1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 2015 Cavium, Inc.
4 */
5
6#include <linux/pci.h>
7#include <linux/netdevice.h>
8#include <linux/ip.h>
9#include <linux/etherdevice.h>
10#include <linux/iommu.h>
11#include <net/ip.h>
12#include <net/tso.h>
13#include <uapi/linux/bpf.h>
14
15#include "nic_reg.h"
16#include "nic.h"
17#include "q_struct.h"
18#include "nicvf_queues.h"
19
20static inline void nicvf_sq_add_gather_subdesc(struct snd_queue *sq, int qentry,
21					       int size, u64 data);
22static void nicvf_get_page(struct nicvf *nic)
23{
24	if (!nic->rb_pageref || !nic->rb_page)
25		return;
26
27	page_ref_add(nic->rb_page, nic->rb_pageref);
28	nic->rb_pageref = 0;
29}
30
31/* Poll a register for a specific value */
32static int nicvf_poll_reg(struct nicvf *nic, int qidx,
33			  u64 reg, int bit_pos, int bits, int val)
34{
35	u64 bit_mask;
36	u64 reg_val;
37	int timeout = 10;
38
39	bit_mask = (1ULL << bits) - 1;
40	bit_mask = (bit_mask << bit_pos);
41
42	while (timeout) {
43		reg_val = nicvf_queue_reg_read(nic, reg, qidx);
44		if (((reg_val & bit_mask) >> bit_pos) == val)
45			return 0;
46		usleep_range(1000, 2000);
47		timeout--;
48	}
49	netdev_err(nic->netdev, "Poll on reg 0x%llx failed\n", reg);
50	return 1;
51}
52
53/* Allocate memory for a queue's descriptors */
54static int nicvf_alloc_q_desc_mem(struct nicvf *nic, struct q_desc_mem *dmem,
55				  int q_len, int desc_size, int align_bytes)
56{
57	dmem->q_len = q_len;
58	dmem->size = (desc_size * q_len) + align_bytes;
59	/* Save address, need it while freeing */
60	dmem->unalign_base = dma_alloc_coherent(&nic->pdev->dev, dmem->size,
61						&dmem->dma, GFP_KERNEL);
62	if (!dmem->unalign_base)
63		return -ENOMEM;
64
65	/* Align memory address for 'align_bytes' */
66	dmem->phys_base = NICVF_ALIGNED_ADDR((u64)dmem->dma, align_bytes);
67	dmem->base = dmem->unalign_base + (dmem->phys_base - dmem->dma);
68	return 0;
69}
70
71/* Free queue's descriptor memory */
72static void nicvf_free_q_desc_mem(struct nicvf *nic, struct q_desc_mem *dmem)
73{
74	if (!dmem)
75		return;
76
77	dma_free_coherent(&nic->pdev->dev, dmem->size,
78			  dmem->unalign_base, dmem->dma);
79	dmem->unalign_base = NULL;
80	dmem->base = NULL;
81}
82
83#define XDP_PAGE_REFCNT_REFILL 256
84
85/* Allocate a new page or recycle one if possible
86 *
87 * We cannot optimize dma mapping here, since
88 * 1. It's only one RBDR ring for 8 Rx queues.
89 * 2. CQE_RX gives address of the buffer where pkt has been DMA'ed
90 *    and not idx into RBDR ring, so can't refer to saved info.
91 * 3. There are multiple receive buffers per page
92 */
93static inline struct pgcache *nicvf_alloc_page(struct nicvf *nic,
94					       struct rbdr *rbdr, gfp_t gfp)
95{
96	int ref_count;
97	struct page *page = NULL;
98	struct pgcache *pgcache, *next;
99
100	/* Check if page is already allocated */
101	pgcache = &rbdr->pgcache[rbdr->pgidx];
102	page = pgcache->page;
103	/* Check if page can be recycled */
104	if (page) {
105		ref_count = page_ref_count(page);
106		/* This page can be recycled if internal ref_count and page's
107		 * ref_count are equal, indicating that the page has been used
108		 * once for packet transmission. For non-XDP mode, internal
109		 * ref_count is always '1'.
110		 */
111		if (rbdr->is_xdp) {
112			if (ref_count == pgcache->ref_count)
113				pgcache->ref_count--;
114			else
115				page = NULL;
116		} else if (ref_count != 1) {
117			page = NULL;
118		}
119	}
120
121	if (!page) {
122		page = alloc_pages(gfp | __GFP_COMP | __GFP_NOWARN, 0);
123		if (!page)
124			return NULL;
125
126		this_cpu_inc(nic->pnicvf->drv_stats->page_alloc);
127
128		/* Check for space */
129		if (rbdr->pgalloc >= rbdr->pgcnt) {
130			/* Page can still be used */
131			nic->rb_page = page;
132			return NULL;
133		}
134
135		/* Save the page in page cache */
136		pgcache->page = page;
137		pgcache->dma_addr = 0;
138		pgcache->ref_count = 0;
139		rbdr->pgalloc++;
140	}
141
142	/* Take additional page references for recycling */
143	if (rbdr->is_xdp) {
144		/* Since there is single RBDR (i.e single core doing
145		 * page recycling) per 8 Rx queues, in XDP mode adjusting
146		 * page references atomically is the biggest bottleneck, so
147		 * take bunch of references at a time.
148		 *
149		 * So here, below reference counts defer by '1'.
150		 */
151		if (!pgcache->ref_count) {
152			pgcache->ref_count = XDP_PAGE_REFCNT_REFILL;
153			page_ref_add(page, XDP_PAGE_REFCNT_REFILL);
154		}
155	} else {
156		/* In non-XDP case, single 64K page is divided across multiple
157		 * receive buffers, so cost of recycling is less anyway.
158		 * So we can do with just one extra reference.
159		 */
160		page_ref_add(page, 1);
161	}
162
163	rbdr->pgidx++;
164	rbdr->pgidx &= (rbdr->pgcnt - 1);
165
166	/* Prefetch refcount of next page in page cache */
167	next = &rbdr->pgcache[rbdr->pgidx];
168	page = next->page;
169	if (page)
170		prefetch(&page->_refcount);
171
172	return pgcache;
173}
174
175/* Allocate buffer for packet reception */
176static inline int nicvf_alloc_rcv_buffer(struct nicvf *nic, struct rbdr *rbdr,
177					 gfp_t gfp, u32 buf_len, u64 *rbuf)
178{
179	struct pgcache *pgcache = NULL;
180
181	/* Check if request can be accomodated in previous allocated page.
182	 * But in XDP mode only one buffer per page is permitted.
183	 */
184	if (!rbdr->is_xdp && nic->rb_page &&
185	    ((nic->rb_page_offset + buf_len) <= PAGE_SIZE)) {
186		nic->rb_pageref++;
187		goto ret;
188	}
189
190	nicvf_get_page(nic);
191	nic->rb_page = NULL;
192
193	/* Get new page, either recycled or new one */
194	pgcache = nicvf_alloc_page(nic, rbdr, gfp);
195	if (!pgcache && !nic->rb_page) {
196		this_cpu_inc(nic->pnicvf->drv_stats->rcv_buffer_alloc_failures);
197		return -ENOMEM;
198	}
199
200	nic->rb_page_offset = 0;
201
202	/* Reserve space for header modifications by BPF program */
203	if (rbdr->is_xdp)
204		buf_len += XDP_PACKET_HEADROOM;
205
206	/* Check if it's recycled */
207	if (pgcache)
208		nic->rb_page = pgcache->page;
209ret:
210	if (rbdr->is_xdp && pgcache && pgcache->dma_addr) {
211		*rbuf = pgcache->dma_addr;
212	} else {
213		/* HW will ensure data coherency, CPU sync not required */
214		*rbuf = (u64)dma_map_page_attrs(&nic->pdev->dev, nic->rb_page,
215						nic->rb_page_offset, buf_len,
216						DMA_FROM_DEVICE,
217						DMA_ATTR_SKIP_CPU_SYNC);
218		if (dma_mapping_error(&nic->pdev->dev, (dma_addr_t)*rbuf)) {
219			if (!nic->rb_page_offset)
220				__free_pages(nic->rb_page, 0);
221			nic->rb_page = NULL;
222			return -ENOMEM;
223		}
224		if (pgcache)
225			pgcache->dma_addr = *rbuf + XDP_PACKET_HEADROOM;
226		nic->rb_page_offset += buf_len;
227	}
228
229	return 0;
230}
231
232/* Build skb around receive buffer */
233static struct sk_buff *nicvf_rb_ptr_to_skb(struct nicvf *nic,
234					   u64 rb_ptr, int len)
235{
236	void *data;
237	struct sk_buff *skb;
238
239	data = phys_to_virt(rb_ptr);
240
241	/* Now build an skb to give to stack */
242	skb = build_skb(data, RCV_FRAG_LEN);
243	if (!skb) {
244		put_page(virt_to_page(data));
245		return NULL;
246	}
247
248	prefetch(skb->data);
249	return skb;
250}
251
252/* Allocate RBDR ring and populate receive buffers */
253static int  nicvf_init_rbdr(struct nicvf *nic, struct rbdr *rbdr,
254			    int ring_len, int buf_size)
255{
256	int idx;
257	u64 rbuf;
258	struct rbdr_entry_t *desc;
259	int err;
260
261	err = nicvf_alloc_q_desc_mem(nic, &rbdr->dmem, ring_len,
262				     sizeof(struct rbdr_entry_t),
263				     NICVF_RCV_BUF_ALIGN_BYTES);
264	if (err)
265		return err;
266
267	rbdr->desc = rbdr->dmem.base;
268	/* Buffer size has to be in multiples of 128 bytes */
269	rbdr->dma_size = buf_size;
270	rbdr->enable = true;
271	rbdr->thresh = RBDR_THRESH;
272	rbdr->head = 0;
273	rbdr->tail = 0;
274
275	/* Initialize page recycling stuff.
276	 *
277	 * Can't use single buffer per page especially with 64K pages.
278	 * On embedded platforms i.e 81xx/83xx available memory itself
279	 * is low and minimum ring size of RBDR is 8K, that takes away
280	 * lots of memory.
281	 *
282	 * But for XDP it has to be a single buffer per page.
