1/*
2 * This file is part of the Chelsio T4 Ethernet driver for Linux.
3 *
4 * Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved.
5 *
6 * This software is available to you under a choice of one of two
7 * licenses.  You may choose to be licensed under the terms of the GNU
8 * General Public License (GPL) Version 2, available from the file
9 * COPYING in the main directory of this source tree, or the
10 * OpenIB.org BSD license below:
11 *
12 *     Redistribution and use in source and binary forms, with or
13 *     without modification, are permitted provided that the following
14 *     conditions are met:
15 *
16 *      - Redistributions of source code must retain the above
17 *        copyright notice, this list of conditions and the following
18 *        disclaimer.
19 *
20 *      - Redistributions in binary form must reproduce the above
21 *        copyright notice, this list of conditions and the following
22 *        disclaimer in the documentation and/or other materials
23 *        provided with the distribution.
24 *
25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32 * SOFTWARE.
33 */
34
35#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36
37#include <linux/bitmap.h>
38#include <linux/crc32.h>
39#include <linux/ctype.h>
40#include <linux/debugfs.h>
41#include <linux/err.h>
42#include <linux/etherdevice.h>
43#include <linux/firmware.h>
44#include <linux/if.h>
45#include <linux/if_vlan.h>
46#include <linux/init.h>
47#include <linux/log2.h>
48#include <linux/mdio.h>
49#include <linux/module.h>
50#include <linux/moduleparam.h>
51#include <linux/mutex.h>
52#include <linux/netdevice.h>
53#include <linux/pci.h>
54#include <linux/rtnetlink.h>
55#include <linux/sched.h>
56#include <linux/seq_file.h>
57#include <linux/sockios.h>
58#include <linux/vmalloc.h>
59#include <linux/workqueue.h>
60#include <net/neighbour.h>
61#include <net/netevent.h>
62#include <net/addrconf.h>
63#include <net/bonding.h>
64#include <linux/uaccess.h>
65#include <linux/crash_dump.h>
66#include <net/udp_tunnel.h>
67#include <net/xfrm.h>
68#if IS_ENABLED(CONFIG_CHELSIO_TLS_DEVICE)
69#include <net/tls.h>
70#endif
71
72#include "cxgb4.h"
73#include "cxgb4_filter.h"
74#include "t4_regs.h"
75#include "t4_values.h"
76#include "t4_msg.h"
77#include "t4fw_api.h"
78#include "t4fw_version.h"
79#include "cxgb4_dcb.h"
80#include "srq.h"
81#include "cxgb4_debugfs.h"
82#include "clip_tbl.h"
83#include "l2t.h"
84#include "smt.h"
85#include "sched.h"
86#include "cxgb4_tc_u32.h"
87#include "cxgb4_tc_flower.h"
88#include "cxgb4_tc_mqprio.h"
89#include "cxgb4_tc_matchall.h"
90#include "cxgb4_ptp.h"
91#include "cxgb4_cudbg.h"
92
93char cxgb4_driver_name[] = KBUILD_MODNAME;
94
95#define DRV_DESC "Chelsio T4/T5/T6 Network Driver"
96
97#define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
98			 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
99			 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
100
101/* Macros needed to support the PCI Device ID Table ...
102 */
103#define CH_PCI_DEVICE_ID_TABLE_DEFINE_BEGIN \
104	static const struct pci_device_id cxgb4_pci_tbl[] = {
105#define CXGB4_UNIFIED_PF 0x4
106
107#define CH_PCI_DEVICE_ID_FUNCTION CXGB4_UNIFIED_PF
108
109/* Include PCI Device IDs for both PF4 and PF0-3 so our PCI probe() routine is
110 * called for both.
111 */
112#define CH_PCI_DEVICE_ID_FUNCTION2 0x0
113
114#define CH_PCI_ID_TABLE_ENTRY(devid) \
115		{PCI_VDEVICE(CHELSIO, (devid)), CXGB4_UNIFIED_PF}
116
117#define CH_PCI_DEVICE_ID_TABLE_DEFINE_END \
118		{ 0, } \
119	}
120
121#include "t4_pci_id_tbl.h"
122
123#define FW4_FNAME "cxgb4/t4fw.bin"
124#define FW5_FNAME "cxgb4/t5fw.bin"
125#define FW6_FNAME "cxgb4/t6fw.bin"
126#define FW4_CFNAME "cxgb4/t4-config.txt"
127#define FW5_CFNAME "cxgb4/t5-config.txt"
128#define FW6_CFNAME "cxgb4/t6-config.txt"
129#define PHY_AQ1202_FIRMWARE "cxgb4/aq1202_fw.cld"
130#define PHY_BCM84834_FIRMWARE "cxgb4/bcm8483.bin"
131#define PHY_AQ1202_DEVICEID 0x4409
132#define PHY_BCM84834_DEVICEID 0x4486
133
134MODULE_DESCRIPTION(DRV_DESC);
135MODULE_AUTHOR("Chelsio Communications");
136MODULE_LICENSE("Dual BSD/GPL");
137MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl);
138MODULE_FIRMWARE(FW4_FNAME);
139MODULE_FIRMWARE(FW5_FNAME);
140MODULE_FIRMWARE(FW6_FNAME);
141
142/*
143 * The driver uses the best interrupt scheme available on a platform in the
144 * order MSI-X, MSI, legacy INTx interrupts.  This parameter determines which
145 * of these schemes the driver may consider as follows:
146 *
147 * msi = 2: choose from among all three options
148 * msi = 1: only consider MSI and INTx interrupts
149 * msi = 0: force INTx interrupts
150 */
151static int msi = 2;
152
153module_param(msi, int, 0644);
154MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)");
155
156/*
157 * Normally we tell the chip to deliver Ingress Packets into our DMA buffers
158 * offset by 2 bytes in order to have the IP headers line up on 4-byte
159 * boundaries.  This is a requirement for many architectures which will throw
160 * a machine check fault if an attempt is made to access one of the 4-byte IP
161 * header fields on a non-4-byte boundary.  And it's a major performance issue
162 * even on some architectures which allow it like some implementations of the
163 * x86 ISA.  However, some architectures don't mind this and for some very
164 * edge-case performance sensitive applications (like forwarding large volumes
165 * of small packets), setting this DMA offset to 0 will decrease the number of
166 * PCI-E Bus transfers enough to measurably affect performance.
167 */
168static int rx_dma_offset = 2;
169
170/* TX Queue select used to determine what algorithm to use for selecting TX
171 * queue. Select between the kernel provided function (select_queue=0) or user
172 * cxgb_select_queue function (select_queue=1)
173 *
174 * Default: select_queue=0
175 */
176static int select_queue;
177module_param(select_queue, int, 0644);
178MODULE_PARM_DESC(select_queue,
179		 "Select between kernel provided method of selecting or driver method of selecting TX queue. Default is kernel method.");
180
181static struct dentry *cxgb4_debugfs_root;
182
183LIST_HEAD(adapter_list);
184DEFINE_MUTEX(uld_mutex);
185LIST_HEAD(uld_list);
186
187static int cfg_queues(struct adapter *adap);
188
189static void link_report(struct net_device *dev)
190{
191	if (!netif_carrier_ok(dev))
192		netdev_info(dev, "link down\n");
193	else {
194		static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" };
195
196		const char *s;
197		const struct port_info *p = netdev_priv(dev);
198
199		switch (p->link_cfg.speed) {
200		case 100:
201			s = "100Mbps";
202			break;
203		case 1000:
204			s = "1Gbps";
205			break;
206		case 10000:
207			s = "10Gbps";
208			break;
209		case 25000:
210			s = "25Gbps";
211			break;
212		case 40000:
213			s = "40Gbps";
214			break;
215		case 50000:
216			s = "50Gbps";
217			break;
218		case 100000:
219			s = "100Gbps";
220			break;
221		default:
222			pr_info("%s: unsupported speed: %d\n",
223				dev->name, p->link_cfg.speed);
224			return;
225		}
226
227		netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s,
228			    fc[p->link_cfg.fc]);
229	}
230}
231
232#ifdef CONFIG_CHELSIO_T4_DCB
233/* Set up/tear down Data Center Bridging Priority mapping for a net device. */
234static void dcb_tx_queue_prio_enable(struct net_device *dev, int enable)
235{
236	struct port_info *pi = netdev_priv(dev);
237	struct adapter *adap = pi->adapter;
238	struct sge_eth_txq *txq = &adap->sge.ethtxq[pi->first_qset];
239	int i;
240
241	/* We use a simple mapping of Port TX Queue Index to DCB
242	 * Priority when we're enabling DCB.
243	 */
244	for (i = 0; i < pi->nqsets; i++, txq++) {
245		u32 name, value;
246		int err;
247
248		name = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
249			FW_PARAMS_PARAM_X_V(
250				FW_PARAMS_PARAM_DMAQ_EQ_DCBPRIO_ETH) |
251			FW_PARAMS_PARAM_YZ_V(txq->q.cntxt_id));
252		value = enable ? i : 0xffffffff;
253
254		/* Since we can be called while atomic (from "interrupt
255		 * level") we need to issue the Set Parameters Commannd
256		 * without sleeping (timeout < 0).
257		 */
258		err = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1,
259					    &name, &value,
260					    -FW_CMD_MAX_TIMEOUT);
261
262		if (err)
263			dev_err(adap->pdev_dev,
264				"Can't %s DCB Priority on port %d, TX Queue %d: err=%d\n",
265				enable ? "set" : "unset", pi->port_id, i, -err);
266		else
267			txq->dcb_prio = enable ? value : 0;
268	}
269}
270
271int cxgb4_dcb_enabled(const struct net_device *dev)
272{
273	struct port_info *pi = netdev_priv(dev);
274
275	if (!pi->dcb.enabled)
276		return 0;
277
278	return ((pi->dcb.state == CXGB4_DCB_STATE_FW_ALLSYNCED) ||
279		(pi->dcb.state == CXGB4_DCB_STATE_HOST));
280}
281#endif /* CONFIG_CHELSIO_T4_DCB */
282
283void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat)
284{
285	struct net_device *dev = adapter->port[port_id];
286
287	/* Skip changes from disabled ports. */
288	if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) {
289		if (link_stat)
290			netif_carrier_on(dev);
291		else {
292#ifdef CONFIG_CHELSIO_T4_DCB
293			if (cxgb4_dcb_enabled(dev)) {
294				cxgb4_dcb_reset(dev);
295				dcb_tx_queue_prio_enable(dev, false);
296			}
297#endif /* CONFIG_CHELSIO_T4_DCB */
298			netif_carrier_off(dev);
299		}
300
301		link_report(dev);
302	}
303}
304
305void t4_os_portmod_changed(struct adapter *adap, int port_id)
306{
307	static const char *mod_str[] = {
308		NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
309	};
310
311	struct net_device *dev = adap->port[port_id];
312	struct port_info *pi = netdev_priv(dev);
313
314	if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
315		netdev_info(dev, "port module unplugged\n");
316	else if (pi->mod_type < ARRAY_SIZE(mod_str))
317		netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]);
318	else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED)
319		netdev_info(dev, "%s: unsupported port module inserted\n",
320			    dev->name);
321	else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN)
322		netdev_info(dev, "%s: unknown port module inserted\n",
323			    dev->name);
324	else if (pi->mod_type == FW_PORT_MOD_TYPE_ERROR)
325		netdev_info(dev, "%s: transceiver module error\n", dev->name);
326	else
327		netdev_info(dev, "%s: unknown module type %d inserted\n",
328			    dev->name, pi->mod_type);
329
330	/* If the interface is running, then we'll need any "sticky" Link
331	 * Parameters redone with a new Transceiver Module.
332	 */
333	pi->link_cfg.redo_l1cfg = netif_running(dev);
334}
335
336int dbfifo_int_thresh = 10; /* 10 == 640 entry threshold */
337module_param(dbfifo_int_thresh, int, 0644);
338MODULE_PARM_DESC(dbfifo_int_thresh, "doorbell fifo interrupt threshold");
339
340/*
341 * usecs to sleep while draining the dbfifo
342 */
343static int dbfifo_drain_delay = 1000;
344module_param(dbfifo_drain_delay, int, 0644);
345MODULE_PARM_DESC(dbfifo_drain_delay,
346		 "usecs to sleep while draining the dbfifo");
347
348static inline int cxgb4_set_addr_hash(struct port_info *pi)
349{
350	struct adapter *adap = pi->adapter;
351	u64 vec = 0;
352	bool ucast = false;
353	struct hash_mac_addr *entry;
354
355	/* Calculate the hash vector for the updated list and program it */
356	list_for_each_entry(entry, &adap->mac_hlist, list) {
357		ucast |= is_unicast_ether_addr(entry->addr);
358		vec |= (1ULL << hash_mac_addr(entry->addr));
359	}
360	return t4_set_addr_hash(adap, adap->mbox, pi->viid, ucast,
361				vec, false);
362}
363
364static int cxgb4_mac_sync(struct net_device *netdev, const u8 *mac_addr)
365{
366	struct port_info *pi = netdev_priv(netdev);
367	struct adapter *adap = pi->adapter;
368	int ret;
369	u64 mhash = 0;
370	u64 uhash = 0;
371	/* idx stores the index of allocated filters,
372	 * its size should be modified based on the number of
373	 * MAC addresses that we allocate filters for
374	 */
375
376	u16 idx[1] = {};
377	bool free = false;
378	bool ucast = is_unicast_ether_addr(mac_addr);
379	const u8 *maclist[1] = {mac_addr};
380	struct hash_mac_addr *new_entry;
381
382	ret = cxgb4_alloc_mac_filt(adap, pi->viid, free, 1, maclist,
383				   idx, ucast ? &uhash : &mhash, false);
384	if (ret < 0)
385		goto out;
386	/* if hash != 0, then add the addr to hash addr list
387	 * so on the end we will calculate the hash for the
388	 * list and program it
389	 */
390	if (uhash || mhash) {
391		new_entry = kzalloc(sizeof(*new_entry), GFP_ATOMIC);
392		if (!new_entry)
393			return -ENOMEM;
394		ether_addr_copy(new_entry->addr, mac_addr);
395		list_add_tail(&new_entry->list, &adap->mac_hlist);
396		ret = cxgb4_set_addr_hash(pi);
397	}
398out:
399	return ret < 0 ? ret : 0;
400}
401
402static int cxgb4_mac_unsync(struct net_device *netdev, const u8 *mac_addr)
403{
404	struct port_info *pi = netdev_priv(netdev);
405	struct adapter *adap = pi->adapter;
406	int ret;
407	const u8 *maclist[1] = {mac_addr};
408	struct hash_mac_addr *entry, *tmp;
409
410	/* If the MAC address to be removed is in the hash addr
411	 * list, delete it from the list and update hash vector
412	 */
413	list_for_each_entry_safe(entry, tmp, &adap->mac_hlist, list) {
414		if (ether_addr_equal(entry->addr, mac_addr)) {
415			list_del(&entry->list);
416			kfree(entry);
417			return cxgb4_set_addr_hash(pi);
418		}
419	}
420
421	ret = cxgb4_free_mac_filt(adap, pi->viid, 1, maclist, false);
422	return ret < 0 ? -EINVAL : 0;
423}
424
425/*
426 * Set Rx properties of a port, such as promiscruity, address filters, and MTU.
427 * If @mtu is -1 it is left unchanged.
428 */
429static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
430{
431	struct port_info *pi = netdev_priv(dev);
432	struct adapter *adapter = pi->adapter;
433
434	__dev_uc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync);
435	__dev_mc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync);
436
437	return t4_set_rxmode(adapter, adapter->mbox, pi->viid, pi->viid_mirror,
438			     mtu, (dev->flags & IFF_PROMISC) ? 1 : 0,
439			     (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1,
440			     sleep_ok);
441}
442
443/**
444 *	cxgb4_change_mac - Update match filter for a MAC address.
445 *	@pi: the port_info
446 *	@viid: the VI id
447 *	@tcam_idx: TCAM index of existing filter for old value of MAC address,
448 *		   or -1
449 *	@addr: the new MAC address value
450 *	@persist: whether a new MAC allocation should be persistent
451 *	@smt_idx: the destination to store the new SMT index.
452 *
453 *	Modifies an MPS filter and sets it to the new MAC address if
454 *	@tcam_idx >= 0, or adds the MAC address to a new filter if
455 *	@tcam_idx < 0. In the latter case the address is added persistently
456 *	if @persist is %true.
457 *	Addresses are programmed to hash region, if tcam runs out of entries.
458 *
459 */
460int cxgb4_change_mac(struct port_info *pi, unsigned int viid,
461		     int *tcam_idx, const u8 *addr, bool persist,
462		     u8 *smt_idx)
463{
464	struct adapter *adapter = pi->adapter;
465	struct hash_mac_addr *entry, *new_entry;
466	int ret;
467
468	ret = t4_change_mac(adapter, adapter->mbox, viid,
469			    *tcam_idx, addr, persist, smt_idx);
470	/* We ran out of TCAM entries. try programming hash region. */
471	if (ret == -ENOMEM) {
472		/* If the MAC address to be updated is in the hash addr
473		 * list, update it from the list
474		 */
475		list_for_each_entry(entry, &adapter->mac_hlist, list) {
476			if (entry->iface_mac) {
477				ether_addr_copy(entry->addr, addr);
478				goto set_hash;
479			}
480		}
481		new_entry = kzalloc(sizeof(*new_entry), GFP_KERNEL);
482		if (!new_entry)
483			return -ENOMEM;
484		ether_addr_copy(new_entry->addr, addr);
485		new_entry->iface_mac = true;
486		list_add_tail(&new_entry->list, &adapter->mac_hlist);
487set_hash:
488		ret = cxgb4_set_addr_hash(pi);
489	} else if (ret >= 0) {
490		*tcam_idx = ret;
491		ret = 0;
492	}
493
494	return ret;
495}
496
497/*
498 *	link_start - enable a port
499 *	@dev: the port to enable
500 *
501 *	Performs the MAC and PHY actions needed to enable a port.
502 */
503static int link_start(struct net_device *dev)
504{
505	struct port_info *pi = netdev_priv(dev);
506	unsigned int mb = pi->adapter->mbox;
507	int ret;
508
509	/*
510	 * We do not set address filters and promiscuity here, the stack does
511	 * that step explicitly.
512	 */
513	ret = t4_set_rxmode(pi->adapter, mb, pi->viid, pi->viid_mirror,
514			    dev->mtu, -1, -1, -1,
515			    !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true);
516	if (ret == 0)
517		ret = cxgb4_update_mac_filt(pi, pi->viid, &pi->xact_addr_filt,
518					    dev->dev_addr, true, &pi->smt_idx);
519	if (ret == 0)
520		ret = t4_link_l1cfg(pi->adapter, mb, pi->tx_chan,
521				    &pi->link_cfg);
522	if (ret == 0) {
523		local_bh_disable();
524		ret = t4_enable_pi_params(pi->adapter, mb, pi, true,
525					  true, CXGB4_DCB_ENABLED);
526		local_bh_enable();
527	}
528
529	return ret;
530}
531
532#ifdef CONFIG_CHELSIO_T4_DCB
533/* Handle a Data Center Bridging update message from the firmware. */
534static void dcb_rpl(struct adapter *adap, const struct fw_port_cmd *pcmd)
535{
536	int port = FW_PORT_CMD_PORTID_G(ntohl(pcmd->op_to_portid));
537	struct net_device *dev = adap->port[adap->chan_map[port]];
538	int old_dcb_enabled = cxgb4_dcb_enabled(dev);
539	int new_dcb_enabled;
540
541	cxgb4_dcb_handle_fw_update(adap, pcmd);
542	new_dcb_enabled = cxgb4_dcb_enabled(dev);
543
544	/* If the DCB has become enabled or disabled on the port then we're
545	 * going to need to set up/tear down DCB Priority parameters for the
546	 * TX Queues associated with the port.
547	 */
548	if (new_dcb_enabled != old_dcb_enabled)
549		dcb_tx_queue_prio_enable(dev, new_dcb_enabled);
550}
551#endif /* CONFIG_CHELSIO_T4_DCB */
552
553/* Response queue handler for the FW event queue.
554 */
555static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp,
556			  const struct pkt_gl *gl)
557{
558	u8 opcode = ((const struct rss_header *)rsp)->opcode;
559
560	rsp++;                                          /* skip RSS header */
561
562	/* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
563	 */
564	if (unlikely(opcode == CPL_FW4_MSG &&
565	   ((const struct cpl_fw4_msg *)rsp)->type == FW_TYPE_RSSCPL)) {
566		rsp++;
567		opcode = ((const struct rss_header *)rsp)->opcode;
568		rsp++;
569		if (opcode != CPL_SGE_EGR_UPDATE) {
570			dev_err(q->adap->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n"
571				, opcode);
572			goto out;
573		}
574	}
575
576	if (likely(opcode == CPL_SGE_EGR_UPDATE)) {
577		const struct cpl_sge_egr_update *p = (void *)rsp;
578		unsigned int qid = EGR_QID_G(ntohl(p->opcode_qid));
579		struct sge_txq *txq;
580
581		txq = q->adap->sge.egr_map[qid - q->adap->sge.egr_start];
582		txq->restarts++;
583		if (txq->q_type == CXGB4_TXQ_ETH) {
584			struct sge_eth_txq *eq;
585
586			eq = container_of(txq, struct sge_eth_txq, q);
587			t4_sge_eth_txq_egress_update(q->adap, eq, -1);
588		} else {
589			struct sge_uld_txq *oq;
590
591			oq = container_of(txq, struct sge_uld_txq, q);
592			tasklet_schedule(&oq->qresume_tsk);
593		}
594	} else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) {
595		const struct cpl_fw6_msg *p = (void *)rsp;
596
597#ifdef CONFIG_CHELSIO_T4_DCB
598		const struct fw_port_cmd *pcmd = (const void *)p->data;
599		unsigned int cmd = FW_CMD_OP_G(ntohl(pcmd->op_to_portid));
600		unsigned int action =
601			FW_PORT_CMD_ACTION_G(ntohl(pcmd->action_to_len16));
602
603		if (cmd == FW_PORT_CMD &&
604		    (action == FW_PORT_ACTION_GET_PORT_INFO ||
605		     action == FW_PORT_ACTION_GET_PORT_INFO32)) {
606			int port = FW_PORT_CMD_PORTID_G(
607					be32_to_cpu(pcmd->op_to_portid));
608			struct net_device *dev;
609			int dcbxdis, state_input;
610
611			dev = q->adap->port[q->adap->chan_map[port]];
612			dcbxdis = (action == FW_PORT_ACTION_GET_PORT_INFO
613			  ? !!(pcmd->u.info.dcbxdis_pkd & FW_PORT_CMD_DCBXDIS_F)
614			  : !!(be32_to_cpu(pcmd->u.info32.lstatus32_to_cbllen32)
615			       & FW_PORT_CMD_DCBXDIS32_F));
616			state_input = (dcbxdis
617				       ? CXGB4_DCB_INPUT_FW_DISABLED
618				       : CXGB4_DCB_INPUT_FW_ENABLED);
619
620			cxgb4_dcb_state_fsm(dev, state_input);
621		}
622
623		if (cmd == FW_PORT_CMD &&
624		    action == FW_PORT_ACTION_L2_DCB_CFG)
625			dcb_rpl(q->adap, pcmd);
626		else
627#endif
628			if (p->type == 0)
629				t4_handle_fw_rpl(q->adap, p->data);
630	} else if (opcode == CPL_L2T_WRITE_RPL) {
631		const struct cpl_l2t_write_rpl *p = (void *)rsp;
632
633		do_l2t_write_rpl(q->adap, p);
634	} else if (opcode == CPL_SMT_WRITE_RPL) {
635		const struct cpl_smt_write_rpl *p = (void *)rsp;
636
637		do_smt_write_rpl(q->adap, p);
638	} else if (opcode == CPL_SET_TCB_RPL) {
639		const struct cpl_set_tcb_rpl *p = (void *)rsp;
640
641		filter_rpl(q->adap, p);
642	} else if (opcode == CPL_ACT_OPEN_RPL) {
643		const struct cpl_act_open_rpl *p = (void *)rsp;
644
645		hash_filter_rpl(q->adap, p);
646	} else if (opcode == CPL_ABORT_RPL_RSS) {
647		const struct cpl_abort_rpl_rss *p = (void *)rsp;
648
649		hash_del_filter_rpl(q->adap, p);
650	} else if (opcode == CPL_SRQ_TABLE_RPL) {
651		const struct cpl_srq_table_rpl *p = (void *)rsp;
652
653		do_srq_table_rpl(q->adap, p);
654	} else
655		dev_err(q->adap->pdev_dev,
656			"unexpected CPL %#x on FW event queue\n", opcode);
657out:
658	return 0;
659}
660
661static void disable_msi(struct adapter *adapter)
662{
663	if (adapter->flags & CXGB4_USING_MSIX) {
664		pci_disable_msix(adapter->pdev);
665		adapter->flags &= ~CXGB4_USING_MSIX;
666	} else if (adapter->flags & CXGB4_USING_MSI) {
667		pci_disable_msi(adapter->pdev);
668		adapter->flags &= ~CXGB4_USING_MSI;
669	}
670}
671
672/*
673 * Interrupt handler for non-data events used with MSI-X.
674 */
675static irqreturn_t t4_nondata_intr(int irq, void *cookie)
676{
677	struct adapter *adap = cookie;
678	u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A));
679
680	if (v & PFSW_F) {
681		adap->swintr = 1;
682		t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A), v);
683	}
684	if (adap->flags & CXGB4_MASTER_PF)
685		t4_slow_intr_handler(adap);
686	return IRQ_HANDLED;
687}
688
689int cxgb4_set_msix_aff(struct adapter *adap, unsigned short vec,
690		       cpumask_var_t *aff_mask, int idx)
691{
692	int rv;
693
694	if (!zalloc_cpumask_var(aff_mask, GFP_KERNEL)) {
695		dev_err(adap->pdev_dev, "alloc_cpumask_var failed\n");
696		return -ENOMEM;
697	}
698
699	cpumask_set_cpu(cpumask_local_spread(idx, dev_to_node(adap->pdev_dev)),
700			*aff_mask);
701
702	rv = irq_set_affinity_hint(vec, *aff_mask);
703	if (rv)
704		dev_warn(adap->pdev_dev,
705			 "irq_set_affinity_hint %u failed %d\n",
706			 vec, rv);
707
708	return 0;
709}
710
711void cxgb4_clear_msix_aff(unsigned short vec, cpumask_var_t aff_mask)
712{
713	irq_set_affinity_hint(vec, NULL);
714	free_cpumask_var(aff_mask);
715}
716
717static int request_msix_queue_irqs(struct adapter *adap)
718{
719	struct sge *s = &adap->sge;
720	struct msix_info *minfo;
721	int err, ethqidx;
722
723	if (s->fwevtq_msix_idx < 0)
724		return -ENOMEM;
725
726	err = request_irq(adap->msix_info[s->fwevtq_msix_idx].vec,
727			  t4_sge_intr_msix, 0,
728			  adap->msix_info[s->fwevtq_msix_idx].desc,
729			  &s->fw_evtq);
730	if (err)
731		return err;
732
733	for_each_ethrxq(s, ethqidx) {
734		minfo = s->ethrxq[ethqidx].msix;
735		err = request_irq(minfo->vec,
736				  t4_sge_intr_msix, 0,
737				  minfo->desc,
738				  &s->ethrxq[ethqidx].rspq);
739		if (err)
740			goto unwind;
741
742		cxgb4_set_msix_aff(adap, minfo->vec,
743				   &minfo->aff_mask, ethqidx);
744	}
745	return 0;
746
747unwind:
748	while (--ethqidx >= 0) {
749		minfo = s->ethrxq[ethqidx].msix;
750		cxgb4_clear_msix_aff(minfo->vec, minfo->aff_mask);
751		free_irq(minfo->vec, &s->ethrxq[ethqidx].rspq);
752	}
753	free_irq(adap->msix_info[s->fwevtq_msix_idx].vec, &s->fw_evtq);
754	return err;
755}
756
757static void free_msix_queue_irqs(struct adapter *adap)
758{
759	struct sge *s = &adap->sge;
760	struct msix_info *minfo;
761	int i;
762
763	free_irq(adap->msix_info[s->fwevtq_msix_idx].vec, &s->fw_evtq);
764	for_each_ethrxq(s, i) {
765		minfo = s->ethrxq[i].msix;
766		cxgb4_clear_msix_aff(minfo->vec, minfo->aff_mask);
767		free_irq(minfo->vec, &s->ethrxq[i].rspq);
768	}
769}
770
771static int setup_ppod_edram(struct adapter *adap)
772{
773	unsigned int param, val;
774	int ret;
775
776	/* Driver sends FW_PARAMS_PARAM_DEV_PPOD_EDRAM read command to check
777	 * if firmware supports ppod edram feature or not. If firmware
778	 * returns 1, then driver can enable this feature by sending
779	 * FW_PARAMS_PARAM_DEV_PPOD_EDRAM write command with value 1 to
780	 * enable ppod edram feature.
781	 */
782	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
783		FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PPOD_EDRAM));
784
785	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &param, &val);
786	if (ret < 0) {
787		dev_warn(adap->pdev_dev,
788			 "querying PPOD_EDRAM support failed: %d\n",
789			 ret);
790		return -1;
791	}
792
793	if (val != 1)
794		return -1;
795
796	ret = t4_set_params(adap, adap->mbox, adap->pf, 0, 1, &param, &val);
797	if (ret < 0) {
798		dev_err(adap->pdev_dev,
799			"setting PPOD_EDRAM failed: %d\n", ret);
800		return -1;
801	}
802	return 0;
803}
804
805static void adap_config_hpfilter(struct adapter *adapter)
806{
807	u32 param, val = 0;
808	int ret;
809
810	/* Enable HP filter region. Older fw will fail this request and
811	 * it is fine.
812	 */
813	param = FW_PARAM_DEV(HPFILTER_REGION_SUPPORT);
814	ret = t4_set_params(adapter, adapter->mbox, adapter->pf, 0,
815			    1, &param, &val);
816
817	/* An error means FW doesn't know about HP filter support,
818	 * it's not a problem, don't return an error.
819	 */
820	if (ret < 0)
821		dev_err(adapter->pdev_dev,
822			"HP filter region isn't supported by FW\n");
823}
824
825static int cxgb4_config_rss(const struct port_info *pi, u16 *rss,
826			    u16 rss_size, u16 viid)
827{
828	struct adapter *adap = pi->adapter;
829	int ret;
830
831	ret = t4_config_rss_range(adap, adap->mbox, viid, 0, rss_size, rss,
832				  rss_size);
833	if (ret)
834		return ret;
835
836	/* If Tunnel All Lookup isn't specified in the global RSS
837	 * Configuration, then we need to specify a default Ingress
838	 * Queue for any ingress packets which aren't hashed.  We'll
839	 * use our first ingress queue ...
840	 */
841	return t4_config_vi_rss(adap, adap->mbox, viid,
842				FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F |
843				FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F |
844				FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F |
845				FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F |
846				FW_RSS_VI_CONFIG_CMD_UDPEN_F,
847				rss[0]);
848}
849
850/**
851 *	cxgb4_write_rss - write the RSS table for a given port
852 *	@pi: the port
853 *	@queues: array of queue indices for RSS
854 *
855 *	Sets up the portion of the HW RSS table for the port's VI to distribute
856 *	packets to the Rx queues in @queues.
857 *	Should never be called before setting up sge eth rx queues
858 */
859int cxgb4_write_rss(const struct port_info *pi, const u16 *queues)
860{
861	struct adapter *adapter = pi->adapter;
862	const struct sge_eth_rxq *rxq;
863	int i, err;
864	u16 *rss;
865
866	rxq = &adapter->sge.ethrxq[pi->first_qset];
867	rss = kmalloc_array(pi->rss_size, sizeof(u16), GFP_KERNEL);
868	if (!rss)
869		return -ENOMEM;
870
871	/* map the queue indices to queue ids */
872	for (i = 0; i < pi->rss_size; i++, queues++)
873		rss[i] = rxq[*queues].rspq.abs_id;
874
875	err = cxgb4_config_rss(pi, rss, pi->rss_size, pi->viid);
876	kfree(rss);
877	return err;
878}
879
880/**
881 *	setup_rss - configure RSS
882 *	@adap: the adapter
883 *
884 *	Sets up RSS for each port.
885 */
886static int setup_rss(struct adapter *adap)
887{
888	int i, j, err;
889
890	for_each_port(adap, i) {
891		const struct port_info *pi = adap2pinfo(adap, i);
892
893		/* Fill default values with equal distribution */
894		for (j = 0; j < pi->rss_size; j++)
895			pi->rss[j] = j % pi->nqsets;
896
897		err = cxgb4_write_rss(pi, pi->rss);
898		if (err)
899			return err;
900	}
901	return 0;
902}
903
904/*
905 * Return the channel of the ingress queue with the given qid.
906 */
907static unsigned int rxq_to_chan(const struct sge *p, unsigned int qid)
908{
909	qid -= p->ingr_start;
910	return netdev2pinfo(p->ingr_map[qid]->netdev)->tx_chan;
911}
912
913void cxgb4_quiesce_rx(struct sge_rspq *q)
914{
915	if (q->handler)
916		napi_disable(&q->napi);
917}
918
919/*
920 * Wait until all NAPI handlers are descheduled.
921 */
922static void quiesce_rx(struct adapter *adap)
923{
924	int i;
925
926	for (i = 0; i < adap->sge.ingr_sz; i++) {
927		struct sge_rspq *q = adap->sge.ingr_map[i];
928
929		if (!q)
930			continue;
931
932		cxgb4_quiesce_rx(q);
933	}
934}
935
936/* Disable interrupt and napi handler */
937static void disable_interrupts(struct adapter *adap)
938{
939	struct sge *s = &adap->sge;
940
941	if (adap->flags & CXGB4_FULL_INIT_DONE) {
942		t4_intr_disable(adap);
943		if (adap->flags & CXGB4_USING_MSIX) {
944			free_msix_queue_irqs(adap);
945			free_irq(adap->msix_info[s->nd_msix_idx].vec,
946				 adap);
947		} else {
948			free_irq(adap->pdev->irq, adap);
949		}
950		quiesce_rx(adap);
951	}
952}
953
954void cxgb4_enable_rx(struct adapter *adap, struct sge_rspq *q)
955{
956	if (q->handler)
957		napi_enable(&q->napi);
958
959	/* 0-increment GTS to start the timer and enable interrupts */
960	t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A),
961		     SEINTARM_V(q->intr_params) |
962		     INGRESSQID_V(q->cntxt_id));
963}
964
965/*
966 * Enable NAPI scheduling and interrupt generation for all Rx queues.
