_buf - unmap the current RX buffer on an SGE Free List
492 *	@adapter: the adapter
493 *	@fl: the SGE Free List
494 *
495 *	Unmap the current buffer on an SGE Free List RX queue.   The
496 *	buffer must be made inaccessible to HW before calling this function.
497 *
498 *	This is similar to @free_rx_bufs above but does not free the buffer.
499 *	Do note that the FL still loses any further access to the buffer.
500 *	This is used predominantly to "transfer ownership" of an FL buffer
501 *	to another entity (typically an skb's fragment list).
502 */
503static void unmap_rx_buf(struct adapter *adapter, struct sge_fl *fl)
504{
505	struct rx_sw_desc *sdesc = &fl->sdesc[fl->cidx];
506
507	if (is_buf_mapped(sdesc))
508		dma_unmap_page(adapter->pdev_dev, get_buf_addr(sdesc),
509			       get_buf_size(adapter, sdesc),
510			       DMA_FROM_DEVICE);
511	sdesc->page = NULL;
512	if (++fl->cidx == fl->size)
513		fl->cidx = 0;
514	fl->avail--;
515}
516
517/**
518 *	ring_fl_db - righ doorbell on free list
519 *	@adapter: the adapter
520 *	@fl: the Free List whose doorbell should be rung ...
521 *
522 *	Tell the Scatter Gather Engine that there are new free list entries
523 *	available.
524 */
525static inline void ring_fl_db(struct adapter *adapter, struct sge_fl *fl)
526{
527	u32 val = adapter->params.arch.sge_fl_db;
528
529	/* The SGE keeps track of its Producer and Consumer Indices in terms
530	 * of Egress Queue Units so we can only tell it about integral numbers
531	 * of multiples of Free List Entries per Egress Queue Units ...
532	 */
533	if (fl->pend_cred >= FL_PER_EQ_UNIT) {
534		if (is_t4(adapter->params.chip))
535			val |= PIDX_V(fl->pend_cred / FL_PER_EQ_UNIT);
536		else
537			val |= PIDX_T5_V(fl->pend_cred / FL_PER_EQ_UNIT);
538
539		/* Make sure all memory writes to the Free List queue are
540		 * committed before we tell the hardware about them.
541		 */
542		wmb();
543
544		/* If we don't have access to the new User Doorbell (T5+), use
545		 * the old doorbell mechanism; otherwise use the new BAR2
546		 * mechanism.
547		 */
548		if (unlikely(fl->bar2_addr == NULL)) {
549			t4_write_reg(adapter,
550				     T4VF_SGE_BASE_ADDR + SGE_VF_KDOORBELL,
551				     QID_V(fl->cntxt_id) | val);
552		} else {
553			writel(val | QID_V(fl->bar2_qid),
554			       fl->bar2_addr + SGE_UDB_KDOORBELL);
555
556			/* This Write memory Barrier will force the write to
557			 * the User Doorbell area to be flushed.
558			 */
559			wmb();
560		}
561		fl->pend_cred %= FL_PER_EQ_UNIT;
562	}
563}
564
565/**
566 *	set_rx_sw_desc - initialize software RX buffer descriptor
567 *	@sdesc: pointer to the softwore RX buffer descriptor
568 *	@page: pointer to the page data structure backing the RX buffer
569 *	@dma_addr: PCI DMA address (possibly with low-bit flags)
570 */
571static inline void set_rx_sw_desc(struct rx_sw_desc *sdesc, struct page *page,
572				  dma_addr_t dma_addr)
573{
574	sdesc->page = page;
575	sdesc->dma_addr = dma_addr;
576}
577
578/*
579 * Support for poisoning RX buffers ...
580 */
581#define POISON_BUF_VAL -1
582
583static inline void poison_buf(struct page *page, size_t sz)
584{
585#if POISON_BUF_VAL >= 0
586	memset(page_address(page), POISON_BUF_VAL, sz);
587#endif
588}
589
590/**
591 *	refill_fl - refill an SGE RX buffer ring
592 *	@adapter: the adapter
593 *	@fl: the Free List ring to refill
594 *	@n: the number of new buffers to allocate
595 *	@gfp: the gfp flags for the allocations
596 *
597 *	(Re)populate an SGE free-buffer queue with up to @n new packet buffers,
598 *	allocated with the supplied gfp flags.  The caller must assure that
599 *	@n does not exceed the queue's capacity -- i.e. (cidx == pidx) _IN
600 *	EGRESS QUEUE UNITS_ indicates an empty Free List!  Returns the number
601 *	of buffers allocated.  If afterwards the queue is found critically low,
602 *	mark it as starving in the bitmap of starving FLs.
603 */
604static unsigned int refill_fl(struct adapter *adapter, struct sge_fl *fl,
605			      int n, gfp_t gfp)
606{
607	struct sge *s = &adapter->sge;
608	struct page *page;
609	dma_addr_t dma_addr;
610	unsigned int cred = fl->avail;
611	__be64 *d = &fl->desc[fl->pidx];
612	struct rx_sw_desc *sdesc = &fl->sdesc[fl->pidx];
613
614	/*
615	 * Sanity: ensure that the result of adding n Free List buffers
616	 * won't result in wrapping the SGE's Producer Index around to
617	 * it's Consumer Index thereby indicating an empty Free List ...
618	 */
619	BUG_ON(fl->avail + n > fl->size - FL_PER_EQ_UNIT);
620
621	gfp |= __GFP_NOWARN;
622
623	/*
624	 * If we support large pages, prefer large buffers and fail over to
625	 * small pages if we can't allocate large pages to satisfy the refill.
626	 * If we don't support large pages, drop directly into the small page
627	 * allocation code.
628	 */
629	if (s->fl_pg_order == 0)
630		goto alloc_small_pages;
631
632	while (n) {
633		page = __dev_alloc_pages(gfp, s->fl_pg_order);
634		if (unlikely(!page)) {
635			/*
636			 * We've failed inour attempt to allocate a "large
637			 * page".  Fail over to the "small page" allocation
638			 * below.
639			 */
640			fl->large_alloc_failed++;
641			break;
642		}
643		poison_buf(page, PAGE_SIZE << s->fl_pg_order);
644
645		dma_addr = dma_map_page(adapter->pdev_dev, page, 0,
646					PAGE_SIZE << s->fl_pg_order,
647					DMA_FROM_DEVICE);
648		if (unlikely(dma_mapping_error(adapter->pdev_dev, dma_addr))) {
649			/*
650			 * We've run out of DMA mapping space.  Free up the
651			 * buffer and return with what we've managed to put
652			 * into the free list.  We don't want to fail over to
653			 * the small page allocation below in this case
654			 * because DMA mapping resources are typically
655			 * critical resources once they become scarse.
656			 */
657			__free_pages(page, s->fl_pg_order);
658			goto out;
659		}
660		dma_addr |= RX_LARGE_BUF;
661		*d++ = cpu_to_be64(dma_addr);
662
663		set_rx_sw_desc(sdesc, page, dma_addr);
664		sdesc++;
665
666		fl->avail++;
667		if (++fl->pidx == fl->size) {
668			fl->pidx = 0;
669			sdesc = fl->sdesc;
670			d = fl->desc;
671		}
672		n--;
673	}
674
675alloc_small_pages:
676	while (n--) {
677		page = __dev_alloc_page(gfp);
678		if (unlikely(!page)) {
679			fl->alloc_failed++;
680			break;
681		}
682		poison_buf(page, PAGE_SIZE);
683
684		dma_addr = dma_map_page(adapter->pdev_dev, page, 0, PAGE_SIZE,
685				       DMA_FROM_DEVICE);
686		if (unlikely(dma_mapping_error(adapter->pdev_dev, dma_addr))) {
687			put_page(page);
688			break;
689		}
690		*d++ = cpu_to_be64(dma_addr);
691
692		set_rx_sw_desc(sdesc, page, dma_addr);
693		sdesc++;
694
695		fl->avail++;
696		if (++fl->pidx == fl->size) {
697			fl->pidx = 0;
698			sdesc = fl->sdesc;
699			d = fl->desc;
700		}
701	}
702
703out:
704	/*
705	 * Update our accounting state to incorporate the new Free List
706	 * buffers, tell the hardware about them and return the number of
707	 * buffers which we were able to allocate.
708	 */
709	cred = fl->avail - cred;
710	fl->pend_cred += cred;
711	ring_fl_db(adapter, fl);
712
713	if (unlikely(fl_starving(adapter, fl))) {
714		smp_wmb();
715		set_bit(fl->cntxt_id, adapter->sge.starving_fl);
716	}
717
718	return cred;
719}
720
721/*
722 * Refill a Free List to its capacity or the Maximum Refill Increment,
723 * whichever is smaller ...
724 */
725static inline void __refill_fl(struct adapter *adapter, struct sge_fl *fl)
726{
727	refill_fl(adapter, fl,
728		  min((unsigned int)MAX_RX_REFILL, fl_cap(fl) - fl->avail),
729		  GFP_ATOMIC);
730}
731
732/**
733 *	alloc_ring - allocate resources for an SGE descriptor ring
734 *	@dev: the PCI device's core device
735 *	@nelem: the number of descriptors
736 *	@hwsize: the size of each hardware descriptor
737 *	@swsize: the size of each software descriptor
738 *	@busaddrp: the physical PCI bus address of the allocated ring
739 *	@swringp: return address pointer for software ring
740 *	@stat_size: extra space in hardware ring for status information
741 *
742 *	Allocates resources for an SGE descriptor ring, such as TX queues,
743 *	free buffer lists, response queues, etc.  Each SGE ring requires
744 *	space for its hardware descriptors plus, optionally, space for software
745 *	state associated with each hardware entry (the metadata).  The function
746 *	returns three values: the virtual address for the hardware ring (the
747 *	return value of the function), the PCI bus address of the hardware
748 *	ring (in *busaddrp), and the address of the software ring (in swringp).
749 *	Both the hardware and software rings are returned zeroed out.
750 */
751static void *alloc_ring(struct device *dev, size_t nelem, size_t hwsize,
752			size_t swsize, dma_addr_t *busaddrp, void *swringp,
753			size_t stat_size)
754{
755	/*
756	 * Allocate the hardware ring and PCI DMA bus address space for said.
757	 */
758	size_t hwlen = nelem * hwsize + stat_size;
759	void *hwring = dma_alloc_coherent(dev, hwlen, busaddrp, GFP_KERNEL);
760
761	if (!hwring)
762		return NULL;
763
764	/*
765	 * If the caller wants a software ring, allocate it and return a
766	 * pointer to it in *swringp.
767	 */
768	BUG_ON((swsize != 0) != (swringp != NULL));
769	if (swsize) {
770		void *swring = kcalloc(nelem, swsize, GFP_KERNEL);
771
772		if (!swring) {
773			dma_free_coherent(dev, hwlen, hwring, *busaddrp);
774			return NULL;
775		}
776		*(void **)swringp = swring;
777	}
778
779	return hwring;
780}
781
782/**
783 *	sgl_len - calculates the size of an SGL of the given capacity
784 *	@n: the number of SGL entries
785 *
786 *	Calculates the number of flits (8-byte units) needed for a Direct
787 *	Scatter/Gather List that can hold the given number of entries.
788 */
789static inline unsigned int sgl_len(unsigned int n)
790{
791	/*
792	 * A Direct Scatter Gather List uses 32-bit lengths and 64-bit PCI DMA
793	 * addresses.  The DSGL Work Request starts off with a 32-bit DSGL
794	 * ULPTX header, then Length0, then Address0, then, for 1 <= i <= N,
795	 * repeated sequences of { Length[i], Length[i+1], Address[i],
796	 * Address[i+1] } (this ensures that all addresses are on 64-bit
797	 * boundaries).  If N is even, then Length[N+1] should be set to 0 and
798	 * Address[N+1] is omitted.