283	 */
284	if (!nic->pnicvf->xdp_prog) {
285		rbdr->pgcnt = ring_len / (PAGE_SIZE / buf_size);
286		rbdr->is_xdp = false;
287	} else {
288		rbdr->pgcnt = ring_len;
289		rbdr->is_xdp = true;
290	}
291	rbdr->pgcnt = roundup_pow_of_two(rbdr->pgcnt);
292	rbdr->pgcache = kcalloc(rbdr->pgcnt, sizeof(*rbdr->pgcache),
293				GFP_KERNEL);
294	if (!rbdr->pgcache)
295		return -ENOMEM;
296	rbdr->pgidx = 0;
297	rbdr->pgalloc = 0;
298
299	nic->rb_page = NULL;
300	for (idx = 0; idx < ring_len; idx++) {
301		err = nicvf_alloc_rcv_buffer(nic, rbdr, GFP_KERNEL,
302					     RCV_FRAG_LEN, &rbuf);
303		if (err) {
304			/* To free already allocated and mapped ones */
305			rbdr->tail = idx - 1;
306			return err;
307		}
308
309		desc = GET_RBDR_DESC(rbdr, idx);
310		desc->buf_addr = rbuf & ~(NICVF_RCV_BUF_ALIGN_BYTES - 1);
311	}
312
313	nicvf_get_page(nic);
314
315	return 0;
316}
317
318/* Free RBDR ring and its receive buffers */
319static void nicvf_free_rbdr(struct nicvf *nic, struct rbdr *rbdr)
320{
321	int head, tail;
322	u64 buf_addr, phys_addr;
323	struct pgcache *pgcache;
324	struct rbdr_entry_t *desc;
325
326	if (!rbdr)
327		return;
328
329	rbdr->enable = false;
330	if (!rbdr->dmem.base)
331		return;
332
333	head = rbdr->head;
334	tail = rbdr->tail;
335
336	/* Release page references */
337	while (head != tail) {
338		desc = GET_RBDR_DESC(rbdr, head);
339		buf_addr = desc->buf_addr;
340		phys_addr = nicvf_iova_to_phys(nic, buf_addr);
341		dma_unmap_page_attrs(&nic->pdev->dev, buf_addr, RCV_FRAG_LEN,
342				     DMA_FROM_DEVICE, DMA_ATTR_SKIP_CPU_SYNC);
343		if (phys_addr)
344			put_page(virt_to_page(phys_to_virt(phys_addr)));
345		head++;
346		head &= (rbdr->dmem.q_len - 1);
347	}
348	/* Release buffer of tail desc */
349	desc = GET_RBDR_DESC(rbdr, tail);
350	buf_addr = desc->buf_addr;
351	phys_addr = nicvf_iova_to_phys(nic, buf_addr);
352	dma_unmap_page_attrs(&nic->pdev->dev, buf_addr, RCV_FRAG_LEN,
353			     DMA_FROM_DEVICE, DMA_ATTR_SKIP_CPU_SYNC);
354	if (phys_addr)
355		put_page(virt_to_page(phys_to_virt(phys_addr)));
356
357	/* Sync page cache info */
358	smp_rmb();
359
360	/* Release additional page references held for recycling */
361	head = 0;
362	while (head < rbdr->pgcnt) {
363		pgcache = &rbdr->pgcache[head];
364		if (pgcache->page && page_ref_count(pgcache->page) != 0) {
365			if (rbdr->is_xdp) {
366				page_ref_sub(pgcache->page,
367					     pgcache->ref_count - 1);
368			}
369			put_page(pgcache->page);
370		}
371		head++;
372	}
373
374	/* Free RBDR ring */
375	nicvf_free_q_desc_mem(nic, &rbdr->dmem);
376}
377
378/* Refill receive buffer descriptors with new buffers.
379 */
380static void nicvf_refill_rbdr(struct nicvf *nic, gfp_t gfp)
381{
382	struct queue_set *qs = nic->qs;
383	int rbdr_idx = qs->rbdr_cnt;
384	int tail, qcount;
385	int refill_rb_cnt;
386	struct rbdr *rbdr;
387	struct rbdr_entry_t *desc;
388	u64 rbuf;
389	int new_rb = 0;
390
391refill:
392	if (!rbdr_idx)
393		return;
394	rbdr_idx--;
395	rbdr = &qs->rbdr[rbdr_idx];
396	/* Check if it's enabled */
397	if (!rbdr->enable)
398		goto next_rbdr;
399
400	/* Get no of desc's to be refilled */
401	qcount = nicvf_queue_reg_read(nic, NIC_QSET_RBDR_0_1_STATUS0, rbdr_idx);
402	qcount &= 0x7FFFF;
403	/* Doorbell can be ringed with a max of ring size minus 1 */
404	if (qcount >= (qs->rbdr_len - 1))
405		goto next_rbdr;
406	else
407		refill_rb_cnt = qs->rbdr_len - qcount - 1;
408
409	/* Sync page cache info */
410	smp_rmb();
411
412	/* Start filling descs from tail */
413	tail = nicvf_queue_reg_read(nic, NIC_QSET_RBDR_0_1_TAIL, rbdr_idx) >> 3;
414	while (refill_rb_cnt) {
415		tail++;
416		tail &= (rbdr->dmem.q_len - 1);
417
418		if (nicvf_alloc_rcv_buffer(nic, rbdr, gfp, RCV_FRAG_LEN, &rbuf))
419			break;
420
421		desc = GET_RBDR_DESC(rbdr, tail);
422		desc->buf_addr = rbuf & ~(NICVF_RCV_BUF_ALIGN_BYTES - 1);
423		refill_rb_cnt--;
424		new_rb++;
425	}
426
427	nicvf_get_page(nic);
428
429	/* make sure all memory stores are done before ringing doorbell */
430	smp_wmb();
431
432	/* Check if buffer allocation failed */
433	if (refill_rb_cnt)
434		nic->rb_alloc_fail = true;
435	else
436		nic->rb_alloc_fail = false;
437
438	/* Notify HW */
439	nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_DOOR,
440			      rbdr_idx, new_rb);
441next_rbdr:
442	/* Re-enable RBDR interrupts only if buffer allocation is success */
443	if (!nic->rb_alloc_fail && rbdr->enable &&
444	    netif_running(nic->pnicvf->netdev))
445		nicvf_enable_intr(nic, NICVF_INTR_RBDR, rbdr_idx);
446
447	if (rbdr_idx)
448		goto refill;
449}
450
451/* Alloc rcv buffers in non-atomic mode for better success */
452void nicvf_rbdr_work(struct work_struct *work)
453{
454	struct nicvf *nic = container_of(work, struct nicvf, rbdr_work.work);
455
456	nicvf_refill_rbdr(nic, GFP_KERNEL);
457	if (nic->rb_alloc_fail)
458		schedule_delayed_work(&nic->rbdr_work, msecs_to_jiffies(10));
459	else
460		nic->rb_work_scheduled = false;
461}
462
463/* In Softirq context, alloc rcv buffers in atomic mode */
464void nicvf_rbdr_task(struct tasklet_struct *t)
465{
466	struct nicvf *nic = from_tasklet(nic, t, rbdr_task);
467
468	nicvf_refill_rbdr(nic, GFP_ATOMIC);
469	if (nic->rb_alloc_fail) {
470		nic->rb_work_scheduled = true;
471		schedule_delayed_work(&nic->rbdr_work, msecs_to_jiffies(10));
472	}
473}
474
475/* Initialize completion queue */
476static int nicvf_init_cmp_queue(struct nicvf *nic,
477				struct cmp_queue *cq, int q_len)
478{
479	int err;
480
481	err = nicvf_alloc_q_desc_mem(nic, &cq->dmem, q_len, CMP_QUEUE_DESC_SIZE,
482				     NICVF_CQ_BASE_ALIGN_BYTES);
483	if (err)
484		return err;
485
486	cq->desc = cq->dmem.base;
487	cq->thresh = pass1_silicon(nic->pdev) ? 0 : CMP_QUEUE_CQE_THRESH;
488	nic->cq_coalesce_usecs = (CMP_QUEUE_TIMER_THRESH * 0.05) - 1;
489
490	return 0;
491}
492
493static void nicvf_free_cmp_queue(struct nicvf *nic, struct cmp_queue *cq)
494{
495	if (!cq)
496		return;
497	if (!cq->dmem.base)
498		return;
499
500	nicvf_free_q_desc_mem(nic, &cq->dmem);
501}
502
503/* Initialize transmit queue */
504static int nicvf_init_snd_queue(struct nicvf *nic,
505				struct snd_queue *sq, int q_len, int qidx)
506{
507	int err;
508
509	err = nicvf_alloc_q_desc_mem(nic, &sq->dmem, q_len, SND_QUEUE_DESC_SIZE,
510				     NICVF_SQ_BASE_ALIGN_BYTES);
511	if (err)
512		return err;
513
514	sq->desc = sq->dmem.base;
515	sq->skbuff = kcalloc(q_len, sizeof(u64), GFP_KERNEL);
516	if (!sq->skbuff)
517		return -ENOMEM;
518
519	sq->head = 0;
520	sq->tail = 0;
521	sq->thresh = SND_QUEUE_THRESH;
522
523	/* Check if this SQ is a XDP TX queue */
524	if (nic->sqs_mode)
525		qidx += ((nic->sqs_id + 1) * MAX_SND_QUEUES_PER_QS);
526	if (qidx < nic->pnicvf->xdp_tx_queues) {
527		/* Alloc memory to save page pointers for XDP_TX */
528		sq->xdp_page = kcalloc(q_len, sizeof(u64), GFP_KERNEL);
529		if (!sq->xdp_page)
530			return -ENOMEM;
531		sq->xdp_desc_cnt = 0;
532		sq->xdp_free_cnt = q_len - 1;
533		sq->is_xdp = true;
534	} else {
535		sq->xdp_page = NULL;
536		sq->xdp_desc_cnt = 0;
537		sq->xdp_free_cnt = 0;
538		sq->is_xdp = false;
539
540		atomic_set(&sq->free_cnt, q_len - 1);
541
542		/* Preallocate memory for TSO segment's header */
543		sq->tso_hdrs = dma_alloc_coherent(&nic->pdev->dev,
544						  q_len * TSO_HEADER_SIZE,
545						  &sq->tso_hdrs_phys,
546						  GFP_KERNEL);
547		if (!sq->tso_hdrs)
548			return -ENOMEM;
549	}
550
551	return 0;
552}
553
554void nicvf_unmap_sndq_buffers(struct nicvf *nic, struct snd_queue *sq,
555			      int hdr_sqe, u8 subdesc_cnt)
556{
557	u8 idx;
558	struct sq_gather_subdesc *gather;
559
560	/* Unmap DMA mapped skb data buffers */
561	for (idx = 0; idx < subdesc_cnt; idx++) {
562		hdr_sqe++;
563		hdr_sqe &= (sq->dmem.q_len - 1);