967 */
968static void enable_rx(struct adapter *adap)
969{
970	int i;
971
972	for (i = 0; i < adap->sge.ingr_sz; i++) {
973		struct sge_rspq *q = adap->sge.ingr_map[i];
974
975		if (!q)
976			continue;
977
978		cxgb4_enable_rx(adap, q);
979	}
980}
981
982static int setup_non_data_intr(struct adapter *adap)
983{
984	int msix;
985
986	adap->sge.nd_msix_idx = -1;
987	if (!(adap->flags & CXGB4_USING_MSIX))
988		return 0;
989
990	/* Request MSI-X vector for non-data interrupt */
991	msix = cxgb4_get_msix_idx_from_bmap(adap);
992	if (msix < 0)
993		return -ENOMEM;
994
995	snprintf(adap->msix_info[msix].desc,
996		 sizeof(adap->msix_info[msix].desc),
997		 "%s", adap->port[0]->name);
998
999	adap->sge.nd_msix_idx = msix;
1000	return 0;
1001}
1002
1003static int setup_fw_sge_queues(struct adapter *adap)
1004{
1005	struct sge *s = &adap->sge;
1006	int msix, err = 0;
1007
1008	bitmap_zero(s->starving_fl, s->egr_sz);
1009	bitmap_zero(s->txq_maperr, s->egr_sz);
1010
1011	if (adap->flags & CXGB4_USING_MSIX) {
1012		s->fwevtq_msix_idx = -1;
1013		msix = cxgb4_get_msix_idx_from_bmap(adap);
1014		if (msix < 0)
1015			return -ENOMEM;
1016
1017		snprintf(adap->msix_info[msix].desc,
1018			 sizeof(adap->msix_info[msix].desc),
1019			 "%s-FWeventq", adap->port[0]->name);
1020	} else {
1021		err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0,
1022				       NULL, NULL, NULL, -1);
1023		if (err)
1024			return err;
1025		msix = -((int)s->intrq.abs_id + 1);
1026	}
1027
1028	err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0],
1029			       msix, NULL, fwevtq_handler, NULL, -1);
1030	if (err && msix >= 0)
1031		cxgb4_free_msix_idx_in_bmap(adap, msix);
1032
1033	s->fwevtq_msix_idx = msix;
1034	return err;
1035}
1036
1037/**
1038 *	setup_sge_queues - configure SGE Tx/Rx/response queues
1039 *	@adap: the adapter
1040 *
1041 *	Determines how many sets of SGE queues to use and initializes them.
1042 *	We support multiple queue sets per port if we have MSI-X, otherwise
1043 *	just one queue set per port.
1044 */
1045static int setup_sge_queues(struct adapter *adap)
1046{
1047	struct sge_uld_rxq_info *rxq_info = NULL;
1048	struct sge *s = &adap->sge;
1049	unsigned int cmplqid = 0;
1050	int err, i, j, msix = 0;
1051
1052	if (is_uld(adap))
1053		rxq_info = s->uld_rxq_info[CXGB4_ULD_RDMA];
1054
1055	if (!(adap->flags & CXGB4_USING_MSIX))
1056		msix = -((int)s->intrq.abs_id + 1);
1057
1058	for_each_port(adap, i) {
1059		struct net_device *dev = adap->port[i];
1060		struct port_info *pi = netdev_priv(dev);
1061		struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset];
1062		struct sge_eth_txq *t = &s->ethtxq[pi->first_qset];
1063
1064		for (j = 0; j < pi->nqsets; j++, q++) {
1065			if (msix >= 0) {
1066				msix = cxgb4_get_msix_idx_from_bmap(adap);
1067				if (msix < 0) {
1068					err = msix;
1069					goto freeout;
1070				}
1071
1072				snprintf(adap->msix_info[msix].desc,
1073					 sizeof(adap->msix_info[msix].desc),
1074					 "%s-Rx%d", dev->name, j);
1075				q->msix = &adap->msix_info[msix];
1076			}
1077
1078			err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev,
1079					       msix, &q->fl,
1080					       t4_ethrx_handler,
1081					       NULL,
1082					       t4_get_tp_ch_map(adap,
1083								pi->tx_chan));
1084			if (err)
1085				goto freeout;
1086			q->rspq.idx = j;
1087			memset(&q->stats, 0, sizeof(q->stats));
1088		}
1089
1090		q = &s->ethrxq[pi->first_qset];
1091		for (j = 0; j < pi->nqsets; j++, t++, q++) {
1092			err = t4_sge_alloc_eth_txq(adap, t, dev,
1093					netdev_get_tx_queue(dev, j),
1094					q->rspq.cntxt_id,
1095					!!(adap->flags & CXGB4_SGE_DBQ_TIMER));
1096			if (err)
1097				goto freeout;
1098		}
1099	}
1100
1101	for_each_port(adap, i) {
1102		/* Note that cmplqid below is 0 if we don't
1103		 * have RDMA queues, and that's the right value.
1104		 */
1105		if (rxq_info)
1106			cmplqid	= rxq_info->uldrxq[i].rspq.cntxt_id;
1107
1108		err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i],
1109					    s->fw_evtq.cntxt_id, cmplqid);
1110		if (err)
1111			goto freeout;
1112	}
1113
1114	if (!is_t4(adap->params.chip)) {
1115		err = t4_sge_alloc_eth_txq(adap, &s->ptptxq, adap->port[0],
1116					   netdev_get_tx_queue(adap->port[0], 0)
1117					   , s->fw_evtq.cntxt_id, false);
1118		if (err)
1119			goto freeout;
1120	}
1121
1122	t4_write_reg(adap, is_t4(adap->params.chip) ?
1123				MPS_TRC_RSS_CONTROL_A :
1124				MPS_T5_TRC_RSS_CONTROL_A,
1125		     RSSCONTROL_V(netdev2pinfo(adap->port[0])->tx_chan) |
1126		     QUEUENUMBER_V(s->ethrxq[0].rspq.abs_id));
1127	return 0;
1128freeout:
1129	dev_err(adap->pdev_dev, "Can't allocate queues, err=%d\n", -err);
1130	t4_free_sge_resources(adap);
1131	return err;
1132}
1133
1134static u16 cxgb_select_queue(struct net_device *dev, struct sk_buff *skb,
1135			     struct net_device *sb_dev)
1136{
1137	int txq;
1138
1139#ifdef CONFIG_CHELSIO_T4_DCB
1140	/* If a Data Center Bridging has been successfully negotiated on this
1141	 * link then we'll use the skb's priority to map it to a TX Queue.
1142	 * The skb's priority is determined via the VLAN Tag Priority Code
1143	 * Point field.
1144	 */
1145	if (cxgb4_dcb_enabled(dev) && !is_kdump_kernel()) {
1146		u16 vlan_tci;
1147		int err;
1148
1149		err = vlan_get_tag(skb, &vlan_tci);
1150		if (unlikely(err)) {
1151			if (net_ratelimit())
1152				netdev_warn(dev,
1153					    "TX Packet without VLAN Tag on DCB Link\n");
1154			txq = 0;
1155		} else {
1156			txq = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
1157#ifdef CONFIG_CHELSIO_T4_FCOE
1158			if (skb->protocol == htons(ETH_P_FCOE))
1159				txq = skb->priority & 0x7;
1160#endif /* CONFIG_CHELSIO_T4_FCOE */
1161		}
1162		return txq;
1163	}
1164#endif /* CONFIG_CHELSIO_T4_DCB */
1165
1166	if (dev->num_tc) {
1167		struct port_info *pi = netdev2pinfo(dev);
1168		u8 ver, proto;
1169
1170		ver = ip_hdr(skb)->version;
1171		proto = (ver == 6) ? ipv6_hdr(skb)->nexthdr :
1172				     ip_hdr(skb)->protocol;
1173
1174		/* Send unsupported traffic pattern to normal NIC queues. */
1175		txq = netdev_pick_tx(dev, skb, sb_dev);
1176		if (xfrm_offload(skb) || is_ptp_enabled(skb, dev) ||
1177		    skb->encapsulation ||
1178		    tls_is_skb_tx_device_offloaded(skb) ||
1179		    (proto != IPPROTO_TCP && proto != IPPROTO_UDP))
1180			txq = txq % pi->nqsets;
1181
1182		return txq;
1183	}
1184
1185	if (select_queue) {
1186		txq = (skb_rx_queue_recorded(skb)
1187			? skb_get_rx_queue(skb)
1188			: smp_processor_id());
1189
1190		while (unlikely(txq >= dev->real_num_tx_queues))
1191			txq -= dev->real_num_tx_queues;
1192
1193		return txq;
1194	}
1195
1196	return netdev_pick_tx(dev, skb, NULL) % dev->real_num_tx_queues;
1197}
1198
1199static int closest_timer(const struct sge *s, int time)
1200{
1201	int i, delta, match = 0, min_delta = INT_MAX;
1202
1203	for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
1204		delta = time - s->timer_val[i];
1205		if (delta < 0)
1206			delta = -delta;
1207		if (delta < min_delta) {
1208			min_delta = delta;
1209			match = i;
1210		}
1211	}
1212	return match;
1213}
1214
1215static int closest_thres(const struct sge *s, int thres)
1216{
1217	int i, delta, match = 0, min_delta = INT_MAX;
1218
1219	for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
1220		delta = thres - s->counter_val[i];
1221		if (delta < 0)
1222			delta = -delta;
1223		if (delta < min_delta) {
1224			min_delta = delta;
1225			match = i;
1226		}
1227	}
1228	return match;
1229}
1230
1231/**
1232 *	cxgb4_set_rspq_intr_params - set a queue's interrupt holdoff parameters
1233 *	@q: the Rx queue
1234 *	@us: the hold-off time in us, or 0 to disable timer
1235 *	@cnt: the hold-off packet count, or 0 to disable counter
1236 *
1237 *	Sets an Rx queue's interrupt hold-off time and packet count.  At least
1238 *	one of the two needs to be enabled for the queue to generate interrupts.
1239 */
1240int cxgb4_set_rspq_intr_params(struct sge_rspq *q,
1241			       unsigned int us, unsigned int cnt)
1242{
1243	struct adapter *adap = q->adap;
1244
1245	if ((us | cnt) == 0)
1246		cnt = 1;
1247
1248	if (cnt) {
1249		int err;
1250		u32 v, new_idx;
1251
1252		new_idx = closest_thres(&adap->sge, cnt);
1253		if (q->desc && q->pktcnt_idx != new_idx) {
1254			/* the queue has already been created, update it */
1255			v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
1256			    FW_PARAMS_PARAM_X_V(
1257					FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
1258			    FW_PARAMS_PARAM_YZ_V(q->cntxt_id);
1259			err = t4_set_params(adap, adap->mbox, adap->pf, 0, 1,
1260					    &v, &new_idx);
1261			if (err)
1262				return err;
1263		}
1264		q->pktcnt_idx = new_idx;
1265	}
1266
1267	us = us == 0 ? 6 : closest_timer(&adap->sge, us);
1268	q->intr_params = QINTR_TIMER_IDX_V(us) | QINTR_CNT_EN_V(cnt > 0);
1269	return 0;
1270}
1271
1272static int cxgb_set_features(struct net_device *dev, netdev_features_t features)
1273{
1274	netdev_features_t changed = dev->features ^ features;
1275	const struct port_info *pi = netdev_priv(dev);
1276	int err;
1277
1278	if (!(changed & NETIF_F_HW_VLAN_CTAG_RX))
1279		return 0;
1280
1281	err = t4_set_rxmode(pi->adapter, pi->adapter->mbox, pi->viid,
1282			    pi->viid_mirror, -1, -1, -1, -1,
1283			    !!(features & NETIF_F_HW_VLAN_CTAG_RX), true);
1284	if (unlikely(err))
1285		dev->features = features ^ NETIF_F_HW_VLAN_CTAG_RX;
1286	return err;
1287}
1288
1289static int setup_debugfs(struct adapter *adap)
1290{
1291	if (IS_ERR_OR_NULL(adap->debugfs_root))
1292		return -1;
1293
1294#ifdef CONFIG_DEBUG_FS
1295	t4_setup_debugfs(adap);
1296#endif
1297	return 0;
1298}
1299
1300static void cxgb4_port_mirror_free_rxq(struct adapter *adap,
1301				       struct sge_eth_rxq *mirror_rxq)
1302{
1303	if ((adap->flags & CXGB4_FULL_INIT_DONE) &&
1304	    !(adap->flags & CXGB4_SHUTTING_DOWN))
1305		cxgb4_quiesce_rx(&mirror_rxq->rspq);
1306
1307	if (adap->flags & CXGB4_USING_MSIX) {
1308		cxgb4_clear_msix_aff(mirror_rxq->msix->vec,
1309				     mirror_rxq->msix->aff_mask);
1310		free_irq(mirror_rxq->msix->vec, &mirror_rxq->rspq);
1311		cxgb4_free_msix_idx_in_bmap(adap, mirror_rxq->msix->idx);
1312	}
1313
1314	free_rspq_fl(adap, &mirror_rxq->rspq, &mirror_rxq->fl);
1315}
1316
1317static int cxgb4_port_mirror_alloc_queues(struct net_device *dev)
1318{
1319	struct port_info *pi = netdev2pinfo(dev);
1320	struct adapter *adap = netdev2adap(dev);
1321	struct sge_eth_rxq *mirror_rxq;
1322	struct sge *s = &adap->sge;
1323	int ret = 0, msix = 0;
1324	u16 i, rxqid;
1325	u16 *rss;
1326
1327	if (!pi->vi_mirror_count)
1328		return 0;
1329
1330	if (s->mirror_rxq[pi->port_id])
1331		return 0;
1332
1333	mirror_rxq = kcalloc(pi->nmirrorqsets, sizeof(*mirror_rxq), GFP_KERNEL);
1334	if (!mirror_rxq)
1335		return -ENOMEM;
1336
1337	s->mirror_rxq[pi->port_id] = mirror_rxq;
1338
1339	if (!(adap->flags & CXGB4_USING_MSIX))
1340		msix = -((int)adap->sge.intrq.abs_id + 1);
1341
1342	for (i = 0, rxqid = 0; i < pi->nmirrorqsets; i++, rxqid++) {
1343		mirror_rxq = &s->mirror_rxq[pi->port_id][i];
1344
1345		/* Allocate Mirror Rxqs */
1346		if (msix >= 0) {
1347			msix = cxgb4_get_msix_idx_from_bmap(adap);
1348			if (msix < 0) {
1349				ret = msix;
1350				goto out_free_queues;
1351			}
1352
1353			mirror_rxq->msix = &adap->msix_info[msix];
1354			snprintf(mirror_rxq->msix->desc,
1355				 sizeof(mirror_rxq->msix->desc),
1356				 "%s-mirrorrxq%d", dev->name, i);
1357		}
1358
1359		init_rspq(adap, &mirror_rxq->rspq,
1360			  CXGB4_MIRROR_RXQ_DEFAULT_INTR_USEC,
1361			  CXGB4_MIRROR_RXQ_DEFAULT_PKT_CNT,
1362			  CXGB4_MIRROR_RXQ_DEFAULT_DESC_NUM,
1363			  CXGB4_MIRROR_RXQ_DEFAULT_DESC_SIZE);
1364
1365		mirror_rxq->fl.size = CXGB4_MIRROR_FLQ_DEFAULT_DESC_NUM;
1366
1367		ret = t4_sge_alloc_rxq(adap, &mirror_rxq->rspq, false,
1368				       dev, msix, &mirror_rxq->fl,
1369				       t4_ethrx_handler, NULL, 0);
1370		if (ret)
1371			goto out_free_msix_idx;
1372
1373		/* Setup MSI-X vectors for Mirror Rxqs */
1374		if (adap->flags & CXGB4_USING_MSIX) {
1375			ret = request_irq(mirror_rxq->msix->vec,
1376					  t4_sge_intr_msix, 0,
1377					  mirror_rxq->msix->desc,
1378					  &mirror_rxq->rspq);
1379			if (ret)
1380				goto out_free_rxq;
1381
1382			cxgb4_set_msix_aff(adap, mirror_rxq->msix->vec,
1383					   &mirror_rxq->msix->aff_mask, i);
1384		}
1385
1386		/* Start NAPI for Mirror Rxqs */
1387		cxgb4_enable_rx(adap, &mirror_rxq->rspq);
1388	}
1389
1390	/* Setup RSS for Mirror Rxqs */
1391	rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL);
1392	if (!rss) {
1393		ret = -ENOMEM;
1394		goto out_free_queues;
1395	}
1396
1397	mirror_rxq = &s->mirror_rxq[pi->port_id][0];
1398	for (i = 0; i < pi->rss_size; i++)
1399		rss[i] = mirror_rxq[i % pi->nmirrorqsets].rspq.abs_id;
1400
1401	ret = cxgb4_config_rss(pi, rss, pi->rss_size, pi->viid_mirror);
1402	kfree(rss);
1403	if (ret)
1404		goto out_free_queues;
1405
1406	return 0;
1407
1408out_free_rxq:
1409	free_rspq_fl(adap, &mirror_rxq->rspq, &mirror_rxq->fl);
1410
1411out_free_msix_idx:
1412	cxgb4_free_msix_idx_in_bmap(adap, mirror_rxq->msix->idx);
1413
1414out_free_queues:
1415	while (rxqid-- > 0)
1416		cxgb4_port_mirror_free_rxq(adap,
1417					   &s->mirror_rxq[pi->port_id][rxqid]);
1418
1419	kfree(s->mirror_rxq[pi->port_id]);
1420	s->mirror_rxq[pi->port_id] = NULL;
1421	return ret;
1422}
1423
1424static void cxgb4_port_mirror_free_queues(struct net_device *dev)
1425{
1426	struct port_info *pi = netdev2pinfo(dev);
1427	struct adapter *adap = netdev2adap(dev);
1428	struct sge *s = &adap->sge;
1429	u16 i;
1430
1431	if (!pi->vi_mirror_count)
1432		return;
1433
1434	if (!s->mirror_rxq[pi->port_id])
1435		return;
1436
1437	for (i = 0; i < pi->nmirrorqsets; i++)
1438		cxgb4_port_mirror_free_rxq(adap,
1439					   &s->mirror_rxq[pi->port_id][i]);
1440
1441	kfree(s->mirror_rxq[pi->port_id]);
1442	s->mirror_rxq[pi->port_id] = NULL;
1443}
1444
1445static int cxgb4_port_mirror_start(struct net_device *dev)
1446{
1447	struct port_info *pi = netdev2pinfo(dev);
1448	struct adapter *adap = netdev2adap(dev);
1449	int ret, idx = -1;
1450
1451	if (!pi->vi_mirror_count)
1452		return 0;
1453
1454	/* Mirror VIs can be created dynamically after stack had
1455	 * already setup Rx modes like MTU, promisc, allmulti, etc.
1456	 * on main VI. So, parse what the stack had setup on the
1457	 * main VI and update the same on the mirror VI.
1458	 */
1459	ret = t4_set_rxmode(adap, adap->mbox, pi->viid, pi->viid_mirror,
1460			    dev->mtu, (dev->flags & IFF_PROMISC) ? 1 : 0,
1461			    (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1,
1462			    !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true);
1463	if (ret) {
1464		dev_err(adap->pdev_dev,
1465			"Failed start up Rx mode for Mirror VI 0x%x, ret: %d\n",
1466			pi->viid_mirror, ret);
1467		return ret;
1468	}
1469
1470	/* Enable replication bit for the device's MAC address
1471	 * in MPS TCAM, so that the packets for the main VI are
1472	 * replicated to mirror VI.
1473	 */
1474	ret = cxgb4_update_mac_filt(pi, pi->viid_mirror, &idx,
1475				    dev->dev_addr, true, NULL);
1476	if (ret) {
1477		dev_err(adap->pdev_dev,
1478			"Failed updating MAC filter for Mirror VI 0x%x, ret: %d\n",
1479			pi->viid_mirror, ret);
1480		return ret;
1481	}
1482
1483	/* Enabling a Virtual Interface can result in an interrupt
1484	 * during the processing of the VI Enable command and, in some
1485	 * paths, result in an attempt to issue another command in the
1486	 * interrupt context. Thus, we disable interrupts during the
1487	 * course of the VI Enable command ...
1488	 */
1489	local_bh_disable();
1490	ret = t4_enable_vi_params(adap, adap->mbox, pi->viid_mirror, true, true,
1491				  false);
1492	local_bh_enable();
1493	if (ret)
1494		dev_err(adap->pdev_dev,
1495			"Failed starting Mirror VI 0x%x, ret: %d\n",
1496			pi->viid_mirror, ret);
1497
1498	return ret;
1499}
1500
1501static void cxgb4_port_mirror_stop(struct net_device *dev)
1502{
1503	struct port_info *pi = netdev2pinfo(dev);
1504	struct adapter *adap = netdev2adap(dev);
1505
1506	if (!pi->vi_mirror_count)
1507		return;
1508
1509	t4_enable_vi_params(adap, adap->mbox, pi->viid_mirror, false, false,
1510			    false);
1511}
1512
1513int cxgb4_port_mirror_alloc(struct net_device *dev)
1514{
1515	struct port_info *pi = netdev2pinfo(dev);
1516	struct adapter *adap = netdev2adap(dev);
1517	int ret = 0;
1518
1519	if (!pi->nmirrorqsets)
1520		return -EOPNOTSUPP;
1521
1522	mutex_lock(&pi->vi_mirror_mutex);
1523	if (pi->viid_mirror) {
1524		pi->vi_mirror_count++;
1525		goto out_unlock;
1526	}
1527
1528	ret = t4_init_port_mirror(pi, adap->mbox, pi->port_id, adap->pf, 0,
1529				  &pi->viid_mirror);
1530	if (ret)
1531		goto out_unlock;
1532
1533	pi->vi_mirror_count = 1;
1534
1535	if (adap->flags & CXGB4_FULL_INIT_DONE) {
1536		ret = cxgb4_port_mirror_alloc_queues(dev);
1537		if (ret)
1538			goto out_free_vi;
1539
1540		ret = cxgb4_port_mirror_start(dev);
1541		if (ret)
1542			goto out_free_queues;
1543	}
1544
1545	mutex_unlock(&pi->vi_mirror_mutex);
1546	return 0;
1547
1548out_free_queues:
1549	cxgb4_port_mirror_free_queues(dev);
1550
1551out_free_vi:
1552	pi->vi_mirror_count = 0;
1553	t4_free_vi(adap, adap->mbox, adap->pf, 0, pi->viid_mirror);
1554	pi->viid_mirror = 0;
1555
1556out_unlock:
1557	mutex_unlock(&pi->vi_mirror_mutex);
1558	return ret;
1559}
1560
1561void cxgb4_port_mirror_free(struct net_device *dev)
1562{
1563	struct port_info *pi = netdev2pinfo(dev);
1564	struct adapter *adap = netdev2adap(dev);
1565
1566	mutex_lock(&pi->vi_mirror_mutex);
1567	if (!pi->viid_mirror)
1568		goto out_unlock;
1569
1570	if (pi->vi_mirror_count > 1) {
1571		pi->vi_mirror_count--;
1572		goto out_unlock;
1573	}
1574
1575	cxgb4_port_mirror_stop(dev);
1576	cxgb4_port_mirror_free_queues(dev);
1577
1578	pi->vi_mirror_count = 0;
1579	t4_free_vi(adap, adap->mbox, adap->pf, 0, pi->viid_mirror);
1580	pi->viid_mirror = 0;
1581
1582out_unlock:
1583	mutex_unlock(&pi->vi_mirror_mutex);
1584}
1585
1586/*
1587 * upper-layer driver support
1588 */
1589
1590/*
1591 * Allocate an active-open TID and set it to the supplied value.
1592 */
1593int cxgb4_alloc_atid(struct tid_info *t, void *data)
1594{
1595	int atid = -1;
1596
1597	spin_lock_bh(&t->atid_lock);
1598	if (t->afree) {
1599		union aopen_entry *p = t->afree;
1600
1601		atid = (p - t->atid_tab) + t->atid_base;
1602		t->afree = p->next;
1603		p->data = data;
1604		t->atids_in_use++;
1605	}
1606	spin_unlock_bh(&t->atid_lock);
1607	return atid;
1608}
1609EXPORT_SYMBOL(cxgb4_alloc_atid);
1610
1611/*
1612 * Release an active-open TID.
1613 */
1614void cxgb4_free_atid(struct tid_info *t, unsigned int atid)
1615{
1616	union aopen_entry *p = &t->atid_tab[atid - t->atid_base];
1617
1618	spin_lock_bh(&t->atid_lock);
1619	p->next = t->afree;
1620	t->afree = p;
1621	t->atids_in_use--;
1622	spin_unlock_bh(&t->atid_lock);
1623}
1624EXPORT_SYMBOL(cxgb4_free_atid);
1625
1626/*
1627 * Allocate a server TID and set it to the supplied value.
1628 */
1629int cxgb4_alloc_stid(struct tid_info *t, int family, void *data)
1630{
1631	int stid;
1632
1633	spin_lock_bh(&t->stid_lock);
1634	if (family == PF_INET) {
1635		stid = find_first_zero_bit(t->stid_bmap, t->nstids);
1636		if (stid < t->nstids)
1637			__set_bit(stid, t->stid_bmap);
1638		else
1639			stid = -1;
1640	} else {
1641		stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 1);
1642		if (stid < 0)
1643			stid = -1;
1644	}
1645	if (stid >= 0) {
1646		t->stid_tab[stid].data = data;
1647		stid += t->stid_base;
1648		/* IPv6 requires max of 520 bits or 16 cells in TCAM
1649		 * This is equivalent to 4 TIDs. With CLIP enabled it
1650		 * needs 2 TIDs.
1651		 */
1652		if (family == PF_INET6) {
1653			t->stids_in_use += 2;
1654			t->v6_stids_in_use += 2;
1655		} else {
1656			t->stids_in_use++;
1657		}
1658	}
1659	spin_unlock_bh(&t->stid_lock);
1660	return stid;
1661}
1662EXPORT_SYMBOL(cxgb4_alloc_stid);
1663
1664/* Allocate a server filter TID and set it to the supplied value.
1665 */
1666int cxgb4_alloc_sftid(struct tid_info *t, int family, void *data)
1667{
1668	int stid;
1669
1670	spin_lock_bh(&t->stid_lock);
1671	if (family == PF_INET) {
1672		stid = find_next_zero_bit(t->stid_bmap,
1673				t->nstids + t->nsftids, t->nstids);
1674		if (stid < (t->nstids + t->nsftids))
1675			__set_bit(stid, t->stid_bmap);
1676		else
1677			stid = -1;
1678	} else {
1679		stid = -1;
1680	}
1681	if (stid >= 0) {
1682		t->stid_tab[stid].data = data;
1683		stid -= t->nstids;
1684		stid += t->sftid_base;
1685		t->sftids_in_use++;
1686	}
1687	spin_unlock_bh(&t->stid_lock);
1688	return stid;
1689}
1690EXPORT_SYMBOL(cxgb4_alloc_sftid);
1691
1692/* Release a server TID.
1693 */
1694void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family)
1695{
1696	/* Is it a server filter TID? */
1697	if (t->nsftids && (stid >= t->sftid_base)) {
1698		stid -= t->sftid_base;
1699		stid += t->nstids;
1700	} else {
1701		stid -= t->stid_base;
1702	}
1703
1704	spin_lock_bh(&t->stid_lock);
1705	if (family == PF_INET)
1706		__clear_bit(stid, t->stid_bmap);
1707	else
1708		bitmap_release_region(t->stid_bmap, stid, 1);
1709	t->stid_tab[stid].data = NULL;
1710	if (stid < t->nstids) {
1711		if (family == PF_INET6) {
1712			t->stids_in_use -= 2;
1713			t->v6_stids_in_use -= 2;
1714		} else {
1715			t->stids_in_use--;
1716		}
1717	} else {
1718		t->sftids_in_use--;
1719	}
1720
1721	spin_unlock_bh(&t->stid_lock);
1722}
1723EXPORT_SYMBOL(cxgb4_free_stid);
1724
1725/*
1726 * Populate a TID_RELEASE WR.  Caller must properly size the skb.
1727 */
1728static void mk_tid_release(struct sk_buff *skb, unsigned int chan,
1729			   unsigned int tid)
1730{
1731	struct cpl_tid_release *req;
1732
1733	set_wr_txq(skb, CPL_PRIORITY_SETUP, chan);
1734	req = __skb_put(skb, sizeof(*req));
1735	INIT_TP_WR(req, tid);
1736	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid));
1737}
1738
1739/*
1740 * Queue a TID release request and if necessary schedule a work queue to
1741 * process it.
1742 */
1743static void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan,
1744				    unsigned int tid)
1745{
1746	struct adapter *adap = container_of(t, struct adapter, tids);
1747	void **p = &t->tid_tab[tid - t->tid_base];
1748
1749	spin_lock_bh(&adap->tid_release_lock);
1750	*p = adap->tid_release_head;
1751	/* Low 2 bits encode the Tx channel number */
1752	adap->tid_release_head = (void **)((uintptr_t)p | chan);
1753	if (!adap->tid_release_task_busy) {
1754		adap->tid_release_task_busy = true;
1755		queue_work(adap->workq, &adap->tid_release_task);
1756	}
1757	spin_unlock_bh(&adap->tid_release_lock);
1758}
1759
1760/*
1761 * Process the list of pending TID release requests.
1762 */
1763static void process_tid_release_list(struct work_struct *work)
1764{
1765	struct sk_buff *skb;
1766	struct adapter *adap;
1767
1768	adap = container_of(work, struct adapter, tid_release_task);
1769
1770	spin_lock_bh(&adap->tid_release_lock);
1771	while (adap->tid_release_head) {
1772		void **p = adap->tid_release_head;
1773		unsigned int chan = (uintptr_t)p & 3;
1774		p = (void *)p - chan;
1775
1776		adap->tid_release_head = *p;
1777		*p = NULL;
1778		spin_unlock_bh(&adap->tid_release_lock);
1779
1780		while (!(skb = alloc_skb(sizeof(struct cpl_tid_release),
1781					 GFP_KERNEL)))
1782			schedule_timeout_uninterruptible(1);
1783
1784		mk_tid_release(skb, chan, p - adap->tids.tid_tab);
1785		t4_ofld_send(adap, skb);
1786		spin_lock_bh(&adap->tid_release_lock);
1787	}
1788	adap->tid_release_task_busy = false;
1789	spin_unlock_bh(&adap->tid_release_lock);
1790}
1791
1792/*
1793 * Release a TID and inform HW.  If we are unable to allocate the release
1794 * message we defer to a work queue.
1795 */
1796void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid,
1797		      unsigned short family)
1798{
1799	struct adapter *adap = container_of(t, struct adapter, tids);
1800	struct sk_buff *skb;
1801
1802	WARN_ON(tid_out_of_range(&adap->tids, tid));
1803
1804	if (t->tid_tab[tid - adap->tids.tid_base]) {
1805		t->tid_tab[tid - adap->tids.tid_base] = NULL;
1806		atomic_dec(&t->conns_in_use);
1807		if (t->hash_base && (tid >= t->hash_base)) {
1808			if (family == AF_INET6)
1809				atomic_sub(2, &t->hash_tids_in_use);
1810			else
1811				atomic_dec(&t->hash_tids_in_use);
1812		} else {
1813			if (family == AF_INET6)
1814				atomic_sub(2, &t->tids_in_use);
1815			else
1816				atomic_dec(&t->tids_in_use);
1817		}
1818	}
1819
1820	skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC);
1821	if (likely(skb)) {
1822		mk_tid_release(skb, chan, tid);
1823		t4_ofld_send(adap, skb);
1824	} else
1825		cxgb4_queue_tid_release(t, chan, tid);
1826}
1827EXPORT_SYMBOL(cxgb4_remove_tid);
1828
1829/*
1830 * Allocate and initialize the TID tables.  Returns 0 on success.
1831 */
1832static int tid_init(struct tid_info *t)
1833{
1834	struct adapter *adap = container_of(t, struct adapter, tids);
1835	unsigned int max_ftids = t->nftids + t->nsftids;
1836	unsigned int natids = t->natids;
1837	unsigned int hpftid_bmap_size;
1838	unsigned int eotid_bmap_size;
1839	unsigned int stid_bmap_size;
1840	unsigned int ftid_bmap_size;
1841	size_t size;
1842
1843	stid_bmap_size = BITS_TO_LONGS(t->nstids + t->nsftids);
1844	ftid_bmap_size = BITS_TO_LONGS(t->nftids);
1845	hpftid_bmap_size = BITS_TO_LONGS(t->nhpftids);
1846	eotid_bmap_size = BITS_TO_LONGS(t->neotids);
1847	size = t->ntids * sizeof(*t->tid_tab) +
1848	       natids * sizeof(*t->atid_tab) +
1849	       t->nstids * sizeof(*t->stid_tab) +
1850	       t->nsftids * sizeof(*t->stid_tab) +
1851	       stid_bmap_size * sizeof(long) +
1852	       t->nhpftids * sizeof(*t->hpftid_tab) +
1853	       hpftid_bmap_size * sizeof(long) +
1854	       max_ftids * sizeof(*t->ftid_tab) +
1855	       ftid_bmap_size * sizeof(long) +
1856	       t->neotids * sizeof(*t->eotid_tab) +
1857	       eotid_bmap_size * sizeof(long);
1858
1859	t->tid_tab = kvzalloc(size, GFP_KERNEL);
1860	if (!t->tid_tab)
1861		return -ENOMEM;
1862
1863	t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids];
1864	t->stid_tab = (struct serv_entry *)&t->atid_tab[natids];
1865	t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids + t->nsftids];
1866	t->hpftid_tab = (struct filter_entry *)&t->stid_bmap[stid_bmap_size];
1867	t->hpftid_bmap = (unsigned long *)&t->hpftid_tab[t->nhpftids];
1868	t->ftid_tab = (struct filter_entry *)&t->hpftid_bmap[hpftid_bmap_size];
1869	t->ftid_bmap = (unsigned long *)&t->ftid_tab[max_ftids];
1870	t->eotid_tab = (struct eotid_entry *)&t->ftid_bmap[ftid_bmap_size];
1871	t->eotid_bmap = (unsigned long *)&t->eotid_tab[t->neotids];
1872	spin_lock_init(&t->stid_lock);
1873	spin_lock_init(&t->atid_lock);
1874	spin_lock_init(&t->ftid_lock);
1875
1876	t->stids_in_use = 0;
1877	t->v6_stids_in_use = 0;
1878	t->sftids_in_use = 0;
1879	t->afree = NULL;
1880	t->atids_in_use = 0;
1881	atomic_set(&t->tids_in_use, 0);
1882	atomic_set(&t->conns_in_use, 0);
1883	atomic_set(&t->hash_tids_in_use, 0);
1884	atomic_set(&t->eotids_in_use, 0);
1885
1886	/* Setup the free list for atid_tab and clear the stid bitmap. */
1887	if (natids) {
1888		while (--natids)
1889			t->atid_tab[natids - 1].next = &t->atid_tab[natids];
1890		t->afree = t->atid_tab;
1891	}
1892
1893	if (is_offload(adap)) {
1894		bitmap_zero(t->stid_bmap, t->nstids + t->nsftids);
1895		/* Reserve stid 0 for T4/T5 adapters */
1896		if (!t->stid_base &&
1897		    CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
1898			__set_bit(0, t->stid_bmap);
1899
1900		if (t->neotids)
1901			bitmap_zero(t->eotid_bmap, t->neotids);
1902	}
1903
1904	if (t->nhpftids)
1905		bitmap_zero(t->hpftid_bmap, t->nhpftids);
1906	bitmap_zero(t->ftid_bmap, t->nftids);
1907	return 0;
1908}
1909
1910/**
1911 *	cxgb4_create_server - create an IP server
1912 *	@dev: the device
1913 *	@stid: the server TID
1914 *	@sip: local IP address to bind server to
1915 *	@sport: the server's TCP port
1916 *	@vlan: the VLAN header information
1917 *	@queue: queue to direct messages from this server to
1918 *
1919 *	Create an IP server for the given port and address.
