1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Copyright (C) 2001,2002,2003,2004 Broadcom Corporation
4 * Copyright (c) 2006, 2007  Maciej W. Rozycki
5 *
6 * This driver is designed for the Broadcom SiByte SOC built-in
7 * Ethernet controllers. Written by Mitch Lichtenberg at Broadcom Corp.
8 *
9 * Updated to the driver model and the PHY abstraction layer
10 * by Maciej W. Rozycki.
11 */
12
13#include <linux/bug.h>
14#include <linux/module.h>
15#include <linux/kernel.h>
16#include <linux/string.h>
17#include <linux/timer.h>
18#include <linux/errno.h>
19#include <linux/ioport.h>
20#include <linux/slab.h>
21#include <linux/interrupt.h>
22#include <linux/netdevice.h>
23#include <linux/etherdevice.h>
24#include <linux/skbuff.h>
25#include <linux/bitops.h>
26#include <linux/err.h>
27#include <linux/ethtool.h>
28#include <linux/mii.h>
29#include <linux/phy.h>
30#include <linux/platform_device.h>
31#include <linux/prefetch.h>
32
33#include <asm/cache.h>
34#include <asm/io.h>
35#include <asm/processor.h>	/* Processor type for cache alignment. */
36
37/* Operational parameters that usually are not changed. */
38
39#define CONFIG_SBMAC_COALESCE
40
41/* Time in jiffies before concluding the transmitter is hung. */
42#define TX_TIMEOUT  (2*HZ)
43
44
45MODULE_AUTHOR("Mitch Lichtenberg (Broadcom Corp.)");
46MODULE_DESCRIPTION("Broadcom SiByte SOC GB Ethernet driver");
47
48/* A few user-configurable values which may be modified when a driver
49   module is loaded. */
50
51/* 1 normal messages, 0 quiet .. 7 verbose. */
52static int debug = 1;
53module_param(debug, int, 0444);
54MODULE_PARM_DESC(debug, "Debug messages");
55
56#ifdef CONFIG_SBMAC_COALESCE
57static int int_pktcnt_tx = 255;
58module_param(int_pktcnt_tx, int, 0444);
59MODULE_PARM_DESC(int_pktcnt_tx, "TX packet count");
60
61static int int_timeout_tx = 255;
62module_param(int_timeout_tx, int, 0444);
63MODULE_PARM_DESC(int_timeout_tx, "TX timeout value");
64
65static int int_pktcnt_rx = 64;
66module_param(int_pktcnt_rx, int, 0444);
67MODULE_PARM_DESC(int_pktcnt_rx, "RX packet count");
68
69static int int_timeout_rx = 64;
70module_param(int_timeout_rx, int, 0444);
71MODULE_PARM_DESC(int_timeout_rx, "RX timeout value");
72#endif
73
74#include <asm/sibyte/board.h>
75#include <asm/sibyte/sb1250.h>
76#if defined(CONFIG_SIBYTE_BCM1x80)
77#include <asm/sibyte/bcm1480_regs.h>
78#include <asm/sibyte/bcm1480_int.h>
79#define R_MAC_DMA_OODPKTLOST_RX	R_MAC_DMA_OODPKTLOST
80#elif defined(CONFIG_SIBYTE_SB1250) || defined(CONFIG_SIBYTE_BCM112X)
81#include <asm/sibyte/sb1250_regs.h>
82#include <asm/sibyte/sb1250_int.h>
83#else
84#error invalid SiByte MAC configuration
85#endif
86#include <asm/sibyte/sb1250_scd.h>
87#include <asm/sibyte/sb1250_mac.h>
88#include <asm/sibyte/sb1250_dma.h>
89
90#if defined(CONFIG_SIBYTE_BCM1x80)
91#define UNIT_INT(n)		(K_BCM1480_INT_MAC_0 + ((n) * 2))
92#elif defined(CONFIG_SIBYTE_SB1250) || defined(CONFIG_SIBYTE_BCM112X)
93#define UNIT_INT(n)		(K_INT_MAC_0 + (n))
94#else
95#error invalid SiByte MAC configuration
96#endif
97
98#ifdef K_INT_PHY
99#define SBMAC_PHY_INT			K_INT_PHY
100#else
101#define SBMAC_PHY_INT			PHY_POLL
102#endif
103
104/**********************************************************************
105 *  Simple types
106 ********************************************************************* */
107
108enum sbmac_speed {
109	sbmac_speed_none = 0,
110	sbmac_speed_10 = SPEED_10,
111	sbmac_speed_100 = SPEED_100,
112	sbmac_speed_1000 = SPEED_1000,
113};
114
115enum sbmac_duplex {
116	sbmac_duplex_none = -1,
117	sbmac_duplex_half = DUPLEX_HALF,
118	sbmac_duplex_full = DUPLEX_FULL,
119};
120
121enum sbmac_fc {
122	sbmac_fc_none,
123	sbmac_fc_disabled,
124	sbmac_fc_frame,
125	sbmac_fc_collision,
126	sbmac_fc_carrier,
127};
128
129enum sbmac_state {
130	sbmac_state_uninit,
131	sbmac_state_off,
132	sbmac_state_on,
133	sbmac_state_broken,
134};
135
136
137/**********************************************************************
138 *  Macros
139 ********************************************************************* */
140
141
142#define SBDMA_NEXTBUF(d,f) ((((d)->f+1) == (d)->sbdma_dscrtable_end) ? \
143			  (d)->sbdma_dscrtable : (d)->f+1)
144
145
146#define NUMCACHEBLKS(x) DIV_ROUND_UP(x, SMP_CACHE_BYTES)
147
148#define SBMAC_MAX_TXDESCR	256
149#define SBMAC_MAX_RXDESCR	256
150
151#define ENET_PACKET_SIZE	1518
152/*#define ENET_PACKET_SIZE	9216 */
153
154/**********************************************************************
155 *  DMA Descriptor structure
156 ********************************************************************* */
157
158struct sbdmadscr {
159	uint64_t  dscr_a;
160	uint64_t  dscr_b;
161};
162
163/**********************************************************************
164 *  DMA Controller structure
165 ********************************************************************* */
166
167struct sbmacdma {
168
169	/*
170	 * This stuff is used to identify the channel and the registers
171	 * associated with it.
172	 */
173	struct sbmac_softc	*sbdma_eth;	/* back pointer to associated
174						   MAC */
175	int			sbdma_channel;	/* channel number */
176	int			sbdma_txdir;	/* direction (1=transmit) */
177	int			sbdma_maxdescr;	/* total # of descriptors
178						   in ring */
179#ifdef CONFIG_SBMAC_COALESCE
180	int			sbdma_int_pktcnt;
181						/* # descriptors rx/tx
182						   before interrupt */
183	int			sbdma_int_timeout;
184						/* # usec rx/tx interrupt */
185#endif
186	void __iomem		*sbdma_config0;	/* DMA config register 0 */
187	void __iomem		*sbdma_config1;	/* DMA config register 1 */
188	void __iomem		*sbdma_dscrbase;
189						/* descriptor base address */
190	void __iomem		*sbdma_dscrcnt;	/* descriptor count register */
191	void __iomem		*sbdma_curdscr;	/* current descriptor
192						   address */
193	void __iomem		*sbdma_oodpktlost;
194						/* pkt drop (rx only) */
195
196	/*
197	 * This stuff is for maintenance of the ring
198	 */
199	void			*sbdma_dscrtable_unaligned;
200	struct sbdmadscr	*sbdma_dscrtable;
201						/* base of descriptor table */
202	struct sbdmadscr	*sbdma_dscrtable_end;
203						/* end of descriptor table */
204	struct sk_buff		**sbdma_ctxtable;
205						/* context table, one
206						   per descr */
207	dma_addr_t		sbdma_dscrtable_phys;
208						/* and also the phys addr */
209	struct sbdmadscr	*sbdma_addptr;	/* next dscr for sw to add */
210	struct sbdmadscr	*sbdma_remptr;	/* next dscr for sw
211						   to remove */
212};
213
214
215/**********************************************************************
216 *  Ethernet softc structure
217 ********************************************************************* */
218
219struct sbmac_softc {
220
221	/*
222	 * Linux-specific things
223	 */
224	struct net_device	*sbm_dev;	/* pointer to linux device */
225	struct napi_struct	napi;
226	struct phy_device	*phy_dev;	/* the associated PHY device */
227	struct mii_bus		*mii_bus;	/* the MII bus */
228	spinlock_t		sbm_lock;	/* spin lock */
229	int			sbm_devflags;	/* current device flags */
230
231	/*
232	 * Controller-specific things
233	 */
234	void __iomem		*sbm_base;	/* MAC's base address */
235	enum sbmac_state	sbm_state;	/* current state */
236
237	void __iomem		*sbm_macenable;	/* MAC Enable Register */
238	void __iomem		*sbm_maccfg;	/* MAC Config Register */
239	void __iomem		*sbm_fifocfg;	/* FIFO Config Register */
240	void __iomem		*sbm_framecfg;	/* Frame Config Register */
241	void __iomem		*sbm_rxfilter;	/* Receive Filter Register */
242	void __iomem		*sbm_isr;	/* Interrupt Status Register */
243	void __iomem		*sbm_imr;	/* Interrupt Mask Register */
244	void __iomem		*sbm_mdio;	/* MDIO Register */
245
246	enum sbmac_speed	sbm_speed;	/* current speed */
247	enum sbmac_duplex	sbm_duplex;	/* current duplex */
248	enum sbmac_fc		sbm_fc;		/* cur. flow control setting */
249	int			sbm_pause;	/* current pause setting */
250	int			sbm_link;	/* current link state */
251
252	unsigned char		sbm_hwaddr[ETH_ALEN];
253
254	struct sbmacdma		sbm_txdma;	/* only channel 0 for now */
255	struct sbmacdma		sbm_rxdma;
256	int			rx_hw_checksum;
257	int			sbe_idx;
258};
259
260
261/**********************************************************************
262 *  Externs
263 ********************************************************************* */
264
265/**********************************************************************
266 *  Prototypes
267 ********************************************************************* */
268
269static void sbdma_initctx(struct sbmacdma *d, struct sbmac_softc *s, int chan,
270			  int txrx, int maxdescr);
271static void sbdma_channel_start(struct sbmacdma *d, int rxtx);
272static int sbdma_add_rcvbuffer(struct sbmac_softc *sc, struct sbmacdma *d,
273			       struct sk_buff *m);
274static int sbdma_add_txbuffer(struct sbmacdma *d, struct sk_buff *m);
275static void sbdma_emptyring(struct sbmacdma *d);
276static void sbdma_fillring(struct sbmac_softc *sc, struct sbmacdma *d);
277static int sbdma_rx_process(struct sbmac_softc *sc, struct sbmacdma *d,
278			    int work_to_do, int poll);
279static void sbdma_tx_process(struct sbmac_softc *sc, struct sbmacdma *d,
280			     int poll);
281static int sbmac_initctx(struct sbmac_softc *s);
282static void sbmac_channel_start(struct sbmac_softc *s);
283static void sbmac_channel_stop(struct sbmac_softc *s);
284static enum sbmac_state sbmac_set_channel_state(struct sbmac_softc *,
285						enum sbmac_state);
286static void sbmac_promiscuous_mode(struct sbmac_softc *sc, int onoff);
287static uint64_t sbmac_addr2reg(unsigned char *ptr);
288static irqreturn_t sbmac_intr(int irq, void *dev_instance);
289static netdev_tx_t sbmac_start_tx(struct sk_buff *skb, struct net_device *dev);
290static void sbmac_setmulti(struct sbmac_softc *sc);
291static int sbmac_init(struct platform_device *pldev, long long base);
292static int sbmac_set_speed(struct sbmac_softc *s, enum sbmac_speed speed);
293static int sbmac_set_duplex(struct sbmac_softc *s, enum sbmac_duplex duplex,
294			    enum sbmac_fc fc);
295
296static int sbmac_open(struct net_device *dev);
297static void sbmac_tx_timeout (struct net_device *dev, unsigned int txqueue);
298static void sbmac_set_rx_mode(struct net_device *dev);
299static int sbmac_mii_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
300static int sbmac_close(struct net_device *dev);
301static int sbmac_poll(struct napi_struct *napi, int budget);
302
303static void sbmac_mii_poll(struct net_device *dev);
304static int sbmac_mii_probe(struct net_device *dev);
305
306static void sbmac_mii_sync(void __iomem *sbm_mdio);
307static void sbmac_mii_senddata(void __iomem *sbm_mdio, unsigned int data,
308			       int bitcnt);
309static int sbmac_mii_read(struct mii_bus *bus, int phyaddr, int regidx);
310static int sbmac_mii_write(struct mii_bus *bus, int phyaddr, int regidx,
311			   u16 val);
312
313
314/**********************************************************************
315 *  Globals
316 ********************************************************************* */
317
318static char sbmac_string[] = "sb1250-mac";
319
320static char sbmac_mdio_string[] = "sb1250-mac-mdio";
321
322
323/**********************************************************************
324 *  MDIO constants
325 ********************************************************************* */
326
327#define	MII_COMMAND_START	0x01
328#define	MII_COMMAND_READ	0x02
329#define	MII_COMMAND_WRITE	0x01
330#define	MII_COMMAND_ACK		0x02
331
332#define M_MAC_MDIO_DIR_OUTPUT	0		/* for clarity */
333
334#define ENABLE 		1
335#define DISABLE		0
336
337/**********************************************************************
338 *  SBMAC_MII_SYNC(sbm_mdio)
339 *
340 *  Synchronize with the MII - send a pattern of bits to the MII
341 *  that will guarantee that it is ready to accept a command.
