1/*
2 * This file is part of the Chelsio T4 PCI-E SR-IOV Virtual Function Ethernet
3 * driver for Linux.
4 *
5 * Copyright (c) 2009-2010 Chelsio Communications, Inc. All rights reserved.
6 *
7 * This software is available to you under a choice of one of two
8 * licenses.  You may choose to be licensed under the terms of the GNU
9 * General Public License (GPL) Version 2, available from the file
10 * COPYING in the main directory of this source tree, or the
11 * OpenIB.org BSD license below:
12 *
13 *     Redistribution and use in source and binary forms, with or
14 *     without modification, are permitted provided that the following
15 *     conditions are met:
16 *
17 *      - Redistributions of source code must retain the above
18 *        copyright notice, this list of conditions and the following
19 *        disclaimer.
20 *
21 *      - Redistributions in binary form must reproduce the above
22 *        copyright notice, this list of conditions and the following
23 *        disclaimer in the documentation and/or other materials
24 *        provided with the distribution.
25 *
26 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
27 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
28 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
29 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
30 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
31 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
32 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
33 * SOFTWARE.
34 */
35
36#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
37
38#include <linux/module.h>
39#include <linux/moduleparam.h>
40#include <linux/init.h>
41#include <linux/pci.h>
42#include <linux/dma-mapping.h>
43#include <linux/netdevice.h>
44#include <linux/etherdevice.h>
45#include <linux/debugfs.h>
46#include <linux/ethtool.h>
47#include <linux/mdio.h>
48
49#include "t4vf_common.h"
50#include "t4vf_defs.h"
51
52#include "../cxgb4/t4_regs.h"
53#include "../cxgb4/t4_msg.h"
54
55/*
56 * Generic information about the driver.
57 */
58#define DRV_DESC "Chelsio T4/T5/T6 Virtual Function (VF) Network Driver"
59
60/*
61 * Module Parameters.
62 * ==================
63 */
64
65/*
66 * Default ethtool "message level" for adapters.
67 */
68#define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
69			 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
70			 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
71
72/*
73 * The driver uses the best interrupt scheme available on a platform in the
74 * order MSI-X then MSI.  This parameter determines which of these schemes the
75 * driver may consider as follows:
76 *
77 *     msi = 2: choose from among MSI-X and MSI
78 *     msi = 1: only consider MSI interrupts
79 *
80 * Note that unlike the Physical Function driver, this Virtual Function driver
81 * does _not_ support legacy INTx interrupts (this limitation is mandated by
82 * the PCI-E SR-IOV standard).
83 */
84#define MSI_MSIX	2
85#define MSI_MSI		1
86#define MSI_DEFAULT	MSI_MSIX
87
88static int msi = MSI_DEFAULT;
89
90module_param(msi, int, 0644);
91MODULE_PARM_DESC(msi, "whether to use MSI-X or MSI");
92
93/*
94 * Fundamental constants.
95 * ======================
96 */
97
98enum {
99	MAX_TXQ_ENTRIES		= 16384,
100	MAX_RSPQ_ENTRIES	= 16384,
101	MAX_RX_BUFFERS		= 16384,
102
103	MIN_TXQ_ENTRIES		= 32,
104	MIN_RSPQ_ENTRIES	= 128,
105	MIN_FL_ENTRIES		= 16,
106
107	/*
108	 * For purposes of manipulating the Free List size we need to
109	 * recognize that Free Lists are actually Egress Queues (the host
110	 * produces free buffers which the hardware consumes), Egress Queues
111	 * indices are all in units of Egress Context Units bytes, and free
112	 * list entries are 64-bit PCI DMA addresses.  And since the state of
113	 * the Producer Index == the Consumer Index implies an EMPTY list, we
114	 * always have at least one Egress Unit's worth of Free List entries
115	 * unused.  See sge.c for more details ...
116	 */
117	EQ_UNIT = SGE_EQ_IDXSIZE,
118	FL_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64),
119	MIN_FL_RESID = FL_PER_EQ_UNIT,
120};
121
122/*
123 * Global driver state.
124 * ====================
125 */
126
127static struct dentry *cxgb4vf_debugfs_root;
128
129/*
130 * OS "Callback" functions.
131 * ========================
132 */
133
134/*
135 * The link status has changed on the indicated "port" (Virtual Interface).
136 */
137void t4vf_os_link_changed(struct adapter *adapter, int pidx, int link_ok)
138{
139	struct net_device *dev = adapter->port[pidx];
140
141	/*
142	 * If the port is disabled or the current recorded "link up"
143	 * status matches the new status, just return.
144	 */
145	if (!netif_running(dev) || link_ok == netif_carrier_ok(dev))
146		return;
147
148	/*
149	 * Tell the OS that the link status has changed and print a short
150	 * informative message on the console about the event.
151	 */
152	if (link_ok) {
153		const char *s;
154		const char *fc;
155		const struct port_info *pi = netdev_priv(dev);
156
157		netif_carrier_on(dev);
158
159		switch (pi->link_cfg.speed) {
160		case 100:
161			s = "100Mbps";
162			break;
163		case 1000:
164			s = "1Gbps";
165			break;
166		case 10000:
167			s = "10Gbps";
168			break;
169		case 25000:
170			s = "25Gbps";
171			break;
172		case 40000:
173			s = "40Gbps";
174			break;
175		case 100000:
176			s = "100Gbps";
177			break;
178
179		default:
180			s = "unknown";
181			break;
182		}
183
184		switch ((int)pi->link_cfg.fc) {
185		case PAUSE_RX:
186			fc = "RX";
187			break;
188
189		case PAUSE_TX:
190			fc = "TX";
191			break;
192
193		case PAUSE_RX | PAUSE_TX:
194			fc = "RX/TX";
195			break;
196
197		default:
198			fc = "no";
199			break;
200		}
201
202		netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s, fc);
203	} else {
204		netif_carrier_off(dev);
205		netdev_info(dev, "link down\n");
206	}
207}
208
209/*
210 * THe port module type has changed on the indicated "port" (Virtual
211 * Interface).
212 */
213void t4vf_os_portmod_changed(struct adapter *adapter, int pidx)
214{
215	static const char * const mod_str[] = {
216		NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
217	};
218	const struct net_device *dev = adapter->port[pidx];
219	const struct port_info *pi = netdev_priv(dev);
220
221	if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
222		dev_info(adapter->pdev_dev, "%s: port module unplugged\n",
223			 dev->name);
224	else if (pi->mod_type < ARRAY_SIZE(mod_str))
225		dev_info(adapter->pdev_dev, "%s: %s port module inserted\n",
226			 dev->name, mod_str[pi->mod_type]);
227	else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED)
228		dev_info(adapter->pdev_dev, "%s: unsupported optical port "
229			 "module inserted\n", dev->name);
230	else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN)
231		dev_info(adapter->pdev_dev, "%s: unknown port module inserted,"
232			 "forcing TWINAX\n", dev->name);
233	else if (pi->mod_type == FW_PORT_MOD_TYPE_ERROR)
234		dev_info(adapter->pdev_dev, "%s: transceiver module error\n",
235			 dev->name);
236	else
237		dev_info(adapter->pdev_dev, "%s: unknown module type %d "
238			 "inserted\n", dev->name, pi->mod_type);
239}
240
241static int cxgb4vf_set_addr_hash(struct port_info *pi)
242{
243	struct adapter *adapter = pi->adapter;
244	u64 vec = 0;
245	bool ucast = false;
246	struct hash_mac_addr *entry;
247
248	/* Calculate the hash vector for the updated list and program it */
249	list_for_each_entry(entry, &adapter->mac_hlist, list) {
250		ucast |= is_unicast_ether_addr(entry->addr);
251		vec |= (1ULL << hash_mac_addr(entry->addr));
252	}
253	return t4vf_set_addr_hash(adapter, pi->viid, ucast, vec, false);
254}
255
256/**
257 *	cxgb4vf_change_mac - Update match filter for a MAC address.
258 *	@pi: the port_info
259 *	@viid: the VI id
260 *	@tcam_idx: TCAM index of existing filter for old value of MAC address,
261 *		   or -1
262 *	@addr: the new MAC address value
263 *	@persistent: whether a new MAC allocation should be persistent
264 *
265 *	Modifies an MPS filter and sets it to the new MAC address if
266 *	@tcam_idx >= 0, or adds the MAC address to a new filter if
267 *	@tcam_idx < 0. In the latter case the address is added persistently
268 *	if @persist is %true.
269 *	Addresses are programmed to hash region, if tcam runs out of entries.
270 *
271 */
272static int cxgb4vf_change_mac(struct port_info *pi, unsigned int viid,
273			      int *tcam_idx, const u8 *addr, bool persistent)
274{
275	struct hash_mac_addr *new_entry, *entry;
276	struct adapter *adapter = pi->adapter;
277	int ret;
278
279	ret = t4vf_change_mac(adapter, viid, *tcam_idx, addr, persistent);
280	/* We ran out of TCAM entries. try programming hash region. */
281	if (ret == -ENOMEM) {
282		/* If the MAC address to be updated is in the hash addr
283		 * list, update it from the list
284		 */
285		list_for_each_entry(entry, &adapter->mac_hlist, list) {
286			if (entry->iface_mac) {
287				ether_addr_copy(entry->addr, addr);
288				goto set_hash;
289			}
290		}
291		new_entry = kzalloc(sizeof(*new_entry), GFP_KERNEL);
292		if (!new_entry)
293			return -ENOMEM;
294		ether_addr_copy(new_entry->addr, addr);
295		new_entry->iface_mac = true;
296		list_add_tail(&new_entry->list, &adapter->mac_hlist);
297set_hash:
298		ret = cxgb4vf_set_addr_hash(pi);
299	} else if (ret >= 0) {
300		*tcam_idx = ret;
301		ret = 0;
302	}
303
304	return ret;
305}
306
307/*
308 * Net device operations.
309 * ======================
310 */
311
312
313
314
315/*
316 * Perform the MAC and PHY actions needed to enable a "port" (Virtual
317 * Interface).
318 */
319static int link_start(struct net_device *dev)
320{
321	int ret;
322	struct port_info *pi = netdev_priv(dev);
323
324	/*
325	 * We do not set address filters and promiscuity here, the stack does
326	 * that step explicitly. Enable vlan accel.
327	 */
328	ret = t4vf_set_rxmode(pi->adapter, pi->viid, dev->mtu, -1, -1, -1, 1,
329			      true);
330	if (ret == 0)
331		ret = cxgb4vf_change_mac(pi, pi->viid,
332					 &pi->xact_addr_filt,
333					 dev->dev_addr, true);
334
335	/*
336	 * We don't need to actually "start the link" itself since the
337	 * firmware will do that for us when the first Virtual Interface
338	 * is enabled on a port.
339	 */
340	if (ret == 0)
341		ret = t4vf_enable_pi(pi->adapter, pi, true, true);
342
343	return ret;
344}
345
346/*
347 * Name the MSI-X interrupts.
348 */
349static void name_msix_vecs(struct adapter *adapter)
350{
351	int namelen = sizeof(adapter->msix_info[0].desc) - 1;
352	int pidx;
353
354	/*
355	 * Firmware events.
356	 */
357	snprintf(adapter->msix_info[MSIX_FW].desc, namelen,
358		 "%s-FWeventq", adapter->name);
359	adapter->msix_info[MSIX_FW].desc[namelen] = 0;
360
361	/*
362	 * Ethernet queues.
363	 */
364	for_each_port(adapter, pidx) {
365		struct net_device *dev = adapter->port[pidx];
366		const struct port_info *pi = netdev_priv(dev);
367		int qs, msi;
368
369		for (qs = 0, msi = MSIX_IQFLINT; qs < pi->nqsets; qs++, msi++) {
370			snprintf(adapter->msix_info[msi].desc, namelen,
371				 "%s-%d", dev->name, qs);
372			adapter->msix_info[msi].desc[namelen] = 0;
373		}
374	}
375}
376
377/*
378 * Request all of our MSI-X resources.
379 */
380static int request_msix_queue_irqs(struct adapter *adapter)
381{
382	struct sge *s = &adapter->sge;
383	int rxq, msi, err;
384
385	/*
386	 * Firmware events.
387	 */
388	err = request_irq(adapter->msix_info[MSIX_FW].vec, t4vf_sge_intr_msix,
389			  0, adapter->msix_info[MSIX_FW].desc, &s->fw_evtq);
390	if (err)
391		return err;
392
393	/*
394	 * Ethernet queues.
395	 */
396	msi = MSIX_IQFLINT;
397	for_each_ethrxq(s, rxq) {
398		err = request_irq(adapter->msix_info[msi].vec,
399				  t4vf_sge_intr_msix, 0,
400				  adapter->msix_info[msi].desc,
401				  &s->ethrxq[rxq].rspq);
402		if (err)
403			goto err_free_irqs;
404		msi++;
405	}
406	return 0;
407
408err_free_irqs:
409	while (--rxq >= 0)
410		free_irq(adapter->msix_info[--msi].vec, &s->ethrxq[rxq].rspq);
411	free_irq(adapter->msix_info[MSIX_FW].vec, &s->fw_evtq);
412	return err;
413}
414
415/*
416 * Free our MSI-X resources.
417 */
418static void free_msix_queue_irqs(struct adapter *adapter)
419{
420	struct sge *s = &adapter->sge;
421	int rxq, msi;
422
423	free_irq(adapter->msix_info[MSIX_FW].vec, &s->fw_evtq);
424	msi = MSIX_IQFLINT;
425	for_each_ethrxq(s, rxq)
426		free_irq(adapter->msix_info[msi++].vec,
427			 &s->ethrxq[rxq].rspq);
428}
429
430/*
431 * Turn on NAPI and start up interrupts on a response queue.
432 */
433static void qenable(struct sge_rspq *rspq)
434{
435	napi_enable(&rspq->napi);
436
437	/*
438	 * 0-increment the Going To Sleep register to start the timer and
439	 * enable interrupts.
440	 */
441	t4_write_reg(rspq->adapter, T4VF_SGE_BASE_ADDR + SGE_VF_GTS,
442		     CIDXINC_V(0) |
443		     SEINTARM_V(rspq->intr_params) |
444		     INGRESSQID_V(rspq->cntxt_id));
445}
446
447/*
448 * Enable NAPI scheduling and interrupt generation for all Receive Queues.
449 */
450static void enable_rx(struct adapter *adapter)
451{
452	int rxq;
453	struct sge *s = &adapter->sge;
454
455	for_each_ethrxq(s, rxq)
456		qenable(&s->ethrxq[rxq].rspq);
457	qenable(&s->fw_evtq);
458
459	/*
460	 * The interrupt queue doesn't use NAPI so we do the 0-increment of
461	 * its Going To Sleep register here to get it started.
462	 */
463	if (adapter->flags & CXGB4VF_USING_MSI)
464		t4_write_reg(adapter, T4VF_SGE_BASE_ADDR + SGE_VF_GTS,
465			     CIDXINC_V(0) |
466			     SEINTARM_V(s->intrq.intr_params) |
467			     INGRESSQID_V(s->intrq.cntxt_id));
468
469}
470
471/*
472 * Wait until all NAPI handlers are descheduled.
473 */
474static void quiesce_rx(struct adapter *adapter)
475{
476	struct sge *s = &adapter->sge;
477	int rxq;
478
479	for_each_ethrxq(s, rxq)
480		napi_disable(&s->ethrxq[rxq].rspq.napi);
481	napi_disable(&s->fw_evtq.napi);
482}
483
484/*
485 * Response queue handler for the firmware event queue.
486 */
487static int fwevtq_handler(struct sge_rspq *rspq, const __be64 *rsp,
488			  const struct pkt_gl *gl)
489{
490	/*
491	 * Extract response opcode and get pointer to CPL message body.
492	 */
493	struct adapter *adapter = rspq->adapter;
494	u8 opcode = ((const struct rss_header *)rsp)->opcode;
495	void *cpl = (void *)(rsp + 1);
496
497	switch (opcode) {
498	case CPL_FW6_MSG: {
499		/*
500		 * We've received an asynchronous message from the firmware.
501		 */
502		const struct cpl_fw6_msg *fw_msg = cpl;
503		if (fw_msg->type == FW6_TYPE_CMD_RPL)
504			t4vf_handle_fw_rpl(adapter, fw_msg->data);
505		break;
506	}
507
508	case CPL_FW4_MSG: {
509		/* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
510		 */
511		const struct cpl_sge_egr_update *p = (void *)(rsp + 3);
512		opcode = CPL_OPCODE_G(ntohl(p->opcode_qid));
513		if (opcode != CPL_SGE_EGR_UPDATE) {
514			dev_err(adapter->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n"
515				, opcode);
516			break;
517		}
518		cpl = (void *)p;
519	}
520		fallthrough;
521
522	case CPL_SGE_EGR_UPDATE: {
523		/*
524		 * We've received an Egress Queue Status Update message.  We
525		 * get these, if the SGE is configured to send these when the
526		 * firmware passes certain points in processing our TX
527		 * Ethernet Queue or if we make an explicit request for one.