564		gather = (struct sq_gather_subdesc *)GET_SQ_DESC(sq, hdr_sqe);
565		/* HW will ensure data coherency, CPU sync not required */
566		dma_unmap_page_attrs(&nic->pdev->dev, gather->addr,
567				     gather->size, DMA_TO_DEVICE,
568				     DMA_ATTR_SKIP_CPU_SYNC);
569	}
570}
571
572static void nicvf_free_snd_queue(struct nicvf *nic, struct snd_queue *sq)
573{
574	struct sk_buff *skb;
575	struct page *page;
576	struct sq_hdr_subdesc *hdr;
577	struct sq_hdr_subdesc *tso_sqe;
578
579	if (!sq)
580		return;
581	if (!sq->dmem.base)
582		return;
583
584	if (sq->tso_hdrs) {
585		dma_free_coherent(&nic->pdev->dev,
586				  sq->dmem.q_len * TSO_HEADER_SIZE,
587				  sq->tso_hdrs, sq->tso_hdrs_phys);
588		sq->tso_hdrs = NULL;
589	}
590
591	/* Free pending skbs in the queue */
592	smp_rmb();
593	while (sq->head != sq->tail) {
594		skb = (struct sk_buff *)sq->skbuff[sq->head];
595		if (!skb || !sq->xdp_page)
596			goto next;
597
598		page = (struct page *)sq->xdp_page[sq->head];
599		if (!page)
600			goto next;
601		else
602			put_page(page);
603
604		hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, sq->head);
605		/* Check for dummy descriptor used for HW TSO offload on 88xx */
606		if (hdr->dont_send) {
607			/* Get actual TSO descriptors and unmap them */
608			tso_sqe =
609			 (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, hdr->rsvd2);
610			nicvf_unmap_sndq_buffers(nic, sq, hdr->rsvd2,
611						 tso_sqe->subdesc_cnt);
612		} else {
613			nicvf_unmap_sndq_buffers(nic, sq, sq->head,
614						 hdr->subdesc_cnt);
615		}
616		if (skb)
617			dev_kfree_skb_any(skb);
618next:
619		sq->head++;
620		sq->head &= (sq->dmem.q_len - 1);
621	}
622	kfree(sq->skbuff);
623	kfree(sq->xdp_page);
624	nicvf_free_q_desc_mem(nic, &sq->dmem);
625}
626
627static void nicvf_reclaim_snd_queue(struct nicvf *nic,
628				    struct queue_set *qs, int qidx)
629{
630	/* Disable send queue */
631	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, 0);
632	/* Check if SQ is stopped */
633	if (nicvf_poll_reg(nic, qidx, NIC_QSET_SQ_0_7_STATUS, 21, 1, 0x01))
634		return;
635	/* Reset send queue */
636	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, NICVF_SQ_RESET);
637}
638
639static void nicvf_reclaim_rcv_queue(struct nicvf *nic,
640				    struct queue_set *qs, int qidx)
641{
642	union nic_mbx mbx = {};
643
644	/* Make sure all packets in the pipeline are written back into mem */
645	mbx.msg.msg = NIC_MBOX_MSG_RQ_SW_SYNC;
646	nicvf_send_msg_to_pf(nic, &mbx);
647}
648
649static void nicvf_reclaim_cmp_queue(struct nicvf *nic,
650				    struct queue_set *qs, int qidx)
651{
652	/* Disable timer threshold (doesn't get reset upon CQ reset */
653	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG2, qidx, 0);
654	/* Disable completion queue */
655	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, 0);
656	/* Reset completion queue */
657	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, NICVF_CQ_RESET);
658}
659
660static void nicvf_reclaim_rbdr(struct nicvf *nic,
661			       struct rbdr *rbdr, int qidx)
662{
663	u64 tmp, fifo_state;
664	int timeout = 10;
665
666	/* Save head and tail pointers for feeing up buffers */
667	rbdr->head = nicvf_queue_reg_read(nic,
668					  NIC_QSET_RBDR_0_1_HEAD,
669					  qidx) >> 3;
670	rbdr->tail = nicvf_queue_reg_read(nic,
671					  NIC_QSET_RBDR_0_1_TAIL,
672					  qidx) >> 3;
673
674	/* If RBDR FIFO is in 'FAIL' state then do a reset first
675	 * before relaiming.
676	 */
677	fifo_state = nicvf_queue_reg_read(nic, NIC_QSET_RBDR_0_1_STATUS0, qidx);
678	if (((fifo_state >> 62) & 0x03) == 0x3)
679		nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG,
680				      qidx, NICVF_RBDR_RESET);
681
682	/* Disable RBDR */
683	nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG, qidx, 0);
684	if (nicvf_poll_reg(nic, qidx, NIC_QSET_RBDR_0_1_STATUS0, 62, 2, 0x00))
685		return;
686	while (1) {
687		tmp = nicvf_queue_reg_read(nic,
688					   NIC_QSET_RBDR_0_1_PREFETCH_STATUS,
689					   qidx);
690		if ((tmp & 0xFFFFFFFF) == ((tmp >> 32) & 0xFFFFFFFF))
691			break;
692		usleep_range(1000, 2000);
693		timeout--;
694		if (!timeout) {
695			netdev_err(nic->netdev,
696				   "Failed polling on prefetch status\n");
697			return;
698		}
699	}
700	nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG,
701			      qidx, NICVF_RBDR_RESET);
702
703	if (nicvf_poll_reg(nic, qidx, NIC_QSET_RBDR_0_1_STATUS0, 62, 2, 0x02))
704		return;
705	nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG, qidx, 0x00);
706	if (nicvf_poll_reg(nic, qidx, NIC_QSET_RBDR_0_1_STATUS0, 62, 2, 0x00))
707		return;
708}
709
710void nicvf_config_vlan_stripping(struct nicvf *nic, netdev_features_t features)
711{
712	u64 rq_cfg;
713	int sqs;
714
715	rq_cfg = nicvf_queue_reg_read(nic, NIC_QSET_RQ_GEN_CFG, 0);
716
717	/* Enable first VLAN stripping */
718	if (features & NETIF_F_HW_VLAN_CTAG_RX)
719		rq_cfg |= (1ULL << 25);
720	else
721		rq_cfg &= ~(1ULL << 25);
722	nicvf_queue_reg_write(nic, NIC_QSET_RQ_GEN_CFG, 0, rq_cfg);
723
724	/* Configure Secondary Qsets, if any */
725	for (sqs = 0; sqs < nic->sqs_count; sqs++)
726		if (nic->snicvf[sqs])
727			nicvf_queue_reg_write(nic->snicvf[sqs],
728					      NIC_QSET_RQ_GEN_CFG, 0, rq_cfg);
729}
730
731static void nicvf_reset_rcv_queue_stats(struct nicvf *nic)
732{
733	union nic_mbx mbx = {};
734
735	/* Reset all RQ/SQ and VF stats */
736	mbx.reset_stat.msg = NIC_MBOX_MSG_RESET_STAT_COUNTER;
737	mbx.reset_stat.rx_stat_mask = 0x3FFF;
738	mbx.reset_stat.tx_stat_mask = 0x1F;
739	mbx.reset_stat.rq_stat_mask = 0xFFFF;
740	mbx.reset_stat.sq_stat_mask = 0xFFFF;
741	nicvf_send_msg_to_pf(nic, &mbx);
742}
743
744/* Configures receive queue */
745static void nicvf_rcv_queue_config(struct nicvf *nic, struct queue_set *qs,
746				   int qidx, bool enable)
747{
748	union nic_mbx mbx = {};
749	struct rcv_queue *rq;
750	struct rq_cfg rq_cfg;
751
752	rq = &qs->rq[qidx];
753	rq->enable = enable;
754
755	/* Disable receive queue */
756	nicvf_queue_reg_write(nic, NIC_QSET_RQ_0_7_CFG, qidx, 0);
757
758	if (!rq->enable) {
759		nicvf_reclaim_rcv_queue(nic, qs, qidx);
760		xdp_rxq_info_unreg(&rq->xdp_rxq);
761		return;
762	}
763
764	rq->cq_qs = qs->vnic_id;
765	rq->cq_idx = qidx;
766	rq->start_rbdr_qs = qs->vnic_id;
767	rq->start_qs_rbdr_idx = qs->rbdr_cnt - 1;
768	rq->cont_rbdr_qs = qs->vnic_id;
769	rq->cont_qs_rbdr_idx = qs->rbdr_cnt - 1;
770	/* all writes of RBDR data to be loaded into L2 Cache as well*/
771	rq->caching = 1;
772
773	/* Driver have no proper error path for failed XDP RX-queue info reg */
774	WARN_ON(xdp_rxq_info_reg(&rq->xdp_rxq, nic->netdev, qidx, 0) < 0);
775
776	/* Send a mailbox msg to PF to config RQ */
777	mbx.rq.msg = NIC_MBOX_MSG_RQ_CFG;
778	mbx.rq.qs_num = qs->vnic_id;
779	mbx.rq.rq_num = qidx;
780	mbx.rq.cfg = ((u64)rq->caching << 26) | (rq->cq_qs << 19) |
781			  (rq->cq_idx << 16) | (rq->cont_rbdr_qs << 9) |
782			  (rq->cont_qs_rbdr_idx << 8) |
783			  (rq->start_rbdr_qs << 1) | (rq->start_qs_rbdr_idx);
784	nicvf_send_msg_to_pf(nic, &mbx);
785
786	mbx.rq.msg = NIC_MBOX_MSG_RQ_BP_CFG;
787	mbx.rq.cfg = BIT_ULL(63) | BIT_ULL(62) |
788		     (RQ_PASS_RBDR_LVL << 16) | (RQ_PASS_CQ_LVL << 8) |
789		     (qs->vnic_id << 0);
790	nicvf_send_msg_to_pf(nic, &mbx);
791
792	/* RQ drop config
793	 * Enable CQ drop to reserve sufficient CQEs for all tx packets
794	 */
795	mbx.rq.msg = NIC_MBOX_MSG_RQ_DROP_CFG;
796	mbx.rq.cfg = BIT_ULL(63) | BIT_ULL(62) |
797		     (RQ_PASS_RBDR_LVL << 40) | (RQ_DROP_RBDR_LVL << 32) |
798		     (RQ_PASS_CQ_LVL << 16) | (RQ_DROP_CQ_LVL << 8);
799	nicvf_send_msg_to_pf(nic, &mbx);
800
801	if (!nic->sqs_mode && (qidx == 0)) {
802		/* Enable checking L3/L4 length and TCP/UDP checksums
803		 * Also allow IPv6 pkts with zero UDP checksum.