342 *
343 *  Input parameters:
344 *  	   sbm_mdio - address of the MAC's MDIO register
345 *
346 *  Return value:
347 *  	   nothing
348 ********************************************************************* */
349
350static void sbmac_mii_sync(void __iomem *sbm_mdio)
351{
352	int cnt;
353	uint64_t bits;
354	int mac_mdio_genc;
355
356	mac_mdio_genc = __raw_readq(sbm_mdio) & M_MAC_GENC;
357
358	bits = M_MAC_MDIO_DIR_OUTPUT | M_MAC_MDIO_OUT;
359
360	__raw_writeq(bits | mac_mdio_genc, sbm_mdio);
361
362	for (cnt = 0; cnt < 32; cnt++) {
363		__raw_writeq(bits | M_MAC_MDC | mac_mdio_genc, sbm_mdio);
364		__raw_writeq(bits | mac_mdio_genc, sbm_mdio);
365	}
366}
367
368/**********************************************************************
369 *  SBMAC_MII_SENDDATA(sbm_mdio, data, bitcnt)
370 *
371 *  Send some bits to the MII.  The bits to be sent are right-
372 *  justified in the 'data' parameter.
373 *
374 *  Input parameters:
375 *  	   sbm_mdio - address of the MAC's MDIO register
376 *  	   data     - data to send
377 *  	   bitcnt   - number of bits to send
378 ********************************************************************* */
379
380static void sbmac_mii_senddata(void __iomem *sbm_mdio, unsigned int data,
381			       int bitcnt)
382{
383	int i;
384	uint64_t bits;
385	unsigned int curmask;
386	int mac_mdio_genc;
387
388	mac_mdio_genc = __raw_readq(sbm_mdio) & M_MAC_GENC;
389
390	bits = M_MAC_MDIO_DIR_OUTPUT;
391	__raw_writeq(bits | mac_mdio_genc, sbm_mdio);
392
393	curmask = 1 << (bitcnt - 1);
394
395	for (i = 0; i < bitcnt; i++) {
396		if (data & curmask)
397			bits |= M_MAC_MDIO_OUT;
398		else bits &= ~M_MAC_MDIO_OUT;
399		__raw_writeq(bits | mac_mdio_genc, sbm_mdio);
400		__raw_writeq(bits | M_MAC_MDC | mac_mdio_genc, sbm_mdio);
401		__raw_writeq(bits | mac_mdio_genc, sbm_mdio);
402		curmask >>= 1;
403	}
404}
405
406
407
408/**********************************************************************
409 *  SBMAC_MII_READ(bus, phyaddr, regidx)
410 *  Read a PHY register.
411 *
412 *  Input parameters:
413 *  	   bus     - MDIO bus handle
414 *  	   phyaddr - PHY's address
415 *  	   regnum  - index of register to read
416 *
417 *  Return value:
418 *  	   value read, or 0xffff if an error occurred.
419 ********************************************************************* */
420
421static int sbmac_mii_read(struct mii_bus *bus, int phyaddr, int regidx)
422{
423	struct sbmac_softc *sc = (struct sbmac_softc *)bus->priv;
424	void __iomem *sbm_mdio = sc->sbm_mdio;
425	int idx;
426	int error;
427	int regval;
428	int mac_mdio_genc;
429
430	/*
431	 * Synchronize ourselves so that the PHY knows the next
432	 * thing coming down is a command
433	 */
434	sbmac_mii_sync(sbm_mdio);
435
436	/*
437	 * Send the data to the PHY.  The sequence is
438	 * a "start" command (2 bits)
439	 * a "read" command (2 bits)
440	 * the PHY addr (5 bits)
441	 * the register index (5 bits)
442	 */
443	sbmac_mii_senddata(sbm_mdio, MII_COMMAND_START, 2);
444	sbmac_mii_senddata(sbm_mdio, MII_COMMAND_READ, 2);
445	sbmac_mii_senddata(sbm_mdio, phyaddr, 5);
446	sbmac_mii_senddata(sbm_mdio, regidx, 5);
447
448	mac_mdio_genc = __raw_readq(sbm_mdio) & M_MAC_GENC;
449
450	/*
451	 * Switch the port around without a clock transition.
452	 */
453	__raw_writeq(M_MAC_MDIO_DIR_INPUT | mac_mdio_genc, sbm_mdio);
454
455	/*
456	 * Send out a clock pulse to signal we want the status
457	 */
458	__raw_writeq(M_MAC_MDIO_DIR_INPUT | M_MAC_MDC | mac_mdio_genc,
459		     sbm_mdio);
460	__raw_writeq(M_MAC_MDIO_DIR_INPUT | mac_mdio_genc, sbm_mdio);
461
462	/*
463	 * If an error occurred, the PHY will signal '1' back
464	 */
465	error = __raw_readq(sbm_mdio) & M_MAC_MDIO_IN;
466
467	/*
468	 * Issue an 'idle' clock pulse, but keep the direction
469	 * the same.
470	 */
471	__raw_writeq(M_MAC_MDIO_DIR_INPUT | M_MAC_MDC | mac_mdio_genc,
472		     sbm_mdio);
473	__raw_writeq(M_MAC_MDIO_DIR_INPUT | mac_mdio_genc, sbm_mdio);
474
475	regval = 0;
476
477	for (idx = 0; idx < 16; idx++) {
478		regval <<= 1;
479
480		if (error == 0) {
481			if (__raw_readq(sbm_mdio) & M_MAC_MDIO_IN)
482				regval |= 1;
483		}
484
485		__raw_writeq(M_MAC_MDIO_DIR_INPUT | M_MAC_MDC | mac_mdio_genc,
486			     sbm_mdio);
487		__raw_writeq(M_MAC_MDIO_DIR_INPUT | mac_mdio_genc, sbm_mdio);
488	}
489
490	/* Switch back to output */
491	__raw_writeq(M_MAC_MDIO_DIR_OUTPUT | mac_mdio_genc, sbm_mdio);
492
493	if (error == 0)
494		return regval;
495	return 0xffff;
496}
497
498
499/**********************************************************************
500 *  SBMAC_MII_WRITE(bus, phyaddr, regidx, regval)
501 *
502 *  Write a value to a PHY register.
503 *
504 *  Input parameters:
505 *  	   bus     - MDIO bus handle
506 *  	   phyaddr - PHY to use
507 *  	   regidx  - register within the PHY
508 *  	   regval  - data to write to register
509 *
510 *  Return value:
511 *  	   0 for success
512 ********************************************************************* */
513
514static int sbmac_mii_write(struct mii_bus *bus, int phyaddr, int regidx,
515			   u16 regval)
516{
517	struct sbmac_softc *sc = (struct sbmac_softc *)bus->priv;
518	void __iomem *sbm_mdio = sc->sbm_mdio;
519	int mac_mdio_genc;
520
521	sbmac_mii_sync(sbm_mdio);
522
523	sbmac_mii_senddata(sbm_mdio, MII_COMMAND_START, 2);
524	sbmac_mii_senddata(sbm_mdio, MII_COMMAND_WRITE, 2);
525	sbmac_mii_senddata(sbm_mdio, phyaddr, 5);
526	sbmac_mii_senddata(sbm_mdio, regidx, 5);
527	sbmac_mii_senddata(sbm_mdio, MII_COMMAND_ACK, 2);
528	sbmac_mii_senddata(sbm_mdio, regval, 16);
529
530	mac_mdio_genc = __raw_readq(sbm_mdio) & M_MAC_GENC;
531
532	__raw_writeq(M_MAC_MDIO_DIR_OUTPUT | mac_mdio_genc, sbm_mdio);
533
534	return 0;
535}
536
537
538
539/**********************************************************************
540 *  SBDMA_INITCTX(d,s,chan,txrx,maxdescr)
541 *
542 *  Initialize a DMA channel context.  Since there are potentially
543 *  eight DMA channels per MAC, it's nice to do this in a standard
544 *  way.
545 *
546 *  Input parameters:
547 *  	   d - struct sbmacdma (DMA channel context)
548 *  	   s - struct sbmac_softc (pointer to a MAC)
549 *  	   chan - channel number (0..1 right now)
550 *  	   txrx - Identifies DMA_TX or DMA_RX for channel direction
551 *      maxdescr - number of descriptors
552 *
553 *  Return value:
554 *  	   nothing
555 ********************************************************************* */
556
557static void sbdma_initctx(struct sbmacdma *d, struct sbmac_softc *s, int chan,
558			  int txrx, int maxdescr)
559{
560#ifdef CONFIG_SBMAC_COALESCE
561	int int_pktcnt, int_timeout;
562#endif
563
564	/*
565	 * Save away interesting stuff in the structure
566	 */
567
568	d->sbdma_eth       = s;
569	d->sbdma_channel   = chan;
570	d->sbdma_txdir     = txrx;
571
572#if 0
573	/* RMON clearing */
574	s->sbe_idx =(s->sbm_base - A_MAC_BASE_0)/MAC_SPACING;
575#endif
576
577	__raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_BYTES);
578	__raw_writeq(0, s->sbm_base + R_MAC_RMON_COLLISIONS);
579	__raw_writeq(0, s->sbm_base + R_MAC_RMON_LATE_COL);
580	__raw_writeq(0, s->sbm_base + R_MAC_RMON_EX_COL);
581	__raw_writeq(0, s->sbm_base + R_MAC_RMON_FCS_ERROR);
582	__raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_ABORT);
583	__raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_BAD);
584	__raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_GOOD);
585	__raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_RUNT);
586	__raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_OVERSIZE);
587	__raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_BYTES);
588	__raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_MCAST);
589	__raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_BCAST);
590	__raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_BAD);
591	__raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_GOOD);
592	__raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_RUNT);
593	__raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_OVERSIZE);
594	__raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_FCS_ERROR);
595	__raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_LENGTH_ERROR);
596	__raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_CODE_ERROR);
597	__raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_ALIGN_ERROR);
598
599	/*
600	 * initialize register pointers
601	 */
602
603	d->sbdma_config0 =
604		s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_CONFIG0);
605	d->sbdma_config1 =
606		s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_CONFIG1);
607	d->sbdma_dscrbase =
608		s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_DSCR_BASE);
609	d->sbdma_dscrcnt =
610		s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_DSCR_CNT);
611	d->sbdma_curdscr =
612		s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_CUR_DSCRADDR);
613	if (d->sbdma_txdir)
614		d->sbdma_oodpktlost = NULL;
615	else
616		d->sbdma_oodpktlost =
617			s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_OODPKTLOST_RX);
618
619	/*
620	 * Allocate memory for the ring
621	 */
622
623	d->sbdma_maxdescr = maxdescr;
624
625	d->sbdma_dscrtable_unaligned = kcalloc(d->sbdma_maxdescr + 1,
626					       sizeof(*d->sbdma_dscrtable),
627					       GFP_KERNEL);
628
629	/*
630	 * The descriptor table must be aligned to at least 16 bytes or the
631	 * MAC will corrupt it.