1920 *	Returns <0 on error and one of the %NET_XMIT_* values on success.
1921 */
1922int cxgb4_create_server(const struct net_device *dev, unsigned int stid,
1923			__be32 sip, __be16 sport, __be16 vlan,
1924			unsigned int queue)
1925{
1926	unsigned int chan;
1927	struct sk_buff *skb;
1928	struct adapter *adap;
1929	struct cpl_pass_open_req *req;
1930	int ret;
1931
1932	skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1933	if (!skb)
1934		return -ENOMEM;
1935
1936	adap = netdev2adap(dev);
1937	req = __skb_put(skb, sizeof(*req));
1938	INIT_TP_WR(req, 0);
1939	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid));
1940	req->local_port = sport;
1941	req->peer_port = htons(0);
1942	req->local_ip = sip;
1943	req->peer_ip = htonl(0);
1944	chan = rxq_to_chan(&adap->sge, queue);
1945	req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
1946	req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1947				SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
1948	ret = t4_mgmt_tx(adap, skb);
1949	return net_xmit_eval(ret);
1950}
1951EXPORT_SYMBOL(cxgb4_create_server);
1952
1953/*	cxgb4_create_server6 - create an IPv6 server
1954 *	@dev: the device
1955 *	@stid: the server TID
1956 *	@sip: local IPv6 address to bind server to
1957 *	@sport: the server's TCP port
1958 *	@queue: queue to direct messages from this server to
1959 *
1960 *	Create an IPv6 server for the given port and address.
1961 *	Returns <0 on error and one of the %NET_XMIT_* values on success.
1962 */
1963int cxgb4_create_server6(const struct net_device *dev, unsigned int stid,
1964			 const struct in6_addr *sip, __be16 sport,
1965			 unsigned int queue)
1966{
1967	unsigned int chan;
1968	struct sk_buff *skb;
1969	struct adapter *adap;
1970	struct cpl_pass_open_req6 *req;
1971	int ret;
1972
1973	skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1974	if (!skb)
1975		return -ENOMEM;
1976
1977	adap = netdev2adap(dev);
1978	req = __skb_put(skb, sizeof(*req));
1979	INIT_TP_WR(req, 0);
1980	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ6, stid));
1981	req->local_port = sport;
1982	req->peer_port = htons(0);
1983	req->local_ip_hi = *(__be64 *)(sip->s6_addr);
1984	req->local_ip_lo = *(__be64 *)(sip->s6_addr + 8);
1985	req->peer_ip_hi = cpu_to_be64(0);
1986	req->peer_ip_lo = cpu_to_be64(0);
1987	chan = rxq_to_chan(&adap->sge, queue);
1988	req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
1989	req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1990				SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
1991	ret = t4_mgmt_tx(adap, skb);
1992	return net_xmit_eval(ret);
1993}
1994EXPORT_SYMBOL(cxgb4_create_server6);
1995
1996int cxgb4_remove_server(const struct net_device *dev, unsigned int stid,
1997			unsigned int queue, bool ipv6)
1998{
1999	struct sk_buff *skb;
2000	struct adapter *adap;
2001	struct cpl_close_listsvr_req *req;
2002	int ret;
2003
2004	adap = netdev2adap(dev);
2005
2006	skb = alloc_skb(sizeof(*req), GFP_KERNEL);
2007	if (!skb)
2008		return -ENOMEM;
2009
2010	req = __skb_put(skb, sizeof(*req));
2011	INIT_TP_WR(req, 0);
2012	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, stid));
2013	req->reply_ctrl = htons(NO_REPLY_V(0) | (ipv6 ? LISTSVR_IPV6_V(1) :
2014				LISTSVR_IPV6_V(0)) | QUEUENO_V(queue));
2015	ret = t4_mgmt_tx(adap, skb);
2016	return net_xmit_eval(ret);
2017}
2018EXPORT_SYMBOL(cxgb4_remove_server);
2019
2020/**
2021 *	cxgb4_best_mtu - find the entry in the MTU table closest to an MTU
2022 *	@mtus: the HW MTU table
2023 *	@mtu: the target MTU
2024 *	@idx: index of selected entry in the MTU table
2025 *
2026 *	Returns the index and the value in the HW MTU table that is closest to
2027 *	but does not exceed @mtu, unless @mtu is smaller than any value in the
2028 *	table, in which case that smallest available value is selected.
2029 */
2030unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu,
2031			    unsigned int *idx)
2032{
2033	unsigned int i = 0;
2034
2035	while (i < NMTUS - 1 && mtus[i + 1] <= mtu)
2036		++i;
2037	if (idx)
2038		*idx = i;
2039	return mtus[i];
2040}
2041EXPORT_SYMBOL(cxgb4_best_mtu);
2042
2043/**
2044 *     cxgb4_best_aligned_mtu - find best MTU, [hopefully] data size aligned
2045 *     @mtus: the HW MTU table
2046 *     @header_size: Header Size
2047 *     @data_size_max: maximum Data Segment Size
2048 *     @data_size_align: desired Data Segment Size Alignment (2^N)
2049 *     @mtu_idxp: HW MTU Table Index return value pointer (possibly NULL)
2050 *
2051 *     Similar to cxgb4_best_mtu() but instead of searching the Hardware
2052 *     MTU Table based solely on a Maximum MTU parameter, we break that
2053 *     parameter up into a Header Size and Maximum Data Segment Size, and
2054 *     provide a desired Data Segment Size Alignment.  If we find an MTU in
2055 *     the Hardware MTU Table which will result in a Data Segment Size with
2056 *     the requested alignment _and_ that MTU isn't "too far" from the
2057 *     closest MTU, then we'll return that rather than the closest MTU.
2058 */
2059unsigned int cxgb4_best_aligned_mtu(const unsigned short *mtus,
2060				    unsigned short header_size,
2061				    unsigned short data_size_max,
2062				    unsigned short data_size_align,
2063				    unsigned int *mtu_idxp)
2064{
2065	unsigned short max_mtu = header_size + data_size_max;
2066	unsigned short data_size_align_mask = data_size_align - 1;
2067	int mtu_idx, aligned_mtu_idx;
2068
2069	/* Scan the MTU Table till we find an MTU which is larger than our
2070	 * Maximum MTU or we reach the end of the table.  Along the way,
2071	 * record the last MTU found, if any, which will result in a Data
2072	 * Segment Length matching the requested alignment.
2073	 */
2074	for (mtu_idx = 0, aligned_mtu_idx = -1; mtu_idx < NMTUS; mtu_idx++) {
2075		unsigned short data_size = mtus[mtu_idx] - header_size;
2076
2077		/* If this MTU minus the Header Size would result in a
2078		 * Data Segment Size of the desired alignment, remember it.
2079		 */
2080		if ((data_size & data_size_align_mask) == 0)
2081			aligned_mtu_idx = mtu_idx;
2082
2083		/* If we're not at the end of the Hardware MTU Table and the
2084		 * next element is larger than our Maximum MTU, drop out of
2085		 * the loop.
2086		 */
2087		if (mtu_idx+1 < NMTUS && mtus[mtu_idx+1] > max_mtu)
2088			break;
2089	}
2090
2091	/* If we fell out of the loop because we ran to the end of the table,
2092	 * then we just have to use the last [largest] entry.
2093	 */
2094	if (mtu_idx == NMTUS)
2095		mtu_idx--;
2096
2097	/* If we found an MTU which resulted in the requested Data Segment
2098	 * Length alignment and that's "not far" from the largest MTU which is
2099	 * less than or equal to the maximum MTU, then use that.
2100	 */
2101	if (aligned_mtu_idx >= 0 &&
2102	    mtu_idx - aligned_mtu_idx <= 1)
2103		mtu_idx = aligned_mtu_idx;
2104
2105	/* If the caller has passed in an MTU Index pointer, pass the
2106	 * MTU Index back.  Return the MTU value.
2107	 */
2108	if (mtu_idxp)
2109		*mtu_idxp = mtu_idx;
2110	return mtus[mtu_idx];
2111}
2112EXPORT_SYMBOL(cxgb4_best_aligned_mtu);
2113
2114/**
2115 *	cxgb4_port_chan - get the HW channel of a port
2116 *	@dev: the net device for the port
2117 *
2118 *	Return the HW Tx channel of the given port.
2119 */
2120unsigned int cxgb4_port_chan(const struct net_device *dev)
2121{
2122	return netdev2pinfo(dev)->tx_chan;
2123}
2124EXPORT_SYMBOL(cxgb4_port_chan);
2125
2126/**
2127 *      cxgb4_port_e2cchan - get the HW c-channel of a port
2128 *      @dev: the net device for the port
2129 *
2130 *      Return the HW RX c-channel of the given port.
2131 */
2132unsigned int cxgb4_port_e2cchan(const struct net_device *dev)
2133{
2134	return netdev2pinfo(dev)->rx_cchan;
2135}
2136EXPORT_SYMBOL(cxgb4_port_e2cchan);
2137
2138unsigned int cxgb4_dbfifo_count(const struct net_device *dev, int lpfifo)
2139{
2140	struct adapter *adap = netdev2adap(dev);
2141	u32 v1, v2, lp_count, hp_count;
2142
2143	v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
2144	v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
2145	if (is_t4(adap->params.chip)) {
2146		lp_count = LP_COUNT_G(v1);
2147		hp_count = HP_COUNT_G(v1);
2148	} else {
2149		lp_count = LP_COUNT_T5_G(v1);
2150		hp_count = HP_COUNT_T5_G(v2);
2151	}
2152	return lpfifo ? lp_count : hp_count;
2153}
2154EXPORT_SYMBOL(cxgb4_dbfifo_count);
2155
2156/**
2157 *	cxgb4_port_viid - get the VI id of a port
2158 *	@dev: the net device for the port
2159 *
2160 *	Return the VI id of the given port.
2161 */
2162unsigned int cxgb4_port_viid(const struct net_device *dev)
2163{
2164	return netdev2pinfo(dev)->viid;
2165}
2166EXPORT_SYMBOL(cxgb4_port_viid);
2167
2168/**
2169 *	cxgb4_port_idx - get the index of a port
2170 *	@dev: the net device for the port
2171 *
2172 *	Return the index of the given port.
2173 */
2174unsigned int cxgb4_port_idx(const struct net_device *dev)
2175{
2176	return netdev2pinfo(dev)->port_id;
2177}
2178EXPORT_SYMBOL(cxgb4_port_idx);
2179
2180void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4,
2181			 struct tp_tcp_stats *v6)
2182{
2183	struct adapter *adap = pci_get_drvdata(pdev);
2184
2185	spin_lock(&adap->stats_lock);
2186	t4_tp_get_tcp_stats(adap, v4, v6, false);
2187	spin_unlock(&adap->stats_lock);
2188}
2189EXPORT_SYMBOL(cxgb4_get_tcp_stats);
2190
2191void cxgb4_iscsi_init(struct net_device *dev, unsigned int tag_mask,
2192		      const unsigned int *pgsz_order)
2193{
2194	struct adapter *adap = netdev2adap(dev);
2195
2196	t4_write_reg(adap, ULP_RX_ISCSI_TAGMASK_A, tag_mask);
2197	t4_write_reg(adap, ULP_RX_ISCSI_PSZ_A, HPZ0_V(pgsz_order[0]) |
2198		     HPZ1_V(pgsz_order[1]) | HPZ2_V(pgsz_order[2]) |
2199		     HPZ3_V(pgsz_order[3]));
2200}
2201EXPORT_SYMBOL(cxgb4_iscsi_init);
2202
2203int cxgb4_flush_eq_cache(struct net_device *dev)
2204{
2205	struct adapter *adap = netdev2adap(dev);
2206
2207	return t4_sge_ctxt_flush(adap, adap->mbox, CTXT_EGRESS);
2208}
2209EXPORT_SYMBOL(cxgb4_flush_eq_cache);
2210
2211static int read_eq_indices(struct adapter *adap, u16 qid, u16 *pidx, u16 *cidx)
2212{
2213	u32 addr = t4_read_reg(adap, SGE_DBQ_CTXT_BADDR_A) + 24 * qid + 8;
2214	__be64 indices;
2215	int ret;
2216
2217	spin_lock(&adap->win0_lock);
2218	ret = t4_memory_rw(adap, 0, MEM_EDC0, addr,
2219			   sizeof(indices), (__be32 *)&indices,
2220			   T4_MEMORY_READ);
2221	spin_unlock(&adap->win0_lock);
2222	if (!ret) {
2223		*cidx = (be64_to_cpu(indices) >> 25) & 0xffff;
2224		*pidx = (be64_to_cpu(indices) >> 9) & 0xffff;
2225	}
2226	return ret;
2227}
2228
2229int cxgb4_sync_txq_pidx(struct net_device *dev, u16 qid, u16 pidx,
2230			u16 size)
2231{
2232	struct adapter *adap = netdev2adap(dev);
2233	u16 hw_pidx, hw_cidx;
2234	int ret;
2235
2236	ret = read_eq_indices(adap, qid, &hw_pidx, &hw_cidx);
2237	if (ret)
2238		goto out;
2239
2240	if (pidx != hw_pidx) {
2241		u16 delta;
2242		u32 val;
2243
2244		if (pidx >= hw_pidx)
2245			delta = pidx - hw_pidx;
2246		else
2247			delta = size - hw_pidx + pidx;
2248
2249		if (is_t4(adap->params.chip))
2250			val = PIDX_V(delta);
2251		else
2252			val = PIDX_T5_V(delta);
2253		wmb();
2254		t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2255			     QID_V(qid) | val);
2256	}
2257out:
2258	return ret;
2259}
2260EXPORT_SYMBOL(cxgb4_sync_txq_pidx);
2261
2262int cxgb4_read_tpte(struct net_device *dev, u32 stag, __be32 *tpte)
2263{
2264	u32 edc0_size, edc1_size, mc0_size, mc1_size, size;
2265	u32 edc0_end, edc1_end, mc0_end, mc1_end;
2266	u32 offset, memtype, memaddr;
2267	struct adapter *adap;
2268	u32 hma_size = 0;
2269	int ret;
2270
2271	adap = netdev2adap(dev);
2272
2273	offset = ((stag >> 8) * 32) + adap->vres.stag.start;
2274
2275	/* Figure out where the offset lands in the Memory Type/Address scheme.
2276	 * This code assumes that the memory is laid out starting at offset 0
2277	 * with no breaks as: EDC0, EDC1, MC0, MC1. All cards have both EDC0
2278	 * and EDC1.  Some cards will have neither MC0 nor MC1, most cards have
2279	 * MC0, and some have both MC0 and MC1.
2280	 */
2281	size = t4_read_reg(adap, MA_EDRAM0_BAR_A);
2282	edc0_size = EDRAM0_SIZE_G(size) << 20;
2283	size = t4_read_reg(adap, MA_EDRAM1_BAR_A);
2284	edc1_size = EDRAM1_SIZE_G(size) << 20;
2285	size = t4_read_reg(adap, MA_EXT_MEMORY0_BAR_A);
2286	mc0_size = EXT_MEM0_SIZE_G(size) << 20;
2287
2288	if (t4_read_reg(adap, MA_TARGET_MEM_ENABLE_A) & HMA_MUX_F) {
2289		size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A);
2290		hma_size = EXT_MEM1_SIZE_G(size) << 20;
2291	}
2292	edc0_end = edc0_size;
2293	edc1_end = edc0_end + edc1_size;
2294	mc0_end = edc1_end + mc0_size;
2295
2296	if (offset < edc0_end) {
2297		memtype = MEM_EDC0;
2298		memaddr = offset;
2299	} else if (offset < edc1_end) {
2300		memtype = MEM_EDC1;
2301		memaddr = offset - edc0_end;
2302	} else {
2303		if (hma_size && (offset < (edc1_end + hma_size))) {
2304			memtype = MEM_HMA;
2305			memaddr = offset - edc1_end;
2306		} else if (offset < mc0_end) {
2307			memtype = MEM_MC0;
2308			memaddr = offset - edc1_end;
2309		} else if (is_t5(adap->params.chip)) {
2310			size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A);
2311			mc1_size = EXT_MEM1_SIZE_G(size) << 20;
2312			mc1_end = mc0_end + mc1_size;
2313			if (offset < mc1_end) {
2314				memtype = MEM_MC1;
2315				memaddr = offset - mc0_end;
2316			} else {
2317				/* offset beyond the end of any memory */
2318				goto err;
2319			}
2320		} else {
2321			/* T4/T6 only has a single memory channel */
2322			goto err;
2323		}
2324	}
2325
2326	spin_lock(&adap->win0_lock);
2327	ret = t4_memory_rw(adap, 0, memtype, memaddr, 32, tpte, T4_MEMORY_READ);
2328	spin_unlock(&adap->win0_lock);
2329	return ret;
2330
2331err:
2332	dev_err(adap->pdev_dev, "stag %#x, offset %#x out of range\n",
2333		stag, offset);
2334	return -EINVAL;
2335}
2336EXPORT_SYMBOL(cxgb4_read_tpte);
2337
2338u64 cxgb4_read_sge_timestamp(struct net_device *dev)
2339{
2340	u32 hi, lo;
2341	struct adapter *adap;
2342
2343	adap = netdev2adap(dev);
2344	lo = t4_read_reg(adap, SGE_TIMESTAMP_LO_A);
2345	hi = TSVAL_G(t4_read_reg(adap, SGE_TIMESTAMP_HI_A));
2346
2347	return ((u64)hi << 32) | (u64)lo;
2348}
2349EXPORT_SYMBOL(cxgb4_read_sge_timestamp);
2350
2351int cxgb4_bar2_sge_qregs(struct net_device *dev,
2352			 unsigned int qid,
2353			 enum cxgb4_bar2_qtype qtype,
2354			 int user,
2355			 u64 *pbar2_qoffset,
2356			 unsigned int *pbar2_qid)
2357{
2358	return t4_bar2_sge_qregs(netdev2adap(dev),
2359				 qid,
2360				 (qtype == CXGB4_BAR2_QTYPE_EGRESS
2361				  ? T4_BAR2_QTYPE_EGRESS
2362				  : T4_BAR2_QTYPE_INGRESS),
2363				 user,
2364				 pbar2_qoffset,
2365				 pbar2_qid);
2366}
2367EXPORT_SYMBOL(cxgb4_bar2_sge_qregs);
2368
2369static struct pci_driver cxgb4_driver;
2370
2371static void check_neigh_update(struct neighbour *neigh)
2372{
2373	const struct device *parent;
2374	const struct net_device *netdev = neigh->dev;
2375
2376	if (is_vlan_dev(netdev))
2377		netdev = vlan_dev_real_dev(netdev);
2378	parent = netdev->dev.parent;
2379	if (parent && parent->driver == &cxgb4_driver.driver)
2380		t4_l2t_update(dev_get_drvdata(parent), neigh);
2381}
2382
2383static int netevent_cb(struct notifier_block *nb, unsigned long event,
2384		       void *data)
2385{
2386	switch (event) {
2387	case NETEVENT_NEIGH_UPDATE:
2388		check_neigh_update(data);
2389		break;
2390	case NETEVENT_REDIRECT:
2391	default:
2392		break;
2393	}
2394	return 0;
2395}
2396
2397static bool netevent_registered;
2398static struct notifier_block cxgb4_netevent_nb = {
2399	.notifier_call = netevent_cb
2400};
2401
2402static void drain_db_fifo(struct adapter *adap, int usecs)
2403{
2404	u32 v1, v2, lp_count, hp_count;
2405
2406	do {
2407		v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
2408		v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
2409		if (is_t4(adap->params.chip)) {
2410			lp_count = LP_COUNT_G(v1);
2411			hp_count = HP_COUNT_G(v1);
2412		} else {
2413			lp_count = LP_COUNT_T5_G(v1);
2414			hp_count = HP_COUNT_T5_G(v2);
2415		}
2416
2417		if (lp_count == 0 && hp_count == 0)
2418			break;
2419		set_current_state(TASK_UNINTERRUPTIBLE);
2420		schedule_timeout(usecs_to_jiffies(usecs));
2421	} while (1);
2422}
2423
2424static void disable_txq_db(struct sge_txq *q)
2425{
2426	unsigned long flags;
2427
2428	spin_lock_irqsave(&q->db_lock, flags);
2429	q->db_disabled = 1;
2430	spin_unlock_irqrestore(&q->db_lock, flags);
2431}
2432
2433static void enable_txq_db(struct adapter *adap, struct sge_txq *q)
2434{
2435	spin_lock_irq(&q->db_lock);
2436	if (q->db_pidx_inc) {
2437		/* Make sure that all writes to the TX descriptors
2438		 * are committed before we tell HW about them.
2439		 */
2440		wmb();
2441		t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2442			     QID_V(q->cntxt_id) | PIDX_V(q->db_pidx_inc));
2443		q->db_pidx_inc = 0;
2444	}
2445	q->db_disabled = 0;
2446	spin_unlock_irq(&q->db_lock);
2447}
2448
2449static void disable_dbs(struct adapter *adap)
2450{
2451	int i;
2452
2453	for_each_ethrxq(&adap->sge, i)
2454		disable_txq_db(&adap->sge.ethtxq[i].q);
2455	if (is_offload(adap)) {
2456		struct sge_uld_txq_info *txq_info =
2457			adap->sge.uld_txq_info[CXGB4_TX_OFLD];
2458
2459		if (txq_info) {
2460			for_each_ofldtxq(&adap->sge, i) {
2461				struct sge_uld_txq *txq = &txq_info->uldtxq[i];
2462
2463				disable_txq_db(&txq->q);
2464			}
2465		}
2466	}
2467	for_each_port(adap, i)
2468		disable_txq_db(&adap->sge.ctrlq[i].q);
2469}
2470
2471static void enable_dbs(struct adapter *adap)
2472{
2473	int i;
2474
2475	for_each_ethrxq(&adap->sge, i)
2476		enable_txq_db(adap, &adap->sge.ethtxq[i].q);
2477	if (is_offload(adap)) {
2478		struct sge_uld_txq_info *txq_info =
2479			adap->sge.uld_txq_info[CXGB4_TX_OFLD];
2480
2481		if (txq_info) {
2482			for_each_ofldtxq(&adap->sge, i) {
2483				struct sge_uld_txq *txq = &txq_info->uldtxq[i];
2484
2485				enable_txq_db(adap, &txq->q);
2486			}
2487		}
2488	}
2489	for_each_port(adap, i)
2490		enable_txq_db(adap, &adap->sge.ctrlq[i].q);
2491}
2492
2493static void notify_rdma_uld(struct adapter *adap, enum cxgb4_control cmd)
2494{
2495	enum cxgb4_uld type = CXGB4_ULD_RDMA;
2496
2497	if (adap->uld && adap->uld[type].handle)
2498		adap->uld[type].control(adap->uld[type].handle, cmd);
2499}
2500
2501static void process_db_full(struct work_struct *work)
2502{
2503	struct adapter *adap;
2504
2505	adap = container_of(work, struct adapter, db_full_task);
2506
2507	drain_db_fifo(adap, dbfifo_drain_delay);
2508	enable_dbs(adap);
2509	notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
2510	if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
2511		t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2512				 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F,
2513				 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F);
2514	else
2515		t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2516				 DBFIFO_LP_INT_F, DBFIFO_LP_INT_F);
2517}
2518
2519static void sync_txq_pidx(struct adapter *adap, struct sge_txq *q)
2520{
2521	u16 hw_pidx, hw_cidx;
2522	int ret;
2523
2524	spin_lock_irq(&q->db_lock);
2525	ret = read_eq_indices(adap, (u16)q->cntxt_id, &hw_pidx, &hw_cidx);
2526	if (ret)
2527		goto out;
2528	if (q->db_pidx != hw_pidx) {
2529		u16 delta;
2530		u32 val;
2531
2532		if (q->db_pidx >= hw_pidx)
2533			delta = q->db_pidx - hw_pidx;
2534		else
2535			delta = q->size - hw_pidx + q->db_pidx;
2536
2537		if (is_t4(adap->params.chip))
2538			val = PIDX_V(delta);
2539		else
2540			val = PIDX_T5_V(delta);
2541		wmb();
2542		t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2543			     QID_V(q->cntxt_id) | val);
2544	}
2545out:
2546	q->db_disabled = 0;
2547	q->db_pidx_inc = 0;
2548	spin_unlock_irq(&q->db_lock);
2549	if (ret)
2550		CH_WARN(adap, "DB drop recovery failed.\n");
2551}
2552
2553static void recover_all_queues(struct adapter *adap)
2554{
2555	int i;
2556
2557	for_each_ethrxq(&adap->sge, i)
2558		sync_txq_pidx(adap, &adap->sge.ethtxq[i].q);
2559	if (is_offload(adap)) {
2560		struct sge_uld_txq_info *txq_info =
2561			adap->sge.uld_txq_info[CXGB4_TX_OFLD];
2562		if (txq_info) {
2563			for_each_ofldtxq(&adap->sge, i) {
2564				struct sge_uld_txq *txq = &txq_info->uldtxq[i];
2565
2566				sync_txq_pidx(adap, &txq->q);
2567			}
2568		}
2569	}
2570	for_each_port(adap, i)
2571		sync_txq_pidx(adap, &adap->sge.ctrlq[i].q);
2572}
2573
2574static void process_db_drop(struct work_struct *work)
2575{
2576	struct adapter *adap;
2577
2578	adap = container_of(work, struct adapter, db_drop_task);
2579
2580	if (is_t4(adap->params.chip)) {
2581		drain_db_fifo(adap, dbfifo_drain_delay);
2582		notify_rdma_uld(adap, CXGB4_CONTROL_DB_DROP);
2583		drain_db_fifo(adap, dbfifo_drain_delay);
2584		recover_all_queues(adap);
2585		drain_db_fifo(adap, dbfifo_drain_delay);
2586		enable_dbs(adap);
2587		notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
2588	} else if (is_t5(adap->params.chip)) {
2589		u32 dropped_db = t4_read_reg(adap, 0x010ac);
2590		u16 qid = (dropped_db >> 15) & 0x1ffff;
2591		u16 pidx_inc = dropped_db & 0x1fff;
2592		u64 bar2_qoffset;
2593		unsigned int bar2_qid;
2594		int ret;
2595
2596		ret = t4_bar2_sge_qregs(adap, qid, T4_BAR2_QTYPE_EGRESS,
2597					0, &bar2_qoffset, &bar2_qid);
2598		if (ret)
2599			dev_err(adap->pdev_dev, "doorbell drop recovery: "
2600				"qid=%d, pidx_inc=%d\n", qid, pidx_inc);
2601		else
2602			writel(PIDX_T5_V(pidx_inc) | QID_V(bar2_qid),
2603			       adap->bar2 + bar2_qoffset + SGE_UDB_KDOORBELL);
2604
2605		/* Re-enable BAR2 WC */
2606		t4_set_reg_field(adap, 0x10b0, 1<<15, 1<<15);
2607	}
2608
2609	if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
2610		t4_set_reg_field(adap, SGE_DOORBELL_CONTROL_A, DROPPED_DB_F, 0);
2611}
2612
2613void t4_db_full(struct adapter *adap)
2614{
2615	if (is_t4(adap->params.chip)) {
2616		disable_dbs(adap);
2617		notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2618		t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2619				 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F, 0);
2620		queue_work(adap->workq, &adap->db_full_task);
2621	}
2622}
2623
2624void t4_db_dropped(struct adapter *adap)
2625{
2626	if (is_t4(adap->params.chip)) {
2627		disable_dbs(adap);
2628		notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2629	}
2630	queue_work(adap->workq, &adap->db_drop_task);
2631}
2632
2633void t4_register_netevent_notifier(void)
2634{
2635	if (!netevent_registered) {
2636		register_netevent_notifier(&cxgb4_netevent_nb);
2637		netevent_registered = true;
2638	}
2639}
2640
2641static void detach_ulds(struct adapter *adap)
2642{
2643	unsigned int i;
2644
2645	if (!is_uld(adap))
2646		return;
2647
2648	mutex_lock(&uld_mutex);
2649	list_del(&adap->list_node);
2650
2651	for (i = 0; i < CXGB4_ULD_MAX; i++)
2652		if (adap->uld && adap->uld[i].handle)
2653			adap->uld[i].state_change(adap->uld[i].handle,
2654					     CXGB4_STATE_DETACH);
2655
2656	if (netevent_registered && list_empty(&adapter_list)) {
2657		unregister_netevent_notifier(&cxgb4_netevent_nb);
2658		netevent_registered = false;
2659	}
2660	mutex_unlock(&uld_mutex);
2661}
2662
2663static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state)
2664{
2665	unsigned int i;
2666
2667	mutex_lock(&uld_mutex);
2668	for (i = 0; i < CXGB4_ULD_MAX; i++)
2669		if (adap->uld && adap->uld[i].handle)
2670			adap->uld[i].state_change(adap->uld[i].handle,
2671						  new_state);
2672	mutex_unlock(&uld_mutex);
2673}
2674
2675#if IS_ENABLED(CONFIG_IPV6)
2676static int cxgb4_inet6addr_handler(struct notifier_block *this,
2677				   unsigned long event, void *data)
2678{
2679	struct inet6_ifaddr *ifa = data;
2680	struct net_device *event_dev = ifa->idev->dev;
2681	const struct device *parent = NULL;
2682#if IS_ENABLED(CONFIG_BONDING)
2683	struct adapter *adap;
2684#endif
2685	if (is_vlan_dev(event_dev))
2686		event_dev = vlan_dev_real_dev(event_dev);
2687#if IS_ENABLED(CONFIG_BONDING)
2688	if (event_dev->flags & IFF_MASTER) {
2689		list_for_each_entry(adap, &adapter_list, list_node) {
2690			switch (event) {
2691			case NETDEV_UP:
2692				cxgb4_clip_get(adap->port[0],
2693					       (const u32 *)ifa, 1);
2694				break;
2695			case NETDEV_DOWN:
2696				cxgb4_clip_release(adap->port[0],
2697						   (const u32 *)ifa, 1);
2698				break;
2699			default:
2700				break;
2701			}
2702		}
2703		return NOTIFY_OK;
2704	}
2705#endif
2706
2707	if (event_dev)
2708		parent = event_dev->dev.parent;
2709
2710	if (parent && parent->driver == &cxgb4_driver.driver) {
2711		switch (event) {
2712		case NETDEV_UP:
2713			cxgb4_clip_get(event_dev, (const u32 *)ifa, 1);
2714			break;
2715		case NETDEV_DOWN:
2716			cxgb4_clip_release(event_dev, (const u32 *)ifa, 1);
2717			break;
2718		default:
2719			break;
2720		}
2721	}
2722	return NOTIFY_OK;
2723}
2724
2725static bool inet6addr_registered;
2726static struct notifier_block cxgb4_inet6addr_notifier = {
2727	.notifier_call = cxgb4_inet6addr_handler
2728};
2729
2730static void update_clip(const struct adapter *adap)
2731{
2732	int i;
2733	struct net_device *dev;
2734	int ret;
2735
2736	rcu_read_lock();
2737
2738	for (i = 0; i < MAX_NPORTS; i++) {
2739		dev = adap->port[i];
2740		ret = 0;
2741
2742		if (dev)
2743			ret = cxgb4_update_root_dev_clip(dev);
2744
2745		if (ret < 0)
2746			break;
2747	}
2748	rcu_read_unlock();
2749}
2750#endif /* IS_ENABLED(CONFIG_IPV6) */
2751
2752/**
2753 *	cxgb_up - enable the adapter
2754 *	@adap: adapter being enabled
2755 *
2756 *	Called when the first port is enabled, this function performs the
2757 *	actions necessary to make an adapter operational, such as completing
2758 *	the initialization of HW modules, and enabling interrupts.
2759 *
2760 *	Must be called with the rtnl lock held.
2761 */
2762static int cxgb_up(struct adapter *adap)
2763{
2764	struct sge *s = &adap->sge;
2765	int err;
2766
2767	mutex_lock(&uld_mutex);
2768	err = setup_sge_queues(adap);
2769	if (err)
2770		goto rel_lock;
2771	err = setup_rss(adap);
2772	if (err)
2773		goto freeq;
2774
2775	if (adap->flags & CXGB4_USING_MSIX) {
2776		if (s->nd_msix_idx < 0) {
2777			err = -ENOMEM;
2778			goto irq_err;
2779		}
2780
2781		err = request_irq(adap->msix_info[s->nd_msix_idx].vec,
2782				  t4_nondata_intr, 0,
2783				  adap->msix_info[s->nd_msix_idx].desc, adap);
2784		if (err)
2785			goto irq_err;
2786
2787		err = request_msix_queue_irqs(adap);
2788		if (err)
2789			goto irq_err_free_nd_msix;
2790	} else {
2791		err = request_irq(adap->pdev->irq, t4_intr_handler(adap),
2792				  (adap->flags & CXGB4_USING_MSI) ? 0
2793								  : IRQF_SHARED,
2794				  adap->port[0]->name, adap);
2795		if (err)
2796			goto irq_err;
2797	}
2798
2799	enable_rx(adap);
2800	t4_sge_start(adap);
2801	t4_intr_enable(adap);
2802	adap->flags |= CXGB4_FULL_INIT_DONE;
2803	mutex_unlock(&uld_mutex);
2804
2805	notify_ulds(adap, CXGB4_STATE_UP);
2806#if IS_ENABLED(CONFIG_IPV6)
2807	update_clip(adap);
2808#endif
2809	return err;
2810
2811irq_err_free_nd_msix:
2812	free_irq(adap->msix_info[s->nd_msix_idx].vec, adap);
2813irq_err:
2814	dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err);
2815freeq:
2816	t4_free_sge_resources(adap);
2817rel_lock:
2818	mutex_unlock(&uld_mutex);
2819	return err;
2820}
2821
2822static void cxgb_down(struct adapter *adapter)
2823{
2824	cancel_work_sync(&adapter->tid_release_task);
2825	cancel_work_sync(&adapter->db_full_task);
2826	cancel_work_sync(&adapter->db_drop_task);
2827	adapter->tid_release_task_busy = false;
2828	adapter->tid_release_head = NULL;
2829
2830	t4_sge_stop(adapter);
2831	t4_free_sge_resources(adapter);
2832
2833	adapter->flags &= ~CXGB4_FULL_INIT_DONE;
2834}
2835
2836/*
2837 * net_device operations
2838 */
2839static int cxgb_open(struct net_device *dev)
2840{
2841	struct port_info *pi = netdev_priv(dev);
2842	struct adapter *adapter = pi->adapter;
2843	int err;
2844
2845	netif_carrier_off(dev);
2846
2847	if (!(adapter->flags & CXGB4_FULL_INIT_DONE)) {
2848		err = cxgb_up(adapter);
2849		if (err < 0)
2850			return err;
2851	}
2852
2853	/* It's possible that the basic port information could have
2854	 * changed since we first read it.