799	 *
800	 * The following calculation incorporates all of the above.  It's
801	 * somewhat hard to follow but, briefly: the "+2" accounts for the
802	 * first two flits which include the DSGL header, Length0 and
803	 * Address0; the "(3*(n-1))/2" covers the main body of list entries (3
804	 * flits for every pair of the remaining N) +1 if (n-1) is odd; and
805	 * finally the "+((n-1)&1)" adds the one remaining flit needed if
806	 * (n-1) is odd ...
807	 */
808	n--;
809	return (3 * n) / 2 + (n & 1) + 2;
810}
811
812/**
813 *	flits_to_desc - returns the num of TX descriptors for the given flits
814 *	@flits: the number of flits
815 *
816 *	Returns the number of TX descriptors needed for the supplied number
817 *	of flits.
818 */
819static inline unsigned int flits_to_desc(unsigned int flits)
820{
821	BUG_ON(flits > SGE_MAX_WR_LEN / sizeof(__be64));
822	return DIV_ROUND_UP(flits, TXD_PER_EQ_UNIT);
823}
824
825/**
826 *	is_eth_imm - can an Ethernet packet be sent as immediate data?
827 *	@skb: the packet
828 *
829 *	Returns whether an Ethernet packet is small enough to fit completely as
830 *	immediate data.
831 */
832static inline int is_eth_imm(const struct sk_buff *skb)
833{
834	/*
835	 * The VF Driver uses the FW_ETH_TX_PKT_VM_WR firmware Work Request
836	 * which does not accommodate immediate data.  We could dike out all
837	 * of the support code for immediate data but that would tie our hands
838	 * too much if we ever want to enhace the firmware.  It would also
839	 * create more differences between the PF and VF Drivers.
840	 */
841	return false;
842}
843
844/**
845 *	calc_tx_flits - calculate the number of flits for a packet TX WR
846 *	@skb: the packet
847 *
848 *	Returns the number of flits needed for a TX Work Request for the
849 *	given Ethernet packet, including the needed WR and CPL headers.
850 */
851static inline unsigned int calc_tx_flits(const struct sk_buff *skb)
852{
853	unsigned int flits;
854
855	/*
856	 * If the skb is small enough, we can pump it out as a work request
857	 * with only immediate data.  In that case we just have to have the
858	 * TX Packet header plus the skb data in the Work Request.
859	 */
860	if (is_eth_imm(skb))
861		return DIV_ROUND_UP(skb->len + sizeof(struct cpl_tx_pkt),
862				    sizeof(__be64));
863
864	/*
865	 * Otherwise, we're going to have to construct a Scatter gather list
866	 * of the skb body and fragments.  We also include the flits necessary
867	 * for the TX Packet Work Request and CPL.  We always have a firmware
868	 * Write Header (incorporated as part of the cpl_tx_pkt_lso and
869	 * cpl_tx_pkt structures), followed by either a TX Packet Write CPL
870	 * message or, if we're doing a Large Send Offload, an LSO CPL message
871	 * with an embedded TX Packet Write CPL message.
872	 */
873	flits = sgl_len(skb_shinfo(skb)->nr_frags + 1);
874	if (skb_shinfo(skb)->gso_size)
875		flits += (sizeof(struct fw_eth_tx_pkt_vm_wr) +
876			  sizeof(struct cpl_tx_pkt_lso_core) +
877			  sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64);
878	else
879		flits += (sizeof(struct fw_eth_tx_pkt_vm_wr) +
880			  sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64);
881	return flits;
882}
883
884/**
885 *	write_sgl - populate a Scatter/Gather List for a packet
886 *	@skb: the packet
887 *	@tq: the TX queue we are writing into
888 *	@sgl: starting location for writing the SGL
889 *	@end: points right after the end of the SGL
890 *	@start: start offset into skb main-body data to include in the SGL
891 *	@addr: the list of DMA bus addresses for the SGL elements
892 *
893 *	Generates a Scatter/Gather List for the buffers that make up a packet.
894 *	The caller must provide adequate space for the SGL that will be written.
895 *	The SGL includes all of the packet's page fragments and the data in its
896 *	main body except for the first @start bytes.  @pos must be 16-byte
897 *	aligned and within a TX descriptor with available space.  @end points
898 *	write after the end of the SGL but does not account for any potential
899 *	wrap around, i.e., @end > @tq->stat.
900 */
901static void write_sgl(const struct sk_buff *skb, struct sge_txq *tq,
902		      struct ulptx_sgl *sgl, u64 *end, unsigned int start,
903		      const dma_addr_t *addr)
904{
905	unsigned int i, len;
906	struct ulptx_sge_pair *to;
907	const struct skb_shared_info *si = skb_shinfo(skb);
908	unsigned int nfrags = si->nr_frags;
909	struct ulptx_sge_pair buf[MAX_SKB_FRAGS / 2 + 1];
910
911	len = skb_headlen(skb) - start;
912	if (likely(len)) {
913		sgl->len0 = htonl(len);
914		sgl->addr0 = cpu_to_be64(addr[0] + start);
915		nfrags++;
916	} else {
917		sgl->len0 = htonl(skb_frag_size(&si->frags[0]));
918		sgl->addr0 = cpu_to_be64(addr[1]);
919	}
920
921	sgl->cmd_nsge = htonl(ULPTX_CMD_V(ULP_TX_SC_DSGL) |
922			      ULPTX_NSGE_V(nfrags));
923	if (likely(--nfrags == 0))
924		return;
925	/*
926	 * Most of the complexity below deals with the possibility we hit the
927	 * end of the queue in the middle of writing the SGL.  For this case
928	 * only we create the SGL in a temporary buffer and then copy it.
929	 */
930	to = (u8 *)end > (u8 *)tq->stat ? buf : sgl->sge;
931
932	for (i = (nfrags != si->nr_frags); nfrags >= 2; nfrags -= 2, to++) {
933		to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i]));
934		to->len[1] = cpu_to_be32(skb_frag_size(&si->frags[++i]));
935		to->addr[0] = cpu_to_be64(addr[i]);
936		to->addr[1] = cpu_to_be64(addr[++i]);
937	}
938	if (nfrags) {
939		to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i]));
940		to->len[1] = cpu_to_be32(0);
941		to->addr[0] = cpu_to_be64(addr[i + 1]);
942	}
943	if (unlikely((u8 *)end > (u8 *)tq->stat)) {
944		unsigned int part0 = (u8 *)tq->stat - (u8 *)sgl->sge, part1;
945
946		if (likely(part0))
947			memcpy(sgl->sge, buf, part0);
948		part1 = (u8 *)end - (u8 *)tq->stat;
949		memcpy(tq->desc, (u8 *)buf + part0, part1);
950		end = (void *)tq->desc + part1;
951	}
952	if ((uintptr_t)end & 8)           /* 0-pad to multiple of 16 */
953		*end = 0;
954}
955
956/**
957 *	ring_tx_db - check and potentially ring a TX queue's doorbell
958 *	@adapter: the adapter
959 *	@tq: the TX queue
960 *	@n: number of new descriptors to give to HW
961 *
962 *	Ring the doorbel for a TX queue.
963 */
964static inline void ring_tx_db(struct adapter *adapter, struct sge_txq *tq,
965			      int n)
966{
967	/* Make sure that all writes to the TX Descriptors are committed
968	 * before we tell the hardware about them.
969	 */
970	wmb();
971
972	/* If we don't have access to the new User Doorbell (T5+), use the old
973	 * doorbell mechanism; otherwise use the new BAR2 mechanism.
974	 */
975	if (unlikely(tq->bar2_addr == NULL)) {
976		u32 val = PIDX_V(n);
977
978		t4_write_reg(adapter, T4VF_SGE_BASE_ADDR + SGE_VF_KDOORBELL,
979			     QID_V(tq->cntxt_id) | val);
980	} else {
981		u32 val = PIDX_T5_V(n);
982
983		/* T4 and later chips share the same PIDX field offset within
984		 * the doorbell, but T5 and later shrank the field in order to
985		 * gain a bit for Doorbell Priority.  The field was absurdly
986		 * large in the first place (14 bits) so we just use the T5
987		 * and later limits and warn if a Queue ID is too large.
988		 */
989		WARN_ON(val & DBPRIO_F);
990
991		/* If we're only writing a single Egress Unit and the BAR2
992		 * Queue ID is 0, we can use the Write Combining Doorbell
993		 * Gather Buffer; otherwise we use the simple doorbell.
994		 */
995		if (n == 1 && tq->bar2_qid == 0) {
996			unsigned int index = (tq->pidx
997					      ? (tq->pidx - 1)
998					      : (tq->size - 1));
999			__be64 *src = (__be64 *)&tq->desc[index];
1000			__be64 __iomem *dst = (__be64 __iomem *)(tq->bar2_addr +
1001							 SGE_UDB_WCDOORBELL);
1002			unsigned int count = EQ_UNIT / sizeof(__be64);
1003
1004			/* Copy the TX Descriptor in a tight loop in order to
1005			 * try to get it to the adapter in a single Write
1006			 * Combined transfer on the PCI-E Bus.  If the Write
1007			 * Combine fails (say because of an interrupt, etc.)
1008			 * the hardware will simply take the last write as a
1009			 * simple doorbell write with a PIDX Increment of 1
1010			 * and will fetch the TX Descriptor from memory via
1011			 * DMA.
1012			 */
1013			while (count) {
1014				/* the (__force u64) is because the compiler
1015				 * doesn't understand the endian swizzling
1016				 * going on
1017				 */
1018				writeq((__force u64)*src, dst);
1019				src++;
1020				dst++;
1021				count--;
1022			}
1023		} else
1024			writel(val | QID_V(tq->bar2_qid),
1025			       tq->bar2_addr + SGE_UDB_KDOORBELL);
1026
1027		/* This Write Memory Barrier will force the write to the User
1028		 * Doorbell area to be flushed.  This is needed to prevent
1029		 * writes on different CPUs for the same queue from hitting
1030		 * the adapter out of order.  This is required when some Work
1031		 * Requests take the Write Combine Gather Buffer path (user
1032		 * doorbell area offset [SGE_UDB_WCDOORBELL..+63]) and some
1033		 * take the traditional path where we simply increment the
1034		 * PIDX (User Doorbell area SGE_UDB_KDOORBELL) and have the
1035		 * hardware DMA read the actual Work Request.
1036		 */
1037		wmb();
1038	}
1039}
1040
1041/**
1042 *	inline_tx_skb - inline a packet's data into TX descriptors
1043 *	@skb: the packet
1044 *	@tq: the TX queue where the packet will be inlined
1045 *	@pos: starting position in the TX queue to inline the packet
1046 *
1047 *	Inline a packet's contents directly into TX descriptors, starting at
1048 *	the given position within the TX DMA ring.
1049 *	Most of the complexity of this operation is dealing with wrap arounds
1050 *	in the middle of the packet we want to inline.
1051 */
1052static void inline_tx_skb(const struct sk_buff *skb, const struct sge_txq *tq,
1053			  void *pos)
1054{
1055	u64 *p;
1056	int left = (void *)tq->stat - pos;
1057
1058	if (likely(skb->len <= left)) {
1059		if (likely(!skb->data_len))
1060			skb_copy_from_linear_data(skb, pos, skb->len);
1061		else
1062			skb_copy_bits(skb, 0, pos, skb->len);
1063		pos += skb->len;
1064	} else {
1065		skb_copy_bits(skb, 0, pos, left);
1066		skb_copy_bits(skb, left, tq->desc, skb->len - left);
1067		pos = (void *)tq->desc + (skb->len - left);
1068	}
1069
1070	/* 0-pad to multiple of 16 */
1071	p = PTR_ALIGN(pos, 8);
1072	if ((uintptr_t)p & 8)
1073		*p = 0;
1074}
1075
1076/*
1077 * Figure out what HW csum a packet wants and return the appropriate control
1078 * bits.
