1/* bnx2x_main.c: QLogic Everest network driver.
2 *
3 * Copyright (c) 2007-2013 Broadcom Corporation
4 * Copyright (c) 2014 QLogic Corporation
5 * All rights reserved
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation.
10 *
11 * Maintained by: Ariel Elior <ariel.elior@qlogic.com>
12 * Written by: Eliezer Tamir
13 * Based on code from Michael Chan's bnx2 driver
14 * UDP CSUM errata workaround by Arik Gendelman
15 * Slowpath and fastpath rework by Vladislav Zolotarov
16 * Statistics and Link management by Yitchak Gertner
17 *
18 */
19
20#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21
22#include <linux/module.h>
23#include <linux/moduleparam.h>
24#include <linux/kernel.h>
25#include <linux/device.h>  /* for dev_info() */
26#include <linux/timer.h>
27#include <linux/errno.h>
28#include <linux/ioport.h>
29#include <linux/slab.h>
30#include <linux/interrupt.h>
31#include <linux/pci.h>
32#include <linux/init.h>
33#include <linux/netdevice.h>
34#include <linux/etherdevice.h>
35#include <linux/skbuff.h>
36#include <linux/dma-mapping.h>
37#include <linux/bitops.h>
38#include <linux/irq.h>
39#include <linux/delay.h>
40#include <asm/byteorder.h>
41#include <linux/time.h>
42#include <linux/ethtool.h>
43#include <linux/mii.h>
44#include <linux/if_vlan.h>
45#include <linux/crash_dump.h>
46#include <net/ip.h>
47#include <net/ipv6.h>
48#include <net/tcp.h>
49#include <net/vxlan.h>
50#include <net/checksum.h>
51#include <net/ip6_checksum.h>
52#include <linux/workqueue.h>
53#include <linux/crc32.h>
54#include <linux/crc32c.h>
55#include <linux/prefetch.h>
56#include <linux/zlib.h>
57#include <linux/io.h>
58#include <linux/semaphore.h>
59#include <linux/stringify.h>
60#include <linux/vmalloc.h>
61#include "bnx2x.h"
62#include "bnx2x_init.h"
63#include "bnx2x_init_ops.h"
64#include "bnx2x_cmn.h"
65#include "bnx2x_vfpf.h"
66#include "bnx2x_dcb.h"
67#include "bnx2x_sp.h"
68#include <linux/firmware.h>
69#include "bnx2x_fw_file_hdr.h"
70/* FW files */
71#define FW_FILE_VERSION					\
72	__stringify(BCM_5710_FW_MAJOR_VERSION) "."	\
73	__stringify(BCM_5710_FW_MINOR_VERSION) "."	\
74	__stringify(BCM_5710_FW_REVISION_VERSION) "."	\
75	__stringify(BCM_5710_FW_ENGINEERING_VERSION)
76
77#define FW_FILE_VERSION_V15				\
78	__stringify(BCM_5710_FW_MAJOR_VERSION) "."      \
79	__stringify(BCM_5710_FW_MINOR_VERSION) "."	\
80	__stringify(BCM_5710_FW_REVISION_VERSION_V15) "."	\
81	__stringify(BCM_5710_FW_ENGINEERING_VERSION)
82
83#define FW_FILE_NAME_E1		"bnx2x/bnx2x-e1-" FW_FILE_VERSION ".fw"
84#define FW_FILE_NAME_E1H	"bnx2x/bnx2x-e1h-" FW_FILE_VERSION ".fw"
85#define FW_FILE_NAME_E2		"bnx2x/bnx2x-e2-" FW_FILE_VERSION ".fw"
86#define FW_FILE_NAME_E1_V15	"bnx2x/bnx2x-e1-" FW_FILE_VERSION_V15 ".fw"
87#define FW_FILE_NAME_E1H_V15	"bnx2x/bnx2x-e1h-" FW_FILE_VERSION_V15 ".fw"
88#define FW_FILE_NAME_E2_V15	"bnx2x/bnx2x-e2-" FW_FILE_VERSION_V15 ".fw"
89
90/* Time in jiffies before concluding the transmitter is hung */
91#define TX_TIMEOUT		(5*HZ)
92
93MODULE_AUTHOR("Eliezer Tamir");
94MODULE_DESCRIPTION("QLogic "
95		   "BCM57710/57711/57711E/"
96		   "57712/57712_MF/57800/57800_MF/57810/57810_MF/"
97		   "57840/57840_MF Driver");
98MODULE_LICENSE("GPL");
99MODULE_FIRMWARE(FW_FILE_NAME_E1);
100MODULE_FIRMWARE(FW_FILE_NAME_E1H);
101MODULE_FIRMWARE(FW_FILE_NAME_E2);
102MODULE_FIRMWARE(FW_FILE_NAME_E1_V15);
103MODULE_FIRMWARE(FW_FILE_NAME_E1H_V15);
104MODULE_FIRMWARE(FW_FILE_NAME_E2_V15);
105
106int bnx2x_num_queues;
107module_param_named(num_queues, bnx2x_num_queues, int, 0444);
108MODULE_PARM_DESC(num_queues,
109		 " Set number of queues (default is as a number of CPUs)");
110
111static int disable_tpa;
112module_param(disable_tpa, int, 0444);
113MODULE_PARM_DESC(disable_tpa, " Disable the TPA (LRO) feature");
114
115static int int_mode;
116module_param(int_mode, int, 0444);
117MODULE_PARM_DESC(int_mode, " Force interrupt mode other than MSI-X "
118				"(1 INT#x; 2 MSI)");
119
120static int dropless_fc;
121module_param(dropless_fc, int, 0444);
122MODULE_PARM_DESC(dropless_fc, " Pause on exhausted host ring");
123
124static int mrrs = -1;
125module_param(mrrs, int, 0444);
126MODULE_PARM_DESC(mrrs, " Force Max Read Req Size (0..3) (for debug)");
127
128static int debug;
129module_param(debug, int, 0444);
130MODULE_PARM_DESC(debug, " Default debug msglevel");
131
132static struct workqueue_struct *bnx2x_wq;
133struct workqueue_struct *bnx2x_iov_wq;
134
135struct bnx2x_mac_vals {
136	u32 xmac_addr;
137	u32 xmac_val;
138	u32 emac_addr;
139	u32 emac_val;
140	u32 umac_addr[2];
141	u32 umac_val[2];
142	u32 bmac_addr;
143	u32 bmac_val[2];
144};
145
146enum bnx2x_board_type {
147	BCM57710 = 0,
148	BCM57711,
149	BCM57711E,
150	BCM57712,
151	BCM57712_MF,
152	BCM57712_VF,
153	BCM57800,
154	BCM57800_MF,
155	BCM57800_VF,
156	BCM57810,
157	BCM57810_MF,
158	BCM57810_VF,
159	BCM57840_4_10,
160	BCM57840_2_20,
161	BCM57840_MF,
162	BCM57840_VF,
163	BCM57811,
164	BCM57811_MF,
165	BCM57840_O,
166	BCM57840_MFO,
167	BCM57811_VF
168};
169
170/* indexed by board_type, above */
171static struct {
172	char *name;
173} board_info[] = {
174	[BCM57710]	= { "QLogic BCM57710 10 Gigabit PCIe [Everest]" },
175	[BCM57711]	= { "QLogic BCM57711 10 Gigabit PCIe" },
176	[BCM57711E]	= { "QLogic BCM57711E 10 Gigabit PCIe" },
177	[BCM57712]	= { "QLogic BCM57712 10 Gigabit Ethernet" },
178	[BCM57712_MF]	= { "QLogic BCM57712 10 Gigabit Ethernet Multi Function" },
179	[BCM57712_VF]	= { "QLogic BCM57712 10 Gigabit Ethernet Virtual Function" },
180	[BCM57800]	= { "QLogic BCM57800 10 Gigabit Ethernet" },
181	[BCM57800_MF]	= { "QLogic BCM57800 10 Gigabit Ethernet Multi Function" },
182	[BCM57800_VF]	= { "QLogic BCM57800 10 Gigabit Ethernet Virtual Function" },
183	[BCM57810]	= { "QLogic BCM57810 10 Gigabit Ethernet" },
184	[BCM57810_MF]	= { "QLogic BCM57810 10 Gigabit Ethernet Multi Function" },
185	[BCM57810_VF]	= { "QLogic BCM57810 10 Gigabit Ethernet Virtual Function" },
186	[BCM57840_4_10]	= { "QLogic BCM57840 10 Gigabit Ethernet" },
187	[BCM57840_2_20]	= { "QLogic BCM57840 20 Gigabit Ethernet" },
188	[BCM57840_MF]	= { "QLogic BCM57840 10/20 Gigabit Ethernet Multi Function" },
189	[BCM57840_VF]	= { "QLogic BCM57840 10/20 Gigabit Ethernet Virtual Function" },
190	[BCM57811]	= { "QLogic BCM57811 10 Gigabit Ethernet" },
191	[BCM57811_MF]	= { "QLogic BCM57811 10 Gigabit Ethernet Multi Function" },
192	[BCM57840_O]	= { "QLogic BCM57840 10/20 Gigabit Ethernet" },
193	[BCM57840_MFO]	= { "QLogic BCM57840 10/20 Gigabit Ethernet Multi Function" },
194	[BCM57811_VF]	= { "QLogic BCM57840 10/20 Gigabit Ethernet Virtual Function" }
195};
196
197#ifndef PCI_DEVICE_ID_NX2_57710
198#define PCI_DEVICE_ID_NX2_57710		CHIP_NUM_57710
199#endif
200#ifndef PCI_DEVICE_ID_NX2_57711
201#define PCI_DEVICE_ID_NX2_57711		CHIP_NUM_57711
202#endif
203#ifndef PCI_DEVICE_ID_NX2_57711E
204#define PCI_DEVICE_ID_NX2_57711E	CHIP_NUM_57711E
205#endif
206#ifndef PCI_DEVICE_ID_NX2_57712
207#define PCI_DEVICE_ID_NX2_57712		CHIP_NUM_57712
208#endif
209#ifndef PCI_DEVICE_ID_NX2_57712_MF
210#define PCI_DEVICE_ID_NX2_57712_MF	CHIP_NUM_57712_MF
211#endif
212#ifndef PCI_DEVICE_ID_NX2_57712_VF
213#define PCI_DEVICE_ID_NX2_57712_VF	CHIP_NUM_57712_VF
214#endif
215#ifndef PCI_DEVICE_ID_NX2_57800
216#define PCI_DEVICE_ID_NX2_57800		CHIP_NUM_57800
217#endif
218#ifndef PCI_DEVICE_ID_NX2_57800_MF
219#define PCI_DEVICE_ID_NX2_57800_MF	CHIP_NUM_57800_MF
220#endif
221#ifndef PCI_DEVICE_ID_NX2_57800_VF
222#define PCI_DEVICE_ID_NX2_57800_VF	CHIP_NUM_57800_VF
223#endif
224#ifndef PCI_DEVICE_ID_NX2_57810
225#define PCI_DEVICE_ID_NX2_57810		CHIP_NUM_57810
226#endif
227#ifndef PCI_DEVICE_ID_NX2_57810_MF
228#define PCI_DEVICE_ID_NX2_57810_MF	CHIP_NUM_57810_MF
229#endif
230#ifndef PCI_DEVICE_ID_NX2_57840_O
231#define PCI_DEVICE_ID_NX2_57840_O	CHIP_NUM_57840_OBSOLETE
232#endif
233#ifndef PCI_DEVICE_ID_NX2_57810_VF
234#define PCI_DEVICE_ID_NX2_57810_VF	CHIP_NUM_57810_VF
235#endif
236#ifndef PCI_DEVICE_ID_NX2_57840_4_10
237#define PCI_DEVICE_ID_NX2_57840_4_10	CHIP_NUM_57840_4_10
238#endif
239#ifndef PCI_DEVICE_ID_NX2_57840_2_20
240#define PCI_DEVICE_ID_NX2_57840_2_20	CHIP_NUM_57840_2_20
241#endif
242#ifndef PCI_DEVICE_ID_NX2_57840_MFO
243#define PCI_DEVICE_ID_NX2_57840_MFO	CHIP_NUM_57840_MF_OBSOLETE
244#endif
245#ifndef PCI_DEVICE_ID_NX2_57840_MF
246#define PCI_DEVICE_ID_NX2_57840_MF	CHIP_NUM_57840_MF
247#endif
248#ifndef PCI_DEVICE_ID_NX2_57840_VF
249#define PCI_DEVICE_ID_NX2_57840_VF	CHIP_NUM_57840_VF
250#endif
251#ifndef PCI_DEVICE_ID_NX2_57811
252#define PCI_DEVICE_ID_NX2_57811		CHIP_NUM_57811
253#endif
254#ifndef PCI_DEVICE_ID_NX2_57811_MF
255#define PCI_DEVICE_ID_NX2_57811_MF	CHIP_NUM_57811_MF
256#endif
257#ifndef PCI_DEVICE_ID_NX2_57811_VF
258#define PCI_DEVICE_ID_NX2_57811_VF	CHIP_NUM_57811_VF
259#endif
260
261static const struct pci_device_id bnx2x_pci_tbl[] = {
262	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57710), BCM57710 },
263	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711), BCM57711 },
264	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711E), BCM57711E },
265	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712), BCM57712 },
266	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_MF), BCM57712_MF },
267	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_VF), BCM57712_VF },
268	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800), BCM57800 },
269	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_MF), BCM57800_MF },
270	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_VF), BCM57800_VF },
271	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810), BCM57810 },
272	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_MF), BCM57810_MF },
273	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_O), BCM57840_O },
274	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_4_10), BCM57840_4_10 },
275	{ PCI_VDEVICE(QLOGIC,	PCI_DEVICE_ID_NX2_57840_4_10), BCM57840_4_10 },
276	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_2_20), BCM57840_2_20 },
277	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_VF), BCM57810_VF },
278	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MFO), BCM57840_MFO },
279	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF },
280	{ PCI_VDEVICE(QLOGIC,	PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF },
281	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_VF), BCM57840_VF },
282	{ PCI_VDEVICE(QLOGIC,	PCI_DEVICE_ID_NX2_57840_VF), BCM57840_VF },
283	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811), BCM57811 },
284	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_MF), BCM57811_MF },
285	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_VF), BCM57811_VF },
286	{ 0 }
287};
288
289MODULE_DEVICE_TABLE(pci, bnx2x_pci_tbl);
290
291const u32 dmae_reg_go_c[] = {
292	DMAE_REG_GO_C0, DMAE_REG_GO_C1, DMAE_REG_GO_C2, DMAE_REG_GO_C3,
293	DMAE_REG_GO_C4, DMAE_REG_GO_C5, DMAE_REG_GO_C6, DMAE_REG_GO_C7,
294	DMAE_REG_GO_C8, DMAE_REG_GO_C9, DMAE_REG_GO_C10, DMAE_REG_GO_C11,
295	DMAE_REG_GO_C12, DMAE_REG_GO_C13, DMAE_REG_GO_C14, DMAE_REG_GO_C15
296};
297
298/* Global resources for unloading a previously loaded device */
299#define BNX2X_PREV_WAIT_NEEDED 1
300static DEFINE_SEMAPHORE(bnx2x_prev_sem, 1);
301static LIST_HEAD(bnx2x_prev_list);
302
303/* Forward declaration */
304static struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev);
305static u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp);
306static int bnx2x_set_storm_rx_mode(struct bnx2x *bp);
307
308/****************************************************************************
309* General service functions
310****************************************************************************/
311
312static int bnx2x_hwtstamp_ioctl(struct bnx2x *bp, struct ifreq *ifr);
313
314static void __storm_memset_dma_mapping(struct bnx2x *bp,
315				       u32 addr, dma_addr_t mapping)
316{
317	REG_WR(bp,  addr, U64_LO(mapping));
318	REG_WR(bp,  addr + 4, U64_HI(mapping));
319}
320
321static void storm_memset_spq_addr(struct bnx2x *bp,
322				  dma_addr_t mapping, u16 abs_fid)
323{
324	u32 addr = XSEM_REG_FAST_MEMORY +
325			XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid);
326
327	__storm_memset_dma_mapping(bp, addr, mapping);
328}
329
330static void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid,
331				  u16 pf_id)
332{
333	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid),
334		pf_id);
335	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid),
336		pf_id);
337	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid),
338		pf_id);
339	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid),
340		pf_id);
341}
342
343static void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid,
344				 u8 enable)
345{
346	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid),
347		enable);
348	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid),
349		enable);
350	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid),
351		enable);
352	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid),
353		enable);
354}
355
356static void storm_memset_eq_data(struct bnx2x *bp,
357				 struct event_ring_data *eq_data,
358				u16 pfid)
359{
360	size_t size = sizeof(struct event_ring_data);
361
362	u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid);
363
364	__storm_memset_struct(bp, addr, size, (u32 *)eq_data);
365}
366
367static void storm_memset_eq_prod(struct bnx2x *bp, u16 eq_prod,
368				 u16 pfid)
369{
370	u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_PROD_OFFSET(pfid);
371	REG_WR16(bp, addr, eq_prod);
372}
373
374/* used only at init
375 * locking is done by mcp
376 */
377static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val)
378{
379	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
380	pci_write_config_dword(bp->pdev, PCICFG_GRC_DATA, val);
381	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
382			       PCICFG_VENDOR_ID_OFFSET);
383}
384
385static u32 bnx2x_reg_rd_ind(struct bnx2x *bp, u32 addr)
386{
387	u32 val;
388
389	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
390	pci_read_config_dword(bp->pdev, PCICFG_GRC_DATA, &val);
391	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
392			       PCICFG_VENDOR_ID_OFFSET);
393
394	return val;
395}
396
397#define DMAE_DP_SRC_GRC		"grc src_addr [%08x]"
398#define DMAE_DP_SRC_PCI		"pci src_addr [%x:%08x]"
399#define DMAE_DP_DST_GRC		"grc dst_addr [%08x]"
400#define DMAE_DP_DST_PCI		"pci dst_addr [%x:%08x]"
401#define DMAE_DP_DST_NONE	"dst_addr [none]"
402
403static void bnx2x_dp_dmae(struct bnx2x *bp,
404			  struct dmae_command *dmae, int msglvl)
405{
406	u32 src_type = dmae->opcode & DMAE_COMMAND_SRC;
407	int i;
408
409	switch (dmae->opcode & DMAE_COMMAND_DST) {
410	case DMAE_CMD_DST_PCI:
411		if (src_type == DMAE_CMD_SRC_PCI)
412			DP(msglvl, "DMAE: opcode 0x%08x\n"
413			   "src [%x:%08x], len [%d*4], dst [%x:%08x]\n"
414			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
415			   dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
416			   dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
417			   dmae->comp_addr_hi, dmae->comp_addr_lo,
418			   dmae->comp_val);
419		else
420			DP(msglvl, "DMAE: opcode 0x%08x\n"
421			   "src [%08x], len [%d*4], dst [%x:%08x]\n"
422			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
423			   dmae->opcode, dmae->src_addr_lo >> 2,
424			   dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
425			   dmae->comp_addr_hi, dmae->comp_addr_lo,
426			   dmae->comp_val);
427		break;
428	case DMAE_CMD_DST_GRC:
429		if (src_type == DMAE_CMD_SRC_PCI)
430			DP(msglvl, "DMAE: opcode 0x%08x\n"
431			   "src [%x:%08x], len [%d*4], dst_addr [%08x]\n"
432			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
433			   dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
434			   dmae->len, dmae->dst_addr_lo >> 2,
435			   dmae->comp_addr_hi, dmae->comp_addr_lo,
436			   dmae->comp_val);
437		else
438			DP(msglvl, "DMAE: opcode 0x%08x\n"
439			   "src [%08x], len [%d*4], dst [%08x]\n"
440			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
441			   dmae->opcode, dmae->src_addr_lo >> 2,
442			   dmae->len, dmae->dst_addr_lo >> 2,
443			   dmae->comp_addr_hi, dmae->comp_addr_lo,
444			   dmae->comp_val);
445		break;
446	default:
447		if (src_type == DMAE_CMD_SRC_PCI)
448			DP(msglvl, "DMAE: opcode 0x%08x\n"
449			   "src_addr [%x:%08x]  len [%d * 4]  dst_addr [none]\n"
450			   "comp_addr [%x:%08x]  comp_val 0x%08x\n",
451			   dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
452			   dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
453			   dmae->comp_val);
454		else
455			DP(msglvl, "DMAE: opcode 0x%08x\n"
456			   "src_addr [%08x]  len [%d * 4]  dst_addr [none]\n"
457			   "comp_addr [%x:%08x]  comp_val 0x%08x\n",
458			   dmae->opcode, dmae->src_addr_lo >> 2,
459			   dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
460			   dmae->comp_val);
461		break;
462	}
463
464	for (i = 0; i < (sizeof(struct dmae_command)/4); i++)
465		DP(msglvl, "DMAE RAW [%02d]: 0x%08x\n",
466		   i, *(((u32 *)dmae) + i));
467}
468
469/* copy command into DMAE command memory and set DMAE command go */
470void bnx2x_post_dmae(struct bnx2x *bp, struct dmae_command *dmae, int idx)
471{
472	u32 cmd_offset;
473	int i;
474
475	cmd_offset = (DMAE_REG_CMD_MEM + sizeof(struct dmae_command) * idx);
476	for (i = 0; i < (sizeof(struct dmae_command)/4); i++) {
477		REG_WR(bp, cmd_offset + i*4, *(((u32 *)dmae) + i));
478	}
479	REG_WR(bp, dmae_reg_go_c[idx], 1);
480}
481
482u32 bnx2x_dmae_opcode_add_comp(u32 opcode, u8 comp_type)
483{
484	return opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) |
485			   DMAE_CMD_C_ENABLE);
486}
487
488u32 bnx2x_dmae_opcode_clr_src_reset(u32 opcode)
489{
490	return opcode & ~DMAE_CMD_SRC_RESET;
491}
492
493u32 bnx2x_dmae_opcode(struct bnx2x *bp, u8 src_type, u8 dst_type,
494			     bool with_comp, u8 comp_type)
495{
496	u32 opcode = 0;
497
498	opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) |
499		   (dst_type << DMAE_COMMAND_DST_SHIFT));
500
501	opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET);
502
503	opcode |= (BP_PORT(bp) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
504	opcode |= ((BP_VN(bp) << DMAE_CMD_E1HVN_SHIFT) |
505		   (BP_VN(bp) << DMAE_COMMAND_DST_VN_SHIFT));
506	opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT);
507
508#ifdef __BIG_ENDIAN
509	opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
510#else
511	opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
512#endif
513	if (with_comp)
514		opcode = bnx2x_dmae_opcode_add_comp(opcode, comp_type);
515	return opcode;
516}
517
518void bnx2x_prep_dmae_with_comp(struct bnx2x *bp,
519				      struct dmae_command *dmae,
520				      u8 src_type, u8 dst_type)
521{
522	memset(dmae, 0, sizeof(struct dmae_command));
523
524	/* set the opcode */
525	dmae->opcode = bnx2x_dmae_opcode(bp, src_type, dst_type,
526					 true, DMAE_COMP_PCI);
527
528	/* fill in the completion parameters */
529	dmae->comp_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_comp));
530	dmae->comp_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_comp));
531	dmae->comp_val = DMAE_COMP_VAL;
532}
533
534/* issue a dmae command over the init-channel and wait for completion */
535int bnx2x_issue_dmae_with_comp(struct bnx2x *bp, struct dmae_command *dmae,
536			       u32 *comp)
537{
538	int cnt = CHIP_REV_IS_SLOW(bp) ? (400000) : 4000;
539	int rc = 0;
540
541	bnx2x_dp_dmae(bp, dmae, BNX2X_MSG_DMAE);
542
543	/* Lock the dmae channel. Disable BHs to prevent a dead-lock
544	 * as long as this code is called both from syscall context and
545	 * from ndo_set_rx_mode() flow that may be called from BH.
546	 */
547
548	spin_lock_bh(&bp->dmae_lock);
549
550	/* reset completion */
551	*comp = 0;
552
553	/* post the command on the channel used for initializations */
554	bnx2x_post_dmae(bp, dmae, INIT_DMAE_C(bp));
555
556	/* wait for completion */
557	udelay(5);
558	while ((*comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
559
560		if (!cnt ||
561		    (bp->recovery_state != BNX2X_RECOVERY_DONE &&
562		     bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
563			BNX2X_ERR("DMAE timeout!\n");
564			rc = DMAE_TIMEOUT;
565			goto unlock;
566		}
567		cnt--;
568		udelay(50);
569	}
570	if (*comp & DMAE_PCI_ERR_FLAG) {
571		BNX2X_ERR("DMAE PCI error!\n");
572		rc = DMAE_PCI_ERROR;
573	}
574
575unlock:
576
577	spin_unlock_bh(&bp->dmae_lock);
578
579	return rc;
580}
581
582void bnx2x_write_dmae(struct bnx2x *bp, dma_addr_t dma_addr, u32 dst_addr,
583		      u32 len32)
584{
585	int rc;
586	struct dmae_command dmae;
587
588	if (!bp->dmae_ready) {
589		u32 *data = bnx2x_sp(bp, wb_data[0]);
590
591		if (CHIP_IS_E1(bp))
592			bnx2x_init_ind_wr(bp, dst_addr, data, len32);
593		else
594			bnx2x_init_str_wr(bp, dst_addr, data, len32);
595		return;
596	}
597
598	/* set opcode and fixed command fields */
599	bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
600
601	/* fill in addresses and len */
602	dmae.src_addr_lo = U64_LO(dma_addr);
603	dmae.src_addr_hi = U64_HI(dma_addr);
604	dmae.dst_addr_lo = dst_addr >> 2;
605	dmae.dst_addr_hi = 0;
606	dmae.len = len32;
607
608	/* issue the command and wait for completion */
609	rc = bnx2x_issue_dmae_with_comp(bp, &dmae, bnx2x_sp(bp, wb_comp));
610	if (rc) {
611		BNX2X_ERR("DMAE returned failure %d\n", rc);
612#ifdef BNX2X_STOP_ON_ERROR
613		bnx2x_panic();
614#endif
615	}
616}
617
618void bnx2x_read_dmae(struct bnx2x *bp, u32 src_addr, u32 len32)
619{
620	int rc;
621	struct dmae_command dmae;
622
623	if (!bp->dmae_ready) {
624		u32 *data = bnx2x_sp(bp, wb_data[0]);
625		int i;
626
627		if (CHIP_IS_E1(bp))
628			for (i = 0; i < len32; i++)
629				data[i] = bnx2x_reg_rd_ind(bp, src_addr + i*4);
630		else
631			for (i = 0; i < len32; i++)
632				data[i] = REG_RD(bp, src_addr + i*4);
633
634		return;
635	}
636
637	/* set opcode and fixed command fields */
638	bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
639
640	/* fill in addresses and len */
641	dmae.src_addr_lo = src_addr >> 2;
642	dmae.src_addr_hi = 0;
643	dmae.dst_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_data));
644	dmae.dst_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_data));
645	dmae.len = len32;
646
647	/* issue the command and wait for completion */
648	rc = bnx2x_issue_dmae_with_comp(bp, &dmae, bnx2x_sp(bp, wb_comp));
649	if (rc) {
650		BNX2X_ERR("DMAE returned failure %d\n", rc);
651#ifdef BNX2X_STOP_ON_ERROR
652		bnx2x_panic();
653#endif
654	}
655}
656
657static void bnx2x_write_dmae_phys_len(struct bnx2x *bp, dma_addr_t phys_addr,
658				      u32 addr, u32 len)
659{
660	int dmae_wr_max = DMAE_LEN32_WR_MAX(bp);
661	int offset = 0;
662
663	while (len > dmae_wr_max) {
664		bnx2x_write_dmae(bp, phys_addr + offset,
665				 addr + offset, dmae_wr_max);
666		offset += dmae_wr_max * 4;
667		len -= dmae_wr_max;
668	}
669
670	bnx2x_write_dmae(bp, phys_addr + offset, addr + offset, len);
671}
672
673enum storms {
674	   XSTORM,
675	   TSTORM,
676	   CSTORM,
677	   USTORM,
678	   MAX_STORMS
679};
680
681#define STORMS_NUM 4
682#define REGS_IN_ENTRY 4
683
684static inline int bnx2x_get_assert_list_entry(struct bnx2x *bp,
685					      enum storms storm,
686					      int entry)
687{
688	switch (storm) {
689	case XSTORM:
690		return XSTORM_ASSERT_LIST_OFFSET(entry);
691	case TSTORM:
692		return TSTORM_ASSERT_LIST_OFFSET(entry);
693	case CSTORM:
694		return CSTORM_ASSERT_LIST_OFFSET(entry);
695	case USTORM:
696		return USTORM_ASSERT_LIST_OFFSET(entry);
697	case MAX_STORMS:
698	default:
699		BNX2X_ERR("unknown storm\n");
700	}
701	return -EINVAL;
702}
703
704static int bnx2x_mc_assert(struct bnx2x *bp)
705{
706	char last_idx;
707	int i, j, rc = 0;
708	enum storms storm;
709	u32 regs[REGS_IN_ENTRY];
710	u32 bar_storm_intmem[STORMS_NUM] = {
711		BAR_XSTRORM_INTMEM,
712		BAR_TSTRORM_INTMEM,
713		BAR_CSTRORM_INTMEM,
714		BAR_USTRORM_INTMEM
715	};
716	u32 storm_assert_list_index[STORMS_NUM] = {
717		XSTORM_ASSERT_LIST_INDEX_OFFSET,
718		TSTORM_ASSERT_LIST_INDEX_OFFSET,
719		CSTORM_ASSERT_LIST_INDEX_OFFSET,
720		USTORM_ASSERT_LIST_INDEX_OFFSET
721	};
722	char *storms_string[STORMS_NUM] = {
723		"XSTORM",
724		"TSTORM",
725		"CSTORM",
726		"USTORM"
727	};
728
729	for (storm = XSTORM; storm < MAX_STORMS; storm++) {
730		last_idx = REG_RD8(bp, bar_storm_intmem[storm] +
731				   storm_assert_list_index[storm]);
732		if (last_idx)
733			BNX2X_ERR("%s_ASSERT_LIST_INDEX 0x%x\n",
734				  storms_string[storm], last_idx);
735
736		/* print the asserts */
737		for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
738			/* read a single assert entry */
739			for (j = 0; j < REGS_IN_ENTRY; j++)
740				regs[j] = REG_RD(bp, bar_storm_intmem[storm] +
741					  bnx2x_get_assert_list_entry(bp,
742								      storm,
743								      i) +
744					  sizeof(u32) * j);
745
746			/* log entry if it contains a valid assert */
747			if (regs[0] != COMMON_ASM_INVALID_ASSERT_OPCODE) {
748				BNX2X_ERR("%s_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
749					  storms_string[storm], i, regs[3],
750					  regs[2], regs[1], regs[0]);
751				rc++;
752			} else {
753				break;
754			}
755		}
756	}
757
758	BNX2X_ERR("Chip Revision: %s, FW Version: %d_%d_%d\n",
759		  CHIP_IS_E1(bp) ? "everest1" :
760		  CHIP_IS_E1H(bp) ? "everest1h" :
761		  CHIP_IS_E2(bp) ? "everest2" : "everest3",
762		  bp->fw_major, bp->fw_minor, bp->fw_rev);
763
764	return rc;
765}
766
767#define MCPR_TRACE_BUFFER_SIZE	(0x800)
768#define SCRATCH_BUFFER_SIZE(bp)	\
769	(CHIP_IS_E1(bp) ? 0x10000 : (CHIP_IS_E1H(bp) ? 0x20000 : 0x28000))
770
771void bnx2x_fw_dump_lvl(struct bnx2x *bp, const char *lvl)
772{
773	u32 addr, val;
774	u32 mark, offset;
775	__be32 data[9];
776	int word;
777	u32 trace_shmem_base;
778	if (BP_NOMCP(bp)) {
779		BNX2X_ERR("NO MCP - can not dump\n");
780		return;
781	}
782	netdev_printk(lvl, bp->dev, "bc %d.%d.%d\n",
783		(bp->common.bc_ver & 0xff0000) >> 16,
784		(bp->common.bc_ver & 0xff00) >> 8,
785		(bp->common.bc_ver & 0xff));
786
787	if (pci_channel_offline(bp->pdev)) {
788		BNX2X_ERR("Cannot dump MCP info while in PCI error\n");
789		return;
790	}
791
792	val = REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER);
793	if (val == REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER))
794		BNX2X_ERR("%s" "MCP PC at 0x%x\n", lvl, val);
795
796	if (BP_PATH(bp) == 0)
797		trace_shmem_base = bp->common.shmem_base;
798	else
799		trace_shmem_base = SHMEM2_RD(bp, other_shmem_base_addr);
800
801	/* sanity */
802	if (trace_shmem_base < MCPR_SCRATCH_BASE(bp) + MCPR_TRACE_BUFFER_SIZE ||
803	    trace_shmem_base >= MCPR_SCRATCH_BASE(bp) +
804				SCRATCH_BUFFER_SIZE(bp)) {
805		BNX2X_ERR("Unable to dump trace buffer (mark %x)\n",
806			  trace_shmem_base);
807		return;
808	}
809
810	addr = trace_shmem_base - MCPR_TRACE_BUFFER_SIZE;
811
812	/* validate TRCB signature */
813	mark = REG_RD(bp, addr);
814	if (mark != MFW_TRACE_SIGNATURE) {
815		BNX2X_ERR("Trace buffer signature is missing.");
816		return ;
817	}
818
819	/* read cyclic buffer pointer */
820	addr += 4;
821	mark = REG_RD(bp, addr);
822	mark = MCPR_SCRATCH_BASE(bp) + ((mark + 0x3) & ~0x3) - 0x08000000;
823	if (mark >= trace_shmem_base || mark < addr + 4) {
824		BNX2X_ERR("Mark doesn't fall inside Trace Buffer\n");
825		return;
826	}
827	printk("%s" "begin fw dump (mark 0x%x)\n", lvl, mark);
828
829	printk("%s", lvl);
830
831	/* dump buffer after the mark */
832	for (offset = mark; offset < trace_shmem_base; offset += 0x8*4) {
833		for (word = 0; word < 8; word++)
834			data[word] = htonl(REG_RD(bp, offset + 4*word));
835		data[8] = 0x0;
836		pr_cont("%s", (char *)data);
837	}
838
839	/* dump buffer before the mark */
840	for (offset = addr + 4; offset <= mark; offset += 0x8*4) {
841		for (word = 0; word < 8; word++)
842			data[word] = htonl(REG_RD(bp, offset + 4*word));
843		data[8] = 0x0;
844		pr_cont("%s", (char *)data);
845	}
846	printk("%s" "end of fw dump\n", lvl);
847}
848
849static void bnx2x_fw_dump(struct bnx2x *bp)
850{
851	bnx2x_fw_dump_lvl(bp, KERN_ERR);
852}
853
854static void bnx2x_hc_int_disable(struct bnx2x *bp)
855{
856	int port = BP_PORT(bp);
857	u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
858	u32 val = REG_RD(bp, addr);
859
860	/* in E1 we must use only PCI configuration space to disable
861	 * MSI/MSIX capability
862	 * It's forbidden to disable IGU_PF_CONF_MSI_MSIX_EN in HC block
863	 */
864	if (CHIP_IS_E1(bp)) {
865		/* Since IGU_PF_CONF_MSI_MSIX_EN still always on
866		 * Use mask register to prevent from HC sending interrupts
867		 * after we exit the function
868		 */
869		REG_WR(bp, HC_REG_INT_MASK + port*4, 0);
870
871		val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
872			 HC_CONFIG_0_REG_INT_LINE_EN_0 |
873			 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
874	} else
875		val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
876			 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
877			 HC_CONFIG_0_REG_INT_LINE_EN_0 |
878			 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
879
880	DP(NETIF_MSG_IFDOWN,
881	   "write %x to HC %d (addr 0x%x)\n",
882	   val, port, addr);
883
884	REG_WR(bp, addr, val);
885	if (REG_RD(bp, addr) != val)
886		BNX2X_ERR("BUG! Proper val not read from IGU!\n");
887}
888
889static void bnx2x_igu_int_disable(struct bnx2x *bp)
890{
891	u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
892
893	val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
894		 IGU_PF_CONF_INT_LINE_EN |
895		 IGU_PF_CONF_ATTN_BIT_EN);
896
897	DP(NETIF_MSG_IFDOWN, "write %x to IGU\n", val);
898
899	REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
900	if (REG_RD(bp, IGU_REG_PF_CONFIGURATION) != val)
901		BNX2X_ERR("BUG! Proper val not read from IGU!\n");
902}
903
904static void bnx2x_int_disable(struct bnx2x *bp)
905{
906	if (bp->common.int_block == INT_BLOCK_HC)
907		bnx2x_hc_int_disable(bp);
908	else
909		bnx2x_igu_int_disable(bp);
910}
911
912void bnx2x_panic_dump(struct bnx2x *bp, bool disable_int)
913{
914	int i;
915	u16 j;
916	struct hc_sp_status_block_data sp_sb_data;
917	int func = BP_FUNC(bp);
918#ifdef BNX2X_STOP_ON_ERROR
919	u16 start = 0, end = 0;
920	u8 cos;
921#endif
922	if (IS_PF(bp) && disable_int)
923		bnx2x_int_disable(bp);
924
925	bp->stats_state = STATS_STATE_DISABLED;
926	bp->eth_stats.unrecoverable_error++;
927	DP(BNX2X_MSG_STATS, "stats_state - DISABLED\n");
928
929	BNX2X_ERR("begin crash dump -----------------\n");
930
931	/* Indices */
932	/* Common */
933	if (IS_PF(bp)) {
934		struct host_sp_status_block *def_sb = bp->def_status_blk;
935		int data_size, cstorm_offset;
936
937		BNX2X_ERR("def_idx(0x%x)  def_att_idx(0x%x)  attn_state(0x%x)  spq_prod_idx(0x%x) next_stats_cnt(0x%x)\n",
938			  bp->def_idx, bp->def_att_idx, bp->attn_state,
939			  bp->spq_prod_idx, bp->stats_counter);
940		BNX2X_ERR("DSB: attn bits(0x%x)  ack(0x%x)  id(0x%x)  idx(0x%x)\n",
941			  def_sb->atten_status_block.attn_bits,
942			  def_sb->atten_status_block.attn_bits_ack,
943			  def_sb->atten_status_block.status_block_id,
944			  def_sb->atten_status_block.attn_bits_index);
945		BNX2X_ERR("     def (");
946		for (i = 0; i < HC_SP_SB_MAX_INDICES; i++)
947			pr_cont("0x%x%s",
948				def_sb->sp_sb.index_values[i],
949				(i == HC_SP_SB_MAX_INDICES - 1) ? ")  " : " ");
950
951		data_size = sizeof(struct hc_sp_status_block_data) /
952			    sizeof(u32);
953		cstorm_offset = CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func);
954		for (i = 0; i < data_size; i++)
955			*((u32 *)&sp_sb_data + i) =
956				REG_RD(bp, BAR_CSTRORM_INTMEM + cstorm_offset +
957					   i * sizeof(u32));
958
959		pr_cont("igu_sb_id(0x%x)  igu_seg_id(0x%x) pf_id(0x%x)  vnic_id(0x%x)  vf_id(0x%x)  vf_valid (0x%x) state(0x%x)\n",
960			sp_sb_data.igu_sb_id,
961			sp_sb_data.igu_seg_id,
962			sp_sb_data.p_func.pf_id,
963			sp_sb_data.p_func.vnic_id,
964			sp_sb_data.p_func.vf_id,
965			sp_sb_data.p_func.vf_valid,
966			sp_sb_data.state);
967	}
968
969	for_each_eth_queue(bp, i) {
970		struct bnx2x_fastpath *fp = &bp->fp[i];
971		int loop;
972		struct hc_status_block_data_e2 sb_data_e2;
973		struct hc_status_block_data_e1x sb_data_e1x;