2855	 */
2856	err = t4_update_port_info(pi);
2857	if (err < 0)
2858		return err;
2859
2860	err = link_start(dev);
2861	if (err)
2862		return err;
2863
2864	if (pi->nmirrorqsets) {
2865		mutex_lock(&pi->vi_mirror_mutex);
2866		err = cxgb4_port_mirror_alloc_queues(dev);
2867		if (err)
2868			goto out_unlock;
2869
2870		err = cxgb4_port_mirror_start(dev);
2871		if (err)
2872			goto out_free_queues;
2873		mutex_unlock(&pi->vi_mirror_mutex);
2874	}
2875
2876	netif_tx_start_all_queues(dev);
2877	return 0;
2878
2879out_free_queues:
2880	cxgb4_port_mirror_free_queues(dev);
2881
2882out_unlock:
2883	mutex_unlock(&pi->vi_mirror_mutex);
2884	return err;
2885}
2886
2887static int cxgb_close(struct net_device *dev)
2888{
2889	struct port_info *pi = netdev_priv(dev);
2890	struct adapter *adapter = pi->adapter;
2891	int ret;
2892
2893	netif_tx_stop_all_queues(dev);
2894	netif_carrier_off(dev);
2895	ret = t4_enable_pi_params(adapter, adapter->pf, pi,
2896				  false, false, false);
2897#ifdef CONFIG_CHELSIO_T4_DCB
2898	cxgb4_dcb_reset(dev);
2899	dcb_tx_queue_prio_enable(dev, false);
2900#endif
2901	if (ret)
2902		return ret;
2903
2904	if (pi->nmirrorqsets) {
2905		mutex_lock(&pi->vi_mirror_mutex);
2906		cxgb4_port_mirror_stop(dev);
2907		cxgb4_port_mirror_free_queues(dev);
2908		mutex_unlock(&pi->vi_mirror_mutex);
2909	}
2910
2911	return 0;
2912}
2913
2914int cxgb4_create_server_filter(const struct net_device *dev, unsigned int stid,
2915		__be32 sip, __be16 sport, __be16 vlan,
2916		unsigned int queue, unsigned char port, unsigned char mask)
2917{
2918	int ret;
2919	struct filter_entry *f;
2920	struct adapter *adap;
2921	int i;
2922	u8 *val;
2923
2924	adap = netdev2adap(dev);
2925
2926	/* Adjust stid to correct filter index */
2927	stid -= adap->tids.sftid_base;
2928	stid += adap->tids.nftids;
2929
2930	/* Check to make sure the filter requested is writable ...
2931	 */
2932	f = &adap->tids.ftid_tab[stid];
2933	ret = writable_filter(f);
2934	if (ret)
2935		return ret;
2936
2937	/* Clear out any old resources being used by the filter before
2938	 * we start constructing the new filter.
2939	 */
2940	if (f->valid)
2941		clear_filter(adap, f);
2942
2943	/* Clear out filter specifications */
2944	memset(&f->fs, 0, sizeof(struct ch_filter_specification));
2945	f->fs.val.lport = be16_to_cpu(sport);
2946	f->fs.mask.lport  = ~0;
2947	val = (u8 *)&sip;
2948	if ((val[0] | val[1] | val[2] | val[3]) != 0) {
2949		for (i = 0; i < 4; i++) {
2950			f->fs.val.lip[i] = val[i];
2951			f->fs.mask.lip[i] = ~0;
2952		}
2953		if (adap->params.tp.vlan_pri_map & PORT_F) {
2954			f->fs.val.iport = port;
2955			f->fs.mask.iport = mask;
2956		}
2957	}
2958
2959	if (adap->params.tp.vlan_pri_map & PROTOCOL_F) {
2960		f->fs.val.proto = IPPROTO_TCP;
2961		f->fs.mask.proto = ~0;
2962	}
2963
2964	f->fs.dirsteer = 1;
2965	f->fs.iq = queue;
2966	/* Mark filter as locked */
2967	f->locked = 1;
2968	f->fs.rpttid = 1;
2969
2970	/* Save the actual tid. We need this to get the corresponding
2971	 * filter entry structure in filter_rpl.
2972	 */
2973	f->tid = stid + adap->tids.ftid_base;
2974	ret = set_filter_wr(adap, stid);
2975	if (ret) {
2976		clear_filter(adap, f);
2977		return ret;
2978	}
2979
2980	return 0;
2981}
2982EXPORT_SYMBOL(cxgb4_create_server_filter);
2983
2984int cxgb4_remove_server_filter(const struct net_device *dev, unsigned int stid,
2985		unsigned int queue, bool ipv6)
2986{
2987	struct filter_entry *f;
2988	struct adapter *adap;
2989
2990	adap = netdev2adap(dev);
2991
2992	/* Adjust stid to correct filter index */
2993	stid -= adap->tids.sftid_base;
2994	stid += adap->tids.nftids;
2995
2996	f = &adap->tids.ftid_tab[stid];
2997	/* Unlock the filter */
2998	f->locked = 0;
2999
3000	return delete_filter(adap, stid);
3001}
3002EXPORT_SYMBOL(cxgb4_remove_server_filter);
3003
3004static void cxgb_get_stats(struct net_device *dev,
3005			   struct rtnl_link_stats64 *ns)
3006{
3007	struct port_stats stats;
3008	struct port_info *p = netdev_priv(dev);
3009	struct adapter *adapter = p->adapter;
3010
3011	/* Block retrieving statistics during EEH error
3012	 * recovery. Otherwise, the recovery might fail
3013	 * and the PCI device will be removed permanently
3014	 */
3015	spin_lock(&adapter->stats_lock);
3016	if (!netif_device_present(dev)) {
3017		spin_unlock(&adapter->stats_lock);
3018		return;
3019	}
3020	t4_get_port_stats_offset(adapter, p->tx_chan, &stats,
3021				 &p->stats_base);
3022	spin_unlock(&adapter->stats_lock);
3023
3024	ns->tx_bytes   = stats.tx_octets;
3025	ns->tx_packets = stats.tx_frames;
3026	ns->rx_bytes   = stats.rx_octets;
3027	ns->rx_packets = stats.rx_frames;
3028	ns->multicast  = stats.rx_mcast_frames;
3029
3030	/* detailed rx_errors */
3031	ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long +
3032			       stats.rx_runt;
3033	ns->rx_over_errors   = 0;
3034	ns->rx_crc_errors    = stats.rx_fcs_err;
3035	ns->rx_frame_errors  = stats.rx_symbol_err;
3036	ns->rx_dropped	     = stats.rx_ovflow0 + stats.rx_ovflow1 +
3037			       stats.rx_ovflow2 + stats.rx_ovflow3 +
3038			       stats.rx_trunc0 + stats.rx_trunc1 +
3039			       stats.rx_trunc2 + stats.rx_trunc3;
3040	ns->rx_missed_errors = 0;
3041
3042	/* detailed tx_errors */
3043	ns->tx_aborted_errors   = 0;
3044	ns->tx_carrier_errors   = 0;
3045	ns->tx_fifo_errors      = 0;
3046	ns->tx_heartbeat_errors = 0;
3047	ns->tx_window_errors    = 0;
3048
3049	ns->tx_errors = stats.tx_error_frames;
3050	ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err +
3051		ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors;
3052}
3053
3054static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
3055{
3056	unsigned int mbox;
3057	int ret = 0, prtad, devad;
3058	struct port_info *pi = netdev_priv(dev);
3059	struct adapter *adapter = pi->adapter;
3060	struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data;
3061
3062	switch (cmd) {
3063	case SIOCGMIIPHY:
3064		if (pi->mdio_addr < 0)
3065			return -EOPNOTSUPP;
3066		data->phy_id = pi->mdio_addr;
3067		break;
3068	case SIOCGMIIREG:
3069	case SIOCSMIIREG:
3070		if (mdio_phy_id_is_c45(data->phy_id)) {
3071			prtad = mdio_phy_id_prtad(data->phy_id);
3072			devad = mdio_phy_id_devad(data->phy_id);
3073		} else if (data->phy_id < 32) {
3074			prtad = data->phy_id;
3075			devad = 0;
3076			data->reg_num &= 0x1f;
3077		} else
3078			return -EINVAL;
3079
3080		mbox = pi->adapter->pf;
3081		if (cmd == SIOCGMIIREG)
3082			ret = t4_mdio_rd(pi->adapter, mbox, prtad, devad,
3083					 data->reg_num, &data->val_out);
3084		else
3085			ret = t4_mdio_wr(pi->adapter, mbox, prtad, devad,
3086					 data->reg_num, data->val_in);
3087		break;
3088	case SIOCGHWTSTAMP:
3089		return copy_to_user(req->ifr_data, &pi->tstamp_config,
3090				    sizeof(pi->tstamp_config)) ?
3091			-EFAULT : 0;
3092	case SIOCSHWTSTAMP:
3093		if (copy_from_user(&pi->tstamp_config, req->ifr_data,
3094				   sizeof(pi->tstamp_config)))
3095			return -EFAULT;
3096
3097		if (!is_t4(adapter->params.chip)) {
3098			switch (pi->tstamp_config.tx_type) {
3099			case HWTSTAMP_TX_OFF:
3100			case HWTSTAMP_TX_ON:
3101				break;
3102			default:
3103				return -ERANGE;
3104			}
3105
3106			switch (pi->tstamp_config.rx_filter) {
3107			case HWTSTAMP_FILTER_NONE:
3108				pi->rxtstamp = false;
3109				break;
3110			case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
3111			case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
3112				cxgb4_ptprx_timestamping(pi, pi->port_id,
3113							 PTP_TS_L4);
3114				break;
3115			case HWTSTAMP_FILTER_PTP_V2_EVENT:
3116				cxgb4_ptprx_timestamping(pi, pi->port_id,
3117							 PTP_TS_L2_L4);
3118				break;
3119			case HWTSTAMP_FILTER_ALL:
3120			case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
3121			case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
3122			case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
3123			case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
3124				pi->rxtstamp = true;
3125				break;
3126			default:
3127				pi->tstamp_config.rx_filter =
3128					HWTSTAMP_FILTER_NONE;
3129				return -ERANGE;
3130			}
3131
3132			if ((pi->tstamp_config.tx_type == HWTSTAMP_TX_OFF) &&
3133			    (pi->tstamp_config.rx_filter ==
3134				HWTSTAMP_FILTER_NONE)) {
3135				if (cxgb4_ptp_txtype(adapter, pi->port_id) >= 0)
3136					pi->ptp_enable = false;
3137			}
3138
3139			if (pi->tstamp_config.rx_filter !=
3140				HWTSTAMP_FILTER_NONE) {
3141				if (cxgb4_ptp_redirect_rx_packet(adapter,
3142								 pi) >= 0)
3143					pi->ptp_enable = true;
3144			}
3145		} else {
3146			/* For T4 Adapters */
3147			switch (pi->tstamp_config.rx_filter) {
3148			case HWTSTAMP_FILTER_NONE:
3149			pi->rxtstamp = false;
3150			break;
3151			case HWTSTAMP_FILTER_ALL:
3152			pi->rxtstamp = true;
3153			break;
3154			default:
3155			pi->tstamp_config.rx_filter =
3156			HWTSTAMP_FILTER_NONE;
3157			return -ERANGE;
3158			}
3159		}
3160		return copy_to_user(req->ifr_data, &pi->tstamp_config,
3161				    sizeof(pi->tstamp_config)) ?
3162			-EFAULT : 0;
3163	default:
3164		return -EOPNOTSUPP;
3165	}
3166	return ret;
3167}
3168
3169static void cxgb_set_rxmode(struct net_device *dev)
3170{
3171	/* unfortunately we can't return errors to the stack */
3172	set_rxmode(dev, -1, false);
3173}
3174
3175static int cxgb_change_mtu(struct net_device *dev, int new_mtu)
3176{
3177	struct port_info *pi = netdev_priv(dev);
3178	int ret;
3179
3180	ret = t4_set_rxmode(pi->adapter, pi->adapter->mbox, pi->viid,
3181			    pi->viid_mirror, new_mtu, -1, -1, -1, -1, true);
3182	if (!ret)
3183		dev->mtu = new_mtu;
3184	return ret;
3185}
3186
3187#ifdef CONFIG_PCI_IOV
3188static int cxgb4_mgmt_open(struct net_device *dev)
3189{
3190	/* Turn carrier off since we don't have to transmit anything on this
3191	 * interface.
3192	 */
3193	netif_carrier_off(dev);
3194	return 0;
3195}
3196
3197/* Fill MAC address that will be assigned by the FW */
3198static void cxgb4_mgmt_fill_vf_station_mac_addr(struct adapter *adap)
3199{
3200	u8 hw_addr[ETH_ALEN], macaddr[ETH_ALEN];
3201	unsigned int i, vf, nvfs;
3202	u16 a, b;
3203	int err;
3204	u8 *na;
3205
3206	err = t4_get_raw_vpd_params(adap, &adap->params.vpd);
3207	if (err)
3208		return;
3209
3210	na = adap->params.vpd.na;
3211	for (i = 0; i < ETH_ALEN; i++)
3212		hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 +
3213			      hex2val(na[2 * i + 1]));
3214
3215	a = (hw_addr[0] << 8) | hw_addr[1];
3216	b = (hw_addr[1] << 8) | hw_addr[2];
3217	a ^= b;
3218	a |= 0x0200;    /* locally assigned Ethernet MAC address */
3219	a &= ~0x0100;   /* not a multicast Ethernet MAC address */
3220	macaddr[0] = a >> 8;
3221	macaddr[1] = a & 0xff;
3222
3223	for (i = 2; i < 5; i++)
3224		macaddr[i] = hw_addr[i + 1];
3225
3226	for (vf = 0, nvfs = pci_sriov_get_totalvfs(adap->pdev);
3227		vf < nvfs; vf++) {
3228		macaddr[5] = adap->pf * nvfs + vf;
3229		ether_addr_copy(adap->vfinfo[vf].vf_mac_addr, macaddr);
3230	}
3231}
3232
3233static int cxgb4_mgmt_set_vf_mac(struct net_device *dev, int vf, u8 *mac)
3234{
3235	struct port_info *pi = netdev_priv(dev);
3236	struct adapter *adap = pi->adapter;
3237	int ret;
3238
3239	/* verify MAC addr is valid */
3240	if (!is_valid_ether_addr(mac)) {
3241		dev_err(pi->adapter->pdev_dev,
3242			"Invalid Ethernet address %pM for VF %d\n",
3243			mac, vf);
3244		return -EINVAL;
3245	}
3246
3247	dev_info(pi->adapter->pdev_dev,
3248		 "Setting MAC %pM on VF %d\n", mac, vf);
3249	ret = t4_set_vf_mac_acl(adap, vf + 1, 1, mac);
3250	if (!ret)
3251		ether_addr_copy(adap->vfinfo[vf].vf_mac_addr, mac);
3252	return ret;
3253}
3254
3255static int cxgb4_mgmt_get_vf_config(struct net_device *dev,
3256				    int vf, struct ifla_vf_info *ivi)
3257{
3258	struct port_info *pi = netdev_priv(dev);
3259	struct adapter *adap = pi->adapter;
3260	struct vf_info *vfinfo;
3261
3262	if (vf >= adap->num_vfs)
3263		return -EINVAL;
3264	vfinfo = &adap->vfinfo[vf];
3265
3266	ivi->vf = vf;
3267	ivi->max_tx_rate = vfinfo->tx_rate;
3268	ivi->min_tx_rate = 0;
3269	ether_addr_copy(ivi->mac, vfinfo->vf_mac_addr);
3270	ivi->vlan = vfinfo->vlan;
3271	ivi->linkstate = vfinfo->link_state;
3272	return 0;
3273}
3274
3275static int cxgb4_mgmt_get_phys_port_id(struct net_device *dev,
3276				       struct netdev_phys_item_id *ppid)
3277{
3278	struct port_info *pi = netdev_priv(dev);
3279	unsigned int phy_port_id;
3280
3281	phy_port_id = pi->adapter->adap_idx * 10 + pi->port_id;
3282	ppid->id_len = sizeof(phy_port_id);
3283	memcpy(ppid->id, &phy_port_id, ppid->id_len);
3284	return 0;
3285}
3286
3287static int cxgb4_mgmt_set_vf_rate(struct net_device *dev, int vf,
3288				  int min_tx_rate, int max_tx_rate)
3289{
3290	struct port_info *pi = netdev_priv(dev);
3291	struct adapter *adap = pi->adapter;
3292	unsigned int link_ok, speed, mtu;
3293	u32 fw_pfvf, fw_class;
3294	int class_id = vf;
3295	int ret;
3296	u16 pktsize;
3297
3298	if (vf >= adap->num_vfs)
3299		return -EINVAL;
3300
3301	if (min_tx_rate) {
3302		dev_err(adap->pdev_dev,
3303			"Min tx rate (%d) (> 0) for VF %d is Invalid.\n",
3304			min_tx_rate, vf);
3305		return -EINVAL;
3306	}
3307
3308	if (max_tx_rate == 0) {
3309		/* unbind VF to to any Traffic Class */
3310		fw_pfvf =
3311		    (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
3312		     FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_SCHEDCLASS_ETH));
3313		fw_class = 0xffffffff;
3314		ret = t4_set_params(adap, adap->mbox, adap->pf, vf + 1, 1,
3315				    &fw_pfvf, &fw_class);
3316		if (ret) {
3317			dev_err(adap->pdev_dev,
3318				"Err %d in unbinding PF %d VF %d from TX Rate Limiting\n",
3319				ret, adap->pf, vf);
3320			return -EINVAL;
3321		}
3322		dev_info(adap->pdev_dev,
3323			 "PF %d VF %d is unbound from TX Rate Limiting\n",
3324			 adap->pf, vf);
3325		adap->vfinfo[vf].tx_rate = 0;
3326		return 0;
3327	}
3328
3329	ret = t4_get_link_params(pi, &link_ok, &speed, &mtu);
3330	if (ret != FW_SUCCESS) {
3331		dev_err(adap->pdev_dev,
3332			"Failed to get link information for VF %d\n", vf);
3333		return -EINVAL;
3334	}
3335
3336	if (!link_ok) {
3337		dev_err(adap->pdev_dev, "Link down for VF %d\n", vf);
3338		return -EINVAL;
3339	}
3340
3341	if (max_tx_rate > speed) {
3342		dev_err(adap->pdev_dev,
3343			"Max tx rate %d for VF %d can't be > link-speed %u",
3344			max_tx_rate, vf, speed);
3345		return -EINVAL;
3346	}
3347
3348	pktsize = mtu;
3349	/* subtract ethhdr size and 4 bytes crc since, f/w appends it */
3350	pktsize = pktsize - sizeof(struct ethhdr) - 4;
3351	/* subtract ipv4 hdr size, tcp hdr size to get typical IPv4 MSS size */
3352	pktsize = pktsize - sizeof(struct iphdr) - sizeof(struct tcphdr);
3353	/* configure Traffic Class for rate-limiting */
3354	ret = t4_sched_params(adap, SCHED_CLASS_TYPE_PACKET,
3355			      SCHED_CLASS_LEVEL_CL_RL,
3356			      SCHED_CLASS_MODE_CLASS,
3357			      SCHED_CLASS_RATEUNIT_BITS,
3358			      SCHED_CLASS_RATEMODE_ABS,
3359			      pi->tx_chan, class_id, 0,
3360			      max_tx_rate * 1000, 0, pktsize, 0);
3361	if (ret) {
3362		dev_err(adap->pdev_dev, "Err %d for Traffic Class config\n",
3363			ret);
3364		return -EINVAL;
3365	}
3366	dev_info(adap->pdev_dev,
3367		 "Class %d with MSS %u configured with rate %u\n",
3368		 class_id, pktsize, max_tx_rate);
3369
3370	/* bind VF to configured Traffic Class */
3371	fw_pfvf = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
3372		   FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_SCHEDCLASS_ETH));
3373	fw_class = class_id;
3374	ret = t4_set_params(adap, adap->mbox, adap->pf, vf + 1, 1, &fw_pfvf,
3375			    &fw_class);
3376	if (ret) {
3377		dev_err(adap->pdev_dev,
3378			"Err %d in binding PF %d VF %d to Traffic Class %d\n",
3379			ret, adap->pf, vf, class_id);
3380		return -EINVAL;
3381	}
3382	dev_info(adap->pdev_dev, "PF %d VF %d is bound to Class %d\n",
3383		 adap->pf, vf, class_id);
3384	adap->vfinfo[vf].tx_rate = max_tx_rate;
3385	return 0;
3386}
3387
3388static int cxgb4_mgmt_set_vf_vlan(struct net_device *dev, int vf,
3389				  u16 vlan, u8 qos, __be16 vlan_proto)
3390{
3391	struct port_info *pi = netdev_priv(dev);
3392	struct adapter *adap = pi->adapter;
3393	int ret;
3394
3395	if (vf >= adap->num_vfs || vlan > 4095 || qos > 7)
3396		return -EINVAL;
3397
3398	if (vlan_proto != htons(ETH_P_8021Q) || qos != 0)
3399		return -EPROTONOSUPPORT;
3400
3401	ret = t4_set_vlan_acl(adap, adap->mbox, vf + 1, vlan);
3402	if (!ret) {
3403		adap->vfinfo[vf].vlan = vlan;
3404		return 0;
3405	}
3406
3407	dev_err(adap->pdev_dev, "Err %d %s VLAN ACL for PF/VF %d/%d\n",
3408		ret, (vlan ? "setting" : "clearing"), adap->pf, vf);
3409	return ret;
3410}
3411
3412static int cxgb4_mgmt_set_vf_link_state(struct net_device *dev, int vf,
3413					int link)
3414{
3415	struct port_info *pi = netdev_priv(dev);
3416	struct adapter *adap = pi->adapter;
3417	u32 param, val;
3418	int ret = 0;
3419
3420	if (vf >= adap->num_vfs)
3421		return -EINVAL;
3422
3423	switch (link) {
3424	case IFLA_VF_LINK_STATE_AUTO:
3425		val = FW_VF_LINK_STATE_AUTO;
3426		break;
3427
3428	case IFLA_VF_LINK_STATE_ENABLE:
3429		val = FW_VF_LINK_STATE_ENABLE;
3430		break;
3431
3432	case IFLA_VF_LINK_STATE_DISABLE:
3433		val = FW_VF_LINK_STATE_DISABLE;
3434		break;
3435
3436	default:
3437		return -EINVAL;
3438	}
3439
3440	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
3441		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_LINK_STATE));
3442	ret = t4_set_params(adap, adap->mbox, adap->pf, vf + 1, 1,
3443			    &param, &val);
3444	if (ret) {
3445		dev_err(adap->pdev_dev,
3446			"Error %d in setting PF %d VF %d link state\n",
3447			ret, adap->pf, vf);
3448		return -EINVAL;
3449	}
3450
3451	adap->vfinfo[vf].link_state = link;
3452	return ret;
3453}
3454#endif /* CONFIG_PCI_IOV */
3455
3456static int cxgb_set_mac_addr(struct net_device *dev, void *p)
3457{
3458	int ret;
3459	struct sockaddr *addr = p;
3460	struct port_info *pi = netdev_priv(dev);
3461
3462	if (!is_valid_ether_addr(addr->sa_data))
3463		return -EADDRNOTAVAIL;
3464
3465	ret = cxgb4_update_mac_filt(pi, pi->viid, &pi->xact_addr_filt,
3466				    addr->sa_data, true, &pi->smt_idx);
3467	if (ret < 0)
3468		return ret;
3469
3470	eth_hw_addr_set(dev, addr->sa_data);
3471	return 0;
3472}
3473
3474#ifdef CONFIG_NET_POLL_CONTROLLER
3475static void cxgb_netpoll(struct net_device *dev)
3476{
3477	struct port_info *pi = netdev_priv(dev);
3478	struct adapter *adap = pi->adapter;
3479
3480	if (adap->flags & CXGB4_USING_MSIX) {
3481		int i;
3482		struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset];
3483
3484		for (i = pi->nqsets; i; i--, rx++)
3485			t4_sge_intr_msix(0, &rx->rspq);
3486	} else
3487		t4_intr_handler(adap)(0, adap);
3488}
3489#endif
3490
3491static int cxgb_set_tx_maxrate(struct net_device *dev, int index, u32 rate)
3492{
3493	struct port_info *pi = netdev_priv(dev);
3494	struct adapter *adap = pi->adapter;
3495	struct ch_sched_queue qe = { 0 };
3496	struct ch_sched_params p = { 0 };
3497	struct sched_class *e;
3498	u32 req_rate;
3499	int err = 0;
3500
3501	if (!can_sched(dev))
3502		return -ENOTSUPP;
3503
3504	if (index < 0 || index > pi->nqsets - 1)
3505		return -EINVAL;
3506
3507	if (!(adap->flags & CXGB4_FULL_INIT_DONE)) {
3508		dev_err(adap->pdev_dev,
3509			"Failed to rate limit on queue %d. Link Down?\n",
3510			index);
3511		return -EINVAL;
3512	}
3513
3514	qe.queue = index;
3515	e = cxgb4_sched_queue_lookup(dev, &qe);
3516	if (e && e->info.u.params.level != SCHED_CLASS_LEVEL_CL_RL) {
3517		dev_err(adap->pdev_dev,
3518			"Queue %u already bound to class %u of type: %u\n",
3519			index, e->idx, e->info.u.params.level);
3520		return -EBUSY;
3521	}
3522
3523	/* Convert from Mbps to Kbps */
3524	req_rate = rate * 1000;
3525
3526	/* Max rate is 100 Gbps */
3527	if (req_rate > SCHED_MAX_RATE_KBPS) {
3528		dev_err(adap->pdev_dev,
3529			"Invalid rate %u Mbps, Max rate is %u Mbps\n",
3530			rate, SCHED_MAX_RATE_KBPS / 1000);
3531		return -ERANGE;
3532	}
3533
3534	/* First unbind the queue from any existing class */
3535	memset(&qe, 0, sizeof(qe));
3536	qe.queue = index;
3537	qe.class = SCHED_CLS_NONE;
3538
3539	err = cxgb4_sched_class_unbind(dev, (void *)(&qe), SCHED_QUEUE);
3540	if (err) {
3541		dev_err(adap->pdev_dev,
3542			"Unbinding Queue %d on port %d fail. Err: %d\n",
3543			index, pi->port_id, err);
3544		return err;
3545	}
3546
3547	/* Queue already unbound */
3548	if (!req_rate)
3549		return 0;
3550
3551	/* Fetch any available unused or matching scheduling class */
3552	p.type = SCHED_CLASS_TYPE_PACKET;
3553	p.u.params.level    = SCHED_CLASS_LEVEL_CL_RL;
3554	p.u.params.mode     = SCHED_CLASS_MODE_CLASS;
3555	p.u.params.rateunit = SCHED_CLASS_RATEUNIT_BITS;
3556	p.u.params.ratemode = SCHED_CLASS_RATEMODE_ABS;
3557	p.u.params.channel  = pi->tx_chan;
3558	p.u.params.class    = SCHED_CLS_NONE;
3559	p.u.params.minrate  = 0;
3560	p.u.params.maxrate  = req_rate;
3561	p.u.params.weight   = 0;
3562	p.u.params.pktsize  = dev->mtu;
3563
3564	e = cxgb4_sched_class_alloc(dev, &p);
3565	if (!e)
3566		return -ENOMEM;
3567
3568	/* Bind the queue to a scheduling class */
3569	memset(&qe, 0, sizeof(qe));
3570	qe.queue = index;
3571	qe.class = e->idx;
3572
3573	err = cxgb4_sched_class_bind(dev, (void *)(&qe), SCHED_QUEUE);
3574	if (err)
3575		dev_err(adap->pdev_dev,
3576			"Queue rate limiting failed. Err: %d\n", err);
3577	return err;
3578}
3579
3580static int cxgb_setup_tc_flower(struct net_device *dev,
3581				struct flow_cls_offload *cls_flower)
3582{
3583	switch (cls_flower->command) {
3584	case FLOW_CLS_REPLACE:
3585		return cxgb4_tc_flower_replace(dev, cls_flower);
3586	case FLOW_CLS_DESTROY:
3587		return cxgb4_tc_flower_destroy(dev, cls_flower);
3588	case FLOW_CLS_STATS:
3589		return cxgb4_tc_flower_stats(dev, cls_flower);
3590	default:
3591		return -EOPNOTSUPP;
3592	}
3593}
3594
3595static int cxgb_setup_tc_cls_u32(struct net_device *dev,
3596				 struct tc_cls_u32_offload *cls_u32)
3597{
3598	switch (cls_u32->command) {
3599	case TC_CLSU32_NEW_KNODE:
3600	case TC_CLSU32_REPLACE_KNODE:
3601		return cxgb4_config_knode(dev, cls_u32);
3602	case TC_CLSU32_DELETE_KNODE:
3603		return cxgb4_delete_knode(dev, cls_u32);
3604	default:
3605		return -EOPNOTSUPP;
3606	}
3607}
3608
3609static int cxgb_setup_tc_matchall(struct net_device *dev,
3610				  struct tc_cls_matchall_offload *cls_matchall,
3611				  bool ingress)
3612{
3613	struct adapter *adap = netdev2adap(dev);
3614
3615	if (!adap->tc_matchall)
3616		return -ENOMEM;
3617
3618	switch (cls_matchall->command) {
3619	case TC_CLSMATCHALL_REPLACE:
3620		return cxgb4_tc_matchall_replace(dev, cls_matchall, ingress);
3621	case TC_CLSMATCHALL_DESTROY:
3622		return cxgb4_tc_matchall_destroy(dev, cls_matchall, ingress);
3623	case TC_CLSMATCHALL_STATS:
3624		if (ingress)
3625			return cxgb4_tc_matchall_stats(dev, cls_matchall);
3626		break;
3627	default:
3628		break;
3629	}
3630
3631	return -EOPNOTSUPP;
3632}
3633
3634static int cxgb_setup_tc_block_ingress_cb(enum tc_setup_type type,
3635					  void *type_data, void *cb_priv)
3636{
3637	struct net_device *dev = cb_priv;
3638	struct port_info *pi = netdev2pinfo(dev);
3639	struct adapter *adap = netdev2adap(dev);
3640
3641	if (!(adap->flags & CXGB4_FULL_INIT_DONE)) {
3642		dev_err(adap->pdev_dev,
3643			"Failed to setup tc on port %d. Link Down?\n",
3644			pi->port_id);
3645		return -EINVAL;
3646	}
3647
3648	if (!tc_cls_can_offload_and_chain0(dev, type_data))
3649		return -EOPNOTSUPP;
3650
3651	switch (type) {
3652	case TC_SETUP_CLSU32:
3653		return cxgb_setup_tc_cls_u32(dev, type_data);
3654	case TC_SETUP_CLSFLOWER:
3655		return cxgb_setup_tc_flower(dev, type_data);
3656	case TC_SETUP_CLSMATCHALL:
3657		return cxgb_setup_tc_matchall(dev, type_data, true);
3658	default:
3659		return -EOPNOTSUPP;
3660	}
3661}
3662
3663static int cxgb_setup_tc_block_egress_cb(enum tc_setup_type type,
3664					 void *type_data, void *cb_priv)
3665{
3666	struct net_device *dev = cb_priv;
3667	struct port_info *pi = netdev2pinfo(dev);
3668	struct adapter *adap = netdev2adap(dev);
3669
3670	if (!(adap->flags & CXGB4_FULL_INIT_DONE)) {
3671		dev_err(adap->pdev_dev,
3672			"Failed to setup tc on port %d. Link Down?\n",
3673			pi->port_id);
3674		return -EINVAL;
3675	}
3676
3677	if (!tc_cls_can_offload_and_chain0(dev, type_data))
3678		return -EOPNOTSUPP;
3679
3680	switch (type) {
3681	case TC_SETUP_CLSMATCHALL:
3682		return cxgb_setup_tc_matchall(dev, type_data, false);
3683	default:
3684		break;
3685	}
3686
3687	return -EOPNOTSUPP;
3688}
3689
3690static int cxgb_setup_tc_mqprio(struct net_device *dev,
3691				struct tc_mqprio_qopt_offload *mqprio)
3692{
3693	struct adapter *adap = netdev2adap(dev);
3694
3695	if (!is_ethofld(adap) || !adap->tc_mqprio)
3696		return -ENOMEM;
3697
3698	return cxgb4_setup_tc_mqprio(dev, mqprio);
3699}
3700
3701static LIST_HEAD(cxgb_block_cb_list);
3702
3703static int cxgb_setup_tc_block(struct net_device *dev,
3704			       struct flow_block_offload *f)
3705{
3706	struct port_info *pi = netdev_priv(dev);
3707	flow_setup_cb_t *cb;
3708	bool ingress_only;
3709
3710	pi->tc_block_shared = f->block_shared;
3711	if (f->binder_type == FLOW_BLOCK_BINDER_TYPE_CLSACT_EGRESS) {
3712		cb = cxgb_setup_tc_block_egress_cb;
3713		ingress_only = false;
3714	} else {
3715		cb = cxgb_setup_tc_block_ingress_cb;
3716		ingress_only = true;
3717	}
3718
3719	return flow_block_cb_setup_simple(f, &cxgb_block_cb_list,
3720					  cb, pi, dev, ingress_only);
3721}
3722
3723static int cxgb_setup_tc(struct net_device *dev, enum tc_setup_type type,
3724			 void *type_data)
3725{
3726	switch (type) {
3727	case TC_SETUP_QDISC_MQPRIO:
3728		return cxgb_setup_tc_mqprio(dev, type_data);
3729	case TC_SETUP_BLOCK:
3730		return cxgb_setup_tc_block(dev, type_data);
3731	default:
3732		return -EOPNOTSUPP;
3733	}
3734}
3735
3736static int cxgb_udp_tunnel_unset_port(struct net_device *netdev,
3737				      unsigned int table, unsigned int entry,
3738				      struct udp_tunnel_info *ti)
3739{
3740	struct port_info *pi = netdev_priv(netdev);
3741	struct adapter *adapter = pi->adapter;
3742	u8 match_all_mac[] = { 0, 0, 0, 0, 0, 0 };
3743	int ret = 0, i;
3744
3745	switch (ti->type) {
3746	case UDP_TUNNEL_TYPE_VXLAN:
3747		adapter->vxlan_port = 0;
3748		t4_write_reg(adapter, MPS_RX_VXLAN_TYPE_A, 0);
3749		break;
3750	case UDP_TUNNEL_TYPE_GENEVE:
3751		adapter->geneve_port = 0;
3752		t4_write_reg(adapter, MPS_RX_GENEVE_TYPE_A, 0);
3753		break;
3754	default:
3755		return -EINVAL;
3756	}
3757
3758	/* Matchall mac entries can be deleted only after all tunnel ports
3759	 * are brought down or removed.