632	 */
633	d->sbdma_dscrtable = (struct sbdmadscr *)
634			     ALIGN((unsigned long)d->sbdma_dscrtable_unaligned,
635				   sizeof(*d->sbdma_dscrtable));
636
637	d->sbdma_dscrtable_end = d->sbdma_dscrtable + d->sbdma_maxdescr;
638
639	d->sbdma_dscrtable_phys = virt_to_phys(d->sbdma_dscrtable);
640
641	/*
642	 * And context table
643	 */
644
645	d->sbdma_ctxtable = kcalloc(d->sbdma_maxdescr,
646				    sizeof(*d->sbdma_ctxtable), GFP_KERNEL);
647
648#ifdef CONFIG_SBMAC_COALESCE
649	/*
650	 * Setup Rx/Tx DMA coalescing defaults
651	 */
652
653	int_pktcnt = (txrx == DMA_TX) ? int_pktcnt_tx : int_pktcnt_rx;
654	if ( int_pktcnt ) {
655		d->sbdma_int_pktcnt = int_pktcnt;
656	} else {
657		d->sbdma_int_pktcnt = 1;
658	}
659
660	int_timeout = (txrx == DMA_TX) ? int_timeout_tx : int_timeout_rx;
661	if ( int_timeout ) {
662		d->sbdma_int_timeout = int_timeout;
663	} else {
664		d->sbdma_int_timeout = 0;
665	}
666#endif
667
668}
669
670/**********************************************************************
671 *  SBDMA_CHANNEL_START(d)
672 *
673 *  Initialize the hardware registers for a DMA channel.
674 *
675 *  Input parameters:
676 *  	   d - DMA channel to init (context must be previously init'd
677 *         rxtx - DMA_RX or DMA_TX depending on what type of channel
678 *
679 *  Return value:
680 *  	   nothing
681 ********************************************************************* */
682
683static void sbdma_channel_start(struct sbmacdma *d, int rxtx)
684{
685	/*
686	 * Turn on the DMA channel
687	 */
688
689#ifdef CONFIG_SBMAC_COALESCE
690	__raw_writeq(V_DMA_INT_TIMEOUT(d->sbdma_int_timeout) |
691		       0, d->sbdma_config1);
692	__raw_writeq(M_DMA_EOP_INT_EN |
693		       V_DMA_RINGSZ(d->sbdma_maxdescr) |
694		       V_DMA_INT_PKTCNT(d->sbdma_int_pktcnt) |
695		       0, d->sbdma_config0);
696#else
697	__raw_writeq(0, d->sbdma_config1);
698	__raw_writeq(V_DMA_RINGSZ(d->sbdma_maxdescr) |
699		       0, d->sbdma_config0);
700#endif
701
702	__raw_writeq(d->sbdma_dscrtable_phys, d->sbdma_dscrbase);
703
704	/*
705	 * Initialize ring pointers
706	 */
707
708	d->sbdma_addptr = d->sbdma_dscrtable;
709	d->sbdma_remptr = d->sbdma_dscrtable;
710}
711
712/**********************************************************************
713 *  SBDMA_CHANNEL_STOP(d)
714 *
715 *  Initialize the hardware registers for a DMA channel.
716 *
717 *  Input parameters:
718 *  	   d - DMA channel to init (context must be previously init'd
719 *
720 *  Return value:
721 *  	   nothing
722 ********************************************************************* */
723
724static void sbdma_channel_stop(struct sbmacdma *d)
725{
726	/*
727	 * Turn off the DMA channel
728	 */
729
730	__raw_writeq(0, d->sbdma_config1);
731
732	__raw_writeq(0, d->sbdma_dscrbase);
733
734	__raw_writeq(0, d->sbdma_config0);
735
736	/*
737	 * Zero ring pointers
738	 */
739
740	d->sbdma_addptr = NULL;
741	d->sbdma_remptr = NULL;
742}
743
744static inline void sbdma_align_skb(struct sk_buff *skb,
745				   unsigned int power2, unsigned int offset)
746{
747	unsigned char *addr = skb->data;
748	unsigned char *newaddr = PTR_ALIGN(addr, power2);
749
750	skb_reserve(skb, newaddr - addr + offset);
751}
752
753
754/**********************************************************************
755 *  SBDMA_ADD_RCVBUFFER(d,sb)
756 *
757 *  Add a buffer to the specified DMA channel.   For receive channels,
758 *  this queues a buffer for inbound packets.
759 *
760 *  Input parameters:
761 *	   sc - softc structure
762 *  	    d - DMA channel descriptor
763 * 	   sb - sk_buff to add, or NULL if we should allocate one
764 *
765 *  Return value:
766 *  	   0 if buffer could not be added (ring is full)
767 *  	   1 if buffer added successfully
768 ********************************************************************* */
769
770
771static int sbdma_add_rcvbuffer(struct sbmac_softc *sc, struct sbmacdma *d,
772			       struct sk_buff *sb)
773{
774	struct net_device *dev = sc->sbm_dev;
775	struct sbdmadscr *dsc;
776	struct sbdmadscr *nextdsc;
777	struct sk_buff *sb_new = NULL;
778	int pktsize = ENET_PACKET_SIZE;
779
780	/* get pointer to our current place in the ring */
781
782	dsc = d->sbdma_addptr;
783	nextdsc = SBDMA_NEXTBUF(d,sbdma_addptr);
784
785	/*
786	 * figure out if the ring is full - if the next descriptor
787	 * is the same as the one that we're going to remove from
788	 * the ring, the ring is full
789	 */
790
791	if (nextdsc == d->sbdma_remptr) {
792		return -ENOSPC;
793	}
794
795	/*
796	 * Allocate a sk_buff if we don't already have one.
797	 * If we do have an sk_buff, reset it so that it's empty.
798	 *
799	 * Note: sk_buffs don't seem to be guaranteed to have any sort
800	 * of alignment when they are allocated.  Therefore, allocate enough
801	 * extra space to make sure that:
802	 *
803	 *    1. the data does not start in the middle of a cache line.
804	 *    2. The data does not end in the middle of a cache line
805	 *    3. The buffer can be aligned such that the IP addresses are
806	 *       naturally aligned.
807	 *
808	 *  Remember, the SOCs MAC writes whole cache lines at a time,
809	 *  without reading the old contents first.  So, if the sk_buff's
810	 *  data portion starts in the middle of a cache line, the SOC
811	 *  DMA will trash the beginning (and ending) portions.
812	 */
813
814	if (sb == NULL) {
815		sb_new = netdev_alloc_skb(dev, ENET_PACKET_SIZE +
816					       SMP_CACHE_BYTES * 2 +
817					       NET_IP_ALIGN);
818		if (sb_new == NULL)
819			return -ENOBUFS;
820
821		sbdma_align_skb(sb_new, SMP_CACHE_BYTES, NET_IP_ALIGN);
822	}
823	else {
824		sb_new = sb;
825		/*
826		 * nothing special to reinit buffer, it's already aligned
827		 * and sb->data already points to a good place.
828		 */
829	}
830
831	/*
832	 * fill in the descriptor
833	 */
834
835#ifdef CONFIG_SBMAC_COALESCE
836	/*
837	 * Do not interrupt per DMA transfer.
838	 */
839	dsc->dscr_a = virt_to_phys(sb_new->data) |
840		V_DMA_DSCRA_A_SIZE(NUMCACHEBLKS(pktsize + NET_IP_ALIGN)) | 0;
841#else
842	dsc->dscr_a = virt_to_phys(sb_new->data) |
843		V_DMA_DSCRA_A_SIZE(NUMCACHEBLKS(pktsize + NET_IP_ALIGN)) |
844		M_DMA_DSCRA_INTERRUPT;
845#endif
846
847	/* receiving: no options */
848	dsc->dscr_b = 0;
849
850	/*
851	 * fill in the context
852	 */
853
854	d->sbdma_ctxtable[dsc-d->sbdma_dscrtable] = sb_new;
855
856	/*
857	 * point at next packet
858	 */
859
860	d->sbdma_addptr = nextdsc;
861
862	/*
863	 * Give the buffer to the DMA engine.
864	 */
865
866	__raw_writeq(1, d->sbdma_dscrcnt);
867
868	return 0;					/* we did it */
869}
870
871/**********************************************************************
872 *  SBDMA_ADD_TXBUFFER(d,sb)
873 *
874 *  Add a transmit buffer to the specified DMA channel, causing a
875 *  transmit to start.
876 *
877 *  Input parameters:
878 *  	   d - DMA channel descriptor
879 * 	   sb - sk_buff to add
880 *
881 *  Return value:
882 *  	   0 transmit queued successfully
883 *  	   otherwise error code
884 ********************************************************************* */
885
886
887static int sbdma_add_txbuffer(struct sbmacdma *d, struct sk_buff *sb)
888{
889	struct sbdmadscr *dsc;
890	struct sbdmadscr *nextdsc;
891	uint64_t phys;
892	uint64_t ncb;
893	int length;
894
895	/* get pointer to our current place in the ring */
896
897	dsc = d->sbdma_addptr;
898	nextdsc = SBDMA_NEXTBUF(d,sbdma_addptr);
899
900	/*
901	 * figure out if the ring is full - if the next descriptor
902	 * is the same as the one that we're going to remove from
903	 * the ring, the ring is full
904	 */
905
906	if (nextdsc == d->sbdma_remptr) {
907		return -ENOSPC;
908	}
909
910	/*
911	 * Under Linux, it's not necessary to copy/coalesce buffers
912	 * like it is on NetBSD.  We think they're all contiguous,
913	 * but that may not be true for GBE.
914	 */
915
916	length = sb->len;
917
918	/*
919	 * fill in the descriptor.  Note that the number of cache
920	 * blocks in the descriptor is the number of blocks
921	 * *spanned*, so we need to add in the offset (if any)
922	 * while doing the calculation.