974		struct hc_status_block_sm  *hc_sm_p =
975			CHIP_IS_E1x(bp) ?
976			sb_data_e1x.common.state_machine :
977			sb_data_e2.common.state_machine;
978		struct hc_index_data *hc_index_p =
979			CHIP_IS_E1x(bp) ?
980			sb_data_e1x.index_data :
981			sb_data_e2.index_data;
982		u8 data_size, cos;
983		u32 *sb_data_p;
984		struct bnx2x_fp_txdata txdata;
985
986		if (!bp->fp)
987			break;
988
989		if (!fp->rx_cons_sb)
990			continue;
991
992		/* Rx */
993		BNX2X_ERR("fp%d: rx_bd_prod(0x%x)  rx_bd_cons(0x%x)  rx_comp_prod(0x%x)  rx_comp_cons(0x%x)  *rx_cons_sb(0x%x)\n",
994			  i, fp->rx_bd_prod, fp->rx_bd_cons,
995			  fp->rx_comp_prod,
996			  fp->rx_comp_cons, le16_to_cpu(*fp->rx_cons_sb));
997		BNX2X_ERR("     rx_sge_prod(0x%x)  last_max_sge(0x%x)  fp_hc_idx(0x%x)\n",
998			  fp->rx_sge_prod, fp->last_max_sge,
999			  le16_to_cpu(fp->fp_hc_idx));
1000
1001		/* Tx */
1002		for_each_cos_in_tx_queue(fp, cos)
1003		{
1004			if (!fp->txdata_ptr[cos])
1005				break;
1006
1007			txdata = *fp->txdata_ptr[cos];
1008
1009			if (!txdata.tx_cons_sb)
1010				continue;
1011
1012			BNX2X_ERR("fp%d: tx_pkt_prod(0x%x)  tx_pkt_cons(0x%x)  tx_bd_prod(0x%x)  tx_bd_cons(0x%x)  *tx_cons_sb(0x%x)\n",
1013				  i, txdata.tx_pkt_prod,
1014				  txdata.tx_pkt_cons, txdata.tx_bd_prod,
1015				  txdata.tx_bd_cons,
1016				  le16_to_cpu(*txdata.tx_cons_sb));
1017		}
1018
1019		loop = CHIP_IS_E1x(bp) ?
1020			HC_SB_MAX_INDICES_E1X : HC_SB_MAX_INDICES_E2;
1021
1022		/* host sb data */
1023
1024		if (IS_FCOE_FP(fp))
1025			continue;
1026
1027		BNX2X_ERR("     run indexes (");
1028		for (j = 0; j < HC_SB_MAX_SM; j++)
1029			pr_cont("0x%x%s",
1030			       fp->sb_running_index[j],
1031			       (j == HC_SB_MAX_SM - 1) ? ")" : " ");
1032
1033		BNX2X_ERR("     indexes (");
1034		for (j = 0; j < loop; j++)
1035			pr_cont("0x%x%s",
1036			       fp->sb_index_values[j],
1037			       (j == loop - 1) ? ")" : " ");
1038
1039		/* VF cannot access FW refelection for status block */
1040		if (IS_VF(bp))
1041			continue;
1042
1043		/* fw sb data */
1044		data_size = CHIP_IS_E1x(bp) ?
1045			sizeof(struct hc_status_block_data_e1x) :
1046			sizeof(struct hc_status_block_data_e2);
1047		data_size /= sizeof(u32);
1048		sb_data_p = CHIP_IS_E1x(bp) ?
1049			(u32 *)&sb_data_e1x :
1050			(u32 *)&sb_data_e2;
1051		/* copy sb data in here */
1052		for (j = 0; j < data_size; j++)
1053			*(sb_data_p + j) = REG_RD(bp, BAR_CSTRORM_INTMEM +
1054				CSTORM_STATUS_BLOCK_DATA_OFFSET(fp->fw_sb_id) +
1055				j * sizeof(u32));
1056
1057		if (!CHIP_IS_E1x(bp)) {
1058			pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) vnic_id(0x%x)  same_igu_sb_1b(0x%x) state(0x%x)\n",
1059				sb_data_e2.common.p_func.pf_id,
1060				sb_data_e2.common.p_func.vf_id,
1061				sb_data_e2.common.p_func.vf_valid,
1062				sb_data_e2.common.p_func.vnic_id,
1063				sb_data_e2.common.same_igu_sb_1b,
1064				sb_data_e2.common.state);
1065		} else {
1066			pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) vnic_id(0x%x)  same_igu_sb_1b(0x%x) state(0x%x)\n",
1067				sb_data_e1x.common.p_func.pf_id,
1068				sb_data_e1x.common.p_func.vf_id,
1069				sb_data_e1x.common.p_func.vf_valid,
1070				sb_data_e1x.common.p_func.vnic_id,
1071				sb_data_e1x.common.same_igu_sb_1b,
1072				sb_data_e1x.common.state);
1073		}
1074
1075		/* SB_SMs data */
1076		for (j = 0; j < HC_SB_MAX_SM; j++) {
1077			pr_cont("SM[%d] __flags (0x%x) igu_sb_id (0x%x)  igu_seg_id(0x%x) time_to_expire (0x%x) timer_value(0x%x)\n",
1078				j, hc_sm_p[j].__flags,
1079				hc_sm_p[j].igu_sb_id,
1080				hc_sm_p[j].igu_seg_id,
1081				hc_sm_p[j].time_to_expire,
1082				hc_sm_p[j].timer_value);
1083		}
1084
1085		/* Indices data */
1086		for (j = 0; j < loop; j++) {
1087			pr_cont("INDEX[%d] flags (0x%x) timeout (0x%x)\n", j,
1088			       hc_index_p[j].flags,
1089			       hc_index_p[j].timeout);
1090		}
1091	}
1092
1093#ifdef BNX2X_STOP_ON_ERROR
1094	if (IS_PF(bp)) {
1095		/* event queue */
1096		BNX2X_ERR("eq cons %x prod %x\n", bp->eq_cons, bp->eq_prod);
1097		for (i = 0; i < NUM_EQ_DESC; i++) {
1098			u32 *data = (u32 *)&bp->eq_ring[i].message.data;
1099
1100			BNX2X_ERR("event queue [%d]: header: opcode %d, error %d\n",
1101				  i, bp->eq_ring[i].message.opcode,
1102				  bp->eq_ring[i].message.error);
1103			BNX2X_ERR("data: %x %x %x\n",
1104				  data[0], data[1], data[2]);
1105		}
1106	}
1107
1108	/* Rings */
1109	/* Rx */
1110	for_each_valid_rx_queue(bp, i) {
1111		struct bnx2x_fastpath *fp = &bp->fp[i];
1112
1113		if (!bp->fp)
1114			break;
1115
1116		if (!fp->rx_cons_sb)
1117			continue;
1118
1119		start = RX_BD(le16_to_cpu(*fp->rx_cons_sb) - 10);
1120		end = RX_BD(le16_to_cpu(*fp->rx_cons_sb) + 503);
1121		for (j = start; j != end; j = RX_BD(j + 1)) {
1122			u32 *rx_bd = (u32 *)&fp->rx_desc_ring[j];
1123			struct sw_rx_bd *sw_bd = &fp->rx_buf_ring[j];
1124
1125			BNX2X_ERR("fp%d: rx_bd[%x]=[%x:%x]  sw_bd=[%p]\n",
1126				  i, j, rx_bd[1], rx_bd[0], sw_bd->data);
1127		}
1128
1129		start = RX_SGE(fp->rx_sge_prod);
1130		end = RX_SGE(fp->last_max_sge);
1131		for (j = start; j != end; j = RX_SGE(j + 1)) {
1132			u32 *rx_sge = (u32 *)&fp->rx_sge_ring[j];
1133			struct sw_rx_page *sw_page = &fp->rx_page_ring[j];
1134
1135			BNX2X_ERR("fp%d: rx_sge[%x]=[%x:%x]  sw_page=[%p]\n",
1136				  i, j, rx_sge[1], rx_sge[0], sw_page->page);
1137		}
1138
1139		start = RCQ_BD(fp->rx_comp_cons - 10);
1140		end = RCQ_BD(fp->rx_comp_cons + 503);
1141		for (j = start; j != end; j = RCQ_BD(j + 1)) {
1142			u32 *cqe = (u32 *)&fp->rx_comp_ring[j];
1143
1144			BNX2X_ERR("fp%d: cqe[%x]=[%x:%x:%x:%x]\n",
1145				  i, j, cqe[0], cqe[1], cqe[2], cqe[3]);
1146		}
1147	}
1148
1149	/* Tx */
1150	for_each_valid_tx_queue(bp, i) {
1151		struct bnx2x_fastpath *fp = &bp->fp[i];
1152
1153		if (!bp->fp)
1154			break;
1155
1156		for_each_cos_in_tx_queue(fp, cos) {
1157			struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
1158
1159			if (!fp->txdata_ptr[cos])
1160				break;
1161
1162			if (!txdata->tx_cons_sb)
1163				continue;
1164
1165			start = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) - 10);
1166			end = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) + 245);
1167			for (j = start; j != end; j = TX_BD(j + 1)) {
1168				struct sw_tx_bd *sw_bd =
1169					&txdata->tx_buf_ring[j];
1170
1171				BNX2X_ERR("fp%d: txdata %d, packet[%x]=[%p,%x]\n",
1172					  i, cos, j, sw_bd->skb,
1173					  sw_bd->first_bd);
1174			}
1175
1176			start = TX_BD(txdata->tx_bd_cons - 10);
1177			end = TX_BD(txdata->tx_bd_cons + 254);
1178			for (j = start; j != end; j = TX_BD(j + 1)) {
1179				u32 *tx_bd = (u32 *)&txdata->tx_desc_ring[j];
1180
1181				BNX2X_ERR("fp%d: txdata %d, tx_bd[%x]=[%x:%x:%x:%x]\n",
1182					  i, cos, j, tx_bd[0], tx_bd[1],
1183					  tx_bd[2], tx_bd[3]);
1184			}
1185		}
1186	}
1187#endif
1188	if (IS_PF(bp)) {
1189		int tmp_msg_en = bp->msg_enable;
1190
1191		bnx2x_fw_dump(bp);
1192		bp->msg_enable |= NETIF_MSG_HW;
1193		BNX2X_ERR("Idle check (1st round) ----------\n");
1194		bnx2x_idle_chk(bp);
1195		BNX2X_ERR("Idle check (2nd round) ----------\n");
1196		bnx2x_idle_chk(bp);
1197		bp->msg_enable = tmp_msg_en;
1198		bnx2x_mc_assert(bp);
1199	}
1200
1201	BNX2X_ERR("end crash dump -----------------\n");
1202}
1203
1204/*
1205 * FLR Support for E2
1206 *
1207 * bnx2x_pf_flr_clnup() is called during nic_load in the per function HW
1208 * initialization.
1209 */
1210#define FLR_WAIT_USEC		10000	/* 10 milliseconds */
1211#define FLR_WAIT_INTERVAL	50	/* usec */
1212#define	FLR_POLL_CNT		(FLR_WAIT_USEC/FLR_WAIT_INTERVAL) /* 200 */
1213
1214struct pbf_pN_buf_regs {
1215	int pN;
1216	u32 init_crd;
1217	u32 crd;
1218	u32 crd_freed;
1219};
1220
1221struct pbf_pN_cmd_regs {
1222	int pN;
1223	u32 lines_occup;
1224	u32 lines_freed;
1225};
1226
1227static void bnx2x_pbf_pN_buf_flushed(struct bnx2x *bp,
1228				     struct pbf_pN_buf_regs *regs,
1229				     u32 poll_count)
1230{
1231	u32 init_crd, crd, crd_start, crd_freed, crd_freed_start;
1232	u32 cur_cnt = poll_count;
1233
1234	crd_freed = crd_freed_start = REG_RD(bp, regs->crd_freed);
1235	crd = crd_start = REG_RD(bp, regs->crd);
1236	init_crd = REG_RD(bp, regs->init_crd);
1237
1238	DP(BNX2X_MSG_SP, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd);
1239	DP(BNX2X_MSG_SP, "CREDIT[%d]      : s:%x\n", regs->pN, crd);
1240	DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed);
1241
1242	while ((crd != init_crd) && ((u32)SUB_S32(crd_freed, crd_freed_start) <
1243	       (init_crd - crd_start))) {
1244		if (cur_cnt--) {
1245			udelay(FLR_WAIT_INTERVAL);
1246			crd = REG_RD(bp, regs->crd);
1247			crd_freed = REG_RD(bp, regs->crd_freed);
1248		} else {
1249			DP(BNX2X_MSG_SP, "PBF tx buffer[%d] timed out\n",
1250			   regs->pN);
1251			DP(BNX2X_MSG_SP, "CREDIT[%d]      : c:%x\n",
1252			   regs->pN, crd);
1253			DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: c:%x\n",
1254			   regs->pN, crd_freed);
1255			break;
1256		}
1257	}
1258	DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF tx buffer[%d]\n",
1259	   poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1260}
1261
1262static void bnx2x_pbf_pN_cmd_flushed(struct bnx2x *bp,
1263				     struct pbf_pN_cmd_regs *regs,
1264				     u32 poll_count)
1265{
1266	u32 occup, to_free, freed, freed_start;
1267	u32 cur_cnt = poll_count;
1268
1269	occup = to_free = REG_RD(bp, regs->lines_occup);
1270	freed = freed_start = REG_RD(bp, regs->lines_freed);
1271
1272	DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n", regs->pN, occup);
1273	DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
1274
1275	while (occup && ((u32)SUB_S32(freed, freed_start) < to_free)) {
1276		if (cur_cnt--) {
1277			udelay(FLR_WAIT_INTERVAL);
1278			occup = REG_RD(bp, regs->lines_occup);
1279			freed = REG_RD(bp, regs->lines_freed);
1280		} else {
1281			DP(BNX2X_MSG_SP, "PBF cmd queue[%d] timed out\n",
1282			   regs->pN);
1283			DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n",
1284			   regs->pN, occup);
1285			DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n",
1286			   regs->pN, freed);
1287			break;
1288		}
1289	}
1290	DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF cmd queue[%d]\n",
1291	   poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1292}
1293
1294static u32 bnx2x_flr_clnup_reg_poll(struct bnx2x *bp, u32 reg,
1295				    u32 expected, u32 poll_count)
1296{
1297	u32 cur_cnt = poll_count;
1298	u32 val;
1299
1300	while ((val = REG_RD(bp, reg)) != expected && cur_cnt--)
1301		udelay(FLR_WAIT_INTERVAL);
1302
1303	return val;
1304}
1305
1306int bnx2x_flr_clnup_poll_hw_counter(struct bnx2x *bp, u32 reg,
1307				    char *msg, u32 poll_cnt)
1308{
1309	u32 val = bnx2x_flr_clnup_reg_poll(bp, reg, 0, poll_cnt);
1310	if (val != 0) {
1311		BNX2X_ERR("%s usage count=%d\n", msg, val);
1312		return 1;
1313	}
1314	return 0;
1315}
1316
1317/* Common routines with VF FLR cleanup */
1318u32 bnx2x_flr_clnup_poll_count(struct bnx2x *bp)
1319{
1320	/* adjust polling timeout */
1321	if (CHIP_REV_IS_EMUL(bp))
1322		return FLR_POLL_CNT * 2000;
1323
1324	if (CHIP_REV_IS_FPGA(bp))
1325		return FLR_POLL_CNT * 120;
1326
1327	return FLR_POLL_CNT;
1328}
1329
1330void bnx2x_tx_hw_flushed(struct bnx2x *bp, u32 poll_count)
1331{
1332	struct pbf_pN_cmd_regs cmd_regs[] = {
1333		{0, (CHIP_IS_E3B0(bp)) ?
1334			PBF_REG_TQ_OCCUPANCY_Q0 :
1335			PBF_REG_P0_TQ_OCCUPANCY,
1336		    (CHIP_IS_E3B0(bp)) ?
1337			PBF_REG_TQ_LINES_FREED_CNT_Q0 :
1338			PBF_REG_P0_TQ_LINES_FREED_CNT},
1339		{1, (CHIP_IS_E3B0(bp)) ?
1340			PBF_REG_TQ_OCCUPANCY_Q1 :
1341			PBF_REG_P1_TQ_OCCUPANCY,
1342		    (CHIP_IS_E3B0(bp)) ?
1343			PBF_REG_TQ_LINES_FREED_CNT_Q1 :
1344			PBF_REG_P1_TQ_LINES_FREED_CNT},
1345		{4, (CHIP_IS_E3B0(bp)) ?
1346			PBF_REG_TQ_OCCUPANCY_LB_Q :
1347			PBF_REG_P4_TQ_OCCUPANCY,
1348		    (CHIP_IS_E3B0(bp)) ?
1349			PBF_REG_TQ_LINES_FREED_CNT_LB_Q :
1350			PBF_REG_P4_TQ_LINES_FREED_CNT}
1351	};
1352
1353	struct pbf_pN_buf_regs buf_regs[] = {
1354		{0, (CHIP_IS_E3B0(bp)) ?
1355			PBF_REG_INIT_CRD_Q0 :
1356			PBF_REG_P0_INIT_CRD ,
1357		    (CHIP_IS_E3B0(bp)) ?
1358			PBF_REG_CREDIT_Q0 :
1359			PBF_REG_P0_CREDIT,
1360		    (CHIP_IS_E3B0(bp)) ?
1361			PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 :
1362			PBF_REG_P0_INTERNAL_CRD_FREED_CNT},
1363		{1, (CHIP_IS_E3B0(bp)) ?
1364			PBF_REG_INIT_CRD_Q1 :
1365			PBF_REG_P1_INIT_CRD,
1366		    (CHIP_IS_E3B0(bp)) ?
1367			PBF_REG_CREDIT_Q1 :
1368			PBF_REG_P1_CREDIT,
1369		    (CHIP_IS_E3B0(bp)) ?
1370			PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 :
1371			PBF_REG_P1_INTERNAL_CRD_FREED_CNT},
1372		{4, (CHIP_IS_E3B0(bp)) ?
1373			PBF_REG_INIT_CRD_LB_Q :
1374			PBF_REG_P4_INIT_CRD,
1375		    (CHIP_IS_E3B0(bp)) ?
1376			PBF_REG_CREDIT_LB_Q :
1377			PBF_REG_P4_CREDIT,
1378		    (CHIP_IS_E3B0(bp)) ?
1379			PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q :
1380			PBF_REG_P4_INTERNAL_CRD_FREED_CNT},
1381	};
1382
1383	int i;
1384
1385	/* Verify the command queues are flushed P0, P1, P4 */
1386	for (i = 0; i < ARRAY_SIZE(cmd_regs); i++)
1387		bnx2x_pbf_pN_cmd_flushed(bp, &cmd_regs[i], poll_count);
1388
1389	/* Verify the transmission buffers are flushed P0, P1, P4 */
1390	for (i = 0; i < ARRAY_SIZE(buf_regs); i++)
1391		bnx2x_pbf_pN_buf_flushed(bp, &buf_regs[i], poll_count);
1392}
1393
1394#define OP_GEN_PARAM(param) \
1395	(((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
1396
1397#define OP_GEN_TYPE(type) \
1398	(((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
1399
1400#define OP_GEN_AGG_VECT(index) \
1401	(((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
1402
1403int bnx2x_send_final_clnup(struct bnx2x *bp, u8 clnup_func, u32 poll_cnt)
1404{
1405	u32 op_gen_command = 0;
1406	u32 comp_addr = BAR_CSTRORM_INTMEM +
1407			CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func);
1408
1409	if (REG_RD(bp, comp_addr)) {
1410		BNX2X_ERR("Cleanup complete was not 0 before sending\n");
1411		return 1;
1412	}
1413
1414	op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX);
1415	op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE);
1416	op_gen_command |= OP_GEN_AGG_VECT(clnup_func);
1417	op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
1418
1419	DP(BNX2X_MSG_SP, "sending FW Final cleanup\n");
1420	REG_WR(bp, XSDM_REG_OPERATION_GEN, op_gen_command);
1421
1422	if (bnx2x_flr_clnup_reg_poll(bp, comp_addr, 1, poll_cnt) != 1) {
1423		BNX2X_ERR("FW final cleanup did not succeed\n");
1424		DP(BNX2X_MSG_SP, "At timeout completion address contained %x\n",
1425		   (REG_RD(bp, comp_addr)));
1426		bnx2x_panic();
1427		return 1;
1428	}
1429	/* Zero completion for next FLR */
1430	REG_WR(bp, comp_addr, 0);
1431
1432	return 0;
1433}
1434
1435u8 bnx2x_is_pcie_pending(struct pci_dev *dev)
1436{
1437	u16 status;
1438
1439	pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &status);
1440	return status & PCI_EXP_DEVSTA_TRPND;
1441}
1442
1443/* PF FLR specific routines
1444*/
1445static int bnx2x_poll_hw_usage_counters(struct bnx2x *bp, u32 poll_cnt)
1446{
1447	/* wait for CFC PF usage-counter to zero (includes all the VFs) */
1448	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1449			CFC_REG_NUM_LCIDS_INSIDE_PF,
1450			"CFC PF usage counter timed out",
1451			poll_cnt))
1452		return 1;
1453
1454	/* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
1455	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1456			DORQ_REG_PF_USAGE_CNT,
1457			"DQ PF usage counter timed out",
1458			poll_cnt))
1459		return 1;
1460
1461	/* Wait for QM PF usage-counter to zero (until DQ cleanup) */
1462	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1463			QM_REG_PF_USG_CNT_0 + 4*BP_FUNC(bp),
1464			"QM PF usage counter timed out",
1465			poll_cnt))
1466		return 1;
1467
1468	/* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
1469	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1470			TM_REG_LIN0_VNIC_UC + 4*BP_PORT(bp),
1471			"Timers VNIC usage counter timed out",
1472			poll_cnt))
1473		return 1;
1474	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1475			TM_REG_LIN0_NUM_SCANS + 4*BP_PORT(bp),
1476			"Timers NUM_SCANS usage counter timed out",
1477			poll_cnt))
1478		return 1;
1479
1480	/* Wait DMAE PF usage counter to zero */
1481	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1482			dmae_reg_go_c[INIT_DMAE_C(bp)],
1483			"DMAE command register timed out",
1484			poll_cnt))
1485		return 1;
1486
1487	return 0;
1488}
1489
1490static void bnx2x_hw_enable_status(struct bnx2x *bp)
1491{
1492	u32 val;
1493
1494	val = REG_RD(bp, CFC_REG_WEAK_ENABLE_PF);
1495	DP(BNX2X_MSG_SP, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val);
1496
1497	val = REG_RD(bp, PBF_REG_DISABLE_PF);
1498	DP(BNX2X_MSG_SP, "PBF_REG_DISABLE_PF is 0x%x\n", val);
1499
1500	val = REG_RD(bp, IGU_REG_PCI_PF_MSI_EN);
1501	DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val);
1502
1503	val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_EN);
1504	DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val);
1505
1506	val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_FUNC_MASK);
1507	DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val);
1508
1509	val = REG_RD(bp, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR);
1510	DP(BNX2X_MSG_SP, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val);
1511
1512	val = REG_RD(bp, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR);
1513	DP(BNX2X_MSG_SP, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val);
1514
1515	val = REG_RD(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
1516	DP(BNX2X_MSG_SP, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n",
1517	   val);
1518}
1519
1520static int bnx2x_pf_flr_clnup(struct bnx2x *bp)
1521{
1522	u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp);
1523
1524	DP(BNX2X_MSG_SP, "Cleanup after FLR PF[%d]\n", BP_ABS_FUNC(bp));
1525
1526	/* Re-enable PF target read access */
1527	REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
1528
1529	/* Poll HW usage counters */
1530	DP(BNX2X_MSG_SP, "Polling usage counters\n");
1531	if (bnx2x_poll_hw_usage_counters(bp, poll_cnt))
1532		return -EBUSY;
1533
1534	/* Zero the igu 'trailing edge' and 'leading edge' */
1535
1536	/* Send the FW cleanup command */
1537	if (bnx2x_send_final_clnup(bp, (u8)BP_FUNC(bp), poll_cnt))
1538		return -EBUSY;
1539
1540	/* ATC cleanup */
1541
1542	/* Verify TX hw is flushed */
1543	bnx2x_tx_hw_flushed(bp, poll_cnt);
1544
1545	/* Wait 100ms (not adjusted according to platform) */
1546	msleep(100);
1547
1548	/* Verify no pending pci transactions */
1549	if (bnx2x_is_pcie_pending(bp->pdev))
1550		BNX2X_ERR("PCIE Transactions still pending\n");
1551
1552	/* Debug */
1553	bnx2x_hw_enable_status(bp);
1554
1555	/*
1556	 * Master enable - Due to WB DMAE writes performed before this
1557	 * register is re-initialized as part of the regular function init
1558	 */
1559	REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
1560
1561	return 0;
1562}
1563
1564static void bnx2x_hc_int_enable(struct bnx2x *bp)
1565{
1566	int port = BP_PORT(bp);
1567	u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
1568	u32 val = REG_RD(bp, addr);
1569	bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1570	bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1571	bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1572
1573	if (msix) {
1574		val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1575			 HC_CONFIG_0_REG_INT_LINE_EN_0);
1576		val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1577			HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1578		if (single_msix)
1579			val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0;
1580	} else if (msi) {
1581		val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
1582		val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1583			HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1584			HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1585	} else {
1586		val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1587			HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1588			HC_CONFIG_0_REG_INT_LINE_EN_0 |
1589			HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1590
1591		if (!CHIP_IS_E1(bp)) {
1592			DP(NETIF_MSG_IFUP,
1593			   "write %x to HC %d (addr 0x%x)\n", val, port, addr);
1594
1595			REG_WR(bp, addr, val);
1596
1597			val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
1598		}
1599	}
1600
1601	if (CHIP_IS_E1(bp))
1602		REG_WR(bp, HC_REG_INT_MASK + port*4, 0x1FFFF);
1603
1604	DP(NETIF_MSG_IFUP,
1605	   "write %x to HC %d (addr 0x%x) mode %s\n", val, port, addr,
1606	   (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1607
1608	REG_WR(bp, addr, val);
1609	/*
1610	 * Ensure that HC_CONFIG is written before leading/trailing edge config
1611	 */
1612	barrier();
1613
1614	if (!CHIP_IS_E1(bp)) {
1615		/* init leading/trailing edge */
1616		if (IS_MF(bp)) {
1617			val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1618			if (bp->port.pmf)
1619				/* enable nig and gpio3 attention */
1620				val |= 0x1100;
1621		} else
1622			val = 0xffff;
1623
1624		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
1625		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
1626	}
1627}
1628
1629static void bnx2x_igu_int_enable(struct bnx2x *bp)
1630{
1631	u32 val;
1632	bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1633	bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1634	bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1635
1636	val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
1637
1638	if (msix) {
1639		val &= ~(IGU_PF_CONF_INT_LINE_EN |
1640			 IGU_PF_CONF_SINGLE_ISR_EN);
1641		val |= (IGU_PF_CONF_MSI_MSIX_EN |
1642			IGU_PF_CONF_ATTN_BIT_EN);
1643
1644		if (single_msix)
1645			val |= IGU_PF_CONF_SINGLE_ISR_EN;
1646	} else if (msi) {
1647		val &= ~IGU_PF_CONF_INT_LINE_EN;
1648		val |= (IGU_PF_CONF_MSI_MSIX_EN |
1649			IGU_PF_CONF_ATTN_BIT_EN |
1650			IGU_PF_CONF_SINGLE_ISR_EN);
1651	} else {
1652		val &= ~IGU_PF_CONF_MSI_MSIX_EN;
1653		val |= (IGU_PF_CONF_INT_LINE_EN |
1654			IGU_PF_CONF_ATTN_BIT_EN |
1655			IGU_PF_CONF_SINGLE_ISR_EN);
1656	}
1657
1658	/* Clean previous status - need to configure igu prior to ack*/
1659	if ((!msix) || single_msix) {
1660		REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1661		bnx2x_ack_int(bp);
1662	}
1663
1664	val |= IGU_PF_CONF_FUNC_EN;
1665
1666	DP(NETIF_MSG_IFUP, "write 0x%x to IGU  mode %s\n",
1667	   val, (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1668
1669	REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1670
1671	if (val & IGU_PF_CONF_INT_LINE_EN)
1672		pci_intx(bp->pdev, true);
1673
1674	barrier();
1675
1676	/* init leading/trailing edge */
1677	if (IS_MF(bp)) {
1678		val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1679		if (bp->port.pmf)
1680			/* enable nig and gpio3 attention */
1681			val |= 0x1100;
1682	} else
1683		val = 0xffff;
1684
1685	REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
1686	REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
1687}
1688
1689void bnx2x_int_enable(struct bnx2x *bp)
1690{
1691	if (bp->common.int_block == INT_BLOCK_HC)
1692		bnx2x_hc_int_enable(bp);
1693	else
1694		bnx2x_igu_int_enable(bp);
1695}
1696
1697void bnx2x_int_disable_sync(struct bnx2x *bp, int disable_hw)
1698{
1699	int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
1700	int i, offset;
1701
1702	if (disable_hw)
1703		/* prevent the HW from sending interrupts */
1704		bnx2x_int_disable(bp);
1705
1706	/* make sure all ISRs are done */
1707	if (msix) {
1708		synchronize_irq(bp->msix_table[0].vector);
1709		offset = 1;
1710		if (CNIC_SUPPORT(bp))
1711			offset++;
1712		for_each_eth_queue(bp, i)
1713			synchronize_irq(bp->msix_table[offset++].vector);
1714	} else
1715		synchronize_irq(bp->pdev->irq);
1716
1717	/* make sure sp_task is not running */
1718	cancel_delayed_work(&bp->sp_task);
1719	cancel_delayed_work(&bp->period_task);
1720	flush_workqueue(bnx2x_wq);
1721}
1722
1723/* fast path */
1724
1725/*
1726 * General service functions
1727 */
1728
1729/* Return true if succeeded to acquire the lock */
1730static bool bnx2x_trylock_hw_lock(struct bnx2x *bp, u32 resource)
1731{
1732	u32 lock_status;
1733	u32 resource_bit = (1 << resource);
1734	int func = BP_FUNC(bp);
1735	u32 hw_lock_control_reg;
1736
1737	DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1738	   "Trying to take a lock on resource %d\n", resource);
1739
1740	/* Validating that the resource is within range */
1741	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1742		DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1743		   "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1744		   resource, HW_LOCK_MAX_RESOURCE_VALUE);
1745		return false;
1746	}
1747
1748	if (func <= 5)
1749		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1750	else
1751		hw_lock_control_reg =
1752				(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1753
1754	/* Try to acquire the lock */
1755	REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
1756	lock_status = REG_RD(bp, hw_lock_control_reg);
1757	if (lock_status & resource_bit)
1758		return true;
1759
1760	DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1761	   "Failed to get a lock on resource %d\n", resource);
1762	return false;
1763}
1764
1765/**
1766 * bnx2x_get_leader_lock_resource - get the recovery leader resource id
1767 *
1768 * @bp:	driver handle
1769 *
1770 * Returns the recovery leader resource id according to the engine this function
1771 * belongs to. Currently only only 2 engines is supported.