3760	 */
3761	if (!adapter->rawf_cnt)
3762		return 0;
3763	for_each_port(adapter, i) {
3764		pi = adap2pinfo(adapter, i);
3765		ret = t4_free_raw_mac_filt(adapter, pi->viid,
3766					   match_all_mac, match_all_mac,
3767					   adapter->rawf_start + pi->port_id,
3768					   1, pi->port_id, false);
3769		if (ret < 0) {
3770			netdev_info(netdev, "Failed to free mac filter entry, for port %d\n",
3771				    i);
3772			return ret;
3773		}
3774	}
3775
3776	return 0;
3777}
3778
3779static int cxgb_udp_tunnel_set_port(struct net_device *netdev,
3780				    unsigned int table, unsigned int entry,
3781				    struct udp_tunnel_info *ti)
3782{
3783	struct port_info *pi = netdev_priv(netdev);
3784	struct adapter *adapter = pi->adapter;
3785	u8 match_all_mac[] = { 0, 0, 0, 0, 0, 0 };
3786	int i, ret;
3787
3788	switch (ti->type) {
3789	case UDP_TUNNEL_TYPE_VXLAN:
3790		adapter->vxlan_port = ti->port;
3791		t4_write_reg(adapter, MPS_RX_VXLAN_TYPE_A,
3792			     VXLAN_V(be16_to_cpu(ti->port)) | VXLAN_EN_F);
3793		break;
3794	case UDP_TUNNEL_TYPE_GENEVE:
3795		adapter->geneve_port = ti->port;
3796		t4_write_reg(adapter, MPS_RX_GENEVE_TYPE_A,
3797			     GENEVE_V(be16_to_cpu(ti->port)) | GENEVE_EN_F);
3798		break;
3799	default:
3800		return -EINVAL;
3801	}
3802
3803	/* Create a 'match all' mac filter entry for inner mac,
3804	 * if raw mac interface is supported. Once the linux kernel provides
3805	 * driver entry points for adding/deleting the inner mac addresses,
3806	 * we will remove this 'match all' entry and fallback to adding
3807	 * exact match filters.
3808	 */
3809	for_each_port(adapter, i) {
3810		pi = adap2pinfo(adapter, i);
3811
3812		ret = t4_alloc_raw_mac_filt(adapter, pi->viid,
3813					    match_all_mac,
3814					    match_all_mac,
3815					    adapter->rawf_start + pi->port_id,
3816					    1, pi->port_id, false);
3817		if (ret < 0) {
3818			netdev_info(netdev, "Failed to allocate a mac filter entry, not adding port %d\n",
3819				    be16_to_cpu(ti->port));
3820			return ret;
3821		}
3822	}
3823
3824	return 0;
3825}
3826
3827static const struct udp_tunnel_nic_info cxgb_udp_tunnels = {
3828	.set_port	= cxgb_udp_tunnel_set_port,
3829	.unset_port	= cxgb_udp_tunnel_unset_port,
3830	.tables		= {
3831		{ .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN,  },
3832		{ .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_GENEVE, },
3833	},
3834};
3835
3836static netdev_features_t cxgb_features_check(struct sk_buff *skb,
3837					     struct net_device *dev,
3838					     netdev_features_t features)
3839{
3840	struct port_info *pi = netdev_priv(dev);
3841	struct adapter *adapter = pi->adapter;
3842
3843	if (CHELSIO_CHIP_VERSION(adapter->params.chip) < CHELSIO_T6)
3844		return features;
3845
3846	/* Check if hw supports offload for this packet */
3847	if (!skb->encapsulation || cxgb_encap_offload_supported(skb))
3848		return features;
3849
3850	/* Offload is not supported for this encapsulated packet */
3851	return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3852}
3853
3854static netdev_features_t cxgb_fix_features(struct net_device *dev,
3855					   netdev_features_t features)
3856{
3857	/* Disable GRO, if RX_CSUM is disabled */
3858	if (!(features & NETIF_F_RXCSUM))
3859		features &= ~NETIF_F_GRO;
3860
3861	return features;
3862}
3863
3864static const struct net_device_ops cxgb4_netdev_ops = {
3865	.ndo_open             = cxgb_open,
3866	.ndo_stop             = cxgb_close,
3867	.ndo_start_xmit       = t4_start_xmit,
3868	.ndo_select_queue     =	cxgb_select_queue,
3869	.ndo_get_stats64      = cxgb_get_stats,
3870	.ndo_set_rx_mode      = cxgb_set_rxmode,
3871	.ndo_set_mac_address  = cxgb_set_mac_addr,
3872	.ndo_set_features     = cxgb_set_features,
3873	.ndo_validate_addr    = eth_validate_addr,
3874	.ndo_eth_ioctl         = cxgb_ioctl,
3875	.ndo_change_mtu       = cxgb_change_mtu,
3876#ifdef CONFIG_NET_POLL_CONTROLLER
3877	.ndo_poll_controller  = cxgb_netpoll,
3878#endif
3879#ifdef CONFIG_CHELSIO_T4_FCOE
3880	.ndo_fcoe_enable      = cxgb_fcoe_enable,
3881	.ndo_fcoe_disable     = cxgb_fcoe_disable,
3882#endif /* CONFIG_CHELSIO_T4_FCOE */
3883	.ndo_set_tx_maxrate   = cxgb_set_tx_maxrate,
3884	.ndo_setup_tc         = cxgb_setup_tc,
3885	.ndo_features_check   = cxgb_features_check,
3886	.ndo_fix_features     = cxgb_fix_features,
3887};
3888
3889#ifdef CONFIG_PCI_IOV
3890static const struct net_device_ops cxgb4_mgmt_netdev_ops = {
3891	.ndo_open               = cxgb4_mgmt_open,
3892	.ndo_set_vf_mac         = cxgb4_mgmt_set_vf_mac,
3893	.ndo_get_vf_config      = cxgb4_mgmt_get_vf_config,
3894	.ndo_set_vf_rate        = cxgb4_mgmt_set_vf_rate,
3895	.ndo_get_phys_port_id   = cxgb4_mgmt_get_phys_port_id,
3896	.ndo_set_vf_vlan        = cxgb4_mgmt_set_vf_vlan,
3897	.ndo_set_vf_link_state	= cxgb4_mgmt_set_vf_link_state,
3898};
3899
3900static void cxgb4_mgmt_get_drvinfo(struct net_device *dev,
3901				   struct ethtool_drvinfo *info)
3902{
3903	struct adapter *adapter = netdev2adap(dev);
3904
3905	strscpy(info->driver, cxgb4_driver_name, sizeof(info->driver));
3906	strscpy(info->bus_info, pci_name(adapter->pdev),
3907		sizeof(info->bus_info));
3908}
3909
3910static const struct ethtool_ops cxgb4_mgmt_ethtool_ops = {
3911	.get_drvinfo       = cxgb4_mgmt_get_drvinfo,
3912};
3913#endif
3914
3915static void notify_fatal_err(struct work_struct *work)
3916{
3917	struct adapter *adap;
3918
3919	adap = container_of(work, struct adapter, fatal_err_notify_task);
3920	notify_ulds(adap, CXGB4_STATE_FATAL_ERROR);
3921}
3922
3923void t4_fatal_err(struct adapter *adap)
3924{
3925	int port;
3926
3927	if (pci_channel_offline(adap->pdev))
3928		return;
3929
3930	/* Disable the SGE since ULDs are going to free resources that
3931	 * could be exposed to the adapter.  RDMA MWs for example...
3932	 */
3933	t4_shutdown_adapter(adap);
3934	for_each_port(adap, port) {
3935		struct net_device *dev = adap->port[port];
3936
3937		/* If we get here in very early initialization the network
3938		 * devices may not have been set up yet.
3939		 */
3940		if (!dev)
3941			continue;
3942
3943		netif_tx_stop_all_queues(dev);
3944		netif_carrier_off(dev);
3945	}
3946	dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n");
3947	queue_work(adap->workq, &adap->fatal_err_notify_task);
3948}
3949
3950static void setup_memwin(struct adapter *adap)
3951{
3952	u32 nic_win_base = t4_get_util_window(adap);
3953
3954	t4_setup_memwin(adap, nic_win_base, MEMWIN_NIC);
3955}
3956
3957static void setup_memwin_rdma(struct adapter *adap)
3958{
3959	if (adap->vres.ocq.size) {
3960		u32 start;
3961		unsigned int sz_kb;
3962
3963		start = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_2);
3964		start &= PCI_BASE_ADDRESS_MEM_MASK;
3965		start += OCQ_WIN_OFFSET(adap->pdev, &adap->vres);
3966		sz_kb = roundup_pow_of_two(adap->vres.ocq.size) >> 10;
3967		t4_write_reg(adap,
3968			     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 3),
3969			     start | BIR_V(1) | WINDOW_V(ilog2(sz_kb)));
3970		t4_write_reg(adap,
3971			     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3),
3972			     adap->vres.ocq.start);
3973		t4_read_reg(adap,
3974			    PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3));
3975	}
3976}
3977
3978/* HMA Definitions */
3979
3980/* The maximum number of address that can be send in a single FW cmd */
3981#define HMA_MAX_ADDR_IN_CMD	5
3982
3983#define HMA_PAGE_SIZE		PAGE_SIZE
3984
3985#define HMA_MAX_NO_FW_ADDRESS	(16 << 10)  /* FW supports 16K addresses */
3986
3987#define HMA_PAGE_ORDER					\
3988	((HMA_PAGE_SIZE < HMA_MAX_NO_FW_ADDRESS) ?	\
3989	ilog2(HMA_MAX_NO_FW_ADDRESS / HMA_PAGE_SIZE) : 0)
3990
3991/* The minimum and maximum possible HMA sizes that can be specified in the FW
3992 * configuration(in units of MB).
3993 */
3994#define HMA_MIN_TOTAL_SIZE	1
3995#define HMA_MAX_TOTAL_SIZE				\
3996	(((HMA_PAGE_SIZE << HMA_PAGE_ORDER) *		\
3997	  HMA_MAX_NO_FW_ADDRESS) >> 20)
3998
3999static void adap_free_hma_mem(struct adapter *adapter)
4000{
4001	struct scatterlist *iter;
4002	struct page *page;
4003	int i;
4004
4005	if (!adapter->hma.sgt)
4006		return;
4007
4008	if (adapter->hma.flags & HMA_DMA_MAPPED_FLAG) {
4009		dma_unmap_sg(adapter->pdev_dev, adapter->hma.sgt->sgl,
4010			     adapter->hma.sgt->nents, DMA_BIDIRECTIONAL);
4011		adapter->hma.flags &= ~HMA_DMA_MAPPED_FLAG;
4012	}
4013
4014	for_each_sg(adapter->hma.sgt->sgl, iter,
4015		    adapter->hma.sgt->orig_nents, i) {
4016		page = sg_page(iter);
4017		if (page)
4018			__free_pages(page, HMA_PAGE_ORDER);
4019	}
4020
4021	kfree(adapter->hma.phy_addr);
4022	sg_free_table(adapter->hma.sgt);
4023	kfree(adapter->hma.sgt);
4024	adapter->hma.sgt = NULL;
4025}
4026
4027static int adap_config_hma(struct adapter *adapter)
4028{
4029	struct scatterlist *sgl, *iter;
4030	struct sg_table *sgt;
4031	struct page *newpage;
4032	unsigned int i, j, k;
4033	u32 param, hma_size;
4034	unsigned int ncmds;
4035	size_t page_size;
4036	u32 page_order;
4037	int node, ret;
4038
4039	/* HMA is supported only for T6+ cards.
4040	 * Avoid initializing HMA in kdump kernels.
4041	 */
4042	if (is_kdump_kernel() ||
4043	    CHELSIO_CHIP_VERSION(adapter->params.chip) < CHELSIO_T6)
4044		return 0;
4045
4046	/* Get the HMA region size required by fw */
4047	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
4048		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_HMA_SIZE));
4049	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
4050			      1, &param, &hma_size);
4051	/* An error means card has its own memory or HMA is not supported by
4052	 * the firmware. Return without any errors.
4053	 */
4054	if (ret || !hma_size)
4055		return 0;
4056
4057	if (hma_size < HMA_MIN_TOTAL_SIZE ||
4058	    hma_size > HMA_MAX_TOTAL_SIZE) {
4059		dev_err(adapter->pdev_dev,
4060			"HMA size %uMB beyond bounds(%u-%lu)MB\n",
4061			hma_size, HMA_MIN_TOTAL_SIZE, HMA_MAX_TOTAL_SIZE);
4062		return -EINVAL;
4063	}
4064
4065	page_size = HMA_PAGE_SIZE;
4066	page_order = HMA_PAGE_ORDER;
4067	adapter->hma.sgt = kzalloc(sizeof(*adapter->hma.sgt), GFP_KERNEL);
4068	if (unlikely(!adapter->hma.sgt)) {
4069		dev_err(adapter->pdev_dev, "HMA SG table allocation failed\n");
4070		return -ENOMEM;
4071	}
4072	sgt = adapter->hma.sgt;
4073	/* FW returned value will be in MB's
4074	 */
4075	sgt->orig_nents = (hma_size << 20) / (page_size << page_order);
4076	if (sg_alloc_table(sgt, sgt->orig_nents, GFP_KERNEL)) {
4077		dev_err(adapter->pdev_dev, "HMA SGL allocation failed\n");
4078		kfree(adapter->hma.sgt);
4079		adapter->hma.sgt = NULL;
4080		return -ENOMEM;
4081	}
4082
4083	sgl = adapter->hma.sgt->sgl;
4084	node = dev_to_node(adapter->pdev_dev);
4085	for_each_sg(sgl, iter, sgt->orig_nents, i) {
4086		newpage = alloc_pages_node(node, __GFP_NOWARN | GFP_KERNEL |
4087					   __GFP_ZERO, page_order);
4088		if (!newpage) {
4089			dev_err(adapter->pdev_dev,
4090				"Not enough memory for HMA page allocation\n");
4091			ret = -ENOMEM;
4092			goto free_hma;
4093		}
4094		sg_set_page(iter, newpage, page_size << page_order, 0);
4095	}
4096
4097	sgt->nents = dma_map_sg(adapter->pdev_dev, sgl, sgt->orig_nents,
4098				DMA_BIDIRECTIONAL);
4099	if (!sgt->nents) {
4100		dev_err(adapter->pdev_dev,
4101			"Not enough memory for HMA DMA mapping");
4102		ret = -ENOMEM;
4103		goto free_hma;
4104	}
4105	adapter->hma.flags |= HMA_DMA_MAPPED_FLAG;
4106
4107	adapter->hma.phy_addr = kcalloc(sgt->nents, sizeof(dma_addr_t),
4108					GFP_KERNEL);
4109	if (unlikely(!adapter->hma.phy_addr))
4110		goto free_hma;
4111
4112	for_each_sg(sgl, iter, sgt->nents, i) {
4113		newpage = sg_page(iter);
4114		adapter->hma.phy_addr[i] = sg_dma_address(iter);
4115	}
4116
4117	ncmds = DIV_ROUND_UP(sgt->nents, HMA_MAX_ADDR_IN_CMD);
4118	/* Pass on the addresses to firmware */
4119	for (i = 0, k = 0; i < ncmds; i++, k += HMA_MAX_ADDR_IN_CMD) {
4120		struct fw_hma_cmd hma_cmd;
4121		u8 naddr = HMA_MAX_ADDR_IN_CMD;
4122		u8 soc = 0, eoc = 0;
4123		u8 hma_mode = 1; /* Presently we support only Page table mode */
4124
4125		soc = (i == 0) ? 1 : 0;
4126		eoc = (i == ncmds - 1) ? 1 : 0;
4127
4128		/* For last cmd, set naddr corresponding to remaining
4129		 * addresses
4130		 */
4131		if (i == ncmds - 1) {
4132			naddr = sgt->nents % HMA_MAX_ADDR_IN_CMD;
4133			naddr = naddr ? naddr : HMA_MAX_ADDR_IN_CMD;
4134		}
4135		memset(&hma_cmd, 0, sizeof(hma_cmd));
4136		hma_cmd.op_pkd = htonl(FW_CMD_OP_V(FW_HMA_CMD) |
4137				       FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
4138		hma_cmd.retval_len16 = htonl(FW_LEN16(hma_cmd));
4139
4140		hma_cmd.mode_to_pcie_params =
4141			htonl(FW_HMA_CMD_MODE_V(hma_mode) |
4142			      FW_HMA_CMD_SOC_V(soc) | FW_HMA_CMD_EOC_V(eoc));
4143
4144		/* HMA cmd size specified in MB's */
4145		hma_cmd.naddr_size =
4146			htonl(FW_HMA_CMD_SIZE_V(hma_size) |
4147			      FW_HMA_CMD_NADDR_V(naddr));
4148
4149		/* Total Page size specified in units of 4K */
4150		hma_cmd.addr_size_pkd =
4151			htonl(FW_HMA_CMD_ADDR_SIZE_V
4152				((page_size << page_order) >> 12));
4153
4154		/* Fill the 5 addresses */
4155		for (j = 0; j < naddr; j++) {
4156			hma_cmd.phy_address[j] =
4157				cpu_to_be64(adapter->hma.phy_addr[j + k]);
4158		}
4159		ret = t4_wr_mbox(adapter, adapter->mbox, &hma_cmd,
4160				 sizeof(hma_cmd), &hma_cmd);
4161		if (ret) {
4162			dev_err(adapter->pdev_dev,
4163				"HMA FW command failed with err %d\n", ret);
4164			goto free_hma;
4165		}
4166	}
4167
4168	if (!ret)
4169		dev_info(adapter->pdev_dev,
4170			 "Reserved %uMB host memory for HMA\n", hma_size);
4171	return ret;
4172
4173free_hma:
4174	adap_free_hma_mem(adapter);
4175	return ret;
4176}
4177
4178static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c)
4179{
4180	u32 v;
4181	int ret;
4182
4183	/* Now that we've successfully configured and initialized the adapter
4184	 * can ask the Firmware what resources it has provisioned for us.
4185	 */
4186	ret = t4_get_pfres(adap);
4187	if (ret) {
4188		dev_err(adap->pdev_dev,
4189			"Unable to retrieve resource provisioning information\n");
4190		return ret;
4191	}
4192
4193	/* get device capabilities */
4194	memset(c, 0, sizeof(*c));
4195	c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
4196			       FW_CMD_REQUEST_F | FW_CMD_READ_F);
4197	c->cfvalid_to_len16 = htonl(FW_LEN16(*c));
4198	ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), c);
4199	if (ret < 0)
4200		return ret;
4201
4202	c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
4203			       FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
4204	ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), NULL);
4205	if (ret < 0)
4206		return ret;
4207
4208	ret = t4_config_glbl_rss(adap, adap->pf,
4209				 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL,
4210				 FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F |
4211				 FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F);
4212	if (ret < 0)
4213		return ret;
4214
4215	ret = t4_cfg_pfvf(adap, adap->mbox, adap->pf, 0, adap->sge.egr_sz, 64,
4216			  MAX_INGQ, 0, 0, 4, 0xf, 0xf, 16, FW_CMD_CAP_PF,
4217			  FW_CMD_CAP_PF);
4218	if (ret < 0)
4219		return ret;
4220
4221	t4_sge_init(adap);
4222
4223	/* tweak some settings */
4224	t4_write_reg(adap, TP_SHIFT_CNT_A, 0x64f8849);
4225	t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(PAGE_SHIFT - 12));
4226	t4_write_reg(adap, TP_PIO_ADDR_A, TP_INGRESS_CONFIG_A);
4227	v = t4_read_reg(adap, TP_PIO_DATA_A);
4228	t4_write_reg(adap, TP_PIO_DATA_A, v & ~CSUM_HAS_PSEUDO_HDR_F);
4229
4230	/* first 4 Tx modulation queues point to consecutive Tx channels */
4231	adap->params.tp.tx_modq_map = 0xE4;
4232	t4_write_reg(adap, TP_TX_MOD_QUEUE_REQ_MAP_A,
4233		     TX_MOD_QUEUE_REQ_MAP_V(adap->params.tp.tx_modq_map));
4234
4235	/* associate each Tx modulation queue with consecutive Tx channels */
4236	v = 0x84218421;
4237	t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
4238			  &v, 1, TP_TX_SCHED_HDR_A);
4239	t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
4240			  &v, 1, TP_TX_SCHED_FIFO_A);
4241	t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
4242			  &v, 1, TP_TX_SCHED_PCMD_A);
4243
4244#define T4_TX_MODQ_10G_WEIGHT_DEFAULT 16 /* in KB units */
4245	if (is_offload(adap)) {
4246		t4_write_reg(adap, TP_TX_MOD_QUEUE_WEIGHT0_A,
4247			     TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
4248			     TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
4249			     TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
4250			     TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
4251		t4_write_reg(adap, TP_TX_MOD_CHANNEL_WEIGHT_A,
4252			     TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
4253			     TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
4254			     TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
4255			     TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
4256	}
4257
4258	/* get basic stuff going */
4259	return t4_early_init(adap, adap->pf);
4260}
4261
4262/*
4263 * Max # of ATIDs.  The absolute HW max is 16K but we keep it lower.
4264 */
4265#define MAX_ATIDS 8192U
4266
4267/*
4268 * Phase 0 of initialization: contact FW, obtain config, perform basic init.
4269 *
4270 * If the firmware we're dealing with has Configuration File support, then
4271 * we use that to perform all configuration
4272 */
4273
4274/*
4275 * Tweak configuration based on module parameters, etc.  Most of these have
4276 * defaults assigned to them by Firmware Configuration Files (if we're using
4277 * them) but need to be explicitly set if we're using hard-coded
4278 * initialization.  But even in the case of using Firmware Configuration
4279 * Files, we'd like to expose the ability to change these via module
4280 * parameters so these are essentially common tweaks/settings for
4281 * Configuration Files and hard-coded initialization ...
4282 */
4283static int adap_init0_tweaks(struct adapter *adapter)
4284{
4285	/*
4286	 * Fix up various Host-Dependent Parameters like Page Size, Cache
4287	 * Line Size, etc.  The firmware default is for a 4KB Page Size and
4288	 * 64B Cache Line Size ...
4289	 */
4290	t4_fixup_host_params(adapter, PAGE_SIZE, L1_CACHE_BYTES);
4291
4292	/*
4293	 * Process module parameters which affect early initialization.
4294	 */
4295	if (rx_dma_offset != 2 && rx_dma_offset != 0) {
4296		dev_err(&adapter->pdev->dev,
4297			"Ignoring illegal rx_dma_offset=%d, using 2\n",
4298			rx_dma_offset);
4299		rx_dma_offset = 2;
4300	}
4301	t4_set_reg_field(adapter, SGE_CONTROL_A,
4302			 PKTSHIFT_V(PKTSHIFT_M),
4303			 PKTSHIFT_V(rx_dma_offset));
4304
4305	/*
4306	 * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux
4307	 * adds the pseudo header itself.
4308	 */
4309	t4_tp_wr_bits_indirect(adapter, TP_INGRESS_CONFIG_A,
4310			       CSUM_HAS_PSEUDO_HDR_F, 0);
4311
4312	return 0;
4313}
4314
4315/* 10Gb/s-BT PHY Support. chip-external 10Gb/s-BT PHYs are complex chips
4316 * unto themselves and they contain their own firmware to perform their
4317 * tasks ...
4318 */
4319static int phy_aq1202_version(const u8 *phy_fw_data,
4320			      size_t phy_fw_size)
4321{
4322	int offset;
4323
4324	/* At offset 0x8 you're looking for the primary image's
4325	 * starting offset which is 3 Bytes wide
4326	 *
4327	 * At offset 0xa of the primary image, you look for the offset
4328	 * of the DRAM segment which is 3 Bytes wide.
4329	 *
4330	 * The FW version is at offset 0x27e of the DRAM and is 2 Bytes
4331	 * wide
4332	 */
4333	#define be16(__p) (((__p)[0] << 8) | (__p)[1])
4334	#define le16(__p) ((__p)[0] | ((__p)[1] << 8))
4335	#define le24(__p) (le16(__p) | ((__p)[2] << 16))
4336
4337	offset = le24(phy_fw_data + 0x8) << 12;
4338	offset = le24(phy_fw_data + offset + 0xa);
4339	return be16(phy_fw_data + offset + 0x27e);
4340
4341	#undef be16
4342	#undef le16
4343	#undef le24
4344}
4345
4346static struct info_10gbt_phy_fw {
4347	unsigned int phy_fw_id;		/* PCI Device ID */
4348	char *phy_fw_file;		/* /lib/firmware/ PHY Firmware file */
4349	int (*phy_fw_version)(const u8 *phy_fw_data, size_t phy_fw_size);
4350	int phy_flash;			/* Has FLASH for PHY Firmware */
4351} phy_info_array[] = {
4352	{
4353		PHY_AQ1202_DEVICEID,
4354		PHY_AQ1202_FIRMWARE,
4355		phy_aq1202_version,
4356		1,
4357	},
4358	{
4359		PHY_BCM84834_DEVICEID,
4360		PHY_BCM84834_FIRMWARE,
4361		NULL,
4362		0,
4363	},
4364	{ 0, NULL, NULL },
4365};
4366
4367static struct info_10gbt_phy_fw *find_phy_info(int devid)
4368{
4369	int i;
4370
4371	for (i = 0; i < ARRAY_SIZE(phy_info_array); i++) {
4372		if (phy_info_array[i].phy_fw_id == devid)
4373			return &phy_info_array[i];
4374	}
4375	return NULL;
4376}
4377
4378/* Handle updating of chip-external 10Gb/s-BT PHY firmware.  This needs to
4379 * happen after the FW_RESET_CMD but before the FW_INITIALIZE_CMD.  On error
4380 * we return a negative error number.  If we transfer new firmware we return 1
4381 * (from t4_load_phy_fw()).  If we don't do anything we return 0.
4382 */
4383static int adap_init0_phy(struct adapter *adap)
4384{
4385	const struct firmware *phyf;
4386	int ret;
4387	struct info_10gbt_phy_fw *phy_info;
4388
4389	/* Use the device ID to determine which PHY file to flash.
4390	 */
4391	phy_info = find_phy_info(adap->pdev->device);
4392	if (!phy_info) {
4393		dev_warn(adap->pdev_dev,
4394			 "No PHY Firmware file found for this PHY\n");
4395		return -EOPNOTSUPP;
4396	}
4397
4398	/* If we have a T4 PHY firmware file under /lib/firmware/cxgb4/, then
4399	 * use that. The adapter firmware provides us with a memory buffer
4400	 * where we can load a PHY firmware file from the host if we want to
4401	 * override the PHY firmware File in flash.
4402	 */
4403	ret = request_firmware_direct(&phyf, phy_info->phy_fw_file,
4404				      adap->pdev_dev);
4405	if (ret < 0) {
4406		/* For adapters without FLASH attached to PHY for their
4407		 * firmware, it's obviously a fatal error if we can't get the
4408		 * firmware to the adapter.  For adapters with PHY firmware
4409		 * FLASH storage, it's worth a warning if we can't find the
4410		 * PHY Firmware but we'll neuter the error ...
4411		 */
4412		dev_err(adap->pdev_dev, "unable to find PHY Firmware image "
4413			"/lib/firmware/%s, error %d\n",
4414			phy_info->phy_fw_file, -ret);
4415		if (phy_info->phy_flash) {
4416			int cur_phy_fw_ver = 0;
4417
4418			t4_phy_fw_ver(adap, &cur_phy_fw_ver);
4419			dev_warn(adap->pdev_dev, "continuing with, on-adapter "
4420				 "FLASH copy, version %#x\n", cur_phy_fw_ver);
4421			ret = 0;
4422		}
4423
4424		return ret;
4425	}
4426
4427	/* Load PHY Firmware onto adapter.
4428	 */
4429	ret = t4_load_phy_fw(adap, MEMWIN_NIC, phy_info->phy_fw_version,
4430			     (u8 *)phyf->data, phyf->size);
4431	if (ret < 0)
4432		dev_err(adap->pdev_dev, "PHY Firmware transfer error %d\n",
4433			-ret);
4434	else if (ret > 0) {
4435		int new_phy_fw_ver = 0;
4436
4437		if (phy_info->phy_fw_version)
4438			new_phy_fw_ver = phy_info->phy_fw_version(phyf->data,
4439								  phyf->size);
4440		dev_info(adap->pdev_dev, "Successfully transferred PHY "
4441			 "Firmware /lib/firmware/%s, version %#x\n",
4442			 phy_info->phy_fw_file, new_phy_fw_ver);
4443	}
4444
4445	release_firmware(phyf);
4446
4447	return ret;
4448}
4449
4450/*
4451 * Attempt to initialize the adapter via a Firmware Configuration File.
4452 */
4453static int adap_init0_config(struct adapter *adapter, int reset)
4454{
4455	char *fw_config_file, fw_config_file_path[256];
4456	u32 finiver, finicsum, cfcsum, param, val;
4457	struct fw_caps_config_cmd caps_cmd;
4458	unsigned long mtype = 0, maddr = 0;
4459	const struct firmware *cf;
4460	char *config_name = NULL;
4461	int config_issued = 0;
4462	int ret;
4463
4464	/*
4465	 * Reset device if necessary.
4466	 */
4467	if (reset) {
4468		ret = t4_fw_reset(adapter, adapter->mbox,
4469				  PIORSTMODE_F | PIORST_F);
4470		if (ret < 0)
4471			goto bye;
4472	}
4473
4474	/* If this is a 10Gb/s-BT adapter make sure the chip-external
4475	 * 10Gb/s-BT PHYs have up-to-date firmware.  Note that this step needs
4476	 * to be performed after any global adapter RESET above since some
4477	 * PHYs only have local RAM copies of the PHY firmware.
4478	 */
4479	if (is_10gbt_device(adapter->pdev->device)) {
4480		ret = adap_init0_phy(adapter);
4481		if (ret < 0)
4482			goto bye;
4483	}
4484	/*
4485	 * If we have a T4 configuration file under /lib/firmware/cxgb4/,
4486	 * then use that.  Otherwise, use the configuration file stored
4487	 * in the adapter flash ...
4488	 */
4489	switch (CHELSIO_CHIP_VERSION(adapter->params.chip)) {
4490	case CHELSIO_T4:
4491		fw_config_file = FW4_CFNAME;
4492		break;
4493	case CHELSIO_T5:
4494		fw_config_file = FW5_CFNAME;
4495		break;
4496	case CHELSIO_T6:
4497		fw_config_file = FW6_CFNAME;
4498		break;
4499	default:
4500		dev_err(adapter->pdev_dev, "Device %d is not supported\n",
4501		       adapter->pdev->device);
4502		ret = -EINVAL;
4503		goto bye;
4504	}
4505
4506	ret = request_firmware(&cf, fw_config_file, adapter->pdev_dev);
4507	if (ret < 0) {
4508		config_name = "On FLASH";
4509		mtype = FW_MEMTYPE_CF_FLASH;
4510		maddr = t4_flash_cfg_addr(adapter);
4511	} else {
4512		u32 params[7], val[7];
4513
4514		sprintf(fw_config_file_path,
4515			"/lib/firmware/%s", fw_config_file);
4516		config_name = fw_config_file_path;
4517
4518		if (cf->size >= FLASH_CFG_MAX_SIZE)
4519			ret = -ENOMEM;
4520		else {
4521			params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
4522			     FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
4523			ret = t4_query_params(adapter, adapter->mbox,
4524					      adapter->pf, 0, 1, params, val);
4525			if (ret == 0) {
4526				/*
4527				 * For t4_memory_rw() below addresses and
4528				 * sizes have to be in terms of multiples of 4
4529				 * bytes.  So, if the Configuration File isn't
4530				 * a multiple of 4 bytes in length we'll have
4531				 * to write that out separately since we can't
4532				 * guarantee that the bytes following the
4533				 * residual byte in the buffer returned by
4534				 * request_firmware() are zeroed out ...
4535				 */
4536				size_t resid = cf->size & 0x3;
4537				size_t size = cf->size & ~0x3;
4538				__be32 *data = (__be32 *)cf->data;
4539
4540				mtype = FW_PARAMS_PARAM_Y_G(val[0]);
4541				maddr = FW_PARAMS_PARAM_Z_G(val[0]) << 16;
4542
4543				spin_lock(&adapter->win0_lock);
4544				ret = t4_memory_rw(adapter, 0, mtype, maddr,
4545						   size, data, T4_MEMORY_WRITE);
4546				if (ret == 0 && resid != 0) {
4547					union {
4548						__be32 word;
4549						char buf[4];
4550					} last;
4551					int i;
4552
4553					last.word = data[size >> 2];
4554					for (i = resid; i < 4; i++)
4555						last.buf[i] = 0;
4556					ret = t4_memory_rw(adapter, 0, mtype,
4557							   maddr + size,
4558							   4, &last.word,
4559							   T4_MEMORY_WRITE);
4560				}
4561				spin_unlock(&adapter->win0_lock);
4562			}
4563		}
4564
4565		release_firmware(cf);
4566		if (ret)
4567			goto bye;
4568	}
4569
4570	val = 0;
4571
4572	/* Ofld + Hash filter is supported. Older fw will fail this request and
4573	 * it is fine.
4574	 */
4575	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
4576		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_HASHFILTER_WITH_OFLD));
4577	ret = t4_set_params(adapter, adapter->mbox, adapter->pf, 0,
4578			    1, &param, &val);
4579
4580	/* FW doesn't know about Hash filter + ofld support,
4581	 * it's not a problem, don't return an error.
4582	 */
4583	if (ret < 0) {
4584		dev_warn(adapter->pdev_dev,
4585			 "Hash filter with ofld is not supported by FW\n");
4586	}
4587
4588	/*
4589	 * Issue a Capability Configuration command to the firmware to get it
4590	 * to parse the Configuration File.  We don't use t4_fw_config_file()
4591	 * because we want the ability to modify various features after we've
4592	 * processed the configuration file ...
4593	 */
4594	memset(&caps_cmd, 0, sizeof(caps_cmd));
4595	caps_cmd.op_to_write =
4596		htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
4597		      FW_CMD_REQUEST_F |
4598		      FW_CMD_READ_F);
4599	caps_cmd.cfvalid_to_len16 =
4600		htonl(FW_CAPS_CONFIG_CMD_CFVALID_F |
4601		      FW_CAPS_CONFIG_CMD_MEMTYPE_CF_V(mtype) |
4602		      FW_CAPS_CONFIG_CMD_MEMADDR64K_CF_V(maddr >> 16) |
4603		      FW_LEN16(caps_cmd));
4604	ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
4605			 &caps_cmd);
4606
4607	/* If the CAPS_CONFIG failed with an ENOENT (for a Firmware
4608	 * Configuration File in FLASH), our last gasp effort is to use the
4609	 * Firmware Configuration File which is embedded in the firmware.  A
4610	 * very few early versions of the firmware didn't have one embedded
4611	 * but we can ignore those.