804		 */
805		nicvf_queue_reg_write(nic, NIC_QSET_RQ_GEN_CFG, 0,
806				      (BIT(24) | BIT(23) | BIT(21) | BIT(20)));
807		nicvf_config_vlan_stripping(nic, nic->netdev->features);
808	}
809
810	/* Enable Receive queue */
811	memset(&rq_cfg, 0, sizeof(struct rq_cfg));
812	rq_cfg.ena = 1;
813	rq_cfg.tcp_ena = 0;
814	nicvf_queue_reg_write(nic, NIC_QSET_RQ_0_7_CFG, qidx, *(u64 *)&rq_cfg);
815}
816
817/* Configures completion queue */
818void nicvf_cmp_queue_config(struct nicvf *nic, struct queue_set *qs,
819			    int qidx, bool enable)
820{
821	struct cmp_queue *cq;
822	struct cq_cfg cq_cfg;
823
824	cq = &qs->cq[qidx];
825	cq->enable = enable;
826
827	if (!cq->enable) {
828		nicvf_reclaim_cmp_queue(nic, qs, qidx);
829		return;
830	}
831
832	/* Reset completion queue */
833	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, NICVF_CQ_RESET);
834
835	if (!cq->enable)
836		return;
837
838	spin_lock_init(&cq->lock);
839	/* Set completion queue base address */
840	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_BASE,
841			      qidx, (u64)(cq->dmem.phys_base));
842
843	/* Enable Completion queue */
844	memset(&cq_cfg, 0, sizeof(struct cq_cfg));
845	cq_cfg.ena = 1;
846	cq_cfg.reset = 0;
847	cq_cfg.caching = 0;
848	cq_cfg.qsize = ilog2(qs->cq_len >> 10);
849	cq_cfg.avg_con = 0;
850	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, *(u64 *)&cq_cfg);
851
852	/* Set threshold value for interrupt generation */
853	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_THRESH, qidx, cq->thresh);
854	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG2,
855			      qidx, CMP_QUEUE_TIMER_THRESH);
856}
857
858/* Configures transmit queue */
859static void nicvf_snd_queue_config(struct nicvf *nic, struct queue_set *qs,
860				   int qidx, bool enable)
861{
862	union nic_mbx mbx = {};
863	struct snd_queue *sq;
864	struct sq_cfg sq_cfg;
865
866	sq = &qs->sq[qidx];
867	sq->enable = enable;
868
869	if (!sq->enable) {
870		nicvf_reclaim_snd_queue(nic, qs, qidx);
871		return;
872	}
873
874	/* Reset send queue */
875	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, NICVF_SQ_RESET);
876
877	sq->cq_qs = qs->vnic_id;
878	sq->cq_idx = qidx;
879
880	/* Send a mailbox msg to PF to config SQ */
881	mbx.sq.msg = NIC_MBOX_MSG_SQ_CFG;
882	mbx.sq.qs_num = qs->vnic_id;
883	mbx.sq.sq_num = qidx;
884	mbx.sq.sqs_mode = nic->sqs_mode;
885	mbx.sq.cfg = (sq->cq_qs << 3) | sq->cq_idx;
886	nicvf_send_msg_to_pf(nic, &mbx);
887
888	/* Set queue base address */
889	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_BASE,
890			      qidx, (u64)(sq->dmem.phys_base));
891
892	/* Enable send queue  & set queue size */
893	memset(&sq_cfg, 0, sizeof(struct sq_cfg));
894	sq_cfg.ena = 1;
895	sq_cfg.reset = 0;
896	sq_cfg.ldwb = 0;
897	sq_cfg.qsize = ilog2(qs->sq_len >> 10);
898	sq_cfg.tstmp_bgx_intf = 0;
899	/* CQ's level at which HW will stop processing SQEs to avoid
900	 * transmitting a pkt with no space in CQ to post CQE_TX.
901	 */
902	sq_cfg.cq_limit = (CMP_QUEUE_PIPELINE_RSVD * 256) / qs->cq_len;
903	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, *(u64 *)&sq_cfg);
904
905	/* Set threshold value for interrupt generation */
906	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_THRESH, qidx, sq->thresh);
907
908	/* Set queue:cpu affinity for better load distribution */
909	if (cpu_online(qidx)) {
910		cpumask_set_cpu(qidx, &sq->affinity_mask);
911		netif_set_xps_queue(nic->netdev,
912				    &sq->affinity_mask, qidx);
913	}
914}
915
916/* Configures receive buffer descriptor ring */
917static void nicvf_rbdr_config(struct nicvf *nic, struct queue_set *qs,
918			      int qidx, bool enable)
919{
920	struct rbdr *rbdr;
921	struct rbdr_cfg rbdr_cfg;
922
923	rbdr = &qs->rbdr[qidx];
924	nicvf_reclaim_rbdr(nic, rbdr, qidx);
925	if (!enable)
926		return;
927
928	/* Set descriptor base address */
929	nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_BASE,
930			      qidx, (u64)(rbdr->dmem.phys_base));
931
932	/* Enable RBDR  & set queue size */
933	/* Buffer size should be in multiples of 128 bytes */
934	memset(&rbdr_cfg, 0, sizeof(struct rbdr_cfg));
935	rbdr_cfg.ena = 1;
936	rbdr_cfg.reset = 0;
937	rbdr_cfg.ldwb = 0;
938	rbdr_cfg.qsize = RBDR_SIZE;
939	rbdr_cfg.avg_con = 0;
940	rbdr_cfg.lines = rbdr->dma_size / 128;
941	nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG,
942			      qidx, *(u64 *)&rbdr_cfg);
943
944	/* Notify HW */
945	nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_DOOR,
946			      qidx, qs->rbdr_len - 1);
947
948	/* Set threshold value for interrupt generation */
949	nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_THRESH,
950			      qidx, rbdr->thresh - 1);
951}
952
953/* Requests PF to assign and enable Qset */
954void nicvf_qset_config(struct nicvf *nic, bool enable)
955{
956	union nic_mbx mbx = {};
957	struct queue_set *qs = nic->qs;
958	struct qs_cfg *qs_cfg;
959
960	if (!qs) {
961		netdev_warn(nic->netdev,
962			    "Qset is still not allocated, don't init queues\n");
963		return;
964	}
965
966	qs->enable = enable;
967	qs->vnic_id = nic->vf_id;
968
969	/* Send a mailbox msg to PF to config Qset */
970	mbx.qs.msg = NIC_MBOX_MSG_QS_CFG;
971	mbx.qs.num = qs->vnic_id;
972	mbx.qs.sqs_count = nic->sqs_count;
973
974	mbx.qs.cfg = 0;
975	qs_cfg = (struct qs_cfg *)&mbx.qs.cfg;
976	if (qs->enable) {
977		qs_cfg->ena = 1;
978#ifdef __BIG_ENDIAN
979		qs_cfg->be = 1;
980#endif
981		qs_cfg->vnic = qs->vnic_id;
982		/* Enable Tx timestamping capability */
983		if (nic->ptp_clock)
984			qs_cfg->send_tstmp_ena = 1;
985	}
986	nicvf_send_msg_to_pf(nic, &mbx);
987}
988
989static void nicvf_free_resources(struct nicvf *nic)
990{
991	int qidx;
992	struct queue_set *qs = nic->qs;
993
994	/* Free receive buffer descriptor ring */
995	for (qidx = 0; qidx < qs->rbdr_cnt; qidx++)
996		nicvf_free_rbdr(nic, &qs->rbdr[qidx]);
997
998	/* Free completion queue */
999	for (qidx = 0; qidx < qs->cq_cnt; qidx++)
1000		nicvf_free_cmp_queue(nic, &qs->cq[qidx]);
1001
1002	/* Free send queue */
1003	for (qidx = 0; qidx < qs->sq_cnt; qidx++)
1004		nicvf_free_snd_queue(nic, &qs->sq[qidx]);
1005}
1006
1007static int nicvf_alloc_resources(struct nicvf *nic)
1008{
1009	int qidx;
1010	struct queue_set *qs = nic->qs;
1011
1012	/* Alloc receive buffer descriptor ring */
1013	for (qidx = 0; qidx < qs->rbdr_cnt; qidx++) {
1014		if (nicvf_init_rbdr(nic, &qs->rbdr[qidx], qs->rbdr_len,
1015				    DMA_BUFFER_LEN))
1016			goto alloc_fail;
1017	}
1018
1019	/* Alloc send queue */
1020	for (qidx = 0; qidx < qs->sq_cnt; qidx++) {
1021		if (nicvf_init_snd_queue(nic, &qs->sq[qidx], qs->sq_len, qidx))
1022			goto alloc_fail;
1023	}
1024
1025	/* Alloc completion queue */
1026	for (qidx = 0; qidx < qs->cq_cnt; qidx++) {
1027		if (nicvf_init_cmp_queue(nic, &qs->cq[qidx], qs->cq_len))
1028			goto alloc_fail;
1029	}
1030
1031	return 0;
1032alloc_fail:
1033	nicvf_free_resources(nic);
1034	return -ENOMEM;
1035}
1036
1037int nicvf_set_qset_resources(struct nicvf *nic)
1038{
1039	struct queue_set *qs;
1040
1041	qs = devm_kzalloc(&nic->pdev->dev, sizeof(*qs), GFP_KERNEL);
1042	if (!qs)
1043		return -ENOMEM;
1044	nic->qs = qs;
1045
1046	/* Set count of each queue */
1047	qs->rbdr_cnt = DEFAULT_RBDR_CNT;
1048	qs->rq_cnt = min_t(u8, MAX_RCV_QUEUES_PER_QS, num_online_cpus());
1049	qs->sq_cnt = min_t(u8, MAX_SND_QUEUES_PER_QS, num_online_cpus());
1050	qs->cq_cnt = max_t(u8, qs->rq_cnt, qs->sq_cnt);
1051
1052	/* Set queue lengths */
1053	qs->rbdr_len = RCV_BUF_COUNT;
1054	qs->sq_len = SND_QUEUE_LEN;
1055	qs->cq_len = CMP_QUEUE_LEN;
1056
1057	nic->rx_queues = qs->rq_cnt;
1058	nic->tx_queues = qs->sq_cnt;
1059	nic->xdp_tx_queues = 0;
1060
1061	return 0;
1062}
1063
1064int nicvf_config_data_transfer(struct nicvf *nic, bool enable)
1065{
1066	bool disable = false;
1067	struct queue_set *qs = nic->qs;
1068	struct queue_set *pqs = nic->pnicvf->qs;
1069	int qidx;
1070
1071	if (!qs)
1072		return 0;
1073
1074	/* Take primary VF's queue lengths.