1079 */
1080static u64 hwcsum(enum chip_type chip, const struct sk_buff *skb)
1081{
1082	int csum_type;
1083	const struct iphdr *iph = ip_hdr(skb);
1084
1085	if (iph->version == 4) {
1086		if (iph->protocol == IPPROTO_TCP)
1087			csum_type = TX_CSUM_TCPIP;
1088		else if (iph->protocol == IPPROTO_UDP)
1089			csum_type = TX_CSUM_UDPIP;
1090		else {
1091nocsum:
1092			/*
1093			 * unknown protocol, disable HW csum
1094			 * and hope a bad packet is detected
1095			 */
1096			return TXPKT_L4CSUM_DIS_F;
1097		}
1098	} else {
1099		/*
1100		 * this doesn't work with extension headers
1101		 */
1102		const struct ipv6hdr *ip6h = (const struct ipv6hdr *)iph;
1103
1104		if (ip6h->nexthdr == IPPROTO_TCP)
1105			csum_type = TX_CSUM_TCPIP6;
1106		else if (ip6h->nexthdr == IPPROTO_UDP)
1107			csum_type = TX_CSUM_UDPIP6;
1108		else
1109			goto nocsum;
1110	}
1111
1112	if (likely(csum_type >= TX_CSUM_TCPIP)) {
1113		u64 hdr_len = TXPKT_IPHDR_LEN_V(skb_network_header_len(skb));
1114		int eth_hdr_len = skb_network_offset(skb) - ETH_HLEN;
1115
1116		if (chip <= CHELSIO_T5)
1117			hdr_len |= TXPKT_ETHHDR_LEN_V(eth_hdr_len);
1118		else
1119			hdr_len |= T6_TXPKT_ETHHDR_LEN_V(eth_hdr_len);
1120		return TXPKT_CSUM_TYPE_V(csum_type) | hdr_len;
1121	} else {
1122		int start = skb_transport_offset(skb);
1123
1124		return TXPKT_CSUM_TYPE_V(csum_type) |
1125			TXPKT_CSUM_START_V(start) |
1126			TXPKT_CSUM_LOC_V(start + skb->csum_offset);
1127	}
1128}
1129
1130/*
1131 * Stop an Ethernet TX queue and record that state change.
1132 */
1133static void txq_stop(struct sge_eth_txq *txq)
1134{
1135	netif_tx_stop_queue(txq->txq);
1136	txq->q.stops++;
1137}
1138
1139/*
1140 * Advance our software state for a TX queue by adding n in use descriptors.
1141 */
1142static inline void txq_advance(struct sge_txq *tq, unsigned int n)
1143{
1144	tq->in_use += n;
1145	tq->pidx += n;
1146	if (tq->pidx >= tq->size)
1147		tq->pidx -= tq->size;
1148}
1149
1150/**
1151 *	t4vf_eth_xmit - add a packet to an Ethernet TX queue
1152 *	@skb: the packet
1153 *	@dev: the egress net device
1154 *
1155 *	Add a packet to an SGE Ethernet TX queue.  Runs with softirqs disabled.
1156 */
1157netdev_tx_t t4vf_eth_xmit(struct sk_buff *skb, struct net_device *dev)
1158{
1159	u32 wr_mid;
1160	u64 cntrl, *end;
1161	int qidx, credits, max_pkt_len;
1162	unsigned int flits, ndesc;
1163	struct adapter *adapter;
1164	struct sge_eth_txq *txq;
1165	const struct port_info *pi;
1166	struct fw_eth_tx_pkt_vm_wr *wr;
1167	struct cpl_tx_pkt_core *cpl;
1168	const struct skb_shared_info *ssi;
1169	dma_addr_t addr[MAX_SKB_FRAGS + 1];
1170	const size_t fw_hdr_copy_len = sizeof(wr->firmware);
1171
1172	/*
1173	 * The chip minimum packet length is 10 octets but the firmware
1174	 * command that we are using requires that we copy the Ethernet header
1175	 * (including the VLAN tag) into the header so we reject anything
1176	 * smaller than that ...
1177	 */
1178	if (unlikely(skb->len < fw_hdr_copy_len))
1179		goto out_free;
1180
1181	/* Discard the packet if the length is greater than mtu */
1182	max_pkt_len = ETH_HLEN + dev->mtu;
1183	if (skb_vlan_tagged(skb))
1184		max_pkt_len += VLAN_HLEN;
1185	if (!skb_shinfo(skb)->gso_size && (unlikely(skb->len > max_pkt_len)))
1186		goto out_free;
1187
1188	/*
1189	 * Figure out which TX Queue we're going to use.
1190	 */
1191	pi = netdev_priv(dev);
1192	adapter = pi->adapter;
1193	qidx = skb_get_queue_mapping(skb);
1194	BUG_ON(qidx >= pi->nqsets);
1195	txq = &adapter->sge.ethtxq[pi->first_qset + qidx];
1196
1197	if (pi->vlan_id && !skb_vlan_tag_present(skb))
1198		__vlan_hwaccel_put_tag(skb, cpu_to_be16(ETH_P_8021Q),
1199				       pi->vlan_id);
1200
1201	/*
1202	 * Take this opportunity to reclaim any TX Descriptors whose DMA
1203	 * transfers have completed.
1204	 */
1205	reclaim_completed_tx(adapter, &txq->q, true);
1206
1207	/*
1208	 * Calculate the number of flits and TX Descriptors we're going to
1209	 * need along with how many TX Descriptors will be left over after
1210	 * we inject our Work Request.
1211	 */
1212	flits = calc_tx_flits(skb);
1213	ndesc = flits_to_desc(flits);
1214	credits = txq_avail(&txq->q) - ndesc;
1215
1216	if (unlikely(credits < 0)) {
1217		/*
1218		 * Not enough room for this packet's Work Request.  Stop the
1219		 * TX Queue and return a "busy" condition.  The queue will get
1220		 * started later on when the firmware informs us that space
1221		 * has opened up.
1222		 */
1223		txq_stop(txq);
1224		dev_err(adapter->pdev_dev,
1225			"%s: TX ring %u full while queue awake!\n",
1226			dev->name, qidx);
1227		return NETDEV_TX_BUSY;
1228	}
1229
1230	if (!is_eth_imm(skb) &&
1231	    unlikely(map_skb(adapter->pdev_dev, skb, addr) < 0)) {
1232		/*
1233		 * We need to map the skb into PCI DMA space (because it can't
1234		 * be in-lined directly into the Work Request) and the mapping
1235		 * operation failed.  Record the error and drop the packet.
1236		 */
1237		txq->mapping_err++;
1238		goto out_free;
1239	}
1240
1241	wr_mid = FW_WR_LEN16_V(DIV_ROUND_UP(flits, 2));
1242	if (unlikely(credits < ETHTXQ_STOP_THRES)) {
1243		/*
1244		 * After we're done injecting the Work Request for this
1245		 * packet, we'll be below our "stop threshold" so stop the TX
1246		 * Queue now and schedule a request for an SGE Egress Queue
1247		 * Update message.  The queue will get started later on when
1248		 * the firmware processes this Work Request and sends us an
1249		 * Egress Queue Status Update message indicating that space
1250		 * has opened up.
1251		 */
1252		txq_stop(txq);
1253		wr_mid |= FW_WR_EQUEQ_F | FW_WR_EQUIQ_F;
1254	}
1255
1256	/*
1257	 * Start filling in our Work Request.  Note that we do _not_ handle
1258	 * the WR Header wrapping around the TX Descriptor Ring.  If our
1259	 * maximum header size ever exceeds one TX Descriptor, we'll need to
1260	 * do something else here.
1261	 */
1262	BUG_ON(DIV_ROUND_UP(ETHTXQ_MAX_HDR, TXD_PER_EQ_UNIT) > 1);
1263	wr = (void *)&txq->q.desc[txq->q.pidx];
1264	wr->equiq_to_len16 = cpu_to_be32(wr_mid);
1265	wr->r3[0] = cpu_to_be32(0);
1266	wr->r3[1] = cpu_to_be32(0);
1267	skb_copy_from_linear_data(skb, &wr->firmware, fw_hdr_copy_len);
1268	end = (u64 *)wr + flits;
1269
1270	/*
1271	 * If this is a Large Send Offload packet we'll put in an LSO CPL
1272	 * message with an encapsulated TX Packet CPL message.  Otherwise we
1273	 * just use a TX Packet CPL message.
1274	 */
1275	ssi = skb_shinfo(skb);
1276	if (ssi->gso_size) {
1277		struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
1278		bool v6 = (ssi->gso_type & SKB_GSO_TCPV6) != 0;
1279		int l3hdr_len = skb_network_header_len(skb);
1280		int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN;
1281
1282		wr->op_immdlen =
1283			cpu_to_be32(FW_WR_OP_V(FW_ETH_TX_PKT_VM_WR) |
1284				    FW_WR_IMMDLEN_V(sizeof(*lso) +
1285						    sizeof(*cpl)));
1286		/*
1287		 * Fill in the LSO CPL message.
1288		 */
1289		lso->lso_ctrl =
1290			cpu_to_be32(LSO_OPCODE_V(CPL_TX_PKT_LSO) |
1291				    LSO_FIRST_SLICE_F |
1292				    LSO_LAST_SLICE_F |
1293				    LSO_IPV6_V(v6) |
1294				    LSO_ETHHDR_LEN_V(eth_xtra_len / 4) |
1295				    LSO_IPHDR_LEN_V(l3hdr_len / 4) |
1296				    LSO_TCPHDR_LEN_V(tcp_hdr(skb)->doff));
1297		lso->ipid_ofst = cpu_to_be16(0);
1298		lso->mss = cpu_to_be16(ssi->gso_size);
1299		lso->seqno_offset = cpu_to_be32(0);
1300		if (is_t4(adapter->params.chip))
1301			lso->len = cpu_to_be32(skb->len);
1302		else
1303			lso->len = cpu_to_be32(LSO_T5_XFER_SIZE_V(skb->len));
1304
1305		/*
1306		 * Set up TX Packet CPL pointer, control word and perform
1307		 * accounting.
1308		 */
1309		cpl = (void *)(lso + 1);
1310
1311		if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
1312			cntrl = TXPKT_ETHHDR_LEN_V(eth_xtra_len);
1313		else
1314			cntrl = T6_TXPKT_ETHHDR_LEN_V(eth_xtra_len);
1315
1316		cntrl |= TXPKT_CSUM_TYPE_V(v6 ?
1317					   TX_CSUM_TCPIP6 : TX_CSUM_TCPIP) |
1318			 TXPKT_IPHDR_LEN_V(l3hdr_len);
1319		txq->tso++;
1320		txq->tx_cso += ssi->gso_segs;
1321	} else {
1322		int len;
1323
1324		len = is_eth_imm(skb) ? skb->len + sizeof(*cpl) : sizeof(*cpl);
1325		wr->op_immdlen =
1326			cpu_to_be32(FW_WR_OP_V(FW_ETH_TX_PKT_VM_WR) |
1327				    FW_WR_IMMDLEN_V(len));
1328
1329		/*
1330		 * Set up TX Packet CPL pointer, control word and perform
1331		 * accounting.
1332		 */
1333		cpl = (void *)(wr + 1);
1334		if (skb->ip_summed == CHECKSUM_PARTIAL) {
1335			cntrl = hwcsum(adapter->params.chip, skb) |
1336				TXPKT_IPCSUM_DIS_F;
1337			txq->tx_cso++;
1338		} else
1339			cntrl = TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F;
1340	}
1341
1342	/*
1343	 * If there's a VLAN tag present, add that to the list of things to
1344	 * do in this Work Request.