4612	 */
4613	if (ret == -ENOENT) {
4614		memset(&caps_cmd, 0, sizeof(caps_cmd));
4615		caps_cmd.op_to_write =
4616			htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
4617					FW_CMD_REQUEST_F |
4618					FW_CMD_READ_F);
4619		caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
4620		ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd,
4621				sizeof(caps_cmd), &caps_cmd);
4622		config_name = "Firmware Default";
4623	}
4624
4625	config_issued = 1;
4626	if (ret < 0)
4627		goto bye;
4628
4629	finiver = ntohl(caps_cmd.finiver);
4630	finicsum = ntohl(caps_cmd.finicsum);
4631	cfcsum = ntohl(caps_cmd.cfcsum);
4632	if (finicsum != cfcsum)
4633		dev_warn(adapter->pdev_dev, "Configuration File checksum "\
4634			 "mismatch: [fini] csum=%#x, computed csum=%#x\n",
4635			 finicsum, cfcsum);
4636
4637	/*
4638	 * And now tell the firmware to use the configuration we just loaded.
4639	 */
4640	caps_cmd.op_to_write =
4641		htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
4642		      FW_CMD_REQUEST_F |
4643		      FW_CMD_WRITE_F);
4644	caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
4645	ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
4646			 NULL);
4647	if (ret < 0)
4648		goto bye;
4649
4650	/*
4651	 * Tweak configuration based on system architecture, module
4652	 * parameters, etc.
4653	 */
4654	ret = adap_init0_tweaks(adapter);
4655	if (ret < 0)
4656		goto bye;
4657
4658	/* We will proceed even if HMA init fails. */
4659	ret = adap_config_hma(adapter);
4660	if (ret)
4661		dev_err(adapter->pdev_dev,
4662			"HMA configuration failed with error %d\n", ret);
4663
4664	if (is_t6(adapter->params.chip)) {
4665		adap_config_hpfilter(adapter);
4666		ret = setup_ppod_edram(adapter);
4667		if (!ret)
4668			dev_info(adapter->pdev_dev, "Successfully enabled "
4669				 "ppod edram feature\n");
4670	}
4671
4672	/*
4673	 * And finally tell the firmware to initialize itself using the
4674	 * parameters from the Configuration File.
4675	 */
4676	ret = t4_fw_initialize(adapter, adapter->mbox);
4677	if (ret < 0)
4678		goto bye;
4679
4680	/* Emit Firmware Configuration File information and return
4681	 * successfully.
4682	 */
4683	dev_info(adapter->pdev_dev, "Successfully configured using Firmware "\
4684		 "Configuration File \"%s\", version %#x, computed checksum %#x\n",
4685		 config_name, finiver, cfcsum);
4686	return 0;
4687
4688	/*
4689	 * Something bad happened.  Return the error ...  (If the "error"
4690	 * is that there's no Configuration File on the adapter we don't
4691	 * want to issue a warning since this is fairly common.)
4692	 */
4693bye:
4694	if (config_issued && ret != -ENOENT)
4695		dev_warn(adapter->pdev_dev, "\"%s\" configuration file error %d\n",
4696			 config_name, -ret);
4697	return ret;
4698}
4699
4700static struct fw_info fw_info_array[] = {
4701	{
4702		.chip = CHELSIO_T4,
4703		.fs_name = FW4_CFNAME,
4704		.fw_mod_name = FW4_FNAME,
4705		.fw_hdr = {
4706			.chip = FW_HDR_CHIP_T4,
4707			.fw_ver = __cpu_to_be32(FW_VERSION(T4)),
4708			.intfver_nic = FW_INTFVER(T4, NIC),
4709			.intfver_vnic = FW_INTFVER(T4, VNIC),
4710			.intfver_ri = FW_INTFVER(T4, RI),
4711			.intfver_iscsi = FW_INTFVER(T4, ISCSI),
4712			.intfver_fcoe = FW_INTFVER(T4, FCOE),
4713		},
4714	}, {
4715		.chip = CHELSIO_T5,
4716		.fs_name = FW5_CFNAME,
4717		.fw_mod_name = FW5_FNAME,
4718		.fw_hdr = {
4719			.chip = FW_HDR_CHIP_T5,
4720			.fw_ver = __cpu_to_be32(FW_VERSION(T5)),
4721			.intfver_nic = FW_INTFVER(T5, NIC),
4722			.intfver_vnic = FW_INTFVER(T5, VNIC),
4723			.intfver_ri = FW_INTFVER(T5, RI),
4724			.intfver_iscsi = FW_INTFVER(T5, ISCSI),
4725			.intfver_fcoe = FW_INTFVER(T5, FCOE),
4726		},
4727	}, {
4728		.chip = CHELSIO_T6,
4729		.fs_name = FW6_CFNAME,
4730		.fw_mod_name = FW6_FNAME,
4731		.fw_hdr = {
4732			.chip = FW_HDR_CHIP_T6,
4733			.fw_ver = __cpu_to_be32(FW_VERSION(T6)),
4734			.intfver_nic = FW_INTFVER(T6, NIC),
4735			.intfver_vnic = FW_INTFVER(T6, VNIC),
4736			.intfver_ofld = FW_INTFVER(T6, OFLD),
4737			.intfver_ri = FW_INTFVER(T6, RI),
4738			.intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU),
4739			.intfver_iscsi = FW_INTFVER(T6, ISCSI),
4740			.intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU),
4741			.intfver_fcoe = FW_INTFVER(T6, FCOE),
4742		},
4743	}
4744
4745};
4746
4747static struct fw_info *find_fw_info(int chip)
4748{
4749	int i;
4750
4751	for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) {
4752		if (fw_info_array[i].chip == chip)
4753			return &fw_info_array[i];
4754	}
4755	return NULL;
4756}
4757
4758/*
4759 * Phase 0 of initialization: contact FW, obtain config, perform basic init.
4760 */
4761static int adap_init0(struct adapter *adap, int vpd_skip)
4762{
4763	struct fw_caps_config_cmd caps_cmd;
4764	u32 params[7], val[7];
4765	enum dev_state state;
4766	u32 v, port_vec;
4767	int reset = 1;
4768	int ret;
4769
4770	/* Grab Firmware Device Log parameters as early as possible so we have
4771	 * access to it for debugging, etc.
4772	 */
4773	ret = t4_init_devlog_params(adap);
4774	if (ret < 0)
4775		return ret;
4776
4777	/* Contact FW, advertising Master capability */
4778	ret = t4_fw_hello(adap, adap->mbox, adap->mbox,
4779			  is_kdump_kernel() ? MASTER_MUST : MASTER_MAY, &state);
4780	if (ret < 0) {
4781		dev_err(adap->pdev_dev, "could not connect to FW, error %d\n",
4782			ret);
4783		return ret;
4784	}
4785	if (ret == adap->mbox)
4786		adap->flags |= CXGB4_MASTER_PF;
4787
4788	/*
4789	 * If we're the Master PF Driver and the device is uninitialized,
4790	 * then let's consider upgrading the firmware ...  (We always want
4791	 * to check the firmware version number in order to A. get it for
4792	 * later reporting and B. to warn if the currently loaded firmware
4793	 * is excessively mismatched relative to the driver.)
4794	 */
4795
4796	t4_get_version_info(adap);
4797	ret = t4_check_fw_version(adap);
4798	/* If firmware is too old (not supported by driver) force an update. */
4799	if (ret)
4800		state = DEV_STATE_UNINIT;
4801	if ((adap->flags & CXGB4_MASTER_PF) && state != DEV_STATE_INIT) {
4802		struct fw_info *fw_info;
4803		struct fw_hdr *card_fw;
4804		const struct firmware *fw;
4805		const u8 *fw_data = NULL;
4806		unsigned int fw_size = 0;
4807
4808		/* This is the firmware whose headers the driver was compiled
4809		 * against
4810		 */
4811		fw_info = find_fw_info(CHELSIO_CHIP_VERSION(adap->params.chip));
4812		if (fw_info == NULL) {
4813			dev_err(adap->pdev_dev,
4814				"unable to get firmware info for chip %d.\n",
4815				CHELSIO_CHIP_VERSION(adap->params.chip));
4816			return -EINVAL;
4817		}
4818
4819		/* allocate memory to read the header of the firmware on the
4820		 * card
4821		 */
4822		card_fw = kvzalloc(sizeof(*card_fw), GFP_KERNEL);
4823		if (!card_fw) {
4824			ret = -ENOMEM;
4825			goto bye;
4826		}
4827
4828		/* Get FW from from /lib/firmware/ */
4829		ret = request_firmware(&fw, fw_info->fw_mod_name,
4830				       adap->pdev_dev);
4831		if (ret < 0) {
4832			dev_err(adap->pdev_dev,
4833				"unable to load firmware image %s, error %d\n",
4834				fw_info->fw_mod_name, ret);
4835		} else {
4836			fw_data = fw->data;
4837			fw_size = fw->size;
4838		}
4839
4840		/* upgrade FW logic */
4841		ret = t4_prep_fw(adap, fw_info, fw_data, fw_size, card_fw,
4842				 state, &reset);
4843
4844		/* Cleaning up */
4845		release_firmware(fw);
4846		kvfree(card_fw);
4847
4848		if (ret < 0)
4849			goto bye;
4850	}
4851
4852	/* If the firmware is initialized already, emit a simply note to that
4853	 * effect. Otherwise, it's time to try initializing the adapter.
4854	 */
4855	if (state == DEV_STATE_INIT) {
4856		ret = adap_config_hma(adap);
4857		if (ret)
4858			dev_err(adap->pdev_dev,
4859				"HMA configuration failed with error %d\n",
4860				ret);
4861		dev_info(adap->pdev_dev, "Coming up as %s: "\
4862			 "Adapter already initialized\n",
4863			 adap->flags & CXGB4_MASTER_PF ? "MASTER" : "SLAVE");
4864	} else {
4865		dev_info(adap->pdev_dev, "Coming up as MASTER: "\
4866			 "Initializing adapter\n");
4867
4868		/* Find out whether we're dealing with a version of the
4869		 * firmware which has configuration file support.
4870		 */
4871		params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
4872			     FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
4873		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
4874				      params, val);
4875
4876		/* If the firmware doesn't support Configuration Files,
4877		 * return an error.
4878		 */
4879		if (ret < 0) {
4880			dev_err(adap->pdev_dev, "firmware doesn't support "
4881				"Firmware Configuration Files\n");
4882			goto bye;
4883		}
4884
4885		/* The firmware provides us with a memory buffer where we can
4886		 * load a Configuration File from the host if we want to
4887		 * override the Configuration File in flash.
4888		 */
4889		ret = adap_init0_config(adap, reset);
4890		if (ret == -ENOENT) {
4891			dev_err(adap->pdev_dev, "no Configuration File "
4892				"present on adapter.\n");
4893			goto bye;
4894		}
4895		if (ret < 0) {
4896			dev_err(adap->pdev_dev, "could not initialize "
4897				"adapter, error %d\n", -ret);
4898			goto bye;
4899		}
4900	}
4901
4902	/* Now that we've successfully configured and initialized the adapter
4903	 * (or found it already initialized), we can ask the Firmware what
4904	 * resources it has provisioned for us.
4905	 */
4906	ret = t4_get_pfres(adap);
4907	if (ret) {
4908		dev_err(adap->pdev_dev,
4909			"Unable to retrieve resource provisioning information\n");
4910		goto bye;
4911	}
4912
4913	/* Grab VPD parameters.  This should be done after we establish a
4914	 * connection to the firmware since some of the VPD parameters
4915	 * (notably the Core Clock frequency) are retrieved via requests to
4916	 * the firmware.  On the other hand, we need these fairly early on
4917	 * so we do this right after getting ahold of the firmware.
4918	 *
4919	 * We need to do this after initializing the adapter because someone
4920	 * could have FLASHed a new VPD which won't be read by the firmware
4921	 * until we do the RESET ...
4922	 */
4923	if (!vpd_skip) {
4924		ret = t4_get_vpd_params(adap, &adap->params.vpd);
4925		if (ret < 0)
4926			goto bye;
4927	}
4928
4929	/* Find out what ports are available to us.  Note that we need to do
4930	 * this before calling adap_init0_no_config() since it needs nports
4931	 * and portvec ...
4932	 */
4933	v =
4934	    FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
4935	    FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PORTVEC);
4936	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &v, &port_vec);
4937	if (ret < 0)
4938		goto bye;
4939
4940	adap->params.nports = hweight32(port_vec);
4941	adap->params.portvec = port_vec;
4942
4943	/* Give the SGE code a chance to pull in anything that it needs ...
4944	 * Note that this must be called after we retrieve our VPD parameters
4945	 * in order to know how to convert core ticks to seconds, etc.
4946	 */
4947	ret = t4_sge_init(adap);
4948	if (ret < 0)
4949		goto bye;
4950
4951	/* Grab the SGE Doorbell Queue Timer values.  If successful, that
4952	 * indicates that the Firmware and Hardware support this.
4953	 */
4954	params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
4955		    FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_DBQ_TIMERTICK));
4956	ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
4957			      1, params, val);
4958
4959	if (!ret) {
4960		adap->sge.dbqtimer_tick = val[0];
4961		ret = t4_read_sge_dbqtimers(adap,
4962					    ARRAY_SIZE(adap->sge.dbqtimer_val),
4963					    adap->sge.dbqtimer_val);
4964	}
4965
4966	if (!ret)
4967		adap->flags |= CXGB4_SGE_DBQ_TIMER;
4968
4969	if (is_bypass_device(adap->pdev->device))
4970		adap->params.bypass = 1;
4971
4972	/*
4973	 * Grab some of our basic fundamental operating parameters.
4974	 */
4975	params[0] = FW_PARAM_PFVF(EQ_START);
4976	params[1] = FW_PARAM_PFVF(L2T_START);
4977	params[2] = FW_PARAM_PFVF(L2T_END);
4978	params[3] = FW_PARAM_PFVF(FILTER_START);
4979	params[4] = FW_PARAM_PFVF(FILTER_END);
4980	params[5] = FW_PARAM_PFVF(IQFLINT_START);
4981	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params, val);
4982	if (ret < 0)
4983		goto bye;
4984	adap->sge.egr_start = val[0];
4985	adap->l2t_start = val[1];
4986	adap->l2t_end = val[2];
4987	adap->tids.ftid_base = val[3];
4988	adap->tids.nftids = val[4] - val[3] + 1;
4989	adap->sge.ingr_start = val[5];
4990
4991	if (CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) {
4992		params[0] = FW_PARAM_PFVF(HPFILTER_START);
4993		params[1] = FW_PARAM_PFVF(HPFILTER_END);
4994		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
4995				      params, val);
4996		if (ret < 0)
4997			goto bye;
4998
4999		adap->tids.hpftid_base = val[0];
5000		adap->tids.nhpftids = val[1] - val[0] + 1;
5001
5002		/* Read the raw mps entries. In T6, the last 2 tcam entries
5003		 * are reserved for raw mac addresses (rawf = 2, one per port).
5004		 */
5005		params[0] = FW_PARAM_PFVF(RAWF_START);
5006		params[1] = FW_PARAM_PFVF(RAWF_END);
5007		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
5008				      params, val);
5009		if (ret == 0) {
5010			adap->rawf_start = val[0];
5011			adap->rawf_cnt = val[1] - val[0] + 1;
5012		}
5013
5014		adap->tids.tid_base =
5015			t4_read_reg(adap, LE_DB_ACTIVE_TABLE_START_INDEX_A);
5016	}
5017
5018	/* qids (ingress/egress) returned from firmware can be anywhere
5019	 * in the range from EQ(IQFLINT)_START to EQ(IQFLINT)_END.
5020	 * Hence driver needs to allocate memory for this range to
5021	 * store the queue info. Get the highest IQFLINT/EQ index returned
5022	 * in FW_EQ_*_CMD.alloc command.
5023	 */
5024	params[0] = FW_PARAM_PFVF(EQ_END);
5025	params[1] = FW_PARAM_PFVF(IQFLINT_END);
5026	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
5027	if (ret < 0)
5028		goto bye;
5029	adap->sge.egr_sz = val[0] - adap->sge.egr_start + 1;
5030	adap->sge.ingr_sz = val[1] - adap->sge.ingr_start + 1;
5031
5032	adap->sge.egr_map = kcalloc(adap->sge.egr_sz,
5033				    sizeof(*adap->sge.egr_map), GFP_KERNEL);
5034	if (!adap->sge.egr_map) {
5035		ret = -ENOMEM;
5036		goto bye;
5037	}
5038
5039	adap->sge.ingr_map = kcalloc(adap->sge.ingr_sz,
5040				     sizeof(*adap->sge.ingr_map), GFP_KERNEL);
5041	if (!adap->sge.ingr_map) {
5042		ret = -ENOMEM;
5043		goto bye;
5044	}
5045
5046	/* Allocate the memory for the vaious egress queue bitmaps
5047	 * ie starving_fl, txq_maperr and blocked_fl.
5048	 */
5049	adap->sge.starving_fl = bitmap_zalloc(adap->sge.egr_sz, GFP_KERNEL);
5050	if (!adap->sge.starving_fl) {
5051		ret = -ENOMEM;
5052		goto bye;
5053	}
5054
5055	adap->sge.txq_maperr = bitmap_zalloc(adap->sge.egr_sz, GFP_KERNEL);
5056	if (!adap->sge.txq_maperr) {
5057		ret = -ENOMEM;
5058		goto bye;
5059	}
5060
5061#ifdef CONFIG_DEBUG_FS
5062	adap->sge.blocked_fl = bitmap_zalloc(adap->sge.egr_sz, GFP_KERNEL);
5063	if (!adap->sge.blocked_fl) {
5064		ret = -ENOMEM;
5065		goto bye;
5066	}
5067#endif
5068
5069	params[0] = FW_PARAM_PFVF(CLIP_START);
5070	params[1] = FW_PARAM_PFVF(CLIP_END);
5071	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
5072	if (ret < 0)
5073		goto bye;
5074	adap->clipt_start = val[0];
5075	adap->clipt_end = val[1];
5076
5077	/* Get the supported number of traffic classes */
5078	params[0] = FW_PARAM_DEV(NUM_TM_CLASS);
5079	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, params, val);
5080	if (ret < 0) {
5081		/* We couldn't retrieve the number of Traffic Classes
5082		 * supported by the hardware/firmware. So we hard
5083		 * code it here.
5084		 */
5085		adap->params.nsched_cls = is_t4(adap->params.chip) ? 15 : 16;
5086	} else {
5087		adap->params.nsched_cls = val[0];
5088	}
5089
5090	/* query params related to active filter region */
5091	params[0] = FW_PARAM_PFVF(ACTIVE_FILTER_START);
5092	params[1] = FW_PARAM_PFVF(ACTIVE_FILTER_END);
5093	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
5094	/* If Active filter size is set we enable establishing
5095	 * offload connection through firmware work request
5096	 */
5097	if ((val[0] != val[1]) && (ret >= 0)) {
5098		adap->flags |= CXGB4_FW_OFLD_CONN;
5099		adap->tids.aftid_base = val[0];
5100		adap->tids.aftid_end = val[1];
5101	}
5102
5103	/* If we're running on newer firmware, let it know that we're
5104	 * prepared to deal with encapsulated CPL messages.  Older
5105	 * firmware won't understand this and we'll just get
5106	 * unencapsulated messages ...
5107	 */
5108	params[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
5109	val[0] = 1;
5110	(void)t4_set_params(adap, adap->mbox, adap->pf, 0, 1, params, val);
5111
5112	/*
5113	 * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL
5114	 * capability.  Earlier versions of the firmware didn't have the
5115	 * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no
5116	 * permission to use ULPTX MEMWRITE DSGL.
5117	 */
5118	if (is_t4(adap->params.chip)) {
5119		adap->params.ulptx_memwrite_dsgl = false;
5120	} else {
5121		params[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL);
5122		ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
5123				      1, params, val);
5124		adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0);
5125	}
5126
5127	/* See if FW supports FW_RI_FR_NSMR_TPTE_WR work request */
5128	params[0] = FW_PARAM_DEV(RI_FR_NSMR_TPTE_WR);
5129	ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
5130			      1, params, val);
5131	adap->params.fr_nsmr_tpte_wr_support = (ret == 0 && val[0] != 0);
5132
5133	/* See if FW supports FW_FILTER2 work request */
5134	if (is_t4(adap->params.chip)) {
5135		adap->params.filter2_wr_support = false;
5136	} else {
5137		params[0] = FW_PARAM_DEV(FILTER2_WR);
5138		ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
5139				      1, params, val);
5140		adap->params.filter2_wr_support = (ret == 0 && val[0] != 0);
5141	}
5142
5143	/* Check if FW supports returning vin and smt index.
5144	 * If this is not supported, driver will interpret
5145	 * these values from viid.
5146	 */
5147	params[0] = FW_PARAM_DEV(OPAQUE_VIID_SMT_EXTN);
5148	ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
5149			      1, params, val);
5150	adap->params.viid_smt_extn_support = (ret == 0 && val[0] != 0);
5151
5152	/*
5153	 * Get device capabilities so we can determine what resources we need
5154	 * to manage.
5155	 */
5156	memset(&caps_cmd, 0, sizeof(caps_cmd));
5157	caps_cmd.op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
5158				     FW_CMD_REQUEST_F | FW_CMD_READ_F);
5159	caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
5160	ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd),
5161			 &caps_cmd);
5162	if (ret < 0)
5163		goto bye;
5164
5165	/* hash filter has some mandatory register settings to be tested and for
5166	 * that it needs to test whether offload is enabled or not, hence
5167	 * checking and setting it here.
5168	 */
5169	if (caps_cmd.ofldcaps)
5170		adap->params.offload = 1;
5171
5172	if (caps_cmd.ofldcaps ||
5173	    (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_HASHFILTER)) ||
5174	    (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_ETHOFLD))) {
5175		/* query offload-related parameters */
5176		params[0] = FW_PARAM_DEV(NTID);
5177		params[1] = FW_PARAM_PFVF(SERVER_START);
5178		params[2] = FW_PARAM_PFVF(SERVER_END);
5179		params[3] = FW_PARAM_PFVF(TDDP_START);
5180		params[4] = FW_PARAM_PFVF(TDDP_END);
5181		params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
5182		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6,
5183				      params, val);
5184		if (ret < 0)
5185			goto bye;
5186		adap->tids.ntids = val[0];
5187		adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS);
5188		adap->tids.stid_base = val[1];
5189		adap->tids.nstids = val[2] - val[1] + 1;
5190		/*
5191		 * Setup server filter region. Divide the available filter
5192		 * region into two parts. Regular filters get 1/3rd and server
5193		 * filters get 2/3rd part. This is only enabled if workarond
5194		 * path is enabled.
5195		 * 1. For regular filters.
5196		 * 2. Server filter: This are special filters which are used
5197		 * to redirect SYN packets to offload queue.
5198		 */
5199		if (adap->flags & CXGB4_FW_OFLD_CONN && !is_bypass(adap)) {
5200			adap->tids.sftid_base = adap->tids.ftid_base +
5201					DIV_ROUND_UP(adap->tids.nftids, 3);
5202			adap->tids.nsftids = adap->tids.nftids -
5203					 DIV_ROUND_UP(adap->tids.nftids, 3);
5204			adap->tids.nftids = adap->tids.sftid_base -
5205						adap->tids.ftid_base;
5206		}
5207		adap->vres.ddp.start = val[3];
5208		adap->vres.ddp.size = val[4] - val[3] + 1;
5209		adap->params.ofldq_wr_cred = val[5];
5210
5211		if (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_HASHFILTER)) {
5212			init_hash_filter(adap);
5213		} else {
5214			adap->num_ofld_uld += 1;
5215		}
5216
5217		if (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_ETHOFLD)) {
5218			params[0] = FW_PARAM_PFVF(ETHOFLD_START);
5219			params[1] = FW_PARAM_PFVF(ETHOFLD_END);
5220			ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
5221					      params, val);
5222			if (!ret) {
5223				adap->tids.eotid_base = val[0];
5224				adap->tids.neotids = min_t(u32, MAX_ATIDS,
5225							   val[1] - val[0] + 1);
5226				adap->params.ethofld = 1;
5227			}
5228		}
5229	}
5230	if (caps_cmd.rdmacaps) {
5231		params[0] = FW_PARAM_PFVF(STAG_START);
5232		params[1] = FW_PARAM_PFVF(STAG_END);
5233		params[2] = FW_PARAM_PFVF(RQ_START);
5234		params[3] = FW_PARAM_PFVF(RQ_END);
5235		params[4] = FW_PARAM_PFVF(PBL_START);
5236		params[5] = FW_PARAM_PFVF(PBL_END);
5237		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6,
5238				      params, val);
5239		if (ret < 0)
5240			goto bye;
5241		adap->vres.stag.start = val[0];
5242		adap->vres.stag.size = val[1] - val[0] + 1;
5243		adap->vres.rq.start = val[2];
5244		adap->vres.rq.size = val[3] - val[2] + 1;
5245		adap->vres.pbl.start = val[4];
5246		adap->vres.pbl.size = val[5] - val[4] + 1;
5247
5248		params[0] = FW_PARAM_PFVF(SRQ_START);
5249		params[1] = FW_PARAM_PFVF(SRQ_END);
5250		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
5251				      params, val);
5252		if (!ret) {
5253			adap->vres.srq.start = val[0];
5254			adap->vres.srq.size = val[1] - val[0] + 1;
5255		}
5256		if (adap->vres.srq.size) {
5257			adap->srq = t4_init_srq(adap->vres.srq.size);
5258			if (!adap->srq)
5259				dev_warn(&adap->pdev->dev, "could not allocate SRQ, continuing\n");
5260		}
5261
5262		params[0] = FW_PARAM_PFVF(SQRQ_START);
5263		params[1] = FW_PARAM_PFVF(SQRQ_END);
5264		params[2] = FW_PARAM_PFVF(CQ_START);
5265		params[3] = FW_PARAM_PFVF(CQ_END);
5266		params[4] = FW_PARAM_PFVF(OCQ_START);
5267		params[5] = FW_PARAM_PFVF(OCQ_END);
5268		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params,
5269				      val);
5270		if (ret < 0)
5271			goto bye;
5272		adap->vres.qp.start = val[0];
5273		adap->vres.qp.size = val[1] - val[0] + 1;
5274		adap->vres.cq.start = val[2];
5275		adap->vres.cq.size = val[3] - val[2] + 1;
5276		adap->vres.ocq.start = val[4];
5277		adap->vres.ocq.size = val[5] - val[4] + 1;
5278
5279		params[0] = FW_PARAM_DEV(MAXORDIRD_QP);
5280		params[1] = FW_PARAM_DEV(MAXIRD_ADAPTER);
5281		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params,
5282				      val);
5283		if (ret < 0) {
5284			adap->params.max_ordird_qp = 8;
5285			adap->params.max_ird_adapter = 32 * adap->tids.ntids;
5286			ret = 0;
5287		} else {
5288			adap->params.max_ordird_qp = val[0];
5289			adap->params.max_ird_adapter = val[1];
5290		}
5291		dev_info(adap->pdev_dev,
5292			 "max_ordird_qp %d max_ird_adapter %d\n",
5293			 adap->params.max_ordird_qp,
5294			 adap->params.max_ird_adapter);
5295
5296		/* Enable write_with_immediate if FW supports it */
5297		params[0] = FW_PARAM_DEV(RDMA_WRITE_WITH_IMM);
5298		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, params,
5299				      val);
5300		adap->params.write_w_imm_support = (ret == 0 && val[0] != 0);
5301
5302		/* Enable write_cmpl if FW supports it */
5303		params[0] = FW_PARAM_DEV(RI_WRITE_CMPL_WR);
5304		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, params,
5305				      val);
5306		adap->params.write_cmpl_support = (ret == 0 && val[0] != 0);
5307		adap->num_ofld_uld += 2;
5308	}
5309	if (caps_cmd.iscsicaps) {
5310		params[0] = FW_PARAM_PFVF(ISCSI_START);
5311		params[1] = FW_PARAM_PFVF(ISCSI_END);
5312		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
5313				      params, val);
5314		if (ret < 0)
5315			goto bye;
5316		adap->vres.iscsi.start = val[0];
5317		adap->vres.iscsi.size = val[1] - val[0] + 1;
5318		if (is_t6(adap->params.chip)) {
5319			params[0] = FW_PARAM_PFVF(PPOD_EDRAM_START);
5320			params[1] = FW_PARAM_PFVF(PPOD_EDRAM_END);
5321			ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
5322					      params, val);
5323			if (!ret) {
5324				adap->vres.ppod_edram.start = val[0];
5325				adap->vres.ppod_edram.size =
5326					val[1] - val[0] + 1;
5327
5328				dev_info(adap->pdev_dev,
5329					 "ppod edram start 0x%x end 0x%x size 0x%x\n",
5330					 val[0], val[1],
5331					 adap->vres.ppod_edram.size);
5332			}
5333		}
5334		/* LIO target and cxgb4i initiaitor */
5335		adap->num_ofld_uld += 2;
5336	}
5337	if (caps_cmd.cryptocaps) {
5338		if (ntohs(caps_cmd.cryptocaps) &
5339		    FW_CAPS_CONFIG_CRYPTO_LOOKASIDE) {
5340			params[0] = FW_PARAM_PFVF(NCRYPTO_LOOKASIDE);
5341			ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
5342					      2, params, val);
5343			if (ret < 0) {
5344				if (ret != -EINVAL)
5345					goto bye;
5346			} else {
5347				adap->vres.ncrypto_fc = val[0];
5348			}
5349			adap->num_ofld_uld += 1;
5350		}
5351		if (ntohs(caps_cmd.cryptocaps) &
5352		    FW_CAPS_CONFIG_TLS_INLINE) {
5353			params[0] = FW_PARAM_PFVF(TLS_START);
5354			params[1] = FW_PARAM_PFVF(TLS_END);
5355			ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
5356					      2, params, val);
5357			if (ret < 0)
5358				goto bye;
5359			adap->vres.key.start = val[0];
5360			adap->vres.key.size = val[1] - val[0] + 1;
5361			adap->num_uld += 1;
5362		}
5363		adap->params.crypto = ntohs(caps_cmd.cryptocaps);
5364	}
5365
5366	/* The MTU/MSS Table is initialized by now, so load their values.  If
5367	 * we're initializing the adapter, then we'll make any modifications
5368	 * we want to the MTU/MSS Table and also initialize the congestion
5369	 * parameters.
5370	 */
5371	t4_read_mtu_tbl(adap, adap->params.mtus, NULL);
5372	if (state != DEV_STATE_INIT) {
5373		int i;
5374
5375		/* The default MTU Table contains values 1492 and 1500.
5376		 * However, for TCP, it's better to have two values which are
5377		 * a multiple of 8 +/- 4 bytes apart near this popular MTU.
5378		 * This allows us to have a TCP Data Payload which is a
5379		 * multiple of 8 regardless of what combination of TCP Options
5380		 * are in use (always a multiple of 4 bytes) which is
5381		 * important for performance reasons.  For instance, if no
5382		 * options are in use, then we have a 20-byte IP header and a
5383		 * 20-byte TCP header.  In this case, a 1500-byte MSS would
5384		 * result in a TCP Data Payload of 1500 - 40 == 1460 bytes
5385		 * which is not a multiple of 8.  So using an MSS of 1488 in
5386		 * this case results in a TCP Data Payload of 1448 bytes which
5387		 * is a multiple of 8.  On the other hand, if 12-byte TCP Time
5388		 * Stamps have been negotiated, then an MTU of 1500 bytes
5389		 * results in a TCP Data Payload of 1448 bytes which, as
5390		 * above, is a multiple of 8 bytes ...
5391		 */
5392		for (i = 0; i < NMTUS; i++)
5393			if (adap->params.mtus[i] == 1492) {
5394				adap->params.mtus[i] = 1488;
5395				break;
5396			}
5397
5398		t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
5399			     adap->params.b_wnd);
5400	}
5401	t4_init_sge_params(adap);
5402	adap->flags |= CXGB4_FW_OK;
5403	t4_init_tp_params(adap, true);
5404	return 0;
5405
5406	/*
5407	 * Something bad happened.  If a command timed out or failed with EIO
5408	 * FW does not operate within its spec or something catastrophic
5409	 * happened to HW/FW, stop issuing commands.
5410	 */
5411bye:
5412	adap_free_hma_mem(adap);
5413	kfree(adap->sge.egr_map);
5414	kfree(adap->sge.ingr_map);
5415	bitmap_free(adap->sge.starving_fl);
5416	bitmap_free(adap->sge.txq_maperr);
5417#ifdef CONFIG_DEBUG_FS
5418	bitmap_free(adap->sge.blocked_fl);
5419#endif
5420	if (ret != -ETIMEDOUT && ret != -EIO)
5421		t4_fw_bye(adap, adap->mbox);
5422	return ret;
5423}
5424
5425/* EEH callbacks */
5426
5427static pci_ers_result_t eeh_err_detected(struct pci_dev *pdev,
5428					 pci_channel_state_t state)
5429{
5430	int i;
5431	struct adapter *adap = pci_get_drvdata(pdev);
5432
5433	if (!adap)
5434		goto out;
5435
5436	rtnl_lock();
5437	adap->flags &= ~CXGB4_FW_OK;
5438	notify_ulds(adap, CXGB4_STATE_START_RECOVERY);
5439	spin_lock(&adap->stats_lock);
5440	for_each_port(adap, i) {
5441		struct net_device *dev = adap->port[i];
5442		if (dev) {
5443			netif_device_detach(dev);
5444			netif_carrier_off(dev);
5445		}
5446	}
5447	spin_unlock(&adap->stats_lock);
5448	disable_interrupts(adap);
5449	if (adap->flags & CXGB4_FULL_INIT_DONE)
5450		cxgb_down(adap);
5451	rtnl_unlock();
5452	if ((adap->flags & CXGB4_DEV_ENABLED)) {
5453		pci_disable_device(pdev);
5454		adap->flags &= ~CXGB4_DEV_ENABLED;
5455	}
5456out:	return state == pci_channel_io_perm_failure ?