923	 */
924
925	phys = virt_to_phys(sb->data);
926	ncb = NUMCACHEBLKS(length+(phys & (SMP_CACHE_BYTES - 1)));
927
928	dsc->dscr_a = phys |
929		V_DMA_DSCRA_A_SIZE(ncb) |
930#ifndef CONFIG_SBMAC_COALESCE
931		M_DMA_DSCRA_INTERRUPT |
932#endif
933		M_DMA_ETHTX_SOP;
934
935	/* transmitting: set outbound options and length */
936
937	dsc->dscr_b = V_DMA_DSCRB_OPTIONS(K_DMA_ETHTX_APPENDCRC_APPENDPAD) |
938		V_DMA_DSCRB_PKT_SIZE(length);
939
940	/*
941	 * fill in the context
942	 */
943
944	d->sbdma_ctxtable[dsc-d->sbdma_dscrtable] = sb;
945
946	/*
947	 * point at next packet
948	 */
949
950	d->sbdma_addptr = nextdsc;
951
952	/*
953	 * Give the buffer to the DMA engine.
954	 */
955
956	__raw_writeq(1, d->sbdma_dscrcnt);
957
958	return 0;					/* we did it */
959}
960
961
962
963
964/**********************************************************************
965 *  SBDMA_EMPTYRING(d)
966 *
967 *  Free all allocated sk_buffs on the specified DMA channel;
968 *
969 *  Input parameters:
970 *  	   d  - DMA channel
971 *
972 *  Return value:
973 *  	   nothing
974 ********************************************************************* */
975
976static void sbdma_emptyring(struct sbmacdma *d)
977{
978	int idx;
979	struct sk_buff *sb;
980
981	for (idx = 0; idx < d->sbdma_maxdescr; idx++) {
982		sb = d->sbdma_ctxtable[idx];
983		if (sb) {
984			dev_kfree_skb(sb);
985			d->sbdma_ctxtable[idx] = NULL;
986		}
987	}
988}
989
990
991/**********************************************************************
992 *  SBDMA_FILLRING(d)
993 *
994 *  Fill the specified DMA channel (must be receive channel)
995 *  with sk_buffs
996 *
997 *  Input parameters:
998 *	   sc - softc structure
999 *  	    d - DMA channel
1000 *
1001 *  Return value:
1002 *  	   nothing
1003 ********************************************************************* */
1004
1005static void sbdma_fillring(struct sbmac_softc *sc, struct sbmacdma *d)
1006{
1007	int idx;
1008
1009	for (idx = 0; idx < SBMAC_MAX_RXDESCR - 1; idx++) {
1010		if (sbdma_add_rcvbuffer(sc, d, NULL) != 0)
1011			break;
1012	}
1013}
1014
1015#ifdef CONFIG_NET_POLL_CONTROLLER
1016static void sbmac_netpoll(struct net_device *netdev)
1017{
1018	struct sbmac_softc *sc = netdev_priv(netdev);
1019	int irq = sc->sbm_dev->irq;
1020
1021	__raw_writeq(0, sc->sbm_imr);
1022
1023	sbmac_intr(irq, netdev);
1024
1025#ifdef CONFIG_SBMAC_COALESCE
1026	__raw_writeq(((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_TX_CH0) |
1027	((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_RX_CH0),
1028	sc->sbm_imr);
1029#else
1030	__raw_writeq((M_MAC_INT_CHANNEL << S_MAC_TX_CH0) |
1031	(M_MAC_INT_CHANNEL << S_MAC_RX_CH0), sc->sbm_imr);
1032#endif
1033}
1034#endif
1035
1036/**********************************************************************
1037 *  SBDMA_RX_PROCESS(sc,d,work_to_do,poll)
1038 *
1039 *  Process "completed" receive buffers on the specified DMA channel.
1040 *
1041 *  Input parameters:
1042 *            sc - softc structure
1043 *  	       d - DMA channel context
1044 *    work_to_do - no. of packets to process before enabling interrupt
1045 *                 again (for NAPI)
1046 *          poll - 1: using polling (for NAPI)
1047 *
1048 *  Return value:
1049 *  	   nothing
1050 ********************************************************************* */
1051
1052static int sbdma_rx_process(struct sbmac_softc *sc, struct sbmacdma *d,
1053			    int work_to_do, int poll)
1054{
1055	struct net_device *dev = sc->sbm_dev;
1056	int curidx;
1057	int hwidx;
1058	struct sbdmadscr *dsc;
1059	struct sk_buff *sb;
1060	int len;
1061	int work_done = 0;
1062	int dropped = 0;
1063
1064	prefetch(d);
1065
1066again:
1067	/* Check if the HW dropped any frames */
1068	dev->stats.rx_fifo_errors
1069	    += __raw_readq(sc->sbm_rxdma.sbdma_oodpktlost) & 0xffff;
1070	__raw_writeq(0, sc->sbm_rxdma.sbdma_oodpktlost);
1071
1072	while (work_to_do-- > 0) {
1073		/*
1074		 * figure out where we are (as an index) and where
1075		 * the hardware is (also as an index)
1076		 *
1077		 * This could be done faster if (for example) the
1078		 * descriptor table was page-aligned and contiguous in
1079		 * both virtual and physical memory -- you could then
1080		 * just compare the low-order bits of the virtual address
1081		 * (sbdma_remptr) and the physical address (sbdma_curdscr CSR)
1082		 */
1083
1084		dsc = d->sbdma_remptr;
1085		curidx = dsc - d->sbdma_dscrtable;
1086
1087		prefetch(dsc);
1088		prefetch(&d->sbdma_ctxtable[curidx]);
1089
1090		hwidx = ((__raw_readq(d->sbdma_curdscr) & M_DMA_CURDSCR_ADDR) -
1091			 d->sbdma_dscrtable_phys) /
1092			sizeof(*d->sbdma_dscrtable);
1093
1094		/*
1095		 * If they're the same, that means we've processed all
1096		 * of the descriptors up to (but not including) the one that
1097		 * the hardware is working on right now.
1098		 */
1099
1100		if (curidx == hwidx)
1101			goto done;
1102
1103		/*
1104		 * Otherwise, get the packet's sk_buff ptr back
1105		 */
1106
1107		sb = d->sbdma_ctxtable[curidx];
1108		d->sbdma_ctxtable[curidx] = NULL;
1109
1110		len = (int)G_DMA_DSCRB_PKT_SIZE(dsc->dscr_b) - 4;
1111
1112		/*
1113		 * Check packet status.  If good, process it.
1114		 * If not, silently drop it and put it back on the
1115		 * receive ring.
1116		 */
1117
1118		if (likely (!(dsc->dscr_a & M_DMA_ETHRX_BAD))) {
1119
1120			/*
1121			 * Add a new buffer to replace the old one.  If we fail
1122			 * to allocate a buffer, we're going to drop this
1123			 * packet and put it right back on the receive ring.
1124			 */
1125
1126			if (unlikely(sbdma_add_rcvbuffer(sc, d, NULL) ==
1127				     -ENOBUFS)) {
1128				dev->stats.rx_dropped++;
1129				/* Re-add old buffer */
1130				sbdma_add_rcvbuffer(sc, d, sb);
1131				/* No point in continuing at the moment */
1132				printk(KERN_ERR "dropped packet (1)\n");
1133				d->sbdma_remptr = SBDMA_NEXTBUF(d,sbdma_remptr);
1134				goto done;
1135			} else {
1136				/*
1137				 * Set length into the packet
1138				 */
1139				skb_put(sb,len);
1140
1141				/*
1142				 * Buffer has been replaced on the
1143				 * receive ring.  Pass the buffer to
1144				 * the kernel
1145				 */
1146				sb->protocol = eth_type_trans(sb,d->sbdma_eth->sbm_dev);
1147				/* Check hw IPv4/TCP checksum if supported */
1148				if (sc->rx_hw_checksum == ENABLE) {
1149					if (!((dsc->dscr_a) & M_DMA_ETHRX_BADIP4CS) &&
1150					    !((dsc->dscr_a) & M_DMA_ETHRX_BADTCPCS)) {
1151						sb->ip_summed = CHECKSUM_UNNECESSARY;
1152						/* don't need to set sb->csum */
1153					} else {
1154						skb_checksum_none_assert(sb);
1155					}
1156				}
1157				prefetch(sb->data);
1158				prefetch((const void *)(((char *)sb->data)+32));
1159				if (poll)
1160					dropped = netif_receive_skb(sb);
1161				else
1162					dropped = netif_rx(sb);
1163
1164				if (dropped == NET_RX_DROP) {
1165					dev->stats.rx_dropped++;
1166					d->sbdma_remptr = SBDMA_NEXTBUF(d,sbdma_remptr);
1167					goto done;
1168				}
1169				else {
1170					dev->stats.rx_bytes += len;
1171					dev->stats.rx_packets++;
1172				}
1173			}
1174		} else {
1175			/*
1176			 * Packet was mangled somehow.  Just drop it and
1177			 * put it back on the receive ring.
1178			 */
1179			dev->stats.rx_errors++;
1180			sbdma_add_rcvbuffer(sc, d, sb);
1181		}
1182
1183
1184		/*
1185		 * .. and advance to the next buffer.
1186		 */
1187
1188		d->sbdma_remptr = SBDMA_NEXTBUF(d,sbdma_remptr);
1189		work_done++;
1190	}
1191	if (!poll) {
1192		work_to_do = 32;
1193		goto again; /* collect fifo drop statistics again */
1194	}
1195done:
1196	return work_done;
1197}
1198
1199/**********************************************************************
1200 *  SBDMA_TX_PROCESS(sc,d)
1201 *
1202 *  Process "completed" transmit buffers on the specified DMA channel.
1203 *  This is normally called within the interrupt service routine.
1204 *  Note that this isn't really ideal for priority channels, since
1205 *  it processes all of the packets on a given channel before
1206 *  returning.
1207 *
1208 *  Input parameters:
1209 *      sc - softc structure
1210 *  	 d - DMA channel context
1211 *    poll - 1: using polling (for NAPI)
1212 *
1213 *  Return value:
1214 *  	   nothing
1215 ********************************************************************* */
1216
1217static void sbdma_tx_process(struct sbmac_softc *sc, struct sbmacdma *d,
1218			     int poll)
1219{
1220	struct net_device *dev = sc->sbm_dev;
1221	int curidx;
1222	int hwidx;
1223	struct sbdmadscr *dsc;
1224	struct sk_buff *sb;
1225	unsigned long flags;
1226	int packets_handled = 0;
1227
1228	spin_lock_irqsave(&(sc->sbm_lock), flags);
1229
1230	if (d->sbdma_remptr == d->sbdma_addptr)
1231	  goto end_unlock;
1232
1233	hwidx = ((__raw_readq(d->sbdma_curdscr) & M_DMA_CURDSCR_ADDR) -
1234		 d->sbdma_dscrtable_phys) / sizeof(*d->sbdma_dscrtable);
1235
1236	for (;;) {
1237		/*
1238		 * figure out where we are (as an index) and where
1239		 * the hardware is (also as an index)
1240		 *
1241		 * This could be done faster if (for example) the
1242		 * descriptor table was page-aligned and contiguous in
1243		 * both virtual and physical memory -- you could then
1244		 * just compare the low-order bits of the virtual address
1245		 * (sbdma_remptr) and the physical address (sbdma_curdscr CSR)
1246		 */
1247
1248		curidx = d->sbdma_remptr - d->sbdma_dscrtable;
1249
1250		/*
1251		 * If they're the same, that means we've processed all
1252		 * of the descriptors up to (but not including) the one that
1253		 * the hardware is working on right now.
1254		 */
1255
1256		if (curidx == hwidx)
1257			break;
1258
1259		/*
1260		 * Otherwise, get the packet's sk_buff ptr back
1261		 */
1262
1263		dsc = &(d->sbdma_dscrtable[curidx]);
1264		sb = d->sbdma_ctxtable[curidx];
1265		d->sbdma_ctxtable[curidx] = NULL;
1266
1267		/*
1268		 * Stats
1269		 */
1270
1271		dev->stats.tx_bytes += sb->len;
1272		dev->stats.tx_packets++;
1273
1274		/*
1275		 * for transmits, we just free buffers.