1345	 */
1346	if (skb_vlan_tag_present(skb)) {
1347		txq->vlan_ins++;
1348		cntrl |= TXPKT_VLAN_VLD_F | TXPKT_VLAN_V(skb_vlan_tag_get(skb));
1349	}
1350
1351	/*
1352	 * Fill in the TX Packet CPL message header.
1353	 */
1354	cpl->ctrl0 = cpu_to_be32(TXPKT_OPCODE_V(CPL_TX_PKT_XT) |
1355				 TXPKT_INTF_V(pi->port_id) |
1356				 TXPKT_PF_V(0));
1357	cpl->pack = cpu_to_be16(0);
1358	cpl->len = cpu_to_be16(skb->len);
1359	cpl->ctrl1 = cpu_to_be64(cntrl);
1360
1361#ifdef T4_TRACE
1362	T4_TRACE5(adapter->tb[txq->q.cntxt_id & 7],
1363		  "eth_xmit: ndesc %u, credits %u, pidx %u, len %u, frags %u",
1364		  ndesc, credits, txq->q.pidx, skb->len, ssi->nr_frags);
1365#endif
1366
1367	/*
1368	 * Fill in the body of the TX Packet CPL message with either in-lined
1369	 * data or a Scatter/Gather List.
1370	 */
1371	if (is_eth_imm(skb)) {
1372		/*
1373		 * In-line the packet's data and free the skb since we don't
1374		 * need it any longer.
1375		 */
1376		inline_tx_skb(skb, &txq->q, cpl + 1);
1377		dev_consume_skb_any(skb);
1378	} else {
1379		/*
1380		 * Write the skb's Scatter/Gather list into the TX Packet CPL
1381		 * message and retain a pointer to the skb so we can free it
1382		 * later when its DMA completes.  (We store the skb pointer
1383		 * in the Software Descriptor corresponding to the last TX
1384		 * Descriptor used by the Work Request.)
1385		 *
1386		 * The retained skb will be freed when the corresponding TX
1387		 * Descriptors are reclaimed after their DMAs complete.
1388		 * However, this could take quite a while since, in general,
1389		 * the hardware is set up to be lazy about sending DMA
1390		 * completion notifications to us and we mostly perform TX
1391		 * reclaims in the transmit routine.
1392		 *
1393		 * This is good for performamce but means that we rely on new
1394		 * TX packets arriving to run the destructors of completed
1395		 * packets, which open up space in their sockets' send queues.
1396		 * Sometimes we do not get such new packets causing TX to
1397		 * stall.  A single UDP transmitter is a good example of this
1398		 * situation.  We have a clean up timer that periodically
1399		 * reclaims completed packets but it doesn't run often enough
1400		 * (nor do we want it to) to prevent lengthy stalls.  A
1401		 * solution to this problem is to run the destructor early,
1402		 * after the packet is queued but before it's DMAd.  A con is
1403		 * that we lie to socket memory accounting, but the amount of
1404		 * extra memory is reasonable (limited by the number of TX
1405		 * descriptors), the packets do actually get freed quickly by
1406		 * new packets almost always, and for protocols like TCP that
1407		 * wait for acks to really free up the data the extra memory
1408		 * is even less.  On the positive side we run the destructors
1409		 * on the sending CPU rather than on a potentially different
1410		 * completing CPU, usually a good thing.
1411		 *
1412		 * Run the destructor before telling the DMA engine about the
1413		 * packet to make sure it doesn't complete and get freed
1414		 * prematurely.
1415		 */
1416		struct ulptx_sgl *sgl = (struct ulptx_sgl *)(cpl + 1);
1417		struct sge_txq *tq = &txq->q;
1418		int last_desc;
1419
1420		/*
1421		 * If the Work Request header was an exact multiple of our TX
1422		 * Descriptor length, then it's possible that the starting SGL
1423		 * pointer lines up exactly with the end of our TX Descriptor
1424		 * ring.  If that's the case, wrap around to the beginning
1425		 * here ...
1426		 */
1427		if (unlikely((void *)sgl == (void *)tq->stat)) {
1428			sgl = (void *)tq->desc;
1429			end = ((void *)tq->desc + ((void *)end - (void *)tq->stat));
1430		}
1431
1432		write_sgl(skb, tq, sgl, end, 0, addr);
1433		skb_orphan(skb);
1434
1435		last_desc = tq->pidx + ndesc - 1;
1436		if (last_desc >= tq->size)
1437			last_desc -= tq->size;
1438		tq->sdesc[last_desc].skb = skb;
1439		tq->sdesc[last_desc].sgl = sgl;
1440	}
1441
1442	/*
1443	 * Advance our internal TX Queue state, tell the hardware about
1444	 * the new TX descriptors and return success.
1445	 */
1446	txq_advance(&txq->q, ndesc);
1447	netif_trans_update(dev);
1448	ring_tx_db(adapter, &txq->q, ndesc);
1449	return NETDEV_TX_OK;
1450
1451out_free:
1452	/*
1453	 * An error of some sort happened.  Free the TX skb and tell the
1454	 * OS that we've "dealt" with the packet ...
1455	 */
1456	dev_kfree_skb_any(skb);
1457	return NETDEV_TX_OK;
1458}
1459
1460/**
1461 *	copy_frags - copy fragments from gather list into skb_shared_info
1462 *	@skb: destination skb
1463 *	@gl: source internal packet gather list
1464 *	@offset: packet start offset in first page
1465 *
1466 *	Copy an internal packet gather list into a Linux skb_shared_info
1467 *	structure.
1468 */
1469static inline void copy_frags(struct sk_buff *skb,
1470			      const struct pkt_gl *gl,
1471			      unsigned int offset)
1472{
1473	int i;
1474
1475	/* usually there's just one frag */
1476	__skb_fill_page_desc(skb, 0, gl->frags[0].page,
1477			     gl->frags[0].offset + offset,
1478			     gl->frags[0].size - offset);
1479	skb_shinfo(skb)->nr_frags = gl->nfrags;
1480	for (i = 1; i < gl->nfrags; i++)
1481		__skb_fill_page_desc(skb, i, gl->frags[i].page,
1482				     gl->frags[i].offset,
1483				     gl->frags[i].size);
1484
1485	/* get a reference to the last page, we don't own it */
1486	get_page(gl->frags[gl->nfrags - 1].page);
1487}
1488
1489/**
1490 *	t4vf_pktgl_to_skb - build an sk_buff from a packet gather list
1491 *	@gl: the gather list
1492 *	@skb_len: size of sk_buff main body if it carries fragments
1493 *	@pull_len: amount of data to move to the sk_buff's main body
1494 *
1495 *	Builds an sk_buff from the given packet gather list.  Returns the
1496 *	sk_buff or %NULL if sk_buff allocation failed.
1497 */
1498static struct sk_buff *t4vf_pktgl_to_skb(const struct pkt_gl *gl,
1499					 unsigned int skb_len,
1500					 unsigned int pull_len)
1501{
1502	struct sk_buff *skb;
1503
1504	/*
1505	 * If the ingress packet is small enough, allocate an skb large enough
1506	 * for all of the data and copy it inline.  Otherwise, allocate an skb
1507	 * with enough room to pull in the header and reference the rest of
1508	 * the data via the skb fragment list.
1509	 *
1510	 * Below we rely on RX_COPY_THRES being less than the smallest Rx
1511	 * buff!  size, which is expected since buffers are at least
1512	 * PAGE_SIZEd.  In this case packets up to RX_COPY_THRES have only one
1513	 * fragment.
1514	 */
1515	if (gl->tot_len <= RX_COPY_THRES) {
1516		/* small packets have only one fragment */
1517		skb = alloc_skb(gl->tot_len, GFP_ATOMIC);
1518		if (unlikely(!skb))
1519			goto out;
1520		__skb_put(skb, gl->tot_len);
1521		skb_copy_to_linear_data(skb, gl->va, gl->tot_len);
1522	} else {
1523		skb = alloc_skb(skb_len, GFP_ATOMIC);
1524		if (unlikely(!skb))
1525			goto out;
1526		__skb_put(skb, pull_len);
1527		skb_copy_to_linear_data(skb, gl->va, pull_len);
1528
1529		copy_frags(skb, gl, pull_len);
1530		skb->len = gl->tot_len;
1531		skb->data_len = skb->len - pull_len;
1532		skb->truesize += skb->data_len;
1533	}
1534
1535out:
1536	return skb;
1537}
1538
1539/**
1540 *	t4vf_pktgl_free - free a packet gather list
1541 *	@gl: the gather list
1542 *
1543 *	Releases the pages of a packet gather list.  We do not own the last
1544 *	page on the list and do not free it.
1545 */
1546static void t4vf_pktgl_free(const struct pkt_gl *gl)
1547{
1548	int frag;
1549
1550	frag = gl->nfrags - 1;
1551	while (frag--)
1552		put_page(gl->frags[frag].page);
1553}
1554
1555/**
1556 *	do_gro - perform Generic Receive Offload ingress packet processing
1557 *	@rxq: ingress RX Ethernet Queue
1558 *	@gl: gather list for ingress packet
1559 *	@pkt: CPL header for last packet fragment
1560 *
1561 *	Perform Generic Receive Offload (GRO) ingress packet processing.
1562 *	We use the standard Linux GRO interfaces for this.
1563 */
1564static void do_gro(struct sge_eth_rxq *rxq, const struct pkt_gl *gl,
1565		   const struct cpl_rx_pkt *pkt)
1566{
1567	struct adapter *adapter = rxq->rspq.adapter;
1568	struct sge *s = &adapter->sge;
1569	struct port_info *pi;
1570	int ret;
1571	struct sk_buff *skb;
1572
1573	skb = napi_get_frags(&rxq->rspq.napi);
1574	if (unlikely(!skb)) {
1575		t4vf_pktgl_free(gl);
1576		rxq->stats.rx_drops++;
1577		return;
1578	}
1579
1580	copy_frags(skb, gl, s->pktshift);
1581	skb->len = gl->tot_len - s->pktshift;
1582	skb->data_len = skb->len;
1583	skb->truesize += skb->data_len;
1584	skb->ip_summed = CHECKSUM_UNNECESSARY;
1585	skb_record_rx_queue(skb, rxq->rspq.idx);
1586	pi = netdev_priv(skb->dev);
1587
1588	if (pkt->vlan_ex && !pi->vlan_id) {
1589		__vlan_hwaccel_put_tag(skb, cpu_to_be16(ETH_P_8021Q),
1590					be16_to_cpu(pkt->vlan));
1591		rxq->stats.vlan_ex++;
1592	}
1593	ret = napi_gro_frags(&rxq->rspq.napi);
1594
1595	if (ret == GRO_HELD)
1596		rxq->stats.lro_pkts++;
1597	else if (ret == GRO_MERGED || ret == GRO_MERGED_FREE)
1598		rxq->stats.lro_merged++;
1599	rxq->stats.pkts++;
1600	rxq->stats.rx_cso++;
1601}
1602
1603/**
1604 *	t4vf_ethrx_handler - process an ingress ethernet packet
1605 *	@rspq: the response queue that received the packet
1606 *	@rsp: the response queue descriptor holding the RX_PKT message
1607 *	@gl: the gather list of packet fragments
1608 *
1609 *	Process an ingress ethernet packet and deliver it to the stack.
1610 */
1611int t4vf_ethrx_handler(struct sge_rspq *rspq, const __be64 *rsp,
1612		       const struct pkt_gl *gl)
1613{
1614	struct sk_buff *skb;
1615	const struct cpl_rx_pkt *pkt = (void *)rsp;
1616	bool csum_ok = pkt->csum_calc && !pkt->err_vec &&
1617		       (rspq->netdev->features & NETIF_F_RXCSUM);
1618	struct sge_eth_rxq *rxq = container_of(rspq, struct sge_eth_rxq, rspq);
1619	struct adapter *adapter = rspq->adapter;
1620	struct sge *s = &adapter->sge;
1621	struct port_info *pi;
1622
1623	/*
1624	 * If this is a good TCP packet and we have Generic Receive Offload
1625	 * enabled, handle the packet in the GRO path.