528		 * We use these updates to determine when we may need to
529		 * restart a TX Ethernet Queue which was stopped for lack of
530		 * free TX Queue Descriptors ...
531		 */
532		const struct cpl_sge_egr_update *p = cpl;
533		unsigned int qid = EGR_QID_G(be32_to_cpu(p->opcode_qid));
534		struct sge *s = &adapter->sge;
535		struct sge_txq *tq;
536		struct sge_eth_txq *txq;
537		unsigned int eq_idx;
538
539		/*
540		 * Perform sanity checking on the Queue ID to make sure it
541		 * really refers to one of our TX Ethernet Egress Queues which
542		 * is active and matches the queue's ID.  None of these error
543		 * conditions should ever happen so we may want to either make
544		 * them fatal and/or conditionalized under DEBUG.
545		 */
546		eq_idx = EQ_IDX(s, qid);
547		if (unlikely(eq_idx >= MAX_EGRQ)) {
548			dev_err(adapter->pdev_dev,
549				"Egress Update QID %d out of range\n", qid);
550			break;
551		}
552		tq = s->egr_map[eq_idx];
553		if (unlikely(tq == NULL)) {
554			dev_err(adapter->pdev_dev,
555				"Egress Update QID %d TXQ=NULL\n", qid);
556			break;
557		}
558		txq = container_of(tq, struct sge_eth_txq, q);
559		if (unlikely(tq->abs_id != qid)) {
560			dev_err(adapter->pdev_dev,
561				"Egress Update QID %d refers to TXQ %d\n",
562				qid, tq->abs_id);
563			break;
564		}
565
566		/*
567		 * Restart a stopped TX Queue which has less than half of its
568		 * TX ring in use ...
569		 */
570		txq->q.restarts++;
571		netif_tx_wake_queue(txq->txq);
572		break;
573	}
574
575	default:
576		dev_err(adapter->pdev_dev,
577			"unexpected CPL %#x on FW event queue\n", opcode);
578	}
579
580	return 0;
581}
582
583/*
584 * Allocate SGE TX/RX response queues.  Determine how many sets of SGE queues
585 * to use and initializes them.  We support multiple "Queue Sets" per port if
586 * we have MSI-X, otherwise just one queue set per port.
587 */
588static int setup_sge_queues(struct adapter *adapter)
589{
590	struct sge *s = &adapter->sge;
591	int err, pidx, msix;
592
593	/*
594	 * Clear "Queue Set" Free List Starving and TX Queue Mapping Error
595	 * state.
596	 */
597	bitmap_zero(s->starving_fl, MAX_EGRQ);
598
599	/*
600	 * If we're using MSI interrupt mode we need to set up a "forwarded
601	 * interrupt" queue which we'll set up with our MSI vector.  The rest
602	 * of the ingress queues will be set up to forward their interrupts to
603	 * this queue ...  This must be first since t4vf_sge_alloc_rxq() uses
604	 * the intrq's queue ID as the interrupt forwarding queue for the
605	 * subsequent calls ...
606	 */
607	if (adapter->flags & CXGB4VF_USING_MSI) {
608		err = t4vf_sge_alloc_rxq(adapter, &s->intrq, false,
609					 adapter->port[0], 0, NULL, NULL);
610		if (err)
611			goto err_free_queues;
612	}
613
614	/*
615	 * Allocate our ingress queue for asynchronous firmware messages.
616	 */
617	err = t4vf_sge_alloc_rxq(adapter, &s->fw_evtq, true, adapter->port[0],
618				 MSIX_FW, NULL, fwevtq_handler);
619	if (err)
620		goto err_free_queues;
621
622	/*
623	 * Allocate each "port"'s initial Queue Sets.  These can be changed
624	 * later on ... up to the point where any interface on the adapter is
625	 * brought up at which point lots of things get nailed down
626	 * permanently ...
627	 */
628	msix = MSIX_IQFLINT;
629	for_each_port(adapter, pidx) {
630		struct net_device *dev = adapter->port[pidx];
631		struct port_info *pi = netdev_priv(dev);
632		struct sge_eth_rxq *rxq = &s->ethrxq[pi->first_qset];
633		struct sge_eth_txq *txq = &s->ethtxq[pi->first_qset];
634		int qs;
635
636		for (qs = 0; qs < pi->nqsets; qs++, rxq++, txq++) {
637			err = t4vf_sge_alloc_rxq(adapter, &rxq->rspq, false,
638						 dev, msix++,
639						 &rxq->fl, t4vf_ethrx_handler);
640			if (err)
641				goto err_free_queues;
642
643			err = t4vf_sge_alloc_eth_txq(adapter, txq, dev,
644					     netdev_get_tx_queue(dev, qs),
645					     s->fw_evtq.cntxt_id);
646			if (err)
647				goto err_free_queues;
648
649			rxq->rspq.idx = qs;
650			memset(&rxq->stats, 0, sizeof(rxq->stats));
651		}
652	}
653
654	/*
655	 * Create the reverse mappings for the queues.
656	 */
657	s->egr_base = s->ethtxq[0].q.abs_id - s->ethtxq[0].q.cntxt_id;
658	s->ingr_base = s->ethrxq[0].rspq.abs_id - s->ethrxq[0].rspq.cntxt_id;
659	IQ_MAP(s, s->fw_evtq.abs_id) = &s->fw_evtq;
660	for_each_port(adapter, pidx) {
661		struct net_device *dev = adapter->port[pidx];
662		struct port_info *pi = netdev_priv(dev);
663		struct sge_eth_rxq *rxq = &s->ethrxq[pi->first_qset];
664		struct sge_eth_txq *txq = &s->ethtxq[pi->first_qset];
665		int qs;
666
667		for (qs = 0; qs < pi->nqsets; qs++, rxq++, txq++) {
668			IQ_MAP(s, rxq->rspq.abs_id) = &rxq->rspq;
669			EQ_MAP(s, txq->q.abs_id) = &txq->q;
670
671			/*
672			 * The FW_IQ_CMD doesn't return the Absolute Queue IDs
673			 * for Free Lists but since all of the Egress Queues
674			 * (including Free Lists) have Relative Queue IDs
675			 * which are computed as Absolute - Base Queue ID, we
676			 * can synthesize the Absolute Queue IDs for the Free
677			 * Lists.  This is useful for debugging purposes when
678			 * we want to dump Queue Contexts via the PF Driver.
679			 */
680			rxq->fl.abs_id = rxq->fl.cntxt_id + s->egr_base;
681			EQ_MAP(s, rxq->fl.abs_id) = &rxq->fl;
682		}
683	}
684	return 0;
685
686err_free_queues:
687	t4vf_free_sge_resources(adapter);
688	return err;
689}
690
691/*
692 * Set up Receive Side Scaling (RSS) to distribute packets to multiple receive
693 * queues.  We configure the RSS CPU lookup table to distribute to the number
694 * of HW receive queues, and the response queue lookup table to narrow that
695 * down to the response queues actually configured for each "port" (Virtual
696 * Interface).  We always configure the RSS mapping for all ports since the
697 * mapping table has plenty of entries.
698 */
699static int setup_rss(struct adapter *adapter)
700{
701	int pidx;
702
703	for_each_port(adapter, pidx) {
704		struct port_info *pi = adap2pinfo(adapter, pidx);
705		struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[pi->first_qset];
706		u16 rss[MAX_PORT_QSETS];
707		int qs, err;
708
709		for (qs = 0; qs < pi->nqsets; qs++)
710			rss[qs] = rxq[qs].rspq.abs_id;
711
712		err = t4vf_config_rss_range(adapter, pi->viid,
713					    0, pi->rss_size, rss, pi->nqsets);
714		if (err)
715			return err;
716
717		/*
718		 * Perform Global RSS Mode-specific initialization.
719		 */
720		switch (adapter->params.rss.mode) {
721		case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL:
722			/*
723			 * If Tunnel All Lookup isn't specified in the global
724			 * RSS Configuration, then we need to specify a
725			 * default Ingress Queue for any ingress packets which
726			 * aren't hashed.  We'll use our first ingress queue
727			 * ...
728			 */
729			if (!adapter->params.rss.u.basicvirtual.tnlalllookup) {
730				union rss_vi_config config;
731				err = t4vf_read_rss_vi_config(adapter,
732							      pi->viid,
733							      &config);
734				if (err)
735					return err;
736				config.basicvirtual.defaultq =
737					rxq[0].rspq.abs_id;
738				err = t4vf_write_rss_vi_config(adapter,
739							       pi->viid,
740							       &config);
741				if (err)
742					return err;
743			}
744			break;
745		}
746	}
747
748	return 0;
749}
750
751/*
752 * Bring the adapter up.  Called whenever we go from no "ports" open to having
753 * one open.  This function performs the actions necessary to make an adapter
754 * operational, such as completing the initialization of HW modules, and
755 * enabling interrupts.  Must be called with the rtnl lock held.  (Note that
756 * this is called "cxgb_up" in the PF Driver.)
757 */
758static int adapter_up(struct adapter *adapter)
759{
760	int err;
761
762	/*
763	 * If this is the first time we've been called, perform basic
764	 * adapter setup.  Once we've done this, many of our adapter
765	 * parameters can no longer be changed ...
766	 */
767	if ((adapter->flags & CXGB4VF_FULL_INIT_DONE) == 0) {
768		err = setup_sge_queues(adapter);
769		if (err)
770			return err;
771		err = setup_rss(adapter);
772		if (err) {
773			t4vf_free_sge_resources(adapter);
774			return err;
775		}
776
777		if (adapter->flags & CXGB4VF_USING_MSIX)
778			name_msix_vecs(adapter);
779
780		adapter->flags |= CXGB4VF_FULL_INIT_DONE;
781	}
782
783	/*
784	 * Acquire our interrupt resources.  We only support MSI-X and MSI.
785	 */
786	BUG_ON((adapter->flags &
787	       (CXGB4VF_USING_MSIX | CXGB4VF_USING_MSI)) == 0);
788	if (adapter->flags & CXGB4VF_USING_MSIX)
789		err = request_msix_queue_irqs(adapter);
790	else
791		err = request_irq(adapter->pdev->irq,
792				  t4vf_intr_handler(adapter), 0,
793				  adapter->name, adapter);
794	if (err) {
795		dev_err(adapter->pdev_dev, "request_irq failed, err %d\n",
796			err);
797		return err;
798	}
799
800	/*
801	 * Enable NAPI ingress processing and return success.
802	 */
803	enable_rx(adapter);
804	t4vf_sge_start(adapter);
805
806	return 0;
807}
808
809/*
810 * Bring the adapter down.  Called whenever the last "port" (Virtual
811 * Interface) closed.  (Note that this routine is called "cxgb_down" in the PF
812 * Driver.)
813 */
814static void adapter_down(struct adapter *adapter)
815{
816	/*
817	 * Free interrupt resources.
818	 */
819	if (adapter->flags & CXGB4VF_USING_MSIX)
820		free_msix_queue_irqs(adapter);
821	else
822		free_irq(adapter->pdev->irq, adapter);
823
824	/*
825	 * Wait for NAPI handlers to finish.
826	 */
827	quiesce_rx(adapter);
828}
829
830/*
831 * Start up a net device.
832 */
833static int cxgb4vf_open(struct net_device *dev)
834{
835	int err;
836	struct port_info *pi = netdev_priv(dev);
837	struct adapter *adapter = pi->adapter;
838
839	/*
840	 * If we don't have a connection to the firmware there's nothing we
841	 * can do.
842	 */
843	if (!(adapter->flags & CXGB4VF_FW_OK))
844		return -ENXIO;
845
846	/*
847	 * If this is the first interface that we're opening on the "adapter",
848	 * bring the "adapter" up now.
849	 */
850	if (adapter->open_device_map == 0) {
851		err = adapter_up(adapter);
852		if (err)
853			return err;
854	}
855
856	/* It's possible that the basic port information could have
857	 * changed since we first read it.
858	 */
859	err = t4vf_update_port_info(pi);
860	if (err < 0)
861		goto err_unwind;
862
863	/*
864	 * Note that this interface is up and start everything up ...
865	 */
866	err = link_start(dev);
867	if (err)
868		goto err_unwind;
869
870	pi->vlan_id = t4vf_get_vf_vlan_acl(adapter);
871
872	netif_tx_start_all_queues(dev);
873	set_bit(pi->port_id, &adapter->open_device_map);
874	return 0;
875
876err_unwind:
877	if (adapter->open_device_map == 0)
878		adapter_down(adapter);
879	return err;
880}
881
882/*
883 * Shut down a net device.  This routine is called "cxgb_close" in the PF
884 * Driver ...
885 */
886static int cxgb4vf_stop(struct net_device *dev)
887{
888	struct port_info *pi = netdev_priv(dev);
889	struct adapter *adapter = pi->adapter;
890
891	netif_tx_stop_all_queues(dev);
892	netif_carrier_off(dev);
893	t4vf_enable_pi(adapter, pi, false, false);
894
895	clear_bit(pi->port_id, &adapter->open_device_map);
896	if (adapter->open_device_map == 0)
897		adapter_down(adapter);
898	return 0;
899}
900
901/*
902 * Translate our basic statistics into the standard "ifconfig" statistics.
903 */
904static struct net_device_stats *cxgb4vf_get_stats(struct net_device *dev)
905{
906	struct t4vf_port_stats stats;
907	struct port_info *pi = netdev2pinfo(dev);
908	struct adapter *adapter = pi->adapter;
909	struct net_device_stats *ns = &dev->stats;
910	int err;
911
912	spin_lock(&adapter->stats_lock);
913	err = t4vf_get_port_stats(adapter, pi->pidx, &stats);
914	spin_unlock(&adapter->stats_lock);
915
916	memset(ns, 0, sizeof(*ns));
917	if (err)
918		return ns;
919
920	ns->tx_bytes = (stats.tx_bcast_bytes + stats.tx_mcast_bytes +
921			stats.tx_ucast_bytes + stats.tx_offload_bytes);
922	ns->tx_packets = (stats.tx_bcast_frames + stats.tx_mcast_frames +
923			  stats.tx_ucast_frames + stats.tx_offload_frames);
924	ns->rx_bytes = (stats.rx_bcast_bytes + stats.rx_mcast_bytes +
925			stats.rx_ucast_bytes);
926	ns->rx_packets = (stats.rx_bcast_frames + stats.rx_mcast_frames +
927			  stats.rx_ucast_frames);
928	ns->multicast = stats.rx_mcast_frames;
929	ns->tx_errors = stats.tx_drop_frames;
930	ns->rx_errors = stats.rx_err_frames;
931
932	return ns;
933}
934
935static int cxgb4vf_mac_sync(struct net_device *netdev, const u8 *mac_addr)
936{
937	struct port_info *pi = netdev_priv(netdev);
938	struct adapter *adapter = pi->adapter;
939	int ret;
940	u64 mhash = 0;
941	u64 uhash = 0;
942	bool free = false;
943	bool ucast = is_unicast_ether_addr(mac_addr);
944	const u8 *maclist[1] = {mac_addr};
945	struct hash_mac_addr *new_entry;
946
947	ret = t4vf_alloc_mac_filt(adapter, pi->viid, free, 1, maclist,
948				  NULL, ucast ? &uhash : &mhash, false);
949	if (ret < 0)
950		goto out;
951	/* if hash != 0, then add the addr to hash addr list
952	 * so on the end we will calculate the hash for the
953	 * list and program it
954	 */
955	if (uhash || mhash) {
956		new_entry = kzalloc(sizeof(*new_entry), GFP_ATOMIC);
957		if (!new_entry)
958			return -ENOMEM;
959		ether_addr_copy(new_entry->addr, mac_addr);
960		list_add_tail(&new_entry->list, &adapter->mac_hlist);
961		ret = cxgb4vf_set_addr_hash(pi);
962	}
963out:
964	return ret < 0 ? ret : 0;
965}
966
967static int cxgb4vf_mac_unsync(struct net_device *netdev, const u8 *mac_addr)
968{
969	struct port_info *pi = netdev_priv(netdev);
970	struct adapter *adapter = pi->adapter;
971	int ret;
972	const u8 *maclist[1] = {mac_addr};
973	struct hash_mac_addr *entry, *tmp;
974
975	/* If the MAC address to be removed is in the hash addr
976	 * list, delete it from the list and update hash vector
977	 */
978	list_for_each_entry_safe(entry, tmp, &adapter->mac_hlist, list) {
979		if (ether_addr_equal(entry->addr, mac_addr)) {
980			list_del(&entry->list);
981			kfree(entry);
982			return cxgb4vf_set_addr_hash(pi);
983		}
984	}
985
986	ret = t4vf_free_mac_filt(adapter, pi->viid, 1, maclist, false);
987	return ret < 0 ? -EINVAL : 0;
988}
989
990/*
991 * Set RX properties of a port, such as promiscruity, address filters, and MTU.