1772 */
1773static int bnx2x_get_leader_lock_resource(struct bnx2x *bp)
1774{
1775	if (BP_PATH(bp))
1776		return HW_LOCK_RESOURCE_RECOVERY_LEADER_1;
1777	else
1778		return HW_LOCK_RESOURCE_RECOVERY_LEADER_0;
1779}
1780
1781/**
1782 * bnx2x_trylock_leader_lock- try to acquire a leader lock.
1783 *
1784 * @bp: driver handle
1785 *
1786 * Tries to acquire a leader lock for current engine.
1787 */
1788static bool bnx2x_trylock_leader_lock(struct bnx2x *bp)
1789{
1790	return bnx2x_trylock_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
1791}
1792
1793static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err);
1794
1795/* schedule the sp task and mark that interrupt occurred (runs from ISR) */
1796static int bnx2x_schedule_sp_task(struct bnx2x *bp)
1797{
1798	/* Set the interrupt occurred bit for the sp-task to recognize it
1799	 * must ack the interrupt and transition according to the IGU
1800	 * state machine.
1801	 */
1802	atomic_set(&bp->interrupt_occurred, 1);
1803
1804	/* The sp_task must execute only after this bit
1805	 * is set, otherwise we will get out of sync and miss all
1806	 * further interrupts. Hence, the barrier.
1807	 */
1808	smp_wmb();
1809
1810	/* schedule sp_task to workqueue */
1811	return queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
1812}
1813
1814void bnx2x_sp_event(struct bnx2x_fastpath *fp, union eth_rx_cqe *rr_cqe)
1815{
1816	struct bnx2x *bp = fp->bp;
1817	int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1818	int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1819	enum bnx2x_queue_cmd drv_cmd = BNX2X_Q_CMD_MAX;
1820	struct bnx2x_queue_sp_obj *q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
1821
1822	DP(BNX2X_MSG_SP,
1823	   "fp %d  cid %d  got ramrod #%d  state is %x  type is %d\n",
1824	   fp->index, cid, command, bp->state,
1825	   rr_cqe->ramrod_cqe.ramrod_type);
1826
1827	/* If cid is within VF range, replace the slowpath object with the
1828	 * one corresponding to this VF
1829	 */
1830	if (cid >= BNX2X_FIRST_VF_CID  &&
1831	    cid < BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)
1832		bnx2x_iov_set_queue_sp_obj(bp, cid, &q_obj);
1833
1834	switch (command) {
1835	case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE):
1836		DP(BNX2X_MSG_SP, "got UPDATE ramrod. CID %d\n", cid);
1837		drv_cmd = BNX2X_Q_CMD_UPDATE;
1838		break;
1839
1840	case (RAMROD_CMD_ID_ETH_CLIENT_SETUP):
1841		DP(BNX2X_MSG_SP, "got MULTI[%d] setup ramrod\n", cid);
1842		drv_cmd = BNX2X_Q_CMD_SETUP;
1843		break;
1844
1845	case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP):
1846		DP(BNX2X_MSG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid);
1847		drv_cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
1848		break;
1849
1850	case (RAMROD_CMD_ID_ETH_HALT):
1851		DP(BNX2X_MSG_SP, "got MULTI[%d] halt ramrod\n", cid);
1852		drv_cmd = BNX2X_Q_CMD_HALT;
1853		break;
1854
1855	case (RAMROD_CMD_ID_ETH_TERMINATE):
1856		DP(BNX2X_MSG_SP, "got MULTI[%d] terminate ramrod\n", cid);
1857		drv_cmd = BNX2X_Q_CMD_TERMINATE;
1858		break;
1859
1860	case (RAMROD_CMD_ID_ETH_EMPTY):
1861		DP(BNX2X_MSG_SP, "got MULTI[%d] empty ramrod\n", cid);
1862		drv_cmd = BNX2X_Q_CMD_EMPTY;
1863		break;
1864
1865	case (RAMROD_CMD_ID_ETH_TPA_UPDATE):
1866		DP(BNX2X_MSG_SP, "got tpa update ramrod CID=%d\n", cid);
1867		drv_cmd = BNX2X_Q_CMD_UPDATE_TPA;
1868		break;
1869
1870	default:
1871		BNX2X_ERR("unexpected MC reply (%d) on fp[%d]\n",
1872			  command, fp->index);
1873		return;
1874	}
1875
1876	if ((drv_cmd != BNX2X_Q_CMD_MAX) &&
1877	    q_obj->complete_cmd(bp, q_obj, drv_cmd))
1878		/* q_obj->complete_cmd() failure means that this was
1879		 * an unexpected completion.
1880		 *
1881		 * In this case we don't want to increase the bp->spq_left
1882		 * because apparently we haven't sent this command the first
1883		 * place.
1884		 */
1885#ifdef BNX2X_STOP_ON_ERROR
1886		bnx2x_panic();
1887#else
1888		return;
1889#endif
1890
1891	smp_mb__before_atomic();
1892	atomic_inc(&bp->cq_spq_left);
1893	/* push the change in bp->spq_left and towards the memory */
1894	smp_mb__after_atomic();
1895
1896	DP(BNX2X_MSG_SP, "bp->cq_spq_left %x\n", atomic_read(&bp->cq_spq_left));
1897
1898	if ((drv_cmd == BNX2X_Q_CMD_UPDATE) && (IS_FCOE_FP(fp)) &&
1899	    (!!test_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state))) {
1900		/* if Q update ramrod is completed for last Q in AFEX vif set
1901		 * flow, then ACK MCP at the end
1902		 *
1903		 * mark pending ACK to MCP bit.
1904		 * prevent case that both bits are cleared.
1905		 * At the end of load/unload driver checks that
1906		 * sp_state is cleared, and this order prevents
1907		 * races
1908		 */
1909		smp_mb__before_atomic();
1910		set_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK, &bp->sp_state);
1911		wmb();
1912		clear_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
1913		smp_mb__after_atomic();
1914
1915		/* schedule the sp task as mcp ack is required */
1916		bnx2x_schedule_sp_task(bp);
1917	}
1918
1919	return;
1920}
1921
1922irqreturn_t bnx2x_interrupt(int irq, void *dev_instance)
1923{
1924	struct bnx2x *bp = netdev_priv(dev_instance);
1925	u16 status = bnx2x_ack_int(bp);
1926	u16 mask;
1927	int i;
1928	u8 cos;
1929
1930	/* Return here if interrupt is shared and it's not for us */
1931	if (unlikely(status == 0)) {
1932		DP(NETIF_MSG_INTR, "not our interrupt!\n");
1933		return IRQ_NONE;
1934	}
1935	DP(NETIF_MSG_INTR, "got an interrupt  status 0x%x\n", status);
1936
1937#ifdef BNX2X_STOP_ON_ERROR
1938	if (unlikely(bp->panic))
1939		return IRQ_HANDLED;
1940#endif
1941
1942	for_each_eth_queue(bp, i) {
1943		struct bnx2x_fastpath *fp = &bp->fp[i];
1944
1945		mask = 0x2 << (fp->index + CNIC_SUPPORT(bp));
1946		if (status & mask) {
1947			/* Handle Rx or Tx according to SB id */
1948			for_each_cos_in_tx_queue(fp, cos)
1949				prefetch(fp->txdata_ptr[cos]->tx_cons_sb);
1950			prefetch(&fp->sb_running_index[SM_RX_ID]);
1951			napi_schedule_irqoff(&bnx2x_fp(bp, fp->index, napi));
1952			status &= ~mask;
1953		}
1954	}
1955
1956	if (CNIC_SUPPORT(bp)) {
1957		mask = 0x2;
1958		if (status & (mask | 0x1)) {
1959			struct cnic_ops *c_ops = NULL;
1960
1961			rcu_read_lock();
1962			c_ops = rcu_dereference(bp->cnic_ops);
1963			if (c_ops && (bp->cnic_eth_dev.drv_state &
1964				      CNIC_DRV_STATE_HANDLES_IRQ))
1965				c_ops->cnic_handler(bp->cnic_data, NULL);
1966			rcu_read_unlock();
1967
1968			status &= ~mask;
1969		}
1970	}
1971
1972	if (unlikely(status & 0x1)) {
1973
1974		/* schedule sp task to perform default status block work, ack
1975		 * attentions and enable interrupts.
1976		 */
1977		bnx2x_schedule_sp_task(bp);
1978
1979		status &= ~0x1;
1980		if (!status)
1981			return IRQ_HANDLED;
1982	}
1983
1984	if (unlikely(status))
1985		DP(NETIF_MSG_INTR, "got an unknown interrupt! (status 0x%x)\n",
1986		   status);
1987
1988	return IRQ_HANDLED;
1989}
1990
1991/* Link */
1992
1993/*
1994 * General service functions
1995 */
1996
1997int bnx2x_acquire_hw_lock(struct bnx2x *bp, u32 resource)
1998{
1999	u32 lock_status;
2000	u32 resource_bit = (1 << resource);
2001	int func = BP_FUNC(bp);
2002	u32 hw_lock_control_reg;
2003	int cnt;
2004
2005	/* Validating that the resource is within range */
2006	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
2007		BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
2008		   resource, HW_LOCK_MAX_RESOURCE_VALUE);
2009		return -EINVAL;
2010	}
2011
2012	if (func <= 5) {
2013		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
2014	} else {
2015		hw_lock_control_reg =
2016				(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
2017	}
2018
2019	/* Validating that the resource is not already taken */
2020	lock_status = REG_RD(bp, hw_lock_control_reg);
2021	if (lock_status & resource_bit) {
2022		BNX2X_ERR("lock_status 0x%x  resource_bit 0x%x\n",
2023		   lock_status, resource_bit);
2024		return -EEXIST;
2025	}
2026
2027	/* Try for 5 second every 5ms */
2028	for (cnt = 0; cnt < 1000; cnt++) {
2029		/* Try to acquire the lock */
2030		REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
2031		lock_status = REG_RD(bp, hw_lock_control_reg);
2032		if (lock_status & resource_bit)
2033			return 0;
2034
2035		usleep_range(5000, 10000);
2036	}
2037	BNX2X_ERR("Timeout\n");
2038	return -EAGAIN;
2039}
2040
2041int bnx2x_release_leader_lock(struct bnx2x *bp)
2042{
2043	return bnx2x_release_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
2044}
2045
2046int bnx2x_release_hw_lock(struct bnx2x *bp, u32 resource)
2047{
2048	u32 lock_status;
2049	u32 resource_bit = (1 << resource);
2050	int func = BP_FUNC(bp);
2051	u32 hw_lock_control_reg;
2052
2053	/* Validating that the resource is within range */
2054	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
2055		BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
2056		   resource, HW_LOCK_MAX_RESOURCE_VALUE);
2057		return -EINVAL;
2058	}
2059
2060	if (func <= 5) {
2061		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
2062	} else {
2063		hw_lock_control_reg =
2064				(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
2065	}
2066
2067	/* Validating that the resource is currently taken */
2068	lock_status = REG_RD(bp, hw_lock_control_reg);
2069	if (!(lock_status & resource_bit)) {
2070		BNX2X_ERR("lock_status 0x%x resource_bit 0x%x. Unlock was called but lock wasn't taken!\n",
2071			  lock_status, resource_bit);
2072		return -EFAULT;
2073	}
2074
2075	REG_WR(bp, hw_lock_control_reg, resource_bit);
2076	return 0;
2077}
2078
2079int bnx2x_get_gpio(struct bnx2x *bp, int gpio_num, u8 port)
2080{
2081	/* The GPIO should be swapped if swap register is set and active */
2082	int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2083			 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2084	int gpio_shift = gpio_num +
2085			(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2086	u32 gpio_mask = (1 << gpio_shift);
2087	u32 gpio_reg;
2088	int value;
2089
2090	if (gpio_num > MISC_REGISTERS_GPIO_3) {
2091		BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2092		return -EINVAL;
2093	}
2094
2095	/* read GPIO value */
2096	gpio_reg = REG_RD(bp, MISC_REG_GPIO);
2097
2098	/* get the requested pin value */
2099	if ((gpio_reg & gpio_mask) == gpio_mask)
2100		value = 1;
2101	else
2102		value = 0;
2103
2104	return value;
2105}
2106
2107int bnx2x_set_gpio(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2108{
2109	/* The GPIO should be swapped if swap register is set and active */
2110	int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2111			 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2112	int gpio_shift = gpio_num +
2113			(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2114	u32 gpio_mask = (1 << gpio_shift);
2115	u32 gpio_reg;
2116
2117	if (gpio_num > MISC_REGISTERS_GPIO_3) {
2118		BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2119		return -EINVAL;
2120	}
2121
2122	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2123	/* read GPIO and mask except the float bits */
2124	gpio_reg = (REG_RD(bp, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
2125
2126	switch (mode) {
2127	case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2128		DP(NETIF_MSG_LINK,
2129		   "Set GPIO %d (shift %d) -> output low\n",
2130		   gpio_num, gpio_shift);
2131		/* clear FLOAT and set CLR */
2132		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2133		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
2134		break;
2135
2136	case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2137		DP(NETIF_MSG_LINK,
2138		   "Set GPIO %d (shift %d) -> output high\n",
2139		   gpio_num, gpio_shift);
2140		/* clear FLOAT and set SET */
2141		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2142		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
2143		break;
2144
2145	case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2146		DP(NETIF_MSG_LINK,
2147		   "Set GPIO %d (shift %d) -> input\n",
2148		   gpio_num, gpio_shift);
2149		/* set FLOAT */
2150		gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2151		break;
2152
2153	default:
2154		break;
2155	}
2156
2157	REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2158	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2159
2160	return 0;
2161}
2162
2163int bnx2x_set_mult_gpio(struct bnx2x *bp, u8 pins, u32 mode)
2164{
2165	u32 gpio_reg = 0;
2166	int rc = 0;
2167
2168	/* Any port swapping should be handled by caller. */
2169
2170	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2171	/* read GPIO and mask except the float bits */
2172	gpio_reg = REG_RD(bp, MISC_REG_GPIO);
2173	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2174	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
2175	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
2176
2177	switch (mode) {
2178	case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2179		DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output low\n", pins);
2180		/* set CLR */
2181		gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
2182		break;
2183
2184	case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2185		DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output high\n", pins);
2186		/* set SET */
2187		gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
2188		break;
2189
2190	case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2191		DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> input\n", pins);
2192		/* set FLOAT */
2193		gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2194		break;
2195
2196	default:
2197		BNX2X_ERR("Invalid GPIO mode assignment %d\n", mode);
2198		rc = -EINVAL;
2199		break;
2200	}
2201
2202	if (rc == 0)
2203		REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2204
2205	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2206
2207	return rc;
2208}
2209
2210int bnx2x_set_gpio_int(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2211{
2212	/* The GPIO should be swapped if swap register is set and active */
2213	int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2214			 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2215	int gpio_shift = gpio_num +
2216			(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2217	u32 gpio_mask = (1 << gpio_shift);
2218	u32 gpio_reg;
2219
2220	if (gpio_num > MISC_REGISTERS_GPIO_3) {
2221		BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2222		return -EINVAL;
2223	}
2224
2225	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2226	/* read GPIO int */
2227	gpio_reg = REG_RD(bp, MISC_REG_GPIO_INT);
2228
2229	switch (mode) {
2230	case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
2231		DP(NETIF_MSG_LINK,
2232		   "Clear GPIO INT %d (shift %d) -> output low\n",
2233		   gpio_num, gpio_shift);
2234		/* clear SET and set CLR */
2235		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2236		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2237		break;
2238
2239	case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
2240		DP(NETIF_MSG_LINK,
2241		   "Set GPIO INT %d (shift %d) -> output high\n",
2242		   gpio_num, gpio_shift);
2243		/* clear CLR and set SET */
2244		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2245		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2246		break;
2247
2248	default:
2249		break;
2250	}
2251
2252	REG_WR(bp, MISC_REG_GPIO_INT, gpio_reg);
2253	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2254
2255	return 0;
2256}
2257
2258static int bnx2x_set_spio(struct bnx2x *bp, int spio, u32 mode)
2259{
2260	u32 spio_reg;
2261
2262	/* Only 2 SPIOs are configurable */
2263	if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) {
2264		BNX2X_ERR("Invalid SPIO 0x%x\n", spio);
2265		return -EINVAL;
2266	}
2267
2268	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2269	/* read SPIO and mask except the float bits */
2270	spio_reg = (REG_RD(bp, MISC_REG_SPIO) & MISC_SPIO_FLOAT);
2271
2272	switch (mode) {
2273	case MISC_SPIO_OUTPUT_LOW:
2274		DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output low\n", spio);
2275		/* clear FLOAT and set CLR */
2276		spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
2277		spio_reg |=  (spio << MISC_SPIO_CLR_POS);
2278		break;
2279
2280	case MISC_SPIO_OUTPUT_HIGH:
2281		DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output high\n", spio);
2282		/* clear FLOAT and set SET */
2283		spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
2284		spio_reg |=  (spio << MISC_SPIO_SET_POS);
2285		break;
2286
2287	case MISC_SPIO_INPUT_HI_Z:
2288		DP(NETIF_MSG_HW, "Set SPIO 0x%x -> input\n", spio);
2289		/* set FLOAT */
2290		spio_reg |= (spio << MISC_SPIO_FLOAT_POS);
2291		break;
2292
2293	default:
2294		break;
2295	}
2296
2297	REG_WR(bp, MISC_REG_SPIO, spio_reg);
2298	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2299
2300	return 0;
2301}
2302
2303void bnx2x_calc_fc_adv(struct bnx2x *bp)
2304{
2305	u8 cfg_idx = bnx2x_get_link_cfg_idx(bp);
2306
2307	bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2308					   ADVERTISED_Pause);
2309	switch (bp->link_vars.ieee_fc &
2310		MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
2311	case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
2312		bp->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
2313						  ADVERTISED_Pause);
2314		break;
2315
2316	case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
2317		bp->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
2318		break;
2319
2320	default:
2321		break;
2322	}
2323}
2324
2325static void bnx2x_set_requested_fc(struct bnx2x *bp)
2326{
2327	/* Initialize link parameters structure variables
2328	 * It is recommended to turn off RX FC for jumbo frames
2329	 *  for better performance
2330	 */
2331	if (CHIP_IS_E1x(bp) && (bp->dev->mtu > 5000))
2332		bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_TX;
2333	else
2334		bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_BOTH;
2335}
2336
2337static void bnx2x_init_dropless_fc(struct bnx2x *bp)
2338{
2339	u32 pause_enabled = 0;
2340
2341	if (!CHIP_IS_E1(bp) && bp->dropless_fc && bp->link_vars.link_up) {
2342		if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX)
2343			pause_enabled = 1;
2344
2345		REG_WR(bp, BAR_USTRORM_INTMEM +
2346			   USTORM_ETH_PAUSE_ENABLED_OFFSET(BP_PORT(bp)),
2347		       pause_enabled);
2348	}
2349
2350	DP(NETIF_MSG_IFUP | NETIF_MSG_LINK, "dropless_fc is %s\n",
2351	   pause_enabled ? "enabled" : "disabled");
2352}
2353
2354int bnx2x_initial_phy_init(struct bnx2x *bp, int load_mode)
2355{
2356	int rc, cfx_idx = bnx2x_get_link_cfg_idx(bp);
2357	u16 req_line_speed = bp->link_params.req_line_speed[cfx_idx];
2358
2359	if (!BP_NOMCP(bp)) {
2360		bnx2x_set_requested_fc(bp);
2361		bnx2x_acquire_phy_lock(bp);
2362
2363		if (load_mode == LOAD_DIAG) {
2364			struct link_params *lp = &bp->link_params;
2365			lp->loopback_mode = LOOPBACK_XGXS;
2366			/* Prefer doing PHY loopback at highest speed */
2367			if (lp->req_line_speed[cfx_idx] < SPEED_20000) {
2368				if (lp->speed_cap_mask[cfx_idx] &
2369				    PORT_HW_CFG_SPEED_CAPABILITY_D0_20G)
2370					lp->req_line_speed[cfx_idx] =
2371					SPEED_20000;
2372				else if (lp->speed_cap_mask[cfx_idx] &
2373					    PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)
2374						lp->req_line_speed[cfx_idx] =
2375						SPEED_10000;
2376				else
2377					lp->req_line_speed[cfx_idx] =
2378					SPEED_1000;
2379			}
2380		}
2381
2382		if (load_mode == LOAD_LOOPBACK_EXT) {
2383			struct link_params *lp = &bp->link_params;
2384			lp->loopback_mode = LOOPBACK_EXT;
2385		}
2386
2387		rc = bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2388
2389		bnx2x_release_phy_lock(bp);
2390
2391		bnx2x_init_dropless_fc(bp);
2392
2393		bnx2x_calc_fc_adv(bp);
2394
2395		if (bp->link_vars.link_up) {
2396			bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2397			bnx2x_link_report(bp);
2398		}
2399		queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2400		bp->link_params.req_line_speed[cfx_idx] = req_line_speed;
2401		return rc;
2402	}
2403	BNX2X_ERR("Bootcode is missing - can not initialize link\n");
2404	return -EINVAL;
2405}
2406
2407void bnx2x_link_set(struct bnx2x *bp)
2408{
2409	if (!BP_NOMCP(bp)) {
2410		bnx2x_acquire_phy_lock(bp);
2411		bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2412		bnx2x_release_phy_lock(bp);
2413
2414		bnx2x_init_dropless_fc(bp);
2415
2416		bnx2x_calc_fc_adv(bp);
2417	} else
2418		BNX2X_ERR("Bootcode is missing - can not set link\n");
2419}
2420
2421static void bnx2x__link_reset(struct bnx2x *bp)
2422{
2423	if (!BP_NOMCP(bp)) {
2424		bnx2x_acquire_phy_lock(bp);
2425		bnx2x_lfa_reset(&bp->link_params, &bp->link_vars);
2426		bnx2x_release_phy_lock(bp);
2427	} else
2428		BNX2X_ERR("Bootcode is missing - can not reset link\n");
2429}
2430
2431void bnx2x_force_link_reset(struct bnx2x *bp)
2432{
2433	bnx2x_acquire_phy_lock(bp);
2434	bnx2x_link_reset(&bp->link_params, &bp->link_vars, 1);
2435	bnx2x_release_phy_lock(bp);
2436}
2437
2438u8 bnx2x_link_test(struct bnx2x *bp, u8 is_serdes)
2439{
2440	u8 rc = 0;
2441
2442	if (!BP_NOMCP(bp)) {
2443		bnx2x_acquire_phy_lock(bp);
2444		rc = bnx2x_test_link(&bp->link_params, &bp->link_vars,
2445				     is_serdes);
2446		bnx2x_release_phy_lock(bp);
2447	} else
2448		BNX2X_ERR("Bootcode is missing - can not test link\n");
2449
2450	return rc;
2451}
2452
2453/* Calculates the sum of vn_min_rates.
2454   It's needed for further normalizing of the min_rates.
2455   Returns:
2456     sum of vn_min_rates.
2457       or
2458     0 - if all the min_rates are 0.
2459     In the later case fairness algorithm should be deactivated.
2460     If not all min_rates are zero then those that are zeroes will be set to 1.
2461 */
2462static void bnx2x_calc_vn_min(struct bnx2x *bp,
2463				      struct cmng_init_input *input)
2464{
2465	int all_zero = 1;
2466	int vn;
2467
2468	for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2469		u32 vn_cfg = bp->mf_config[vn];
2470		u32 vn_min_rate = ((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
2471				   FUNC_MF_CFG_MIN_BW_SHIFT) * 100;
2472
2473		/* Skip hidden vns */
2474		if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2475			vn_min_rate = 0;
2476		/* If min rate is zero - set it to 1 */
2477		else if (!vn_min_rate)
2478			vn_min_rate = DEF_MIN_RATE;
2479		else
2480			all_zero = 0;
2481
2482		input->vnic_min_rate[vn] = vn_min_rate;
2483	}
2484
2485	/* if ETS or all min rates are zeros - disable fairness */
2486	if (BNX2X_IS_ETS_ENABLED(bp)) {
2487		input->flags.cmng_enables &=
2488					~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2489		DP(NETIF_MSG_IFUP, "Fairness will be disabled due to ETS\n");
2490	} else if (all_zero) {
2491		input->flags.cmng_enables &=
2492					~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2493		DP(NETIF_MSG_IFUP,
2494		   "All MIN values are zeroes fairness will be disabled\n");
2495	} else
2496		input->flags.cmng_enables |=
2497					CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2498}
2499
2500static void bnx2x_calc_vn_max(struct bnx2x *bp, int vn,
2501				    struct cmng_init_input *input)
2502{
2503	u16 vn_max_rate;
2504	u32 vn_cfg = bp->mf_config[vn];
2505
2506	if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2507		vn_max_rate = 0;
2508	else {
2509		u32 maxCfg = bnx2x_extract_max_cfg(bp, vn_cfg);
2510
2511		if (IS_MF_PERCENT_BW(bp)) {
2512			/* maxCfg in percents of linkspeed */
2513			vn_max_rate = (bp->link_vars.line_speed * maxCfg) / 100;
2514		} else /* SD modes */
2515			/* maxCfg is absolute in 100Mb units */
2516			vn_max_rate = maxCfg * 100;
2517	}
2518
2519	DP(NETIF_MSG_IFUP, "vn %d: vn_max_rate %d\n", vn, vn_max_rate);
2520
2521	input->vnic_max_rate[vn] = vn_max_rate;
2522}
2523
2524static int bnx2x_get_cmng_fns_mode(struct bnx2x *bp)
2525{
2526	if (CHIP_REV_IS_SLOW(bp))
2527		return CMNG_FNS_NONE;
2528	if (IS_MF(bp))
2529		return CMNG_FNS_MINMAX;
2530
2531	return CMNG_FNS_NONE;
2532}
2533
2534void bnx2x_read_mf_cfg(struct bnx2x *bp)
2535{
2536	int vn, n = (CHIP_MODE_IS_4_PORT(bp) ? 2 : 1);
2537
2538	if (BP_NOMCP(bp))
2539		return; /* what should be the default value in this case */
2540
2541	/* For 2 port configuration the absolute function number formula
2542	 * is:
2543	 *      abs_func = 2 * vn + BP_PORT + BP_PATH
2544	 *
2545	 *      and there are 4 functions per port
2546	 *
2547	 * For 4 port configuration it is
2548	 *      abs_func = 4 * vn + 2 * BP_PORT + BP_PATH
2549	 *
2550	 *      and there are 2 functions per port
2551	 */
2552	for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2553		int /*abs*/func = n * (2 * vn + BP_PORT(bp)) + BP_PATH(bp);
2554
2555		if (func >= E1H_FUNC_MAX)
2556			break;
2557
2558		bp->mf_config[vn] =
2559			MF_CFG_RD(bp, func_mf_config[func].config);
2560	}
2561	if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
2562		DP(NETIF_MSG_IFUP, "mf_cfg function disabled\n");
2563		bp->flags |= MF_FUNC_DIS;
2564	} else {
2565		DP(NETIF_MSG_IFUP, "mf_cfg function enabled\n");
2566		bp->flags &= ~MF_FUNC_DIS;
2567	}
2568}
2569
2570static void bnx2x_cmng_fns_init(struct bnx2x *bp, u8 read_cfg, u8 cmng_type)
2571{
2572	struct cmng_init_input input;
2573	memset(&input, 0, sizeof(struct cmng_init_input));
2574
2575	input.port_rate = bp->link_vars.line_speed;
2576
2577	if (cmng_type == CMNG_FNS_MINMAX && input.port_rate) {
2578		int vn;
2579
2580		/* read mf conf from shmem */
2581		if (read_cfg)
2582			bnx2x_read_mf_cfg(bp);
2583
2584		/* vn_weight_sum and enable fairness if not 0 */
2585		bnx2x_calc_vn_min(bp, &input);
2586
2587		/* calculate and set min-max rate for each vn */
2588		if (bp->port.pmf)
2589			for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++)
2590				bnx2x_calc_vn_max(bp, vn, &input);
2591
2592		/* always enable rate shaping and fairness */
2593		input.flags.cmng_enables |=
2594					CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
2595
2596		bnx2x_init_cmng(&input, &bp->cmng);
2597		return;
2598	}
2599
2600	/* rate shaping and fairness are disabled */
2601	DP(NETIF_MSG_IFUP,
2602	   "rate shaping and fairness are disabled\n");
2603}
2604
2605static void storm_memset_cmng(struct bnx2x *bp,
2606			      struct cmng_init *cmng,
2607			      u8 port)
2608{
2609	int vn;
2610	size_t size = sizeof(struct cmng_struct_per_port);
2611
2612	u32 addr = BAR_XSTRORM_INTMEM +
2613			XSTORM_CMNG_PER_PORT_VARS_OFFSET(port);
2614
2615	__storm_memset_struct(bp, addr, size, (u32 *)&cmng->port);
2616
2617	for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2618		int func = func_by_vn(bp, vn);
2619
2620		addr = BAR_XSTRORM_INTMEM +
2621		       XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func);
2622		size = sizeof(struct rate_shaping_vars_per_vn);
2623		__storm_memset_struct(bp, addr, size,
2624				      (u32 *)&cmng->vnic.vnic_max_rate[vn]);
2625
2626		addr = BAR_XSTRORM_INTMEM +
2627		       XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func);
2628		size = sizeof(struct fairness_vars_per_vn);
2629		__storm_memset_struct(bp, addr, size,
2630				      (u32 *)&cmng->vnic.vnic_min_rate[vn]);
2631	}
2632}
2633
2634/* init cmng mode in HW according to local configuration */
2635void bnx2x_set_local_cmng(struct bnx2x *bp)
2636{
2637	int cmng_fns = bnx2x_get_cmng_fns_mode(bp);
2638
2639	if (cmng_fns != CMNG_FNS_NONE) {
2640		bnx2x_cmng_fns_init(bp, false, cmng_fns);
2641		storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
2642	} else {
2643		/* rate shaping and fairness are disabled */
2644		DP(NETIF_MSG_IFUP,
2645		   "single function mode without fairness\n");
2646	}
2647}
2648
2649/* This function is called upon link interrupt */
2650static void bnx2x_link_attn(struct bnx2x *bp)
2651{
2652	/* Make sure that we are synced with the current statistics */
2653	bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2654
2655	bnx2x_link_update(&bp->link_params, &bp->link_vars);
2656
2657	bnx2x_init_dropless_fc(bp);
2658
2659	if (bp->link_vars.link_up) {
2660
2661		if (bp->link_vars.mac_type != MAC_TYPE_EMAC) {
2662			struct host_port_stats *pstats;
2663
2664			pstats = bnx2x_sp(bp, port_stats);
2665			/* reset old mac stats */
2666			memset(&(pstats->mac_stx[0]), 0,
2667			       sizeof(struct mac_stx));
2668		}
2669		if (bp->state == BNX2X_STATE_OPEN)
2670			bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2671	}
2672
2673	if (bp->link_vars.link_up && bp->link_vars.line_speed)
2674		bnx2x_set_local_cmng(bp);
2675
2676	__bnx2x_link_report(bp);
2677
2678	if (IS_MF(bp))
2679		bnx2x_link_sync_notify(bp);
2680}
2681
2682void bnx2x__link_status_update(struct bnx2x *bp)
2683{
2684	if (bp->state != BNX2X_STATE_OPEN)
2685		return;
2686
2687	/* read updated dcb configuration */
2688	if (IS_PF(bp)) {
2689		bnx2x_dcbx_pmf_update(bp);
2690		bnx2x_link_status_update(&bp->link_params, &bp->link_vars);
2691		if (bp->link_vars.link_up)
2692			bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2693		else
2694			bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2695			/* indicate link status */
2696		bnx2x_link_report(bp);
2697
2698	} else { /* VF */
2699		bp->port.supported[0] |= (SUPPORTED_10baseT_Half |
2700					  SUPPORTED_10baseT_Full |
2701					  SUPPORTED_100baseT_Half |
2702					  SUPPORTED_100baseT_Full |
2703					  SUPPORTED_1000baseT_Full |
2704					  SUPPORTED_2500baseX_Full |
2705					  SUPPORTED_10000baseT_Full |
2706					  SUPPORTED_TP |
2707					  SUPPORTED_FIBRE |
2708					  SUPPORTED_Autoneg |
2709					  SUPPORTED_Pause |
2710					  SUPPORTED_Asym_Pause);
2711		bp->port.advertising[0] = bp->port.supported[0];
2712
2713		bp->link_params.bp = bp;
2714		bp->link_params.port = BP_PORT(bp);
2715		bp->link_params.req_duplex[0] = DUPLEX_FULL;
2716		bp->link_params.req_flow_ctrl[0] = BNX2X_FLOW_CTRL_NONE;
2717		bp->link_params.req_line_speed[0] = SPEED_10000;
2718		bp->link_params.speed_cap_mask[0] = 0x7f0000;
2719		bp->link_params.switch_cfg = SWITCH_CFG_10G;
2720		bp->link_vars.mac_type = MAC_TYPE_BMAC;
2721		bp->link_vars.line_speed = SPEED_10000;
2722		bp->link_vars.link_status =
2723			(LINK_STATUS_LINK_UP |
2724			 LINK_STATUS_SPEED_AND_DUPLEX_10GTFD);
2725		bp->link_vars.link_up = 1;
2726		bp->link_vars.duplex = DUPLEX_FULL;
2727		bp->link_vars.flow_ctrl = BNX2X_FLOW_CTRL_NONE;
2728		__bnx2x_link_report(bp);
2729
2730		bnx2x_sample_bulletin(bp);
2731
2732		/* if bulletin board did not have an update for link status
2733		 * __bnx2x_link_report will report current status
2734		 * but it will NOT duplicate report in case of already reported
2735		 * during sampling bulletin board.