1626	 */
1627	if ((pkt->l2info & cpu_to_be32(RXF_TCP_F)) &&
1628	    (rspq->netdev->features & NETIF_F_GRO) && csum_ok &&
1629	    !pkt->ip_frag) {
1630		do_gro(rxq, gl, pkt);
1631		return 0;
1632	}
1633
1634	/*
1635	 * Convert the Packet Gather List into an skb.
1636	 */
1637	skb = t4vf_pktgl_to_skb(gl, RX_SKB_LEN, RX_PULL_LEN);
1638	if (unlikely(!skb)) {
1639		t4vf_pktgl_free(gl);
1640		rxq->stats.rx_drops++;
1641		return 0;
1642	}
1643	__skb_pull(skb, s->pktshift);
1644	skb->protocol = eth_type_trans(skb, rspq->netdev);
1645	skb_record_rx_queue(skb, rspq->idx);
1646	pi = netdev_priv(skb->dev);
1647	rxq->stats.pkts++;
1648
1649	if (csum_ok && !pkt->err_vec &&
1650	    (be32_to_cpu(pkt->l2info) & (RXF_UDP_F | RXF_TCP_F))) {
1651		if (!pkt->ip_frag) {
1652			skb->ip_summed = CHECKSUM_UNNECESSARY;
1653			rxq->stats.rx_cso++;
1654		} else if (pkt->l2info & htonl(RXF_IP_F)) {
1655			__sum16 c = (__force __sum16)pkt->csum;
1656			skb->csum = csum_unfold(c);
1657			skb->ip_summed = CHECKSUM_COMPLETE;
1658			rxq->stats.rx_cso++;
1659		}
1660	} else
1661		skb_checksum_none_assert(skb);
1662
1663	if (pkt->vlan_ex && !pi->vlan_id) {
1664		rxq->stats.vlan_ex++;
1665		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
1666				       be16_to_cpu(pkt->vlan));
1667	}
1668
1669	netif_receive_skb(skb);
1670
1671	return 0;
1672}
1673
1674/**
1675 *	is_new_response - check if a response is newly written
1676 *	@rc: the response control descriptor
1677 *	@rspq: the response queue
1678 *
1679 *	Returns true if a response descriptor contains a yet unprocessed
1680 *	response.
1681 */
1682static inline bool is_new_response(const struct rsp_ctrl *rc,
1683				   const struct sge_rspq *rspq)
1684{
1685	return ((rc->type_gen >> RSPD_GEN_S) & 0x1) == rspq->gen;
1686}
1687
1688/**
1689 *	restore_rx_bufs - put back a packet's RX buffers
1690 *	@gl: the packet gather list
1691 *	@fl: the SGE Free List
1692 *	@frags: how many fragments in @si
1693 *
1694 *	Called when we find out that the current packet, @si, can't be
1695 *	processed right away for some reason.  This is a very rare event and
1696 *	there's no effort to make this suspension/resumption process
1697 *	particularly efficient.
1698 *
1699 *	We implement the suspension by putting all of the RX buffers associated
1700 *	with the current packet back on the original Free List.  The buffers
1701 *	have already been unmapped and are left unmapped, we mark them as
1702 *	unmapped in order to prevent further unmapping attempts.  (Effectively
1703 *	this function undoes the series of @unmap_rx_buf calls which were done
1704 *	to create the current packet's gather list.)  This leaves us ready to
1705 *	restart processing of the packet the next time we start processing the
1706 *	RX Queue ...
1707 */
1708static void restore_rx_bufs(const struct pkt_gl *gl, struct sge_fl *fl,
1709			    int frags)
1710{
1711	struct rx_sw_desc *sdesc;
1712
1713	while (frags--) {
1714		if (fl->cidx == 0)
1715			fl->cidx = fl->size - 1;
1716		else
1717			fl->cidx--;
1718		sdesc = &fl->sdesc[fl->cidx];
1719		sdesc->page = gl->frags[frags].page;
1720		sdesc->dma_addr |= RX_UNMAPPED_BUF;
1721		fl->avail++;
1722	}
1723}
1724
1725/**
1726 *	rspq_next - advance to the next entry in a response queue
1727 *	@rspq: the queue
1728 *
1729 *	Updates the state of a response queue to advance it to the next entry.
1730 */
1731static inline void rspq_next(struct sge_rspq *rspq)
1732{
1733	rspq->cur_desc = (void *)rspq->cur_desc + rspq->iqe_len;
1734	if (unlikely(++rspq->cidx == rspq->size)) {
1735		rspq->cidx = 0;
1736		rspq->gen ^= 1;
1737		rspq->cur_desc = rspq->desc;
1738	}
1739}
1740
1741/**
1742 *	process_responses - process responses from an SGE response queue
1743 *	@rspq: the ingress response queue to process
1744 *	@budget: how many responses can be processed in this round
1745 *
1746 *	Process responses from a Scatter Gather Engine response queue up to
1747 *	the supplied budget.  Responses include received packets as well as
1748 *	control messages from firmware or hardware.
1749 *
1750 *	Additionally choose the interrupt holdoff time for the next interrupt
1751 *	on this queue.  If the system is under memory shortage use a fairly
1752 *	long delay to help recovery.
1753 */
1754static int process_responses(struct sge_rspq *rspq, int budget)
1755{
1756	struct sge_eth_rxq *rxq = container_of(rspq, struct sge_eth_rxq, rspq);
1757	struct adapter *adapter = rspq->adapter;
1758	struct sge *s = &adapter->sge;
1759	int budget_left = budget;
1760
1761	while (likely(budget_left)) {
1762		int ret, rsp_type;
1763		const struct rsp_ctrl *rc;
1764
1765		rc = (void *)rspq->cur_desc + (rspq->iqe_len - sizeof(*rc));
1766		if (!is_new_response(rc, rspq))
1767			break;
1768
1769		/*
1770		 * Figure out what kind of response we've received from the
1771		 * SGE.
1772		 */
1773		dma_rmb();
1774		rsp_type = RSPD_TYPE_G(rc->type_gen);
1775		if (likely(rsp_type == RSPD_TYPE_FLBUF_X)) {
1776			struct page_frag *fp;
1777			struct pkt_gl gl;
1778			const struct rx_sw_desc *sdesc;
1779			u32 bufsz, frag;
1780			u32 len = be32_to_cpu(rc->pldbuflen_qid);
1781
1782			/*
1783			 * If we get a "new buffer" message from the SGE we
1784			 * need to move on to the next Free List buffer.
1785			 */
1786			if (len & RSPD_NEWBUF_F) {
1787				/*
1788				 * We get one "new buffer" message when we
1789				 * first start up a queue so we need to ignore
1790				 * it when our offset into the buffer is 0.
1791				 */
1792				if (likely(rspq->offset > 0)) {
1793					free_rx_bufs(rspq->adapter, &rxq->fl,
1794						     1);
1795					rspq->offset = 0;
1796				}
1797				len = RSPD_LEN_G(len);
1798			}
1799			gl.tot_len = len;
1800
1801			/*
1802			 * Gather packet fragments.
1803			 */
1804			for (frag = 0, fp = gl.frags; /**/; frag++, fp++) {
1805				BUG_ON(frag >= MAX_SKB_FRAGS);
1806				BUG_ON(rxq->fl.avail == 0);
1807				sdesc = &rxq->fl.sdesc[rxq->fl.cidx];
1808				bufsz = get_buf_size(adapter, sdesc);
1809				fp->page = sdesc->page;
1810				fp->offset = rspq->offset;
1811				fp->size = min(bufsz, len);
1812				len -= fp->size;
1813				if (!len)
1814					break;
1815				unmap_rx_buf(rspq->adapter, &rxq->fl);
1816			}
1817			gl.nfrags = frag+1;
1818
1819			/*
1820			 * Last buffer remains mapped so explicitly make it
1821			 * coherent for CPU access and start preloading first
1822			 * cache line ...
1823			 */
1824			dma_sync_single_for_cpu(rspq->adapter->pdev_dev,
1825						get_buf_addr(sdesc),
1826						fp->size, DMA_FROM_DEVICE);
1827			gl.va = (page_address(gl.frags[0].page) +
1828				 gl.frags[0].offset);
1829			prefetch(gl.va);
1830
1831			/*
1832			 * Hand the new ingress packet to the handler for
1833			 * this Response Queue.
1834			 */
1835			ret = rspq->handler(rspq, rspq->cur_desc, &gl);
1836			if (likely(ret == 0))
1837				rspq->offset += ALIGN(fp->size, s->fl_align);
1838			else
1839				restore_rx_bufs(&gl, &rxq->fl, frag);
1840		} else if (likely(rsp_type == RSPD_TYPE_CPL_X)) {
1841			ret = rspq->handler(rspq, rspq->cur_desc, NULL);
1842		} else {
1843			WARN_ON(rsp_type > RSPD_TYPE_CPL_X);
1844			ret = 0;
1845		}
1846
1847		if (unlikely(ret)) {
1848			/*
1849			 * Couldn't process descriptor, back off for recovery.
1850			 * We use the SGE's last timer which has the longest
1851			 * interrupt coalescing value ...
1852			 */
1853			const int NOMEM_TIMER_IDX = SGE_NTIMERS-1;
1854			rspq->next_intr_params =
1855				QINTR_TIMER_IDX_V(NOMEM_TIMER_IDX);
1856			break;
1857		}
1858
1859		rspq_next(rspq);
1860		budget_left--;
1861	}
1862
1863	/*
1864	 * If this is a Response Queue with an associated Free List and
1865	 * at least two Egress Queue units available in the Free List
1866	 * for new buffer pointers, refill the Free List.
1867	 */
1868	if (rspq->offset >= 0 &&
1869	    fl_cap(&rxq->fl) - rxq->fl.avail >= 2*FL_PER_EQ_UNIT)
1870		__refill_fl(rspq->adapter, &rxq->fl);
1871	return budget - budget_left;
1872}
1873
1874/**
1875 *	napi_rx_handler - the NAPI handler for RX processing
1876 *	@napi: the napi instance
1877 *	@budget: how many packets we can process in this round
1878 *
1879 *	Handler for new data events when using NAPI.  This does not need any
1880 *	locking or protection from interrupts as data interrupts are off at
1881 *	this point and other adapter interrupts do not interfere (the latter
1882 *	in not a concern at all with MSI-X as non-data interrupts then have
1883 *	a separate handler).
1884 */
1885static int napi_rx_handler(struct napi_struct *napi, int budget)
1886{
1887	unsigned int intr_params;
1888	struct sge_rspq *rspq = container_of(napi, struct sge_rspq, napi);
1889	int work_done = process_responses(rspq, budget);
1890	u32 val;
1891
1892	if (likely(work_done < budget)) {
1893		napi_complete_done(napi, work_done);
1894		intr_params = rspq->next_intr_params;
1895		rspq->next_intr_params = rspq->intr_params;
1896	} else
1897		intr_params = QINTR_TIMER_IDX_V(SGE_TIMER_UPD_CIDX);
1898
1899	if (unlikely(work_done == 0))
1900		rspq->unhandled_irqs++;
1901
1902	val = CIDXINC_V(work_done) | SEINTARM_V(intr_params);
1903	/* If we don't have access to the new User GTS (T5+), use the old
1904	 * doorbell mechanism; otherwise use the new BAR2 mechanism.