1276		 */
1277
1278		dev_consume_skb_irq(sb);
1279
1280		/*
1281		 * .. and advance to the next buffer.
1282		 */
1283
1284		d->sbdma_remptr = SBDMA_NEXTBUF(d,sbdma_remptr);
1285
1286		packets_handled++;
1287
1288	}
1289
1290	/*
1291	 * Decide if we should wake up the protocol or not.
1292	 * Other drivers seem to do this when we reach a low
1293	 * watermark on the transmit queue.
1294	 */
1295
1296	if (packets_handled)
1297		netif_wake_queue(d->sbdma_eth->sbm_dev);
1298
1299end_unlock:
1300	spin_unlock_irqrestore(&(sc->sbm_lock), flags);
1301
1302}
1303
1304
1305
1306/**********************************************************************
1307 *  SBMAC_INITCTX(s)
1308 *
1309 *  Initialize an Ethernet context structure - this is called
1310 *  once per MAC on the 1250.  Memory is allocated here, so don't
1311 *  call it again from inside the ioctl routines that bring the
1312 *  interface up/down
1313 *
1314 *  Input parameters:
1315 *  	   s - sbmac context structure
1316 *
1317 *  Return value:
1318 *  	   0
1319 ********************************************************************* */
1320
1321static int sbmac_initctx(struct sbmac_softc *s)
1322{
1323
1324	/*
1325	 * figure out the addresses of some ports
1326	 */
1327
1328	s->sbm_macenable = s->sbm_base + R_MAC_ENABLE;
1329	s->sbm_maccfg    = s->sbm_base + R_MAC_CFG;
1330	s->sbm_fifocfg   = s->sbm_base + R_MAC_THRSH_CFG;
1331	s->sbm_framecfg  = s->sbm_base + R_MAC_FRAMECFG;
1332	s->sbm_rxfilter  = s->sbm_base + R_MAC_ADFILTER_CFG;
1333	s->sbm_isr       = s->sbm_base + R_MAC_STATUS;
1334	s->sbm_imr       = s->sbm_base + R_MAC_INT_MASK;
1335	s->sbm_mdio      = s->sbm_base + R_MAC_MDIO;
1336
1337	/*
1338	 * Initialize the DMA channels.  Right now, only one per MAC is used
1339	 * Note: Only do this _once_, as it allocates memory from the kernel!
1340	 */
1341
1342	sbdma_initctx(&(s->sbm_txdma),s,0,DMA_TX,SBMAC_MAX_TXDESCR);
1343	sbdma_initctx(&(s->sbm_rxdma),s,0,DMA_RX,SBMAC_MAX_RXDESCR);
1344
1345	/*
1346	 * initial state is OFF
1347	 */
1348
1349	s->sbm_state = sbmac_state_off;
1350
1351	return 0;
1352}
1353
1354
1355static void sbdma_uninitctx(struct sbmacdma *d)
1356{
1357	kfree(d->sbdma_dscrtable_unaligned);
1358	d->sbdma_dscrtable_unaligned = d->sbdma_dscrtable = NULL;
1359
1360	kfree(d->sbdma_ctxtable);
1361	d->sbdma_ctxtable = NULL;
1362}
1363
1364
1365static void sbmac_uninitctx(struct sbmac_softc *sc)
1366{
1367	sbdma_uninitctx(&(sc->sbm_txdma));
1368	sbdma_uninitctx(&(sc->sbm_rxdma));
1369}
1370
1371
1372/**********************************************************************
1373 *  SBMAC_CHANNEL_START(s)
1374 *
1375 *  Start packet processing on this MAC.
1376 *
1377 *  Input parameters:
1378 *  	   s - sbmac structure
1379 *
1380 *  Return value:
1381 *  	   nothing
1382 ********************************************************************* */
1383
1384static void sbmac_channel_start(struct sbmac_softc *s)
1385{
1386	uint64_t reg;
1387	void __iomem *port;
1388	uint64_t cfg,fifo,framecfg;
1389	int idx, th_value;
1390
1391	/*
1392	 * Don't do this if running
1393	 */
1394
1395	if (s->sbm_state == sbmac_state_on)
1396		return;
1397
1398	/*
1399	 * Bring the controller out of reset, but leave it off.
1400	 */
1401
1402	__raw_writeq(0, s->sbm_macenable);
1403
1404	/*
1405	 * Ignore all received packets
1406	 */
1407
1408	__raw_writeq(0, s->sbm_rxfilter);
1409
1410	/*
1411	 * Calculate values for various control registers.
1412	 */
1413
1414	cfg = M_MAC_RETRY_EN |
1415		M_MAC_TX_HOLD_SOP_EN |
1416		V_MAC_TX_PAUSE_CNT_16K |
1417		M_MAC_AP_STAT_EN |
1418		M_MAC_FAST_SYNC |
1419		M_MAC_SS_EN |
1420		0;
1421
1422	/*
1423	 * Be sure that RD_THRSH+WR_THRSH <= 32 for pass1 pars
1424	 * and make sure that RD_THRSH + WR_THRSH <=128 for pass2 and above
1425	 * Use a larger RD_THRSH for gigabit
1426	 */
1427	if (soc_type == K_SYS_SOC_TYPE_BCM1250 && periph_rev < 2)
1428		th_value = 28;
1429	else
1430		th_value = 64;
1431
1432	fifo = V_MAC_TX_WR_THRSH(4) |	/* Must be '4' or '8' */
1433		((s->sbm_speed == sbmac_speed_1000)
1434		 ? V_MAC_TX_RD_THRSH(th_value) : V_MAC_TX_RD_THRSH(4)) |
1435		V_MAC_TX_RL_THRSH(4) |
1436		V_MAC_RX_PL_THRSH(4) |
1437		V_MAC_RX_RD_THRSH(4) |	/* Must be '4' */
1438		V_MAC_RX_RL_THRSH(8) |
1439		0;
1440
1441	framecfg = V_MAC_MIN_FRAMESZ_DEFAULT |
1442		V_MAC_MAX_FRAMESZ_DEFAULT |
1443		V_MAC_BACKOFF_SEL(1);
1444
1445	/*
1446	 * Clear out the hash address map
1447	 */
1448
1449	port = s->sbm_base + R_MAC_HASH_BASE;
1450	for (idx = 0; idx < MAC_HASH_COUNT; idx++) {
1451		__raw_writeq(0, port);
1452		port += sizeof(uint64_t);
1453	}
1454
1455	/*
1456	 * Clear out the exact-match table
1457	 */
1458
1459	port = s->sbm_base + R_MAC_ADDR_BASE;
1460	for (idx = 0; idx < MAC_ADDR_COUNT; idx++) {
1461		__raw_writeq(0, port);
1462		port += sizeof(uint64_t);
1463	}
1464
1465	/*
1466	 * Clear out the DMA Channel mapping table registers
1467	 */
1468
1469	port = s->sbm_base + R_MAC_CHUP0_BASE;
1470	for (idx = 0; idx < MAC_CHMAP_COUNT; idx++) {
1471		__raw_writeq(0, port);
1472		port += sizeof(uint64_t);
1473	}
1474
1475
1476	port = s->sbm_base + R_MAC_CHLO0_BASE;
1477	for (idx = 0; idx < MAC_CHMAP_COUNT; idx++) {
1478		__raw_writeq(0, port);
1479		port += sizeof(uint64_t);
1480	}
1481
1482	/*
1483	 * Program the hardware address.  It goes into the hardware-address
1484	 * register as well as the first filter register.
1485	 */
1486
1487	reg = sbmac_addr2reg(s->sbm_hwaddr);
1488
1489	port = s->sbm_base + R_MAC_ADDR_BASE;
1490	__raw_writeq(reg, port);
1491	port = s->sbm_base + R_MAC_ETHERNET_ADDR;
1492
1493	__raw_writeq(reg, port);
1494
1495	/*
1496	 * Set the receive filter for no packets, and write values
1497	 * to the various config registers
1498	 */
1499
1500	__raw_writeq(0, s->sbm_rxfilter);
1501	__raw_writeq(0, s->sbm_imr);
1502	__raw_writeq(framecfg, s->sbm_framecfg);
1503	__raw_writeq(fifo, s->sbm_fifocfg);
1504	__raw_writeq(cfg, s->sbm_maccfg);
1505
1506	/*
1507	 * Initialize DMA channels (rings should be ok now)
1508	 */
1509
1510	sbdma_channel_start(&(s->sbm_rxdma), DMA_RX);
1511	sbdma_channel_start(&(s->sbm_txdma), DMA_TX);
1512
1513	/*
1514	 * Configure the speed, duplex, and flow control
1515	 */
1516
1517	sbmac_set_speed(s,s->sbm_speed);
1518	sbmac_set_duplex(s,s->sbm_duplex,s->sbm_fc);
1519
1520	/*
1521	 * Fill the receive ring
1522	 */
1523
1524	sbdma_fillring(s, &(s->sbm_rxdma));
1525
1526	/*
1527	 * Turn on the rest of the bits in the enable register
1528	 */
1529
1530#if defined(CONFIG_SIBYTE_BCM1x80)
1531	__raw_writeq(M_MAC_RXDMA_EN0 |
1532		       M_MAC_TXDMA_EN0, s->sbm_macenable);
1533#elif defined(CONFIG_SIBYTE_SB1250) || defined(CONFIG_SIBYTE_BCM112X)
1534	__raw_writeq(M_MAC_RXDMA_EN0 |
1535		       M_MAC_TXDMA_EN0 |
1536		       M_MAC_RX_ENABLE |
1537		       M_MAC_TX_ENABLE, s->sbm_macenable);
1538#else
1539#error invalid SiByte MAC configuration
1540#endif
1541
1542#ifdef CONFIG_SBMAC_COALESCE
1543	__raw_writeq(((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_TX_CH0) |
1544		       ((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_RX_CH0), s->sbm_imr);
1545#else
1546	__raw_writeq((M_MAC_INT_CHANNEL << S_MAC_TX_CH0) |
1547		       (M_MAC_INT_CHANNEL << S_MAC_RX_CH0), s->sbm_imr);
1548#endif
1549
1550	/*
1551	 * Enable receiving unicasts and broadcasts
1552	 */
1553
1554	__raw_writeq(M_MAC_UCAST_EN | M_MAC_BCAST_EN, s->sbm_rxfilter);
1555
1556	/*
1557	 * we're running now.
1558	 */
1559
1560	s->sbm_state = sbmac_state_on;
1561
1562	/*
1563	 * Program multicast addresses
1564	 */
1565
1566	sbmac_setmulti(s);
1567
1568	/*
1569	 * If channel was in promiscuous mode before, turn that on
1570	 */
1571
1572	if (s->sbm_devflags & IFF_PROMISC) {
1573		sbmac_promiscuous_mode(s,1);
1574	}
1575
1576}
1577
1578
1579/**********************************************************************
1580 *  SBMAC_CHANNEL_STOP(s)
1581 *
1582 *  Stop packet processing on this MAC.