2736		 */
2737		bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2738	}
2739}
2740
2741static int bnx2x_afex_func_update(struct bnx2x *bp, u16 vifid,
2742				  u16 vlan_val, u8 allowed_prio)
2743{
2744	struct bnx2x_func_state_params func_params = {NULL};
2745	struct bnx2x_func_afex_update_params *f_update_params =
2746		&func_params.params.afex_update;
2747
2748	func_params.f_obj = &bp->func_obj;
2749	func_params.cmd = BNX2X_F_CMD_AFEX_UPDATE;
2750
2751	/* no need to wait for RAMROD completion, so don't
2752	 * set RAMROD_COMP_WAIT flag
2753	 */
2754
2755	f_update_params->vif_id = vifid;
2756	f_update_params->afex_default_vlan = vlan_val;
2757	f_update_params->allowed_priorities = allowed_prio;
2758
2759	/* if ramrod can not be sent, response to MCP immediately */
2760	if (bnx2x_func_state_change(bp, &func_params) < 0)
2761		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
2762
2763	return 0;
2764}
2765
2766static int bnx2x_afex_handle_vif_list_cmd(struct bnx2x *bp, u8 cmd_type,
2767					  u16 vif_index, u8 func_bit_map)
2768{
2769	struct bnx2x_func_state_params func_params = {NULL};
2770	struct bnx2x_func_afex_viflists_params *update_params =
2771		&func_params.params.afex_viflists;
2772	int rc;
2773	u32 drv_msg_code;
2774
2775	/* validate only LIST_SET and LIST_GET are received from switch */
2776	if ((cmd_type != VIF_LIST_RULE_GET) && (cmd_type != VIF_LIST_RULE_SET))
2777		BNX2X_ERR("BUG! afex_handle_vif_list_cmd invalid type 0x%x\n",
2778			  cmd_type);
2779
2780	func_params.f_obj = &bp->func_obj;
2781	func_params.cmd = BNX2X_F_CMD_AFEX_VIFLISTS;
2782
2783	/* set parameters according to cmd_type */
2784	update_params->afex_vif_list_command = cmd_type;
2785	update_params->vif_list_index = vif_index;
2786	update_params->func_bit_map =
2787		(cmd_type == VIF_LIST_RULE_GET) ? 0 : func_bit_map;
2788	update_params->func_to_clear = 0;
2789	drv_msg_code =
2790		(cmd_type == VIF_LIST_RULE_GET) ?
2791		DRV_MSG_CODE_AFEX_LISTGET_ACK :
2792		DRV_MSG_CODE_AFEX_LISTSET_ACK;
2793
2794	/* if ramrod can not be sent, respond to MCP immediately for
2795	 * SET and GET requests (other are not triggered from MCP)
2796	 */
2797	rc = bnx2x_func_state_change(bp, &func_params);
2798	if (rc < 0)
2799		bnx2x_fw_command(bp, drv_msg_code, 0);
2800
2801	return 0;
2802}
2803
2804static void bnx2x_handle_afex_cmd(struct bnx2x *bp, u32 cmd)
2805{
2806	struct afex_stats afex_stats;
2807	u32 func = BP_ABS_FUNC(bp);
2808	u32 mf_config;
2809	u16 vlan_val;
2810	u32 vlan_prio;
2811	u16 vif_id;
2812	u8 allowed_prio;
2813	u8 vlan_mode;
2814	u32 addr_to_write, vifid, addrs, stats_type, i;
2815
2816	if (cmd & DRV_STATUS_AFEX_LISTGET_REQ) {
2817		vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2818		DP(BNX2X_MSG_MCP,
2819		   "afex: got MCP req LISTGET_REQ for vifid 0x%x\n", vifid);
2820		bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_GET, vifid, 0);
2821	}
2822
2823	if (cmd & DRV_STATUS_AFEX_LISTSET_REQ) {
2824		vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2825		addrs = SHMEM2_RD(bp, afex_param2_to_driver[BP_FW_MB_IDX(bp)]);
2826		DP(BNX2X_MSG_MCP,
2827		   "afex: got MCP req LISTSET_REQ for vifid 0x%x addrs 0x%x\n",
2828		   vifid, addrs);
2829		bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_SET, vifid,
2830					       addrs);
2831	}
2832
2833	if (cmd & DRV_STATUS_AFEX_STATSGET_REQ) {
2834		addr_to_write = SHMEM2_RD(bp,
2835			afex_scratchpad_addr_to_write[BP_FW_MB_IDX(bp)]);
2836		stats_type = SHMEM2_RD(bp,
2837			afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2838
2839		DP(BNX2X_MSG_MCP,
2840		   "afex: got MCP req STATSGET_REQ, write to addr 0x%x\n",
2841		   addr_to_write);
2842
2843		bnx2x_afex_collect_stats(bp, (void *)&afex_stats, stats_type);
2844
2845		/* write response to scratchpad, for MCP */
2846		for (i = 0; i < (sizeof(struct afex_stats)/sizeof(u32)); i++)
2847			REG_WR(bp, addr_to_write + i*sizeof(u32),
2848			       *(((u32 *)(&afex_stats))+i));
2849
2850		/* send ack message to MCP */
2851		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_STATSGET_ACK, 0);
2852	}
2853
2854	if (cmd & DRV_STATUS_AFEX_VIFSET_REQ) {
2855		mf_config = MF_CFG_RD(bp, func_mf_config[func].config);
2856		bp->mf_config[BP_VN(bp)] = mf_config;
2857		DP(BNX2X_MSG_MCP,
2858		   "afex: got MCP req VIFSET_REQ, mf_config 0x%x\n",
2859		   mf_config);
2860
2861		/* if VIF_SET is "enabled" */
2862		if (!(mf_config & FUNC_MF_CFG_FUNC_DISABLED)) {
2863			/* set rate limit directly to internal RAM */
2864			struct cmng_init_input cmng_input;
2865			struct rate_shaping_vars_per_vn m_rs_vn;
2866			size_t size = sizeof(struct rate_shaping_vars_per_vn);
2867			u32 addr = BAR_XSTRORM_INTMEM +
2868			    XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(BP_FUNC(bp));
2869
2870			bp->mf_config[BP_VN(bp)] = mf_config;
2871
2872			bnx2x_calc_vn_max(bp, BP_VN(bp), &cmng_input);
2873			m_rs_vn.vn_counter.rate =
2874				cmng_input.vnic_max_rate[BP_VN(bp)];
2875			m_rs_vn.vn_counter.quota =
2876				(m_rs_vn.vn_counter.rate *
2877				 RS_PERIODIC_TIMEOUT_USEC) / 8;
2878
2879			__storm_memset_struct(bp, addr, size, (u32 *)&m_rs_vn);
2880
2881			/* read relevant values from mf_cfg struct in shmem */
2882			vif_id =
2883				(MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2884				 FUNC_MF_CFG_E1HOV_TAG_MASK) >>
2885				FUNC_MF_CFG_E1HOV_TAG_SHIFT;
2886			vlan_val =
2887				(MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2888				 FUNC_MF_CFG_AFEX_VLAN_MASK) >>
2889				FUNC_MF_CFG_AFEX_VLAN_SHIFT;
2890			vlan_prio = (mf_config &
2891				     FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >>
2892				    FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT;
2893			vlan_val |= (vlan_prio << VLAN_PRIO_SHIFT);
2894			vlan_mode =
2895				(MF_CFG_RD(bp,
2896					   func_mf_config[func].afex_config) &
2897				 FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >>
2898				FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT;
2899			allowed_prio =
2900				(MF_CFG_RD(bp,
2901					   func_mf_config[func].afex_config) &
2902				 FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >>
2903				FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT;
2904
2905			/* send ramrod to FW, return in case of failure */
2906			if (bnx2x_afex_func_update(bp, vif_id, vlan_val,
2907						   allowed_prio))
2908				return;
2909
2910			bp->afex_def_vlan_tag = vlan_val;
2911			bp->afex_vlan_mode = vlan_mode;
2912		} else {
2913			/* notify link down because BP->flags is disabled */
2914			bnx2x_link_report(bp);
2915
2916			/* send INVALID VIF ramrod to FW */
2917			bnx2x_afex_func_update(bp, 0xFFFF, 0, 0);
2918
2919			/* Reset the default afex VLAN */
2920			bp->afex_def_vlan_tag = -1;
2921		}
2922	}
2923}
2924
2925static void bnx2x_handle_update_svid_cmd(struct bnx2x *bp)
2926{
2927	struct bnx2x_func_switch_update_params *switch_update_params;
2928	struct bnx2x_func_state_params func_params;
2929
2930	memset(&func_params, 0, sizeof(struct bnx2x_func_state_params));
2931	switch_update_params = &func_params.params.switch_update;
2932	func_params.f_obj = &bp->func_obj;
2933	func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
2934
2935	/* Prepare parameters for function state transitions */
2936	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
2937	__set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
2938
2939	if (IS_MF_UFP(bp) || IS_MF_BD(bp)) {
2940		int func = BP_ABS_FUNC(bp);
2941		u32 val;
2942
2943		/* Re-learn the S-tag from shmem */
2944		val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2945				FUNC_MF_CFG_E1HOV_TAG_MASK;
2946		if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
2947			bp->mf_ov = val;
2948		} else {
2949			BNX2X_ERR("Got an SVID event, but no tag is configured in shmem\n");
2950			goto fail;
2951		}
2952
2953		/* Configure new S-tag in LLH */
2954		REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + BP_PORT(bp) * 8,
2955		       bp->mf_ov);
2956
2957		/* Send Ramrod to update FW of change */
2958		__set_bit(BNX2X_F_UPDATE_SD_VLAN_TAG_CHNG,
2959			  &switch_update_params->changes);
2960		switch_update_params->vlan = bp->mf_ov;
2961
2962		if (bnx2x_func_state_change(bp, &func_params) < 0) {
2963			BNX2X_ERR("Failed to configure FW of S-tag Change to %02x\n",
2964				  bp->mf_ov);
2965			goto fail;
2966		} else {
2967			DP(BNX2X_MSG_MCP, "Configured S-tag %02x\n",
2968			   bp->mf_ov);
2969		}
2970	} else {
2971		goto fail;
2972	}
2973
2974	bnx2x_fw_command(bp, DRV_MSG_CODE_OEM_UPDATE_SVID_OK, 0);
2975	return;
2976fail:
2977	bnx2x_fw_command(bp, DRV_MSG_CODE_OEM_UPDATE_SVID_FAILURE, 0);
2978}
2979
2980static void bnx2x_pmf_update(struct bnx2x *bp)
2981{
2982	int port = BP_PORT(bp);
2983	u32 val;
2984
2985	bp->port.pmf = 1;
2986	DP(BNX2X_MSG_MCP, "pmf %d\n", bp->port.pmf);
2987
2988	/*
2989	 * We need the mb() to ensure the ordering between the writing to
2990	 * bp->port.pmf here and reading it from the bnx2x_periodic_task().
2991	 */
2992	smp_mb();
2993
2994	/* queue a periodic task */
2995	queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2996
2997	bnx2x_dcbx_pmf_update(bp);
2998
2999	/* enable nig attention */
3000	val = (0xff0f | (1 << (BP_VN(bp) + 4)));
3001	if (bp->common.int_block == INT_BLOCK_HC) {
3002		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
3003		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
3004	} else if (!CHIP_IS_E1x(bp)) {
3005		REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
3006		REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
3007	}
3008
3009	bnx2x_stats_handle(bp, STATS_EVENT_PMF);
3010}
3011
3012/* end of Link */
3013
3014/* slow path */
3015
3016/*
3017 * General service functions
3018 */
3019
3020/* send the MCP a request, block until there is a reply */
3021u32 bnx2x_fw_command(struct bnx2x *bp, u32 command, u32 param)
3022{
3023	int mb_idx = BP_FW_MB_IDX(bp);
3024	u32 seq;
3025	u32 rc = 0;
3026	u32 cnt = 1;
3027	u8 delay = CHIP_REV_IS_SLOW(bp) ? 100 : 10;
3028
3029	mutex_lock(&bp->fw_mb_mutex);
3030	seq = ++bp->fw_seq;
3031	SHMEM_WR(bp, func_mb[mb_idx].drv_mb_param, param);
3032	SHMEM_WR(bp, func_mb[mb_idx].drv_mb_header, (command | seq));
3033
3034	DP(BNX2X_MSG_MCP, "wrote command (%x) to FW MB param 0x%08x\n",
3035			(command | seq), param);
3036
3037	do {
3038		/* let the FW do it's magic ... */
3039		msleep(delay);
3040
3041		rc = SHMEM_RD(bp, func_mb[mb_idx].fw_mb_header);
3042
3043		/* Give the FW up to 5 second (500*10ms) */
3044	} while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
3045
3046	DP(BNX2X_MSG_MCP, "[after %d ms] read (%x) seq is (%x) from FW MB\n",
3047	   cnt*delay, rc, seq);
3048
3049	/* is this a reply to our command? */
3050	if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK))
3051		rc &= FW_MSG_CODE_MASK;
3052	else {
3053		/* FW BUG! */
3054		BNX2X_ERR("FW failed to respond!\n");
3055		bnx2x_fw_dump(bp);
3056		rc = 0;
3057	}
3058	mutex_unlock(&bp->fw_mb_mutex);
3059
3060	return rc;
3061}
3062
3063static void storm_memset_func_cfg(struct bnx2x *bp,
3064				 struct tstorm_eth_function_common_config *tcfg,
3065				 u16 abs_fid)
3066{
3067	size_t size = sizeof(struct tstorm_eth_function_common_config);
3068
3069	u32 addr = BAR_TSTRORM_INTMEM +
3070			TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid);
3071
3072	__storm_memset_struct(bp, addr, size, (u32 *)tcfg);
3073}
3074
3075void bnx2x_func_init(struct bnx2x *bp, struct bnx2x_func_init_params *p)
3076{
3077	if (CHIP_IS_E1x(bp)) {
3078		struct tstorm_eth_function_common_config tcfg = {0};
3079
3080		storm_memset_func_cfg(bp, &tcfg, p->func_id);
3081	}
3082
3083	/* Enable the function in the FW */
3084	storm_memset_vf_to_pf(bp, p->func_id, p->pf_id);
3085	storm_memset_func_en(bp, p->func_id, 1);
3086
3087	/* spq */
3088	if (p->spq_active) {
3089		storm_memset_spq_addr(bp, p->spq_map, p->func_id);
3090		REG_WR(bp, XSEM_REG_FAST_MEMORY +
3091		       XSTORM_SPQ_PROD_OFFSET(p->func_id), p->spq_prod);
3092	}
3093}
3094
3095/**
3096 * bnx2x_get_common_flags - Return common flags
3097 *
3098 * @bp:		device handle
3099 * @fp:		queue handle
3100 * @zero_stats:	TRUE if statistics zeroing is needed
3101 *
3102 * Return the flags that are common for the Tx-only and not normal connections.
3103 */
3104static unsigned long bnx2x_get_common_flags(struct bnx2x *bp,
3105					    struct bnx2x_fastpath *fp,
3106					    bool zero_stats)
3107{
3108	unsigned long flags = 0;
3109
3110	/* PF driver will always initialize the Queue to an ACTIVE state */
3111	__set_bit(BNX2X_Q_FLG_ACTIVE, &flags);
3112
3113	/* tx only connections collect statistics (on the same index as the
3114	 * parent connection). The statistics are zeroed when the parent
3115	 * connection is initialized.
3116	 */
3117
3118	__set_bit(BNX2X_Q_FLG_STATS, &flags);
3119	if (zero_stats)
3120		__set_bit(BNX2X_Q_FLG_ZERO_STATS, &flags);
3121
3122	if (bp->flags & TX_SWITCHING)
3123		__set_bit(BNX2X_Q_FLG_TX_SWITCH, &flags);
3124
3125	__set_bit(BNX2X_Q_FLG_PCSUM_ON_PKT, &flags);
3126	__set_bit(BNX2X_Q_FLG_TUN_INC_INNER_IP_ID, &flags);
3127
3128#ifdef BNX2X_STOP_ON_ERROR
3129	__set_bit(BNX2X_Q_FLG_TX_SEC, &flags);
3130#endif
3131
3132	return flags;
3133}
3134
3135static unsigned long bnx2x_get_q_flags(struct bnx2x *bp,
3136				       struct bnx2x_fastpath *fp,
3137				       bool leading)
3138{
3139	unsigned long flags = 0;
3140
3141	/* calculate other queue flags */
3142	if (IS_MF_SD(bp))
3143		__set_bit(BNX2X_Q_FLG_OV, &flags);
3144
3145	if (IS_FCOE_FP(fp)) {
3146		__set_bit(BNX2X_Q_FLG_FCOE, &flags);
3147		/* For FCoE - force usage of default priority (for afex) */
3148		__set_bit(BNX2X_Q_FLG_FORCE_DEFAULT_PRI, &flags);
3149	}
3150
3151	if (fp->mode != TPA_MODE_DISABLED) {
3152		__set_bit(BNX2X_Q_FLG_TPA, &flags);
3153		__set_bit(BNX2X_Q_FLG_TPA_IPV6, &flags);
3154		if (fp->mode == TPA_MODE_GRO)
3155			__set_bit(BNX2X_Q_FLG_TPA_GRO, &flags);
3156	}
3157
3158	if (leading) {
3159		__set_bit(BNX2X_Q_FLG_LEADING_RSS, &flags);
3160		__set_bit(BNX2X_Q_FLG_MCAST, &flags);
3161	}
3162
3163	/* Always set HW VLAN stripping */
3164	__set_bit(BNX2X_Q_FLG_VLAN, &flags);
3165
3166	/* configure silent vlan removal */
3167	if (IS_MF_AFEX(bp))
3168		__set_bit(BNX2X_Q_FLG_SILENT_VLAN_REM, &flags);
3169
3170	return flags | bnx2x_get_common_flags(bp, fp, true);
3171}
3172
3173static void bnx2x_pf_q_prep_general(struct bnx2x *bp,
3174	struct bnx2x_fastpath *fp, struct bnx2x_general_setup_params *gen_init,
3175	u8 cos)
3176{
3177	gen_init->stat_id = bnx2x_stats_id(fp);
3178	gen_init->spcl_id = fp->cl_id;
3179
3180	/* Always use mini-jumbo MTU for FCoE L2 ring */
3181	if (IS_FCOE_FP(fp))
3182		gen_init->mtu = BNX2X_FCOE_MINI_JUMBO_MTU;
3183	else
3184		gen_init->mtu = bp->dev->mtu;
3185
3186	gen_init->cos = cos;
3187
3188	gen_init->fp_hsi = ETH_FP_HSI_VERSION;
3189}
3190
3191static void bnx2x_pf_rx_q_prep(struct bnx2x *bp,
3192	struct bnx2x_fastpath *fp, struct rxq_pause_params *pause,
3193	struct bnx2x_rxq_setup_params *rxq_init)
3194{
3195	u8 max_sge = 0;
3196	u16 sge_sz = 0;
3197	u16 tpa_agg_size = 0;
3198
3199	if (fp->mode != TPA_MODE_DISABLED) {
3200		pause->sge_th_lo = SGE_TH_LO(bp);
3201		pause->sge_th_hi = SGE_TH_HI(bp);
3202
3203		/* validate SGE ring has enough to cross high threshold */
3204		WARN_ON(bp->dropless_fc &&
3205				pause->sge_th_hi + FW_PREFETCH_CNT >
3206				MAX_RX_SGE_CNT * NUM_RX_SGE_PAGES);
3207
3208		tpa_agg_size = TPA_AGG_SIZE;
3209		max_sge = SGE_PAGE_ALIGN(bp->dev->mtu) >>
3210			SGE_PAGE_SHIFT;
3211		max_sge = ((max_sge + PAGES_PER_SGE - 1) &
3212			  (~(PAGES_PER_SGE-1))) >> PAGES_PER_SGE_SHIFT;
3213		sge_sz = (u16)min_t(u32, SGE_PAGES, 0xffff);
3214	}
3215
3216	/* pause - not for e1 */
3217	if (!CHIP_IS_E1(bp)) {
3218		pause->bd_th_lo = BD_TH_LO(bp);
3219		pause->bd_th_hi = BD_TH_HI(bp);
3220
3221		pause->rcq_th_lo = RCQ_TH_LO(bp);
3222		pause->rcq_th_hi = RCQ_TH_HI(bp);
3223		/*
3224		 * validate that rings have enough entries to cross
3225		 * high thresholds
3226		 */
3227		WARN_ON(bp->dropless_fc &&
3228				pause->bd_th_hi + FW_PREFETCH_CNT >
3229				bp->rx_ring_size);
3230		WARN_ON(bp->dropless_fc &&
3231				pause->rcq_th_hi + FW_PREFETCH_CNT >
3232				NUM_RCQ_RINGS * MAX_RCQ_DESC_CNT);
3233
3234		pause->pri_map = 1;
3235	}
3236
3237	/* rxq setup */
3238	rxq_init->dscr_map = fp->rx_desc_mapping;
3239	rxq_init->sge_map = fp->rx_sge_mapping;
3240	rxq_init->rcq_map = fp->rx_comp_mapping;
3241	rxq_init->rcq_np_map = fp->rx_comp_mapping + BCM_PAGE_SIZE;
3242
3243	/* This should be a maximum number of data bytes that may be
3244	 * placed on the BD (not including paddings).
3245	 */
3246	rxq_init->buf_sz = fp->rx_buf_size - BNX2X_FW_RX_ALIGN_START -
3247			   BNX2X_FW_RX_ALIGN_END - IP_HEADER_ALIGNMENT_PADDING;
3248
3249	rxq_init->cl_qzone_id = fp->cl_qzone_id;
3250	rxq_init->tpa_agg_sz = tpa_agg_size;
3251	rxq_init->sge_buf_sz = sge_sz;
3252	rxq_init->max_sges_pkt = max_sge;
3253	rxq_init->rss_engine_id = BP_FUNC(bp);
3254	rxq_init->mcast_engine_id = BP_FUNC(bp);
3255
3256	/* Maximum number or simultaneous TPA aggregation for this Queue.
3257	 *
3258	 * For PF Clients it should be the maximum available number.
3259	 * VF driver(s) may want to define it to a smaller value.
3260	 */
3261	rxq_init->max_tpa_queues = MAX_AGG_QS(bp);
3262
3263	rxq_init->cache_line_log = BNX2X_RX_ALIGN_SHIFT;
3264	rxq_init->fw_sb_id = fp->fw_sb_id;
3265
3266	if (IS_FCOE_FP(fp))
3267		rxq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS;
3268	else
3269		rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
3270	/* configure silent vlan removal
3271	 * if multi function mode is afex, then mask default vlan
3272	 */
3273	if (IS_MF_AFEX(bp)) {
3274		rxq_init->silent_removal_value = bp->afex_def_vlan_tag;
3275		rxq_init->silent_removal_mask = VLAN_VID_MASK;
3276	}
3277}
3278
3279static void bnx2x_pf_tx_q_prep(struct bnx2x *bp,
3280	struct bnx2x_fastpath *fp, struct bnx2x_txq_setup_params *txq_init,
3281	u8 cos)
3282{
3283	txq_init->dscr_map = fp->txdata_ptr[cos]->tx_desc_mapping;
3284	txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos;
3285	txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
3286	txq_init->fw_sb_id = fp->fw_sb_id;
3287
3288	/*
3289	 * set the tss leading client id for TX classification ==
3290	 * leading RSS client id
3291	 */
3292	txq_init->tss_leading_cl_id = bnx2x_fp(bp, 0, cl_id);
3293
3294	if (IS_FCOE_FP(fp)) {
3295		txq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS;
3296		txq_init->traffic_type = LLFC_TRAFFIC_TYPE_FCOE;
3297	}
3298}
3299
3300static void bnx2x_pf_init(struct bnx2x *bp)
3301{
3302	struct bnx2x_func_init_params func_init = {0};
3303	struct event_ring_data eq_data = { {0} };
3304
3305	if (!CHIP_IS_E1x(bp)) {
3306		/* reset IGU PF statistics: MSIX + ATTN */
3307		/* PF */
3308		REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
3309			   BNX2X_IGU_STAS_MSG_VF_CNT*4 +
3310			   (CHIP_MODE_IS_4_PORT(bp) ?
3311				BP_FUNC(bp) : BP_VN(bp))*4, 0);
3312		/* ATTN */
3313		REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
3314			   BNX2X_IGU_STAS_MSG_VF_CNT*4 +
3315			   BNX2X_IGU_STAS_MSG_PF_CNT*4 +
3316			   (CHIP_MODE_IS_4_PORT(bp) ?
3317				BP_FUNC(bp) : BP_VN(bp))*4, 0);
3318	}
3319
3320	func_init.spq_active = true;
3321	func_init.pf_id = BP_FUNC(bp);
3322	func_init.func_id = BP_FUNC(bp);
3323	func_init.spq_map = bp->spq_mapping;
3324	func_init.spq_prod = bp->spq_prod_idx;
3325
3326	bnx2x_func_init(bp, &func_init);
3327
3328	memset(&(bp->cmng), 0, sizeof(struct cmng_struct_per_port));
3329
3330	/*
3331	 * Congestion management values depend on the link rate
3332	 * There is no active link so initial link rate is set to 10 Gbps.
3333	 * When the link comes up The congestion management values are
3334	 * re-calculated according to the actual link rate.
3335	 */
3336	bp->link_vars.line_speed = SPEED_10000;
3337	bnx2x_cmng_fns_init(bp, true, bnx2x_get_cmng_fns_mode(bp));
3338
3339	/* Only the PMF sets the HW */
3340	if (bp->port.pmf)
3341		storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3342
3343	/* init Event Queue - PCI bus guarantees correct endianity*/
3344	eq_data.base_addr.hi = U64_HI(bp->eq_mapping);
3345	eq_data.base_addr.lo = U64_LO(bp->eq_mapping);
3346	eq_data.producer = bp->eq_prod;
3347	eq_data.index_id = HC_SP_INDEX_EQ_CONS;
3348	eq_data.sb_id = DEF_SB_ID;
3349	storm_memset_eq_data(bp, &eq_data, BP_FUNC(bp));
3350}
3351
3352static void bnx2x_e1h_disable(struct bnx2x *bp)
3353{
3354	int port = BP_PORT(bp);
3355
3356	bnx2x_tx_disable(bp);
3357
3358	REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
3359}
3360
3361static void bnx2x_e1h_enable(struct bnx2x *bp)
3362{
3363	int port = BP_PORT(bp);
3364
3365	if (!(IS_MF_UFP(bp) && BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)))
3366		REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port * 8, 1);
3367
3368	/* Tx queue should be only re-enabled */
3369	netif_tx_wake_all_queues(bp->dev);
3370
3371	/*
3372	 * Should not call netif_carrier_on since it will be called if the link
3373	 * is up when checking for link state
3374	 */
3375}
3376
3377#define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3
3378
3379static void bnx2x_drv_info_ether_stat(struct bnx2x *bp)
3380{
3381	struct eth_stats_info *ether_stat =
3382		&bp->slowpath->drv_info_to_mcp.ether_stat;
3383	struct bnx2x_vlan_mac_obj *mac_obj =
3384		&bp->sp_objs->mac_obj;
3385	int i;
3386
3387	strscpy(ether_stat->version, DRV_MODULE_VERSION,
3388		ETH_STAT_INFO_VERSION_LEN);
3389
3390	/* get DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED macs, placing them in the
3391	 * mac_local field in ether_stat struct. The base address is offset by 2
3392	 * bytes to account for the field being 8 bytes but a mac address is
3393	 * only 6 bytes. Likewise, the stride for the get_n_elements function is
3394	 * 2 bytes to compensate from the 6 bytes of a mac to the 8 bytes
3395	 * allocated by the ether_stat struct, so the macs will land in their
3396	 * proper positions.
3397	 */
3398	for (i = 0; i < DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED; i++)
3399		memset(ether_stat->mac_local + i, 0,
3400		       sizeof(ether_stat->mac_local[0]));
3401	mac_obj->get_n_elements(bp, &bp->sp_objs[0].mac_obj,
3402				DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED,
3403				ether_stat->mac_local + MAC_PAD, MAC_PAD,
3404				ETH_ALEN);
3405	ether_stat->mtu_size = bp->dev->mtu;
3406	if (bp->dev->features & NETIF_F_RXCSUM)
3407		ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK;
3408	if (bp->dev->features & NETIF_F_TSO)
3409		ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK;
3410	ether_stat->feature_flags |= bp->common.boot_mode;
3411
3412	ether_stat->promiscuous_mode = (bp->dev->flags & IFF_PROMISC) ? 1 : 0;
3413
3414	ether_stat->txq_size = bp->tx_ring_size;
3415	ether_stat->rxq_size = bp->rx_ring_size;
3416
3417#ifdef CONFIG_BNX2X_SRIOV
3418	ether_stat->vf_cnt = IS_SRIOV(bp) ? bp->vfdb->sriov.nr_virtfn : 0;
3419#endif
3420}
3421
3422static void bnx2x_drv_info_fcoe_stat(struct bnx2x *bp)
3423{
3424	struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3425	struct fcoe_stats_info *fcoe_stat =
3426		&bp->slowpath->drv_info_to_mcp.fcoe_stat;
3427
3428	if (!CNIC_LOADED(bp))
3429		return;
3430
3431	memcpy(fcoe_stat->mac_local + MAC_PAD, bp->fip_mac, ETH_ALEN);
3432
3433	fcoe_stat->qos_priority =
3434		app->traffic_type_priority[LLFC_TRAFFIC_TYPE_FCOE];
3435
3436	/* insert FCoE stats from ramrod response */
3437	if (!NO_FCOE(bp)) {
3438		struct tstorm_per_queue_stats *fcoe_q_tstorm_stats =
3439			&bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3440			tstorm_queue_statistics;
3441
3442		struct xstorm_per_queue_stats *fcoe_q_xstorm_stats =
3443			&bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3444			xstorm_queue_statistics;
3445
3446		struct fcoe_statistics_params *fw_fcoe_stat =
3447			&bp->fw_stats_data->fcoe;
3448
3449		ADD_64_LE(fcoe_stat->rx_bytes_hi, LE32_0,
3450			  fcoe_stat->rx_bytes_lo,
3451			  fw_fcoe_stat->rx_stat0.fcoe_rx_byte_cnt);
3452
3453		ADD_64_LE(fcoe_stat->rx_bytes_hi,
3454			  fcoe_q_tstorm_stats->rcv_ucast_bytes.hi,
3455			  fcoe_stat->rx_bytes_lo,
3456			  fcoe_q_tstorm_stats->rcv_ucast_bytes.lo);
3457
3458		ADD_64_LE(fcoe_stat->rx_bytes_hi,
3459			  fcoe_q_tstorm_stats->rcv_bcast_bytes.hi,
3460			  fcoe_stat->rx_bytes_lo,
3461			  fcoe_q_tstorm_stats->rcv_bcast_bytes.lo);
3462
3463		ADD_64_LE(fcoe_stat->rx_bytes_hi,
3464			  fcoe_q_tstorm_stats->rcv_mcast_bytes.hi,
3465			  fcoe_stat->rx_bytes_lo,
3466			  fcoe_q_tstorm_stats->rcv_mcast_bytes.lo);
3467
3468		ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3469			  fcoe_stat->rx_frames_lo,
3470			  fw_fcoe_stat->rx_stat0.fcoe_rx_pkt_cnt);
3471
3472		ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3473			  fcoe_stat->rx_frames_lo,
3474			  fcoe_q_tstorm_stats->rcv_ucast_pkts);
3475
3476		ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3477			  fcoe_stat->rx_frames_lo,
3478			  fcoe_q_tstorm_stats->rcv_bcast_pkts);
3479
3480		ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3481			  fcoe_stat->rx_frames_lo,
3482			  fcoe_q_tstorm_stats->rcv_mcast_pkts);
3483
3484		ADD_64_LE(fcoe_stat->tx_bytes_hi, LE32_0,
3485			  fcoe_stat->tx_bytes_lo,
3486			  fw_fcoe_stat->tx_stat.fcoe_tx_byte_cnt);
3487
3488		ADD_64_LE(fcoe_stat->tx_bytes_hi,
3489			  fcoe_q_xstorm_stats->ucast_bytes_sent.hi,
3490			  fcoe_stat->tx_bytes_lo,
3491			  fcoe_q_xstorm_stats->ucast_bytes_sent.lo);
3492
3493		ADD_64_LE(fcoe_stat->tx_bytes_hi,
3494			  fcoe_q_xstorm_stats->bcast_bytes_sent.hi,
3495			  fcoe_stat->tx_bytes_lo,
3496			  fcoe_q_xstorm_stats->bcast_bytes_sent.lo);
3497
3498		ADD_64_LE(fcoe_stat->tx_bytes_hi,
3499			  fcoe_q_xstorm_stats->mcast_bytes_sent.hi,
3500			  fcoe_stat->tx_bytes_lo,
3501			  fcoe_q_xstorm_stats->mcast_bytes_sent.lo);
3502
3503		ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3504			  fcoe_stat->tx_frames_lo,
3505			  fw_fcoe_stat->tx_stat.fcoe_tx_pkt_cnt);
3506
3507		ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3508			  fcoe_stat->tx_frames_lo,
3509			  fcoe_q_xstorm_stats->ucast_pkts_sent);
3510
3511		ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3512			  fcoe_stat->tx_frames_lo,
3513			  fcoe_q_xstorm_stats->bcast_pkts_sent);
3514
3515		ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3516			  fcoe_stat->tx_frames_lo,
3517			  fcoe_q_xstorm_stats->mcast_pkts_sent);
3518	}
3519
3520	/* ask L5 driver to add data to the struct */
3521	bnx2x_cnic_notify(bp, CNIC_CTL_FCOE_STATS_GET_CMD);
3522}
3523
3524static void bnx2x_drv_info_iscsi_stat(struct bnx2x *bp)
3525{
3526	struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3527	struct iscsi_stats_info *iscsi_stat =
3528		&bp->slowpath->drv_info_to_mcp.iscsi_stat;
3529
3530	if (!CNIC_LOADED(bp))
3531		return;
3532
3533	memcpy(iscsi_stat->mac_local + MAC_PAD, bp->cnic_eth_dev.iscsi_mac,
3534	       ETH_ALEN);
3535
3536	iscsi_stat->qos_priority =
3537		app->traffic_type_priority[LLFC_TRAFFIC_TYPE_ISCSI];
3538
3539	/* ask L5 driver to add data to the struct */
3540	bnx2x_cnic_notify(bp, CNIC_CTL_ISCSI_STATS_GET_CMD);
3541}
3542
3543/* called due to MCP event (on pmf):
3544 *	reread new bandwidth configuration
3545 *	configure FW
3546 *	notify others function about the change
3547 */
3548static void bnx2x_config_mf_bw(struct bnx2x *bp)
3549{
3550	/* Workaround for MFW bug.