5457		PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_NEED_RESET;
5458}
5459
5460static pci_ers_result_t eeh_slot_reset(struct pci_dev *pdev)
5461{
5462	int i, ret;
5463	struct fw_caps_config_cmd c;
5464	struct adapter *adap = pci_get_drvdata(pdev);
5465
5466	if (!adap) {
5467		pci_restore_state(pdev);
5468		pci_save_state(pdev);
5469		return PCI_ERS_RESULT_RECOVERED;
5470	}
5471
5472	if (!(adap->flags & CXGB4_DEV_ENABLED)) {
5473		if (pci_enable_device(pdev)) {
5474			dev_err(&pdev->dev, "Cannot reenable PCI "
5475					    "device after reset\n");
5476			return PCI_ERS_RESULT_DISCONNECT;
5477		}
5478		adap->flags |= CXGB4_DEV_ENABLED;
5479	}
5480
5481	pci_set_master(pdev);
5482	pci_restore_state(pdev);
5483	pci_save_state(pdev);
5484
5485	if (t4_wait_dev_ready(adap->regs) < 0)
5486		return PCI_ERS_RESULT_DISCONNECT;
5487	if (t4_fw_hello(adap, adap->mbox, adap->pf, MASTER_MUST, NULL) < 0)
5488		return PCI_ERS_RESULT_DISCONNECT;
5489	adap->flags |= CXGB4_FW_OK;
5490	if (adap_init1(adap, &c))
5491		return PCI_ERS_RESULT_DISCONNECT;
5492
5493	for_each_port(adap, i) {
5494		struct port_info *pi = adap2pinfo(adap, i);
5495		u8 vivld = 0, vin = 0;
5496
5497		ret = t4_alloc_vi(adap, adap->mbox, pi->tx_chan, adap->pf, 0, 1,
5498				  NULL, NULL, &vivld, &vin);
5499		if (ret < 0)
5500			return PCI_ERS_RESULT_DISCONNECT;
5501		pi->viid = ret;
5502		pi->xact_addr_filt = -1;
5503		/* If fw supports returning the VIN as part of FW_VI_CMD,
5504		 * save the returned values.
5505		 */
5506		if (adap->params.viid_smt_extn_support) {
5507			pi->vivld = vivld;
5508			pi->vin = vin;
5509		} else {
5510			/* Retrieve the values from VIID */
5511			pi->vivld = FW_VIID_VIVLD_G(pi->viid);
5512			pi->vin = FW_VIID_VIN_G(pi->viid);
5513		}
5514	}
5515
5516	t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
5517		     adap->params.b_wnd);
5518	setup_memwin(adap);
5519	if (cxgb_up(adap))
5520		return PCI_ERS_RESULT_DISCONNECT;
5521	return PCI_ERS_RESULT_RECOVERED;
5522}
5523
5524static void eeh_resume(struct pci_dev *pdev)
5525{
5526	int i;
5527	struct adapter *adap = pci_get_drvdata(pdev);
5528
5529	if (!adap)
5530		return;
5531
5532	rtnl_lock();
5533	for_each_port(adap, i) {
5534		struct net_device *dev = adap->port[i];
5535		if (dev) {
5536			if (netif_running(dev)) {
5537				link_start(dev);
5538				cxgb_set_rxmode(dev);
5539			}
5540			netif_device_attach(dev);
5541		}
5542	}
5543	rtnl_unlock();
5544}
5545
5546static void eeh_reset_prepare(struct pci_dev *pdev)
5547{
5548	struct adapter *adapter = pci_get_drvdata(pdev);
5549	int i;
5550
5551	if (adapter->pf != 4)
5552		return;
5553
5554	adapter->flags &= ~CXGB4_FW_OK;
5555
5556	notify_ulds(adapter, CXGB4_STATE_DOWN);
5557
5558	for_each_port(adapter, i)
5559		if (adapter->port[i]->reg_state == NETREG_REGISTERED)
5560			cxgb_close(adapter->port[i]);
5561
5562	disable_interrupts(adapter);
5563	cxgb4_free_mps_ref_entries(adapter);
5564
5565	adap_free_hma_mem(adapter);
5566
5567	if (adapter->flags & CXGB4_FULL_INIT_DONE)
5568		cxgb_down(adapter);
5569}
5570
5571static void eeh_reset_done(struct pci_dev *pdev)
5572{
5573	struct adapter *adapter = pci_get_drvdata(pdev);
5574	int err, i;
5575
5576	if (adapter->pf != 4)
5577		return;
5578
5579	err = t4_wait_dev_ready(adapter->regs);
5580	if (err < 0) {
5581		dev_err(adapter->pdev_dev,
5582			"Device not ready, err %d", err);
5583		return;
5584	}
5585
5586	setup_memwin(adapter);
5587
5588	err = adap_init0(adapter, 1);
5589	if (err) {
5590		dev_err(adapter->pdev_dev,
5591			"Adapter init failed, err %d", err);
5592		return;
5593	}
5594
5595	setup_memwin_rdma(adapter);
5596
5597	if (adapter->flags & CXGB4_FW_OK) {
5598		err = t4_port_init(adapter, adapter->pf, adapter->pf, 0);
5599		if (err) {
5600			dev_err(adapter->pdev_dev,
5601				"Port init failed, err %d", err);
5602			return;
5603		}
5604	}
5605
5606	err = cfg_queues(adapter);
5607	if (err) {
5608		dev_err(adapter->pdev_dev,
5609			"Config queues failed, err %d", err);
5610		return;
5611	}
5612
5613	cxgb4_init_mps_ref_entries(adapter);
5614
5615	err = setup_fw_sge_queues(adapter);
5616	if (err) {
5617		dev_err(adapter->pdev_dev,
5618			"FW sge queue allocation failed, err %d", err);
5619		return;
5620	}
5621
5622	for_each_port(adapter, i)
5623		if (adapter->port[i]->reg_state == NETREG_REGISTERED)
5624			cxgb_open(adapter->port[i]);
5625}
5626
5627static const struct pci_error_handlers cxgb4_eeh = {
5628	.error_detected = eeh_err_detected,
5629	.slot_reset     = eeh_slot_reset,
5630	.resume         = eeh_resume,
5631	.reset_prepare  = eeh_reset_prepare,
5632	.reset_done     = eeh_reset_done,
5633};
5634
5635/* Return true if the Link Configuration supports "High Speeds" (those greater
5636 * than 1Gb/s).
5637 */
5638static inline bool is_x_10g_port(const struct link_config *lc)
5639{
5640	unsigned int speeds, high_speeds;
5641
5642	speeds = FW_PORT_CAP32_SPEED_V(FW_PORT_CAP32_SPEED_G(lc->pcaps));
5643	high_speeds = speeds &
5644			~(FW_PORT_CAP32_SPEED_100M | FW_PORT_CAP32_SPEED_1G);
5645
5646	return high_speeds != 0;
5647}
5648
5649/* Perform default configuration of DMA queues depending on the number and type
5650 * of ports we found and the number of available CPUs.  Most settings can be
5651 * modified by the admin prior to actual use.
5652 */
5653static int cfg_queues(struct adapter *adap)
5654{
5655	u32 avail_qsets, avail_eth_qsets, avail_uld_qsets;
5656	u32 ncpus = num_online_cpus();
5657	u32 niqflint, neq, num_ulds;
5658	struct sge *s = &adap->sge;
5659	u32 i, n10g = 0, qidx = 0;
5660	u32 q10g = 0, q1g;
5661
5662	/* Reduce memory usage in kdump environment, disable all offload. */
5663	if (is_kdump_kernel() || (is_uld(adap) && t4_uld_mem_alloc(adap))) {
5664		adap->params.offload = 0;
5665		adap->params.crypto = 0;
5666		adap->params.ethofld = 0;
5667	}
5668
5669	/* Calculate the number of Ethernet Queue Sets available based on
5670	 * resources provisioned for us.  We always have an Asynchronous
5671	 * Firmware Event Ingress Queue.  If we're operating in MSI or Legacy
5672	 * IRQ Pin Interrupt mode, then we'll also have a Forwarded Interrupt
5673	 * Ingress Queue.  Meanwhile, we need two Egress Queues for each
5674	 * Queue Set: one for the Free List and one for the Ethernet TX Queue.
5675	 *
5676	 * Note that we should also take into account all of the various
5677	 * Offload Queues.  But, in any situation where we're operating in
5678	 * a Resource Constrained Provisioning environment, doing any Offload
5679	 * at all is problematic ...
5680	 */
5681	niqflint = adap->params.pfres.niqflint - 1;
5682	if (!(adap->flags & CXGB4_USING_MSIX))
5683		niqflint--;
5684	neq = adap->params.pfres.neq / 2;
5685	avail_qsets = min(niqflint, neq);
5686
5687	if (avail_qsets < adap->params.nports) {
5688		dev_err(adap->pdev_dev, "avail_eth_qsets=%d < nports=%d\n",
5689			avail_qsets, adap->params.nports);
5690		return -ENOMEM;
5691	}
5692
5693	/* Count the number of 10Gb/s or better ports */
5694	for_each_port(adap, i)
5695		n10g += is_x_10g_port(&adap2pinfo(adap, i)->link_cfg);
5696
5697	avail_eth_qsets = min_t(u32, avail_qsets, MAX_ETH_QSETS);
5698
5699	/* We default to 1 queue per non-10G port and up to # of cores queues
5700	 * per 10G port.
5701	 */
5702	if (n10g)
5703		q10g = (avail_eth_qsets - (adap->params.nports - n10g)) / n10g;
5704
5705#ifdef CONFIG_CHELSIO_T4_DCB
5706	/* For Data Center Bridging support we need to be able to support up
5707	 * to 8 Traffic Priorities; each of which will be assigned to its
5708	 * own TX Queue in order to prevent Head-Of-Line Blocking.
5709	 */
5710	q1g = 8;
5711	if (adap->params.nports * 8 > avail_eth_qsets) {
5712		dev_err(adap->pdev_dev, "DCB avail_eth_qsets=%d < %d!\n",
5713			avail_eth_qsets, adap->params.nports * 8);
5714		return -ENOMEM;
5715	}
5716
5717	if (adap->params.nports * ncpus < avail_eth_qsets)
5718		q10g = max(8U, ncpus);
5719	else
5720		q10g = max(8U, q10g);
5721
5722	while ((q10g * n10g) >
5723	       (avail_eth_qsets - (adap->params.nports - n10g) * q1g))
5724		q10g--;
5725
5726#else /* !CONFIG_CHELSIO_T4_DCB */
5727	q1g = 1;
5728	q10g = min(q10g, ncpus);
5729#endif /* !CONFIG_CHELSIO_T4_DCB */
5730	if (is_kdump_kernel()) {
5731		q10g = 1;
5732		q1g = 1;
5733	}
5734
5735	for_each_port(adap, i) {
5736		struct port_info *pi = adap2pinfo(adap, i);
5737
5738		pi->first_qset = qidx;
5739		pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : q1g;
5740		qidx += pi->nqsets;
5741	}
5742
5743	s->ethqsets = qidx;
5744	s->max_ethqsets = qidx;   /* MSI-X may lower it later */
5745	avail_qsets -= qidx;
5746
5747	if (is_uld(adap)) {
5748		/* For offload we use 1 queue/channel if all ports are up to 1G,
5749		 * otherwise we divide all available queues amongst the channels
5750		 * capped by the number of available cores.
5751		 */
5752		num_ulds = adap->num_uld + adap->num_ofld_uld;
5753		i = min_t(u32, MAX_OFLD_QSETS, ncpus);
5754		avail_uld_qsets = roundup(i, adap->params.nports);
5755		if (avail_qsets < num_ulds * adap->params.nports) {
5756			adap->params.offload = 0;
5757			adap->params.crypto = 0;
5758			s->ofldqsets = 0;
5759		} else if (avail_qsets < num_ulds * avail_uld_qsets || !n10g) {
5760			s->ofldqsets = adap->params.nports;
5761		} else {
5762			s->ofldqsets = avail_uld_qsets;
5763		}
5764
5765		avail_qsets -= num_ulds * s->ofldqsets;
5766	}
5767
5768	/* ETHOFLD Queues used for QoS offload should follow same
5769	 * allocation scheme as normal Ethernet Queues.
5770	 */
5771	if (is_ethofld(adap)) {
5772		if (avail_qsets < s->max_ethqsets) {
5773			adap->params.ethofld = 0;
5774			s->eoqsets = 0;
5775		} else {
5776			s->eoqsets = s->max_ethqsets;
5777		}
5778		avail_qsets -= s->eoqsets;
5779	}
5780
5781	/* Mirror queues must follow same scheme as normal Ethernet
5782	 * Queues, when there are enough queues available. Otherwise,
5783	 * allocate at least 1 queue per port. If even 1 queue is not
5784	 * available, then disable mirror queues support.
5785	 */
5786	if (avail_qsets >= s->max_ethqsets)
5787		s->mirrorqsets = s->max_ethqsets;
5788	else if (avail_qsets >= adap->params.nports)
5789		s->mirrorqsets = adap->params.nports;
5790	else
5791		s->mirrorqsets = 0;
5792	avail_qsets -= s->mirrorqsets;
5793
5794	for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) {
5795		struct sge_eth_rxq *r = &s->ethrxq[i];
5796
5797		init_rspq(adap, &r->rspq, 5, 10, 1024, 64);
5798		r->fl.size = 72;
5799	}
5800
5801	for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++)
5802		s->ethtxq[i].q.size = 1024;
5803
5804	for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++)
5805		s->ctrlq[i].q.size = 512;
5806
5807	if (!is_t4(adap->params.chip))
5808		s->ptptxq.q.size = 8;
5809
5810	init_rspq(adap, &s->fw_evtq, 0, 1, 1024, 64);
5811	init_rspq(adap, &s->intrq, 0, 1, 512, 64);
5812
5813	return 0;
5814}
5815
5816/*
5817 * Reduce the number of Ethernet queues across all ports to at most n.
5818 * n provides at least one queue per port.
5819 */
5820static void reduce_ethqs(struct adapter *adap, int n)
5821{
5822	int i;
5823	struct port_info *pi;
5824
5825	while (n < adap->sge.ethqsets)
5826		for_each_port(adap, i) {
5827			pi = adap2pinfo(adap, i);
5828			if (pi->nqsets > 1) {
5829				pi->nqsets--;
5830				adap->sge.ethqsets--;
5831				if (adap->sge.ethqsets <= n)
5832					break;
5833			}
5834		}
5835
5836	n = 0;
5837	for_each_port(adap, i) {
5838		pi = adap2pinfo(adap, i);
5839		pi->first_qset = n;
5840		n += pi->nqsets;
5841	}
5842}
5843
5844static int alloc_msix_info(struct adapter *adap, u32 num_vec)
5845{
5846	struct msix_info *msix_info;
5847
5848	msix_info = kcalloc(num_vec, sizeof(*msix_info), GFP_KERNEL);
5849	if (!msix_info)
5850		return -ENOMEM;
5851
5852	adap->msix_bmap.msix_bmap = bitmap_zalloc(num_vec, GFP_KERNEL);
5853	if (!adap->msix_bmap.msix_bmap) {
5854		kfree(msix_info);
5855		return -ENOMEM;
5856	}
5857
5858	spin_lock_init(&adap->msix_bmap.lock);
5859	adap->msix_bmap.mapsize = num_vec;
5860
5861	adap->msix_info = msix_info;
5862	return 0;
5863}
5864
5865static void free_msix_info(struct adapter *adap)
5866{
5867	bitmap_free(adap->msix_bmap.msix_bmap);
5868	kfree(adap->msix_info);
5869}
5870
5871int cxgb4_get_msix_idx_from_bmap(struct adapter *adap)
5872{
5873	struct msix_bmap *bmap = &adap->msix_bmap;
5874	unsigned int msix_idx;
5875	unsigned long flags;
5876
5877	spin_lock_irqsave(&bmap->lock, flags);
5878	msix_idx = find_first_zero_bit(bmap->msix_bmap, bmap->mapsize);
5879	if (msix_idx < bmap->mapsize) {
5880		__set_bit(msix_idx, bmap->msix_bmap);
5881	} else {
5882		spin_unlock_irqrestore(&bmap->lock, flags);
5883		return -ENOSPC;
5884	}
5885
5886	spin_unlock_irqrestore(&bmap->lock, flags);
5887	return msix_idx;
5888}
5889
5890void cxgb4_free_msix_idx_in_bmap(struct adapter *adap,
5891				 unsigned int msix_idx)
5892{
5893	struct msix_bmap *bmap = &adap->msix_bmap;
5894	unsigned long flags;
5895
5896	spin_lock_irqsave(&bmap->lock, flags);
5897	__clear_bit(msix_idx, bmap->msix_bmap);
5898	spin_unlock_irqrestore(&bmap->lock, flags);
5899}
5900
5901/* 2 MSI-X vectors needed for the FW queue and non-data interrupts */
5902#define EXTRA_VECS 2
5903
5904static int enable_msix(struct adapter *adap)
5905{
5906	u32 eth_need, uld_need = 0, ethofld_need = 0, mirror_need = 0;
5907	u32 ethqsets = 0, ofldqsets = 0, eoqsets = 0, mirrorqsets = 0;
5908	u8 num_uld = 0, nchan = adap->params.nports;
5909	u32 i, want, need, num_vec;
5910	struct sge *s = &adap->sge;
5911	struct msix_entry *entries;
5912	struct port_info *pi;
5913	int allocated, ret;
5914
5915	want = s->max_ethqsets;
5916#ifdef CONFIG_CHELSIO_T4_DCB
5917	/* For Data Center Bridging we need 8 Ethernet TX Priority Queues for
5918	 * each port.
5919	 */
5920	need = 8 * nchan;
5921#else
5922	need = nchan;
5923#endif
5924	eth_need = need;
5925	if (is_uld(adap)) {
5926		num_uld = adap->num_ofld_uld + adap->num_uld;
5927		want += num_uld * s->ofldqsets;
5928		uld_need = num_uld * nchan;
5929		need += uld_need;
5930	}
5931
5932	if (is_ethofld(adap)) {
5933		want += s->eoqsets;
5934		ethofld_need = eth_need;
5935		need += ethofld_need;
5936	}
5937
5938	if (s->mirrorqsets) {
5939		want += s->mirrorqsets;
5940		mirror_need = nchan;
5941		need += mirror_need;
5942	}
5943
5944	want += EXTRA_VECS;
5945	need += EXTRA_VECS;
5946
5947	entries = kmalloc_array(want, sizeof(*entries), GFP_KERNEL);
5948	if (!entries)
5949		return -ENOMEM;
5950
5951	for (i = 0; i < want; i++)
5952		entries[i].entry = i;
5953
5954	allocated = pci_enable_msix_range(adap->pdev, entries, need, want);
5955	if (allocated < 0) {
5956		/* Disable offload and attempt to get vectors for NIC
5957		 * only mode.
5958		 */
5959		want = s->max_ethqsets + EXTRA_VECS;
5960		need = eth_need + EXTRA_VECS;
5961		allocated = pci_enable_msix_range(adap->pdev, entries,
5962						  need, want);
5963		if (allocated < 0) {
5964			dev_info(adap->pdev_dev,
5965				 "Disabling MSI-X due to insufficient MSI-X vectors\n");
5966			ret = allocated;
5967			goto out_free;
5968		}
5969
5970		dev_info(adap->pdev_dev,
5971			 "Disabling offload due to insufficient MSI-X vectors\n");
5972		adap->params.offload = 0;
5973		adap->params.crypto = 0;
5974		adap->params.ethofld = 0;
5975		s->ofldqsets = 0;
5976		s->eoqsets = 0;
5977		s->mirrorqsets = 0;
5978		uld_need = 0;
5979		ethofld_need = 0;
5980		mirror_need = 0;
5981	}
5982
5983	num_vec = allocated;
5984	if (num_vec < want) {
5985		/* Distribute available vectors to the various queue groups.
5986		 * Every group gets its minimum requirement and NIC gets top
5987		 * priority for leftovers.
5988		 */
5989		ethqsets = eth_need;
5990		if (is_uld(adap))
5991			ofldqsets = nchan;
5992		if (is_ethofld(adap))
5993			eoqsets = ethofld_need;
5994		if (s->mirrorqsets)
5995			mirrorqsets = mirror_need;
5996
5997		num_vec -= need;
5998		while (num_vec) {
5999			if (num_vec < eth_need + ethofld_need ||
6000			    ethqsets > s->max_ethqsets)
6001				break;
6002
6003			for_each_port(adap, i) {
6004				pi = adap2pinfo(adap, i);
6005				if (pi->nqsets < 2)
6006					continue;
6007
6008				ethqsets++;
6009				num_vec--;
6010				if (ethofld_need) {
6011					eoqsets++;
6012					num_vec--;
6013				}
6014			}
6015		}
6016
6017		if (is_uld(adap)) {
6018			while (num_vec) {
6019				if (num_vec < uld_need ||
6020				    ofldqsets > s->ofldqsets)
6021					break;
6022
6023				ofldqsets++;
6024				num_vec -= uld_need;
6025			}
6026		}
6027
6028		if (s->mirrorqsets) {
6029			while (num_vec) {
6030				if (num_vec < mirror_need ||
6031				    mirrorqsets > s->mirrorqsets)
6032					break;
6033
6034				mirrorqsets++;
6035				num_vec -= mirror_need;
6036			}
6037		}
6038	} else {
6039		ethqsets = s->max_ethqsets;
6040		if (is_uld(adap))
6041			ofldqsets = s->ofldqsets;
6042		if (is_ethofld(adap))
6043			eoqsets = s->eoqsets;
6044		if (s->mirrorqsets)
6045			mirrorqsets = s->mirrorqsets;
6046	}
6047
6048	if (ethqsets < s->max_ethqsets) {
6049		s->max_ethqsets = ethqsets;
6050		reduce_ethqs(adap, ethqsets);
6051	}
6052
6053	if (is_uld(adap)) {
6054		s->ofldqsets = ofldqsets;
6055		s->nqs_per_uld = s->ofldqsets;
6056	}
6057
6058	if (is_ethofld(adap))
6059		s->eoqsets = eoqsets;
6060
6061	if (s->mirrorqsets) {
6062		s->mirrorqsets = mirrorqsets;
6063		for_each_port(adap, i) {
6064			pi = adap2pinfo(adap, i);
6065			pi->nmirrorqsets = s->mirrorqsets / nchan;
6066			mutex_init(&pi->vi_mirror_mutex);
6067		}
6068	}
6069
6070	/* map for msix */
6071	ret = alloc_msix_info(adap, allocated);
6072	if (ret)
6073		goto out_disable_msix;
6074
6075	for (i = 0; i < allocated; i++) {
6076		adap->msix_info[i].vec = entries[i].vector;
6077		adap->msix_info[i].idx = i;
6078	}
6079
6080	dev_info(adap->pdev_dev,
6081		 "%d MSI-X vectors allocated, nic %d eoqsets %d per uld %d mirrorqsets %d\n",
6082		 allocated, s->max_ethqsets, s->eoqsets, s->nqs_per_uld,
6083		 s->mirrorqsets);
6084
6085	kfree(entries);
6086	return 0;
6087
6088out_disable_msix:
6089	pci_disable_msix(adap->pdev);
6090
6091out_free:
6092	kfree(entries);
6093	return ret;
6094}
6095
6096#undef EXTRA_VECS
6097
6098static int init_rss(struct adapter *adap)
6099{
6100	unsigned int i;
6101	int err;
6102
6103	err = t4_init_rss_mode(adap, adap->mbox);
6104	if (err)
6105		return err;
6106
6107	for_each_port(adap, i) {
6108		struct port_info *pi = adap2pinfo(adap, i);
6109
6110		pi->rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL);
6111		if (!pi->rss)
6112			return -ENOMEM;
6113	}
6114	return 0;
6115}
6116
6117/* Dump basic information about the adapter */
6118static void print_adapter_info(struct adapter *adapter)
6119{
6120	/* Hardware/Firmware/etc. Version/Revision IDs */
6121	t4_dump_version_info(adapter);
6122
6123	/* Software/Hardware configuration */
6124	dev_info(adapter->pdev_dev, "Configuration: %sNIC %s, %s capable\n",
6125		 is_offload(adapter) ? "R" : "",
6126		 ((adapter->flags & CXGB4_USING_MSIX) ? "MSI-X" :
6127		  (adapter->flags & CXGB4_USING_MSI) ? "MSI" : ""),
6128		 is_offload(adapter) ? "Offload" : "non-Offload");
6129}
6130
6131static void print_port_info(const struct net_device *dev)
6132{
6133	char buf[80];
6134	char *bufp = buf;
6135	const struct port_info *pi = netdev_priv(dev);
6136	const struct adapter *adap = pi->adapter;
6137
6138	if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100M)
6139		bufp += sprintf(bufp, "100M/");
6140	if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_1G)
6141		bufp += sprintf(bufp, "1G/");
6142	if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_10G)
6143		bufp += sprintf(bufp, "10G/");
6144	if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_25G)
6145		bufp += sprintf(bufp, "25G/");
6146	if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_40G)
6147		bufp += sprintf(bufp, "40G/");
6148	if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_50G)
6149		bufp += sprintf(bufp, "50G/");
6150	if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100G)
6151		bufp += sprintf(bufp, "100G/");
6152	if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_200G)
6153		bufp += sprintf(bufp, "200G/");
6154	if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_400G)
6155		bufp += sprintf(bufp, "400G/");
6156	if (bufp != buf)
6157		--bufp;
6158	sprintf(bufp, "BASE-%s", t4_get_port_type_description(pi->port_type));
6159
6160	netdev_info(dev, "Chelsio %s %s\n", adap->params.vpd.id, buf);
6161}
6162
6163/*
6164 * Free the following resources:
6165 * - memory used for tables
6166 * - MSI/MSI-X
6167 * - net devices
6168 * - resources FW is holding for us
6169 */
6170static void free_some_resources(struct adapter *adapter)
6171{
6172	unsigned int i;
6173
6174	kvfree(adapter->smt);
6175	kvfree(adapter->l2t);
6176	kvfree(adapter->srq);
6177	t4_cleanup_sched(adapter);
6178	kvfree(adapter->tids.tid_tab);
6179	cxgb4_cleanup_tc_matchall(adapter);
6180	cxgb4_cleanup_tc_mqprio(adapter);
6181	cxgb4_cleanup_tc_flower(adapter);
6182	cxgb4_cleanup_tc_u32(adapter);
6183	cxgb4_cleanup_ethtool_filters(adapter);
6184	kfree(adapter->sge.egr_map);
6185	kfree(adapter->sge.ingr_map);
6186	bitmap_free(adapter->sge.starving_fl);
6187	bitmap_free(adapter->sge.txq_maperr);
6188#ifdef CONFIG_DEBUG_FS
6189	bitmap_free(adapter->sge.blocked_fl);
6190#endif
6191	disable_msi(adapter);
6192
6193	for_each_port(adapter, i)
6194		if (adapter->port[i]) {
6195			struct port_info *pi = adap2pinfo(adapter, i);
6196
6197			if (pi->viid != 0)
6198				t4_free_vi(adapter, adapter->mbox, adapter->pf,
6199					   0, pi->viid);
6200			kfree(adap2pinfo(adapter, i)->rss);
6201			free_netdev(adapter->port[i]);
6202		}
6203	if (adapter->flags & CXGB4_FW_OK)
6204		t4_fw_bye(adapter, adapter->pf);
6205}
6206
6207#define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN | \
6208		   NETIF_F_GSO_UDP_L4)
6209#define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \
6210		   NETIF_F_GRO | NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA)
6211#define SEGMENT_SIZE 128
6212
6213static int t4_get_chip_type(struct adapter *adap, int ver)
6214{
6215	u32 pl_rev = REV_G(t4_read_reg(adap, PL_REV_A));
6216
6217	switch (ver) {
6218	case CHELSIO_T4:
6219		return CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev);
6220	case CHELSIO_T5:
6221		return CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
6222	case CHELSIO_T6:
6223		return CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
6224	default:
6225		break;
6226	}
6227	return -EINVAL;
6228}
6229
6230#ifdef CONFIG_PCI_IOV
6231static void cxgb4_mgmt_setup(struct net_device *dev)
6232{
6233	dev->type = ARPHRD_NONE;
6234	dev->mtu = 0;
6235	dev->hard_header_len = 0;
6236	dev->addr_len = 0;
6237	dev->tx_queue_len = 0;
6238	dev->flags |= IFF_NOARP;
6239	dev->priv_flags |= IFF_NO_QUEUE;
6240
6241	/* Initialize the device structure. */
6242	dev->netdev_ops = &cxgb4_mgmt_netdev_ops;
6243	dev->ethtool_ops = &cxgb4_mgmt_ethtool_ops;
6244}
6245
6246static int cxgb4_iov_configure(struct pci_dev *pdev, int num_vfs)
6247{
6248	struct adapter *adap = pci_get_drvdata(pdev);
6249	int err = 0;
6250	int current_vfs = pci_num_vf(pdev);
6251	u32 pcie_fw;
6252
6253	pcie_fw = readl(adap->regs + PCIE_FW_A);
6254	/* Check if fw is initialized */
6255	if (!(pcie_fw & PCIE_FW_INIT_F)) {
6256		dev_warn(&pdev->dev, "Device not initialized\n");
6257		return -EOPNOTSUPP;
6258	}
6259
6260	/* If any of the VF's is already assigned to Guest OS, then
6261	 * SRIOV for the same cannot be modified
6262	 */
6263	if (current_vfs && pci_vfs_assigned(pdev)) {
6264		dev_err(&pdev->dev,
6265			"Cannot modify SR-IOV while VFs are assigned\n");
6266		return current_vfs;
6267	}
6268	/* Note that the upper-level code ensures that we're never called with
6269	 * a non-zero "num_vfs" when we already have VFs instantiated.  But
6270	 * it never hurts to code defensively.
6271	 */
6272	if (num_vfs != 0 && current_vfs != 0)
6273		return -EBUSY;
6274
6275	/* Nothing to do for no change. */
6276	if (num_vfs == current_vfs)
6277		return num_vfs;
6278
6279	/* Disable SRIOV when zero is passed. */
6280	if (!num_vfs) {
6281		pci_disable_sriov(pdev);
6282		/* free VF Management Interface */
6283		unregister_netdev(adap->port[0]);
6284		free_netdev(adap->port[0]);
6285		adap->port[0] = NULL;
6286
6287		/* free VF resources */
6288		adap->num_vfs = 0;
6289		kfree(adap->vfinfo);
6290		adap->vfinfo = NULL;
6291		return 0;
6292	}
6293
6294	if (!current_vfs) {
6295		struct fw_pfvf_cmd port_cmd, port_rpl;
6296		struct net_device *netdev;
6297		unsigned int pmask, port;
6298		struct pci_dev *pbridge;
6299		struct port_info *pi;
6300		char name[IFNAMSIZ];
6301		u32 devcap2;
6302		u16 flags;
6303
6304		/* If we want to instantiate Virtual Functions, then our
6305		 * parent bridge's PCI-E needs to support Alternative Routing
6306		 * ID (ARI) because our VFs will show up at function offset 8
6307		 * and above.
6308		 */
6309		pbridge = pdev->bus->self;
6310		pcie_capability_read_word(pbridge, PCI_EXP_FLAGS, &flags);
6311		pcie_capability_read_dword(pbridge, PCI_EXP_DEVCAP2, &devcap2);
6312
6313		if ((flags & PCI_EXP_FLAGS_VERS) < 2 ||
6314		    !(devcap2 & PCI_EXP_DEVCAP2_ARI)) {
6315			/* Our parent bridge does not support ARI so issue a
6316			 * warning and skip instantiating the VFs.  They
6317			 * won't be reachable.