1583 *
1584 *  Input parameters:
1585 *  	   s - sbmac structure
1586 *
1587 *  Return value:
1588 *  	   nothing
1589 ********************************************************************* */
1590
1591static void sbmac_channel_stop(struct sbmac_softc *s)
1592{
1593	/* don't do this if already stopped */
1594
1595	if (s->sbm_state == sbmac_state_off)
1596		return;
1597
1598	/* don't accept any packets, disable all interrupts */
1599
1600	__raw_writeq(0, s->sbm_rxfilter);
1601	__raw_writeq(0, s->sbm_imr);
1602
1603	/* Turn off ticker */
1604
1605	/* XXX */
1606
1607	/* turn off receiver and transmitter */
1608
1609	__raw_writeq(0, s->sbm_macenable);
1610
1611	/* We're stopped now. */
1612
1613	s->sbm_state = sbmac_state_off;
1614
1615	/*
1616	 * Stop DMA channels (rings should be ok now)
1617	 */
1618
1619	sbdma_channel_stop(&(s->sbm_rxdma));
1620	sbdma_channel_stop(&(s->sbm_txdma));
1621
1622	/* Empty the receive and transmit rings */
1623
1624	sbdma_emptyring(&(s->sbm_rxdma));
1625	sbdma_emptyring(&(s->sbm_txdma));
1626
1627}
1628
1629/**********************************************************************
1630 *  SBMAC_SET_CHANNEL_STATE(state)
1631 *
1632 *  Set the channel's state ON or OFF
1633 *
1634 *  Input parameters:
1635 *  	   state - new state
1636 *
1637 *  Return value:
1638 *  	   old state
1639 ********************************************************************* */
1640static enum sbmac_state sbmac_set_channel_state(struct sbmac_softc *sc,
1641						enum sbmac_state state)
1642{
1643	enum sbmac_state oldstate = sc->sbm_state;
1644
1645	/*
1646	 * If same as previous state, return
1647	 */
1648
1649	if (state == oldstate) {
1650		return oldstate;
1651	}
1652
1653	/*
1654	 * If new state is ON, turn channel on
1655	 */
1656
1657	if (state == sbmac_state_on) {
1658		sbmac_channel_start(sc);
1659	}
1660	else {
1661		sbmac_channel_stop(sc);
1662	}
1663
1664	/*
1665	 * Return previous state
1666	 */
1667
1668	return oldstate;
1669}
1670
1671
1672/**********************************************************************
1673 *  SBMAC_PROMISCUOUS_MODE(sc,onoff)
1674 *
1675 *  Turn on or off promiscuous mode
1676 *
1677 *  Input parameters:
1678 *  	   sc - softc
1679 *      onoff - 1 to turn on, 0 to turn off
1680 *
1681 *  Return value:
1682 *  	   nothing
1683 ********************************************************************* */
1684
1685static void sbmac_promiscuous_mode(struct sbmac_softc *sc,int onoff)
1686{
1687	uint64_t reg;
1688
1689	if (sc->sbm_state != sbmac_state_on)
1690		return;
1691
1692	if (onoff) {
1693		reg = __raw_readq(sc->sbm_rxfilter);
1694		reg |= M_MAC_ALLPKT_EN;
1695		__raw_writeq(reg, sc->sbm_rxfilter);
1696	}
1697	else {
1698		reg = __raw_readq(sc->sbm_rxfilter);
1699		reg &= ~M_MAC_ALLPKT_EN;
1700		__raw_writeq(reg, sc->sbm_rxfilter);
1701	}
1702}
1703
1704/**********************************************************************
1705 *  SBMAC_SETIPHDR_OFFSET(sc,onoff)
1706 *
1707 *  Set the iphdr offset as 15 assuming ethernet encapsulation
1708 *
1709 *  Input parameters:
1710 *  	   sc - softc
1711 *
1712 *  Return value:
1713 *  	   nothing
1714 ********************************************************************* */
1715
1716static void sbmac_set_iphdr_offset(struct sbmac_softc *sc)
1717{
1718	uint64_t reg;
1719
1720	/* Hard code the off set to 15 for now */
1721	reg = __raw_readq(sc->sbm_rxfilter);
1722	reg &= ~M_MAC_IPHDR_OFFSET | V_MAC_IPHDR_OFFSET(15);
1723	__raw_writeq(reg, sc->sbm_rxfilter);
1724
1725	/* BCM1250 pass1 didn't have hardware checksum.  Everything
1726	   later does.  */
1727	if (soc_type == K_SYS_SOC_TYPE_BCM1250 && periph_rev < 2) {
1728		sc->rx_hw_checksum = DISABLE;
1729	} else {
1730		sc->rx_hw_checksum = ENABLE;
1731	}
1732}
1733
1734
1735/**********************************************************************
1736 *  SBMAC_ADDR2REG(ptr)
1737 *
1738 *  Convert six bytes into the 64-bit register value that
1739 *  we typically write into the SBMAC's address/mcast registers
1740 *
1741 *  Input parameters:
1742 *  	   ptr - pointer to 6 bytes
1743 *
1744 *  Return value:
1745 *  	   register value
1746 ********************************************************************* */
1747
1748static uint64_t sbmac_addr2reg(unsigned char *ptr)
1749{
1750	uint64_t reg = 0;
1751
1752	ptr += 6;
1753
1754	reg |= (uint64_t) *(--ptr);
1755	reg <<= 8;
1756	reg |= (uint64_t) *(--ptr);
1757	reg <<= 8;
1758	reg |= (uint64_t) *(--ptr);
1759	reg <<= 8;
1760	reg |= (uint64_t) *(--ptr);
1761	reg <<= 8;
1762	reg |= (uint64_t) *(--ptr);
1763	reg <<= 8;
1764	reg |= (uint64_t) *(--ptr);
1765
1766	return reg;
1767}
1768
1769
1770/**********************************************************************
1771 *  SBMAC_SET_SPEED(s,speed)
1772 *
1773 *  Configure LAN speed for the specified MAC.
1774 *  Warning: must be called when MAC is off!
1775 *
1776 *  Input parameters:
1777 *  	   s - sbmac structure
1778 *  	   speed - speed to set MAC to (see enum sbmac_speed)
1779 *
1780 *  Return value:
1781 *  	   1 if successful
1782 *      0 indicates invalid parameters
1783 ********************************************************************* */
1784
1785static int sbmac_set_speed(struct sbmac_softc *s, enum sbmac_speed speed)
1786{
1787	uint64_t cfg;
1788	uint64_t framecfg;
1789
1790	/*
1791	 * Save new current values
1792	 */
1793
1794	s->sbm_speed = speed;
1795
1796	if (s->sbm_state == sbmac_state_on)
1797		return 0;	/* save for next restart */
1798
1799	/*
1800	 * Read current register values
1801	 */
1802
1803	cfg = __raw_readq(s->sbm_maccfg);
1804	framecfg = __raw_readq(s->sbm_framecfg);
1805
1806	/*
1807	 * Mask out the stuff we want to change
1808	 */
1809
1810	cfg &= ~(M_MAC_BURST_EN | M_MAC_SPEED_SEL);
1811	framecfg &= ~(M_MAC_IFG_RX | M_MAC_IFG_TX | M_MAC_IFG_THRSH |
1812		      M_MAC_SLOT_SIZE);
1813
1814	/*
1815	 * Now add in the new bits
1816	 */
1817
1818	switch (speed) {
1819	case sbmac_speed_10:
1820		framecfg |= V_MAC_IFG_RX_10 |
1821			V_MAC_IFG_TX_10 |
1822			K_MAC_IFG_THRSH_10 |
1823			V_MAC_SLOT_SIZE_10;
1824		cfg |= V_MAC_SPEED_SEL_10MBPS;
1825		break;
1826
1827	case sbmac_speed_100:
1828		framecfg |= V_MAC_IFG_RX_100 |
1829			V_MAC_IFG_TX_100 |
1830			V_MAC_IFG_THRSH_100 |
1831			V_MAC_SLOT_SIZE_100;
1832		cfg |= V_MAC_SPEED_SEL_100MBPS ;
1833		break;
1834
1835	case sbmac_speed_1000:
1836		framecfg |= V_MAC_IFG_RX_1000 |
1837			V_MAC_IFG_TX_1000 |
1838			V_MAC_IFG_THRSH_1000 |
1839			V_MAC_SLOT_SIZE_1000;
1840		cfg |= V_MAC_SPEED_SEL_1000MBPS | M_MAC_BURST_EN;
1841		break;
1842
1843	default:
1844		return 0;
1845	}
1846
1847	/*
1848	 * Send the bits back to the hardware
1849	 */
1850
1851	__raw_writeq(framecfg, s->sbm_framecfg);
1852	__raw_writeq(cfg, s->sbm_maccfg);
1853
1854	return 1;
1855}
1856
1857/**********************************************************************
1858 *  SBMAC_SET_DUPLEX(s,duplex,fc)
1859 *
1860 *  Set Ethernet duplex and flow control options for this MAC
1861 *  Warning: must be called when MAC is off!
1862 *
1863 *  Input parameters:
1864 *  	   s - sbmac structure
1865 *  	   duplex - duplex setting (see enum sbmac_duplex)
1866 *  	   fc - flow control setting (see enum sbmac_fc)
1867 *
1868 *  Return value:
1869 *  	   1 if ok
1870 *  	   0 if an invalid parameter combination was specified
1871 ********************************************************************* */
1872
1873static int sbmac_set_duplex(struct sbmac_softc *s, enum sbmac_duplex duplex,
1874			    enum sbmac_fc fc)
1875{
1876	uint64_t cfg;
1877
1878	/*
1879	 * Save new current values
1880	 */
1881
1882	s->sbm_duplex = duplex;
1883	s->sbm_fc = fc;
1884
1885	if (s->sbm_state == sbmac_state_on)
1886		return 0;	/* save for next restart */
1887
1888	/*
1889	 * Read current register values
1890	 */
1891
1892	cfg = __raw_readq(s->sbm_maccfg);
1893
1894	/*
1895	 * Mask off the stuff we're about to change
1896	 */
1897
1898	cfg &= ~(M_MAC_FC_SEL | M_MAC_FC_CMD | M_MAC_HDX_EN);
1899
1900
1901	switch (duplex) {
1902	case sbmac_duplex_half:
1903		switch (fc) {
1904		case sbmac_fc_disabled:
1905			cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_DISABLED;
1906			break;
1907
1908		case sbmac_fc_collision:
1909			cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_ENABLED;
1910			break;
1911
1912		case sbmac_fc_carrier:
1913			cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_ENAB_FALSECARR;
1914			break;
1915
1916		case sbmac_fc_frame:		/* not valid in half duplex */
1917		default:			/* invalid selection */
1918			return 0;
1919		}
1920		break;
1921
1922	case sbmac_duplex_full:
1923		switch (fc) {
1924		case sbmac_fc_disabled:
1925			cfg |= V_MAC_FC_CMD_DISABLED;
1926			break;
1927
1928		case sbmac_fc_frame:
1929			cfg |= V_MAC_FC_CMD_ENABLED;
1930			break;
1931
1932		case sbmac_fc_collision:	/* not valid in full duplex */
1933		case sbmac_fc_carrier:		/* not valid in full duplex */
1934		default:
1935			return 0;
1936		}
1937		break;
1938	default:
1939		return 0;
1940	}
1941
1942	/*
1943	 * Send the bits back to the hardware
1944	 */
1945
1946	__raw_writeq(cfg, s->sbm_maccfg);
1947
1948	return 1;
1949}
1950
1951
1952
1953
1954/**********************************************************************
1955 *  SBMAC_INTR()
1956 *
1957 *  Interrupt handler for MAC interrupts
1958 *
1959 *  Input parameters:
1960 *  	   MAC structure
1961 *
1962 *  Return value:
1963 *  	   nothing
1964 ********************************************************************* */
1965static irqreturn_t sbmac_intr(int irq,void *dev_instance)
1966{
1967	struct net_device *dev = (struct net_device *) dev_instance;
1968	struct sbmac_softc *sc = netdev_priv(dev);
1969	uint64_t isr;
1970	int handled = 0;
1971
1972	/*
1973	 * Read the ISR (this clears the bits in the real
1974	 * register, except for counter addr)
1975	 */
1976
1977	isr = __raw_readq(sc->sbm_isr) & ~M_MAC_COUNTER_ADDR;
1978
1979	if (isr == 0)
1980		return IRQ_RETVAL(0);
1981	handled = 1;
1982
1983	/*
1984	 * Transmits on channel 0
1985	 */
1986
1987	if (isr & (M_MAC_INT_CHANNEL << S_MAC_TX_CH0))
1988		sbdma_tx_process(sc,&(sc->sbm_txdma), 0);
1989
1990	if (isr & (M_MAC_INT_CHANNEL << S_MAC_RX_CH0)) {
1991		if (napi_schedule_prep(&sc->napi)) {
1992			__raw_writeq(0, sc->sbm_imr);
1993			__napi_schedule(&sc->napi);
1994			/* Depend on the exit from poll to reenable intr */
1995		}
1996		else {
1997			/* may leave some packets behind */
1998			sbdma_rx_process(sc,&(sc->sbm_rxdma),
1999					 SBMAC_MAX_RXDESCR * 2, 0);
2000		}
2001	}
2002	return IRQ_RETVAL(handled);
2003}
2004
2005/**********************************************************************
2006 *  SBMAC_START_TX(skb,dev)
2007 *
2008 *  Start output on the specified interface.  Basically, we
2009 *  queue as many buffers as we can until the ring fills up, or
2010 *  we run off the end of the queue, whichever comes first.