3551	 * MFW is not supposed to generate BW attention in
3552	 * single function mode.
3553	 */
3554	if (!IS_MF(bp)) {
3555		DP(BNX2X_MSG_MCP,
3556		   "Ignoring MF BW config in single function mode\n");
3557		return;
3558	}
3559
3560	if (bp->link_vars.link_up) {
3561		bnx2x_cmng_fns_init(bp, true, CMNG_FNS_MINMAX);
3562		bnx2x_link_sync_notify(bp);
3563	}
3564	storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3565}
3566
3567static void bnx2x_set_mf_bw(struct bnx2x *bp)
3568{
3569	bnx2x_config_mf_bw(bp);
3570	bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
3571}
3572
3573static void bnx2x_handle_eee_event(struct bnx2x *bp)
3574{
3575	DP(BNX2X_MSG_MCP, "EEE - LLDP event\n");
3576	bnx2x_fw_command(bp, DRV_MSG_CODE_EEE_RESULTS_ACK, 0);
3577}
3578
3579#define BNX2X_UPDATE_DRV_INFO_IND_LENGTH	(20)
3580#define BNX2X_UPDATE_DRV_INFO_IND_COUNT		(25)
3581
3582static void bnx2x_handle_drv_info_req(struct bnx2x *bp)
3583{
3584	enum drv_info_opcode op_code;
3585	u32 drv_info_ctl = SHMEM2_RD(bp, drv_info_control);
3586	bool release = false;
3587	int wait;
3588
3589	/* if drv_info version supported by MFW doesn't match - send NACK */
3590	if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) {
3591		bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3592		return;
3593	}
3594
3595	op_code = (drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >>
3596		  DRV_INFO_CONTROL_OP_CODE_SHIFT;
3597
3598	/* Must prevent other flows from accessing drv_info_to_mcp */
3599	mutex_lock(&bp->drv_info_mutex);
3600
3601	memset(&bp->slowpath->drv_info_to_mcp, 0,
3602	       sizeof(union drv_info_to_mcp));
3603
3604	switch (op_code) {
3605	case ETH_STATS_OPCODE:
3606		bnx2x_drv_info_ether_stat(bp);
3607		break;
3608	case FCOE_STATS_OPCODE:
3609		bnx2x_drv_info_fcoe_stat(bp);
3610		break;
3611	case ISCSI_STATS_OPCODE:
3612		bnx2x_drv_info_iscsi_stat(bp);
3613		break;
3614	default:
3615		/* if op code isn't supported - send NACK */
3616		bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3617		goto out;
3618	}
3619
3620	/* if we got drv_info attn from MFW then these fields are defined in
3621	 * shmem2 for sure
3622	 */
3623	SHMEM2_WR(bp, drv_info_host_addr_lo,
3624		U64_LO(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3625	SHMEM2_WR(bp, drv_info_host_addr_hi,
3626		U64_HI(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3627
3628	bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_ACK, 0);
3629
3630	/* Since possible management wants both this and get_driver_version
3631	 * need to wait until management notifies us it finished utilizing
3632	 * the buffer.
3633	 */
3634	if (!SHMEM2_HAS(bp, mfw_drv_indication)) {
3635		DP(BNX2X_MSG_MCP, "Management does not support indication\n");
3636	} else if (!bp->drv_info_mng_owner) {
3637		u32 bit = MFW_DRV_IND_READ_DONE_OFFSET((BP_ABS_FUNC(bp) >> 1));
3638
3639		for (wait = 0; wait < BNX2X_UPDATE_DRV_INFO_IND_COUNT; wait++) {
3640			u32 indication = SHMEM2_RD(bp, mfw_drv_indication);
3641
3642			/* Management is done; need to clear indication */
3643			if (indication & bit) {
3644				SHMEM2_WR(bp, mfw_drv_indication,
3645					  indication & ~bit);
3646				release = true;
3647				break;
3648			}
3649
3650			msleep(BNX2X_UPDATE_DRV_INFO_IND_LENGTH);
3651		}
3652	}
3653	if (!release) {
3654		DP(BNX2X_MSG_MCP, "Management did not release indication\n");
3655		bp->drv_info_mng_owner = true;
3656	}
3657
3658out:
3659	mutex_unlock(&bp->drv_info_mutex);
3660}
3661
3662static u32 bnx2x_update_mng_version_utility(u8 *version, bool bnx2x_format)
3663{
3664	u8 vals[4];
3665	int i = 0;
3666
3667	if (bnx2x_format) {
3668		i = sscanf(version, "1.%c%hhd.%hhd.%hhd",
3669			   &vals[0], &vals[1], &vals[2], &vals[3]);
3670		if (i > 0)
3671			vals[0] -= '0';
3672	} else {
3673		i = sscanf(version, "%hhd.%hhd.%hhd.%hhd",
3674			   &vals[0], &vals[1], &vals[2], &vals[3]);
3675	}
3676
3677	while (i < 4)
3678		vals[i++] = 0;
3679
3680	return (vals[0] << 24) | (vals[1] << 16) | (vals[2] << 8) | vals[3];
3681}
3682
3683void bnx2x_update_mng_version(struct bnx2x *bp)
3684{
3685	u32 iscsiver = DRV_VER_NOT_LOADED;
3686	u32 fcoever = DRV_VER_NOT_LOADED;
3687	u32 ethver = DRV_VER_NOT_LOADED;
3688	int idx = BP_FW_MB_IDX(bp);
3689	u8 *version;
3690
3691	if (!SHMEM2_HAS(bp, func_os_drv_ver))
3692		return;
3693
3694	mutex_lock(&bp->drv_info_mutex);
3695	/* Must not proceed when `bnx2x_handle_drv_info_req' is feasible */
3696	if (bp->drv_info_mng_owner)
3697		goto out;
3698
3699	if (bp->state != BNX2X_STATE_OPEN)
3700		goto out;
3701
3702	/* Parse ethernet driver version */
3703	ethver = bnx2x_update_mng_version_utility(DRV_MODULE_VERSION, true);
3704	if (!CNIC_LOADED(bp))
3705		goto out;
3706
3707	/* Try getting storage driver version via cnic */
3708	memset(&bp->slowpath->drv_info_to_mcp, 0,
3709	       sizeof(union drv_info_to_mcp));
3710	bnx2x_drv_info_iscsi_stat(bp);
3711	version = bp->slowpath->drv_info_to_mcp.iscsi_stat.version;
3712	iscsiver = bnx2x_update_mng_version_utility(version, false);
3713
3714	memset(&bp->slowpath->drv_info_to_mcp, 0,
3715	       sizeof(union drv_info_to_mcp));
3716	bnx2x_drv_info_fcoe_stat(bp);
3717	version = bp->slowpath->drv_info_to_mcp.fcoe_stat.version;
3718	fcoever = bnx2x_update_mng_version_utility(version, false);
3719
3720out:
3721	SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_ETHERNET], ethver);
3722	SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_ISCSI], iscsiver);
3723	SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_FCOE], fcoever);
3724
3725	mutex_unlock(&bp->drv_info_mutex);
3726
3727	DP(BNX2X_MSG_MCP, "Setting driver version: ETH [%08x] iSCSI [%08x] FCoE [%08x]\n",
3728	   ethver, iscsiver, fcoever);
3729}
3730
3731void bnx2x_update_mfw_dump(struct bnx2x *bp)
3732{
3733	u32 drv_ver;
3734	u32 valid_dump;
3735
3736	if (!SHMEM2_HAS(bp, drv_info))
3737		return;
3738
3739	/* Update Driver load time, possibly broken in y2038 */
3740	SHMEM2_WR(bp, drv_info.epoc, (u32)ktime_get_real_seconds());
3741
3742	drv_ver = bnx2x_update_mng_version_utility(DRV_MODULE_VERSION, true);
3743	SHMEM2_WR(bp, drv_info.drv_ver, drv_ver);
3744
3745	SHMEM2_WR(bp, drv_info.fw_ver, REG_RD(bp, XSEM_REG_PRAM));
3746
3747	/* Check & notify On-Chip dump. */
3748	valid_dump = SHMEM2_RD(bp, drv_info.valid_dump);
3749
3750	if (valid_dump & FIRST_DUMP_VALID)
3751		DP(NETIF_MSG_IFUP, "A valid On-Chip MFW dump found on 1st partition\n");
3752
3753	if (valid_dump & SECOND_DUMP_VALID)
3754		DP(NETIF_MSG_IFUP, "A valid On-Chip MFW dump found on 2nd partition\n");
3755}
3756
3757static void bnx2x_oem_event(struct bnx2x *bp, u32 event)
3758{
3759	u32 cmd_ok, cmd_fail;
3760
3761	/* sanity */
3762	if (event & DRV_STATUS_DCC_EVENT_MASK &&
3763	    event & DRV_STATUS_OEM_EVENT_MASK) {
3764		BNX2X_ERR("Received simultaneous events %08x\n", event);
3765		return;
3766	}
3767
3768	if (event & DRV_STATUS_DCC_EVENT_MASK) {
3769		cmd_fail = DRV_MSG_CODE_DCC_FAILURE;
3770		cmd_ok = DRV_MSG_CODE_DCC_OK;
3771	} else /* if (event & DRV_STATUS_OEM_EVENT_MASK) */ {
3772		cmd_fail = DRV_MSG_CODE_OEM_FAILURE;
3773		cmd_ok = DRV_MSG_CODE_OEM_OK;
3774	}
3775
3776	DP(BNX2X_MSG_MCP, "oem_event 0x%x\n", event);
3777
3778	if (event & (DRV_STATUS_DCC_DISABLE_ENABLE_PF |
3779		     DRV_STATUS_OEM_DISABLE_ENABLE_PF)) {
3780		/* This is the only place besides the function initialization
3781		 * where the bp->flags can change so it is done without any
3782		 * locks
3783		 */
3784		if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
3785			DP(BNX2X_MSG_MCP, "mf_cfg function disabled\n");
3786			bp->flags |= MF_FUNC_DIS;
3787
3788			bnx2x_e1h_disable(bp);
3789		} else {
3790			DP(BNX2X_MSG_MCP, "mf_cfg function enabled\n");
3791			bp->flags &= ~MF_FUNC_DIS;
3792
3793			bnx2x_e1h_enable(bp);
3794		}
3795		event &= ~(DRV_STATUS_DCC_DISABLE_ENABLE_PF |
3796			   DRV_STATUS_OEM_DISABLE_ENABLE_PF);
3797	}
3798
3799	if (event & (DRV_STATUS_DCC_BANDWIDTH_ALLOCATION |
3800		     DRV_STATUS_OEM_BANDWIDTH_ALLOCATION)) {
3801		bnx2x_config_mf_bw(bp);
3802		event &= ~(DRV_STATUS_DCC_BANDWIDTH_ALLOCATION |
3803			   DRV_STATUS_OEM_BANDWIDTH_ALLOCATION);
3804	}
3805
3806	/* Report results to MCP */
3807	if (event)
3808		bnx2x_fw_command(bp, cmd_fail, 0);
3809	else
3810		bnx2x_fw_command(bp, cmd_ok, 0);
3811}
3812
3813/* must be called under the spq lock */
3814static struct eth_spe *bnx2x_sp_get_next(struct bnx2x *bp)
3815{
3816	struct eth_spe *next_spe = bp->spq_prod_bd;
3817
3818	if (bp->spq_prod_bd == bp->spq_last_bd) {
3819		bp->spq_prod_bd = bp->spq;
3820		bp->spq_prod_idx = 0;
3821		DP(BNX2X_MSG_SP, "end of spq\n");
3822	} else {
3823		bp->spq_prod_bd++;
3824		bp->spq_prod_idx++;
3825	}
3826	return next_spe;
3827}
3828
3829/* must be called under the spq lock */
3830static void bnx2x_sp_prod_update(struct bnx2x *bp)
3831{
3832	int func = BP_FUNC(bp);
3833
3834	/*
3835	 * Make sure that BD data is updated before writing the producer:
3836	 * BD data is written to the memory, the producer is read from the
3837	 * memory, thus we need a full memory barrier to ensure the ordering.
3838	 */
3839	mb();
3840
3841	REG_WR16_RELAXED(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func),
3842			 bp->spq_prod_idx);
3843}
3844
3845/**
3846 * bnx2x_is_contextless_ramrod - check if the current command ends on EQ
3847 *
3848 * @cmd:	command to check
3849 * @cmd_type:	command type
3850 */
3851static bool bnx2x_is_contextless_ramrod(int cmd, int cmd_type)
3852{
3853	if ((cmd_type == NONE_CONNECTION_TYPE) ||
3854	    (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) ||
3855	    (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) ||
3856	    (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) ||
3857	    (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) ||
3858	    (cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
3859	    (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE))
3860		return true;
3861	else
3862		return false;
3863}
3864
3865/**
3866 * bnx2x_sp_post - place a single command on an SP ring
3867 *
3868 * @bp:		driver handle
3869 * @command:	command to place (e.g. SETUP, FILTER_RULES, etc.)
3870 * @cid:	SW CID the command is related to
3871 * @data_hi:	command private data address (high 32 bits)
3872 * @data_lo:	command private data address (low 32 bits)
3873 * @cmd_type:	command type (e.g. NONE, ETH)
3874 *
3875 * SP data is handled as if it's always an address pair, thus data fields are
3876 * not swapped to little endian in upper functions. Instead this function swaps
3877 * data as if it's two u32 fields.
3878 */
3879int bnx2x_sp_post(struct bnx2x *bp, int command, int cid,
3880		  u32 data_hi, u32 data_lo, int cmd_type)
3881{
3882	struct eth_spe *spe;
3883	u16 type;
3884	bool common = bnx2x_is_contextless_ramrod(command, cmd_type);
3885
3886#ifdef BNX2X_STOP_ON_ERROR
3887	if (unlikely(bp->panic)) {
3888		BNX2X_ERR("Can't post SP when there is panic\n");
3889		return -EIO;
3890	}
3891#endif
3892
3893	spin_lock_bh(&bp->spq_lock);
3894
3895	if (common) {
3896		if (!atomic_read(&bp->eq_spq_left)) {
3897			BNX2X_ERR("BUG! EQ ring full!\n");
3898			spin_unlock_bh(&bp->spq_lock);
3899			bnx2x_panic();
3900			return -EBUSY;
3901		}
3902	} else if (!atomic_read(&bp->cq_spq_left)) {
3903			BNX2X_ERR("BUG! SPQ ring full!\n");
3904			spin_unlock_bh(&bp->spq_lock);
3905			bnx2x_panic();
3906			return -EBUSY;
3907	}
3908
3909	spe = bnx2x_sp_get_next(bp);
3910
3911	/* CID needs port number to be encoded int it */
3912	spe->hdr.conn_and_cmd_data =
3913			cpu_to_le32((command << SPE_HDR_CMD_ID_SHIFT) |
3914				    HW_CID(bp, cid));
3915
3916	/* In some cases, type may already contain the func-id
3917	 * mainly in SRIOV related use cases, so we add it here only
3918	 * if it's not already set.
3919	 */
3920	if (!(cmd_type & SPE_HDR_FUNCTION_ID)) {
3921		type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) &
3922			SPE_HDR_CONN_TYPE;
3923		type |= ((BP_FUNC(bp) << SPE_HDR_FUNCTION_ID_SHIFT) &
3924			 SPE_HDR_FUNCTION_ID);
3925	} else {
3926		type = cmd_type;
3927	}
3928
3929	spe->hdr.type = cpu_to_le16(type);
3930
3931	spe->data.update_data_addr.hi = cpu_to_le32(data_hi);
3932	spe->data.update_data_addr.lo = cpu_to_le32(data_lo);
3933
3934	/*
3935	 * It's ok if the actual decrement is issued towards the memory
3936	 * somewhere between the spin_lock and spin_unlock. Thus no
3937	 * more explicit memory barrier is needed.
3938	 */
3939	if (common)
3940		atomic_dec(&bp->eq_spq_left);
3941	else
3942		atomic_dec(&bp->cq_spq_left);
3943
3944	DP(BNX2X_MSG_SP,
3945	   "SPQE[%x] (%x:%x)  (cmd, common?) (%d,%d)  hw_cid %x  data (%x:%x) type(0x%x) left (CQ, EQ) (%x,%x)\n",
3946	   bp->spq_prod_idx, (u32)U64_HI(bp->spq_mapping),
3947	   (u32)(U64_LO(bp->spq_mapping) +
3948	   (void *)bp->spq_prod_bd - (void *)bp->spq), command, common,
3949	   HW_CID(bp, cid), data_hi, data_lo, type,
3950	   atomic_read(&bp->cq_spq_left), atomic_read(&bp->eq_spq_left));
3951
3952	bnx2x_sp_prod_update(bp);
3953	spin_unlock_bh(&bp->spq_lock);
3954	return 0;
3955}
3956
3957/* acquire split MCP access lock register */
3958static int bnx2x_acquire_alr(struct bnx2x *bp)
3959{
3960	u32 j, val;
3961	int rc = 0;
3962
3963	might_sleep();
3964	for (j = 0; j < 1000; j++) {
3965		REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, MCPR_ACCESS_LOCK_LOCK);
3966		val = REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK);
3967		if (val & MCPR_ACCESS_LOCK_LOCK)
3968			break;
3969
3970		usleep_range(5000, 10000);
3971	}
3972	if (!(val & MCPR_ACCESS_LOCK_LOCK)) {
3973		BNX2X_ERR("Cannot acquire MCP access lock register\n");
3974		rc = -EBUSY;
3975	}
3976
3977	return rc;
3978}
3979
3980/* release split MCP access lock register */
3981static void bnx2x_release_alr(struct bnx2x *bp)
3982{
3983	REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, 0);
3984}
3985
3986#define BNX2X_DEF_SB_ATT_IDX	0x0001
3987#define BNX2X_DEF_SB_IDX	0x0002
3988
3989static u16 bnx2x_update_dsb_idx(struct bnx2x *bp)
3990{
3991	struct host_sp_status_block *def_sb = bp->def_status_blk;
3992	u16 rc = 0;
3993
3994	barrier(); /* status block is written to by the chip */
3995	if (bp->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
3996		bp->def_att_idx = def_sb->atten_status_block.attn_bits_index;
3997		rc |= BNX2X_DEF_SB_ATT_IDX;
3998	}
3999
4000	if (bp->def_idx != def_sb->sp_sb.running_index) {
4001		bp->def_idx = def_sb->sp_sb.running_index;
4002		rc |= BNX2X_DEF_SB_IDX;
4003	}
4004
4005	/* Do not reorder: indices reading should complete before handling */
4006	barrier();
4007	return rc;
4008}
4009
4010/*
4011 * slow path service functions
4012 */
4013
4014static void bnx2x_attn_int_asserted(struct bnx2x *bp, u32 asserted)
4015{
4016	int port = BP_PORT(bp);
4017	u32 aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
4018			      MISC_REG_AEU_MASK_ATTN_FUNC_0;
4019	u32 nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
4020				       NIG_REG_MASK_INTERRUPT_PORT0;
4021	u32 aeu_mask;
4022	u32 nig_mask = 0;
4023	u32 reg_addr;
4024
4025	if (bp->attn_state & asserted)
4026		BNX2X_ERR("IGU ERROR\n");
4027
4028	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4029	aeu_mask = REG_RD(bp, aeu_addr);
4030
4031	DP(NETIF_MSG_HW, "aeu_mask %x  newly asserted %x\n",
4032	   aeu_mask, asserted);
4033	aeu_mask &= ~(asserted & 0x3ff);
4034	DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
4035
4036	REG_WR(bp, aeu_addr, aeu_mask);
4037	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4038
4039	DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
4040	bp->attn_state |= asserted;
4041	DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
4042
4043	if (asserted & ATTN_HARD_WIRED_MASK) {
4044		if (asserted & ATTN_NIG_FOR_FUNC) {
4045
4046			bnx2x_acquire_phy_lock(bp);
4047
4048			/* save nig interrupt mask */
4049			nig_mask = REG_RD(bp, nig_int_mask_addr);
4050
4051			/* If nig_mask is not set, no need to call the update
4052			 * function.
4053			 */
4054			if (nig_mask) {
4055				REG_WR(bp, nig_int_mask_addr, 0);
4056
4057				bnx2x_link_attn(bp);
4058			}
4059
4060			/* handle unicore attn? */
4061		}
4062		if (asserted & ATTN_SW_TIMER_4_FUNC)
4063			DP(NETIF_MSG_HW, "ATTN_SW_TIMER_4_FUNC!\n");
4064
4065		if (asserted & GPIO_2_FUNC)
4066			DP(NETIF_MSG_HW, "GPIO_2_FUNC!\n");
4067
4068		if (asserted & GPIO_3_FUNC)
4069			DP(NETIF_MSG_HW, "GPIO_3_FUNC!\n");
4070
4071		if (asserted & GPIO_4_FUNC)
4072			DP(NETIF_MSG_HW, "GPIO_4_FUNC!\n");
4073
4074		if (port == 0) {
4075			if (asserted & ATTN_GENERAL_ATTN_1) {
4076				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_1!\n");
4077				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
4078			}
4079			if (asserted & ATTN_GENERAL_ATTN_2) {
4080				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_2!\n");
4081				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
4082			}
4083			if (asserted & ATTN_GENERAL_ATTN_3) {
4084				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_3!\n");
4085				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
4086			}
4087		} else {
4088			if (asserted & ATTN_GENERAL_ATTN_4) {
4089				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_4!\n");
4090				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
4091			}
4092			if (asserted & ATTN_GENERAL_ATTN_5) {
4093				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_5!\n");
4094				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
4095			}
4096			if (asserted & ATTN_GENERAL_ATTN_6) {
4097				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_6!\n");
4098				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
4099			}
4100		}
4101
4102	} /* if hardwired */
4103
4104	if (bp->common.int_block == INT_BLOCK_HC)
4105		reg_addr = (HC_REG_COMMAND_REG + port*32 +
4106			    COMMAND_REG_ATTN_BITS_SET);
4107	else
4108		reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8);
4109
4110	DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", asserted,
4111	   (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
4112	REG_WR(bp, reg_addr, asserted);
4113
4114	/* now set back the mask */
4115	if (asserted & ATTN_NIG_FOR_FUNC) {
4116		/* Verify that IGU ack through BAR was written before restoring
4117		 * NIG mask. This loop should exit after 2-3 iterations max.
4118		 */
4119		if (bp->common.int_block != INT_BLOCK_HC) {
4120			u32 cnt = 0, igu_acked;
4121			do {
4122				igu_acked = REG_RD(bp,
4123						   IGU_REG_ATTENTION_ACK_BITS);
4124			} while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) &&
4125				 (++cnt < MAX_IGU_ATTN_ACK_TO));
4126			if (!igu_acked)
4127				DP(NETIF_MSG_HW,
4128				   "Failed to verify IGU ack on time\n");
4129			barrier();
4130		}
4131		REG_WR(bp, nig_int_mask_addr, nig_mask);
4132		bnx2x_release_phy_lock(bp);
4133	}
4134}
4135
4136static void bnx2x_fan_failure(struct bnx2x *bp)
4137{
4138	int port = BP_PORT(bp);
4139	u32 ext_phy_config;
4140	/* mark the failure */
4141	ext_phy_config =
4142		SHMEM_RD(bp,
4143			 dev_info.port_hw_config[port].external_phy_config);
4144
4145	ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
4146	ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
4147	SHMEM_WR(bp, dev_info.port_hw_config[port].external_phy_config,
4148		 ext_phy_config);
4149
4150	/* log the failure */
4151	netdev_err(bp->dev, "Fan Failure on Network Controller has caused the driver to shutdown the card to prevent permanent damage.\n"
4152			    "Please contact OEM Support for assistance\n");
4153
4154	/* Schedule device reset (unload)
4155	 * This is due to some boards consuming sufficient power when driver is
4156	 * up to overheat if fan fails.
4157	 */
4158	bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_FAN_FAILURE, 0);
4159}
4160
4161static void bnx2x_attn_int_deasserted0(struct bnx2x *bp, u32 attn)
4162{
4163	int port = BP_PORT(bp);
4164	int reg_offset;
4165	u32 val;
4166
4167	reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
4168			     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
4169
4170	if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
4171
4172		val = REG_RD(bp, reg_offset);
4173		val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
4174		REG_WR(bp, reg_offset, val);
4175
4176		BNX2X_ERR("SPIO5 hw attention\n");
4177
4178		/* Fan failure attention */
4179		bnx2x_hw_reset_phy(&bp->link_params);
4180		bnx2x_fan_failure(bp);
4181	}
4182
4183	if ((attn & bp->link_vars.aeu_int_mask) && bp->port.pmf) {
4184		bnx2x_acquire_phy_lock(bp);
4185		bnx2x_handle_module_detect_int(&bp->link_params);
4186		bnx2x_release_phy_lock(bp);
4187	}
4188
4189	if (attn & HW_INTERRUPT_ASSERT_SET_0) {
4190
4191		val = REG_RD(bp, reg_offset);
4192		val &= ~(attn & HW_INTERRUPT_ASSERT_SET_0);
4193		REG_WR(bp, reg_offset, val);
4194
4195		BNX2X_ERR("FATAL HW block attention set0 0x%x\n",
4196			  (u32)(attn & HW_INTERRUPT_ASSERT_SET_0));
4197		bnx2x_panic();
4198	}
4199}
4200
4201static void bnx2x_attn_int_deasserted1(struct bnx2x *bp, u32 attn)
4202{
4203	u32 val;
4204
4205	if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
4206
4207		val = REG_RD(bp, DORQ_REG_DORQ_INT_STS_CLR);
4208		BNX2X_ERR("DB hw attention 0x%x\n", val);
4209		/* DORQ discard attention */
4210		if (val & 0x2)
4211			BNX2X_ERR("FATAL error from DORQ\n");
4212	}
4213
4214	if (attn & HW_INTERRUPT_ASSERT_SET_1) {
4215
4216		int port = BP_PORT(bp);
4217		int reg_offset;
4218
4219		reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
4220				     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
4221
4222		val = REG_RD(bp, reg_offset);
4223		val &= ~(attn & HW_INTERRUPT_ASSERT_SET_1);
4224		REG_WR(bp, reg_offset, val);
4225
4226		BNX2X_ERR("FATAL HW block attention set1 0x%x\n",
4227			  (u32)(attn & HW_INTERRUPT_ASSERT_SET_1));
4228		bnx2x_panic();
4229	}
4230}
4231
4232static void bnx2x_attn_int_deasserted2(struct bnx2x *bp, u32 attn)
4233{
4234	u32 val;
4235
4236	if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
4237
4238		val = REG_RD(bp, CFC_REG_CFC_INT_STS_CLR);
4239		BNX2X_ERR("CFC hw attention 0x%x\n", val);
4240		/* CFC error attention */
4241		if (val & 0x2)
4242			BNX2X_ERR("FATAL error from CFC\n");
4243	}
4244
4245	if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
4246		val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_0);
4247		BNX2X_ERR("PXP hw attention-0 0x%x\n", val);
4248		/* RQ_USDMDP_FIFO_OVERFLOW */
4249		if (val & 0x18000)
4250			BNX2X_ERR("FATAL error from PXP\n");
4251
4252		if (!CHIP_IS_E1x(bp)) {
4253			val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_1);
4254			BNX2X_ERR("PXP hw attention-1 0x%x\n", val);
4255		}
4256	}
4257
4258	if (attn & HW_INTERRUPT_ASSERT_SET_2) {
4259
4260		int port = BP_PORT(bp);
4261		int reg_offset;
4262
4263		reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
4264				     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
4265
4266		val = REG_RD(bp, reg_offset);
4267		val &= ~(attn & HW_INTERRUPT_ASSERT_SET_2);
4268		REG_WR(bp, reg_offset, val);
4269
4270		BNX2X_ERR("FATAL HW block attention set2 0x%x\n",
4271			  (u32)(attn & HW_INTERRUPT_ASSERT_SET_2));
4272		bnx2x_panic();
4273	}
4274}
4275
4276static void bnx2x_attn_int_deasserted3(struct bnx2x *bp, u32 attn)
4277{
4278	u32 val;
4279
4280	if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
4281
4282		if (attn & BNX2X_PMF_LINK_ASSERT) {
4283			int func = BP_FUNC(bp);
4284
4285			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
4286			bnx2x_read_mf_cfg(bp);
4287			bp->mf_config[BP_VN(bp)] = MF_CFG_RD(bp,
4288					func_mf_config[BP_ABS_FUNC(bp)].config);
4289			val = SHMEM_RD(bp,
4290				       func_mb[BP_FW_MB_IDX(bp)].drv_status);
4291
4292			if (val & (DRV_STATUS_DCC_EVENT_MASK |
4293				   DRV_STATUS_OEM_EVENT_MASK))
4294				bnx2x_oem_event(bp,
4295					(val & (DRV_STATUS_DCC_EVENT_MASK |
4296						DRV_STATUS_OEM_EVENT_MASK)));
4297
4298			if (val & DRV_STATUS_SET_MF_BW)
4299				bnx2x_set_mf_bw(bp);
4300
4301			if (val & DRV_STATUS_DRV_INFO_REQ)
4302				bnx2x_handle_drv_info_req(bp);
4303
4304			if (val & DRV_STATUS_VF_DISABLED)
4305				bnx2x_schedule_iov_task(bp,
4306							BNX2X_IOV_HANDLE_FLR);
4307
4308			if ((bp->port.pmf == 0) && (val & DRV_STATUS_PMF))
4309				bnx2x_pmf_update(bp);
4310
4311			if (bp->port.pmf &&
4312			    (val & DRV_STATUS_DCBX_NEGOTIATION_RESULTS) &&
4313				bp->dcbx_enabled > 0)
4314				/* start dcbx state machine */
4315				bnx2x_dcbx_set_params(bp,
4316					BNX2X_DCBX_STATE_NEG_RECEIVED);
4317			if (val & DRV_STATUS_AFEX_EVENT_MASK)
4318				bnx2x_handle_afex_cmd(bp,
4319					val & DRV_STATUS_AFEX_EVENT_MASK);
4320			if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS)
4321				bnx2x_handle_eee_event(bp);
4322
4323			if (val & DRV_STATUS_OEM_UPDATE_SVID)
4324				bnx2x_schedule_sp_rtnl(bp,
4325					BNX2X_SP_RTNL_UPDATE_SVID, 0);
4326
4327			if (bp->link_vars.periodic_flags &
4328			    PERIODIC_FLAGS_LINK_EVENT) {
4329				/*  sync with link */
4330				bnx2x_acquire_phy_lock(bp);
4331				bp->link_vars.periodic_flags &=
4332					~PERIODIC_FLAGS_LINK_EVENT;
4333				bnx2x_release_phy_lock(bp);
4334				if (IS_MF(bp))
4335					bnx2x_link_sync_notify(bp);
4336				bnx2x_link_report(bp);
4337			}
4338			/* Always call it here: bnx2x_link_report() will
4339			 * prevent the link indication duplication.