1075	 * This is needed to take queue lengths set from ethtool
1076	 * into consideration.
1077	 */
1078	if (nic->sqs_mode && pqs) {
1079		qs->cq_len = pqs->cq_len;
1080		qs->sq_len = pqs->sq_len;
1081	}
1082
1083	if (enable) {
1084		if (nicvf_alloc_resources(nic))
1085			return -ENOMEM;
1086
1087		for (qidx = 0; qidx < qs->sq_cnt; qidx++)
1088			nicvf_snd_queue_config(nic, qs, qidx, enable);
1089		for (qidx = 0; qidx < qs->cq_cnt; qidx++)
1090			nicvf_cmp_queue_config(nic, qs, qidx, enable);
1091		for (qidx = 0; qidx < qs->rbdr_cnt; qidx++)
1092			nicvf_rbdr_config(nic, qs, qidx, enable);
1093		for (qidx = 0; qidx < qs->rq_cnt; qidx++)
1094			nicvf_rcv_queue_config(nic, qs, qidx, enable);
1095	} else {
1096		for (qidx = 0; qidx < qs->rq_cnt; qidx++)
1097			nicvf_rcv_queue_config(nic, qs, qidx, disable);
1098		for (qidx = 0; qidx < qs->rbdr_cnt; qidx++)
1099			nicvf_rbdr_config(nic, qs, qidx, disable);
1100		for (qidx = 0; qidx < qs->sq_cnt; qidx++)
1101			nicvf_snd_queue_config(nic, qs, qidx, disable);
1102		for (qidx = 0; qidx < qs->cq_cnt; qidx++)
1103			nicvf_cmp_queue_config(nic, qs, qidx, disable);
1104
1105		nicvf_free_resources(nic);
1106	}
1107
1108	/* Reset RXQ's stats.
1109	 * SQ's stats will get reset automatically once SQ is reset.
1110	 */
1111	nicvf_reset_rcv_queue_stats(nic);
1112
1113	return 0;
1114}
1115
1116/* Get a free desc from SQ
1117 * returns descriptor ponter & descriptor number
1118 */
1119static inline int nicvf_get_sq_desc(struct snd_queue *sq, int desc_cnt)
1120{
1121	int qentry;
1122
1123	qentry = sq->tail;
1124	if (!sq->is_xdp)
1125		atomic_sub(desc_cnt, &sq->free_cnt);
1126	else
1127		sq->xdp_free_cnt -= desc_cnt;
1128	sq->tail += desc_cnt;
1129	sq->tail &= (sq->dmem.q_len - 1);
1130
1131	return qentry;
1132}
1133
1134/* Rollback to previous tail pointer when descriptors not used */
1135static inline void nicvf_rollback_sq_desc(struct snd_queue *sq,
1136					  int qentry, int desc_cnt)
1137{
1138	sq->tail = qentry;
1139	atomic_add(desc_cnt, &sq->free_cnt);
1140}
1141
1142/* Free descriptor back to SQ for future use */
1143void nicvf_put_sq_desc(struct snd_queue *sq, int desc_cnt)
1144{
1145	if (!sq->is_xdp)
1146		atomic_add(desc_cnt, &sq->free_cnt);
1147	else
1148		sq->xdp_free_cnt += desc_cnt;
1149	sq->head += desc_cnt;
1150	sq->head &= (sq->dmem.q_len - 1);
1151}
1152
1153static inline int nicvf_get_nxt_sqentry(struct snd_queue *sq, int qentry)
1154{
1155	qentry++;
1156	qentry &= (sq->dmem.q_len - 1);
1157	return qentry;
1158}
1159
1160void nicvf_sq_enable(struct nicvf *nic, struct snd_queue *sq, int qidx)
1161{
1162	u64 sq_cfg;
1163
1164	sq_cfg = nicvf_queue_reg_read(nic, NIC_QSET_SQ_0_7_CFG, qidx);
1165	sq_cfg |= NICVF_SQ_EN;
1166	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, sq_cfg);
1167	/* Ring doorbell so that H/W restarts processing SQEs */
1168	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_DOOR, qidx, 0);
1169}
1170
1171void nicvf_sq_disable(struct nicvf *nic, int qidx)
1172{
1173	u64 sq_cfg;
1174
1175	sq_cfg = nicvf_queue_reg_read(nic, NIC_QSET_SQ_0_7_CFG, qidx);
1176	sq_cfg &= ~NICVF_SQ_EN;
1177	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, sq_cfg);
1178}
1179
1180void nicvf_sq_free_used_descs(struct net_device *netdev, struct snd_queue *sq,
1181			      int qidx)
1182{
1183	u64 head;
1184	struct sk_buff *skb;
1185	struct nicvf *nic = netdev_priv(netdev);
1186	struct sq_hdr_subdesc *hdr;
1187
1188	head = nicvf_queue_reg_read(nic, NIC_QSET_SQ_0_7_HEAD, qidx) >> 4;
1189	while (sq->head != head) {
1190		hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, sq->head);
1191		if (hdr->subdesc_type != SQ_DESC_TYPE_HEADER) {
1192			nicvf_put_sq_desc(sq, 1);
1193			continue;
1194		}
1195		skb = (struct sk_buff *)sq->skbuff[sq->head];
1196		if (skb)
1197			dev_kfree_skb_any(skb);
1198		atomic64_add(1, (atomic64_t *)&netdev->stats.tx_packets);
1199		atomic64_add(hdr->tot_len,
1200			     (atomic64_t *)&netdev->stats.tx_bytes);
1201		nicvf_put_sq_desc(sq, hdr->subdesc_cnt + 1);
1202	}
1203}
1204
1205/* XDP Transmit APIs */
1206void nicvf_xdp_sq_doorbell(struct nicvf *nic,
1207			   struct snd_queue *sq, int sq_num)
1208{
1209	if (!sq->xdp_desc_cnt)
1210		return;
1211
1212	/* make sure all memory stores are done before ringing doorbell */
1213	wmb();
1214
1215	/* Inform HW to xmit all TSO segments */
1216	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_DOOR,
1217			      sq_num, sq->xdp_desc_cnt);
1218	sq->xdp_desc_cnt = 0;
1219}
1220
1221static inline void
1222nicvf_xdp_sq_add_hdr_subdesc(struct snd_queue *sq, int qentry,
1223			     int subdesc_cnt, u64 data, int len)
1224{
1225	struct sq_hdr_subdesc *hdr;
1226
1227	hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, qentry);
1228	memset(hdr, 0, SND_QUEUE_DESC_SIZE);
1229	hdr->subdesc_type = SQ_DESC_TYPE_HEADER;
1230	hdr->subdesc_cnt = subdesc_cnt;
1231	hdr->tot_len = len;
1232	hdr->post_cqe = 1;
1233	sq->xdp_page[qentry] = (u64)virt_to_page((void *)data);
1234}
1235
1236int nicvf_xdp_sq_append_pkt(struct nicvf *nic, struct snd_queue *sq,
1237			    u64 bufaddr, u64 dma_addr, u16 len)
1238{
1239	int subdesc_cnt = MIN_SQ_DESC_PER_PKT_XMIT;
1240	int qentry;
1241
1242	if (subdesc_cnt > sq->xdp_free_cnt)
1243		return 0;
1244
1245	qentry = nicvf_get_sq_desc(sq, subdesc_cnt);
1246
1247	nicvf_xdp_sq_add_hdr_subdesc(sq, qentry, subdesc_cnt - 1, bufaddr, len);
1248
1249	qentry = nicvf_get_nxt_sqentry(sq, qentry);
1250	nicvf_sq_add_gather_subdesc(sq, qentry, len, dma_addr);
1251
1252	sq->xdp_desc_cnt += subdesc_cnt;
1253
1254	return 1;
1255}
1256
1257/* Calculate no of SQ subdescriptors needed to transmit all
1258 * segments of this TSO packet.
1259 * Taken from 'Tilera network driver' with a minor modification.