1905	 */
1906	if (unlikely(!rspq->bar2_addr)) {
1907		t4_write_reg(rspq->adapter,
1908			     T4VF_SGE_BASE_ADDR + SGE_VF_GTS,
1909			     val | INGRESSQID_V((u32)rspq->cntxt_id));
1910	} else {
1911		writel(val | INGRESSQID_V(rspq->bar2_qid),
1912		       rspq->bar2_addr + SGE_UDB_GTS);
1913		wmb();
1914	}
1915	return work_done;
1916}
1917
1918/*
1919 * The MSI-X interrupt handler for an SGE response queue for the NAPI case
1920 * (i.e., response queue serviced by NAPI polling).
1921 */
1922irqreturn_t t4vf_sge_intr_msix(int irq, void *cookie)
1923{
1924	struct sge_rspq *rspq = cookie;
1925
1926	napi_schedule(&rspq->napi);
1927	return IRQ_HANDLED;
1928}
1929
1930/*
1931 * Process the indirect interrupt entries in the interrupt queue and kick off
1932 * NAPI for each queue that has generated an entry.
1933 */
1934static unsigned int process_intrq(struct adapter *adapter)
1935{
1936	struct sge *s = &adapter->sge;
1937	struct sge_rspq *intrq = &s->intrq;
1938	unsigned int work_done;
1939	u32 val;
1940
1941	spin_lock(&adapter->sge.intrq_lock);
1942	for (work_done = 0; ; work_done++) {
1943		const struct rsp_ctrl *rc;
1944		unsigned int qid, iq_idx;
1945		struct sge_rspq *rspq;
1946
1947		/*
1948		 * Grab the next response from the interrupt queue and bail
1949		 * out if it's not a new response.
1950		 */
1951		rc = (void *)intrq->cur_desc + (intrq->iqe_len - sizeof(*rc));
1952		if (!is_new_response(rc, intrq))
1953			break;
1954
1955		/*
1956		 * If the response isn't a forwarded interrupt message issue a
1957		 * error and go on to the next response message.  This should
1958		 * never happen ...
1959		 */
1960		dma_rmb();
1961		if (unlikely(RSPD_TYPE_G(rc->type_gen) != RSPD_TYPE_INTR_X)) {
1962			dev_err(adapter->pdev_dev,
1963				"Unexpected INTRQ response type %d\n",
1964				RSPD_TYPE_G(rc->type_gen));
1965			continue;
1966		}
1967
1968		/*
1969		 * Extract the Queue ID from the interrupt message and perform
1970		 * sanity checking to make sure it really refers to one of our
1971		 * Ingress Queues which is active and matches the queue's ID.
1972		 * None of these error conditions should ever happen so we may
1973		 * want to either make them fatal and/or conditionalized under
1974		 * DEBUG.
1975		 */
1976		qid = RSPD_QID_G(be32_to_cpu(rc->pldbuflen_qid));
1977		iq_idx = IQ_IDX(s, qid);
1978		if (unlikely(iq_idx >= MAX_INGQ)) {
1979			dev_err(adapter->pdev_dev,
1980				"Ingress QID %d out of range\n", qid);
1981			continue;
1982		}
1983		rspq = s->ingr_map[iq_idx];
1984		if (unlikely(rspq == NULL)) {
1985			dev_err(adapter->pdev_dev,
1986				"Ingress QID %d RSPQ=NULL\n", qid);
1987			continue;
1988		}
1989		if (unlikely(rspq->abs_id != qid)) {
1990			dev_err(adapter->pdev_dev,
1991				"Ingress QID %d refers to RSPQ %d\n",
1992				qid, rspq->abs_id);
1993			continue;
1994		}
1995
1996		/*
1997		 * Schedule NAPI processing on the indicated Response Queue
1998		 * and move on to the next entry in the Forwarded Interrupt
1999		 * Queue.
2000		 */
2001		napi_schedule(&rspq->napi);
2002		rspq_next(intrq);
2003	}
2004
2005	val = CIDXINC_V(work_done) | SEINTARM_V(intrq->intr_params);
2006	/* If we don't have access to the new User GTS (T5+), use the old
2007	 * doorbell mechanism; otherwise use the new BAR2 mechanism.
2008	 */
2009	if (unlikely(!intrq->bar2_addr)) {
2010		t4_write_reg(adapter, T4VF_SGE_BASE_ADDR + SGE_VF_GTS,
2011			     val | INGRESSQID_V(intrq->cntxt_id));
2012	} else {
2013		writel(val | INGRESSQID_V(intrq->bar2_qid),
2014		       intrq->bar2_addr + SGE_UDB_GTS);
2015		wmb();
2016	}
2017
2018	spin_unlock(&adapter->sge.intrq_lock);
2019
2020	return work_done;
2021}
2022
2023/*
2024 * The MSI interrupt handler handles data events from SGE response queues as
2025 * well as error and other async events as they all use the same MSI vector.
2026 */
2027static irqreturn_t t4vf_intr_msi(int irq, void *cookie)
2028{
2029	struct adapter *adapter = cookie;
2030
2031	process_intrq(adapter);
2032	return IRQ_HANDLED;
2033}
2034
2035/**
2036 *	t4vf_intr_handler - select the top-level interrupt handler
2037 *	@adapter: the adapter
2038 *
2039 *	Selects the top-level interrupt handler based on the type of interrupts
2040 *	(MSI-X or MSI).
2041 */
2042irq_handler_t t4vf_intr_handler(struct adapter *adapter)
2043{
2044	BUG_ON((adapter->flags &
2045	       (CXGB4VF_USING_MSIX | CXGB4VF_USING_MSI)) == 0);
2046	if (adapter->flags & CXGB4VF_USING_MSIX)
2047		return t4vf_sge_intr_msix;
2048	else
2049		return t4vf_intr_msi;
2050}
2051
2052/**
2053 *	sge_rx_timer_cb - perform periodic maintenance of SGE RX queues
2054 *	@t: Rx timer
2055 *
2056 *	Runs periodically from a timer to perform maintenance of SGE RX queues.
2057 *
2058 *	a) Replenishes RX queues that have run out due to memory shortage.
2059 *	Normally new RX buffers are added when existing ones are consumed but
2060 *	when out of memory a queue can become empty.  We schedule NAPI to do
2061 *	the actual refill.
2062 */
2063static void sge_rx_timer_cb(struct timer_list *t)
2064{
2065	struct adapter *adapter = from_timer(adapter, t, sge.rx_timer);
2066	struct sge *s = &adapter->sge;
2067	unsigned int i;
2068
2069	/*
2070	 * Scan the "Starving Free Lists" flag array looking for any Free
2071	 * Lists in need of more free buffers.  If we find one and it's not
2072	 * being actively polled, then bump its "starving" counter and attempt
2073	 * to refill it.  If we're successful in adding enough buffers to push
2074	 * the Free List over the starving threshold, then we can clear its
2075	 * "starving" status.
2076	 */
2077	for (i = 0; i < ARRAY_SIZE(s->starving_fl); i++) {
2078		unsigned long m;
2079
2080		for (m = s->starving_fl[i]; m; m &= m - 1) {
2081			unsigned int id = __ffs(m) + i * BITS_PER_LONG;
2082			struct sge_fl *fl = s->egr_map[id];
2083
2084			clear_bit(id, s->starving_fl);
2085			smp_mb__after_atomic();
2086
2087			/*
2088			 * Since we are accessing fl without a lock there's a
2089			 * small probability of a false positive where we
2090			 * schedule napi but the FL is no longer starving.
2091			 * No biggie.
2092			 */
2093			if (fl_starving(adapter, fl)) {
2094				struct sge_eth_rxq *rxq;
2095
2096				rxq = container_of(fl, struct sge_eth_rxq, fl);
2097				if (napi_schedule(&rxq->rspq.napi))
2098					fl->starving++;
2099				else
2100					set_bit(id, s->starving_fl);
2101			}
2102		}
2103	}
2104
2105	/*
2106	 * Reschedule the next scan for starving Free Lists ...
2107	 */
2108	mod_timer(&s->rx_timer, jiffies + RX_QCHECK_PERIOD);
2109}
2110
2111/**
2112 *	sge_tx_timer_cb - perform periodic maintenance of SGE Tx queues
2113 *	@t: Tx timer
2114 *
2115 *	Runs periodically from a timer to perform maintenance of SGE TX queues.
2116 *
2117 *	b) Reclaims completed Tx packets for the Ethernet queues.  Normally
2118 *	packets are cleaned up by new Tx packets, this timer cleans up packets
2119 *	when no new packets are being submitted.  This is essential for pktgen,
2120 *	at least.
2121 */
2122static void sge_tx_timer_cb(struct timer_list *t)
2123{
2124	struct adapter *adapter = from_timer(adapter, t, sge.tx_timer);
2125	struct sge *s = &adapter->sge;
2126	unsigned int i, budget;
2127
2128	budget = MAX_TIMER_TX_RECLAIM;
2129	i = s->ethtxq_rover;
2130	do {
2131		struct sge_eth_txq *txq = &s->ethtxq[i];
2132
2133		if (reclaimable(&txq->q) && __netif_tx_trylock(txq->txq)) {
2134			int avail = reclaimable(&txq->q);
2135
2136			if (avail > budget)
2137				avail = budget;
2138
2139			free_tx_desc(adapter, &txq->q, avail, true);
2140			txq->q.in_use -= avail;
2141			__netif_tx_unlock(txq->txq);
2142
2143			budget -= avail;
2144			if (!budget)
2145				break;
2146		}
2147
2148		i++;
2149		if (i >= s->ethqsets)
2150			i = 0;
2151	} while (i != s->ethtxq_rover);
2152	s->ethtxq_rover = i;
2153
2154	/*
2155	 * If we found too many reclaimable packets schedule a timer in the
2156	 * near future to continue where we left off.  Otherwise the next timer
2157	 * will be at its normal interval.
2158	 */
2159	mod_timer(&s->tx_timer, jiffies + (budget ? TX_QCHECK_PERIOD : 2));
2160}
2161
2162/**
2163 *	bar2_address - return the BAR2 address for an SGE Queue's Registers
2164 *	@adapter: the adapter
2165 *	@qid: the SGE Queue ID
2166 *	@qtype: the SGE Queue Type (Egress or Ingress)
2167 *	@pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
2168 *
2169 *	Returns the BAR2 address for the SGE Queue Registers associated with
2170 *	@qid.  If BAR2 SGE Registers aren't available, returns NULL.  Also
2171 *	returns the BAR2 Queue ID to be used with writes to the BAR2 SGE
2172 *	Queue Registers.  If the BAR2 Queue ID is 0, then "Inferred Queue ID"
2173 *	Registers are supported (e.g. the Write Combining Doorbell Buffer).
2174 */
2175static void __iomem *bar2_address(struct adapter *adapter,
2176				  unsigned int qid,
2177				  enum t4_bar2_qtype qtype,
2178				  unsigned int *pbar2_qid)
2179{
2180	u64 bar2_qoffset;
2181	int ret;
2182
2183	ret = t4vf_bar2_sge_qregs(adapter, qid, qtype,
2184				  &bar2_qoffset, pbar2_qid);
2185	if (ret)
2186		return NULL;
2187
2188	return adapter->bar2 + bar2_qoffset;
2189}
2190
2191/**
2192 *	t4vf_sge_alloc_rxq - allocate an SGE RX Queue
2193 *	@adapter: the adapter
2194 *	@rspq: pointer to to the new rxq's Response Queue to be filled in
2195 *	@iqasynch: if 0, a normal rspq; if 1, an asynchronous event queue
2196 *	@dev: the network device associated with the new rspq
2197 *	@intr_dest: MSI-X vector index (overriden in MSI mode)
2198 *	@fl: pointer to the new rxq's Free List to be filled in
2199 *	@hnd: the interrupt handler to invoke for the rspq
2200 */
2201int t4vf_sge_alloc_rxq(struct adapter *adapter, struct sge_rspq *rspq,
2202		       bool iqasynch, struct net_device *dev,
2203		       int intr_dest,
2204		       struct sge_fl *fl, rspq_handler_t hnd)
2205{
2206	struct sge *s = &adapter->sge;
2207	struct port_info *pi = netdev_priv(dev);
2208	struct fw_iq_cmd cmd, rpl;
2209	int ret, iqandst, flsz = 0;
2210	int relaxed = !(adapter->flags & CXGB4VF_ROOT_NO_RELAXED_ORDERING);
2211
2212	/*
2213	 * If we're using MSI interrupts and we're not initializing the
2214	 * Forwarded Interrupt Queue itself, then set up this queue for
2215	 * indirect interrupts to the Forwarded Interrupt Queue.  Obviously
2216	 * the Forwarded Interrupt Queue must be set up before any other
2217	 * ingress queue ...