4340			 */
4341			bnx2x__link_status_update(bp);
4342		} else if (attn & BNX2X_MC_ASSERT_BITS) {
4343
4344			BNX2X_ERR("MC assert!\n");
4345			bnx2x_mc_assert(bp);
4346			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_10, 0);
4347			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_9, 0);
4348			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_8, 0);
4349			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_7, 0);
4350			bnx2x_panic();
4351
4352		} else if (attn & BNX2X_MCP_ASSERT) {
4353
4354			BNX2X_ERR("MCP assert!\n");
4355			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_11, 0);
4356			bnx2x_fw_dump(bp);
4357
4358		} else
4359			BNX2X_ERR("Unknown HW assert! (attn 0x%x)\n", attn);
4360	}
4361
4362	if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
4363		BNX2X_ERR("LATCHED attention 0x%08x (masked)\n", attn);
4364		if (attn & BNX2X_GRC_TIMEOUT) {
4365			val = CHIP_IS_E1(bp) ? 0 :
4366					REG_RD(bp, MISC_REG_GRC_TIMEOUT_ATTN);
4367			BNX2X_ERR("GRC time-out 0x%08x\n", val);
4368		}
4369		if (attn & BNX2X_GRC_RSV) {
4370			val = CHIP_IS_E1(bp) ? 0 :
4371					REG_RD(bp, MISC_REG_GRC_RSV_ATTN);
4372			BNX2X_ERR("GRC reserved 0x%08x\n", val);
4373		}
4374		REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
4375	}
4376}
4377
4378/*
4379 * Bits map:
4380 * 0-7   - Engine0 load counter.
4381 * 8-15  - Engine1 load counter.
4382 * 16    - Engine0 RESET_IN_PROGRESS bit.
4383 * 17    - Engine1 RESET_IN_PROGRESS bit.
4384 * 18    - Engine0 ONE_IS_LOADED. Set when there is at least one active function
4385 *         on the engine
4386 * 19    - Engine1 ONE_IS_LOADED.
4387 * 20    - Chip reset flow bit. When set none-leader must wait for both engines
4388 *         leader to complete (check for both RESET_IN_PROGRESS bits and not for
4389 *         just the one belonging to its engine).
4390 *
4391 */
4392#define BNX2X_RECOVERY_GLOB_REG		MISC_REG_GENERIC_POR_1
4393
4394#define BNX2X_PATH0_LOAD_CNT_MASK	0x000000ff
4395#define BNX2X_PATH0_LOAD_CNT_SHIFT	0
4396#define BNX2X_PATH1_LOAD_CNT_MASK	0x0000ff00
4397#define BNX2X_PATH1_LOAD_CNT_SHIFT	8
4398#define BNX2X_PATH0_RST_IN_PROG_BIT	0x00010000
4399#define BNX2X_PATH1_RST_IN_PROG_BIT	0x00020000
4400#define BNX2X_GLOBAL_RESET_BIT		0x00040000
4401
4402/*
4403 * Set the GLOBAL_RESET bit.
4404 *
4405 * Should be run under rtnl lock
4406 */
4407void bnx2x_set_reset_global(struct bnx2x *bp)
4408{
4409	u32 val;
4410	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4411	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4412	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val | BNX2X_GLOBAL_RESET_BIT);
4413	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4414}
4415
4416/*
4417 * Clear the GLOBAL_RESET bit.
4418 *
4419 * Should be run under rtnl lock
4420 */
4421static void bnx2x_clear_reset_global(struct bnx2x *bp)
4422{
4423	u32 val;
4424	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4425	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4426	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val & (~BNX2X_GLOBAL_RESET_BIT));
4427	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4428}
4429
4430/*
4431 * Checks the GLOBAL_RESET bit.
4432 *
4433 * should be run under rtnl lock
4434 */
4435static bool bnx2x_reset_is_global(struct bnx2x *bp)
4436{
4437	u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4438
4439	DP(NETIF_MSG_HW, "GEN_REG_VAL=0x%08x\n", val);
4440	return (val & BNX2X_GLOBAL_RESET_BIT) ? true : false;
4441}
4442
4443/*
4444 * Clear RESET_IN_PROGRESS bit for the current engine.
4445 *
4446 * Should be run under rtnl lock
4447 */
4448static void bnx2x_set_reset_done(struct bnx2x *bp)
4449{
4450	u32 val;
4451	u32 bit = BP_PATH(bp) ?
4452		BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4453	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4454	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4455
4456	/* Clear the bit */
4457	val &= ~bit;
4458	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4459
4460	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4461}
4462
4463/*
4464 * Set RESET_IN_PROGRESS for the current engine.
4465 *
4466 * should be run under rtnl lock
4467 */
4468void bnx2x_set_reset_in_progress(struct bnx2x *bp)
4469{
4470	u32 val;
4471	u32 bit = BP_PATH(bp) ?
4472		BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4473	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4474	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4475
4476	/* Set the bit */
4477	val |= bit;
4478	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4479	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4480}
4481
4482/*
4483 * Checks the RESET_IN_PROGRESS bit for the given engine.
4484 * should be run under rtnl lock
4485 */
4486bool bnx2x_reset_is_done(struct bnx2x *bp, int engine)
4487{
4488	u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4489	u32 bit = engine ?
4490		BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4491
4492	/* return false if bit is set */
4493	return (val & bit) ? false : true;
4494}
4495
4496/*
4497 * set pf load for the current pf.
4498 *
4499 * should be run under rtnl lock
4500 */
4501void bnx2x_set_pf_load(struct bnx2x *bp)
4502{
4503	u32 val1, val;
4504	u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
4505			     BNX2X_PATH0_LOAD_CNT_MASK;
4506	u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4507			     BNX2X_PATH0_LOAD_CNT_SHIFT;
4508
4509	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4510	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4511
4512	DP(NETIF_MSG_IFUP, "Old GEN_REG_VAL=0x%08x\n", val);
4513
4514	/* get the current counter value */
4515	val1 = (val & mask) >> shift;
4516
4517	/* set bit of that PF */
4518	val1 |= (1 << bp->pf_num);
4519
4520	/* clear the old value */
4521	val &= ~mask;
4522
4523	/* set the new one */
4524	val |= ((val1 << shift) & mask);
4525
4526	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4527	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4528}
4529
4530/**
4531 * bnx2x_clear_pf_load - clear pf load mark
4532 *
4533 * @bp:		driver handle
4534 *
4535 * Should be run under rtnl lock.
4536 * Decrements the load counter for the current engine. Returns
4537 * whether other functions are still loaded
4538 */
4539bool bnx2x_clear_pf_load(struct bnx2x *bp)
4540{
4541	u32 val1, val;
4542	u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
4543			     BNX2X_PATH0_LOAD_CNT_MASK;
4544	u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4545			     BNX2X_PATH0_LOAD_CNT_SHIFT;
4546
4547	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4548	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4549	DP(NETIF_MSG_IFDOWN, "Old GEN_REG_VAL=0x%08x\n", val);
4550
4551	/* get the current counter value */
4552	val1 = (val & mask) >> shift;
4553
4554	/* clear bit of that PF */
4555	val1 &= ~(1 << bp->pf_num);
4556
4557	/* clear the old value */
4558	val &= ~mask;
4559
4560	/* set the new one */
4561	val |= ((val1 << shift) & mask);
4562
4563	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4564	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4565	return val1 != 0;
4566}
4567
4568/*
4569 * Read the load status for the current engine.
4570 *
4571 * should be run under rtnl lock
4572 */
4573static bool bnx2x_get_load_status(struct bnx2x *bp, int engine)
4574{
4575	u32 mask = (engine ? BNX2X_PATH1_LOAD_CNT_MASK :
4576			     BNX2X_PATH0_LOAD_CNT_MASK);
4577	u32 shift = (engine ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4578			     BNX2X_PATH0_LOAD_CNT_SHIFT);
4579	u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4580
4581	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "GLOB_REG=0x%08x\n", val);
4582
4583	val = (val & mask) >> shift;
4584
4585	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "load mask for engine %d = 0x%x\n",
4586	   engine, val);
4587
4588	return val != 0;
4589}
4590
4591static void _print_parity(struct bnx2x *bp, u32 reg)
4592{
4593	pr_cont(" [0x%08x] ", REG_RD(bp, reg));
4594}
4595
4596static void _print_next_block(int idx, const char *blk)
4597{
4598	pr_cont("%s%s", idx ? ", " : "", blk);
4599}
4600
4601static bool bnx2x_check_blocks_with_parity0(struct bnx2x *bp, u32 sig,
4602					    int *par_num, bool print)
4603{
4604	u32 cur_bit;
4605	bool res;
4606	int i;
4607
4608	res = false;
4609
4610	for (i = 0; sig; i++) {
4611		cur_bit = (0x1UL << i);
4612		if (sig & cur_bit) {
4613			res |= true; /* Each bit is real error! */
4614
4615			if (print) {
4616				switch (cur_bit) {
4617				case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
4618					_print_next_block((*par_num)++, "BRB");
4619					_print_parity(bp,
4620						      BRB1_REG_BRB1_PRTY_STS);
4621					break;
4622				case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
4623					_print_next_block((*par_num)++,
4624							  "PARSER");
4625					_print_parity(bp, PRS_REG_PRS_PRTY_STS);
4626					break;
4627				case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
4628					_print_next_block((*par_num)++, "TSDM");
4629					_print_parity(bp,
4630						      TSDM_REG_TSDM_PRTY_STS);
4631					break;
4632				case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
4633					_print_next_block((*par_num)++,
4634							  "SEARCHER");
4635					_print_parity(bp, SRC_REG_SRC_PRTY_STS);
4636					break;
4637				case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR:
4638					_print_next_block((*par_num)++, "TCM");
4639					_print_parity(bp, TCM_REG_TCM_PRTY_STS);
4640					break;
4641				case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
4642					_print_next_block((*par_num)++,
4643							  "TSEMI");
4644					_print_parity(bp,
4645						      TSEM_REG_TSEM_PRTY_STS_0);
4646					_print_parity(bp,
4647						      TSEM_REG_TSEM_PRTY_STS_1);
4648					break;
4649				case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
4650					_print_next_block((*par_num)++, "XPB");
4651					_print_parity(bp, GRCBASE_XPB +
4652							  PB_REG_PB_PRTY_STS);
4653					break;
4654				}
4655			}
4656
4657			/* Clear the bit */
4658			sig &= ~cur_bit;
4659		}
4660	}
4661
4662	return res;
4663}
4664
4665static bool bnx2x_check_blocks_with_parity1(struct bnx2x *bp, u32 sig,
4666					    int *par_num, bool *global,
4667					    bool print)
4668{
4669	u32 cur_bit;
4670	bool res;
4671	int i;
4672
4673	res = false;
4674
4675	for (i = 0; sig; i++) {
4676		cur_bit = (0x1UL << i);
4677		if (sig & cur_bit) {
4678			res |= true; /* Each bit is real error! */
4679			switch (cur_bit) {
4680			case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR:
4681				if (print) {
4682					_print_next_block((*par_num)++, "PBF");
4683					_print_parity(bp, PBF_REG_PBF_PRTY_STS);
4684				}
4685				break;
4686			case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
4687				if (print) {
4688					_print_next_block((*par_num)++, "QM");
4689					_print_parity(bp, QM_REG_QM_PRTY_STS);
4690				}
4691				break;
4692			case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR:
4693				if (print) {
4694					_print_next_block((*par_num)++, "TM");
4695					_print_parity(bp, TM_REG_TM_PRTY_STS);
4696				}
4697				break;
4698			case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
4699				if (print) {
4700					_print_next_block((*par_num)++, "XSDM");
4701					_print_parity(bp,
4702						      XSDM_REG_XSDM_PRTY_STS);
4703				}
4704				break;
4705			case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR:
4706				if (print) {
4707					_print_next_block((*par_num)++, "XCM");
4708					_print_parity(bp, XCM_REG_XCM_PRTY_STS);
4709				}
4710				break;
4711			case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
4712				if (print) {
4713					_print_next_block((*par_num)++,
4714							  "XSEMI");
4715					_print_parity(bp,
4716						      XSEM_REG_XSEM_PRTY_STS_0);
4717					_print_parity(bp,
4718						      XSEM_REG_XSEM_PRTY_STS_1);
4719				}
4720				break;
4721			case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
4722				if (print) {
4723					_print_next_block((*par_num)++,
4724							  "DOORBELLQ");
4725					_print_parity(bp,
4726						      DORQ_REG_DORQ_PRTY_STS);
4727				}
4728				break;
4729			case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR:
4730				if (print) {
4731					_print_next_block((*par_num)++, "NIG");
4732					if (CHIP_IS_E1x(bp)) {
4733						_print_parity(bp,
4734							NIG_REG_NIG_PRTY_STS);
4735					} else {
4736						_print_parity(bp,
4737							NIG_REG_NIG_PRTY_STS_0);
4738						_print_parity(bp,
4739							NIG_REG_NIG_PRTY_STS_1);
4740					}
4741				}
4742				break;
4743			case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
4744				if (print)
4745					_print_next_block((*par_num)++,
4746							  "VAUX PCI CORE");
4747				*global = true;
4748				break;
4749			case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
4750				if (print) {
4751					_print_next_block((*par_num)++,
4752							  "DEBUG");
4753					_print_parity(bp, DBG_REG_DBG_PRTY_STS);
4754				}
4755				break;
4756			case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
4757				if (print) {
4758					_print_next_block((*par_num)++, "USDM");
4759					_print_parity(bp,
4760						      USDM_REG_USDM_PRTY_STS);
4761				}
4762				break;
4763			case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR:
4764				if (print) {
4765					_print_next_block((*par_num)++, "UCM");
4766					_print_parity(bp, UCM_REG_UCM_PRTY_STS);
4767				}
4768				break;
4769			case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
4770				if (print) {
4771					_print_next_block((*par_num)++,
4772							  "USEMI");
4773					_print_parity(bp,
4774						      USEM_REG_USEM_PRTY_STS_0);
4775					_print_parity(bp,
4776						      USEM_REG_USEM_PRTY_STS_1);
4777				}
4778				break;
4779			case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
4780				if (print) {
4781					_print_next_block((*par_num)++, "UPB");
4782					_print_parity(bp, GRCBASE_UPB +
4783							  PB_REG_PB_PRTY_STS);
4784				}
4785				break;
4786			case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
4787				if (print) {
4788					_print_next_block((*par_num)++, "CSDM");
4789					_print_parity(bp,
4790						      CSDM_REG_CSDM_PRTY_STS);
4791				}
4792				break;
4793			case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR:
4794				if (print) {
4795					_print_next_block((*par_num)++, "CCM");
4796					_print_parity(bp, CCM_REG_CCM_PRTY_STS);
4797				}
4798				break;
4799			}
4800
4801			/* Clear the bit */
4802			sig &= ~cur_bit;
4803		}
4804	}
4805
4806	return res;
4807}
4808
4809static bool bnx2x_check_blocks_with_parity2(struct bnx2x *bp, u32 sig,
4810					    int *par_num, bool print)
4811{
4812	u32 cur_bit;
4813	bool res;
4814	int i;
4815
4816	res = false;
4817
4818	for (i = 0; sig; i++) {
4819		cur_bit = (0x1UL << i);
4820		if (sig & cur_bit) {
4821			res = true; /* Each bit is real error! */
4822			if (print) {
4823				switch (cur_bit) {
4824				case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
4825					_print_next_block((*par_num)++,
4826							  "CSEMI");
4827					_print_parity(bp,
4828						      CSEM_REG_CSEM_PRTY_STS_0);
4829					_print_parity(bp,
4830						      CSEM_REG_CSEM_PRTY_STS_1);
4831					break;
4832				case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
4833					_print_next_block((*par_num)++, "PXP");
4834					_print_parity(bp, PXP_REG_PXP_PRTY_STS);
4835					_print_parity(bp,
4836						      PXP2_REG_PXP2_PRTY_STS_0);
4837					_print_parity(bp,
4838						      PXP2_REG_PXP2_PRTY_STS_1);
4839					break;
4840				case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
4841					_print_next_block((*par_num)++,
4842							  "PXPPCICLOCKCLIENT");
4843					break;
4844				case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
4845					_print_next_block((*par_num)++, "CFC");
4846					_print_parity(bp,
4847						      CFC_REG_CFC_PRTY_STS);
4848					break;
4849				case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
4850					_print_next_block((*par_num)++, "CDU");
4851					_print_parity(bp, CDU_REG_CDU_PRTY_STS);
4852					break;
4853				case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR:
4854					_print_next_block((*par_num)++, "DMAE");
4855					_print_parity(bp,
4856						      DMAE_REG_DMAE_PRTY_STS);
4857					break;
4858				case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
4859					_print_next_block((*par_num)++, "IGU");
4860					if (CHIP_IS_E1x(bp))
4861						_print_parity(bp,
4862							HC_REG_HC_PRTY_STS);
4863					else
4864						_print_parity(bp,
4865							IGU_REG_IGU_PRTY_STS);
4866					break;
4867				case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
4868					_print_next_block((*par_num)++, "MISC");
4869					_print_parity(bp,
4870						      MISC_REG_MISC_PRTY_STS);
4871					break;
4872				}
4873			}
4874
4875			/* Clear the bit */
4876			sig &= ~cur_bit;
4877		}
4878	}
4879
4880	return res;
4881}
4882
4883static bool bnx2x_check_blocks_with_parity3(struct bnx2x *bp, u32 sig,
4884					    int *par_num, bool *global,
4885					    bool print)
4886{
4887	bool res = false;
4888	u32 cur_bit;
4889	int i;
4890
4891	for (i = 0; sig; i++) {
4892		cur_bit = (0x1UL << i);
4893		if (sig & cur_bit) {
4894			switch (cur_bit) {
4895			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
4896				if (print)
4897					_print_next_block((*par_num)++,
4898							  "MCP ROM");
4899				*global = true;
4900				res = true;
4901				break;
4902			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
4903				if (print)
4904					_print_next_block((*par_num)++,
4905							  "MCP UMP RX");
4906				*global = true;
4907				res = true;
4908				break;
4909			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
4910				if (print)
4911					_print_next_block((*par_num)++,
4912							  "MCP UMP TX");
4913				*global = true;
4914				res = true;
4915				break;
4916			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
4917				(*par_num)++;
4918				/* clear latched SCPAD PATIRY from MCP */
4919				REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL,
4920				       1UL << 10);
4921				break;
4922			}
4923
4924			/* Clear the bit */
4925			sig &= ~cur_bit;
4926		}
4927	}
4928
4929	return res;
4930}
4931
4932static bool bnx2x_check_blocks_with_parity4(struct bnx2x *bp, u32 sig,
4933					    int *par_num, bool print)
4934{
4935	u32 cur_bit;
4936	bool res;
4937	int i;
4938
4939	res = false;
4940
4941	for (i = 0; sig; i++) {
4942		cur_bit = (0x1UL << i);
4943		if (sig & cur_bit) {
4944			res = true; /* Each bit is real error! */
4945			if (print) {
4946				switch (cur_bit) {
4947				case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR:
4948					_print_next_block((*par_num)++,
4949							  "PGLUE_B");
4950					_print_parity(bp,
4951						      PGLUE_B_REG_PGLUE_B_PRTY_STS);
4952					break;
4953				case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR:
4954					_print_next_block((*par_num)++, "ATC");
4955					_print_parity(bp,
4956						      ATC_REG_ATC_PRTY_STS);
4957					break;
4958				}
4959			}
4960			/* Clear the bit */
4961			sig &= ~cur_bit;
4962		}
4963	}
4964
4965	return res;
4966}
4967
4968static bool bnx2x_parity_attn(struct bnx2x *bp, bool *global, bool print,
4969			      u32 *sig)
4970{
4971	bool res = false;
4972
4973	if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
4974	    (sig[1] & HW_PRTY_ASSERT_SET_1) ||
4975	    (sig[2] & HW_PRTY_ASSERT_SET_2) ||
4976	    (sig[3] & HW_PRTY_ASSERT_SET_3) ||
4977	    (sig[4] & HW_PRTY_ASSERT_SET_4)) {
4978		int par_num = 0;
4979
4980		DP(NETIF_MSG_HW, "Was parity error: HW block parity attention:\n"
4981				 "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n",
4982			  sig[0] & HW_PRTY_ASSERT_SET_0,
4983			  sig[1] & HW_PRTY_ASSERT_SET_1,
4984			  sig[2] & HW_PRTY_ASSERT_SET_2,
4985			  sig[3] & HW_PRTY_ASSERT_SET_3,
4986			  sig[4] & HW_PRTY_ASSERT_SET_4);
4987		if (print) {
4988			if (((sig[0] & HW_PRTY_ASSERT_SET_0) ||
4989			     (sig[1] & HW_PRTY_ASSERT_SET_1) ||
4990			     (sig[2] & HW_PRTY_ASSERT_SET_2) ||
4991			     (sig[4] & HW_PRTY_ASSERT_SET_4)) ||
4992			     (sig[3] & HW_PRTY_ASSERT_SET_3_WITHOUT_SCPAD)) {
4993				netdev_err(bp->dev,
4994					   "Parity errors detected in blocks: ");
4995			} else {
4996				print = false;
4997			}
4998		}
4999		res |= bnx2x_check_blocks_with_parity0(bp,
5000			sig[0] & HW_PRTY_ASSERT_SET_0, &par_num, print);
5001		res |= bnx2x_check_blocks_with_parity1(bp,
5002			sig[1] & HW_PRTY_ASSERT_SET_1, &par_num, global, print);
5003		res |= bnx2x_check_blocks_with_parity2(bp,
5004			sig[2] & HW_PRTY_ASSERT_SET_2, &par_num, print);
5005		res |= bnx2x_check_blocks_with_parity3(bp,
5006			sig[3] & HW_PRTY_ASSERT_SET_3, &par_num, global, print);
5007		res |= bnx2x_check_blocks_with_parity4(bp,
5008			sig[4] & HW_PRTY_ASSERT_SET_4, &par_num, print);
5009
5010		if (print)
5011			pr_cont("\n");
5012	}
5013
5014	return res;
5015}
5016
5017/**
5018 * bnx2x_chk_parity_attn - checks for parity attentions.
5019 *
5020 * @bp:		driver handle
5021 * @global:	true if there was a global attention
5022 * @print:	show parity attention in syslog
5023 */
5024bool bnx2x_chk_parity_attn(struct bnx2x *bp, bool *global, bool print)
5025{
5026	struct attn_route attn = { {0} };
5027	int port = BP_PORT(bp);
5028
5029	attn.sig[0] = REG_RD(bp,
5030		MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
5031			     port*4);
5032	attn.sig[1] = REG_RD(bp,
5033		MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 +
5034			     port*4);
5035	attn.sig[2] = REG_RD(bp,
5036		MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 +
5037			     port*4);
5038	attn.sig[3] = REG_RD(bp,
5039		MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 +
5040			     port*4);
5041	/* Since MCP attentions can't be disabled inside the block, we need to
5042	 * read AEU registers to see whether they're currently disabled
5043	 */
5044	attn.sig[3] &= ((REG_RD(bp,
5045				!port ? MISC_REG_AEU_ENABLE4_FUNC_0_OUT_0
5046				      : MISC_REG_AEU_ENABLE4_FUNC_1_OUT_0) &
5047			 MISC_AEU_ENABLE_MCP_PRTY_BITS) |
5048			~MISC_AEU_ENABLE_MCP_PRTY_BITS);
5049
5050	if (!CHIP_IS_E1x(bp))
5051		attn.sig[4] = REG_RD(bp,
5052			MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 +
5053				     port*4);
5054
5055	return bnx2x_parity_attn(bp, global, print, attn.sig);
5056}
5057
5058static void bnx2x_attn_int_deasserted4(struct bnx2x *bp, u32 attn)
5059{
5060	u32 val;
5061	if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
5062
5063		val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
5064		BNX2X_ERR("PGLUE hw attention 0x%x\n", val);
5065		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
5066			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n");
5067		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
5068			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n");
5069		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
5070			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n");
5071		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
5072			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n");
5073		if (val &
5074		    PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
5075			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n");
5076		if (val &
5077		    PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
5078			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n");
5079		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
5080			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n");
5081		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
5082			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n");
5083		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
5084			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n");
5085	}
5086	if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
5087		val = REG_RD(bp, ATC_REG_ATC_INT_STS_CLR);
5088		BNX2X_ERR("ATC hw attention 0x%x\n", val);
5089		if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
5090			BNX2X_ERR("ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n");
5091		if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
5092			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n");
5093		if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
5094			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n");
5095		if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
5096			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n");
5097		if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
5098			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n");
5099		if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
5100			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n");
5101	}
5102
5103	if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
5104		    AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
5105		BNX2X_ERR("FATAL parity attention set4 0x%x\n",
5106		(u32)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
5107		    AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
5108	}
5109}
5110
5111static void bnx2x_attn_int_deasserted(struct bnx2x *bp, u32 deasserted)
5112{
5113	struct attn_route attn, *group_mask;
5114	int port = BP_PORT(bp);
5115	int index;
5116	u32 reg_addr;
5117	u32 val;
5118	u32 aeu_mask;
5119	bool global = false;
5120
5121	/* need to take HW lock because MCP or other port might also
5122	   try to handle this event */
5123	bnx2x_acquire_alr(bp);
5124
5125	if (bnx2x_chk_parity_attn(bp, &global, true)) {
5126#ifndef BNX2X_STOP_ON_ERROR
5127		bp->recovery_state = BNX2X_RECOVERY_INIT;
5128		schedule_delayed_work(&bp->sp_rtnl_task, 0);
5129		/* Disable HW interrupts */
5130		bnx2x_int_disable(bp);
5131		/* In case of parity errors don't handle attentions so that
5132		 * other function would "see" parity errors.
5133		 */
5134#else
5135		bnx2x_panic();
5136#endif
5137		bnx2x_release_alr(bp);
5138		return;
5139	}
5140
5141	attn.sig[0] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
5142	attn.sig[1] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
5143	attn.sig[2] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
5144	attn.sig[3] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
5145	if (!CHIP_IS_E1x(bp))
5146		attn.sig[4] =
5147		      REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
5148	else
5149		attn.sig[4] = 0;
5150
5151	DP(NETIF_MSG_HW, "attn: %08x %08x %08x %08x %08x\n",
5152	   attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]);
5153
5154	for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
5155		if (deasserted & (1 << index)) {
5156			group_mask = &bp->attn_group[index];
5157
5158			DP(NETIF_MSG_HW, "group[%d]: %08x %08x %08x %08x %08x\n",
5159			   index,
5160			   group_mask->sig[0], group_mask->sig[1],
5161			   group_mask->sig[2], group_mask->sig[3],
5162			   group_mask->sig[4]);
5163
5164			bnx2x_attn_int_deasserted4(bp,
5165					attn.sig[4] & group_mask->sig[4]);
5166			bnx2x_attn_int_deasserted3(bp,
5167					attn.sig[3] & group_mask->sig[3]);
5168			bnx2x_attn_int_deasserted1(bp,
5169					attn.sig[1] & group_mask->sig[1]);
5170			bnx2x_attn_int_deasserted2(bp,
5171					attn.sig[2] & group_mask->sig[2]);
5172			bnx2x_attn_int_deasserted0(bp,
5173					attn.sig[0] & group_mask->sig[0]);
5174		}
5175	}
5176
5177	bnx2x_release_alr(bp);
5178
5179	if (bp->common.int_block == INT_BLOCK_HC)
5180		reg_addr = (HC_REG_COMMAND_REG + port*32 +
5181			    COMMAND_REG_ATTN_BITS_CLR);
5182	else
5183		reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8);
5184
5185	val = ~deasserted;
5186	DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", val,
5187	   (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
5188	REG_WR(bp, reg_addr, val);
5189
5190	if (~bp->attn_state & deasserted)
5191		BNX2X_ERR("IGU ERROR\n");
5192
5193	reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
5194			  MISC_REG_AEU_MASK_ATTN_FUNC_0;
5195
5196	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
5197	aeu_mask = REG_RD(bp, reg_addr);
5198
5199	DP(NETIF_MSG_HW, "aeu_mask %x  newly deasserted %x\n",
5200	   aeu_mask, deasserted);
5201	aeu_mask |= (deasserted & 0x3ff);
5202	DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
5203
5204	REG_WR(bp, reg_addr, aeu_mask);
5205	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
5206
5207	DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
5208	bp->attn_state &= ~deasserted;
5209	DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
5210}
5211
5212static void bnx2x_attn_int(struct bnx2x *bp)
5213{
5214	/* read local copy of bits */
5215	u32 attn_bits = le32_to_cpu(bp->def_status_blk->atten_status_block.
5216								attn_bits);
5217	u32 attn_ack = le32_to_cpu(bp->def_status_blk->atten_status_block.
5218								attn_bits_ack);
5219	u32 attn_state = bp->attn_state;
5220
5221	/* look for changed bits */
5222	u32 asserted   =  attn_bits & ~attn_ack & ~attn_state;
5223	u32 deasserted = ~attn_bits &  attn_ack &  attn_state;
5224
5225	DP(NETIF_MSG_HW,
5226	   "attn_bits %x  attn_ack %x  asserted %x  deasserted %x\n",
5227	   attn_bits, attn_ack, asserted, deasserted);
5228
5229	if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state))
5230		BNX2X_ERR("BAD attention state\n");
5231
5232	/* handle bits that were raised */
5233	if (asserted)
5234		bnx2x_attn_int_asserted(bp, asserted);
5235
5236	if (deasserted)
5237		bnx2x_attn_int_deasserted(bp, deasserted);
5238}
5239
5240void bnx2x_igu_ack_sb(struct bnx2x *bp, u8 igu_sb_id, u8 segment,
5241		      u16 index, u8 op, u8 update)
5242{
5243	u32 igu_addr = bp->igu_base_addr;
5244	igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8;
5245	bnx2x_igu_ack_sb_gen(bp, igu_sb_id, segment, index, op, update,
5246			     igu_addr);
5247}
5248
5249static void bnx2x_update_eq_prod(struct bnx2x *bp, u16 prod)
5250{
5251	/* No memory barriers */
5252	storm_memset_eq_prod(bp, prod, BP_FUNC(bp));
5253}
5254
5255static int  bnx2x_cnic_handle_cfc_del(struct bnx2x *bp, u32 cid,
5256				      union event_ring_elem *elem)
5257{
5258	u8 err = elem->message.error;
5259
5260	if (!bp->cnic_eth_dev.starting_cid  ||
5261	    (cid < bp->cnic_eth_dev.starting_cid &&
5262	    cid != bp->cnic_eth_dev.iscsi_l2_cid))
5263		return 1;
5264
5265	DP(BNX2X_MSG_SP, "got delete ramrod for CNIC CID %d\n", cid);
5266
5267	if (unlikely(err)) {
5268
5269		BNX2X_ERR("got delete ramrod for CNIC CID %d with error!\n",
5270			  cid);
5271		bnx2x_panic_dump(bp, false);
5272	}
5273	bnx2x_cnic_cfc_comp(bp, cid, err);
5274	return 0;
5275}
5276
5277static void bnx2x_handle_mcast_eqe(struct bnx2x *bp)
5278{
5279	struct bnx2x_mcast_ramrod_params rparam;
5280	int rc;
5281
5282	memset(&rparam, 0, sizeof(rparam));
5283
5284	rparam.mcast_obj = &bp->mcast_obj;
5285
5286	netif_addr_lock_bh(bp->dev);
5287
5288	/* Clear pending state for the last command */
5289	bp->mcast_obj.raw.clear_pending(&bp->mcast_obj.raw);
5290
5291	/* If there are pending mcast commands - send them */
5292	if (bp->mcast_obj.check_pending(&bp->mcast_obj)) {
5293		rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
5294		if (rc < 0)
5295			BNX2X_ERR("Failed to send pending mcast commands: %d\n",
5296				  rc);
5297	}
5298
5299	netif_addr_unlock_bh(bp->dev);
5300}
5301
5302static void bnx2x_handle_classification_eqe(struct bnx2x *bp,
5303					    union event_ring_elem *elem)
5304{
5305	unsigned long ramrod_flags = 0;
5306	int rc = 0;
5307	u32 echo = le32_to_cpu(elem->message.data.eth_event.echo);
5308	u32 cid = echo & BNX2X_SWCID_MASK;
5309	struct bnx2x_vlan_mac_obj *vlan_mac_obj;
5310
5311	/* Always push next commands out, don't wait here */
5312	__set_bit(RAMROD_CONT, &ramrod_flags);
5313
5314	switch (echo >> BNX2X_SWCID_SHIFT) {
5315	case BNX2X_FILTER_MAC_PENDING:
5316		DP(BNX2X_MSG_SP, "Got SETUP_MAC completions\n");
5317		if (CNIC_LOADED(bp) && (cid == BNX2X_ISCSI_ETH_CID(bp)))
5318			vlan_mac_obj = &bp->iscsi_l2_mac_obj;
5319		else
5320			vlan_mac_obj = &bp->sp_objs[cid].mac_obj;
5321
5322		break;
5323	case BNX2X_FILTER_VLAN_PENDING:
5324		DP(BNX2X_MSG_SP, "Got SETUP_VLAN completions\n");
5325		vlan_mac_obj = &bp->sp_objs[cid].vlan_obj;
5326		break;
5327	case BNX2X_FILTER_MCAST_PENDING:
5328		DP(BNX2X_MSG_SP, "Got SETUP_MCAST completions\n");
5329		/* This is only relevant for 57710 where multicast MACs are
5330		 * configured as unicast MACs using the same ramrod.