992 * If @mtu is -1 it is left unchanged.
993 */
994static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
995{
996	struct port_info *pi = netdev_priv(dev);
997
998	__dev_uc_sync(dev, cxgb4vf_mac_sync, cxgb4vf_mac_unsync);
999	__dev_mc_sync(dev, cxgb4vf_mac_sync, cxgb4vf_mac_unsync);
1000	return t4vf_set_rxmode(pi->adapter, pi->viid, -1,
1001			       (dev->flags & IFF_PROMISC) != 0,
1002			       (dev->flags & IFF_ALLMULTI) != 0,
1003			       1, -1, sleep_ok);
1004}
1005
1006/*
1007 * Set the current receive modes on the device.
1008 */
1009static void cxgb4vf_set_rxmode(struct net_device *dev)
1010{
1011	/* unfortunately we can't return errors to the stack */
1012	set_rxmode(dev, -1, false);
1013}
1014
1015/*
1016 * Find the entry in the interrupt holdoff timer value array which comes
1017 * closest to the specified interrupt holdoff value.
1018 */
1019static int closest_timer(const struct sge *s, int us)
1020{
1021	int i, timer_idx = 0, min_delta = INT_MAX;
1022
1023	for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
1024		int delta = us - s->timer_val[i];
1025		if (delta < 0)
1026			delta = -delta;
1027		if (delta < min_delta) {
1028			min_delta = delta;
1029			timer_idx = i;
1030		}
1031	}
1032	return timer_idx;
1033}
1034
1035static int closest_thres(const struct sge *s, int thres)
1036{
1037	int i, delta, pktcnt_idx = 0, min_delta = INT_MAX;
1038
1039	for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
1040		delta = thres - s->counter_val[i];
1041		if (delta < 0)
1042			delta = -delta;
1043		if (delta < min_delta) {
1044			min_delta = delta;
1045			pktcnt_idx = i;
1046		}
1047	}
1048	return pktcnt_idx;
1049}
1050
1051/*
1052 * Return a queue's interrupt hold-off time in us.  0 means no timer.
1053 */
1054static unsigned int qtimer_val(const struct adapter *adapter,
1055			       const struct sge_rspq *rspq)
1056{
1057	unsigned int timer_idx = QINTR_TIMER_IDX_G(rspq->intr_params);
1058
1059	return timer_idx < SGE_NTIMERS
1060		? adapter->sge.timer_val[timer_idx]
1061		: 0;
1062}
1063
1064/**
1065 *	set_rxq_intr_params - set a queue's interrupt holdoff parameters
1066 *	@adapter: the adapter
1067 *	@rspq: the RX response queue
1068 *	@us: the hold-off time in us, or 0 to disable timer
1069 *	@cnt: the hold-off packet count, or 0 to disable counter
1070 *
1071 *	Sets an RX response queue's interrupt hold-off time and packet count.
1072 *	At least one of the two needs to be enabled for the queue to generate
1073 *	interrupts.
1074 */
1075static int set_rxq_intr_params(struct adapter *adapter, struct sge_rspq *rspq,
1076			       unsigned int us, unsigned int cnt)
1077{
1078	unsigned int timer_idx;
1079
1080	/*
1081	 * If both the interrupt holdoff timer and count are specified as
1082	 * zero, default to a holdoff count of 1 ...
1083	 */
1084	if ((us | cnt) == 0)
1085		cnt = 1;
1086
1087	/*
1088	 * If an interrupt holdoff count has been specified, then find the
1089	 * closest configured holdoff count and use that.  If the response
1090	 * queue has already been created, then update its queue context
1091	 * parameters ...
1092	 */
1093	if (cnt) {
1094		int err;
1095		u32 v, pktcnt_idx;
1096
1097		pktcnt_idx = closest_thres(&adapter->sge, cnt);
1098		if (rspq->desc && rspq->pktcnt_idx != pktcnt_idx) {
1099			v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
1100			    FW_PARAMS_PARAM_X_V(
1101					FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
1102			    FW_PARAMS_PARAM_YZ_V(rspq->cntxt_id);
1103			err = t4vf_set_params(adapter, 1, &v, &pktcnt_idx);
1104			if (err)
1105				return err;
1106		}
1107		rspq->pktcnt_idx = pktcnt_idx;
1108	}
1109
1110	/*
1111	 * Compute the closest holdoff timer index from the supplied holdoff
1112	 * timer value.
1113	 */
1114	timer_idx = (us == 0
1115		     ? SGE_TIMER_RSTRT_CNTR
1116		     : closest_timer(&adapter->sge, us));
1117
1118	/*
1119	 * Update the response queue's interrupt coalescing parameters and
1120	 * return success.
1121	 */
1122	rspq->intr_params = (QINTR_TIMER_IDX_V(timer_idx) |
1123			     QINTR_CNT_EN_V(cnt > 0));
1124	return 0;
1125}
1126
1127/*
1128 * Return a version number to identify the type of adapter.  The scheme is:
1129 * - bits 0..9: chip version
1130 * - bits 10..15: chip revision
1131 */
1132static inline unsigned int mk_adap_vers(const struct adapter *adapter)
1133{
1134	/*
1135	 * Chip version 4, revision 0x3f (cxgb4vf).
1136	 */
1137	return CHELSIO_CHIP_VERSION(adapter->params.chip) | (0x3f << 10);
1138}
1139
1140/*
1141 * Execute the specified ioctl command.
1142 */
1143static int cxgb4vf_do_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
1144{
1145	int ret = 0;
1146
1147	switch (cmd) {
1148	    /*
1149	     * The VF Driver doesn't have access to any of the other
1150	     * common Ethernet device ioctl()'s (like reading/writing
1151	     * PHY registers, etc.
1152	     */
1153
1154	default:
1155		ret = -EOPNOTSUPP;
1156		break;
1157	}
1158	return ret;
1159}
1160
1161/*
1162 * Change the device's MTU.
1163 */
1164static int cxgb4vf_change_mtu(struct net_device *dev, int new_mtu)
1165{
1166	int ret;
1167	struct port_info *pi = netdev_priv(dev);
1168
1169	ret = t4vf_set_rxmode(pi->adapter, pi->viid, new_mtu,
1170			      -1, -1, -1, -1, true);
1171	if (!ret)
1172		dev->mtu = new_mtu;
1173	return ret;
1174}
1175
1176static netdev_features_t cxgb4vf_fix_features(struct net_device *dev,
1177	netdev_features_t features)
1178{
1179	/*
1180	 * Since there is no support for separate rx/tx vlan accel
1181	 * enable/disable make sure tx flag is always in same state as rx.
1182	 */
1183	if (features & NETIF_F_HW_VLAN_CTAG_RX)
1184		features |= NETIF_F_HW_VLAN_CTAG_TX;
1185	else
1186		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
1187
1188	return features;
1189}
1190
1191static int cxgb4vf_set_features(struct net_device *dev,
1192	netdev_features_t features)
1193{
1194	struct port_info *pi = netdev_priv(dev);
1195	netdev_features_t changed = dev->features ^ features;
1196
1197	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
1198		t4vf_set_rxmode(pi->adapter, pi->viid, -1, -1, -1, -1,
1199				features & NETIF_F_HW_VLAN_CTAG_TX, 0);
1200
1201	return 0;
1202}
1203
1204/*
1205 * Change the devices MAC address.
1206 */
1207static int cxgb4vf_set_mac_addr(struct net_device *dev, void *_addr)
1208{
1209	int ret;
1210	struct sockaddr *addr = _addr;
1211	struct port_info *pi = netdev_priv(dev);
1212
1213	if (!is_valid_ether_addr(addr->sa_data))
1214		return -EADDRNOTAVAIL;
1215
1216	ret = cxgb4vf_change_mac(pi, pi->viid, &pi->xact_addr_filt,
1217				 addr->sa_data, true);
1218	if (ret < 0)
1219		return ret;
1220
1221	eth_hw_addr_set(dev, addr->sa_data);
1222	return 0;
1223}
1224
1225#ifdef CONFIG_NET_POLL_CONTROLLER
1226/*
1227 * Poll all of our receive queues.  This is called outside of normal interrupt
1228 * context.
1229 */
1230static void cxgb4vf_poll_controller(struct net_device *dev)
1231{
1232	struct port_info *pi = netdev_priv(dev);
1233	struct adapter *adapter = pi->adapter;
1234
1235	if (adapter->flags & CXGB4VF_USING_MSIX) {
1236		struct sge_eth_rxq *rxq;
1237		int nqsets;
1238
1239		rxq = &adapter->sge.ethrxq[pi->first_qset];
1240		for (nqsets = pi->nqsets; nqsets; nqsets--) {
1241			t4vf_sge_intr_msix(0, &rxq->rspq);
1242			rxq++;
1243		}
1244	} else
1245		t4vf_intr_handler(adapter)(0, adapter);
1246}
1247#endif
1248
1249/*
1250 * Ethtool operations.
1251 * ===================
1252 *
1253 * Note that we don't support any ethtool operations which change the physical
1254 * state of the port to which we're linked.
1255 */
1256
1257/**
1258 *	from_fw_port_mod_type - translate Firmware Port/Module type to Ethtool
1259 *	@port_type: Firmware Port Type
1260 *	@mod_type: Firmware Module Type
1261 *
1262 *	Translate Firmware Port/Module type to Ethtool Port Type.
1263 */
1264static int from_fw_port_mod_type(enum fw_port_type port_type,
1265				 enum fw_port_module_type mod_type)
1266{
1267	if (port_type == FW_PORT_TYPE_BT_SGMII ||
1268	    port_type == FW_PORT_TYPE_BT_XFI ||
1269	    port_type == FW_PORT_TYPE_BT_XAUI) {
1270		return PORT_TP;
1271	} else if (port_type == FW_PORT_TYPE_FIBER_XFI ||
1272		   port_type == FW_PORT_TYPE_FIBER_XAUI) {
1273		return PORT_FIBRE;
1274	} else if (port_type == FW_PORT_TYPE_SFP ||
1275		   port_type == FW_PORT_TYPE_QSFP_10G ||
1276		   port_type == FW_PORT_TYPE_QSA ||
1277		   port_type == FW_PORT_TYPE_QSFP ||
1278		   port_type == FW_PORT_TYPE_CR4_QSFP ||
1279		   port_type == FW_PORT_TYPE_CR_QSFP ||
1280		   port_type == FW_PORT_TYPE_CR2_QSFP ||
1281		   port_type == FW_PORT_TYPE_SFP28) {
1282		if (mod_type == FW_PORT_MOD_TYPE_LR ||
1283		    mod_type == FW_PORT_MOD_TYPE_SR ||
1284		    mod_type == FW_PORT_MOD_TYPE_ER ||
1285		    mod_type == FW_PORT_MOD_TYPE_LRM)
1286			return PORT_FIBRE;
1287		else if (mod_type == FW_PORT_MOD_TYPE_TWINAX_PASSIVE ||
1288			 mod_type == FW_PORT_MOD_TYPE_TWINAX_ACTIVE)
1289			return PORT_DA;
1290		else
1291			return PORT_OTHER;
1292	} else if (port_type == FW_PORT_TYPE_KR4_100G ||
1293		   port_type == FW_PORT_TYPE_KR_SFP28 ||
1294		   port_type == FW_PORT_TYPE_KR_XLAUI) {
1295		return PORT_NONE;
1296	}
1297
1298	return PORT_OTHER;
1299}
1300
1301/**
1302 *	fw_caps_to_lmm - translate Firmware to ethtool Link Mode Mask
1303 *	@port_type: Firmware Port Type
1304 *	@fw_caps: Firmware Port Capabilities
1305 *	@link_mode_mask: ethtool Link Mode Mask
1306 *
1307 *	Translate a Firmware Port Capabilities specification to an ethtool
1308 *	Link Mode Mask.
1309 */
1310static void fw_caps_to_lmm(enum fw_port_type port_type,
1311			   unsigned int fw_caps,
1312			   unsigned long *link_mode_mask)
1313{
1314	#define SET_LMM(__lmm_name) \
1315		__set_bit(ETHTOOL_LINK_MODE_ ## __lmm_name ## _BIT, \
1316			  link_mode_mask)
1317
1318	#define FW_CAPS_TO_LMM(__fw_name, __lmm_name) \
1319		do { \
1320			if (fw_caps & FW_PORT_CAP32_ ## __fw_name) \
1321				SET_LMM(__lmm_name); \
1322		} while (0)
1323
1324	switch (port_type) {
1325	case FW_PORT_TYPE_BT_SGMII:
1326	case FW_PORT_TYPE_BT_XFI:
1327	case FW_PORT_TYPE_BT_XAUI:
1328		SET_LMM(TP);
1329		FW_CAPS_TO_LMM(SPEED_100M, 100baseT_Full);
1330		FW_CAPS_TO_LMM(SPEED_1G, 1000baseT_Full);
1331		FW_CAPS_TO_LMM(SPEED_10G, 10000baseT_Full);
1332		break;
1333
1334	case FW_PORT_TYPE_KX4:
1335	case FW_PORT_TYPE_KX:
1336		SET_LMM(Backplane);
1337		FW_CAPS_TO_LMM(SPEED_1G, 1000baseKX_Full);
1338		FW_CAPS_TO_LMM(SPEED_10G, 10000baseKX4_Full);
1339		break;
1340
1341	case FW_PORT_TYPE_KR:
1342		SET_LMM(Backplane);
1343		FW_CAPS_TO_LMM(SPEED_10G, 10000baseKR_Full);
1344		break;
1345
1346	case FW_PORT_TYPE_BP_AP:
1347		SET_LMM(Backplane);
1348		FW_CAPS_TO_LMM(SPEED_1G, 1000baseKX_Full);
1349		FW_CAPS_TO_LMM(SPEED_10G, 10000baseR_FEC);
1350		FW_CAPS_TO_LMM(SPEED_10G, 10000baseKR_Full);
1351		break;
1352
1353	case FW_PORT_TYPE_BP4_AP:
1354		SET_LMM(Backplane);
1355		FW_CAPS_TO_LMM(SPEED_1G, 1000baseKX_Full);
1356		FW_CAPS_TO_LMM(SPEED_10G, 10000baseR_FEC);
1357		FW_CAPS_TO_LMM(SPEED_10G, 10000baseKR_Full);
1358		FW_CAPS_TO_LMM(SPEED_10G, 10000baseKX4_Full);
1359		break;
1360
1361	case FW_PORT_TYPE_FIBER_XFI:
1362	case FW_PORT_TYPE_FIBER_XAUI:
1363	case FW_PORT_TYPE_SFP:
1364	case FW_PORT_TYPE_QSFP_10G:
1365	case FW_PORT_TYPE_QSA:
1366		SET_LMM(FIBRE);
1367		FW_CAPS_TO_LMM(SPEED_1G, 1000baseT_Full);
1368		FW_CAPS_TO_LMM(SPEED_10G, 10000baseT_Full);
1369		break;
1370
1371	case FW_PORT_TYPE_BP40_BA:
1372	case FW_PORT_TYPE_QSFP:
1373		SET_LMM(FIBRE);
1374		FW_CAPS_TO_LMM(SPEED_1G, 1000baseT_Full);
1375		FW_CAPS_TO_LMM(SPEED_10G, 10000baseT_Full);
1376		FW_CAPS_TO_LMM(SPEED_40G, 40000baseSR4_Full);
1377		break;
1378
1379	case FW_PORT_TYPE_CR_QSFP:
1380	case FW_PORT_TYPE_SFP28:
1381		SET_LMM(FIBRE);
1382		FW_CAPS_TO_LMM(SPEED_1G, 1000baseT_Full);
1383		FW_CAPS_TO_LMM(SPEED_10G, 10000baseT_Full);
1384		FW_CAPS_TO_LMM(SPEED_25G, 25000baseCR_Full);
1385		break;
1386
1387	case FW_PORT_TYPE_KR_SFP28:
1388		SET_LMM(Backplane);
1389		FW_CAPS_TO_LMM(SPEED_1G, 1000baseT_Full);
1390		FW_CAPS_TO_LMM(SPEED_10G, 10000baseKR_Full);
1391		FW_CAPS_TO_LMM(SPEED_25G, 25000baseKR_Full);
1392		break;
1393
1394	case FW_PORT_TYPE_KR_XLAUI:
1395		SET_LMM(Backplane);
1396		FW_CAPS_TO_LMM(SPEED_1G, 1000baseKX_Full);
1397		FW_CAPS_TO_LMM(SPEED_10G, 10000baseKR_Full);
1398		FW_CAPS_TO_LMM(SPEED_40G, 40000baseKR4_Full);
1399		break;
1400
1401	case FW_PORT_TYPE_CR2_QSFP:
1402		SET_LMM(FIBRE);
1403		FW_CAPS_TO_LMM(SPEED_50G, 50000baseSR2_Full);
1404		break;
1405
1406	case FW_PORT_TYPE_KR4_100G:
1407	case FW_PORT_TYPE_CR4_QSFP:
1408		SET_LMM(FIBRE);
1409		FW_CAPS_TO_LMM(SPEED_1G,  1000baseT_Full);
1410		FW_CAPS_TO_LMM(SPEED_10G, 10000baseKR_Full);
1411		FW_CAPS_TO_LMM(SPEED_40G, 40000baseSR4_Full);
1412		FW_CAPS_TO_LMM(SPEED_25G, 25000baseCR_Full);
1413		FW_CAPS_TO_LMM(SPEED_50G, 50000baseCR2_Full);
1414		FW_CAPS_TO_LMM(SPEED_100G, 100000baseCR4_Full);
1415		break;
1416
1417	default:
1418		break;
1419	}
1420
1421	if (fw_caps & FW_PORT_CAP32_FEC_V(FW_PORT_CAP32_FEC_M)) {
1422		FW_CAPS_TO_LMM(FEC_RS, FEC_RS);
1423		FW_CAPS_TO_LMM(FEC_BASER_RS, FEC_BASER);
1424	} else {
1425		SET_LMM(FEC_NONE);
1426	}
1427
1428	FW_CAPS_TO_LMM(ANEG, Autoneg);
1429	FW_CAPS_TO_LMM(802_3_PAUSE, Pause);
1430	FW_CAPS_TO_LMM(802_3_ASM_DIR, Asym_Pause);
1431
1432	#undef FW_CAPS_TO_LMM
1433	#undef SET_LMM
1434}
1435
1436static int cxgb4vf_get_link_ksettings(struct net_device *dev,
1437				  struct ethtool_link_ksettings *link_ksettings)
1438{
1439	struct port_info *pi = netdev_priv(dev);
1440	struct ethtool_link_settings *base = &link_ksettings->base;
1441
1442	/* For the nonce, the Firmware doesn't send up Port State changes
1443	 * when the Virtual Interface attached to the Port is down.  So
1444	 * if it's down, let's grab any changes.