2011 *
2012 *  Input parameters:
2013 *
2014 *
2015 *  Return value:
2016 *  	   nothing
2017 ********************************************************************* */
2018static netdev_tx_t sbmac_start_tx(struct sk_buff *skb, struct net_device *dev)
2019{
2020	struct sbmac_softc *sc = netdev_priv(dev);
2021	unsigned long flags;
2022
2023	/* lock eth irq */
2024	spin_lock_irqsave(&sc->sbm_lock, flags);
2025
2026	/*
2027	 * Put the buffer on the transmit ring.  If we
2028	 * don't have room, stop the queue.
2029	 */
2030
2031	if (sbdma_add_txbuffer(&(sc->sbm_txdma),skb)) {
2032		/* XXX save skb that we could not send */
2033		netif_stop_queue(dev);
2034		spin_unlock_irqrestore(&sc->sbm_lock, flags);
2035
2036		return NETDEV_TX_BUSY;
2037	}
2038
2039	spin_unlock_irqrestore(&sc->sbm_lock, flags);
2040
2041	return NETDEV_TX_OK;
2042}
2043
2044/**********************************************************************
2045 *  SBMAC_SETMULTI(sc)
2046 *
2047 *  Reprogram the multicast table into the hardware, given
2048 *  the list of multicasts associated with the interface
2049 *  structure.
2050 *
2051 *  Input parameters:
2052 *  	   sc - softc
2053 *
2054 *  Return value:
2055 *  	   nothing
2056 ********************************************************************* */
2057
2058static void sbmac_setmulti(struct sbmac_softc *sc)
2059{
2060	uint64_t reg;
2061	void __iomem *port;
2062	int idx;
2063	struct netdev_hw_addr *ha;
2064	struct net_device *dev = sc->sbm_dev;
2065
2066	/*
2067	 * Clear out entire multicast table.  We do this by nuking
2068	 * the entire hash table and all the direct matches except
2069	 * the first one, which is used for our station address
2070	 */
2071
2072	for (idx = 1; idx < MAC_ADDR_COUNT; idx++) {
2073		port = sc->sbm_base + R_MAC_ADDR_BASE+(idx*sizeof(uint64_t));
2074		__raw_writeq(0, port);
2075	}
2076
2077	for (idx = 0; idx < MAC_HASH_COUNT; idx++) {
2078		port = sc->sbm_base + R_MAC_HASH_BASE+(idx*sizeof(uint64_t));
2079		__raw_writeq(0, port);
2080	}
2081
2082	/*
2083	 * Clear the filter to say we don't want any multicasts.
2084	 */
2085
2086	reg = __raw_readq(sc->sbm_rxfilter);
2087	reg &= ~(M_MAC_MCAST_INV | M_MAC_MCAST_EN);
2088	__raw_writeq(reg, sc->sbm_rxfilter);
2089
2090	if (dev->flags & IFF_ALLMULTI) {
2091		/*
2092		 * Enable ALL multicasts.  Do this by inverting the
2093		 * multicast enable bit.
2094		 */
2095		reg = __raw_readq(sc->sbm_rxfilter);
2096		reg |= (M_MAC_MCAST_INV | M_MAC_MCAST_EN);
2097		__raw_writeq(reg, sc->sbm_rxfilter);
2098		return;
2099	}
2100
2101
2102	/*
2103	 * Progam new multicast entries.  For now, only use the
2104	 * perfect filter.  In the future we'll need to use the
2105	 * hash filter if the perfect filter overflows
2106	 */
2107
2108	/* XXX only using perfect filter for now, need to use hash
2109	 * XXX if the table overflows */
2110
2111	idx = 1;		/* skip station address */
2112	netdev_for_each_mc_addr(ha, dev) {
2113		if (idx == MAC_ADDR_COUNT)
2114			break;
2115		reg = sbmac_addr2reg(ha->addr);
2116		port = sc->sbm_base + R_MAC_ADDR_BASE+(idx * sizeof(uint64_t));
2117		__raw_writeq(reg, port);
2118		idx++;
2119	}
2120
2121	/*
2122	 * Enable the "accept multicast bits" if we programmed at least one
2123	 * multicast.
2124	 */
2125
2126	if (idx > 1) {
2127		reg = __raw_readq(sc->sbm_rxfilter);
2128		reg |= M_MAC_MCAST_EN;
2129		__raw_writeq(reg, sc->sbm_rxfilter);
2130	}
2131}
2132
2133static const struct net_device_ops sbmac_netdev_ops = {
2134	.ndo_open		= sbmac_open,
2135	.ndo_stop		= sbmac_close,
2136	.ndo_start_xmit		= sbmac_start_tx,
2137	.ndo_set_rx_mode	= sbmac_set_rx_mode,
2138	.ndo_tx_timeout		= sbmac_tx_timeout,
2139	.ndo_eth_ioctl		= sbmac_mii_ioctl,
2140	.ndo_validate_addr	= eth_validate_addr,
2141	.ndo_set_mac_address	= eth_mac_addr,
2142#ifdef CONFIG_NET_POLL_CONTROLLER
2143	.ndo_poll_controller	= sbmac_netpoll,
2144#endif
2145};
2146
2147/**********************************************************************
2148 *  SBMAC_INIT(dev)
2149 *
2150 *  Attach routine - init hardware and hook ourselves into linux
2151 *
2152 *  Input parameters:
2153 *  	   dev - net_device structure
2154 *
2155 *  Return value:
2156 *  	   status
2157 ********************************************************************* */
2158
2159static int sbmac_init(struct platform_device *pldev, long long base)
2160{
2161	struct net_device *dev = platform_get_drvdata(pldev);
2162	int idx = pldev->id;
2163	struct sbmac_softc *sc = netdev_priv(dev);
2164	unsigned char *eaddr;
2165	uint64_t ea_reg;
2166	int i;
2167	int err;
2168
2169	sc->sbm_dev = dev;
2170	sc->sbe_idx = idx;
2171
2172	eaddr = sc->sbm_hwaddr;
2173
2174	/*
2175	 * Read the ethernet address.  The firmware left this programmed
2176	 * for us in the ethernet address register for each mac.
2177	 */
2178
2179	ea_reg = __raw_readq(sc->sbm_base + R_MAC_ETHERNET_ADDR);
2180	__raw_writeq(0, sc->sbm_base + R_MAC_ETHERNET_ADDR);
2181	for (i = 0; i < 6; i++) {
2182		eaddr[i] = (uint8_t) (ea_reg & 0xFF);
2183		ea_reg >>= 8;
2184	}
2185
2186	eth_hw_addr_set(dev, eaddr);
2187
2188	/*
2189	 * Initialize context (get pointers to registers and stuff), then
2190	 * allocate the memory for the descriptor tables.