5331		 */
5332		bnx2x_handle_mcast_eqe(bp);
5333		return;
5334	default:
5335		BNX2X_ERR("Unsupported classification command: 0x%x\n", echo);
5336		return;
5337	}
5338
5339	rc = vlan_mac_obj->complete(bp, vlan_mac_obj, elem, &ramrod_flags);
5340
5341	if (rc < 0)
5342		BNX2X_ERR("Failed to schedule new commands: %d\n", rc);
5343	else if (rc > 0)
5344		DP(BNX2X_MSG_SP, "Scheduled next pending commands...\n");
5345}
5346
5347static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start);
5348
5349static void bnx2x_handle_rx_mode_eqe(struct bnx2x *bp)
5350{
5351	netif_addr_lock_bh(bp->dev);
5352
5353	clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
5354
5355	/* Send rx_mode command again if was requested */
5356	if (test_and_clear_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state))
5357		bnx2x_set_storm_rx_mode(bp);
5358	else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED,
5359				    &bp->sp_state))
5360		bnx2x_set_iscsi_eth_rx_mode(bp, true);
5361	else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED,
5362				    &bp->sp_state))
5363		bnx2x_set_iscsi_eth_rx_mode(bp, false);
5364
5365	netif_addr_unlock_bh(bp->dev);
5366}
5367
5368static void bnx2x_after_afex_vif_lists(struct bnx2x *bp,
5369					      union event_ring_elem *elem)
5370{
5371	if (elem->message.data.vif_list_event.echo == VIF_LIST_RULE_GET) {
5372		DP(BNX2X_MSG_SP,
5373		   "afex: ramrod completed VIF LIST_GET, addrs 0x%x\n",
5374		   elem->message.data.vif_list_event.func_bit_map);
5375		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTGET_ACK,
5376			elem->message.data.vif_list_event.func_bit_map);
5377	} else if (elem->message.data.vif_list_event.echo ==
5378		   VIF_LIST_RULE_SET) {
5379		DP(BNX2X_MSG_SP, "afex: ramrod completed VIF LIST_SET\n");
5380		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTSET_ACK, 0);
5381	}
5382}
5383
5384/* called with rtnl_lock */
5385static void bnx2x_after_function_update(struct bnx2x *bp)
5386{
5387	int q, rc;
5388	struct bnx2x_fastpath *fp;
5389	struct bnx2x_queue_state_params queue_params = {NULL};
5390	struct bnx2x_queue_update_params *q_update_params =
5391		&queue_params.params.update;
5392
5393	/* Send Q update command with afex vlan removal values for all Qs */
5394	queue_params.cmd = BNX2X_Q_CMD_UPDATE;
5395
5396	/* set silent vlan removal values according to vlan mode */
5397	__set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG,
5398		  &q_update_params->update_flags);
5399	__set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM,
5400		  &q_update_params->update_flags);
5401	__set_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
5402
5403	/* in access mode mark mask and value are 0 to strip all vlans */
5404	if (bp->afex_vlan_mode == FUNC_MF_CFG_AFEX_VLAN_ACCESS_MODE) {
5405		q_update_params->silent_removal_value = 0;
5406		q_update_params->silent_removal_mask = 0;
5407	} else {
5408		q_update_params->silent_removal_value =
5409			(bp->afex_def_vlan_tag & VLAN_VID_MASK);
5410		q_update_params->silent_removal_mask = VLAN_VID_MASK;
5411	}
5412
5413	for_each_eth_queue(bp, q) {
5414		/* Set the appropriate Queue object */
5415		fp = &bp->fp[q];
5416		queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
5417
5418		/* send the ramrod */
5419		rc = bnx2x_queue_state_change(bp, &queue_params);
5420		if (rc < 0)
5421			BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
5422				  q);
5423	}
5424
5425	if (!NO_FCOE(bp) && CNIC_ENABLED(bp)) {
5426		fp = &bp->fp[FCOE_IDX(bp)];
5427		queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
5428
5429		/* clear pending completion bit */
5430		__clear_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
5431
5432		/* mark latest Q bit */
5433		smp_mb__before_atomic();
5434		set_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
5435		smp_mb__after_atomic();
5436
5437		/* send Q update ramrod for FCoE Q */
5438		rc = bnx2x_queue_state_change(bp, &queue_params);
5439		if (rc < 0)
5440			BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
5441				  q);
5442	} else {
5443		/* If no FCoE ring - ACK MCP now */
5444		bnx2x_link_report(bp);
5445		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
5446	}
5447}
5448
5449static struct bnx2x_queue_sp_obj *bnx2x_cid_to_q_obj(
5450	struct bnx2x *bp, u32 cid)
5451{
5452	DP(BNX2X_MSG_SP, "retrieving fp from cid %d\n", cid);
5453
5454	if (CNIC_LOADED(bp) && (cid == BNX2X_FCOE_ETH_CID(bp)))
5455		return &bnx2x_fcoe_sp_obj(bp, q_obj);
5456	else
5457		return &bp->sp_objs[CID_TO_FP(cid, bp)].q_obj;
5458}
5459
5460static void bnx2x_eq_int(struct bnx2x *bp)
5461{
5462	u16 hw_cons, sw_cons, sw_prod;
5463	union event_ring_elem *elem;
5464	u8 echo;
5465	u32 cid;
5466	u8 opcode;
5467	int rc, spqe_cnt = 0;
5468	struct bnx2x_queue_sp_obj *q_obj;
5469	struct bnx2x_func_sp_obj *f_obj = &bp->func_obj;
5470	struct bnx2x_raw_obj *rss_raw = &bp->rss_conf_obj.raw;
5471
5472	hw_cons = le16_to_cpu(*bp->eq_cons_sb);
5473
5474	/* The hw_cos range is 1-255, 257 - the sw_cons range is 0-254, 256.
5475	 * when we get the next-page we need to adjust so the loop
5476	 * condition below will be met. The next element is the size of a
5477	 * regular element and hence incrementing by 1
5478	 */
5479	if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE)
5480		hw_cons++;
5481
5482	/* This function may never run in parallel with itself for a
5483	 * specific bp, thus there is no need in "paired" read memory
5484	 * barrier here.
5485	 */
5486	sw_cons = bp->eq_cons;
5487	sw_prod = bp->eq_prod;
5488
5489	DP(BNX2X_MSG_SP, "EQ:  hw_cons %u  sw_cons %u bp->eq_spq_left %x\n",
5490			hw_cons, sw_cons, atomic_read(&bp->eq_spq_left));
5491
5492	for (; sw_cons != hw_cons;
5493	      sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
5494
5495		elem = &bp->eq_ring[EQ_DESC(sw_cons)];
5496
5497		rc = bnx2x_iov_eq_sp_event(bp, elem);
5498		if (!rc) {
5499			DP(BNX2X_MSG_IOV, "bnx2x_iov_eq_sp_event returned %d\n",
5500			   rc);
5501			goto next_spqe;
5502		}
5503
5504		opcode = elem->message.opcode;
5505
5506		/* handle eq element */
5507		switch (opcode) {
5508		case EVENT_RING_OPCODE_VF_PF_CHANNEL:
5509			bnx2x_vf_mbx_schedule(bp,
5510					      &elem->message.data.vf_pf_event);
5511			continue;
5512
5513		case EVENT_RING_OPCODE_STAT_QUERY:
5514			DP_AND((BNX2X_MSG_SP | BNX2X_MSG_STATS),
5515			       "got statistics comp event %d\n",
5516			       bp->stats_comp++);
5517			/* nothing to do with stats comp */
5518			goto next_spqe;
5519
5520		case EVENT_RING_OPCODE_CFC_DEL:
5521			/* handle according to cid range */
5522			/*
5523			 * we may want to verify here that the bp state is
5524			 * HALTING
5525			 */
5526
5527			/* elem CID originates from FW; actually LE */
5528			cid = SW_CID(elem->message.data.cfc_del_event.cid);
5529
5530			DP(BNX2X_MSG_SP,
5531			   "got delete ramrod for MULTI[%d]\n", cid);
5532
5533			if (CNIC_LOADED(bp) &&
5534			    !bnx2x_cnic_handle_cfc_del(bp, cid, elem))
5535				goto next_spqe;
5536
5537			q_obj = bnx2x_cid_to_q_obj(bp, cid);
5538
5539			if (q_obj->complete_cmd(bp, q_obj, BNX2X_Q_CMD_CFC_DEL))
5540				break;
5541
5542			goto next_spqe;
5543
5544		case EVENT_RING_OPCODE_STOP_TRAFFIC:
5545			DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got STOP TRAFFIC\n");
5546			bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_PAUSED);
5547			if (f_obj->complete_cmd(bp, f_obj,
5548						BNX2X_F_CMD_TX_STOP))
5549				break;
5550			goto next_spqe;
5551
5552		case EVENT_RING_OPCODE_START_TRAFFIC:
5553			DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got START TRAFFIC\n");
5554			bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_RELEASED);
5555			if (f_obj->complete_cmd(bp, f_obj,
5556						BNX2X_F_CMD_TX_START))
5557				break;
5558			goto next_spqe;
5559
5560		case EVENT_RING_OPCODE_FUNCTION_UPDATE:
5561			echo = elem->message.data.function_update_event.echo;
5562			if (echo == SWITCH_UPDATE) {
5563				DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5564				   "got FUNC_SWITCH_UPDATE ramrod\n");
5565				if (f_obj->complete_cmd(
5566					bp, f_obj, BNX2X_F_CMD_SWITCH_UPDATE))
5567					break;
5568
5569			} else {
5570				int cmd = BNX2X_SP_RTNL_AFEX_F_UPDATE;
5571
5572				DP(BNX2X_MSG_SP | BNX2X_MSG_MCP,
5573				   "AFEX: ramrod completed FUNCTION_UPDATE\n");
5574				f_obj->complete_cmd(bp, f_obj,
5575						    BNX2X_F_CMD_AFEX_UPDATE);
5576
5577				/* We will perform the Queues update from
5578				 * sp_rtnl task as all Queue SP operations
5579				 * should run under rtnl_lock.
5580				 */
5581				bnx2x_schedule_sp_rtnl(bp, cmd, 0);
5582			}
5583
5584			goto next_spqe;
5585
5586		case EVENT_RING_OPCODE_AFEX_VIF_LISTS:
5587			f_obj->complete_cmd(bp, f_obj,
5588					    BNX2X_F_CMD_AFEX_VIFLISTS);
5589			bnx2x_after_afex_vif_lists(bp, elem);
5590			goto next_spqe;
5591		case EVENT_RING_OPCODE_FUNCTION_START:
5592			DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5593			   "got FUNC_START ramrod\n");
5594			if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_START))
5595				break;
5596
5597			goto next_spqe;
5598
5599		case EVENT_RING_OPCODE_FUNCTION_STOP:
5600			DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5601			   "got FUNC_STOP ramrod\n");
5602			if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_STOP))
5603				break;
5604
5605			goto next_spqe;
5606
5607		case EVENT_RING_OPCODE_SET_TIMESYNC:
5608			DP(BNX2X_MSG_SP | BNX2X_MSG_PTP,
5609			   "got set_timesync ramrod completion\n");
5610			if (f_obj->complete_cmd(bp, f_obj,
5611						BNX2X_F_CMD_SET_TIMESYNC))
5612				break;
5613			goto next_spqe;
5614		}
5615
5616		switch (opcode | bp->state) {
5617		case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5618		      BNX2X_STATE_OPEN):
5619		case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5620		      BNX2X_STATE_OPENING_WAIT4_PORT):
5621		case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5622		      BNX2X_STATE_CLOSING_WAIT4_HALT):
5623			DP(BNX2X_MSG_SP, "got RSS_UPDATE ramrod. CID %d\n",
5624			   SW_CID(elem->message.data.eth_event.echo));
5625			rss_raw->clear_pending(rss_raw);
5626			break;
5627
5628		case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_OPEN):
5629		case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_DIAG):
5630		case (EVENT_RING_OPCODE_SET_MAC |
5631		      BNX2X_STATE_CLOSING_WAIT4_HALT):
5632		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5633		      BNX2X_STATE_OPEN):
5634		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5635		      BNX2X_STATE_DIAG):
5636		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5637		      BNX2X_STATE_CLOSING_WAIT4_HALT):
5638			DP(BNX2X_MSG_SP, "got (un)set vlan/mac ramrod\n");
5639			bnx2x_handle_classification_eqe(bp, elem);
5640			break;
5641
5642		case (EVENT_RING_OPCODE_MULTICAST_RULES |
5643		      BNX2X_STATE_OPEN):
5644		case (EVENT_RING_OPCODE_MULTICAST_RULES |
5645		      BNX2X_STATE_DIAG):
5646		case (EVENT_RING_OPCODE_MULTICAST_RULES |
5647		      BNX2X_STATE_CLOSING_WAIT4_HALT):
5648			DP(BNX2X_MSG_SP, "got mcast ramrod\n");
5649			bnx2x_handle_mcast_eqe(bp);
5650			break;
5651
5652		case (EVENT_RING_OPCODE_FILTERS_RULES |
5653		      BNX2X_STATE_OPEN):
5654		case (EVENT_RING_OPCODE_FILTERS_RULES |
5655		      BNX2X_STATE_DIAG):
5656		case (EVENT_RING_OPCODE_FILTERS_RULES |
5657		      BNX2X_STATE_CLOSING_WAIT4_HALT):
5658			DP(BNX2X_MSG_SP, "got rx_mode ramrod\n");
5659			bnx2x_handle_rx_mode_eqe(bp);
5660			break;
5661		default:
5662			/* unknown event log error and continue */
5663			BNX2X_ERR("Unknown EQ event %d, bp->state 0x%x\n",
5664				  elem->message.opcode, bp->state);
5665		}
5666next_spqe:
5667		spqe_cnt++;
5668	} /* for */
5669
5670	smp_mb__before_atomic();
5671	atomic_add(spqe_cnt, &bp->eq_spq_left);
5672
5673	bp->eq_cons = sw_cons;
5674	bp->eq_prod = sw_prod;
5675	/* Make sure that above mem writes were issued towards the memory */
5676	smp_wmb();
5677
5678	/* update producer */
5679	bnx2x_update_eq_prod(bp, bp->eq_prod);
5680}
5681
5682static void bnx2x_sp_task(struct work_struct *work)
5683{
5684	struct bnx2x *bp = container_of(work, struct bnx2x, sp_task.work);
5685
5686	DP(BNX2X_MSG_SP, "sp task invoked\n");
5687
5688	/* make sure the atomic interrupt_occurred has been written */
5689	smp_rmb();
5690	if (atomic_read(&bp->interrupt_occurred)) {
5691
5692		/* what work needs to be performed? */
5693		u16 status = bnx2x_update_dsb_idx(bp);
5694
5695		DP(BNX2X_MSG_SP, "status %x\n", status);
5696		DP(BNX2X_MSG_SP, "setting interrupt_occurred to 0\n");
5697		atomic_set(&bp->interrupt_occurred, 0);
5698
5699		/* HW attentions */
5700		if (status & BNX2X_DEF_SB_ATT_IDX) {
5701			bnx2x_attn_int(bp);
5702			status &= ~BNX2X_DEF_SB_ATT_IDX;
5703		}
5704
5705		/* SP events: STAT_QUERY and others */
5706		if (status & BNX2X_DEF_SB_IDX) {
5707			struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
5708
5709			if (FCOE_INIT(bp) &&
5710			    (bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) {
5711				/* Prevent local bottom-halves from running as
5712				 * we are going to change the local NAPI list.
5713				 */
5714				local_bh_disable();
5715				napi_schedule(&bnx2x_fcoe(bp, napi));
5716				local_bh_enable();
5717			}
5718
5719			/* Handle EQ completions */
5720			bnx2x_eq_int(bp);
5721			bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID,
5722				     le16_to_cpu(bp->def_idx), IGU_INT_NOP, 1);
5723
5724			status &= ~BNX2X_DEF_SB_IDX;
5725		}
5726
5727		/* if status is non zero then perhaps something went wrong */
5728		if (unlikely(status))
5729			DP(BNX2X_MSG_SP,
5730			   "got an unknown interrupt! (status 0x%x)\n", status);
5731
5732		/* ack status block only if something was actually handled */
5733		bnx2x_ack_sb(bp, bp->igu_dsb_id, ATTENTION_ID,
5734			     le16_to_cpu(bp->def_att_idx), IGU_INT_ENABLE, 1);
5735	}
5736
5737	/* afex - poll to check if VIFSET_ACK should be sent to MFW */
5738	if (test_and_clear_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK,
5739			       &bp->sp_state)) {
5740		bnx2x_link_report(bp);
5741		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
5742	}
5743}
5744
5745irqreturn_t bnx2x_msix_sp_int(int irq, void *dev_instance)
5746{
5747	struct net_device *dev = dev_instance;
5748	struct bnx2x *bp = netdev_priv(dev);
5749
5750	bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0,
5751		     IGU_INT_DISABLE, 0);
5752
5753#ifdef BNX2X_STOP_ON_ERROR
5754	if (unlikely(bp->panic))
5755		return IRQ_HANDLED;
5756#endif
5757
5758	if (CNIC_LOADED(bp)) {
5759		struct cnic_ops *c_ops;
5760
5761		rcu_read_lock();
5762		c_ops = rcu_dereference(bp->cnic_ops);
5763		if (c_ops)
5764			c_ops->cnic_handler(bp->cnic_data, NULL);
5765		rcu_read_unlock();
5766	}
5767
5768	/* schedule sp task to perform default status block work, ack
5769	 * attentions and enable interrupts.
5770	 */
5771	bnx2x_schedule_sp_task(bp);
5772
5773	return IRQ_HANDLED;
5774}
5775
5776/* end of slow path */
5777
5778void bnx2x_drv_pulse(struct bnx2x *bp)
5779{
5780	SHMEM_WR(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb,
5781		 bp->fw_drv_pulse_wr_seq);
5782}
5783
5784static void bnx2x_timer(struct timer_list *t)
5785{
5786	struct bnx2x *bp = from_timer(bp, t, timer);
5787
5788	if (!netif_running(bp->dev))
5789		return;
5790
5791	if (IS_PF(bp) &&
5792	    !BP_NOMCP(bp)) {
5793		int mb_idx = BP_FW_MB_IDX(bp);
5794		u16 drv_pulse;
5795		u16 mcp_pulse;
5796
5797		++bp->fw_drv_pulse_wr_seq;
5798		bp->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
5799		drv_pulse = bp->fw_drv_pulse_wr_seq;
5800		bnx2x_drv_pulse(bp);
5801
5802		mcp_pulse = (SHMEM_RD(bp, func_mb[mb_idx].mcp_pulse_mb) &
5803			     MCP_PULSE_SEQ_MASK);
5804		/* The delta between driver pulse and mcp response
5805		 * should not get too big. If the MFW is more than 5 pulses
5806		 * behind, we should worry about it enough to generate an error
5807		 * log.
5808		 */
5809		if (((drv_pulse - mcp_pulse) & MCP_PULSE_SEQ_MASK) > 5)
5810			BNX2X_ERR("MFW seems hanged: drv_pulse (0x%x) != mcp_pulse (0x%x)\n",
5811				  drv_pulse, mcp_pulse);
5812	}
5813
5814	if (bp->state == BNX2X_STATE_OPEN)
5815		bnx2x_stats_handle(bp, STATS_EVENT_UPDATE);
5816
5817	/* sample pf vf bulletin board for new posts from pf */
5818	if (IS_VF(bp))
5819		bnx2x_timer_sriov(bp);
5820
5821	mod_timer(&bp->timer, jiffies + bp->current_interval);
5822}
5823
5824/* end of Statistics */
5825
5826/* nic init */
5827
5828/*
5829 * nic init service functions
5830 */
5831
5832static void bnx2x_fill(struct bnx2x *bp, u32 addr, int fill, u32 len)
5833{
5834	u32 i;
5835	if (!(len%4) && !(addr%4))
5836		for (i = 0; i < len; i += 4)
5837			REG_WR(bp, addr + i, fill);
5838	else
5839		for (i = 0; i < len; i++)
5840			REG_WR8(bp, addr + i, fill);
5841}
5842
5843/* helper: writes FP SP data to FW - data_size in dwords */
5844static void bnx2x_wr_fp_sb_data(struct bnx2x *bp,
5845				int fw_sb_id,
5846				u32 *sb_data_p,
5847				u32 data_size)
5848{
5849	int index;
5850	for (index = 0; index < data_size; index++)
5851		REG_WR(bp, BAR_CSTRORM_INTMEM +
5852			CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
5853			sizeof(u32)*index,
5854			*(sb_data_p + index));
5855}
5856
5857static void bnx2x_zero_fp_sb(struct bnx2x *bp, int fw_sb_id)
5858{
5859	u32 *sb_data_p;
5860	u32 data_size = 0;
5861	struct hc_status_block_data_e2 sb_data_e2;
5862	struct hc_status_block_data_e1x sb_data_e1x;
5863
5864	/* disable the function first */
5865	if (!CHIP_IS_E1x(bp)) {
5866		memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5867		sb_data_e2.common.state = SB_DISABLED;
5868		sb_data_e2.common.p_func.vf_valid = false;
5869		sb_data_p = (u32 *)&sb_data_e2;
5870		data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5871	} else {
5872		memset(&sb_data_e1x, 0,
5873		       sizeof(struct hc_status_block_data_e1x));
5874		sb_data_e1x.common.state = SB_DISABLED;
5875		sb_data_e1x.common.p_func.vf_valid = false;
5876		sb_data_p = (u32 *)&sb_data_e1x;
5877		data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5878	}
5879	bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
5880
5881	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5882			CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id), 0,
5883			CSTORM_STATUS_BLOCK_SIZE);
5884	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5885			CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id), 0,
5886			CSTORM_SYNC_BLOCK_SIZE);
5887}
5888
5889/* helper:  writes SP SB data to FW */
5890static void bnx2x_wr_sp_sb_data(struct bnx2x *bp,
5891		struct hc_sp_status_block_data *sp_sb_data)
5892{
5893	int func = BP_FUNC(bp);
5894	int i;
5895	for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
5896		REG_WR(bp, BAR_CSTRORM_INTMEM +
5897			CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
5898			i*sizeof(u32),
5899			*((u32 *)sp_sb_data + i));
5900}
5901
5902static void bnx2x_zero_sp_sb(struct bnx2x *bp)
5903{
5904	int func = BP_FUNC(bp);
5905	struct hc_sp_status_block_data sp_sb_data;
5906	memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
5907
5908	sp_sb_data.state = SB_DISABLED;
5909	sp_sb_data.p_func.vf_valid = false;
5910
5911	bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
5912
5913	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5914			CSTORM_SP_STATUS_BLOCK_OFFSET(func), 0,
5915			CSTORM_SP_STATUS_BLOCK_SIZE);
5916	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5917			CSTORM_SP_SYNC_BLOCK_OFFSET(func), 0,
5918			CSTORM_SP_SYNC_BLOCK_SIZE);
5919}
5920
5921static void bnx2x_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm,
5922					   int igu_sb_id, int igu_seg_id)
5923{
5924	hc_sm->igu_sb_id = igu_sb_id;
5925	hc_sm->igu_seg_id = igu_seg_id;
5926	hc_sm->timer_value = 0xFF;
5927	hc_sm->time_to_expire = 0xFFFFFFFF;
5928}
5929
5930/* allocates state machine ids. */
5931static void bnx2x_map_sb_state_machines(struct hc_index_data *index_data)
5932{
5933	/* zero out state machine indices */
5934	/* rx indices */
5935	index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5936
5937	/* tx indices */
5938	index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5939	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID;
5940	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID;
5941	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID;
5942
5943	/* map indices */
5944	/* rx indices */
5945	index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |=
5946		SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5947
5948	/* tx indices */
5949	index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |=
5950		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5951	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |=
5952		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5953	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |=
5954		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5955	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |=
5956		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5957}
5958
5959void bnx2x_init_sb(struct bnx2x *bp, dma_addr_t mapping, int vfid,
5960			  u8 vf_valid, int fw_sb_id, int igu_sb_id)
5961{
5962	int igu_seg_id;
5963
5964	struct hc_status_block_data_e2 sb_data_e2;
5965	struct hc_status_block_data_e1x sb_data_e1x;
5966	struct hc_status_block_sm  *hc_sm_p;
5967	int data_size;
5968	u32 *sb_data_p;
5969
5970	if (CHIP_INT_MODE_IS_BC(bp))
5971		igu_seg_id = HC_SEG_ACCESS_NORM;
5972	else
5973		igu_seg_id = IGU_SEG_ACCESS_NORM;
5974
5975	bnx2x_zero_fp_sb(bp, fw_sb_id);
5976
5977	if (!CHIP_IS_E1x(bp)) {
5978		memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5979		sb_data_e2.common.state = SB_ENABLED;
5980		sb_data_e2.common.p_func.pf_id = BP_FUNC(bp);
5981		sb_data_e2.common.p_func.vf_id = vfid;
5982		sb_data_e2.common.p_func.vf_valid = vf_valid;
5983		sb_data_e2.common.p_func.vnic_id = BP_VN(bp);
5984		sb_data_e2.common.same_igu_sb_1b = true;
5985		sb_data_e2.common.host_sb_addr.hi = U64_HI(mapping);
5986		sb_data_e2.common.host_sb_addr.lo = U64_LO(mapping);
5987		hc_sm_p = sb_data_e2.common.state_machine;
5988		sb_data_p = (u32 *)&sb_data_e2;
5989		data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5990		bnx2x_map_sb_state_machines(sb_data_e2.index_data);
5991	} else {
5992		memset(&sb_data_e1x, 0,
5993		       sizeof(struct hc_status_block_data_e1x));
5994		sb_data_e1x.common.state = SB_ENABLED;
5995		sb_data_e1x.common.p_func.pf_id = BP_FUNC(bp);
5996		sb_data_e1x.common.p_func.vf_id = 0xff;
5997		sb_data_e1x.common.p_func.vf_valid = false;
5998		sb_data_e1x.common.p_func.vnic_id = BP_VN(bp);
5999		sb_data_e1x.common.same_igu_sb_1b = true;
6000		sb_data_e1x.common.host_sb_addr.hi = U64_HI(mapping);
6001		sb_data_e1x.common.host_sb_addr.lo = U64_LO(mapping);
6002		hc_sm_p = sb_data_e1x.common.state_machine;
6003		sb_data_p = (u32 *)&sb_data_e1x;
6004		data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
6005		bnx2x_map_sb_state_machines(sb_data_e1x.index_data);
6006	}
6007
6008	bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID],
6009				       igu_sb_id, igu_seg_id);
6010	bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID],
6011				       igu_sb_id, igu_seg_id);
6012
6013	DP(NETIF_MSG_IFUP, "Init FW SB %d\n", fw_sb_id);
6014
6015	/* write indices to HW - PCI guarantees endianity of regpairs */
6016	bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
6017}
6018
6019static void bnx2x_update_coalesce_sb(struct bnx2x *bp, u8 fw_sb_id,
6020				     u16 tx_usec, u16 rx_usec)
6021{
6022	bnx2x_update_coalesce_sb_index(bp, fw_sb_id, HC_INDEX_ETH_RX_CQ_CONS,
6023				    false, rx_usec);
6024	bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
6025				       HC_INDEX_ETH_TX_CQ_CONS_COS0, false,
6026				       tx_usec);
6027	bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
6028				       HC_INDEX_ETH_TX_CQ_CONS_COS1, false,
6029				       tx_usec);
6030	bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
6031				       HC_INDEX_ETH_TX_CQ_CONS_COS2, false,
6032				       tx_usec);
6033}
6034
6035static void bnx2x_init_def_sb(struct bnx2x *bp)
6036{
6037	struct host_sp_status_block *def_sb = bp->def_status_blk;
6038	dma_addr_t mapping = bp->def_status_blk_mapping;
6039	int igu_sp_sb_index;
6040	int igu_seg_id;
6041	int port = BP_PORT(bp);
6042	int func = BP_FUNC(bp);
6043	int reg_offset, reg_offset_en5;
6044	u64 section;
6045	int index;
6046	struct hc_sp_status_block_data sp_sb_data;
6047	memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
6048
6049	if (CHIP_INT_MODE_IS_BC(bp)) {
6050		igu_sp_sb_index = DEF_SB_IGU_ID;
6051		igu_seg_id = HC_SEG_ACCESS_DEF;
6052	} else {
6053		igu_sp_sb_index = bp->igu_dsb_id;
6054		igu_seg_id = IGU_SEG_ACCESS_DEF;
6055	}
6056
6057	/* ATTN */
6058	section = ((u64)mapping) + offsetof(struct host_sp_status_block,
6059					    atten_status_block);
6060	def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
6061
6062	bp->attn_state = 0;
6063
6064	reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
6065			     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
6066	reg_offset_en5 = (port ? MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 :
6067				 MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0);
6068	for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
6069		int sindex;
6070		/* take care of sig[0]..sig[4] */
6071		for (sindex = 0; sindex < 4; sindex++)
6072			bp->attn_group[index].sig[sindex] =
6073			   REG_RD(bp, reg_offset + sindex*0x4 + 0x10*index);
6074
6075		if (!CHIP_IS_E1x(bp))
6076			/*
6077			 * enable5 is separate from the rest of the registers,
6078			 * and therefore the address skip is 4
6079			 * and not 16 between the different groups
6080			 */
6081			bp->attn_group[index].sig[4] = REG_RD(bp,
6082					reg_offset_en5 + 0x4*index);
6083		else
6084			bp->attn_group[index].sig[4] = 0;
6085	}
6086
6087	if (bp->common.int_block == INT_BLOCK_HC) {
6088		reg_offset = (port ? HC_REG_ATTN_MSG1_ADDR_L :
6089				     HC_REG_ATTN_MSG0_ADDR_L);
6090
6091		REG_WR(bp, reg_offset, U64_LO(section));
6092		REG_WR(bp, reg_offset + 4, U64_HI(section));
6093	} else if (!CHIP_IS_E1x(bp)) {
6094		REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
6095		REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
6096	}
6097
6098	section = ((u64)mapping) + offsetof(struct host_sp_status_block,
6099					    sp_sb);
6100
6101	bnx2x_zero_sp_sb(bp);
6102
6103	/* PCI guarantees endianity of regpairs */
6104	sp_sb_data.state		= SB_ENABLED;
6105	sp_sb_data.host_sb_addr.lo	= U64_LO(section);
6106	sp_sb_data.host_sb_addr.hi	= U64_HI(section);
6107	sp_sb_data.igu_sb_id		= igu_sp_sb_index;
6108	sp_sb_data.igu_seg_id		= igu_seg_id;
6109	sp_sb_data.p_func.pf_id		= func;
6110	sp_sb_data.p_func.vnic_id	= BP_VN(bp);
6111	sp_sb_data.p_func.vf_id		= 0xff;
6112
6113	bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
6114
6115	bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
6116}
6117
6118void bnx2x_update_coalesce(struct bnx2x *bp)
6119{
6120	int i;
6121
6122	for_each_eth_queue(bp, i)
6123		bnx2x_update_coalesce_sb(bp, bp->fp[i].fw_sb_id,
6124					 bp->tx_ticks, bp->rx_ticks);
6125}
6126
6127static void bnx2x_init_sp_ring(struct bnx2x *bp)
6128{
6129	spin_lock_init(&bp->spq_lock);
6130	atomic_set(&bp->cq_spq_left, MAX_SPQ_PENDING);
6131
6132	bp->spq_prod_idx = 0;
6133	bp->dsb_sp_prod = BNX2X_SP_DSB_INDEX;
6134	bp->spq_prod_bd = bp->spq;
6135	bp->spq_last_bd = bp->spq_prod_bd + MAX_SP_DESC_CNT;
6136}
6137
6138static void bnx2x_init_eq_ring(struct bnx2x *bp)
6139{
6140	int i;
6141	for (i = 1; i <= NUM_EQ_PAGES; i++) {
6142		union event_ring_elem *elem =
6143			&bp->eq_ring[EQ_DESC_CNT_PAGE * i - 1];
6144
6145		elem->next_page.addr.hi =
6146			cpu_to_le32(U64_HI(bp->eq_mapping +
6147				   BCM_PAGE_SIZE * (i % NUM_EQ_PAGES)));
6148		elem->next_page.addr.lo =
6149			cpu_to_le32(U64_LO(bp->eq_mapping +
6150				   BCM_PAGE_SIZE*(i % NUM_EQ_PAGES)));
6151	}
6152	bp->eq_cons = 0;
6153	bp->eq_prod = NUM_EQ_DESC;
6154	bp->eq_cons_sb = BNX2X_EQ_INDEX;
6155	/* we want a warning message before it gets wrought... */
6156	atomic_set(&bp->eq_spq_left,
6157		min_t(int, MAX_SP_DESC_CNT - MAX_SPQ_PENDING, NUM_EQ_DESC) - 1);
6158}
6159
6160/* called with netif_addr_lock_bh() */
6161static int bnx2x_set_q_rx_mode(struct bnx2x *bp, u8 cl_id,
6162			       unsigned long rx_mode_flags,
6163			       unsigned long rx_accept_flags,
6164			       unsigned long tx_accept_flags,
6165			       unsigned long ramrod_flags)
6166{
6167	struct bnx2x_rx_mode_ramrod_params ramrod_param;
6168	int rc;
6169
6170	memset(&ramrod_param, 0, sizeof(ramrod_param));
6171
6172	/* Prepare ramrod parameters */
6173	ramrod_param.cid = 0;
6174	ramrod_param.cl_id = cl_id;
6175	ramrod_param.rx_mode_obj = &bp->rx_mode_obj;
6176	ramrod_param.func_id = BP_FUNC(bp);
6177
6178	ramrod_param.pstate = &bp->sp_state;
6179	ramrod_param.state = BNX2X_FILTER_RX_MODE_PENDING;
6180
6181	ramrod_param.rdata = bnx2x_sp(bp, rx_mode_rdata);
6182	ramrod_param.rdata_mapping = bnx2x_sp_mapping(bp, rx_mode_rdata);
6183
6184	set_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
6185
6186	ramrod_param.ramrod_flags = ramrod_flags;
6187	ramrod_param.rx_mode_flags = rx_mode_flags;
6188
6189	ramrod_param.rx_accept_flags = rx_accept_flags;
6190	ramrod_param.tx_accept_flags = tx_accept_flags;
6191
6192	rc = bnx2x_config_rx_mode(bp, &ramrod_param);
6193	if (rc < 0) {
6194		BNX2X_ERR("Set rx_mode %d failed\n", bp->rx_mode);
6195		return rc;
6196	}
6197
6198	return 0;
6199}
6200
6201static int bnx2x_fill_accept_flags(struct bnx2x *bp, u32 rx_mode,
6202				   unsigned long *rx_accept_flags,
6203				   unsigned long *tx_accept_flags)
6204{
6205	/* Clear the flags first */
6206	*rx_accept_flags = 0;
6207	*tx_accept_flags = 0;
6208
6209	switch (rx_mode) {
6210	case BNX2X_RX_MODE_NONE:
6211		/*
6212		 * 'drop all' supersedes any accept flags that may have been
6213		 * passed to the function.