1445	 */
1446	if (!netif_running(dev))
1447		(void)t4vf_update_port_info(pi);
1448
1449	ethtool_link_ksettings_zero_link_mode(link_ksettings, supported);
1450	ethtool_link_ksettings_zero_link_mode(link_ksettings, advertising);
1451	ethtool_link_ksettings_zero_link_mode(link_ksettings, lp_advertising);
1452
1453	base->port = from_fw_port_mod_type(pi->port_type, pi->mod_type);
1454
1455	if (pi->mdio_addr >= 0) {
1456		base->phy_address = pi->mdio_addr;
1457		base->mdio_support = (pi->port_type == FW_PORT_TYPE_BT_SGMII
1458				      ? ETH_MDIO_SUPPORTS_C22
1459				      : ETH_MDIO_SUPPORTS_C45);
1460	} else {
1461		base->phy_address = 255;
1462		base->mdio_support = 0;
1463	}
1464
1465	fw_caps_to_lmm(pi->port_type, pi->link_cfg.pcaps,
1466		       link_ksettings->link_modes.supported);
1467	fw_caps_to_lmm(pi->port_type, pi->link_cfg.acaps,
1468		       link_ksettings->link_modes.advertising);
1469	fw_caps_to_lmm(pi->port_type, pi->link_cfg.lpacaps,
1470		       link_ksettings->link_modes.lp_advertising);
1471
1472	if (netif_carrier_ok(dev)) {
1473		base->speed = pi->link_cfg.speed;
1474		base->duplex = DUPLEX_FULL;
1475	} else {
1476		base->speed = SPEED_UNKNOWN;
1477		base->duplex = DUPLEX_UNKNOWN;
1478	}
1479
1480	base->autoneg = pi->link_cfg.autoneg;
1481	if (pi->link_cfg.pcaps & FW_PORT_CAP32_ANEG)
1482		ethtool_link_ksettings_add_link_mode(link_ksettings,
1483						     supported, Autoneg);
1484	if (pi->link_cfg.autoneg)
1485		ethtool_link_ksettings_add_link_mode(link_ksettings,
1486						     advertising, Autoneg);
1487
1488	return 0;
1489}
1490
1491/* Translate the Firmware FEC value into the ethtool value. */
1492static inline unsigned int fwcap_to_eth_fec(unsigned int fw_fec)
1493{
1494	unsigned int eth_fec = 0;
1495
1496	if (fw_fec & FW_PORT_CAP32_FEC_RS)
1497		eth_fec |= ETHTOOL_FEC_RS;
1498	if (fw_fec & FW_PORT_CAP32_FEC_BASER_RS)
1499		eth_fec |= ETHTOOL_FEC_BASER;
1500
1501	/* if nothing is set, then FEC is off */
1502	if (!eth_fec)
1503		eth_fec = ETHTOOL_FEC_OFF;
1504
1505	return eth_fec;
1506}
1507
1508/* Translate Common Code FEC value into ethtool value. */
1509static inline unsigned int cc_to_eth_fec(unsigned int cc_fec)
1510{
1511	unsigned int eth_fec = 0;
1512
1513	if (cc_fec & FEC_AUTO)
1514		eth_fec |= ETHTOOL_FEC_AUTO;
1515	if (cc_fec & FEC_RS)
1516		eth_fec |= ETHTOOL_FEC_RS;
1517	if (cc_fec & FEC_BASER_RS)
1518		eth_fec |= ETHTOOL_FEC_BASER;
1519
1520	/* if nothing is set, then FEC is off */
1521	if (!eth_fec)
1522		eth_fec = ETHTOOL_FEC_OFF;
1523
1524	return eth_fec;
1525}
1526
1527static int cxgb4vf_get_fecparam(struct net_device *dev,
1528				struct ethtool_fecparam *fec)
1529{
1530	const struct port_info *pi = netdev_priv(dev);
1531	const struct link_config *lc = &pi->link_cfg;
1532
1533	/* Translate the Firmware FEC Support into the ethtool value.  We
1534	 * always support IEEE 802.3 "automatic" selection of Link FEC type if
1535	 * any FEC is supported.
1536	 */
1537	fec->fec = fwcap_to_eth_fec(lc->pcaps);
1538	if (fec->fec != ETHTOOL_FEC_OFF)
1539		fec->fec |= ETHTOOL_FEC_AUTO;
1540
1541	/* Translate the current internal FEC parameters into the
1542	 * ethtool values.
1543	 */
1544	fec->active_fec = cc_to_eth_fec(lc->fec);
1545	return 0;
1546}
1547
1548/*
1549 * Return our driver information.
1550 */
1551static void cxgb4vf_get_drvinfo(struct net_device *dev,
1552				struct ethtool_drvinfo *drvinfo)
1553{
1554	struct adapter *adapter = netdev2adap(dev);
1555
1556	strscpy(drvinfo->driver, KBUILD_MODNAME, sizeof(drvinfo->driver));
1557	strscpy(drvinfo->bus_info, pci_name(to_pci_dev(dev->dev.parent)),
1558		sizeof(drvinfo->bus_info));
1559	snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version),
1560		 "%u.%u.%u.%u, TP %u.%u.%u.%u",
1561		 FW_HDR_FW_VER_MAJOR_G(adapter->params.dev.fwrev),
1562		 FW_HDR_FW_VER_MINOR_G(adapter->params.dev.fwrev),
1563		 FW_HDR_FW_VER_MICRO_G(adapter->params.dev.fwrev),
1564		 FW_HDR_FW_VER_BUILD_G(adapter->params.dev.fwrev),
1565		 FW_HDR_FW_VER_MAJOR_G(adapter->params.dev.tprev),
1566		 FW_HDR_FW_VER_MINOR_G(adapter->params.dev.tprev),
1567		 FW_HDR_FW_VER_MICRO_G(adapter->params.dev.tprev),
1568		 FW_HDR_FW_VER_BUILD_G(adapter->params.dev.tprev));
1569}
1570
1571/*
1572 * Return current adapter message level.
1573 */
1574static u32 cxgb4vf_get_msglevel(struct net_device *dev)
1575{
1576	return netdev2adap(dev)->msg_enable;
1577}
1578
1579/*
1580 * Set current adapter message level.
1581 */
1582static void cxgb4vf_set_msglevel(struct net_device *dev, u32 msglevel)
1583{
1584	netdev2adap(dev)->msg_enable = msglevel;
1585}
1586
1587/*
1588 * Return the device's current Queue Set ring size parameters along with the
1589 * allowed maximum values.  Since ethtool doesn't understand the concept of
1590 * multi-queue devices, we just return the current values associated with the
1591 * first Queue Set.
1592 */
1593static void cxgb4vf_get_ringparam(struct net_device *dev,
1594				  struct ethtool_ringparam *rp,
1595				  struct kernel_ethtool_ringparam *kernel_rp,
1596				  struct netlink_ext_ack *extack)
1597{
1598	const struct port_info *pi = netdev_priv(dev);
1599	const struct sge *s = &pi->adapter->sge;
1600
1601	rp->rx_max_pending = MAX_RX_BUFFERS;
1602	rp->rx_mini_max_pending = MAX_RSPQ_ENTRIES;
1603	rp->rx_jumbo_max_pending = 0;
1604	rp->tx_max_pending = MAX_TXQ_ENTRIES;
1605
1606	rp->rx_pending = s->ethrxq[pi->first_qset].fl.size - MIN_FL_RESID;
1607	rp->rx_mini_pending = s->ethrxq[pi->first_qset].rspq.size;
1608	rp->rx_jumbo_pending = 0;
1609	rp->tx_pending = s->ethtxq[pi->first_qset].q.size;
1610}
1611
1612/*
1613 * Set the Queue Set ring size parameters for the device.  Again, since
1614 * ethtool doesn't allow for the concept of multiple queues per device, we'll
1615 * apply these new values across all of the Queue Sets associated with the
1616 * device -- after vetting them of course!
1617 */
1618static int cxgb4vf_set_ringparam(struct net_device *dev,
1619				 struct ethtool_ringparam *rp,
1620				 struct kernel_ethtool_ringparam *kernel_rp,
1621				 struct netlink_ext_ack *extack)
1622{
1623	const struct port_info *pi = netdev_priv(dev);
1624	struct adapter *adapter = pi->adapter;
1625	struct sge *s = &adapter->sge;
1626	int qs;
1627
1628	if (rp->rx_pending > MAX_RX_BUFFERS ||
1629	    rp->rx_jumbo_pending ||
1630	    rp->tx_pending > MAX_TXQ_ENTRIES ||
1631	    rp->rx_mini_pending > MAX_RSPQ_ENTRIES ||
1632	    rp->rx_mini_pending < MIN_RSPQ_ENTRIES ||
1633	    rp->rx_pending < MIN_FL_ENTRIES ||
1634	    rp->tx_pending < MIN_TXQ_ENTRIES)
1635		return -EINVAL;
1636
1637	if (adapter->flags & CXGB4VF_FULL_INIT_DONE)
1638		return -EBUSY;
1639
1640	for (qs = pi->first_qset; qs < pi->first_qset + pi->nqsets; qs++) {
1641		s->ethrxq[qs].fl.size = rp->rx_pending + MIN_FL_RESID;
1642		s->ethrxq[qs].rspq.size = rp->rx_mini_pending;
1643		s->ethtxq[qs].q.size = rp->tx_pending;
1644	}
1645	return 0;
1646}
1647
1648/*
1649 * Return the interrupt holdoff timer and count for the first Queue Set on the
1650 * device.  Our extension ioctl() (the cxgbtool interface) allows the
1651 * interrupt holdoff timer to be read on all of the device's Queue Sets.
1652 */
1653static int cxgb4vf_get_coalesce(struct net_device *dev,
1654				struct ethtool_coalesce *coalesce,
1655				struct kernel_ethtool_coalesce *kernel_coal,
1656				struct netlink_ext_ack *extack)
1657{
1658	const struct port_info *pi = netdev_priv(dev);
1659	const struct adapter *adapter = pi->adapter;
1660	const struct sge_rspq *rspq = &adapter->sge.ethrxq[pi->first_qset].rspq;
1661
1662	coalesce->rx_coalesce_usecs = qtimer_val(adapter, rspq);
1663	coalesce->rx_max_coalesced_frames =
1664		((rspq->intr_params & QINTR_CNT_EN_F)
1665		 ? adapter->sge.counter_val[rspq->pktcnt_idx]
1666		 : 0);
1667	return 0;
1668}
1669
1670/*
1671 * Set the RX interrupt holdoff timer and count for the first Queue Set on the
1672 * interface.  Our extension ioctl() (the cxgbtool interface) allows us to set
1673 * the interrupt holdoff timer on any of the device's Queue Sets.
1674 */
1675static int cxgb4vf_set_coalesce(struct net_device *dev,
1676				struct ethtool_coalesce *coalesce,
1677				struct kernel_ethtool_coalesce *kernel_coal,
1678				struct netlink_ext_ack *extack)
1679{
1680	const struct port_info *pi = netdev_priv(dev);
1681	struct adapter *adapter = pi->adapter;
1682
1683	return set_rxq_intr_params(adapter,
1684				   &adapter->sge.ethrxq[pi->first_qset].rspq,
1685				   coalesce->rx_coalesce_usecs,
1686				   coalesce->rx_max_coalesced_frames);
1687}
1688
1689/*
1690 * Report current port link pause parameter settings.
1691 */
1692static void cxgb4vf_get_pauseparam(struct net_device *dev,
1693				   struct ethtool_pauseparam *pauseparam)
1694{
1695	struct port_info *pi = netdev_priv(dev);
1696
1697	pauseparam->autoneg = (pi->link_cfg.requested_fc & PAUSE_AUTONEG) != 0;
1698	pauseparam->rx_pause = (pi->link_cfg.advertised_fc & PAUSE_RX) != 0;
1699	pauseparam->tx_pause = (pi->link_cfg.advertised_fc & PAUSE_TX) != 0;
1700}
1701
1702/*
1703 * Identify the port by blinking the port's LED.
1704 */
1705static int cxgb4vf_phys_id(struct net_device *dev,
1706			   enum ethtool_phys_id_state state)
1707{
1708	unsigned int val;
1709	struct port_info *pi = netdev_priv(dev);
1710
1711	if (state == ETHTOOL_ID_ACTIVE)
1712		val = 0xffff;
1713	else if (state == ETHTOOL_ID_INACTIVE)
1714		val = 0;
1715	else
1716		return -EINVAL;
1717
1718	return t4vf_identify_port(pi->adapter, pi->viid, val);
1719}
1720
1721/*
1722 * Port stats maintained per queue of the port.
1723 */
1724struct queue_port_stats {
1725	u64 tso;
1726	u64 tx_csum;
1727	u64 rx_csum;
1728	u64 vlan_ex;
1729	u64 vlan_ins;
1730	u64 lro_pkts;
1731	u64 lro_merged;
1732};
1733
1734/*
1735 * Strings for the ETH_SS_STATS statistics set ("ethtool -S").  Note that
1736 * these need to match the order of statistics returned by
1737 * t4vf_get_port_stats().
1738 */
1739static const char stats_strings[][ETH_GSTRING_LEN] = {
1740	/*
1741	 * These must match the layout of the t4vf_port_stats structure.
1742	 */
1743	"TxBroadcastBytes  ",
1744	"TxBroadcastFrames ",
1745	"TxMulticastBytes  ",
1746	"TxMulticastFrames ",
1747	"TxUnicastBytes    ",
1748	"TxUnicastFrames   ",
1749	"TxDroppedFrames   ",
1750	"TxOffloadBytes    ",
1751	"TxOffloadFrames   ",
1752	"RxBroadcastBytes  ",
1753	"RxBroadcastFrames ",
1754	"RxMulticastBytes  ",
1755	"RxMulticastFrames ",
1756	"RxUnicastBytes    ",
1757	"RxUnicastFrames   ",
1758	"RxErrorFrames     ",
1759
1760	/*
1761	 * These are accumulated per-queue statistics and must match the
1762	 * order of the fields in the queue_port_stats structure.
1763	 */
1764	"TSO               ",
1765	"TxCsumOffload     ",
1766	"RxCsumGood        ",
1767	"VLANextractions   ",
1768	"VLANinsertions    ",
1769	"GROPackets        ",
1770	"GROMerged         ",
1771};
1772
1773/*
1774 * Return the number of statistics in the specified statistics set.
1775 */
1776static int cxgb4vf_get_sset_count(struct net_device *dev, int sset)
1777{
1778	switch (sset) {
1779	case ETH_SS_STATS:
1780		return ARRAY_SIZE(stats_strings);
1781	default:
1782		return -EOPNOTSUPP;
1783	}
1784	/*NOTREACHED*/
1785}
1786
1787/*
1788 * Return the strings for the specified statistics set.