6318			 */
6319			dev_warn(&pdev->dev, "Parent bridge %02x:%02x.%x doesn't support ARI; can't instantiate Virtual Functions\n",
6320				 pbridge->bus->number, PCI_SLOT(pbridge->devfn),
6321				 PCI_FUNC(pbridge->devfn));
6322			return -ENOTSUPP;
6323		}
6324		memset(&port_cmd, 0, sizeof(port_cmd));
6325		port_cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) |
6326						 FW_CMD_REQUEST_F |
6327						 FW_CMD_READ_F |
6328						 FW_PFVF_CMD_PFN_V(adap->pf) |
6329						 FW_PFVF_CMD_VFN_V(0));
6330		port_cmd.retval_len16 = cpu_to_be32(FW_LEN16(port_cmd));
6331		err = t4_wr_mbox(adap, adap->mbox, &port_cmd, sizeof(port_cmd),
6332				 &port_rpl);
6333		if (err)
6334			return err;
6335		pmask = FW_PFVF_CMD_PMASK_G(be32_to_cpu(port_rpl.type_to_neq));
6336		port = ffs(pmask) - 1;
6337		/* Allocate VF Management Interface. */
6338		snprintf(name, IFNAMSIZ, "mgmtpf%d,%d", adap->adap_idx,
6339			 adap->pf);
6340		netdev = alloc_netdev(sizeof(struct port_info),
6341				      name, NET_NAME_UNKNOWN, cxgb4_mgmt_setup);
6342		if (!netdev)
6343			return -ENOMEM;
6344
6345		pi = netdev_priv(netdev);
6346		pi->adapter = adap;
6347		pi->lport = port;
6348		pi->tx_chan = port;
6349		SET_NETDEV_DEV(netdev, &pdev->dev);
6350
6351		adap->port[0] = netdev;
6352		pi->port_id = 0;
6353
6354		err = register_netdev(adap->port[0]);
6355		if (err) {
6356			pr_info("Unable to register VF mgmt netdev %s\n", name);
6357			free_netdev(adap->port[0]);
6358			adap->port[0] = NULL;
6359			return err;
6360		}
6361		/* Allocate and set up VF Information. */
6362		adap->vfinfo = kcalloc(pci_sriov_get_totalvfs(pdev),
6363				       sizeof(struct vf_info), GFP_KERNEL);
6364		if (!adap->vfinfo) {
6365			unregister_netdev(adap->port[0]);
6366			free_netdev(adap->port[0]);
6367			adap->port[0] = NULL;
6368			return -ENOMEM;
6369		}
6370		cxgb4_mgmt_fill_vf_station_mac_addr(adap);
6371	}
6372	/* Instantiate the requested number of VFs. */
6373	err = pci_enable_sriov(pdev, num_vfs);
6374	if (err) {
6375		pr_info("Unable to instantiate %d VFs\n", num_vfs);
6376		if (!current_vfs) {
6377			unregister_netdev(adap->port[0]);
6378			free_netdev(adap->port[0]);
6379			adap->port[0] = NULL;
6380			kfree(adap->vfinfo);
6381			adap->vfinfo = NULL;
6382		}
6383		return err;
6384	}
6385
6386	adap->num_vfs = num_vfs;
6387	return num_vfs;
6388}
6389#endif /* CONFIG_PCI_IOV */
6390
6391#if IS_ENABLED(CONFIG_CHELSIO_TLS_DEVICE) || IS_ENABLED(CONFIG_CHELSIO_IPSEC_INLINE)
6392
6393static int chcr_offload_state(struct adapter *adap,
6394			      enum cxgb4_netdev_tls_ops op_val)
6395{
6396	switch (op_val) {
6397#if IS_ENABLED(CONFIG_CHELSIO_TLS_DEVICE)
6398	case CXGB4_TLSDEV_OPS:
6399		if (!adap->uld[CXGB4_ULD_KTLS].handle) {
6400			dev_dbg(adap->pdev_dev, "ch_ktls driver is not loaded\n");
6401			return -EOPNOTSUPP;
6402		}
6403		if (!adap->uld[CXGB4_ULD_KTLS].tlsdev_ops) {
6404			dev_dbg(adap->pdev_dev,
6405				"ch_ktls driver has no registered tlsdev_ops\n");
6406			return -EOPNOTSUPP;
6407		}
6408		break;
6409#endif /* CONFIG_CHELSIO_TLS_DEVICE */
6410#if IS_ENABLED(CONFIG_CHELSIO_IPSEC_INLINE)
6411	case CXGB4_XFRMDEV_OPS:
6412		if (!adap->uld[CXGB4_ULD_IPSEC].handle) {
6413			dev_dbg(adap->pdev_dev, "chipsec driver is not loaded\n");
6414			return -EOPNOTSUPP;
6415		}
6416		if (!adap->uld[CXGB4_ULD_IPSEC].xfrmdev_ops) {
6417			dev_dbg(adap->pdev_dev,
6418				"chipsec driver has no registered xfrmdev_ops\n");
6419			return -EOPNOTSUPP;
6420		}
6421		break;
6422#endif /* CONFIG_CHELSIO_IPSEC_INLINE */
6423	default:
6424		dev_dbg(adap->pdev_dev,
6425			"driver has no support for offload %d\n", op_val);
6426		return -EOPNOTSUPP;
6427	}
6428
6429	return 0;
6430}
6431
6432#endif /* CONFIG_CHELSIO_TLS_DEVICE || CONFIG_CHELSIO_IPSEC_INLINE */
6433
6434#if IS_ENABLED(CONFIG_CHELSIO_TLS_DEVICE)
6435
6436static int cxgb4_ktls_dev_add(struct net_device *netdev, struct sock *sk,
6437			      enum tls_offload_ctx_dir direction,
6438			      struct tls_crypto_info *crypto_info,
6439			      u32 tcp_sn)
6440{
6441	struct adapter *adap = netdev2adap(netdev);
6442	int ret;
6443
6444	mutex_lock(&uld_mutex);
6445	ret = chcr_offload_state(adap, CXGB4_TLSDEV_OPS);
6446	if (ret)
6447		goto out_unlock;
6448
6449	ret = cxgb4_set_ktls_feature(adap, FW_PARAMS_PARAM_DEV_KTLS_HW_ENABLE);
6450	if (ret)
6451		goto out_unlock;
6452
6453	ret = adap->uld[CXGB4_ULD_KTLS].tlsdev_ops->tls_dev_add(netdev, sk,
6454								direction,
6455								crypto_info,
6456								tcp_sn);
6457	/* if there is a failure, clear the refcount */
6458	if (ret)
6459		cxgb4_set_ktls_feature(adap,
6460				       FW_PARAMS_PARAM_DEV_KTLS_HW_DISABLE);
6461out_unlock:
6462	mutex_unlock(&uld_mutex);
6463	return ret;
6464}
6465
6466static void cxgb4_ktls_dev_del(struct net_device *netdev,
6467			       struct tls_context *tls_ctx,
6468			       enum tls_offload_ctx_dir direction)
6469{
6470	struct adapter *adap = netdev2adap(netdev);
6471
6472	mutex_lock(&uld_mutex);
6473	if (chcr_offload_state(adap, CXGB4_TLSDEV_OPS))
6474		goto out_unlock;
6475
6476	adap->uld[CXGB4_ULD_KTLS].tlsdev_ops->tls_dev_del(netdev, tls_ctx,
6477							  direction);
6478
6479out_unlock:
6480	cxgb4_set_ktls_feature(adap, FW_PARAMS_PARAM_DEV_KTLS_HW_DISABLE);
6481	mutex_unlock(&uld_mutex);
6482}
6483
6484static const struct tlsdev_ops cxgb4_ktls_ops = {
6485	.tls_dev_add = cxgb4_ktls_dev_add,
6486	.tls_dev_del = cxgb4_ktls_dev_del,
6487};
6488#endif /* CONFIG_CHELSIO_TLS_DEVICE */
6489
6490#if IS_ENABLED(CONFIG_CHELSIO_IPSEC_INLINE)
6491
6492static int cxgb4_xfrm_add_state(struct xfrm_state *x,
6493				struct netlink_ext_ack *extack)
6494{
6495	struct adapter *adap = netdev2adap(x->xso.dev);
6496	int ret;
6497
6498	if (!mutex_trylock(&uld_mutex)) {
6499		NL_SET_ERR_MSG_MOD(extack, "crypto uld critical resource is under use");
6500		return -EBUSY;
6501	}
6502	ret = chcr_offload_state(adap, CXGB4_XFRMDEV_OPS);
6503	if (ret)
6504		goto out_unlock;
6505
6506	ret = adap->uld[CXGB4_ULD_IPSEC].xfrmdev_ops->xdo_dev_state_add(x, extack);
6507
6508out_unlock:
6509	mutex_unlock(&uld_mutex);
6510
6511	return ret;
6512}
6513
6514static void cxgb4_xfrm_del_state(struct xfrm_state *x)
6515{
6516	struct adapter *adap = netdev2adap(x->xso.dev);
6517
6518	if (!mutex_trylock(&uld_mutex)) {
6519		dev_dbg(adap->pdev_dev,
6520			"crypto uld critical resource is under use\n");
6521		return;
6522	}
6523	if (chcr_offload_state(adap, CXGB4_XFRMDEV_OPS))
6524		goto out_unlock;
6525
6526	adap->uld[CXGB4_ULD_IPSEC].xfrmdev_ops->xdo_dev_state_delete(x);
6527
6528out_unlock:
6529	mutex_unlock(&uld_mutex);
6530}
6531
6532static void cxgb4_xfrm_free_state(struct xfrm_state *x)
6533{
6534	struct adapter *adap = netdev2adap(x->xso.dev);
6535
6536	if (!mutex_trylock(&uld_mutex)) {
6537		dev_dbg(adap->pdev_dev,
6538			"crypto uld critical resource is under use\n");
6539		return;
6540	}
6541	if (chcr_offload_state(adap, CXGB4_XFRMDEV_OPS))
6542		goto out_unlock;
6543
6544	adap->uld[CXGB4_ULD_IPSEC].xfrmdev_ops->xdo_dev_state_free(x);
6545
6546out_unlock:
6547	mutex_unlock(&uld_mutex);
6548}
6549
6550static bool cxgb4_ipsec_offload_ok(struct sk_buff *skb, struct xfrm_state *x)
6551{
6552	struct adapter *adap = netdev2adap(x->xso.dev);
6553	bool ret = false;
6554
6555	if (!mutex_trylock(&uld_mutex)) {
6556		dev_dbg(adap->pdev_dev,
6557			"crypto uld critical resource is under use\n");
6558		return ret;
6559	}
6560	if (chcr_offload_state(adap, CXGB4_XFRMDEV_OPS))
6561		goto out_unlock;
6562
6563	ret = adap->uld[CXGB4_ULD_IPSEC].xfrmdev_ops->xdo_dev_offload_ok(skb, x);
6564
6565out_unlock:
6566	mutex_unlock(&uld_mutex);
6567	return ret;
6568}
6569
6570static void cxgb4_advance_esn_state(struct xfrm_state *x)
6571{
6572	struct adapter *adap = netdev2adap(x->xso.dev);
6573
6574	if (!mutex_trylock(&uld_mutex)) {
6575		dev_dbg(adap->pdev_dev,
6576			"crypto uld critical resource is under use\n");
6577		return;
6578	}
6579	if (chcr_offload_state(adap, CXGB4_XFRMDEV_OPS))
6580		goto out_unlock;
6581
6582	adap->uld[CXGB4_ULD_IPSEC].xfrmdev_ops->xdo_dev_state_advance_esn(x);
6583
6584out_unlock:
6585	mutex_unlock(&uld_mutex);
6586}
6587
6588static const struct xfrmdev_ops cxgb4_xfrmdev_ops = {
6589	.xdo_dev_state_add      = cxgb4_xfrm_add_state,
6590	.xdo_dev_state_delete   = cxgb4_xfrm_del_state,
6591	.xdo_dev_state_free     = cxgb4_xfrm_free_state,
6592	.xdo_dev_offload_ok     = cxgb4_ipsec_offload_ok,
6593	.xdo_dev_state_advance_esn = cxgb4_advance_esn_state,
6594};
6595
6596#endif /* CONFIG_CHELSIO_IPSEC_INLINE */
6597
6598static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
6599{
6600	struct net_device *netdev;
6601	struct adapter *adapter;
6602	static int adap_idx = 1;
6603	int s_qpp, qpp, num_seg;
6604	struct port_info *pi;
6605	enum chip_type chip;
6606	void __iomem *regs;
6607	int func, chip_ver;
6608	u16 device_id;
6609	int i, err;
6610	u32 whoami;
6611
6612	err = pci_request_regions(pdev, KBUILD_MODNAME);
6613	if (err) {
6614		/* Just info, some other driver may have claimed the device. */
6615		dev_info(&pdev->dev, "cannot obtain PCI resources\n");
6616		return err;
6617	}
6618
6619	err = pci_enable_device(pdev);
6620	if (err) {
6621		dev_err(&pdev->dev, "cannot enable PCI device\n");
6622		goto out_release_regions;
6623	}
6624
6625	regs = pci_ioremap_bar(pdev, 0);
6626	if (!regs) {
6627		dev_err(&pdev->dev, "cannot map device registers\n");
6628		err = -ENOMEM;
6629		goto out_disable_device;
6630	}
6631
6632	adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
6633	if (!adapter) {
6634		err = -ENOMEM;
6635		goto out_unmap_bar0;
6636	}
6637
6638	adapter->regs = regs;
6639	err = t4_wait_dev_ready(regs);
6640	if (err < 0)
6641		goto out_free_adapter;
6642
6643	/* We control everything through one PF */
6644	whoami = t4_read_reg(adapter, PL_WHOAMI_A);
6645	pci_read_config_word(pdev, PCI_DEVICE_ID, &device_id);
6646	chip = t4_get_chip_type(adapter, CHELSIO_PCI_ID_VER(device_id));
6647	if ((int)chip < 0) {
6648		dev_err(&pdev->dev, "Device %d is not supported\n", device_id);
6649		err = chip;
6650		goto out_free_adapter;
6651	}
6652	chip_ver = CHELSIO_CHIP_VERSION(chip);
6653	func = chip_ver <= CHELSIO_T5 ?
6654	       SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
6655
6656	adapter->pdev = pdev;
6657	adapter->pdev_dev = &pdev->dev;
6658	adapter->name = pci_name(pdev);
6659	adapter->mbox = func;
6660	adapter->pf = func;
6661	adapter->params.chip = chip;
6662	adapter->adap_idx = adap_idx;
6663	adapter->msg_enable = DFLT_MSG_ENABLE;
6664	adapter->mbox_log = kzalloc(sizeof(*adapter->mbox_log) +
6665				    (sizeof(struct mbox_cmd) *
6666				     T4_OS_LOG_MBOX_CMDS),
6667				    GFP_KERNEL);
6668	if (!adapter->mbox_log) {
6669		err = -ENOMEM;
6670		goto out_free_adapter;
6671	}
6672	spin_lock_init(&adapter->mbox_lock);
6673	INIT_LIST_HEAD(&adapter->mlist.list);
6674	adapter->mbox_log->size = T4_OS_LOG_MBOX_CMDS;
6675	pci_set_drvdata(pdev, adapter);
6676
6677	if (func != ent->driver_data) {
6678		pci_disable_device(pdev);
6679		pci_save_state(pdev);        /* to restore SR-IOV later */
6680		return 0;
6681	}
6682
6683	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
6684	if (err) {
6685		dev_err(&pdev->dev, "no usable DMA configuration\n");
6686		goto out_free_adapter;
6687	}
6688
6689	pci_set_master(pdev);
6690	pci_save_state(pdev);
6691	adap_idx++;
6692	adapter->workq = create_singlethread_workqueue("cxgb4");
6693	if (!adapter->workq) {
6694		err = -ENOMEM;
6695		goto out_free_adapter;
6696	}
6697
6698	/* PCI device has been enabled */
6699	adapter->flags |= CXGB4_DEV_ENABLED;
6700	memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map));
6701
6702	/* If possible, we use PCIe Relaxed Ordering Attribute to deliver
6703	 * Ingress Packet Data to Free List Buffers in order to allow for
6704	 * chipset performance optimizations between the Root Complex and
6705	 * Memory Controllers.  (Messages to the associated Ingress Queue
6706	 * notifying new Packet Placement in the Free Lists Buffers will be
6707	 * send without the Relaxed Ordering Attribute thus guaranteeing that
6708	 * all preceding PCIe Transaction Layer Packets will be processed
6709	 * first.)  But some Root Complexes have various issues with Upstream
6710	 * Transaction Layer Packets with the Relaxed Ordering Attribute set.
6711	 * The PCIe devices which under the Root Complexes will be cleared the
6712	 * Relaxed Ordering bit in the configuration space, So we check our
6713	 * PCIe configuration space to see if it's flagged with advice against
6714	 * using Relaxed Ordering.
6715	 */
6716	if (!pcie_relaxed_ordering_enabled(pdev))
6717		adapter->flags |= CXGB4_ROOT_NO_RELAXED_ORDERING;
6718
6719	spin_lock_init(&adapter->stats_lock);
6720	spin_lock_init(&adapter->tid_release_lock);
6721	spin_lock_init(&adapter->win0_lock);
6722
6723	INIT_WORK(&adapter->tid_release_task, process_tid_release_list);
6724	INIT_WORK(&adapter->db_full_task, process_db_full);
6725	INIT_WORK(&adapter->db_drop_task, process_db_drop);
6726	INIT_WORK(&adapter->fatal_err_notify_task, notify_fatal_err);
6727
6728	err = t4_prep_adapter(adapter);
6729	if (err)
6730		goto out_free_adapter;
6731
6732	if (is_kdump_kernel()) {
6733		/* Collect hardware state and append to /proc/vmcore */
6734		err = cxgb4_cudbg_vmcore_add_dump(adapter);
6735		if (err) {
6736			dev_warn(adapter->pdev_dev,
6737				 "Fail collecting vmcore device dump, err: %d. Continuing\n",
6738				 err);
6739			err = 0;
6740		}
6741	}
6742
6743	if (!is_t4(adapter->params.chip)) {
6744		s_qpp = (QUEUESPERPAGEPF0_S +
6745			(QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) *
6746			adapter->pf);
6747		qpp = 1 << QUEUESPERPAGEPF0_G(t4_read_reg(adapter,
6748		      SGE_EGRESS_QUEUES_PER_PAGE_PF_A) >> s_qpp);
6749		num_seg = PAGE_SIZE / SEGMENT_SIZE;
6750
6751		/* Each segment size is 128B. Write coalescing is enabled only
6752		 * when SGE_EGRESS_QUEUES_PER_PAGE_PF reg value for the
6753		 * queue is less no of segments that can be accommodated in
6754		 * a page size.
6755		 */
6756		if (qpp > num_seg) {
6757			dev_err(&pdev->dev,
6758				"Incorrect number of egress queues per page\n");
6759			err = -EINVAL;
6760			goto out_free_adapter;
6761		}
6762		adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2),
6763		pci_resource_len(pdev, 2));
6764		if (!adapter->bar2) {
6765			dev_err(&pdev->dev, "cannot map device bar2 region\n");
6766			err = -ENOMEM;
6767			goto out_free_adapter;
6768		}
6769	}
6770
6771	setup_memwin(adapter);
6772	err = adap_init0(adapter, 0);
6773	if (err)
6774		goto out_unmap_bar;
6775
6776	setup_memwin_rdma(adapter);
6777
6778	/* configure SGE_STAT_CFG_A to read WC stats */
6779	if (!is_t4(adapter->params.chip))
6780		t4_write_reg(adapter, SGE_STAT_CFG_A, STATSOURCE_T5_V(7) |
6781			     (is_t5(adapter->params.chip) ? STATMODE_V(0) :
6782			      T6_STATMODE_V(0)));
6783
6784	/* Initialize hash mac addr list */
6785	INIT_LIST_HEAD(&adapter->mac_hlist);
6786
6787	for_each_port(adapter, i) {
6788		/* For supporting MQPRIO Offload, need some extra
6789		 * queues for each ETHOFLD TIDs. Keep it equal to
6790		 * MAX_ATIDs for now. Once we connect to firmware
6791		 * later and query the EOTID params, we'll come to
6792		 * know the actual # of EOTIDs supported.
6793		 */
6794		netdev = alloc_etherdev_mq(sizeof(struct port_info),
6795					   MAX_ETH_QSETS + MAX_ATIDS);
6796		if (!netdev) {
6797			err = -ENOMEM;
6798			goto out_free_dev;
6799		}
6800
6801		SET_NETDEV_DEV(netdev, &pdev->dev);
6802
6803		adapter->port[i] = netdev;
6804		pi = netdev_priv(netdev);
6805		pi->adapter = adapter;
6806		pi->xact_addr_filt = -1;
6807		pi->port_id = i;
6808		netdev->irq = pdev->irq;
6809
6810		netdev->hw_features = NETIF_F_SG | TSO_FLAGS |
6811			NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
6812			NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_GRO |
6813			NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
6814			NETIF_F_HW_TC | NETIF_F_NTUPLE | NETIF_F_HIGHDMA;
6815
6816		if (chip_ver > CHELSIO_T5) {
6817			netdev->hw_enc_features |= NETIF_F_IP_CSUM |
6818						   NETIF_F_IPV6_CSUM |
6819						   NETIF_F_RXCSUM |
6820						   NETIF_F_GSO_UDP_TUNNEL |
6821						   NETIF_F_GSO_UDP_TUNNEL_CSUM |
6822						   NETIF_F_TSO | NETIF_F_TSO6;
6823
6824			netdev->hw_features |= NETIF_F_GSO_UDP_TUNNEL |
6825					       NETIF_F_GSO_UDP_TUNNEL_CSUM |
6826					       NETIF_F_HW_TLS_RECORD;
6827
6828			if (adapter->rawf_cnt)
6829				netdev->udp_tunnel_nic_info = &cxgb_udp_tunnels;
6830		}
6831
6832		netdev->features |= netdev->hw_features;
6833		netdev->vlan_features = netdev->features & VLAN_FEAT;
6834#if IS_ENABLED(CONFIG_CHELSIO_TLS_DEVICE)
6835		if (pi->adapter->params.crypto & FW_CAPS_CONFIG_TLS_HW) {
6836			netdev->hw_features |= NETIF_F_HW_TLS_TX;
6837			netdev->tlsdev_ops = &cxgb4_ktls_ops;
6838			/* initialize the refcount */
6839			refcount_set(&pi->adapter->chcr_ktls.ktls_refcount, 0);
6840		}
6841#endif /* CONFIG_CHELSIO_TLS_DEVICE */
6842#if IS_ENABLED(CONFIG_CHELSIO_IPSEC_INLINE)
6843		if (pi->adapter->params.crypto & FW_CAPS_CONFIG_IPSEC_INLINE) {
6844			netdev->hw_enc_features |= NETIF_F_HW_ESP;
6845			netdev->features |= NETIF_F_HW_ESP;
6846			netdev->xfrmdev_ops = &cxgb4_xfrmdev_ops;
6847		}
6848#endif /* CONFIG_CHELSIO_IPSEC_INLINE */
6849
6850		netdev->priv_flags |= IFF_UNICAST_FLT;
6851
6852		/* MTU range: 81 - 9600 */
6853		netdev->min_mtu = 81;              /* accommodate SACK */
6854		netdev->max_mtu = MAX_MTU;
6855
6856		netdev->netdev_ops = &cxgb4_netdev_ops;
6857#ifdef CONFIG_CHELSIO_T4_DCB
6858		netdev->dcbnl_ops = &cxgb4_dcb_ops;
6859		cxgb4_dcb_state_init(netdev);
6860		cxgb4_dcb_version_init(netdev);
6861#endif
6862		cxgb4_set_ethtool_ops(netdev);
6863	}
6864
6865	cxgb4_init_ethtool_dump(adapter);
6866
6867	pci_set_drvdata(pdev, adapter);
6868
6869	if (adapter->flags & CXGB4_FW_OK) {
6870		err = t4_port_init(adapter, func, func, 0);
6871		if (err)
6872			goto out_free_dev;
6873	} else if (adapter->params.nports == 1) {
6874		/* If we don't have a connection to the firmware -- possibly
6875		 * because of an error -- grab the raw VPD parameters so we
6876		 * can set the proper MAC Address on the debug network
6877		 * interface that we've created.
6878		 */
6879		u8 hw_addr[ETH_ALEN];
6880		u8 *na = adapter->params.vpd.na;
6881
6882		err = t4_get_raw_vpd_params(adapter, &adapter->params.vpd);
6883		if (!err) {
6884			for (i = 0; i < ETH_ALEN; i++)
6885				hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 +
6886					      hex2val(na[2 * i + 1]));
6887			t4_set_hw_addr(adapter, 0, hw_addr);
6888		}
6889	}
6890
6891	if (!(adapter->flags & CXGB4_FW_OK))
6892		goto fw_attach_fail;
6893
6894	/* Configure queues and allocate tables now, they can be needed as
6895	 * soon as the first register_netdev completes.
6896	 */
6897	err = cfg_queues(adapter);
6898	if (err)
6899		goto out_free_dev;
6900
6901	adapter->smt = t4_init_smt();
6902	if (!adapter->smt) {
6903		/* We tolerate a lack of SMT, giving up some functionality */
6904		dev_warn(&pdev->dev, "could not allocate SMT, continuing\n");
6905	}
6906
6907	adapter->l2t = t4_init_l2t(adapter->l2t_start, adapter->l2t_end);
6908	if (!adapter->l2t) {
6909		/* We tolerate a lack of L2T, giving up some functionality */
6910		dev_warn(&pdev->dev, "could not allocate L2T, continuing\n");
6911		adapter->params.offload = 0;
6912	}
6913
6914#if IS_ENABLED(CONFIG_IPV6)
6915	if (chip_ver <= CHELSIO_T5 &&
6916	    (!(t4_read_reg(adapter, LE_DB_CONFIG_A) & ASLIPCOMPEN_F))) {
6917		/* CLIP functionality is not present in hardware,
6918		 * hence disable all offload features
6919		 */
6920		dev_warn(&pdev->dev,
6921			 "CLIP not enabled in hardware, continuing\n");
6922		adapter->params.offload = 0;
6923	} else {
6924		adapter->clipt = t4_init_clip_tbl(adapter->clipt_start,
6925						  adapter->clipt_end);
6926		if (!adapter->clipt) {
6927			/* We tolerate a lack of clip_table, giving up
6928			 * some functionality
6929			 */
6930			dev_warn(&pdev->dev,
6931				 "could not allocate Clip table, continuing\n");
6932			adapter->params.offload = 0;
6933		}
6934	}
6935#endif
6936
6937	for_each_port(adapter, i) {
6938		pi = adap2pinfo(adapter, i);
6939		pi->sched_tbl = t4_init_sched(adapter->params.nsched_cls);
6940		if (!pi->sched_tbl)
6941			dev_warn(&pdev->dev,
6942				 "could not activate scheduling on port %d\n",
6943				 i);
6944	}
6945
6946	if (is_offload(adapter) || is_hashfilter(adapter)) {
6947		if (t4_read_reg(adapter, LE_DB_CONFIG_A) & HASHEN_F) {
6948			u32 v;
6949
6950			v = t4_read_reg(adapter, LE_DB_HASH_CONFIG_A);
6951			if (chip_ver <= CHELSIO_T5) {
6952				adapter->tids.nhash = 1 << HASHTIDSIZE_G(v);
6953				v = t4_read_reg(adapter, LE_DB_TID_HASHBASE_A);
6954				adapter->tids.hash_base = v / 4;
6955			} else {
6956				adapter->tids.nhash = HASHTBLSIZE_G(v) << 3;
6957				v = t4_read_reg(adapter,
6958						T6_LE_DB_HASH_TID_BASE_A);
6959				adapter->tids.hash_base = v;
6960			}
6961		}
6962	}
6963
6964	if (tid_init(&adapter->tids) < 0) {
6965		dev_warn(&pdev->dev, "could not allocate TID table, "
6966			 "continuing\n");
6967		adapter->params.offload = 0;
6968	} else {
6969		adapter->tc_u32 = cxgb4_init_tc_u32(adapter);
6970		if (!adapter->tc_u32)
6971			dev_warn(&pdev->dev,
6972				 "could not offload tc u32, continuing\n");
6973
6974		if (cxgb4_init_tc_flower(adapter))
6975			dev_warn(&pdev->dev,
6976				 "could not offload tc flower, continuing\n");
6977
6978		if (cxgb4_init_tc_mqprio(adapter))
6979			dev_warn(&pdev->dev,
6980				 "could not offload tc mqprio, continuing\n");
6981
6982		if (cxgb4_init_tc_matchall(adapter))
6983			dev_warn(&pdev->dev,
6984				 "could not offload tc matchall, continuing\n");
6985		if (cxgb4_init_ethtool_filters(adapter))
6986			dev_warn(&pdev->dev,
6987				 "could not initialize ethtool filters, continuing\n");
6988	}
6989
6990	/* See what interrupts we'll be using */
6991	if (msi > 1 && enable_msix(adapter) == 0)
6992		adapter->flags |= CXGB4_USING_MSIX;
6993	else if (msi > 0 && pci_enable_msi(pdev) == 0) {
6994		adapter->flags |= CXGB4_USING_MSI;
6995		if (msi > 1)
6996			free_msix_info(adapter);
6997	}
6998
6999	/* check for PCI Express bandwidth capabiltites */
7000	pcie_print_link_status(pdev);
7001
7002	cxgb4_init_mps_ref_entries(adapter);
7003
7004	err = init_rss(adapter);
7005	if (err)
7006		goto out_free_dev;
7007
7008	err = setup_non_data_intr(adapter);
7009	if (err) {
7010		dev_err(adapter->pdev_dev,
7011			"Non Data interrupt allocation failed, err: %d\n", err);
7012		goto out_free_dev;
7013	}
7014
7015	err = setup_fw_sge_queues(adapter);
7016	if (err) {
7017		dev_err(adapter->pdev_dev,
7018			"FW sge queue allocation failed, err %d", err);
7019		goto out_free_dev;
7020	}
7021
7022fw_attach_fail:
7023	/*
7024	 * The card is now ready to go.  If any errors occur during device
7025	 * registration we do not fail the whole card but rather proceed only
7026	 * with the ports we manage to register successfully.  However we must
7027	 * register at least one net device.
7028	 */
7029	for_each_port(adapter, i) {
7030		pi = adap2pinfo(adapter, i);
7031		adapter->port[i]->dev_port = pi->lport;
7032		netif_set_real_num_tx_queues(adapter->port[i], pi->nqsets);
7033		netif_set_real_num_rx_queues(adapter->port[i], pi->nqsets);
7034
7035		netif_carrier_off(adapter->port[i]);
7036
7037		err = register_netdev(adapter->port[i]);
7038		if (err)
7039			break;
7040		adapter->chan_map[pi->tx_chan] = i;
7041		print_port_info(adapter->port[i]);
7042	}
7043	if (i == 0) {
7044		dev_err(&pdev->dev, "could not register any net devices\n");
7045		goto out_free_dev;
7046	}
7047	if (err) {
7048		dev_warn(&pdev->dev, "only %d net devices registered\n", i);
7049		err = 0;
7050	}
7051
7052	if (cxgb4_debugfs_root) {
7053		adapter->debugfs_root = debugfs_create_dir(pci_name(pdev),
7054							   cxgb4_debugfs_root);
7055		setup_debugfs(adapter);
7056	}
7057
7058	/* PCIe EEH recovery on powerpc platforms needs fundamental reset */
7059	pdev->needs_freset = 1;
7060
7061	if (is_uld(adapter))
7062		cxgb4_uld_enable(adapter);
7063
7064	if (!is_t4(adapter->params.chip))
7065		cxgb4_ptp_init(adapter);
7066
7067	if (IS_REACHABLE(CONFIG_THERMAL) &&
7068	    !is_t4(adapter->params.chip) && (adapter->flags & CXGB4_FW_OK))
7069		cxgb4_thermal_init(adapter);
7070
7071	print_adapter_info(adapter);
7072	return 0;
7073
7074 out_free_dev:
7075	t4_free_sge_resources(adapter);
7076	free_some_resources(adapter);
7077	if (adapter->flags & CXGB4_USING_MSIX)
7078		free_msix_info(adapter);
7079	if (adapter->num_uld || adapter->num_ofld_uld)
7080		t4_uld_mem_free(adapter);
7081 out_unmap_bar:
7082	if (!is_t4(adapter->params.chip))
7083		iounmap(adapter->bar2);
7084 out_free_adapter:
7085	if (adapter->workq)
7086		destroy_workqueue(adapter->workq);
7087
7088	kfree(adapter->mbox_log);
7089	kfree(adapter);
7090 out_unmap_bar0:
7091	iounmap(regs);
7092 out_disable_device:
7093	pci_disable_device(pdev);
7094 out_release_regions:
7095	pci_release_regions(pdev);
7096	return err;
7097}
7098
7099static void remove_one(struct pci_dev *pdev)
7100{
7101	struct adapter *adapter = pci_get_drvdata(pdev);
7102	struct hash_mac_addr *entry, *tmp;
7103
7104	if (!adapter) {
7105		pci_release_regions(pdev);
7106		return;
7107	}
7108
7109	/* If we allocated filters, free up state associated with any
7110	 * valid filters ...
7111	 */
7112	clear_all_filters(adapter);
7113
7114	adapter->flags |= CXGB4_SHUTTING_DOWN;
7115
7116	if (adapter->pf == 4) {
7117		int i;
7118
7119		/* Tear down per-adapter Work Queue first since it can contain
7120		 * references to our adapter data structure.
7121		 */
7122		destroy_workqueue(adapter->workq);
7123
7124		detach_ulds(adapter);
7125
7126		for_each_port(adapter, i)
7127			if (adapter->port[i]->reg_state == NETREG_REGISTERED)
7128				unregister_netdev(adapter->port[i]);
7129
7130		t4_uld_clean_up(adapter);
7131
7132		adap_free_hma_mem(adapter);
7133
7134		disable_interrupts(adapter);
7135
7136		cxgb4_free_mps_ref_entries(adapter);
7137
7138		debugfs_remove_recursive(adapter->debugfs_root);
7139
7140		if (!is_t4(adapter->params.chip))
7141			cxgb4_ptp_stop(adapter);
7142		if (IS_REACHABLE(CONFIG_THERMAL))
7143			cxgb4_thermal_remove(adapter);
7144
7145		if (adapter->flags & CXGB4_FULL_INIT_DONE)
7146			cxgb_down(adapter);
7147
7148		if (adapter->flags & CXGB4_USING_MSIX)
7149			free_msix_info(adapter);
7150		if (adapter->num_uld || adapter->num_ofld_uld)
7151			t4_uld_mem_free(adapter);
7152		free_some_resources(adapter);
7153		list_for_each_entry_safe(entry, tmp, &adapter->mac_hlist,
7154					 list) {
7155			list_del(&entry->list);
7156			kfree(entry);
7157		}
7158
7159#if IS_ENABLED(CONFIG_IPV6)
7160		t4_cleanup_clip_tbl(adapter);
7161#endif
7162		if (!is_t4(adapter->params.chip))
7163			iounmap(adapter->bar2);
7164	}
7165#ifdef CONFIG_PCI_IOV
7166	else {
7167		cxgb4_iov_configure(adapter->pdev, 0);
7168	}
7169#endif
7170	iounmap(adapter->regs);
7171	if ((adapter->flags & CXGB4_DEV_ENABLED)) {
7172		pci_disable_device(pdev);
7173		adapter->flags &= ~CXGB4_DEV_ENABLED;
7174	}
7175	pci_release_regions(pdev);
7176	kfree(adapter->mbox_log);
7177	synchronize_rcu();
7178	kfree(adapter);
7179}
7180
7181/* "Shutdown" quiesces the device, stopping Ingress Packet and Interrupt
7182 * delivery.  This is essentially a stripped down version of the PCI remove()
7183 * function where we do the minimal amount of work necessary to shutdown any
7184 * further activity.
7185 */
7186static void shutdown_one(struct pci_dev *pdev)
7187{
7188	struct adapter *adapter = pci_get_drvdata(pdev);
7189
7190	/* As with remove_one() above (see extended comment), we only want do
7191	 * do cleanup on PCI Devices which went all the way through init_one()
7192	 * ...
7193	 */
7194	if (!adapter) {
7195		pci_release_regions(pdev);
7196		return;
7197	}
7198
7199	adapter->flags |= CXGB4_SHUTTING_DOWN;
7200
7201	if (adapter->pf == 4) {
7202		int i;
7203
7204		for_each_port(adapter, i)
7205			if (adapter->port[i]->reg_state == NETREG_REGISTERED)
7206				cxgb_close(adapter->port[i]);
7207
7208		rtnl_lock();
7209		cxgb4_mqprio_stop_offload(adapter);
7210		rtnl_unlock();
7211
7212		if (is_uld(adapter)) {
7213			detach_ulds(adapter);
7214			t4_uld_clean_up(adapter);
7215		}
7216
7217		disable_interrupts(adapter);
7218		disable_msi(adapter);
7219
7220		t4_sge_stop(adapter);
7221		if (adapter->flags & CXGB4_FW_OK)
7222			t4_fw_bye(adapter, adapter->mbox);
7223	}
7224}
7225
7226static struct pci_driver cxgb4_driver = {
7227	.name     = KBUILD_MODNAME,
7228	.id_table = cxgb4_pci_tbl,
7229	.probe    = init_one,
7230	.remove   = remove_one,
7231	.shutdown = shutdown_one,
7232#ifdef CONFIG_PCI_IOV
7233	.sriov_configure = cxgb4_iov_configure,
7234#endif
7235	.err_handler = &cxgb4_eeh,
7236};
7237
7238static int __init cxgb4_init_module(void)
7239{
7240	int ret;
7241
7242	cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL);
7243
7244	ret = pci_register_driver(&cxgb4_driver);
7245	if (ret < 0)
7246		goto err_pci;
7247
7248#if IS_ENABLED(CONFIG_IPV6)
7249	if (!inet6addr_registered) {
7250		ret = register_inet6addr_notifier(&cxgb4_inet6addr_notifier);
7251		if (ret)
7252			pci_unregister_driver(&cxgb4_driver);
7253		else
7254			inet6addr_registered = true;
7255	}
7256#endif
7257
7258	if (ret == 0)
7259		return ret;
7260
7261err_pci:
7262	debugfs_remove(cxgb4_debugfs_root);
7263
7264	return ret;
7265}
7266
7267static void __exit cxgb4_cleanup_module(void)
7268{
7269#if IS_ENABLED(CONFIG_IPV6)
7270	if (inet6addr_registered) {
7271		unregister_inet6addr_notifier(&cxgb4_inet6addr_notifier);
7272		inet6addr_registered = false;
7273	}
7274#endif
7275	pci_unregister_driver(&cxgb4_driver);
7276	debugfs_remove(cxgb4_debugfs_root);  /* NULL ok */
7277}
7278
7279module_init(cxgb4_init_module);
7280module_exit(cxgb4_cleanup_module);
7281