1260 */
1261static int nicvf_tso_count_subdescs(struct sk_buff *skb)
1262{
1263	struct skb_shared_info *sh = skb_shinfo(skb);
1264	unsigned int sh_len = skb_tcp_all_headers(skb);
1265	unsigned int data_len = skb->len - sh_len;
1266	unsigned int p_len = sh->gso_size;
1267	long f_id = -1;    /* id of the current fragment */
1268	long f_size = skb_headlen(skb) - sh_len;  /* current fragment size */
1269	long f_used = 0;  /* bytes used from the current fragment */
1270	long n;            /* size of the current piece of payload */
1271	int num_edescs = 0;
1272	int segment;
1273
1274	for (segment = 0; segment < sh->gso_segs; segment++) {
1275		unsigned int p_used = 0;
1276
1277		/* One edesc for header and for each piece of the payload. */
1278		for (num_edescs++; p_used < p_len; num_edescs++) {
1279			/* Advance as needed. */
1280			while (f_used >= f_size) {
1281				f_id++;
1282				f_size = skb_frag_size(&sh->frags[f_id]);
1283				f_used = 0;
1284			}
1285
1286			/* Use bytes from the current fragment. */
1287			n = p_len - p_used;
1288			if (n > f_size - f_used)
1289				n = f_size - f_used;
1290			f_used += n;
1291			p_used += n;
1292		}
1293
1294		/* The last segment may be less than gso_size. */
1295		data_len -= p_len;
1296		if (data_len < p_len)
1297			p_len = data_len;
1298	}
1299
1300	/* '+ gso_segs' for SQ_HDR_SUDESCs for each segment */
1301	return num_edescs + sh->gso_segs;
1302}
1303
1304#define POST_CQE_DESC_COUNT 2
1305
1306/* Get the number of SQ descriptors needed to xmit this skb */
1307static int nicvf_sq_subdesc_required(struct nicvf *nic, struct sk_buff *skb)
1308{
1309	int subdesc_cnt = MIN_SQ_DESC_PER_PKT_XMIT;
1310
1311	if (skb_shinfo(skb)->gso_size && !nic->hw_tso) {
1312		subdesc_cnt = nicvf_tso_count_subdescs(skb);
1313		return subdesc_cnt;
1314	}
1315
1316	/* Dummy descriptors to get TSO pkt completion notification */
1317	if (nic->t88 && nic->hw_tso && skb_shinfo(skb)->gso_size)
1318		subdesc_cnt += POST_CQE_DESC_COUNT;
1319
1320	if (skb_shinfo(skb)->nr_frags)
1321		subdesc_cnt += skb_shinfo(skb)->nr_frags;
1322
1323	return subdesc_cnt;
1324}
1325
1326/* Add SQ HEADER subdescriptor.
1327 * First subdescriptor for every send descriptor.
1328 */
1329static inline void
1330nicvf_sq_add_hdr_subdesc(struct nicvf *nic, struct snd_queue *sq, int qentry,
1331			 int subdesc_cnt, struct sk_buff *skb, int len)
1332{
1333	int proto;
1334	struct sq_hdr_subdesc *hdr;
1335	union {
1336		struct iphdr *v4;
1337		struct ipv6hdr *v6;
1338		unsigned char *hdr;
1339	} ip;
1340
1341	ip.hdr = skb_network_header(skb);
1342	hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, qentry);
1343	memset(hdr, 0, SND_QUEUE_DESC_SIZE);
1344	hdr->subdesc_type = SQ_DESC_TYPE_HEADER;
1345
1346	if (nic->t88 && nic->hw_tso && skb_shinfo(skb)->gso_size) {
1347		/* post_cqe = 0, to avoid HW posting a CQE for every TSO
1348		 * segment transmitted on 88xx.
1349		 */
1350		hdr->subdesc_cnt = subdesc_cnt - POST_CQE_DESC_COUNT;
1351	} else {
1352		sq->skbuff[qentry] = (u64)skb;
1353		/* Enable notification via CQE after processing SQE */
1354		hdr->post_cqe = 1;
1355		/* No of subdescriptors following this */
1356		hdr->subdesc_cnt = subdesc_cnt;
1357	}
1358	hdr->tot_len = len;
1359
1360	/* Offload checksum calculation to HW */
1361	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1362		if (ip.v4->version == 4)
1363			hdr->csum_l3 = 1; /* Enable IP csum calculation */
1364		hdr->l3_offset = skb_network_offset(skb);
1365		hdr->l4_offset = skb_transport_offset(skb);
1366
1367		proto = (ip.v4->version == 4) ? ip.v4->protocol :
1368			ip.v6->nexthdr;
1369
1370		switch (proto) {
1371		case IPPROTO_TCP:
1372			hdr->csum_l4 = SEND_L4_CSUM_TCP;
1373			break;
1374		case IPPROTO_UDP:
1375			hdr->csum_l4 = SEND_L4_CSUM_UDP;
1376			break;
1377		case IPPROTO_SCTP:
1378			hdr->csum_l4 = SEND_L4_CSUM_SCTP;
1379			break;
1380		}
1381	}
1382
1383	if (nic->hw_tso && skb_shinfo(skb)->gso_size) {
1384		hdr->tso = 1;
1385		hdr->tso_start = skb_tcp_all_headers(skb);
1386		hdr->tso_max_paysize = skb_shinfo(skb)->gso_size;
1387		/* For non-tunneled pkts, point this to L2 ethertype */
1388		hdr->inner_l3_offset = skb_network_offset(skb) - 2;
1389		this_cpu_inc(nic->pnicvf->drv_stats->tx_tso);
1390	}
1391
1392	/* Check if timestamp is requested */
1393	if (!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
1394		skb_tx_timestamp(skb);
1395		return;
1396	}
1397
1398	/* Tx timestamping not supported along with TSO, so ignore request */
1399	if (skb_shinfo(skb)->gso_size)
1400		return;
1401
1402	/* HW supports only a single outstanding packet to timestamp */
1403	if (!atomic_add_unless(&nic->pnicvf->tx_ptp_skbs, 1, 1))
1404		return;
1405
1406	/* Mark the SKB for later reference */
1407	skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1408
1409	/* Finally enable timestamp generation
1410	 * Since 'post_cqe' is also set, two CQEs will be posted
1411	 * for this packet i.e CQE_TYPE_SEND and CQE_TYPE_SEND_PTP.
1412	 */
1413	hdr->tstmp = 1;
1414}
1415
1416/* SQ GATHER subdescriptor
1417 * Must follow HDR descriptor
1418 */
1419static inline void nicvf_sq_add_gather_subdesc(struct snd_queue *sq, int qentry,
1420					       int size, u64 data)
1421{
1422	struct sq_gather_subdesc *gather;
1423
1424	qentry &= (sq->dmem.q_len - 1);
1425	gather = (struct sq_gather_subdesc *)GET_SQ_DESC(sq, qentry);
1426
1427	memset(gather, 0, SND_QUEUE_DESC_SIZE);
1428	gather->subdesc_type = SQ_DESC_TYPE_GATHER;
1429	gather->ld_type = NIC_SEND_LD_TYPE_E_LDD;
1430	gather->size = size;
1431	gather->addr = data;
1432}
1433
1434/* Add HDR + IMMEDIATE subdescriptors right after descriptors of a TSO
1435 * packet so that a CQE is posted as a notifation for transmission of
1436 * TSO packet.
1437 */
1438static inline void nicvf_sq_add_cqe_subdesc(struct snd_queue *sq, int qentry,
1439					    int tso_sqe, struct sk_buff *skb)
1440{
1441	struct sq_imm_subdesc *imm;
1442	struct sq_hdr_subdesc *hdr;
1443
1444	sq->skbuff[qentry] = (u64)skb;
1445
1446	hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, qentry);
1447	memset(hdr, 0, SND_QUEUE_DESC_SIZE);
1448	hdr->subdesc_type = SQ_DESC_TYPE_HEADER;
1449	/* Enable notification via CQE after processing SQE */
1450	hdr->post_cqe = 1;
1451	/* There is no packet to transmit here */
1452	hdr->dont_send = 1;
1453	hdr->subdesc_cnt = POST_CQE_DESC_COUNT - 1;
1454	hdr->tot_len = 1;
1455	/* Actual TSO header SQE index, needed for cleanup */
1456	hdr->rsvd2 = tso_sqe;
1457
1458	qentry = nicvf_get_nxt_sqentry(sq, qentry);
1459	imm = (struct sq_imm_subdesc *)GET_SQ_DESC(sq, qentry);
1460	memset(imm, 0, SND_QUEUE_DESC_SIZE);
1461	imm->subdesc_type = SQ_DESC_TYPE_IMMEDIATE;
1462	imm->len = 1;
1463}
1464
1465static inline void nicvf_sq_doorbell(struct nicvf *nic, struct sk_buff *skb,
1466				     int sq_num, int desc_cnt)
1467{
1468	struct netdev_queue *txq;
1469
1470	txq = netdev_get_tx_queue(nic->pnicvf->netdev,
1471				  skb_get_queue_mapping(skb));
1472
1473	netdev_tx_sent_queue(txq, skb->len);
1474
1475	/* make sure all memory stores are done before ringing doorbell */
1476	smp_wmb();
1477
1478	/* Inform HW to xmit all TSO segments */
1479	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_DOOR,
1480			      sq_num, desc_cnt);
1481}
1482
1483/* Segment a TSO packet into 'gso_size' segments and append
1484 * them to SQ for transfer
1485 */
1486static int nicvf_sq_append_tso(struct nicvf *nic, struct snd_queue *sq,