1789 */
1790static void cxgb4vf_get_strings(struct net_device *dev,
1791				u32 sset,
1792				u8 *data)
1793{
1794	switch (sset) {
1795	case ETH_SS_STATS:
1796		memcpy(data, stats_strings, sizeof(stats_strings));
1797		break;
1798	}
1799}
1800
1801/*
1802 * Small utility routine to accumulate queue statistics across the queues of
1803 * a "port".
1804 */
1805static void collect_sge_port_stats(const struct adapter *adapter,
1806				   const struct port_info *pi,
1807				   struct queue_port_stats *stats)
1808{
1809	const struct sge_eth_txq *txq = &adapter->sge.ethtxq[pi->first_qset];
1810	const struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[pi->first_qset];
1811	int qs;
1812
1813	memset(stats, 0, sizeof(*stats));
1814	for (qs = 0; qs < pi->nqsets; qs++, rxq++, txq++) {
1815		stats->tso += txq->tso;
1816		stats->tx_csum += txq->tx_cso;
1817		stats->rx_csum += rxq->stats.rx_cso;
1818		stats->vlan_ex += rxq->stats.vlan_ex;
1819		stats->vlan_ins += txq->vlan_ins;
1820		stats->lro_pkts += rxq->stats.lro_pkts;
1821		stats->lro_merged += rxq->stats.lro_merged;
1822	}
1823}
1824
1825/*
1826 * Return the ETH_SS_STATS statistics set.
1827 */
1828static void cxgb4vf_get_ethtool_stats(struct net_device *dev,
1829				      struct ethtool_stats *stats,
1830				      u64 *data)
1831{
1832	struct port_info *pi = netdev2pinfo(dev);
1833	struct adapter *adapter = pi->adapter;
1834	int err = t4vf_get_port_stats(adapter, pi->pidx,
1835				      (struct t4vf_port_stats *)data);
1836	if (err)
1837		memset(data, 0, sizeof(struct t4vf_port_stats));
1838
1839	data += sizeof(struct t4vf_port_stats) / sizeof(u64);
1840	collect_sge_port_stats(adapter, pi, (struct queue_port_stats *)data);
1841}
1842
1843/*
1844 * Return the size of our register map.
1845 */
1846static int cxgb4vf_get_regs_len(struct net_device *dev)
1847{
1848	return T4VF_REGMAP_SIZE;
1849}
1850
1851/*
1852 * Dump a block of registers, start to end inclusive, into a buffer.
1853 */
1854static void reg_block_dump(struct adapter *adapter, void *regbuf,
1855			   unsigned int start, unsigned int end)
1856{
1857	u32 *bp = regbuf + start - T4VF_REGMAP_START;
1858
1859	for ( ; start <= end; start += sizeof(u32)) {
1860		/*
1861		 * Avoid reading the Mailbox Control register since that
1862		 * can trigger a Mailbox Ownership Arbitration cycle and
1863		 * interfere with communication with the firmware.
1864		 */
1865		if (start == T4VF_CIM_BASE_ADDR + CIM_VF_EXT_MAILBOX_CTRL)
1866			*bp++ = 0xffff;
1867		else
1868			*bp++ = t4_read_reg(adapter, start);
1869	}
1870}
1871
1872/*
1873 * Copy our entire register map into the provided buffer.
1874 */
1875static void cxgb4vf_get_regs(struct net_device *dev,
1876			     struct ethtool_regs *regs,
1877			     void *regbuf)
1878{
1879	struct adapter *adapter = netdev2adap(dev);
1880
1881	regs->version = mk_adap_vers(adapter);
1882
1883	/*
1884	 * Fill in register buffer with our register map.
1885	 */
1886	memset(regbuf, 0, T4VF_REGMAP_SIZE);
1887
1888	reg_block_dump(adapter, regbuf,
1889		       T4VF_SGE_BASE_ADDR + T4VF_MOD_MAP_SGE_FIRST,
1890		       T4VF_SGE_BASE_ADDR + T4VF_MOD_MAP_SGE_LAST);
1891	reg_block_dump(adapter, regbuf,
1892		       T4VF_MPS_BASE_ADDR + T4VF_MOD_MAP_MPS_FIRST,
1893		       T4VF_MPS_BASE_ADDR + T4VF_MOD_MAP_MPS_LAST);
1894
1895	/* T5 adds new registers in the PL Register map.
1896	 */
1897	reg_block_dump(adapter, regbuf,
1898		       T4VF_PL_BASE_ADDR + T4VF_MOD_MAP_PL_FIRST,
1899		       T4VF_PL_BASE_ADDR + (is_t4(adapter->params.chip)
1900		       ? PL_VF_WHOAMI_A : PL_VF_REVISION_A));
1901	reg_block_dump(adapter, regbuf,
1902		       T4VF_CIM_BASE_ADDR + T4VF_MOD_MAP_CIM_FIRST,
1903		       T4VF_CIM_BASE_ADDR + T4VF_MOD_MAP_CIM_LAST);
1904
1905	reg_block_dump(adapter, regbuf,
1906		       T4VF_MBDATA_BASE_ADDR + T4VF_MBDATA_FIRST,
1907		       T4VF_MBDATA_BASE_ADDR + T4VF_MBDATA_LAST);
1908}
1909
1910/*
1911 * Report current Wake On LAN settings.
1912 */
1913static void cxgb4vf_get_wol(struct net_device *dev,
1914			    struct ethtool_wolinfo *wol)
1915{
1916	wol->supported = 0;
1917	wol->wolopts = 0;
1918	memset(&wol->sopass, 0, sizeof(wol->sopass));
1919}
1920
1921/*
1922 * TCP Segmentation Offload flags which we support.
1923 */
1924#define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN)
1925#define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \
1926		   NETIF_F_GRO | NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA)
1927
1928static const struct ethtool_ops cxgb4vf_ethtool_ops = {
1929	.supported_coalesce_params = ETHTOOL_COALESCE_RX_USECS |
1930				     ETHTOOL_COALESCE_RX_MAX_FRAMES,
1931	.get_link_ksettings	= cxgb4vf_get_link_ksettings,
1932	.get_fecparam		= cxgb4vf_get_fecparam,
1933	.get_drvinfo		= cxgb4vf_get_drvinfo,
1934	.get_msglevel		= cxgb4vf_get_msglevel,
1935	.set_msglevel		= cxgb4vf_set_msglevel,
1936	.get_ringparam		= cxgb4vf_get_ringparam,
1937	.set_ringparam		= cxgb4vf_set_ringparam,
1938	.get_coalesce		= cxgb4vf_get_coalesce,
1939	.set_coalesce		= cxgb4vf_set_coalesce,
1940	.get_pauseparam		= cxgb4vf_get_pauseparam,
1941	.get_link		= ethtool_op_get_link,
1942	.get_strings		= cxgb4vf_get_strings,
1943	.set_phys_id		= cxgb4vf_phys_id,
1944	.get_sset_count		= cxgb4vf_get_sset_count,
1945	.get_ethtool_stats	= cxgb4vf_get_ethtool_stats,
1946	.get_regs_len		= cxgb4vf_get_regs_len,
1947	.get_regs		= cxgb4vf_get_regs,
1948	.get_wol		= cxgb4vf_get_wol,
1949};
1950
1951/*
1952 * /sys/kernel/debug/cxgb4vf support code and data.
1953 * ================================================
1954 */
1955
1956/*
1957 * Show Firmware Mailbox Command/Reply Log
1958 *
1959 * Note that we don't do any locking when dumping the Firmware Mailbox Log so
1960 * it's possible that we can catch things during a log update and therefore
1961 * see partially corrupted log entries.  But i9t's probably Good Enough(tm).
1962 * If we ever decide that we want to make sure that we're dumping a coherent
1963 * log, we'd need to perform locking in the mailbox logging and in
1964 * mboxlog_open() where we'd need to grab the entire mailbox log in one go
1965 * like we do for the Firmware Device Log.  But as stated above, meh ...
1966 */
1967static int mboxlog_show(struct seq_file *seq, void *v)
1968{
1969	struct adapter *adapter = seq->private;
1970	struct mbox_cmd_log *log = adapter->mbox_log;
1971	struct mbox_cmd *entry;
1972	int entry_idx, i;
1973
1974	if (v == SEQ_START_TOKEN) {
1975		seq_printf(seq,
1976			   "%10s  %15s  %5s  %5s  %s\n",
1977			   "Seq#", "Tstamp", "Atime", "Etime",
1978			   "Command/Reply");
1979		return 0;
1980	}
1981
1982	entry_idx = log->cursor + ((uintptr_t)v - 2);
1983	if (entry_idx >= log->size)
1984		entry_idx -= log->size;
1985	entry = mbox_cmd_log_entry(log, entry_idx);
1986
1987	/* skip over unused entries */
1988	if (entry->timestamp == 0)
1989		return 0;
1990
1991	seq_printf(seq, "%10u  %15llu  %5d  %5d",
1992		   entry->seqno, entry->timestamp,
1993		   entry->access, entry->execute);
1994	for (i = 0; i < MBOX_LEN / 8; i++) {
1995		u64 flit = entry->cmd[i];
1996		u32 hi = (u32)(flit >> 32);
1997		u32 lo = (u32)flit;
1998
1999		seq_printf(seq, "  %08x %08x", hi, lo);
2000	}
2001	seq_puts(seq, "\n");
2002	return 0;
2003}
2004
2005static inline void *mboxlog_get_idx(struct seq_file *seq, loff_t pos)
2006{
2007	struct adapter *adapter = seq->private;
2008	struct mbox_cmd_log *log = adapter->mbox_log;
2009
2010	return ((pos <= log->size) ? (void *)(uintptr_t)(pos + 1) : NULL);
2011}
2012
2013static void *mboxlog_start(struct seq_file *seq, loff_t *pos)
2014{
2015	return *pos ? mboxlog_get_idx(seq, *pos) : SEQ_START_TOKEN;
2016}
2017
2018static void *mboxlog_next(struct seq_file *seq, void *v, loff_t *pos)
2019{
2020	++*pos;
2021	return mboxlog_get_idx(seq, *pos);
2022}
2023
2024static void mboxlog_stop(struct seq_file *seq, void *v)
2025{
2026}
2027
2028static const struct seq_operations mboxlog_sops = {
2029	.start = mboxlog_start,
2030	.next  = mboxlog_next,
2031	.stop  = mboxlog_stop,
2032	.show  = mboxlog_show
2033};
2034
2035DEFINE_SEQ_ATTRIBUTE(mboxlog);
2036/*
2037 * Show SGE Queue Set information.  We display QPL Queues Sets per line.
2038 */
2039#define QPL	4
2040
2041static int sge_qinfo_show(struct seq_file *seq, void *v)
2042{
2043	struct adapter *adapter = seq->private;
2044	int eth_entries = DIV_ROUND_UP(adapter->sge.ethqsets, QPL);
2045	int qs, r = (uintptr_t)v - 1;
2046
2047	if (r)
2048		seq_putc(seq, '\n');
2049
2050	#define S3(fmt_spec, s, v) \
2051		do {\
2052			seq_printf(seq, "%-12s", s); \
2053			for (qs = 0; qs < n; ++qs) \
2054				seq_printf(seq, " %16" fmt_spec, v); \
2055			seq_putc(seq, '\n'); \
2056		} while (0)
2057	#define S(s, v)		S3("s", s, v)
2058	#define T(s, v)		S3("u", s, txq[qs].v)
2059	#define R(s, v)		S3("u", s, rxq[qs].v)
2060
2061	if (r < eth_entries) {
2062		const struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[r * QPL];
2063		const struct sge_eth_txq *txq = &adapter->sge.ethtxq[r * QPL];
2064		int n = min(QPL, adapter->sge.ethqsets - QPL * r);
2065
2066		S("QType:", "Ethernet");
2067		S("Interface:",
2068		  (rxq[qs].rspq.netdev
2069		   ? rxq[qs].rspq.netdev->name
2070		   : "N/A"));
2071		S3("d", "Port:",
2072		   (rxq[qs].rspq.netdev
2073		    ? ((struct port_info *)
2074		       netdev_priv(rxq[qs].rspq.netdev))->port_id
2075		    : -1));
2076		T("TxQ ID:", q.abs_id);
2077		T("TxQ size:", q.size);
2078		T("TxQ inuse:", q.in_use);
2079		T("TxQ PIdx:", q.pidx);
2080		T("TxQ CIdx:", q.cidx);
2081		R("RspQ ID:", rspq.abs_id);
2082		R("RspQ size:", rspq.size);
2083		R("RspQE size:", rspq.iqe_len);
2084		S3("u", "Intr delay:", qtimer_val(adapter, &rxq[qs].rspq));
2085		S3("u", "Intr pktcnt:",
2086		   adapter->sge.counter_val[rxq[qs].rspq.pktcnt_idx]);
2087		R("RspQ CIdx:", rspq.cidx);
2088		R("RspQ Gen:", rspq.gen);
2089		R("FL ID:", fl.abs_id);
2090		R("FL size:", fl.size - MIN_FL_RESID);
2091		R("FL avail:", fl.avail);
2092		R("FL PIdx:", fl.pidx);
2093		R("FL CIdx:", fl.cidx);
2094		return 0;
2095	}
2096
2097	r -= eth_entries;
2098	if (r == 0) {
2099		const struct sge_rspq *evtq = &adapter->sge.fw_evtq;
2100
2101		seq_printf(seq, "%-12s %16s\n", "QType:", "FW event queue");
2102		seq_printf(seq, "%-12s %16u\n", "RspQ ID:", evtq->abs_id);
2103		seq_printf(seq, "%-12s %16u\n", "Intr delay:",
2104			   qtimer_val(adapter, evtq));
2105		seq_printf(seq, "%-12s %16u\n", "Intr pktcnt:",
2106			   adapter->sge.counter_val[evtq->pktcnt_idx]);
2107		seq_printf(seq, "%-12s %16u\n", "RspQ Cidx:", evtq->cidx);
2108		seq_printf(seq, "%-12s %16u\n", "RspQ Gen:", evtq->gen);
2109	} else if (r == 1) {
2110		const struct sge_rspq *intrq = &adapter->sge.intrq;
2111
2112		seq_printf(seq, "%-12s %16s\n", "QType:", "Interrupt Queue");
2113		seq_printf(seq, "%-12s %16u\n", "RspQ ID:", intrq->abs_id);
2114		seq_printf(seq, "%-12s %16u\n", "Intr delay:",
2115			   qtimer_val(adapter, intrq));
2116		seq_printf(seq, "%-12s %16u\n", "Intr pktcnt:",
2117			   adapter->sge.counter_val[intrq->pktcnt_idx]);
2118		seq_printf(seq, "%-12s %16u\n", "RspQ Cidx:", intrq->cidx);
2119		seq_printf(seq, "%-12s %16u\n", "RspQ Gen:", intrq->gen);
2120	}
2121
2122	#undef R
2123	#undef T
2124	#undef S
2125	#undef S3
2126
2127	return 0;
2128}
2129
2130/*
2131 * Return the number of "entries" in our "file".  We group the multi-Queue
2132 * sections with QPL Queue Sets per "entry".  The sections of the output are:
2133 *
2134 *     Ethernet RX/TX Queue Sets
2135 *     Firmware Event Queue
2136 *     Forwarded Interrupt Queue (if in MSI mode)
2137 */
2138static int sge_queue_entries(const struct adapter *adapter)
2139{
2140	return DIV_ROUND_UP(adapter->sge.ethqsets, QPL) + 1 +
2141		((adapter->flags & CXGB4VF_USING_MSI) != 0);
2142}
2143
2144static void *sge_queue_start(struct seq_file *seq, loff_t *pos)
2145{
2146	int entries = sge_queue_entries(seq->private);
2147
2148	return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
2149}
2150
2151static void sge_queue_stop(struct seq_file *seq, void *v)
2152{
2153}
2154
2155static void *sge_queue_next(struct seq_file *seq, void *v, loff_t *pos)
2156{
2157	int entries = sge_queue_entries(seq->private);
2158
2159	++*pos;
2160	return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
2161}
2162
2163static const struct seq_operations sge_qinfo_sops = {
2164	.start = sge_queue_start,
2165	.next  = sge_queue_next,
2166	.stop  = sge_queue_stop,
2167	.show  = sge_qinfo_show
2168};
2169
2170DEFINE_SEQ_ATTRIBUTE(sge_qinfo);
2171
2172/*
2173 * Show SGE Queue Set statistics.  We display QPL Queues Sets per line.