2218	 */
2219	if ((adapter->flags & CXGB4VF_USING_MSI) &&
2220	    rspq != &adapter->sge.intrq) {
2221		iqandst = SGE_INTRDST_IQ;
2222		intr_dest = adapter->sge.intrq.abs_id;
2223	} else
2224		iqandst = SGE_INTRDST_PCI;
2225
2226	/*
2227	 * Allocate the hardware ring for the Response Queue.  The size needs
2228	 * to be a multiple of 16 which includes the mandatory status entry
2229	 * (regardless of whether the Status Page capabilities are enabled or
2230	 * not).
2231	 */
2232	rspq->size = roundup(rspq->size, 16);
2233	rspq->desc = alloc_ring(adapter->pdev_dev, rspq->size, rspq->iqe_len,
2234				0, &rspq->phys_addr, NULL, 0);
2235	if (!rspq->desc)
2236		return -ENOMEM;
2237
2238	/*
2239	 * Fill in the Ingress Queue Command.  Note: Ideally this code would
2240	 * be in t4vf_hw.c but there are so many parameters and dependencies
2241	 * on our Linux SGE state that we would end up having to pass tons of
2242	 * parameters.  We'll have to think about how this might be migrated
2243	 * into OS-independent common code ...
2244	 */
2245	memset(&cmd, 0, sizeof(cmd));
2246	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) |
2247				    FW_CMD_REQUEST_F |
2248				    FW_CMD_WRITE_F |
2249				    FW_CMD_EXEC_F);
2250	cmd.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_ALLOC_F |
2251					 FW_IQ_CMD_IQSTART_F |
2252					 FW_LEN16(cmd));
2253	cmd.type_to_iqandstindex =
2254		cpu_to_be32(FW_IQ_CMD_TYPE_V(FW_IQ_TYPE_FL_INT_CAP) |
2255			    FW_IQ_CMD_IQASYNCH_V(iqasynch) |
2256			    FW_IQ_CMD_VIID_V(pi->viid) |
2257			    FW_IQ_CMD_IQANDST_V(iqandst) |
2258			    FW_IQ_CMD_IQANUS_V(1) |
2259			    FW_IQ_CMD_IQANUD_V(SGE_UPDATEDEL_INTR) |
2260			    FW_IQ_CMD_IQANDSTINDEX_V(intr_dest));
2261	cmd.iqdroprss_to_iqesize =
2262		cpu_to_be16(FW_IQ_CMD_IQPCIECH_V(pi->port_id) |
2263			    FW_IQ_CMD_IQGTSMODE_F |
2264			    FW_IQ_CMD_IQINTCNTTHRESH_V(rspq->pktcnt_idx) |
2265			    FW_IQ_CMD_IQESIZE_V(ilog2(rspq->iqe_len) - 4));
2266	cmd.iqsize = cpu_to_be16(rspq->size);
2267	cmd.iqaddr = cpu_to_be64(rspq->phys_addr);
2268
2269	if (fl) {
2270		unsigned int chip_ver =
2271			CHELSIO_CHIP_VERSION(adapter->params.chip);
2272		/*
2273		 * Allocate the ring for the hardware free list (with space
2274		 * for its status page) along with the associated software
2275		 * descriptor ring.  The free list size needs to be a multiple
2276		 * of the Egress Queue Unit and at least 2 Egress Units larger
2277		 * than the SGE's Egress Congrestion Threshold
2278		 * (fl_starve_thres - 1).
2279		 */
2280		if (fl->size < s->fl_starve_thres - 1 + 2 * FL_PER_EQ_UNIT)
2281			fl->size = s->fl_starve_thres - 1 + 2 * FL_PER_EQ_UNIT;
2282		fl->size = roundup(fl->size, FL_PER_EQ_UNIT);
2283		fl->desc = alloc_ring(adapter->pdev_dev, fl->size,
2284				      sizeof(__be64), sizeof(struct rx_sw_desc),
2285				      &fl->addr, &fl->sdesc, s->stat_len);
2286		if (!fl->desc) {
2287			ret = -ENOMEM;
2288			goto err;
2289		}
2290
2291		/*
2292		 * Calculate the size of the hardware free list ring plus
2293		 * Status Page (which the SGE will place after the end of the
2294		 * free list ring) in Egress Queue Units.
2295		 */
2296		flsz = (fl->size / FL_PER_EQ_UNIT +
2297			s->stat_len / EQ_UNIT);
2298
2299		/*
2300		 * Fill in all the relevant firmware Ingress Queue Command
2301		 * fields for the free list.
2302		 */
2303		cmd.iqns_to_fl0congen =
2304			cpu_to_be32(
2305				FW_IQ_CMD_FL0HOSTFCMODE_V(SGE_HOSTFCMODE_NONE) |
2306				FW_IQ_CMD_FL0PACKEN_F |
2307				FW_IQ_CMD_FL0FETCHRO_V(relaxed) |
2308				FW_IQ_CMD_FL0DATARO_V(relaxed) |
2309				FW_IQ_CMD_FL0PADEN_F);
2310
2311		/* In T6, for egress queue type FL there is internal overhead
2312		 * of 16B for header going into FLM module.  Hence the maximum
2313		 * allowed burst size is 448 bytes.  For T4/T5, the hardware
2314		 * doesn't coalesce fetch requests if more than 64 bytes of
2315		 * Free List pointers are provided, so we use a 128-byte Fetch
2316		 * Burst Minimum there (T6 implements coalescing so we can use
2317		 * the smaller 64-byte value there).
2318		 */
2319		cmd.fl0dcaen_to_fl0cidxfthresh =
2320			cpu_to_be16(
2321				FW_IQ_CMD_FL0FBMIN_V(chip_ver <= CHELSIO_T5
2322						     ? FETCHBURSTMIN_128B_X
2323						     : FETCHBURSTMIN_64B_T6_X) |
2324				FW_IQ_CMD_FL0FBMAX_V((chip_ver <= CHELSIO_T5) ?
2325						     FETCHBURSTMAX_512B_X :
2326						     FETCHBURSTMAX_256B_X));
2327		cmd.fl0size = cpu_to_be16(flsz);
2328		cmd.fl0addr = cpu_to_be64(fl->addr);
2329	}
2330
2331	/*
2332	 * Issue the firmware Ingress Queue Command and extract the results if
2333	 * it completes successfully.
2334	 */
2335	ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
2336	if (ret)
2337		goto err;
2338
2339	netif_napi_add(dev, &rspq->napi, napi_rx_handler);
2340	rspq->cur_desc = rspq->desc;
2341	rspq->cidx = 0;
2342	rspq->gen = 1;
2343	rspq->next_intr_params = rspq->intr_params;
2344	rspq->cntxt_id = be16_to_cpu(rpl.iqid);
2345	rspq->bar2_addr = bar2_address(adapter,
2346				       rspq->cntxt_id,
2347				       T4_BAR2_QTYPE_INGRESS,
2348				       &rspq->bar2_qid);
2349	rspq->abs_id = be16_to_cpu(rpl.physiqid);
2350	rspq->size--;			/* subtract status entry */
2351	rspq->adapter = adapter;
2352	rspq->netdev = dev;
2353	rspq->handler = hnd;
2354
2355	/* set offset to -1 to distinguish ingress queues without FL */
2356	rspq->offset = fl ? 0 : -1;
2357
2358	if (fl) {
2359		fl->cntxt_id = be16_to_cpu(rpl.fl0id);
2360		fl->avail = 0;
2361		fl->pend_cred = 0;
2362		fl->pidx = 0;
2363		fl->cidx = 0;
2364		fl->alloc_failed = 0;
2365		fl->large_alloc_failed = 0;
2366		fl->starving = 0;
2367
2368		/* Note, we must initialize the BAR2 Free List User Doorbell
2369		 * information before refilling the Free List!
2370		 */
2371		fl->bar2_addr = bar2_address(adapter,
2372					     fl->cntxt_id,
2373					     T4_BAR2_QTYPE_EGRESS,
2374					     &fl->bar2_qid);
2375
2376		refill_fl(adapter, fl, fl_cap(fl), GFP_KERNEL);
2377	}
2378
2379	return 0;
2380
2381err:
2382	/*
2383	 * An error occurred.  Clean up our partial allocation state and
2384	 * return the error.
2385	 */
2386	if (rspq->desc) {
2387		dma_free_coherent(adapter->pdev_dev, rspq->size * rspq->iqe_len,
2388				  rspq->desc, rspq->phys_addr);
2389		rspq->desc = NULL;
2390	}
2391	if (fl && fl->desc) {
2392		kfree(fl->sdesc);
2393		fl->sdesc = NULL;
2394		dma_free_coherent(adapter->pdev_dev, flsz * EQ_UNIT,
2395				  fl->desc, fl->addr);
2396		fl->desc = NULL;
2397	}
2398	return ret;
2399}
2400
2401/**
2402 *	t4vf_sge_alloc_eth_txq - allocate an SGE Ethernet TX Queue
2403 *	@adapter: the adapter
2404 *	@txq: pointer to the new txq to be filled in
2405 *	@dev: the network device
2406 *	@devq: the network TX queue associated with the new txq
2407 *	@iqid: the relative ingress queue ID to which events relating to
2408 *		the new txq should be directed
2409 */
2410int t4vf_sge_alloc_eth_txq(struct adapter *adapter, struct sge_eth_txq *txq,
2411			   struct net_device *dev, struct netdev_queue *devq,
2412			   unsigned int iqid)
2413{
2414	unsigned int chip_ver = CHELSIO_CHIP_VERSION(adapter->params.chip);
2415	struct port_info *pi = netdev_priv(dev);
2416	struct fw_eq_eth_cmd cmd, rpl;
2417	struct sge *s = &adapter->sge;
2418	int ret, nentries;
2419
2420	/*
2421	 * Calculate the size of the hardware TX Queue (including the Status
2422	 * Page on the end of the TX Queue) in units of TX Descriptors.
2423	 */
2424	nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc);
2425
2426	/*
2427	 * Allocate the hardware ring for the TX ring (with space for its
2428	 * status page) along with the associated software descriptor ring.
2429	 */
2430	txq->q.desc = alloc_ring(adapter->pdev_dev, txq->q.size,
2431				 sizeof(struct tx_desc),
2432				 sizeof(struct tx_sw_desc),
2433				 &txq->q.phys_addr, &txq->q.sdesc, s->stat_len);
2434	if (!txq->q.desc)
2435		return -ENOMEM;
2436
2437	/*
2438	 * Fill in the Egress Queue Command.  Note: As with the direct use of
2439	 * the firmware Ingress Queue COmmand above in our RXQ allocation
2440	 * routine, ideally, this code would be in t4vf_hw.c.  Again, we'll
2441	 * have to see if there's some reasonable way to parameterize it
2442	 * into the common code ...