1487			       int sq_num, int qentry, struct sk_buff *skb)
1488{
1489	struct tso_t tso;
1490	int seg_subdescs = 0, desc_cnt = 0;
1491	int seg_len, total_len, data_left;
1492	int hdr_qentry = qentry;
1493	int hdr_len;
1494
1495	hdr_len = tso_start(skb, &tso);
1496
1497	total_len = skb->len - hdr_len;
1498	while (total_len > 0) {
1499		char *hdr;
1500
1501		/* Save Qentry for adding HDR_SUBDESC at the end */
1502		hdr_qentry = qentry;
1503
1504		data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
1505		total_len -= data_left;
1506
1507		/* Add segment's header */
1508		qentry = nicvf_get_nxt_sqentry(sq, qentry);
1509		hdr = sq->tso_hdrs + qentry * TSO_HEADER_SIZE;
1510		tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
1511		nicvf_sq_add_gather_subdesc(sq, qentry, hdr_len,
1512					    sq->tso_hdrs_phys +
1513					    qentry * TSO_HEADER_SIZE);
1514		/* HDR_SUDESC + GATHER */
1515		seg_subdescs = 2;
1516		seg_len = hdr_len;
1517
1518		/* Add segment's payload fragments */
1519		while (data_left > 0) {
1520			int size;
1521
1522			size = min_t(int, tso.size, data_left);
1523
1524			qentry = nicvf_get_nxt_sqentry(sq, qentry);
1525			nicvf_sq_add_gather_subdesc(sq, qentry, size,
1526						    virt_to_phys(tso.data));
1527			seg_subdescs++;
1528			seg_len += size;
1529
1530			data_left -= size;
1531			tso_build_data(skb, &tso, size);
1532		}
1533		nicvf_sq_add_hdr_subdesc(nic, sq, hdr_qentry,
1534					 seg_subdescs - 1, skb, seg_len);
1535		sq->skbuff[hdr_qentry] = (u64)NULL;
1536		qentry = nicvf_get_nxt_sqentry(sq, qentry);
1537
1538		desc_cnt += seg_subdescs;
1539	}
1540	/* Save SKB in the last segment for freeing */
1541	sq->skbuff[hdr_qentry] = (u64)skb;
1542
1543	nicvf_sq_doorbell(nic, skb, sq_num, desc_cnt);
1544
1545	this_cpu_inc(nic->pnicvf->drv_stats->tx_tso);
1546	return 1;
1547}
1548
1549/* Append an skb to a SQ for packet transfer. */
1550int nicvf_sq_append_skb(struct nicvf *nic, struct snd_queue *sq,
1551			struct sk_buff *skb, u8 sq_num)
1552{
1553	int i, size;
1554	int subdesc_cnt, hdr_sqe = 0;
1555	int qentry;
1556	u64 dma_addr;
1557
1558	subdesc_cnt = nicvf_sq_subdesc_required(nic, skb);
1559	if (subdesc_cnt > atomic_read(&sq->free_cnt))
1560		goto append_fail;
1561
1562	qentry = nicvf_get_sq_desc(sq, subdesc_cnt);
1563
1564	/* Check if its a TSO packet */
1565	if (skb_shinfo(skb)->gso_size && !nic->hw_tso)
1566		return nicvf_sq_append_tso(nic, sq, sq_num, qentry, skb);
1567
1568	/* Add SQ header subdesc */
1569	nicvf_sq_add_hdr_subdesc(nic, sq, qentry, subdesc_cnt - 1,
1570				 skb, skb->len);
1571	hdr_sqe = qentry;
1572
1573	/* Add SQ gather subdescs */
1574	qentry = nicvf_get_nxt_sqentry(sq, qentry);
1575	size = skb_is_nonlinear(skb) ? skb_headlen(skb) : skb->len;
1576	/* HW will ensure data coherency, CPU sync not required */
1577	dma_addr = dma_map_page_attrs(&nic->pdev->dev, virt_to_page(skb->data),
1578				      offset_in_page(skb->data), size,
1579				      DMA_TO_DEVICE, DMA_ATTR_SKIP_CPU_SYNC);
1580	if (dma_mapping_error(&nic->pdev->dev, dma_addr)) {
1581		nicvf_rollback_sq_desc(sq, qentry, subdesc_cnt);
1582		return 0;
1583	}
1584
1585	nicvf_sq_add_gather_subdesc(sq, qentry, size, dma_addr);
1586
1587	/* Check for scattered buffer */
1588	if (!skb_is_nonlinear(skb))
1589		goto doorbell;
1590
1591	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1592		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1593
1594		qentry = nicvf_get_nxt_sqentry(sq, qentry);
1595		size = skb_frag_size(frag);
1596		dma_addr = dma_map_page_attrs(&nic->pdev->dev,
1597					      skb_frag_page(frag),
1598					      skb_frag_off(frag), size,
1599					      DMA_TO_DEVICE,
1600					      DMA_ATTR_SKIP_CPU_SYNC);
1601		if (dma_mapping_error(&nic->pdev->dev, dma_addr)) {
1602			/* Free entire chain of mapped buffers
1603			 * here 'i' = frags mapped + above mapped skb->data
1604			 */
1605			nicvf_unmap_sndq_buffers(nic, sq, hdr_sqe, i);
1606			nicvf_rollback_sq_desc(sq, qentry, subdesc_cnt);
1607			return 0;
1608		}
1609		nicvf_sq_add_gather_subdesc(sq, qentry, size, dma_addr);
1610	}
1611
1612doorbell:
1613	if (nic->t88 && skb_shinfo(skb)->gso_size) {
1614		qentry = nicvf_get_nxt_sqentry(sq, qentry);
1615		nicvf_sq_add_cqe_subdesc(sq, qentry, hdr_sqe, skb);
1616	}
1617
1618	nicvf_sq_doorbell(nic, skb, sq_num, subdesc_cnt);
1619
1620	return 1;
1621
1622append_fail:
1623	/* Use original PCI dev for debug log */
1624	nic = nic->pnicvf;
1625	netdev_dbg(nic->netdev, "Not enough SQ descriptors to xmit pkt\n");
1626	return 0;
1627}
1628
1629static inline unsigned frag_num(unsigned i)
1630{
1631#ifdef __BIG_ENDIAN
1632	return (i & ~3) + 3 - (i & 3);
1633#else
1634	return i;
1635#endif
1636}
1637
1638static void nicvf_unmap_rcv_buffer(struct nicvf *nic, u64 dma_addr,
1639				   u64 buf_addr, bool xdp)
1640{
1641	struct page *page = NULL;
1642	int len = RCV_FRAG_LEN;
1643
1644	if (xdp) {
1645		page = virt_to_page(phys_to_virt(buf_addr));
1646		/* Check if it's a recycled page, if not
1647		 * unmap the DMA mapping.
1648		 *
1649		 * Recycled page holds an extra reference.
1650		 */
1651		if (page_ref_count(page) != 1)
1652			return;
1653
1654		len += XDP_PACKET_HEADROOM;
1655		/* Receive buffers in XDP mode are mapped from page start */
1656		dma_addr &= PAGE_MASK;
1657	}
1658	dma_unmap_page_attrs(&nic->pdev->dev, dma_addr, len,
1659			     DMA_FROM_DEVICE, DMA_ATTR_SKIP_CPU_SYNC);
1660}
1661
1662/* Returns SKB for a received packet */
1663struct sk_buff *nicvf_get_rcv_skb(struct nicvf *nic,
1664				  struct cqe_rx_t *cqe_rx, bool xdp)
1665{
1666	int frag;
1667	int payload_len = 0;
1668	struct sk_buff *skb = NULL;
1669	struct page *page;
1670	int offset;
1671	u16 *rb_lens = NULL;
1672	u64 *rb_ptrs = NULL;
1673	u64 phys_addr;
1674
1675	rb_lens = (void *)cqe_rx + (3 * sizeof(u64));
1676	/* Except 88xx pass1 on all other chips CQE_RX2_S is added to
1677	 * CQE_RX at word6, hence buffer pointers move by word
1678	 *
1679	 * Use existing 'hw_tso' flag which will be set for all chips
1680	 * except 88xx pass1 instead of a additional cache line
1681	 * access (or miss) by using pci dev's revision.
1682	 */
1683	if (!nic->hw_tso)
1684		rb_ptrs = (void *)cqe_rx + (6 * sizeof(u64));
1685	else
1686		rb_ptrs = (void *)cqe_rx + (7 * sizeof(u64));
1687
1688	for (frag = 0; frag < cqe_rx->rb_cnt; frag++) {
1689		payload_len = rb_lens[frag_num(frag)];
1690		phys_addr = nicvf_iova_to_phys(nic, *rb_ptrs);
1691		if (!phys_addr) {
1692			if (skb)
1693				dev_kfree_skb_any(skb);
1694			return NULL;
1695		}
1696
1697		if (!frag) {
1698			/* First fragment */
1699			nicvf_unmap_rcv_buffer(nic,
1700					       *rb_ptrs - cqe_rx->align_pad,
1701					       phys_addr, xdp);
1702			skb = nicvf_rb_ptr_to_skb(nic,
1703						  phys_addr - cqe_rx->align_pad,
1704						  payload_len);
1705			if (!skb)
1706				return NULL;
1707			skb_reserve(skb, cqe_rx->align_pad);
1708			skb_put(skb, payload_len);
1709		} else {
1710			/* Add fragments */
1711			nicvf_unmap_rcv_buffer(nic, *rb_ptrs, phys_addr, xdp);
1712			page = virt_to_page(phys_to_virt(phys_addr));
1713			offset = phys_to_virt(phys_addr) - page_address(page);
1714			skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
1715					offset, payload_len, RCV_FRAG_LEN);
1716		}
1717		/* Next buffer pointer */
1718		rb_ptrs++;
1719	}
1720	return skb;
1721}
1722
1723static u64 nicvf_int_type_to_mask(int int_type, int q_idx)
1724{
1725	u64 reg_val;
1726
1727	switch (int_type) {