2174 */
2175#define QPL	4
2176
2177static int sge_qstats_show(struct seq_file *seq, void *v)
2178{
2179	struct adapter *adapter = seq->private;
2180	int eth_entries = DIV_ROUND_UP(adapter->sge.ethqsets, QPL);
2181	int qs, r = (uintptr_t)v - 1;
2182
2183	if (r)
2184		seq_putc(seq, '\n');
2185
2186	#define S3(fmt, s, v) \
2187		do { \
2188			seq_printf(seq, "%-16s", s); \
2189			for (qs = 0; qs < n; ++qs) \
2190				seq_printf(seq, " %8" fmt, v); \
2191			seq_putc(seq, '\n'); \
2192		} while (0)
2193	#define S(s, v)		S3("s", s, v)
2194
2195	#define T3(fmt, s, v)	S3(fmt, s, txq[qs].v)
2196	#define T(s, v)		T3("lu", s, v)
2197
2198	#define R3(fmt, s, v)	S3(fmt, s, rxq[qs].v)
2199	#define R(s, v)		R3("lu", s, v)
2200
2201	if (r < eth_entries) {
2202		const struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[r * QPL];
2203		const struct sge_eth_txq *txq = &adapter->sge.ethtxq[r * QPL];
2204		int n = min(QPL, adapter->sge.ethqsets - QPL * r);
2205
2206		S("QType:", "Ethernet");
2207		S("Interface:",
2208		  (rxq[qs].rspq.netdev
2209		   ? rxq[qs].rspq.netdev->name
2210		   : "N/A"));
2211		R3("u", "RspQNullInts:", rspq.unhandled_irqs);
2212		R("RxPackets:", stats.pkts);
2213		R("RxCSO:", stats.rx_cso);
2214		R("VLANxtract:", stats.vlan_ex);
2215		R("LROmerged:", stats.lro_merged);
2216		R("LROpackets:", stats.lro_pkts);
2217		R("RxDrops:", stats.rx_drops);
2218		T("TSO:", tso);
2219		T("TxCSO:", tx_cso);
2220		T("VLANins:", vlan_ins);
2221		T("TxQFull:", q.stops);
2222		T("TxQRestarts:", q.restarts);
2223		T("TxMapErr:", mapping_err);
2224		R("FLAllocErr:", fl.alloc_failed);
2225		R("FLLrgAlcErr:", fl.large_alloc_failed);
2226		R("FLStarving:", fl.starving);
2227		return 0;
2228	}
2229
2230	r -= eth_entries;
2231	if (r == 0) {
2232		const struct sge_rspq *evtq = &adapter->sge.fw_evtq;
2233
2234		seq_printf(seq, "%-8s %16s\n", "QType:", "FW event queue");
2235		seq_printf(seq, "%-16s %8u\n", "RspQNullInts:",
2236			   evtq->unhandled_irqs);
2237		seq_printf(seq, "%-16s %8u\n", "RspQ CIdx:", evtq->cidx);
2238		seq_printf(seq, "%-16s %8u\n", "RspQ Gen:", evtq->gen);
2239	} else if (r == 1) {
2240		const struct sge_rspq *intrq = &adapter->sge.intrq;
2241
2242		seq_printf(seq, "%-8s %16s\n", "QType:", "Interrupt Queue");
2243		seq_printf(seq, "%-16s %8u\n", "RspQNullInts:",
2244			   intrq->unhandled_irqs);
2245		seq_printf(seq, "%-16s %8u\n", "RspQ CIdx:", intrq->cidx);
2246		seq_printf(seq, "%-16s %8u\n", "RspQ Gen:", intrq->gen);
2247	}
2248
2249	#undef R
2250	#undef T
2251	#undef S
2252	#undef R3
2253	#undef T3
2254	#undef S3
2255
2256	return 0;
2257}
2258
2259/*
2260 * Return the number of "entries" in our "file".  We group the multi-Queue
2261 * sections with QPL Queue Sets per "entry".  The sections of the output are:
2262 *
2263 *     Ethernet RX/TX Queue Sets
2264 *     Firmware Event Queue
2265 *     Forwarded Interrupt Queue (if in MSI mode)
2266 */
2267static int sge_qstats_entries(const struct adapter *adapter)
2268{
2269	return DIV_ROUND_UP(adapter->sge.ethqsets, QPL) + 1 +
2270		((adapter->flags & CXGB4VF_USING_MSI) != 0);
2271}
2272
2273static void *sge_qstats_start(struct seq_file *seq, loff_t *pos)
2274{
2275	int entries = sge_qstats_entries(seq->private);
2276
2277	return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
2278}
2279
2280static void sge_qstats_stop(struct seq_file *seq, void *v)
2281{
2282}
2283
2284static void *sge_qstats_next(struct seq_file *seq, void *v, loff_t *pos)
2285{
2286	int entries = sge_qstats_entries(seq->private);
2287
2288	(*pos)++;
2289	return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
2290}
2291
2292static const struct seq_operations sge_qstats_sops = {
2293	.start = sge_qstats_start,
2294	.next  = sge_qstats_next,
2295	.stop  = sge_qstats_stop,
2296	.show  = sge_qstats_show
2297};
2298
2299DEFINE_SEQ_ATTRIBUTE(sge_qstats);
2300
2301/*
2302 * Show PCI-E SR-IOV Virtual Function Resource Limits.
2303 */
2304static int resources_show(struct seq_file *seq, void *v)
2305{
2306	struct adapter *adapter = seq->private;
2307	struct vf_resources *vfres = &adapter->params.vfres;
2308
2309	#define S(desc, fmt, var) \
2310		seq_printf(seq, "%-60s " fmt "\n", \
2311			   desc " (" #var "):", vfres->var)
2312
2313	S("Virtual Interfaces", "%d", nvi);
2314	S("Egress Queues", "%d", neq);
2315	S("Ethernet Control", "%d", nethctrl);
2316	S("Ingress Queues/w Free Lists/Interrupts", "%d", niqflint);
2317	S("Ingress Queues", "%d", niq);
2318	S("Traffic Class", "%d", tc);
2319	S("Port Access Rights Mask", "%#x", pmask);
2320	S("MAC Address Filters", "%d", nexactf);
2321	S("Firmware Command Read Capabilities", "%#x", r_caps);
2322	S("Firmware Command Write/Execute Capabilities", "%#x", wx_caps);
2323
2324	#undef S
2325
2326	return 0;
2327}
2328DEFINE_SHOW_ATTRIBUTE(resources);
2329
2330/*
2331 * Show Virtual Interfaces.
2332 */
2333static int interfaces_show(struct seq_file *seq, void *v)
2334{
2335	if (v == SEQ_START_TOKEN) {
2336		seq_puts(seq, "Interface  Port   VIID\n");
2337	} else {
2338		struct adapter *adapter = seq->private;
2339		int pidx = (uintptr_t)v - 2;
2340		struct net_device *dev = adapter->port[pidx];
2341		struct port_info *pi = netdev_priv(dev);
2342
2343		seq_printf(seq, "%9s  %4d  %#5x\n",
2344			   dev->name, pi->port_id, pi->viid);
2345	}
2346	return 0;
2347}
2348
2349static inline void *interfaces_get_idx(struct adapter *adapter, loff_t pos)
2350{
2351	return pos <= adapter->params.nports
2352		? (void *)(uintptr_t)(pos + 1)
2353		: NULL;
2354}
2355
2356static void *interfaces_start(struct seq_file *seq, loff_t *pos)
2357{
2358	return *pos
2359		? interfaces_get_idx(seq->private, *pos)
2360		: SEQ_START_TOKEN;
2361}
2362
2363static void *interfaces_next(struct seq_file *seq, void *v, loff_t *pos)
2364{
2365	(*pos)++;
2366	return interfaces_get_idx(seq->private, *pos);
2367}
2368
2369static void interfaces_stop(struct seq_file *seq, void *v)
2370{
2371}
2372
2373static const struct seq_operations interfaces_sops = {
2374	.start = interfaces_start,
2375	.next  = interfaces_next,
2376	.stop  = interfaces_stop,
2377	.show  = interfaces_show
2378};
2379
2380DEFINE_SEQ_ATTRIBUTE(interfaces);
2381
2382/*
2383 * /sys/kernel/debugfs/cxgb4vf/ files list.
2384 */
2385struct cxgb4vf_debugfs_entry {
2386	const char *name;		/* name of debugfs node */
2387	umode_t mode;			/* file system mode */
2388	const struct file_operations *fops;
2389};
2390
2391static struct cxgb4vf_debugfs_entry debugfs_files[] = {
2392	{ "mboxlog",    0444, &mboxlog_fops },
2393	{ "sge_qinfo",  0444, &sge_qinfo_fops },
2394	{ "sge_qstats", 0444, &sge_qstats_fops },
2395	{ "resources",  0444, &resources_fops },
2396	{ "interfaces", 0444, &interfaces_fops },
2397};
2398
2399/*
2400 * Module and device initialization and cleanup code.
2401 * ==================================================
2402 */
2403
2404/*
2405 * Set up out /sys/kernel/debug/cxgb4vf sub-nodes.  We assume that the
2406 * directory (debugfs_root) has already been set up.
2407 */
2408static int setup_debugfs(struct adapter *adapter)
2409{
2410	int i;
2411
2412	BUG_ON(IS_ERR_OR_NULL(adapter->debugfs_root));
2413
2414	/*
2415	 * Debugfs support is best effort.
2416	 */
2417	for (i = 0; i < ARRAY_SIZE(debugfs_files); i++)
2418		debugfs_create_file(debugfs_files[i].name,
2419				    debugfs_files[i].mode,
2420				    adapter->debugfs_root, adapter,
2421				    debugfs_files[i].fops);
2422
2423	return 0;
2424}
2425
2426/*
2427 * Tear down the /sys/kernel/debug/cxgb4vf sub-nodes created above.  We leave
2428 * it to our caller to tear down the directory (debugfs_root).
2429 */
2430static void cleanup_debugfs(struct adapter *adapter)
2431{
2432	BUG_ON(IS_ERR_OR_NULL(adapter->debugfs_root));
2433
2434	/*
2435	 * Unlike our sister routine cleanup_proc(), we don't need to remove
2436	 * individual entries because a call will be made to
2437	 * debugfs_remove_recursive().  We just need to clean up any ancillary
2438	 * persistent state.
2439	 */
2440	/* nothing to do */
2441}
2442
2443/* Figure out how many Ports and Queue Sets we can support.  This depends on
2444 * knowing our Virtual Function Resources and may be called a second time if
2445 * we fall back from MSI-X to MSI Interrupt Mode.
2446 */
2447static void size_nports_qsets(struct adapter *adapter)
2448{
2449	struct vf_resources *vfres = &adapter->params.vfres;
2450	unsigned int ethqsets, pmask_nports;
2451
2452	/* The number of "ports" which we support is equal to the number of
2453	 * Virtual Interfaces with which we've been provisioned.
2454	 */
2455	adapter->params.nports = vfres->nvi;
2456	if (adapter->params.nports > MAX_NPORTS) {
2457		dev_warn(adapter->pdev_dev, "only using %d of %d maximum"
2458			 " allowed virtual interfaces\n", MAX_NPORTS,
2459			 adapter->params.nports);
2460		adapter->params.nports = MAX_NPORTS;
2461	}
2462
2463	/* We may have been provisioned with more VIs than the number of
2464	 * ports we're allowed to access (our Port Access Rights Mask).
2465	 * This is obviously a configuration conflict but we don't want to
2466	 * crash the kernel or anything silly just because of that.
2467	 */
2468	pmask_nports = hweight32(adapter->params.vfres.pmask);
2469	if (pmask_nports < adapter->params.nports) {
2470		dev_warn(adapter->pdev_dev, "only using %d of %d provisioned"
2471			 " virtual interfaces; limited by Port Access Rights"
2472			 " mask %#x\n", pmask_nports, adapter->params.nports,
2473			 adapter->params.vfres.pmask);
2474		adapter->params.nports = pmask_nports;
2475	}
2476
2477	/* We need to reserve an Ingress Queue for the Asynchronous Firmware
2478	 * Event Queue.  And if we're using MSI Interrupts, we'll also need to
2479	 * reserve an Ingress Queue for a Forwarded Interrupts.
2480	 *
2481	 * The rest of the FL/Intr-capable ingress queues will be matched up
2482	 * one-for-one with Ethernet/Control egress queues in order to form
2483	 * "Queue Sets" which will be aportioned between the "ports".  For
2484	 * each Queue Set, we'll need the ability to allocate two Egress
2485	 * Contexts -- one for the Ingress Queue Free List and one for the TX
2486	 * Ethernet Queue.
2487	 *
2488	 * Note that even if we're currently configured to use MSI-X
2489	 * Interrupts (module variable msi == MSI_MSIX) we may get downgraded
2490	 * to MSI Interrupts if we can't get enough MSI-X Interrupts.  If that
2491	 * happens we'll need to adjust things later.
2492	 */
2493	ethqsets = vfres->niqflint - 1 - (msi == MSI_MSI);
2494	if (vfres->nethctrl != ethqsets)
2495		ethqsets = min(vfres->nethctrl, ethqsets);
2496	if (vfres->neq < ethqsets*2)
2497		ethqsets = vfres->neq/2;
2498	if (ethqsets > MAX_ETH_QSETS)
2499		ethqsets = MAX_ETH_QSETS;
2500	adapter->sge.max_ethqsets = ethqsets;
2501
2502	if (adapter->sge.max_ethqsets < adapter->params.nports) {
2503		dev_warn(adapter->pdev_dev, "only using %d of %d available"
2504			 " virtual interfaces (too few Queue Sets)\n",
2505			 adapter->sge.max_ethqsets, adapter->params.nports);
2506		adapter->params.nports = adapter->sge.max_ethqsets;
2507	}
2508}
2509
2510/*
2511 * Perform early "adapter" initialization.  This is where we discover what
2512 * adapter parameters we're going to be using and initialize basic adapter
2513 * hardware support.
2514 */
2515static int adap_init0(struct adapter *adapter)
2516{
2517	struct sge_params *sge_params = &adapter->params.sge;
2518	struct sge *s = &adapter->sge;
2519	int err;
2520	u32 param, val = 0;
2521
2522	/*
2523	 * Some environments do not properly handle PCIE FLRs -- e.g. in Linux
2524	 * 2.6.31 and later we can't call pci_reset_function() in order to
2525	 * issue an FLR because of a self- deadlock on the device semaphore.
2526	 * Meanwhile, the OS infrastructure doesn't issue FLRs in all the
2527	 * cases where they're needed -- for instance, some versions of KVM
2528	 * fail to reset "Assigned Devices" when the VM reboots.  Therefore we
2529	 * use the firmware based reset in order to reset any per function
2530	 * state.
2531	 */
2532	err = t4vf_fw_reset(adapter);
2533	if (err < 0) {
2534		dev_err(adapter->pdev_dev, "FW reset failed: err=%d\n", err);
2535		return err;
2536	}
2537
2538	/*
2539	 * Grab basic operational parameters.  These will predominantly have
2540	 * been set up by the Physical Function Driver or will be hard coded
2541	 * into the adapter.  We just have to live with them ...  Note that
2542	 * we _must_ get our VPD parameters before our SGE parameters because
2543	 * we need to know the adapter's core clock from the VPD in order to
2544	 * properly decode the SGE Timer Values.
2545	 */
2546	err = t4vf_get_dev_params(adapter);
2547	if (err) {
2548		dev_err(adapter->pdev_dev, "unable to retrieve adapter"
2549			" device parameters: err=%d\n", err);
2550		return err;
2551	}
2552	err = t4vf_get_vpd_params(adapter);
2553	if (err) {
2554		dev_err(adapter->pdev_dev, "unable to retrieve adapter"
2555			" VPD parameters: err=%d\n", err);
2556		return err;
2557	}
2558	err = t4vf_get_sge_params(adapter);
2559	if (err) {
2560		dev_err(adapter->pdev_dev, "unable to retrieve adapter"
2561			" SGE parameters: err=%d\n", err);
2562		return err;
2563	}
2564	err = t4vf_get_rss_glb_config(adapter);
2565	if (err) {
2566		dev_err(adapter->pdev_dev, "unable to retrieve adapter"
2567			" RSS parameters: err=%d\n", err);
2568		return err;
2569	}
2570	if (adapter->params.rss.mode !=
2571	    FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
2572		dev_err(adapter->pdev_dev, "unable to operate with global RSS"
2573			" mode %d\n", adapter->params.rss.mode);
2574		return -EINVAL;
2575	}
2576	err = t4vf_sge_init(adapter);
2577	if (err) {
2578		dev_err(adapter->pdev_dev, "unable to use adapter parameters:"
2579			" err=%d\n", err);
2580		return err;
2581	}
2582
2583	/* If we're running on newer firmware, let it know that we're
2584	 * prepared to deal with encapsulated CPL messages.  Older
2585	 * firmware won't understand this and we'll just get
2586	 * unencapsulated messages ...