2443	 */
2444	memset(&cmd, 0, sizeof(cmd));
2445	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_ETH_CMD) |
2446				    FW_CMD_REQUEST_F |
2447				    FW_CMD_WRITE_F |
2448				    FW_CMD_EXEC_F);
2449	cmd.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_ALLOC_F |
2450					 FW_EQ_ETH_CMD_EQSTART_F |
2451					 FW_LEN16(cmd));
2452	cmd.autoequiqe_to_viid = cpu_to_be32(FW_EQ_ETH_CMD_AUTOEQUEQE_F |
2453					     FW_EQ_ETH_CMD_VIID_V(pi->viid));
2454	cmd.fetchszm_to_iqid =
2455		cpu_to_be32(FW_EQ_ETH_CMD_HOSTFCMODE_V(SGE_HOSTFCMODE_STPG) |
2456			    FW_EQ_ETH_CMD_PCIECHN_V(pi->port_id) |
2457			    FW_EQ_ETH_CMD_IQID_V(iqid));
2458	cmd.dcaen_to_eqsize =
2459		cpu_to_be32(FW_EQ_ETH_CMD_FBMIN_V(chip_ver <= CHELSIO_T5
2460						  ? FETCHBURSTMIN_64B_X
2461						  : FETCHBURSTMIN_64B_T6_X) |
2462			    FW_EQ_ETH_CMD_FBMAX_V(FETCHBURSTMAX_512B_X) |
2463			    FW_EQ_ETH_CMD_CIDXFTHRESH_V(
2464						CIDXFLUSHTHRESH_32_X) |
2465			    FW_EQ_ETH_CMD_EQSIZE_V(nentries));
2466	cmd.eqaddr = cpu_to_be64(txq->q.phys_addr);
2467
2468	/*
2469	 * Issue the firmware Egress Queue Command and extract the results if
2470	 * it completes successfully.
2471	 */
2472	ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
2473	if (ret) {
2474		/*
2475		 * The girmware Ingress Queue Command failed for some reason.
2476		 * Free up our partial allocation state and return the error.
2477		 */
2478		kfree(txq->q.sdesc);
2479		txq->q.sdesc = NULL;
2480		dma_free_coherent(adapter->pdev_dev,
2481				  nentries * sizeof(struct tx_desc),
2482				  txq->q.desc, txq->q.phys_addr);
2483		txq->q.desc = NULL;
2484		return ret;
2485	}
2486
2487	txq->q.in_use = 0;
2488	txq->q.cidx = 0;
2489	txq->q.pidx = 0;
2490	txq->q.stat = (void *)&txq->q.desc[txq->q.size];
2491	txq->q.cntxt_id = FW_EQ_ETH_CMD_EQID_G(be32_to_cpu(rpl.eqid_pkd));
2492	txq->q.bar2_addr = bar2_address(adapter,
2493					txq->q.cntxt_id,
2494					T4_BAR2_QTYPE_EGRESS,
2495					&txq->q.bar2_qid);
2496	txq->q.abs_id =
2497		FW_EQ_ETH_CMD_PHYSEQID_G(be32_to_cpu(rpl.physeqid_pkd));
2498	txq->txq = devq;
2499	txq->tso = 0;
2500	txq->tx_cso = 0;
2501	txq->vlan_ins = 0;
2502	txq->q.stops = 0;
2503	txq->q.restarts = 0;
2504	txq->mapping_err = 0;
2505	return 0;
2506}
2507
2508/*
2509 * Free the DMA map resources associated with a TX queue.
2510 */
2511static void free_txq(struct adapter *adapter, struct sge_txq *tq)
2512{
2513	struct sge *s = &adapter->sge;
2514
2515	dma_free_coherent(adapter->pdev_dev,
2516			  tq->size * sizeof(*tq->desc) + s->stat_len,
2517			  tq->desc, tq->phys_addr);
2518	tq->cntxt_id = 0;
2519	tq->sdesc = NULL;
2520	tq->desc = NULL;
2521}
2522
2523/*
2524 * Free the resources associated with a response queue (possibly including a
2525 * free list).
2526 */
2527static void free_rspq_fl(struct adapter *adapter, struct sge_rspq *rspq,
2528			 struct sge_fl *fl)
2529{
2530	struct sge *s = &adapter->sge;
2531	unsigned int flid = fl ? fl->cntxt_id : 0xffff;
2532
2533	t4vf_iq_free(adapter, FW_IQ_TYPE_FL_INT_CAP,
2534		     rspq->cntxt_id, flid, 0xffff);
2535	dma_free_coherent(adapter->pdev_dev, (rspq->size + 1) * rspq->iqe_len,
2536			  rspq->desc, rspq->phys_addr);
2537	netif_napi_del(&rspq->napi);
2538	rspq->netdev = NULL;
2539	rspq->cntxt_id = 0;
2540	rspq->abs_id = 0;
2541	rspq->desc = NULL;
2542
2543	if (fl) {
2544		free_rx_bufs(adapter, fl, fl->avail);
2545		dma_free_coherent(adapter->pdev_dev,
2546				  fl->size * sizeof(*fl->desc) + s->stat_len,
2547				  fl->desc, fl->addr);
2548		kfree(fl->sdesc);
2549		fl->sdesc = NULL;
2550		fl->cntxt_id = 0;
2551		fl->desc = NULL;
2552	}
2553}
2554
2555/**
2556 *	t4vf_free_sge_resources - free SGE resources
2557 *	@adapter: the adapter
2558 *
2559 *	Frees resources used by the SGE queue sets.
2560 */
2561void t4vf_free_sge_resources(struct adapter *adapter)
2562{
2563	struct sge *s = &adapter->sge;
2564	struct sge_eth_rxq *rxq = s->ethrxq;
2565	struct sge_eth_txq *txq = s->ethtxq;
2566	struct sge_rspq *evtq = &s->fw_evtq;
2567	struct sge_rspq *intrq = &s->intrq;
2568	int qs;
2569
2570	for (qs = 0; qs < adapter->sge.ethqsets; qs++, rxq++, txq++) {
2571		if (rxq->rspq.desc)
2572			free_rspq_fl(adapter, &rxq->rspq, &rxq->fl);
2573		if (txq->q.desc) {
2574			t4vf_eth_eq_free(adapter, txq->q.cntxt_id);
2575			free_tx_desc(adapter, &txq->q, txq->q.in_use, true);
2576			kfree(txq->q.sdesc);
2577			free_txq(adapter, &txq->q);
2578		}
2579	}
2580	if (evtq->desc)
2581		free_rspq_fl(adapter, evtq, NULL);
2582	if (intrq->desc)
2583		free_rspq_fl(adapter, intrq, NULL);
2584}
2585
2586/**
2587 *	t4vf_sge_start - enable SGE operation
2588 *	@adapter: the adapter
2589 *
2590 *	Start tasklets and timers associated with the DMA engine.
2591 */
2592void t4vf_sge_start(struct adapter *adapter)
2593{
2594	adapter->sge.ethtxq_rover = 0;
2595	mod_timer(&adapter->sge.rx_timer, jiffies + RX_QCHECK_PERIOD);
2596	mod_timer(&adapter->sge.tx_timer, jiffies + TX_QCHECK_PERIOD);
2597}
2598
2599/**
2600 *	t4vf_sge_stop - disable SGE operation
2601 *	@adapter: the adapter
2602 *
2603 *	Stop tasklets and timers associated with the DMA engine.  Note that
2604 *	this is effective only if measures have been taken to disable any HW
2605 *	events that may restart them.
2606 */
2607void t4vf_sge_stop(struct adapter *adapter)
2608{
2609	struct sge *s = &adapter->sge;
2610
2611	if (s->rx_timer.function)
2612		del_timer_sync(&s->rx_timer);
2613	if (s->tx_timer.function)
2614		del_timer_sync(&s->tx_timer);
2615}
2616
2617/**
2618 *	t4vf_sge_init - initialize SGE
2619 *	@adapter: the adapter
2620 *
2621 *	Performs SGE initialization needed every time after a chip reset.
2622 *	We do not initialize any of the queue sets here, instead the driver
2623 *	top-level must request those individually.  We also do not enable DMA
2624 *	here, that should be done after the queues have been set up.
2625 */
2626int t4vf_sge_init(struct adapter *adapter)
2627{
2628	struct sge_params *sge_params = &adapter->params.sge;
2629	u32 fl_small_pg = sge_params->sge_fl_buffer_size[0];
2630	u32 fl_large_pg = sge_params->sge_fl_buffer_size[1];
2631	struct sge *s = &adapter->sge;
2632
2633	/*
2634	 * Start by vetting the basic SGE parameters which have been set up by
2635	 * the Physical Function Driver.  Ideally we should be able to deal
2636	 * with _any_ configuration.  Practice is different ...
2637	 */
2638
2639	/* We only bother using the Large Page logic if the Large Page Buffer
2640	 * is larger than our Page Size Buffer.
2641	 */
2642	if (fl_large_pg <= fl_small_pg)
2643		fl_large_pg = 0;
2644
2645	/* The Page Size Buffer must be exactly equal to our Page Size and the
2646	 * Large Page Size Buffer should be 0 (per above) or a power of 2.
2647	 */
2648	if (fl_small_pg != PAGE_SIZE ||
2649	    (fl_large_pg & (fl_large_pg - 1)) != 0) {
2650		dev_err(adapter->pdev_dev, "bad SGE FL buffer sizes [%d, %d]\n",
2651			fl_small_pg, fl_large_pg);
2652		return -EINVAL;
2653	}
2654	if ((sge_params->sge_control & RXPKTCPLMODE_F) !=
2655	    RXPKTCPLMODE_V(RXPKTCPLMODE_SPLIT_X)) {
2656		dev_err(adapter->pdev_dev, "bad SGE CPL MODE\n");
2657		return -EINVAL;
2658	}
2659
2660	/*
2661	 * Now translate the adapter parameters into our internal forms.
2662	 */
2663	if (fl_large_pg)
2664		s->fl_pg_order = ilog2(fl_large_pg) - PAGE_SHIFT;
2665	s->stat_len = ((sge_params->sge_control & EGRSTATUSPAGESIZE_F)
2666			? 128 : 64);
2667	s->pktshift = PKTSHIFT_G(sge_params->sge_control);
2668	s->fl_align = t4vf_fl_pkt_align(adapter);
2669
2670	/* A FL with <= fl_starve_thres buffers is starving and a periodic
2671	 * timer will attempt to refill it.  This needs to be larger than the
2672	 * SGE's Egress Congestion Threshold.  If it isn't, then we can get
2673	 * stuck waiting for new packets while the SGE is waiting for us to
2674	 * give it more Free List entries.  (Note that the SGE's Egress
2675	 * Congestion Threshold is in units of 2 Free List pointers.)
2676	 */
2677	switch (CHELSIO_CHIP_VERSION(adapter->params.chip)) {
2678	case CHELSIO_T4:
2679		s->fl_starve_thres =
2680		   EGRTHRESHOLD_G(sge_params->sge_congestion_control);
2681		break;
2682	case CHELSIO_T5:
2683		s->fl_starve_thres =
2684		   EGRTHRESHOLDPACKING_G(sge_params->sge_congestion_control);
2685		break;
2686	case CHELSIO_T6:
2687	default:
2688		s->fl_starve_thres =
2689		   T6_EGRTHRESHOLDPACKING_G(sge_params->sge_congestion_control);
2690		break;
2691	}
2692	s->fl_starve_thres = s->fl_starve_thres * 2 + 1;
2693
2694	/*
2695	 * Set up tasklet timers.
2696	 */
2697	timer_setup(&s->rx_timer, sge_rx_timer_cb, 0);
2698	timer_setup(&s->tx_timer, sge_tx_timer_cb, 0);
2699
2700	/*
2701	 * Initialize Forwarded Interrupt Queue lock.
2702	 */
2703	spin_lock_init(&s->intrq_lock);
2704
2705	return 0;
2706}
2707