1728	case NICVF_INTR_CQ:
1729		reg_val = ((1ULL << q_idx) << NICVF_INTR_CQ_SHIFT);
1730		break;
1731	case NICVF_INTR_SQ:
1732		reg_val = ((1ULL << q_idx) << NICVF_INTR_SQ_SHIFT);
1733		break;
1734	case NICVF_INTR_RBDR:
1735		reg_val = ((1ULL << q_idx) << NICVF_INTR_RBDR_SHIFT);
1736		break;
1737	case NICVF_INTR_PKT_DROP:
1738		reg_val = (1ULL << NICVF_INTR_PKT_DROP_SHIFT);
1739		break;
1740	case NICVF_INTR_TCP_TIMER:
1741		reg_val = (1ULL << NICVF_INTR_TCP_TIMER_SHIFT);
1742		break;
1743	case NICVF_INTR_MBOX:
1744		reg_val = (1ULL << NICVF_INTR_MBOX_SHIFT);
1745		break;
1746	case NICVF_INTR_QS_ERR:
1747		reg_val = (1ULL << NICVF_INTR_QS_ERR_SHIFT);
1748		break;
1749	default:
1750		reg_val = 0;
1751	}
1752
1753	return reg_val;
1754}
1755
1756/* Enable interrupt */
1757void nicvf_enable_intr(struct nicvf *nic, int int_type, int q_idx)
1758{
1759	u64 mask = nicvf_int_type_to_mask(int_type, q_idx);
1760
1761	if (!mask) {
1762		netdev_dbg(nic->netdev,
1763			   "Failed to enable interrupt: unknown type\n");
1764		return;
1765	}
1766	nicvf_reg_write(nic, NIC_VF_ENA_W1S,
1767			nicvf_reg_read(nic, NIC_VF_ENA_W1S) | mask);
1768}
1769
1770/* Disable interrupt */
1771void nicvf_disable_intr(struct nicvf *nic, int int_type, int q_idx)
1772{
1773	u64 mask = nicvf_int_type_to_mask(int_type, q_idx);
1774
1775	if (!mask) {
1776		netdev_dbg(nic->netdev,
1777			   "Failed to disable interrupt: unknown type\n");
1778		return;
1779	}
1780
1781	nicvf_reg_write(nic, NIC_VF_ENA_W1C, mask);
1782}
1783
1784/* Clear interrupt */
1785void nicvf_clear_intr(struct nicvf *nic, int int_type, int q_idx)
1786{
1787	u64 mask = nicvf_int_type_to_mask(int_type, q_idx);
1788
1789	if (!mask) {
1790		netdev_dbg(nic->netdev,
1791			   "Failed to clear interrupt: unknown type\n");
1792		return;
1793	}
1794
1795	nicvf_reg_write(nic, NIC_VF_INT, mask);
1796}
1797
1798/* Check if interrupt is enabled */
1799int nicvf_is_intr_enabled(struct nicvf *nic, int int_type, int q_idx)
1800{
1801	u64 mask = nicvf_int_type_to_mask(int_type, q_idx);
1802	/* If interrupt type is unknown, we treat it disabled. */
1803	if (!mask) {
1804		netdev_dbg(nic->netdev,
1805			   "Failed to check interrupt enable: unknown type\n");
1806		return 0;
1807	}
1808
1809	return mask & nicvf_reg_read(nic, NIC_VF_ENA_W1S);
1810}
1811
1812void nicvf_update_rq_stats(struct nicvf *nic, int rq_idx)
1813{
1814	struct rcv_queue *rq;
1815
1816#define GET_RQ_STATS(reg) \
1817	nicvf_reg_read(nic, NIC_QSET_RQ_0_7_STAT_0_1 |\
1818			    (rq_idx << NIC_Q_NUM_SHIFT) | (reg << 3))
1819
1820	rq = &nic->qs->rq[rq_idx];
1821	rq->stats.bytes = GET_RQ_STATS(RQ_SQ_STATS_OCTS);
1822	rq->stats.pkts = GET_RQ_STATS(RQ_SQ_STATS_PKTS);
1823}
1824
1825void nicvf_update_sq_stats(struct nicvf *nic, int sq_idx)
1826{
1827	struct snd_queue *sq;
1828
1829#define GET_SQ_STATS(reg) \
1830	nicvf_reg_read(nic, NIC_QSET_SQ_0_7_STAT_0_1 |\
1831			    (sq_idx << NIC_Q_NUM_SHIFT) | (reg << 3))
1832
1833	sq = &nic->qs->sq[sq_idx];
1834	sq->stats.bytes = GET_SQ_STATS(RQ_SQ_STATS_OCTS);
1835	sq->stats.pkts = GET_SQ_STATS(RQ_SQ_STATS_PKTS);
1836}
1837
1838/* Check for errors in the receive cmp.queue entry */
1839int nicvf_check_cqe_rx_errs(struct nicvf *nic, struct cqe_rx_t *cqe_rx)
1840{
1841	netif_err(nic, rx_err, nic->netdev,
1842		  "RX error CQE err_level 0x%x err_opcode 0x%x\n",
1843		  cqe_rx->err_level, cqe_rx->err_opcode);
1844
1845	switch (cqe_rx->err_opcode) {
1846	case CQ_RX_ERROP_RE_PARTIAL:
1847		this_cpu_inc(nic->drv_stats->rx_bgx_truncated_pkts);
1848		break;
1849	case CQ_RX_ERROP_RE_JABBER:
1850		this_cpu_inc(nic->drv_stats->rx_jabber_errs);
1851		break;
1852	case CQ_RX_ERROP_RE_FCS:
1853		this_cpu_inc(nic->drv_stats->rx_fcs_errs);
1854		break;
1855	case CQ_RX_ERROP_RE_RX_CTL:
1856		this_cpu_inc(nic->drv_stats->rx_bgx_errs);
1857		break;
1858	case CQ_RX_ERROP_PREL2_ERR:
1859		this_cpu_inc(nic->drv_stats->rx_prel2_errs);
1860		break;
1861	case CQ_RX_ERROP_L2_MAL:
1862		this_cpu_inc(nic->drv_stats->rx_l2_hdr_malformed);
1863		break;
1864	case CQ_RX_ERROP_L2_OVERSIZE:
1865		this_cpu_inc(nic->drv_stats->rx_oversize);
1866		break;
1867	case CQ_RX_ERROP_L2_UNDERSIZE:
1868		this_cpu_inc(nic->drv_stats->rx_undersize);
1869		break;
1870	case CQ_RX_ERROP_L2_LENMISM:
1871		this_cpu_inc(nic->drv_stats->rx_l2_len_mismatch);
1872		break;
1873	case CQ_RX_ERROP_L2_PCLP:
1874		this_cpu_inc(nic->drv_stats->rx_l2_pclp);
1875		break;
1876	case CQ_RX_ERROP_IP_NOT:
1877		this_cpu_inc(nic->drv_stats->rx_ip_ver_errs);
1878		break;
1879	case CQ_RX_ERROP_IP_CSUM_ERR:
1880		this_cpu_inc(nic->drv_stats->rx_ip_csum_errs);
1881		break;
1882	case CQ_RX_ERROP_IP_MAL:
1883		this_cpu_inc(nic->drv_stats->rx_ip_hdr_malformed);
1884		break;
1885	case CQ_RX_ERROP_IP_MALD:
1886		this_cpu_inc(nic->drv_stats->rx_ip_payload_malformed);
1887		break;
1888	case CQ_RX_ERROP_IP_HOP:
1889		this_cpu_inc(nic->drv_stats->rx_ip_ttl_errs);
1890		break;
1891	case CQ_RX_ERROP_L3_PCLP:
1892		this_cpu_inc(nic->drv_stats->rx_l3_pclp);
1893		break;
1894	case CQ_RX_ERROP_L4_MAL:
1895		this_cpu_inc(nic->drv_stats->rx_l4_malformed);
1896		break;
1897	case CQ_RX_ERROP_L4_CHK:
1898		this_cpu_inc(nic->drv_stats->rx_l4_csum_errs);
1899		break;
1900	case CQ_RX_ERROP_UDP_LEN:
1901		this_cpu_inc(nic->drv_stats->rx_udp_len_errs);
1902		break;
1903	case CQ_RX_ERROP_L4_PORT:
1904		this_cpu_inc(nic->drv_stats->rx_l4_port_errs);
1905		break;
1906	case CQ_RX_ERROP_TCP_FLAG:
1907		this_cpu_inc(nic->drv_stats->rx_tcp_flag_errs);
1908		break;
1909	case CQ_RX_ERROP_TCP_OFFSET:
1910		this_cpu_inc(nic->drv_stats->rx_tcp_offset_errs);
1911		break;
1912	case CQ_RX_ERROP_L4_PCLP:
1913		this_cpu_inc(nic->drv_stats->rx_l4_pclp);
1914		break;
1915	case CQ_RX_ERROP_RBDR_TRUNC:
1916		this_cpu_inc(nic->drv_stats->rx_truncated_pkts);
1917		break;
1918	}
1919
1920	return 1;
1921}
1922
1923/* Check for errors in the send cmp.queue entry */
1924int nicvf_check_cqe_tx_errs(struct nicvf *nic, struct cqe_send_t *cqe_tx)
1925{
1926	switch (cqe_tx->send_status) {
1927	case CQ_TX_ERROP_DESC_FAULT:
1928		this_cpu_inc(nic->drv_stats->tx_desc_fault);
1929		break;
1930	case CQ_TX_ERROP_HDR_CONS_ERR:
1931		this_cpu_inc(nic->drv_stats->tx_hdr_cons_err);
1932		break;
1933	case CQ_TX_ERROP_SUBDC_ERR:
1934		this_cpu_inc(nic->drv_stats->tx_subdesc_err);
1935		break;
1936	case CQ_TX_ERROP_MAX_SIZE_VIOL:
1937		this_cpu_inc(nic->drv_stats->tx_max_size_exceeded);
1938		break;
1939	case CQ_TX_ERROP_IMM_SIZE_OFLOW:
1940		this_cpu_inc(nic->drv_stats->tx_imm_size_oflow);
1941		break;
1942	case CQ_TX_ERROP_DATA_SEQUENCE_ERR:
1943		this_cpu_inc(nic->drv_stats->tx_data_seq_err);
1944		break;
1945	case CQ_TX_ERROP_MEM_SEQUENCE_ERR:
1946		this_cpu_inc(nic->drv_stats->tx_mem_seq_err);
1947		break;
1948	case CQ_TX_ERROP_LOCK_VIOL:
1949		this_cpu_inc(nic->drv_stats->tx_lock_viol);
1950		break;
1951	case CQ_TX_ERROP_DATA_FAULT:
1952		this_cpu_inc(nic->drv_stats->tx_data_fault);
1953		break;
1954	case CQ_TX_ERROP_TSTMP_CONFLICT:
1955		this_cpu_inc(nic->drv_stats->tx_tstmp_conflict);
1956		break;
1957	case CQ_TX_ERROP_TSTMP_TIMEOUT:
1958		this_cpu_inc(nic->drv_stats->tx_tstmp_timeout);
1959		break;
1960	case CQ_TX_ERROP_MEM_FAULT:
1961		this_cpu_inc(nic->drv_stats->tx_mem_fault);
1962		break;
1963	case CQ_TX_ERROP_CK_OVERLAP:
1964		this_cpu_inc(nic->drv_stats->tx_csum_overlap);
1965		break;
1966	case CQ_TX_ERROP_CK_OFLOW:
1967		this_cpu_inc(nic->drv_stats->tx_csum_overflow);
1968		break;
1969	}
1970
1971	return 1;
1972}
1973