2587	 */
2588	param = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
2589		FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_CPLFW4MSG_ENCAP);
2590	val = 1;
2591	(void) t4vf_set_params(adapter, 1, &param, &val);
2592
2593	/*
2594	 * Retrieve our RX interrupt holdoff timer values and counter
2595	 * threshold values from the SGE parameters.
2596	 */
2597	s->timer_val[0] = core_ticks_to_us(adapter,
2598		TIMERVALUE0_G(sge_params->sge_timer_value_0_and_1));
2599	s->timer_val[1] = core_ticks_to_us(adapter,
2600		TIMERVALUE1_G(sge_params->sge_timer_value_0_and_1));
2601	s->timer_val[2] = core_ticks_to_us(adapter,
2602		TIMERVALUE0_G(sge_params->sge_timer_value_2_and_3));
2603	s->timer_val[3] = core_ticks_to_us(adapter,
2604		TIMERVALUE1_G(sge_params->sge_timer_value_2_and_3));
2605	s->timer_val[4] = core_ticks_to_us(adapter,
2606		TIMERVALUE0_G(sge_params->sge_timer_value_4_and_5));
2607	s->timer_val[5] = core_ticks_to_us(adapter,
2608		TIMERVALUE1_G(sge_params->sge_timer_value_4_and_5));
2609
2610	s->counter_val[0] = THRESHOLD_0_G(sge_params->sge_ingress_rx_threshold);
2611	s->counter_val[1] = THRESHOLD_1_G(sge_params->sge_ingress_rx_threshold);
2612	s->counter_val[2] = THRESHOLD_2_G(sge_params->sge_ingress_rx_threshold);
2613	s->counter_val[3] = THRESHOLD_3_G(sge_params->sge_ingress_rx_threshold);
2614
2615	/*
2616	 * Grab our Virtual Interface resource allocation, extract the
2617	 * features that we're interested in and do a bit of sanity testing on
2618	 * what we discover.
2619	 */
2620	err = t4vf_get_vfres(adapter);
2621	if (err) {
2622		dev_err(adapter->pdev_dev, "unable to get virtual interface"
2623			" resources: err=%d\n", err);
2624		return err;
2625	}
2626
2627	/* Check for various parameter sanity issues */
2628	if (adapter->params.vfres.pmask == 0) {
2629		dev_err(adapter->pdev_dev, "no port access configured\n"
2630			"usable!\n");
2631		return -EINVAL;
2632	}
2633	if (adapter->params.vfres.nvi == 0) {
2634		dev_err(adapter->pdev_dev, "no virtual interfaces configured/"
2635			"usable!\n");
2636		return -EINVAL;
2637	}
2638
2639	/* Initialize nports and max_ethqsets now that we have our Virtual
2640	 * Function Resources.
2641	 */
2642	size_nports_qsets(adapter);
2643
2644	adapter->flags |= CXGB4VF_FW_OK;
2645	return 0;
2646}
2647
2648static inline void init_rspq(struct sge_rspq *rspq, u8 timer_idx,
2649			     u8 pkt_cnt_idx, unsigned int size,
2650			     unsigned int iqe_size)
2651{
2652	rspq->intr_params = (QINTR_TIMER_IDX_V(timer_idx) |
2653			     (pkt_cnt_idx < SGE_NCOUNTERS ?
2654			      QINTR_CNT_EN_F : 0));
2655	rspq->pktcnt_idx = (pkt_cnt_idx < SGE_NCOUNTERS
2656			    ? pkt_cnt_idx
2657			    : 0);
2658	rspq->iqe_len = iqe_size;
2659	rspq->size = size;
2660}
2661
2662/*
2663 * Perform default configuration of DMA queues depending on the number and
2664 * type of ports we found and the number of available CPUs.  Most settings can
2665 * be modified by the admin via ethtool and cxgbtool prior to the adapter
2666 * being brought up for the first time.
2667 */
2668static void cfg_queues(struct adapter *adapter)
2669{
2670	struct sge *s = &adapter->sge;
2671	int q10g, n10g, qidx, pidx, qs;
2672	size_t iqe_size;
2673
2674	/*
2675	 * We should not be called till we know how many Queue Sets we can
2676	 * support.  In particular, this means that we need to know what kind
2677	 * of interrupts we'll be using ...
2678	 */
2679	BUG_ON((adapter->flags &
2680	       (CXGB4VF_USING_MSIX | CXGB4VF_USING_MSI)) == 0);
2681
2682	/*
2683	 * Count the number of 10GbE Virtual Interfaces that we have.
2684	 */
2685	n10g = 0;
2686	for_each_port(adapter, pidx)
2687		n10g += is_x_10g_port(&adap2pinfo(adapter, pidx)->link_cfg);
2688
2689	/*
2690	 * We default to 1 queue per non-10G port and up to # of cores queues
2691	 * per 10G port.
2692	 */
2693	if (n10g == 0)
2694		q10g = 0;
2695	else {
2696		int n1g = (adapter->params.nports - n10g);
2697		q10g = (adapter->sge.max_ethqsets - n1g) / n10g;
2698		if (q10g > num_online_cpus())
2699			q10g = num_online_cpus();
2700	}
2701
2702	/*
2703	 * Allocate the "Queue Sets" to the various Virtual Interfaces.
2704	 * The layout will be established in setup_sge_queues() when the
2705	 * adapter is brough up for the first time.
2706	 */
2707	qidx = 0;
2708	for_each_port(adapter, pidx) {
2709		struct port_info *pi = adap2pinfo(adapter, pidx);
2710
2711		pi->first_qset = qidx;
2712		pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : 1;
2713		qidx += pi->nqsets;
2714	}
2715	s->ethqsets = qidx;
2716
2717	/*
2718	 * The Ingress Queue Entry Size for our various Response Queues needs
2719	 * to be big enough to accommodate the largest message we can receive
2720	 * from the chip/firmware; which is 64 bytes ...
2721	 */
2722	iqe_size = 64;
2723
2724	/*
2725	 * Set up default Queue Set parameters ...  Start off with the
2726	 * shortest interrupt holdoff timer.
2727	 */
2728	for (qs = 0; qs < s->max_ethqsets; qs++) {
2729		struct sge_eth_rxq *rxq = &s->ethrxq[qs];
2730		struct sge_eth_txq *txq = &s->ethtxq[qs];
2731
2732		init_rspq(&rxq->rspq, 0, 0, 1024, iqe_size);
2733		rxq->fl.size = 72;
2734		txq->q.size = 1024;
2735	}
2736
2737	/*
2738	 * The firmware event queue is used for link state changes and
2739	 * notifications of TX DMA completions.
2740	 */
2741	init_rspq(&s->fw_evtq, SGE_TIMER_RSTRT_CNTR, 0, 512, iqe_size);
2742
2743	/*
2744	 * The forwarded interrupt queue is used when we're in MSI interrupt
2745	 * mode.  In this mode all interrupts associated with RX queues will
2746	 * be forwarded to a single queue which we'll associate with our MSI
2747	 * interrupt vector.  The messages dropped in the forwarded interrupt
2748	 * queue will indicate which ingress queue needs servicing ...  This
2749	 * queue needs to be large enough to accommodate all of the ingress
2750	 * queues which are forwarding their interrupt (+1 to prevent the PIDX
2751	 * from equalling the CIDX if every ingress queue has an outstanding
2752	 * interrupt).  The queue doesn't need to be any larger because no
2753	 * ingress queue will ever have more than one outstanding interrupt at
2754	 * any time ...
2755	 */
2756	init_rspq(&s->intrq, SGE_TIMER_RSTRT_CNTR, 0, MSIX_ENTRIES + 1,
2757		  iqe_size);
2758}
2759
2760/*
2761 * Reduce the number of Ethernet queues across all ports to at most n.
2762 * n provides at least one queue per port.
2763 */
2764static void reduce_ethqs(struct adapter *adapter, int n)
2765{
2766	int i;
2767	struct port_info *pi;
2768
2769	/*
2770	 * While we have too many active Ether Queue Sets, interate across the
2771	 * "ports" and reduce their individual Queue Set allocations.
2772	 */
2773	BUG_ON(n < adapter->params.nports);
2774	while (n < adapter->sge.ethqsets)
2775		for_each_port(adapter, i) {
2776			pi = adap2pinfo(adapter, i);
2777			if (pi->nqsets > 1) {
2778				pi->nqsets--;
2779				adapter->sge.ethqsets--;
2780				if (adapter->sge.ethqsets <= n)
2781					break;
2782			}
2783		}
2784
2785	/*
2786	 * Reassign the starting Queue Sets for each of the "ports" ...
2787	 */
2788	n = 0;
2789	for_each_port(adapter, i) {
2790		pi = adap2pinfo(adapter, i);
2791		pi->first_qset = n;
2792		n += pi->nqsets;
2793	}
2794}
2795
2796/*
2797 * We need to grab enough MSI-X vectors to cover our interrupt needs.  Ideally
2798 * we get a separate MSI-X vector for every "Queue Set" plus any extras we
2799 * need.  Minimally we need one for every Virtual Interface plus those needed
2800 * for our "extras".  Note that this process may lower the maximum number of
2801 * allowed Queue Sets ...
2802 */
2803static int enable_msix(struct adapter *adapter)
2804{
2805	int i, want, need, nqsets;
2806	struct msix_entry entries[MSIX_ENTRIES];
2807	struct sge *s = &adapter->sge;
2808
2809	for (i = 0; i < MSIX_ENTRIES; ++i)
2810		entries[i].entry = i;
2811
2812	/*
2813	 * We _want_ enough MSI-X interrupts to cover all of our "Queue Sets"
2814	 * plus those needed for our "extras" (for example, the firmware
2815	 * message queue).  We _need_ at least one "Queue Set" per Virtual
2816	 * Interface plus those needed for our "extras".  So now we get to see
2817	 * if the song is right ...
2818	 */
2819	want = s->max_ethqsets + MSIX_EXTRAS;
2820	need = adapter->params.nports + MSIX_EXTRAS;
2821
2822	want = pci_enable_msix_range(adapter->pdev, entries, need, want);
2823	if (want < 0)
2824		return want;
2825
2826	nqsets = want - MSIX_EXTRAS;
2827	if (nqsets < s->max_ethqsets) {
2828		dev_warn(adapter->pdev_dev, "only enough MSI-X vectors"
2829			 " for %d Queue Sets\n", nqsets);
2830		s->max_ethqsets = nqsets;
2831		if (nqsets < s->ethqsets)
2832			reduce_ethqs(adapter, nqsets);
2833	}
2834	for (i = 0; i < want; ++i)
2835		adapter->msix_info[i].vec = entries[i].vector;
2836
2837	return 0;
2838}
2839
2840static const struct net_device_ops cxgb4vf_netdev_ops	= {
2841	.ndo_open		= cxgb4vf_open,
2842	.ndo_stop		= cxgb4vf_stop,
2843	.ndo_start_xmit		= t4vf_eth_xmit,
2844	.ndo_get_stats		= cxgb4vf_get_stats,
2845	.ndo_set_rx_mode	= cxgb4vf_set_rxmode,
2846	.ndo_set_mac_address	= cxgb4vf_set_mac_addr,
2847	.ndo_validate_addr	= eth_validate_addr,
2848	.ndo_eth_ioctl		= cxgb4vf_do_ioctl,
2849	.ndo_change_mtu		= cxgb4vf_change_mtu,
2850	.ndo_fix_features	= cxgb4vf_fix_features,
2851	.ndo_set_features	= cxgb4vf_set_features,
2852#ifdef CONFIG_NET_POLL_CONTROLLER
2853	.ndo_poll_controller	= cxgb4vf_poll_controller,
2854#endif
2855};
2856
2857/**
2858 *	cxgb4vf_get_port_mask - Get port mask for the VF based on mac
2859 *				address stored on the adapter
2860 *	@adapter: The adapter
2861 *
2862 *	Find the port mask for the VF based on the index of mac
2863 *	address stored in the adapter. If no mac address is stored on
2864 *	the adapter for the VF, use the port mask received from the
2865 *	firmware.
2866 */
2867static unsigned int cxgb4vf_get_port_mask(struct adapter *adapter)
2868{
2869	unsigned int naddr = 1, pidx = 0;
2870	unsigned int pmask, rmask = 0;
2871	u8 mac[ETH_ALEN];
2872	int err;
2873
2874	pmask = adapter->params.vfres.pmask;
2875	while (pmask) {
2876		if (pmask & 1) {
2877			err = t4vf_get_vf_mac_acl(adapter, pidx, &naddr, mac);
2878			if (!err && !is_zero_ether_addr(mac))
2879				rmask |= (1 << pidx);
2880		}
2881		pmask >>= 1;
2882		pidx++;
2883	}
2884	if (!rmask)
2885		rmask = adapter->params.vfres.pmask;
2886
2887	return rmask;
2888}
2889
2890/*
2891 * "Probe" a device: initialize a device and construct all kernel and driver
2892 * state needed to manage the device.  This routine is called "init_one" in
2893 * the PF Driver ...
2894 */
2895static int cxgb4vf_pci_probe(struct pci_dev *pdev,
2896			     const struct pci_device_id *ent)
2897{
2898	struct adapter *adapter;
2899	struct net_device *netdev;
2900	struct port_info *pi;
2901	unsigned int pmask;
2902	int err, pidx;
2903
2904	/*
2905	 * Initialize generic PCI device state.
2906	 */
2907	err = pci_enable_device(pdev);
2908	if (err)
2909		return dev_err_probe(&pdev->dev, err, "cannot enable PCI device\n");
2910
2911	/*
2912	 * Reserve PCI resources for the device.  If we can't get them some
2913	 * other driver may have already claimed the device ...
2914	 */
2915	err = pci_request_regions(pdev, KBUILD_MODNAME);
2916	if (err) {
2917		dev_err(&pdev->dev, "cannot obtain PCI resources\n");
2918		goto err_disable_device;
2919	}
2920
2921	/*
2922	 * Set up our DMA mask
2923	 */
2924	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2925	if (err) {
2926		dev_err(&pdev->dev, "no usable DMA configuration\n");
2927		goto err_release_regions;
2928	}
2929
2930	/*
2931	 * Enable bus mastering for the device ...
2932	 */
2933	pci_set_master(pdev);
2934
2935	/*
2936	 * Allocate our adapter data structure and attach it to the device.
2937	 */
2938	adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
2939	if (!adapter) {
2940		err = -ENOMEM;
2941		goto err_release_regions;
2942	}
2943	pci_set_drvdata(pdev, adapter);
2944	adapter->pdev = pdev;
2945	adapter->pdev_dev = &pdev->dev;
2946
2947	adapter->mbox_log = kzalloc(sizeof(*adapter->mbox_log) +
2948				    (sizeof(struct mbox_cmd) *
2949				     T4VF_OS_LOG_MBOX_CMDS),
2950				    GFP_KERNEL);
2951	if (!adapter->mbox_log) {
2952		err = -ENOMEM;
2953		goto err_free_adapter;
2954	}
2955	adapter->mbox_log->size = T4VF_OS_LOG_MBOX_CMDS;
2956
2957	/*
2958	 * Initialize SMP data synchronization resources.
2959	 */
2960	spin_lock_init(&adapter->stats_lock);
2961	spin_lock_init(&adapter->mbox_lock);
2962	INIT_LIST_HEAD(&adapter->mlist.list);
2963
2964	/*
2965	 * Map our I/O registers in BAR0.
2966	 */
2967	adapter->regs = pci_ioremap_bar(pdev, 0);
2968	if (!adapter->regs) {
2969		dev_err(&pdev->dev, "cannot map device registers\n");
2970		err = -ENOMEM;
2971		goto err_free_adapter;
2972	}
2973
2974	/* Wait for the device to become ready before proceeding ...
2975	 */
2976	err = t4vf_prep_adapter(adapter);
2977	if (err) {
2978		dev_err(adapter->pdev_dev, "device didn't become ready:"
2979			" err=%d\n", err);
2980		goto err_unmap_bar0;
2981	}
2982
2983	/* For T5 and later we want to use the new BAR-based User Doorbells,
2984	 * so we need to map BAR2 here ...
2985	 */
2986	if (!is_t4(adapter->params.chip)) {
2987		adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2),
2988					   pci_resource_len(pdev, 2));
2989		if (!adapter->bar2) {
2990			dev_err(adapter->pdev_dev, "cannot map BAR2 doorbells\n");
2991			err = -ENOMEM;
2992			goto err_unmap_bar0;
2993		}
2994	}
2995	/*
2996	 * Initialize adapter level features.
2997	 */
2998	adapter->name = pci_name(pdev);
2999	adapter->msg_enable = DFLT_MSG_ENABLE;
3000
3001	/* If possible, we use PCIe Relaxed Ordering Attribute to deliver
3002	 * Ingress Packet Data to Free List Buffers in order to allow for
3003	 * chipset performance optimizations between the Root Complex and
3004	 * Memory Controllers.  (Messages to the associated Ingress Queue
3005	 * notifying new Packet Placement in the Free Lists Buffers will be
3006	 * send without the Relaxed Ordering Attribute thus guaranteeing that
3007	 * all preceding PCIe Transaction Layer Packets will be processed
3008	 * first.)  But some Root Complexes have various issues with Upstream
3009	 * Transaction Layer Packets with the Relaxed Ordering Attribute set.