2191	 */
2192
2193	sbmac_initctx(sc);
2194
2195	/*
2196	 * Set up Linux device callins
2197	 */
2198
2199	spin_lock_init(&(sc->sbm_lock));
2200
2201	dev->netdev_ops = &sbmac_netdev_ops;
2202	dev->watchdog_timeo = TX_TIMEOUT;
2203	dev->min_mtu = 0;
2204	dev->max_mtu = ENET_PACKET_SIZE;
2205
2206	netif_napi_add_weight(dev, &sc->napi, sbmac_poll, 16);
2207
2208	dev->irq		= UNIT_INT(idx);
2209
2210	/* This is needed for PASS2 for Rx H/W checksum feature */
2211	sbmac_set_iphdr_offset(sc);
2212
2213	sc->mii_bus = mdiobus_alloc();
2214	if (sc->mii_bus == NULL) {
2215		err = -ENOMEM;
2216		goto uninit_ctx;
2217	}
2218
2219	sc->mii_bus->name = sbmac_mdio_string;
2220	snprintf(sc->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2221		pldev->name, idx);
2222	sc->mii_bus->priv = sc;
2223	sc->mii_bus->read = sbmac_mii_read;
2224	sc->mii_bus->write = sbmac_mii_write;
2225
2226	sc->mii_bus->parent = &pldev->dev;
2227	/*
2228	 * Probe PHY address
2229	 */
2230	err = mdiobus_register(sc->mii_bus);
2231	if (err) {
2232		printk(KERN_ERR "%s: unable to register MDIO bus\n",
2233		       dev->name);
2234		goto free_mdio;
2235	}
2236	platform_set_drvdata(pldev, sc->mii_bus);
2237
2238	err = register_netdev(dev);
2239	if (err) {
2240		printk(KERN_ERR "%s.%d: unable to register netdev\n",
2241		       sbmac_string, idx);
2242		goto unreg_mdio;
2243	}
2244
2245	pr_info("%s.%d: registered as %s\n", sbmac_string, idx, dev->name);
2246
2247	if (sc->rx_hw_checksum == ENABLE)
2248		pr_info("%s: enabling TCP rcv checksum\n", dev->name);
2249
2250	/*
2251	 * Display Ethernet address (this is called during the config
2252	 * process so we need to finish off the config message that
2253	 * was being displayed)
2254	 */
2255	pr_info("%s: SiByte Ethernet at 0x%08Lx, address: %pM\n",
2256	       dev->name, base, eaddr);
2257
2258	return 0;
2259unreg_mdio:
2260	mdiobus_unregister(sc->mii_bus);
2261free_mdio:
2262	mdiobus_free(sc->mii_bus);
2263uninit_ctx:
2264	sbmac_uninitctx(sc);
2265	return err;
2266}
2267
2268
2269static int sbmac_open(struct net_device *dev)
2270{
2271	struct sbmac_softc *sc = netdev_priv(dev);
2272	int err;
2273
2274	if (debug > 1)
2275		pr_debug("%s: sbmac_open() irq %d.\n", dev->name, dev->irq);
2276
2277	/*
2278	 * map/route interrupt (clear status first, in case something
2279	 * weird is pending; we haven't initialized the mac registers
2280	 * yet)
2281	 */
2282
2283	__raw_readq(sc->sbm_isr);
2284	err = request_irq(dev->irq, sbmac_intr, IRQF_SHARED, dev->name, dev);
2285	if (err) {
2286		printk(KERN_ERR "%s: unable to get IRQ %d\n", dev->name,
2287		       dev->irq);
2288		goto out_err;
2289	}
2290
2291	sc->sbm_speed = sbmac_speed_none;
2292	sc->sbm_duplex = sbmac_duplex_none;
2293	sc->sbm_fc = sbmac_fc_none;
2294	sc->sbm_pause = -1;
2295	sc->sbm_link = 0;
2296
2297	/*
2298	 * Attach to the PHY
2299	 */
2300	err = sbmac_mii_probe(dev);
2301	if (err)
2302		goto out_unregister;
2303
2304	/*
2305	 * Turn on the channel
2306	 */
2307
2308	sbmac_set_channel_state(sc,sbmac_state_on);
2309
2310	netif_start_queue(dev);
2311
2312	sbmac_set_rx_mode(dev);
2313
2314	phy_start(sc->phy_dev);
2315
2316	napi_enable(&sc->napi);
2317
2318	return 0;
2319
2320out_unregister:
2321	free_irq(dev->irq, dev);
2322out_err:
2323	return err;
2324}
2325
2326static int sbmac_mii_probe(struct net_device *dev)
2327{
2328	struct sbmac_softc *sc = netdev_priv(dev);
2329	struct phy_device *phy_dev;
2330
2331	phy_dev = phy_find_first(sc->mii_bus);
2332	if (!phy_dev) {
2333		printk(KERN_ERR "%s: no PHY found\n", dev->name);
2334		return -ENXIO;
2335	}
2336
2337	phy_dev = phy_connect(dev, dev_name(&phy_dev->mdio.dev),
2338			      &sbmac_mii_poll, PHY_INTERFACE_MODE_GMII);
2339	if (IS_ERR(phy_dev)) {
2340		printk(KERN_ERR "%s: could not attach to PHY\n", dev->name);
2341		return PTR_ERR(phy_dev);
2342	}
2343
2344	/* Remove any features not supported by the controller */
2345	phy_set_max_speed(phy_dev, SPEED_1000);
2346	phy_support_asym_pause(phy_dev);
2347
2348	phy_attached_info(phy_dev);
2349
2350	sc->phy_dev = phy_dev;
2351
2352	return 0;
2353}
2354
2355
2356static void sbmac_mii_poll(struct net_device *dev)
2357{
2358	struct sbmac_softc *sc = netdev_priv(dev);
2359	struct phy_device *phy_dev = sc->phy_dev;
2360	unsigned long flags;
2361	enum sbmac_fc fc;
2362	int link_chg, speed_chg, duplex_chg, pause_chg, fc_chg;
2363
2364	link_chg = (sc->sbm_link != phy_dev->link);
2365	speed_chg = (sc->sbm_speed != phy_dev->speed);
2366	duplex_chg = (sc->sbm_duplex != phy_dev->duplex);
2367	pause_chg = (sc->sbm_pause != phy_dev->pause);
2368
2369	if (!link_chg && !speed_chg && !duplex_chg && !pause_chg)
2370		return;					/* Hmmm... */
2371
2372	if (!phy_dev->link) {
2373		if (link_chg) {
2374			sc->sbm_link = phy_dev->link;
2375			sc->sbm_speed = sbmac_speed_none;
2376			sc->sbm_duplex = sbmac_duplex_none;
2377			sc->sbm_fc = sbmac_fc_disabled;
2378			sc->sbm_pause = -1;
2379			pr_info("%s: link unavailable\n", dev->name);
2380		}
2381		return;
2382	}
2383
2384	if (phy_dev->duplex == DUPLEX_FULL) {
2385		if (phy_dev->pause)
2386			fc = sbmac_fc_frame;
2387		else
2388			fc = sbmac_fc_disabled;
2389	} else
2390		fc = sbmac_fc_collision;
2391	fc_chg = (sc->sbm_fc != fc);
2392
2393	pr_info("%s: link available: %dbase-%cD\n", dev->name, phy_dev->speed,
2394		phy_dev->duplex == DUPLEX_FULL ? 'F' : 'H');
2395
2396	spin_lock_irqsave(&sc->sbm_lock, flags);
2397
2398	sc->sbm_speed = phy_dev->speed;
2399	sc->sbm_duplex = phy_dev->duplex;
2400	sc->sbm_fc = fc;
2401	sc->sbm_pause = phy_dev->pause;
2402	sc->sbm_link = phy_dev->link;
2403
2404	if ((speed_chg || duplex_chg || fc_chg) &&
2405	    sc->sbm_state != sbmac_state_off) {
2406		/*
2407		 * something changed, restart the channel
2408		 */
2409		if (debug > 1)
2410			pr_debug("%s: restarting channel "
2411				 "because PHY state changed\n", dev->name);
2412		sbmac_channel_stop(sc);
2413		sbmac_channel_start(sc);
2414	}
2415
2416	spin_unlock_irqrestore(&sc->sbm_lock, flags);
2417}
2418
2419
2420static void sbmac_tx_timeout (struct net_device *dev, unsigned int txqueue)
2421{
2422	struct sbmac_softc *sc = netdev_priv(dev);
2423	unsigned long flags;
2424
2425	spin_lock_irqsave(&sc->sbm_lock, flags);
2426
2427
2428	netif_trans_update(dev); /* prevent tx timeout */
2429	dev->stats.tx_errors++;
2430
2431	spin_unlock_irqrestore(&sc->sbm_lock, flags);
2432
2433	printk (KERN_WARNING "%s: Transmit timed out\n",dev->name);
2434}
2435
2436
2437
2438
2439static void sbmac_set_rx_mode(struct net_device *dev)
2440{
2441	unsigned long flags;
2442	struct sbmac_softc *sc = netdev_priv(dev);
2443
2444	spin_lock_irqsave(&sc->sbm_lock, flags);
2445	if ((dev->flags ^ sc->sbm_devflags) & IFF_PROMISC) {
2446		/*
2447		 * Promiscuous changed.
2448		 */
2449
2450		if (dev->flags & IFF_PROMISC) {
2451			sbmac_promiscuous_mode(sc,1);
2452		}
2453		else {
2454			sbmac_promiscuous_mode(sc,0);
2455		}
2456	}
2457	spin_unlock_irqrestore(&sc->sbm_lock, flags);
2458
2459	/*
2460	 * Program the multicasts.  Do this every time.
2461	 */
2462
2463	sbmac_setmulti(sc);
2464
2465}
2466
2467static int sbmac_mii_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2468{
2469	struct sbmac_softc *sc = netdev_priv(dev);
2470
2471	if (!netif_running(dev) || !sc->phy_dev)
2472		return -EINVAL;
2473
2474	return phy_mii_ioctl(sc->phy_dev, rq, cmd);
2475}
2476
2477static int sbmac_close(struct net_device *dev)
2478{
2479	struct sbmac_softc *sc = netdev_priv(dev);
2480
2481	napi_disable(&sc->napi);
2482
2483	phy_stop(sc->phy_dev);
2484
2485	sbmac_set_channel_state(sc, sbmac_state_off);
2486
2487	netif_stop_queue(dev);
2488
2489	if (debug > 1)
2490		pr_debug("%s: Shutting down ethercard\n", dev->name);
2491
2492	phy_disconnect(sc->phy_dev);
2493	sc->phy_dev = NULL;
2494	free_irq(dev->irq, dev);
2495
2496	sbdma_emptyring(&(sc->sbm_txdma));
2497	sbdma_emptyring(&(sc->sbm_rxdma));
2498
2499	return 0;
2500}
2501
2502static int sbmac_poll(struct napi_struct *napi, int budget)
2503{
2504	struct sbmac_softc *sc = container_of(napi, struct sbmac_softc, napi);
2505	int work_done;
2506
2507	work_done = sbdma_rx_process(sc, &(sc->sbm_rxdma), budget, 1);
2508	sbdma_tx_process(sc, &(sc->sbm_txdma), 1);
2509
2510	if (work_done < budget) {
2511		napi_complete_done(napi, work_done);
2512
2513#ifdef CONFIG_SBMAC_COALESCE
2514		__raw_writeq(((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_TX_CH0) |
2515			     ((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_RX_CH0),
2516			     sc->sbm_imr);
2517#else
2518		__raw_writeq((M_MAC_INT_CHANNEL << S_MAC_TX_CH0) |
2519			     (M_MAC_INT_CHANNEL << S_MAC_RX_CH0), sc->sbm_imr);
2520#endif
2521	}
2522
2523	return work_done;
2524}
2525
2526
2527static int sbmac_probe(struct platform_device *pldev)
2528{
2529	struct net_device *dev;
2530	struct sbmac_softc *sc;
2531	void __iomem *sbm_base;
2532	struct resource *res;
2533	u64 sbmac_orig_hwaddr;
2534	int err;
2535
2536	res = platform_get_resource(pldev, IORESOURCE_MEM, 0);
2537	if (!res) {
2538		printk(KERN_ERR "%s: failed to get resource\n",
2539		       dev_name(&pldev->dev));
2540		err = -EINVAL;
2541		goto out_out;
2542	}
2543	sbm_base = ioremap(res->start, resource_size(res));
2544	if (!sbm_base) {
2545		printk(KERN_ERR "%s: unable to map device registers\n",
2546		       dev_name(&pldev->dev));
2547		err = -ENOMEM;
2548		goto out_out;
2549	}
2550
2551	/*
2552	 * The R_MAC_ETHERNET_ADDR register will be set to some nonzero
2553	 * value for us by the firmware if we're going to use this MAC.
2554	 * If we find a zero, skip this MAC.
2555	 */
2556	sbmac_orig_hwaddr = __raw_readq(sbm_base + R_MAC_ETHERNET_ADDR);
2557	pr_debug("%s: %sconfiguring MAC at 0x%08Lx\n", dev_name(&pldev->dev),
2558		 sbmac_orig_hwaddr ? "" : "not ", (long long)res->start);
2559	if (sbmac_orig_hwaddr == 0) {
2560		err = 0;
2561		goto out_unmap;
2562	}
2563
2564	/*
2565	 * Okay, cool.  Initialize this MAC.
2566	 */
2567	dev = alloc_etherdev(sizeof(struct sbmac_softc));
2568	if (!dev) {
2569		err = -ENOMEM;
2570		goto out_unmap;
2571	}
2572
2573	platform_set_drvdata(pldev, dev);
2574	SET_NETDEV_DEV(dev, &pldev->dev);
2575
2576	sc = netdev_priv(dev);
2577	sc->sbm_base = sbm_base;
2578
2579	err = sbmac_init(pldev, res->start);
2580	if (err)
2581		goto out_kfree;
2582
2583	return 0;
2584
2585out_kfree:
2586	free_netdev(dev);
2587	__raw_writeq(sbmac_orig_hwaddr, sbm_base + R_MAC_ETHERNET_ADDR);
2588
2589out_unmap:
2590	iounmap(sbm_base);
2591
2592out_out:
2593	return err;
2594}
2595
2596static void sbmac_remove(struct platform_device *pldev)
2597{
2598	struct net_device *dev = platform_get_drvdata(pldev);
2599	struct sbmac_softc *sc = netdev_priv(dev);
2600
2601	unregister_netdev(dev);
2602	sbmac_uninitctx(sc);
2603	mdiobus_unregister(sc->mii_bus);
2604	mdiobus_free(sc->mii_bus);
2605	iounmap(sc->sbm_base);
2606	free_netdev(dev);
2607}
2608
2609static struct platform_driver sbmac_driver = {
2610	.probe = sbmac_probe,
2611	.remove_new = sbmac_remove,
2612	.driver = {
2613		.name = sbmac_string,
2614	},
2615};
2616
2617module_platform_driver(sbmac_driver);
2618MODULE_LICENSE("GPL");
2619