3010	 * The PCIe devices which under the Root Complexes will be cleared the
3011	 * Relaxed Ordering bit in the configuration space, So we check our
3012	 * PCIe configuration space to see if it's flagged with advice against
3013	 * using Relaxed Ordering.
3014	 */
3015	if (!pcie_relaxed_ordering_enabled(pdev))
3016		adapter->flags |= CXGB4VF_ROOT_NO_RELAXED_ORDERING;
3017
3018	err = adap_init0(adapter);
3019	if (err)
3020		dev_err(&pdev->dev,
3021			"Adapter initialization failed, error %d. Continuing in debug mode\n",
3022			err);
3023
3024	/* Initialize hash mac addr list */
3025	INIT_LIST_HEAD(&adapter->mac_hlist);
3026
3027	/*
3028	 * Allocate our "adapter ports" and stitch everything together.
3029	 */
3030	pmask = cxgb4vf_get_port_mask(adapter);
3031	for_each_port(adapter, pidx) {
3032		int port_id, viid;
3033		u8 mac[ETH_ALEN];
3034		unsigned int naddr = 1;
3035
3036		/*
3037		 * We simplistically allocate our virtual interfaces
3038		 * sequentially across the port numbers to which we have
3039		 * access rights.  This should be configurable in some manner
3040		 * ...
3041		 */
3042		if (pmask == 0)
3043			break;
3044		port_id = ffs(pmask) - 1;
3045		pmask &= ~(1 << port_id);
3046
3047		/*
3048		 * Allocate our network device and stitch things together.
3049		 */
3050		netdev = alloc_etherdev_mq(sizeof(struct port_info),
3051					   MAX_PORT_QSETS);
3052		if (netdev == NULL) {
3053			err = -ENOMEM;
3054			goto err_free_dev;
3055		}
3056		adapter->port[pidx] = netdev;
3057		SET_NETDEV_DEV(netdev, &pdev->dev);
3058		pi = netdev_priv(netdev);
3059		pi->adapter = adapter;
3060		pi->pidx = pidx;
3061		pi->port_id = port_id;
3062
3063		/*
3064		 * Initialize the starting state of our "port" and register
3065		 * it.
3066		 */
3067		pi->xact_addr_filt = -1;
3068		netdev->irq = pdev->irq;
3069
3070		netdev->hw_features = NETIF_F_SG | TSO_FLAGS | NETIF_F_GRO |
3071			NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM |
3072			NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
3073		netdev->features = netdev->hw_features | NETIF_F_HIGHDMA;
3074		netdev->vlan_features = netdev->features & VLAN_FEAT;
3075
3076		netdev->priv_flags |= IFF_UNICAST_FLT;
3077		netdev->min_mtu = 81;
3078		netdev->max_mtu = ETH_MAX_MTU;
3079
3080		netdev->netdev_ops = &cxgb4vf_netdev_ops;
3081		netdev->ethtool_ops = &cxgb4vf_ethtool_ops;
3082		netdev->dev_port = pi->port_id;
3083
3084		/*
3085		 * If we haven't been able to contact the firmware, there's
3086		 * nothing else we can do for this "port" ...
3087		 */
3088		if (!(adapter->flags & CXGB4VF_FW_OK))
3089			continue;
3090
3091		viid = t4vf_alloc_vi(adapter, port_id);
3092		if (viid < 0) {
3093			dev_err(&pdev->dev,
3094				"cannot allocate VI for port %d: err=%d\n",
3095				port_id, viid);
3096			err = viid;
3097			goto err_free_dev;
3098		}
3099		pi->viid = viid;
3100
3101		/*
3102		 * Initialize the hardware/software state for the port.
3103		 */
3104		err = t4vf_port_init(adapter, pidx);
3105		if (err) {
3106			dev_err(&pdev->dev, "cannot initialize port %d\n",
3107				pidx);
3108			goto err_free_dev;
3109		}
3110
3111		err = t4vf_get_vf_mac_acl(adapter, port_id, &naddr, mac);
3112		if (err) {
3113			dev_err(&pdev->dev,
3114				"unable to determine MAC ACL address, "
3115				"continuing anyway.. (status %d)\n", err);
3116		} else if (naddr && adapter->params.vfres.nvi == 1) {
3117			struct sockaddr addr;
3118
3119			ether_addr_copy(addr.sa_data, mac);
3120			err = cxgb4vf_set_mac_addr(netdev, &addr);
3121			if (err) {
3122				dev_err(&pdev->dev,
3123					"unable to set MAC address %pM\n",
3124					mac);
3125				goto err_free_dev;
3126			}
3127			dev_info(&pdev->dev,
3128				 "Using assigned MAC ACL: %pM\n", mac);
3129		}
3130	}
3131
3132	/* See what interrupts we'll be using.  If we've been configured to
3133	 * use MSI-X interrupts, try to enable them but fall back to using
3134	 * MSI interrupts if we can't enable MSI-X interrupts.  If we can't
3135	 * get MSI interrupts we bail with the error.
3136	 */
3137	if (msi == MSI_MSIX && enable_msix(adapter) == 0)
3138		adapter->flags |= CXGB4VF_USING_MSIX;
3139	else {
3140		if (msi == MSI_MSIX) {
3141			dev_info(adapter->pdev_dev,
3142				 "Unable to use MSI-X Interrupts; falling "
3143				 "back to MSI Interrupts\n");
3144
3145			/* We're going to need a Forwarded Interrupt Queue so
3146			 * that may cut into how many Queue Sets we can
3147			 * support.
3148			 */
3149			msi = MSI_MSI;
3150			size_nports_qsets(adapter);
3151		}
3152		err = pci_enable_msi(pdev);
3153		if (err) {
3154			dev_err(&pdev->dev, "Unable to allocate MSI Interrupts;"
3155				" err=%d\n", err);
3156			goto err_free_dev;
3157		}
3158		adapter->flags |= CXGB4VF_USING_MSI;
3159	}
3160
3161	/* Now that we know how many "ports" we have and what interrupt
3162	 * mechanism we're going to use, we can configure our queue resources.
3163	 */
3164	cfg_queues(adapter);
3165
3166	/*
3167	 * The "card" is now ready to go.  If any errors occur during device
3168	 * registration we do not fail the whole "card" but rather proceed
3169	 * only with the ports we manage to register successfully.  However we
3170	 * must register at least one net device.
3171	 */
3172	for_each_port(adapter, pidx) {
3173		struct port_info *pi = netdev_priv(adapter->port[pidx]);
3174		netdev = adapter->port[pidx];
3175		if (netdev == NULL)
3176			continue;
3177
3178		netif_set_real_num_tx_queues(netdev, pi->nqsets);
3179		netif_set_real_num_rx_queues(netdev, pi->nqsets);
3180
3181		err = register_netdev(netdev);
3182		if (err) {
3183			dev_warn(&pdev->dev, "cannot register net device %s,"
3184				 " skipping\n", netdev->name);
3185			continue;
3186		}
3187
3188		netif_carrier_off(netdev);
3189		set_bit(pidx, &adapter->registered_device_map);
3190	}
3191	if (adapter->registered_device_map == 0) {
3192		dev_err(&pdev->dev, "could not register any net devices\n");
3193		err = -EINVAL;
3194		goto err_disable_interrupts;
3195	}
3196
3197	/*
3198	 * Set up our debugfs entries.
3199	 */
3200	if (!IS_ERR_OR_NULL(cxgb4vf_debugfs_root)) {
3201		adapter->debugfs_root =
3202			debugfs_create_dir(pci_name(pdev),
3203					   cxgb4vf_debugfs_root);
3204		setup_debugfs(adapter);
3205	}
3206
3207	/*
3208	 * Print a short notice on the existence and configuration of the new
3209	 * VF network device ...
3210	 */
3211	for_each_port(adapter, pidx) {
3212		dev_info(adapter->pdev_dev, "%s: Chelsio VF NIC PCIe %s\n",
3213			 adapter->port[pidx]->name,
3214			 (adapter->flags & CXGB4VF_USING_MSIX) ? "MSI-X" :
3215			 (adapter->flags & CXGB4VF_USING_MSI)  ? "MSI" : "");
3216	}
3217
3218	/*
3219	 * Return success!
3220	 */
3221	return 0;
3222
3223	/*
3224	 * Error recovery and exit code.  Unwind state that's been created
3225	 * so far and return the error.
3226	 */
3227err_disable_interrupts:
3228	if (adapter->flags & CXGB4VF_USING_MSIX) {
3229		pci_disable_msix(adapter->pdev);
3230		adapter->flags &= ~CXGB4VF_USING_MSIX;
3231	} else if (adapter->flags & CXGB4VF_USING_MSI) {
3232		pci_disable_msi(adapter->pdev);
3233		adapter->flags &= ~CXGB4VF_USING_MSI;
3234	}
3235
3236err_free_dev:
3237	for_each_port(adapter, pidx) {
3238		netdev = adapter->port[pidx];
3239		if (netdev == NULL)
3240			continue;
3241		pi = netdev_priv(netdev);
3242		if (pi->viid)
3243			t4vf_free_vi(adapter, pi->viid);
3244		if (test_bit(pidx, &adapter->registered_device_map))
3245			unregister_netdev(netdev);
3246		free_netdev(netdev);
3247	}
3248
3249	if (!is_t4(adapter->params.chip))
3250		iounmap(adapter->bar2);
3251
3252err_unmap_bar0:
3253	iounmap(adapter->regs);
3254
3255err_free_adapter:
3256	kfree(adapter->mbox_log);
3257	kfree(adapter);
3258
3259err_release_regions:
3260	pci_release_regions(pdev);
3261
3262err_disable_device:
3263	pci_disable_device(pdev);
3264
3265	return err;
3266}
3267
3268/*
3269 * "Remove" a device: tear down all kernel and driver state created in the
3270 * "probe" routine and quiesce the device (disable interrupts, etc.).  (Note
3271 * that this is called "remove_one" in the PF Driver.)
3272 */
3273static void cxgb4vf_pci_remove(struct pci_dev *pdev)
3274{
3275	struct adapter *adapter = pci_get_drvdata(pdev);
3276	struct hash_mac_addr *entry, *tmp;
3277
3278	/*
3279	 * Tear down driver state associated with device.
3280	 */
3281	if (adapter) {
3282		int pidx;
3283
3284		/*
3285		 * Stop all of our activity.  Unregister network port,
3286		 * disable interrupts, etc.
3287		 */
3288		for_each_port(adapter, pidx)
3289			if (test_bit(pidx, &adapter->registered_device_map))
3290				unregister_netdev(adapter->port[pidx]);
3291		t4vf_sge_stop(adapter);
3292		if (adapter->flags & CXGB4VF_USING_MSIX) {
3293			pci_disable_msix(adapter->pdev);
3294			adapter->flags &= ~CXGB4VF_USING_MSIX;
3295		} else if (adapter->flags & CXGB4VF_USING_MSI) {
3296			pci_disable_msi(adapter->pdev);
3297			adapter->flags &= ~CXGB4VF_USING_MSI;
3298		}
3299
3300		/*
3301		 * Tear down our debugfs entries.
3302		 */
3303		if (!IS_ERR_OR_NULL(adapter->debugfs_root)) {
3304			cleanup_debugfs(adapter);
3305			debugfs_remove_recursive(adapter->debugfs_root);
3306		}
3307
3308		/*
3309		 * Free all of the various resources which we've acquired ...
3310		 */
3311		t4vf_free_sge_resources(adapter);
3312		for_each_port(adapter, pidx) {
3313			struct net_device *netdev = adapter->port[pidx];
3314			struct port_info *pi;
3315
3316			if (netdev == NULL)
3317				continue;
3318
3319			pi = netdev_priv(netdev);
3320			if (pi->viid)
3321				t4vf_free_vi(adapter, pi->viid);
3322			free_netdev(netdev);
3323		}
3324		iounmap(adapter->regs);
3325		if (!is_t4(adapter->params.chip))
3326			iounmap(adapter->bar2);
3327		kfree(adapter->mbox_log);
3328		list_for_each_entry_safe(entry, tmp, &adapter->mac_hlist,
3329					 list) {
3330			list_del(&entry->list);
3331			kfree(entry);
3332		}
3333		kfree(adapter);
3334	}
3335
3336	/*
3337	 * Disable the device and release its PCI resources.
3338	 */
3339	pci_disable_device(pdev);
3340	pci_release_regions(pdev);
3341}
3342
3343/*
3344 * "Shutdown" quiesce the device, stopping Ingress Packet and Interrupt
3345 * delivery.
3346 */
3347static void cxgb4vf_pci_shutdown(struct pci_dev *pdev)
3348{
3349	struct adapter *adapter;
3350	int pidx;
3351
3352	adapter = pci_get_drvdata(pdev);
3353	if (!adapter)
3354		return;
3355
3356	/* Disable all Virtual Interfaces.  This will shut down the
3357	 * delivery of all ingress packets into the chip for these
3358	 * Virtual Interfaces.
3359	 */
3360	for_each_port(adapter, pidx)
3361		if (test_bit(pidx, &adapter->registered_device_map))
3362			unregister_netdev(adapter->port[pidx]);
3363
3364	/* Free up all Queues which will prevent further DMA and
3365	 * Interrupts allowing various internal pathways to drain.
3366	 */
3367	t4vf_sge_stop(adapter);
3368	if (adapter->flags & CXGB4VF_USING_MSIX) {
3369		pci_disable_msix(adapter->pdev);
3370		adapter->flags &= ~CXGB4VF_USING_MSIX;
3371	} else if (adapter->flags & CXGB4VF_USING_MSI) {
3372		pci_disable_msi(adapter->pdev);
3373		adapter->flags &= ~CXGB4VF_USING_MSI;
3374	}
3375
3376	/*
3377	 * Free up all Queues which will prevent further DMA and
3378	 * Interrupts allowing various internal pathways to drain.
3379	 */
3380	t4vf_free_sge_resources(adapter);
3381	pci_set_drvdata(pdev, NULL);
3382}
3383
3384/* Macros needed to support the PCI Device ID Table ...
3385 */
3386#define CH_PCI_DEVICE_ID_TABLE_DEFINE_BEGIN \
3387	static const struct pci_device_id cxgb4vf_pci_tbl[] = {
3388#define CH_PCI_DEVICE_ID_FUNCTION	0x8
3389
3390#define CH_PCI_ID_TABLE_ENTRY(devid) \
3391		{ PCI_VDEVICE(CHELSIO, (devid)), 0 }
3392
3393#define CH_PCI_DEVICE_ID_TABLE_DEFINE_END { 0, } }
3394
3395#include "../cxgb4/t4_pci_id_tbl.h"
3396
3397MODULE_DESCRIPTION(DRV_DESC);
3398MODULE_AUTHOR("Chelsio Communications");
3399MODULE_LICENSE("Dual BSD/GPL");
3400MODULE_DEVICE_TABLE(pci, cxgb4vf_pci_tbl);
3401
3402static struct pci_driver cxgb4vf_driver = {
3403	.name		= KBUILD_MODNAME,
3404	.id_table	= cxgb4vf_pci_tbl,
3405	.probe		= cxgb4vf_pci_probe,
3406	.remove		= cxgb4vf_pci_remove,
3407	.shutdown	= cxgb4vf_pci_shutdown,
3408};
3409
3410/*
3411 * Initialize global driver state.
3412 */
3413static int __init cxgb4vf_module_init(void)
3414{
3415	int ret;
3416
3417	/*
3418	 * Vet our module parameters.
3419	 */
3420	if (msi != MSI_MSIX && msi != MSI_MSI) {
3421		pr_warn("bad module parameter msi=%d; must be %d (MSI-X or MSI) or %d (MSI)\n",
3422			msi, MSI_MSIX, MSI_MSI);
3423		return -EINVAL;
3424	}
3425
3426	/* Debugfs support is optional, debugfs will warn if this fails */
3427	cxgb4vf_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL);
3428
3429	ret = pci_register_driver(&cxgb4vf_driver);
3430	if (ret < 0)
3431		debugfs_remove(cxgb4vf_debugfs_root);
3432	return ret;
3433}
3434
3435/*
3436 * Tear down global driver state.
3437 */
3438static void __exit cxgb4vf_module_exit(void)
3439{
3440	pci_unregister_driver(&cxgb4vf_driver);
3441	debugfs_remove(cxgb4vf_debugfs_root);
3442}
3443
3444module_init(cxgb4vf_module_init);
3445module_exit(cxgb4vf_module_exit);
3446