6214		 */
6215		break;
6216	case BNX2X_RX_MODE_NORMAL:
6217		__set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
6218		__set_bit(BNX2X_ACCEPT_MULTICAST, rx_accept_flags);
6219		__set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
6220
6221		/* internal switching mode */
6222		__set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
6223		__set_bit(BNX2X_ACCEPT_MULTICAST, tx_accept_flags);
6224		__set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
6225
6226		if (bp->accept_any_vlan) {
6227			__set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags);
6228			__set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags);
6229		}
6230
6231		break;
6232	case BNX2X_RX_MODE_ALLMULTI:
6233		__set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
6234		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags);
6235		__set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
6236
6237		/* internal switching mode */
6238		__set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
6239		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags);
6240		__set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
6241
6242		if (bp->accept_any_vlan) {
6243			__set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags);
6244			__set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags);
6245		}
6246
6247		break;
6248	case BNX2X_RX_MODE_PROMISC:
6249		/* According to definition of SI mode, iface in promisc mode
6250		 * should receive matched and unmatched (in resolution of port)
6251		 * unicast packets.
6252		 */
6253		__set_bit(BNX2X_ACCEPT_UNMATCHED, rx_accept_flags);
6254		__set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
6255		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags);
6256		__set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
6257
6258		/* internal switching mode */
6259		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags);
6260		__set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
6261
6262		if (IS_MF_SI(bp))
6263			__set_bit(BNX2X_ACCEPT_ALL_UNICAST, tx_accept_flags);
6264		else
6265			__set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
6266
6267		__set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags);
6268		__set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags);
6269
6270		break;
6271	default:
6272		BNX2X_ERR("Unknown rx_mode: %d\n", rx_mode);
6273		return -EINVAL;
6274	}
6275
6276	return 0;
6277}
6278
6279/* called with netif_addr_lock_bh() */
6280static int bnx2x_set_storm_rx_mode(struct bnx2x *bp)
6281{
6282	unsigned long rx_mode_flags = 0, ramrod_flags = 0;
6283	unsigned long rx_accept_flags = 0, tx_accept_flags = 0;
6284	int rc;
6285
6286	if (!NO_FCOE(bp))
6287		/* Configure rx_mode of FCoE Queue */
6288		__set_bit(BNX2X_RX_MODE_FCOE_ETH, &rx_mode_flags);
6289
6290	rc = bnx2x_fill_accept_flags(bp, bp->rx_mode, &rx_accept_flags,
6291				     &tx_accept_flags);
6292	if (rc)
6293		return rc;
6294
6295	__set_bit(RAMROD_RX, &ramrod_flags);
6296	__set_bit(RAMROD_TX, &ramrod_flags);
6297
6298	return bnx2x_set_q_rx_mode(bp, bp->fp->cl_id, rx_mode_flags,
6299				   rx_accept_flags, tx_accept_flags,
6300				   ramrod_flags);
6301}
6302
6303static void bnx2x_init_internal_common(struct bnx2x *bp)
6304{
6305	int i;
6306
6307	/* Zero this manually as its initialization is
6308	   currently missing in the initTool */
6309	for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++)
6310		REG_WR(bp, BAR_USTRORM_INTMEM +
6311		       USTORM_AGG_DATA_OFFSET + i * 4, 0);
6312	if (!CHIP_IS_E1x(bp)) {
6313		REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET,
6314			CHIP_INT_MODE_IS_BC(bp) ?
6315			HC_IGU_BC_MODE : HC_IGU_NBC_MODE);
6316	}
6317}
6318
6319static void bnx2x_init_internal(struct bnx2x *bp, u32 load_code)
6320{
6321	switch (load_code) {
6322	case FW_MSG_CODE_DRV_LOAD_COMMON:
6323	case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
6324		bnx2x_init_internal_common(bp);
6325		fallthrough;
6326
6327	case FW_MSG_CODE_DRV_LOAD_PORT:
6328		/* nothing to do */
6329		fallthrough;
6330
6331	case FW_MSG_CODE_DRV_LOAD_FUNCTION:
6332		/* internal memory per function is
6333		   initialized inside bnx2x_pf_init */
6334		break;
6335
6336	default:
6337		BNX2X_ERR("Unknown load_code (0x%x) from MCP\n", load_code);
6338		break;
6339	}
6340}
6341
6342static inline u8 bnx2x_fp_igu_sb_id(struct bnx2x_fastpath *fp)
6343{
6344	return fp->bp->igu_base_sb + fp->index + CNIC_SUPPORT(fp->bp);
6345}
6346
6347static inline u8 bnx2x_fp_fw_sb_id(struct bnx2x_fastpath *fp)
6348{
6349	return fp->bp->base_fw_ndsb + fp->index + CNIC_SUPPORT(fp->bp);
6350}
6351
6352static u8 bnx2x_fp_cl_id(struct bnx2x_fastpath *fp)
6353{
6354	if (CHIP_IS_E1x(fp->bp))
6355		return BP_L_ID(fp->bp) + fp->index;
6356	else	/* We want Client ID to be the same as IGU SB ID for 57712 */
6357		return bnx2x_fp_igu_sb_id(fp);
6358}
6359
6360static void bnx2x_init_eth_fp(struct bnx2x *bp, int fp_idx)
6361{
6362	struct bnx2x_fastpath *fp = &bp->fp[fp_idx];
6363	u8 cos;
6364	unsigned long q_type = 0;
6365	u32 cids[BNX2X_MULTI_TX_COS] = { 0 };
6366	fp->rx_queue = fp_idx;
6367	fp->cid = fp_idx;
6368	fp->cl_id = bnx2x_fp_cl_id(fp);
6369	fp->fw_sb_id = bnx2x_fp_fw_sb_id(fp);
6370	fp->igu_sb_id = bnx2x_fp_igu_sb_id(fp);
6371	/* qZone id equals to FW (per path) client id */
6372	fp->cl_qzone_id  = bnx2x_fp_qzone_id(fp);
6373
6374	/* init shortcut */
6375	fp->ustorm_rx_prods_offset = bnx2x_rx_ustorm_prods_offset(fp);
6376
6377	/* Setup SB indices */
6378	fp->rx_cons_sb = BNX2X_RX_SB_INDEX;
6379
6380	/* Configure Queue State object */
6381	__set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
6382	__set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
6383
6384	BUG_ON(fp->max_cos > BNX2X_MULTI_TX_COS);
6385
6386	/* init tx data */
6387	for_each_cos_in_tx_queue(fp, cos) {
6388		bnx2x_init_txdata(bp, fp->txdata_ptr[cos],
6389				  CID_COS_TO_TX_ONLY_CID(fp->cid, cos, bp),
6390				  FP_COS_TO_TXQ(fp, cos, bp),
6391				  BNX2X_TX_SB_INDEX_BASE + cos, fp);
6392		cids[cos] = fp->txdata_ptr[cos]->cid;
6393	}
6394
6395	/* nothing more for vf to do here */
6396	if (IS_VF(bp))
6397		return;
6398
6399	bnx2x_init_sb(bp, fp->status_blk_mapping, BNX2X_VF_ID_INVALID, false,
6400		      fp->fw_sb_id, fp->igu_sb_id);
6401	bnx2x_update_fpsb_idx(fp);
6402	bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id, cids,
6403			     fp->max_cos, BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
6404			     bnx2x_sp_mapping(bp, q_rdata), q_type);
6405
6406	/**
6407	 * Configure classification DBs: Always enable Tx switching
6408	 */
6409	bnx2x_init_vlan_mac_fp_objs(fp, BNX2X_OBJ_TYPE_RX_TX);
6410
6411	DP(NETIF_MSG_IFUP,
6412	   "queue[%d]:  bnx2x_init_sb(%p,%p)  cl_id %d  fw_sb %d  igu_sb %d\n",
6413	   fp_idx, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
6414	   fp->igu_sb_id);
6415}
6416
6417static void bnx2x_init_tx_ring_one(struct bnx2x_fp_txdata *txdata)
6418{
6419	int i;
6420
6421	for (i = 1; i <= NUM_TX_RINGS; i++) {
6422		struct eth_tx_next_bd *tx_next_bd =
6423			&txdata->tx_desc_ring[TX_DESC_CNT * i - 1].next_bd;
6424
6425		tx_next_bd->addr_hi =
6426			cpu_to_le32(U64_HI(txdata->tx_desc_mapping +
6427				    BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
6428		tx_next_bd->addr_lo =
6429			cpu_to_le32(U64_LO(txdata->tx_desc_mapping +
6430				    BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
6431	}
6432
6433	*txdata->tx_cons_sb = cpu_to_le16(0);
6434
6435	SET_FLAG(txdata->tx_db.data.header.header, DOORBELL_HDR_DB_TYPE, 1);
6436	txdata->tx_db.data.zero_fill1 = 0;
6437	txdata->tx_db.data.prod = 0;
6438
6439	txdata->tx_pkt_prod = 0;
6440	txdata->tx_pkt_cons = 0;
6441	txdata->tx_bd_prod = 0;
6442	txdata->tx_bd_cons = 0;
6443	txdata->tx_pkt = 0;
6444}
6445
6446static void bnx2x_init_tx_rings_cnic(struct bnx2x *bp)
6447{
6448	int i;
6449
6450	for_each_tx_queue_cnic(bp, i)
6451		bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[0]);
6452}
6453
6454static void bnx2x_init_tx_rings(struct bnx2x *bp)
6455{
6456	int i;
6457	u8 cos;
6458
6459	for_each_eth_queue(bp, i)
6460		for_each_cos_in_tx_queue(&bp->fp[i], cos)
6461			bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[cos]);
6462}
6463
6464static void bnx2x_init_fcoe_fp(struct bnx2x *bp)
6465{
6466	struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
6467	unsigned long q_type = 0;
6468
6469	bnx2x_fcoe(bp, rx_queue) = BNX2X_NUM_ETH_QUEUES(bp);
6470	bnx2x_fcoe(bp, cl_id) = bnx2x_cnic_eth_cl_id(bp,
6471						     BNX2X_FCOE_ETH_CL_ID_IDX);
6472	bnx2x_fcoe(bp, cid) = BNX2X_FCOE_ETH_CID(bp);
6473	bnx2x_fcoe(bp, fw_sb_id) = DEF_SB_ID;
6474	bnx2x_fcoe(bp, igu_sb_id) = bp->igu_dsb_id;
6475	bnx2x_fcoe(bp, rx_cons_sb) = BNX2X_FCOE_L2_RX_INDEX;
6476	bnx2x_init_txdata(bp, bnx2x_fcoe(bp, txdata_ptr[0]),
6477			  fp->cid, FCOE_TXQ_IDX(bp), BNX2X_FCOE_L2_TX_INDEX,
6478			  fp);
6479
6480	DP(NETIF_MSG_IFUP, "created fcoe tx data (fp index %d)\n", fp->index);
6481
6482	/* qZone id equals to FW (per path) client id */
6483	bnx2x_fcoe(bp, cl_qzone_id) = bnx2x_fp_qzone_id(fp);
6484	/* init shortcut */
6485	bnx2x_fcoe(bp, ustorm_rx_prods_offset) =
6486		bnx2x_rx_ustorm_prods_offset(fp);
6487
6488	/* Configure Queue State object */
6489	__set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
6490	__set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
6491
6492	/* No multi-CoS for FCoE L2 client */
6493	BUG_ON(fp->max_cos != 1);
6494
6495	bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id,
6496			     &fp->cid, 1, BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
6497			     bnx2x_sp_mapping(bp, q_rdata), q_type);
6498
6499	DP(NETIF_MSG_IFUP,
6500	   "queue[%d]: bnx2x_init_sb(%p,%p) cl_id %d fw_sb %d igu_sb %d\n",
6501	   fp->index, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
6502	   fp->igu_sb_id);
6503}
6504
6505void bnx2x_nic_init_cnic(struct bnx2x *bp)
6506{
6507	if (!NO_FCOE(bp))
6508		bnx2x_init_fcoe_fp(bp);
6509
6510	bnx2x_init_sb(bp, bp->cnic_sb_mapping,
6511		      BNX2X_VF_ID_INVALID, false,
6512		      bnx2x_cnic_fw_sb_id(bp), bnx2x_cnic_igu_sb_id(bp));
6513
6514	/* ensure status block indices were read */
6515	rmb();
6516	bnx2x_init_rx_rings_cnic(bp);
6517	bnx2x_init_tx_rings_cnic(bp);
6518
6519	/* flush all */
6520	mb();
6521}
6522
6523void bnx2x_pre_irq_nic_init(struct bnx2x *bp)
6524{
6525	int i;
6526
6527	/* Setup NIC internals and enable interrupts */
6528	for_each_eth_queue(bp, i)
6529		bnx2x_init_eth_fp(bp, i);
6530
6531	/* ensure status block indices were read */
6532	rmb();
6533	bnx2x_init_rx_rings(bp);
6534	bnx2x_init_tx_rings(bp);
6535
6536	if (IS_PF(bp)) {
6537		/* Initialize MOD_ABS interrupts */
6538		bnx2x_init_mod_abs_int(bp, &bp->link_vars, bp->common.chip_id,
6539				       bp->common.shmem_base,
6540				       bp->common.shmem2_base, BP_PORT(bp));
6541
6542		/* initialize the default status block and sp ring */
6543		bnx2x_init_def_sb(bp);
6544		bnx2x_update_dsb_idx(bp);
6545		bnx2x_init_sp_ring(bp);
6546	} else {
6547		bnx2x_memset_stats(bp);
6548	}
6549}
6550
6551void bnx2x_post_irq_nic_init(struct bnx2x *bp, u32 load_code)
6552{
6553	bnx2x_init_eq_ring(bp);
6554	bnx2x_init_internal(bp, load_code);
6555	bnx2x_pf_init(bp);
6556	bnx2x_stats_init(bp);
6557
6558	/* flush all before enabling interrupts */
6559	mb();
6560
6561	bnx2x_int_enable(bp);
6562
6563	/* Check for SPIO5 */
6564	bnx2x_attn_int_deasserted0(bp,
6565		REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + BP_PORT(bp)*4) &
6566				   AEU_INPUTS_ATTN_BITS_SPIO5);
6567}
6568
6569/* gzip service functions */
6570static int bnx2x_gunzip_init(struct bnx2x *bp)
6571{
6572	bp->gunzip_buf = dma_alloc_coherent(&bp->pdev->dev, FW_BUF_SIZE,
6573					    &bp->gunzip_mapping, GFP_KERNEL);
6574	if (bp->gunzip_buf  == NULL)
6575		goto gunzip_nomem1;
6576
6577	bp->strm = kmalloc(sizeof(*bp->strm), GFP_KERNEL);
6578	if (bp->strm  == NULL)
6579		goto gunzip_nomem2;
6580
6581	bp->strm->workspace = vmalloc(zlib_inflate_workspacesize());
6582	if (bp->strm->workspace == NULL)
6583		goto gunzip_nomem3;
6584
6585	return 0;
6586
6587gunzip_nomem3:
6588	kfree(bp->strm);
6589	bp->strm = NULL;
6590
6591gunzip_nomem2:
6592	dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
6593			  bp->gunzip_mapping);
6594	bp->gunzip_buf = NULL;
6595
6596gunzip_nomem1:
6597	BNX2X_ERR("Cannot allocate firmware buffer for un-compression\n");
6598	return -ENOMEM;
6599}
6600
6601static void bnx2x_gunzip_end(struct bnx2x *bp)
6602{
6603	if (bp->strm) {
6604		vfree(bp->strm->workspace);
6605		kfree(bp->strm);
6606		bp->strm = NULL;
6607	}
6608
6609	if (bp->gunzip_buf) {
6610		dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
6611				  bp->gunzip_mapping);
6612		bp->gunzip_buf = NULL;
6613	}
6614}
6615
6616static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len)
6617{
6618	int n, rc;
6619
6620	/* check gzip header */
6621	if ((zbuf[0] != 0x1f) || (zbuf[1] != 0x8b) || (zbuf[2] != Z_DEFLATED)) {
6622		BNX2X_ERR("Bad gzip header\n");
6623		return -EINVAL;
6624	}
6625
6626	n = 10;
6627
6628#define FNAME				0x8
6629
6630	if (zbuf[3] & FNAME)
6631		while ((zbuf[n++] != 0) && (n < len));
6632
6633	bp->strm->next_in = (typeof(bp->strm->next_in))zbuf + n;
6634	bp->strm->avail_in = len - n;
6635	bp->strm->next_out = bp->gunzip_buf;
6636	bp->strm->avail_out = FW_BUF_SIZE;
6637
6638	rc = zlib_inflateInit2(bp->strm, -MAX_WBITS);
6639	if (rc != Z_OK)
6640		return rc;
6641
6642	rc = zlib_inflate(bp->strm, Z_FINISH);
6643	if ((rc != Z_OK) && (rc != Z_STREAM_END))
6644		netdev_err(bp->dev, "Firmware decompression error: %s\n",
6645			   bp->strm->msg);
6646
6647	bp->gunzip_outlen = (FW_BUF_SIZE - bp->strm->avail_out);
6648	if (bp->gunzip_outlen & 0x3)
6649		netdev_err(bp->dev,
6650			   "Firmware decompression error: gunzip_outlen (%d) not aligned\n",
6651				bp->gunzip_outlen);
6652	bp->gunzip_outlen >>= 2;
6653
6654	zlib_inflateEnd(bp->strm);
6655
6656	if (rc == Z_STREAM_END)
6657		return 0;
6658
6659	return rc;
6660}
6661
6662/* nic load/unload */
6663
6664/*
6665 * General service functions
6666 */
6667
6668/* send a NIG loopback debug packet */
6669static void bnx2x_lb_pckt(struct bnx2x *bp)
6670{
6671	u32 wb_write[3];
6672
6673	/* Ethernet source and destination addresses */
6674	wb_write[0] = 0x55555555;
6675	wb_write[1] = 0x55555555;
6676	wb_write[2] = 0x20;		/* SOP */
6677	REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
6678
6679	/* NON-IP protocol */
6680	wb_write[0] = 0x09000000;
6681	wb_write[1] = 0x55555555;
6682	wb_write[2] = 0x10;		/* EOP, eop_bvalid = 0 */
6683	REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
6684}
6685
6686/* some of the internal memories
6687 * are not directly readable from the driver
6688 * to test them we send debug packets
6689 */
6690static int bnx2x_int_mem_test(struct bnx2x *bp)
6691{
6692	int factor;
6693	int count, i;
6694	u32 val = 0;
6695
6696	if (CHIP_REV_IS_FPGA(bp))
6697		factor = 120;
6698	else if (CHIP_REV_IS_EMUL(bp))
6699		factor = 200;
6700	else
6701		factor = 1;
6702
6703	/* Disable inputs of parser neighbor blocks */
6704	REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
6705	REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
6706	REG_WR(bp, CFC_REG_DEBUG0, 0x1);
6707	REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
6708
6709	/*  Write 0 to parser credits for CFC search request */
6710	REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
6711
6712	/* send Ethernet packet */
6713	bnx2x_lb_pckt(bp);
6714
6715	/* TODO do i reset NIG statistic? */
6716	/* Wait until NIG register shows 1 packet of size 0x10 */
6717	count = 1000 * factor;
6718	while (count) {
6719
6720		bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6721		val = *bnx2x_sp(bp, wb_data[0]);
6722		if (val == 0x10)
6723			break;
6724
6725		usleep_range(10000, 20000);
6726		count--;
6727	}
6728	if (val != 0x10) {
6729		BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
6730		return -1;
6731	}
6732
6733	/* Wait until PRS register shows 1 packet */
6734	count = 1000 * factor;
6735	while (count) {
6736		val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6737		if (val == 1)
6738			break;
6739
6740		usleep_range(10000, 20000);
6741		count--;
6742	}
6743	if (val != 0x1) {
6744		BNX2X_ERR("PRS timeout val = 0x%x\n", val);
6745		return -2;
6746	}
6747
6748	/* Reset and init BRB, PRS */
6749	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6750	msleep(50);
6751	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6752	msleep(50);
6753	bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6754	bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6755
6756	DP(NETIF_MSG_HW, "part2\n");
6757
6758	/* Disable inputs of parser neighbor blocks */
6759	REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
6760	REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
6761	REG_WR(bp, CFC_REG_DEBUG0, 0x1);
6762	REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
6763
6764	/* Write 0 to parser credits for CFC search request */
6765	REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
6766
6767	/* send 10 Ethernet packets */
6768	for (i = 0; i < 10; i++)
6769		bnx2x_lb_pckt(bp);
6770
6771	/* Wait until NIG register shows 10 + 1
6772	   packets of size 11*0x10 = 0xb0 */
6773	count = 1000 * factor;
6774	while (count) {
6775
6776		bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6777		val = *bnx2x_sp(bp, wb_data[0]);
6778		if (val == 0xb0)
6779			break;
6780
6781		usleep_range(10000, 20000);
6782		count--;
6783	}
6784	if (val != 0xb0) {
6785		BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
6786		return -3;
6787	}
6788
6789	/* Wait until PRS register shows 2 packets */
6790	val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6791	if (val != 2)
6792		BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
6793
6794	/* Write 1 to parser credits for CFC search request */
6795	REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1);
6796
6797	/* Wait until PRS register shows 3 packets */
6798	msleep(10 * factor);
6799	/* Wait until NIG register shows 1 packet of size 0x10 */
6800	val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6801	if (val != 3)
6802		BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
6803
6804	/* clear NIG EOP FIFO */
6805	for (i = 0; i < 11; i++)
6806		REG_RD(bp, NIG_REG_INGRESS_EOP_LB_FIFO);
6807	val = REG_RD(bp, NIG_REG_INGRESS_EOP_LB_EMPTY);
6808	if (val != 1) {
6809		BNX2X_ERR("clear of NIG failed\n");
6810		return -4;
6811	}
6812
6813	/* Reset and init BRB, PRS, NIG */
6814	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6815	msleep(50);
6816	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6817	msleep(50);
6818	bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6819	bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6820	if (!CNIC_SUPPORT(bp))
6821		/* set NIC mode */
6822		REG_WR(bp, PRS_REG_NIC_MODE, 1);
6823
6824	/* Enable inputs of parser neighbor blocks */
6825	REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x7fffffff);
6826	REG_WR(bp, TCM_REG_PRS_IFEN, 0x1);
6827	REG_WR(bp, CFC_REG_DEBUG0, 0x0);
6828	REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x1);
6829
6830	DP(NETIF_MSG_HW, "done\n");
6831
6832	return 0; /* OK */
6833}
6834
6835static void bnx2x_enable_blocks_attention(struct bnx2x *bp)
6836{
6837	u32 val;
6838
6839	REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
6840	if (!CHIP_IS_E1x(bp))
6841		REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0x40);
6842	else
6843		REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0);
6844	REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
6845	REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
6846	/*
6847	 * mask read length error interrupts in brb for parser
6848	 * (parsing unit and 'checksum and crc' unit)
6849	 * these errors are legal (PU reads fixed length and CAC can cause
6850	 * read length error on truncated packets)
6851	 */
6852	REG_WR(bp, BRB1_REG_BRB1_INT_MASK, 0xFC00);
6853	REG_WR(bp, QM_REG_QM_INT_MASK, 0);
6854	REG_WR(bp, TM_REG_TM_INT_MASK, 0);
6855	REG_WR(bp, XSDM_REG_XSDM_INT_MASK_0, 0);
6856	REG_WR(bp, XSDM_REG_XSDM_INT_MASK_1, 0);
6857	REG_WR(bp, XCM_REG_XCM_INT_MASK, 0);
6858/*	REG_WR(bp, XSEM_REG_XSEM_INT_MASK_0, 0); */
6859/*	REG_WR(bp, XSEM_REG_XSEM_INT_MASK_1, 0); */
6860	REG_WR(bp, USDM_REG_USDM_INT_MASK_0, 0);
6861	REG_WR(bp, USDM_REG_USDM_INT_MASK_1, 0);
6862	REG_WR(bp, UCM_REG_UCM_INT_MASK, 0);
6863/*	REG_WR(bp, USEM_REG_USEM_INT_MASK_0, 0); */
6864/*	REG_WR(bp, USEM_REG_USEM_INT_MASK_1, 0); */
6865	REG_WR(bp, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
6866	REG_WR(bp, CSDM_REG_CSDM_INT_MASK_0, 0);
6867	REG_WR(bp, CSDM_REG_CSDM_INT_MASK_1, 0);
6868	REG_WR(bp, CCM_REG_CCM_INT_MASK, 0);
6869/*	REG_WR(bp, CSEM_REG_CSEM_INT_MASK_0, 0); */
6870/*	REG_WR(bp, CSEM_REG_CSEM_INT_MASK_1, 0); */
6871
6872	val = PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT  |
6873		PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF |
6874		PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN;
6875	if (!CHIP_IS_E1x(bp))
6876		val |= PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED |
6877			PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED;
6878	REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, val);
6879
6880	REG_WR(bp, TSDM_REG_TSDM_INT_MASK_0, 0);
6881	REG_WR(bp, TSDM_REG_TSDM_INT_MASK_1, 0);
6882	REG_WR(bp, TCM_REG_TCM_INT_MASK, 0);
6883/*	REG_WR(bp, TSEM_REG_TSEM_INT_MASK_0, 0); */
6884
6885	if (!CHIP_IS_E1x(bp))
6886		/* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
6887		REG_WR(bp, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
6888
6889	REG_WR(bp, CDU_REG_CDU_INT_MASK, 0);
6890	REG_WR(bp, DMAE_REG_DMAE_INT_MASK, 0);
6891/*	REG_WR(bp, MISC_REG_MISC_INT_MASK, 0); */
6892	REG_WR(bp, PBF_REG_PBF_INT_MASK, 0x18);		/* bit 3,4 masked */
6893}
6894
6895static void bnx2x_reset_common(struct bnx2x *bp)
6896{
6897	u32 val = 0x1400;
6898
6899	/* reset_common */
6900	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
6901	       0xd3ffff7f);
6902
6903	if (CHIP_IS_E3(bp)) {
6904		val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
6905		val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
6906	}
6907
6908	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, val);
6909}
6910
6911static void bnx2x_setup_dmae(struct bnx2x *bp)
6912{
6913	bp->dmae_ready = 0;
6914	spin_lock_init(&bp->dmae_lock);
6915}
6916
6917static void bnx2x_init_pxp(struct bnx2x *bp)
6918{
6919	u16 devctl;
6920	int r_order, w_order;
6921
6922	pcie_capability_read_word(bp->pdev, PCI_EXP_DEVCTL, &devctl);
6923	DP(NETIF_MSG_HW, "read 0x%x from devctl\n", devctl);
6924	w_order = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
6925	if (bp->mrrs == -1)
6926		r_order = ((devctl & PCI_EXP_DEVCTL_READRQ) >> 12);
6927	else {
6928		DP(NETIF_MSG_HW, "force read order to %d\n", bp->mrrs);
6929		r_order = bp->mrrs;
6930	}
6931
6932	bnx2x_init_pxp_arb(bp, r_order, w_order);
6933}
6934
6935static void bnx2x_setup_fan_failure_detection(struct bnx2x *bp)
6936{
6937	int is_required;
6938	u32 val;
6939	int port;
6940
6941	if (BP_NOMCP(bp))
6942		return;
6943
6944	is_required = 0;
6945	val = SHMEM_RD(bp, dev_info.shared_hw_config.config2) &
6946	      SHARED_HW_CFG_FAN_FAILURE_MASK;
6947
6948	if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED)
6949		is_required = 1;
6950
6951	/*
6952	 * The fan failure mechanism is usually related to the PHY type since
6953	 * the power consumption of the board is affected by the PHY. Currently,
6954	 * fan is required for most designs with SFX7101, BCM8727 and BCM8481.
6955	 */
6956	else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE)
6957		for (port = PORT_0; port < PORT_MAX; port++) {
6958			is_required |=
6959				bnx2x_fan_failure_det_req(
6960					bp,
6961					bp->common.shmem_base,
6962					bp->common.shmem2_base,
6963					port);
6964		}
6965
6966	DP(NETIF_MSG_HW, "fan detection setting: %d\n", is_required);
6967
6968	if (is_required == 0)
6969		return;
6970
6971	/* Fan failure is indicated by SPIO 5 */
6972	bnx2x_set_spio(bp, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z);
6973
6974	/* set to active low mode */
6975	val = REG_RD(bp, MISC_REG_SPIO_INT);
6976	val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS);
6977	REG_WR(bp, MISC_REG_SPIO_INT, val);
6978
6979	/* enable interrupt to signal the IGU */
6980	val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
6981	val |= MISC_SPIO_SPIO5;
6982	REG_WR(bp, MISC_REG_SPIO_EVENT_EN, val);
6983}
6984
6985void bnx2x_pf_disable(struct bnx2x *bp)
6986{
6987	u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
6988	val &= ~IGU_PF_CONF_FUNC_EN;
6989
6990	REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
6991	REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
6992	REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 0);
6993}
6994
6995static void bnx2x__common_init_phy(struct bnx2x *bp)
6996{
6997	u32 shmem_base[2], shmem2_base[2];
6998	/* Avoid common init in case MFW supports LFA */
6999	if (SHMEM2_RD(bp, size) >
7000	    (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
7001		return;
7002	shmem_base[0] =  bp->common.shmem_base;
7003	shmem2_base[0] = bp->common.shmem2_base;
7004	if (!CHIP_IS_E1x(bp)) {
7005		shmem_base[1] =
7006			SHMEM2_RD(bp, other_shmem_base_addr);
7007		shmem2_base[1] =
7008			SHMEM2_RD(bp, other_shmem2_base_addr);
7009	}
7010	bnx2x_acquire_phy_lock(bp);
7011	bnx2x_common_init_phy(bp, shmem_base, shmem2_base,
7012			      bp->common.chip_id);
7013	bnx2x_release_phy_lock(bp);
7014}
7015
7016static void bnx2x_config_endianity(struct bnx2x *bp, u32 val)
7017{
7018	REG_WR(bp, PXP2_REG_RQ_QM_ENDIAN_M, val);
7019	REG_WR(bp, PXP2_REG_RQ_TM_ENDIAN_M, val);
7020	REG_WR(bp, PXP2_REG_RQ_SRC_ENDIAN_M, val);
7021	REG_WR(bp, PXP2_REG_RQ_CDU_ENDIAN_M, val);
7022	REG_WR(bp, PXP2_REG_RQ_DBG_ENDIAN_M, val);
7023
7024	/* make sure this value is 0 */
7025	REG_WR(bp, PXP2_REG_RQ_HC_ENDIAN_M, 0);
7026
7027	REG_WR(bp, PXP2_REG_RD_QM_SWAP_MODE, val);
7028	REG_WR(bp, PXP2_REG_RD_TM_SWAP_MODE, val);
7029	REG_WR(bp, PXP2_REG_RD_SRC_SWAP_MODE, val);
7030	REG_WR(bp, PXP2_REG_RD_CDURD_SWAP_MODE, val);
7031}
7032
7033static void bnx2x_set_endianity(struct bnx2x *bp)
7034{
7035#ifdef __BIG_ENDIAN
7036	bnx2x_config_endianity(bp, 1);
7037#else
7038	bnx2x_config_endianity(bp, 0);
7039#endif
7040}
7041
7042static void bnx2x_reset_endianity(struct bnx2x *bp)
7043{
7044	bnx2x_config_endianity(bp, 0);
7045}
7046
7047/**
7048 * bnx2x_init_hw_common - initialize the HW at the COMMON phase.
7049 *
7050 * @bp:		driver handle
7051 */
7052static int bnx2x_init_hw_common(struct bnx2x *bp)
7053{
7054	u32 val;
7055
7056	DP(NETIF_MSG_HW, "starting common init  func %d\n", BP_ABS_FUNC(bp));
7057
7058	/*
7059	 * take the RESET lock to protect undi_unload flow from accessing
7060	 * registers while we're resetting the chip
7061	 */
7062	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
7063
7064	bnx2x_reset_common(bp);
7065	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0xffffffff);
7066
7067	val = 0xfffc;
7068	if (CHIP_IS_E3(bp)) {
7069		val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
7070		val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
7071	}
7072	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, val);
7073
7074	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
7075
7076	bnx2x_init_block(bp, BLOCK_MISC, PHASE_COMMON);
7077
7078	if (!CHIP_IS_E1x(bp)) {
7079		u8 abs_func_id;
7080
7081		/**
7082		 * 4-port mode or 2-port mode we need to turn of master-enable
7083		 * for everyone, after that, turn it back on for self.
7084		 * so, we disregard multi-function or not, and always disable
7085		 * for all functions on the given path, this means 0,2,4,6 for
7086		 * path 0 and 1,3,5,7 for path 1
7087		 */
7088		for (abs_func_id = BP_PATH(bp);
7089		     abs_func_id < E2_FUNC_MAX*2; abs_func_id += 2) {
7090			if (abs_func_id == BP_ABS_FUNC(bp)) {
7091				REG_WR(bp,
7092				    PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER,
7093				    1);
7094				continue;
7095			}
7096
7097			bnx2x_pretend_func(bp, abs_func_id);
7098			/* clear pf enable */
7099			bnx2x_pf_disable(bp);
7100			bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
7101		}
7102	}
7103
7104	bnx2x_init_block(bp, BLOCK_PXP, PHASE_COMMON);
7105	if (CHIP_IS_E1(bp)) {
7106		/* enable HW interrupt from PXP on USDM overflow
7107		   bit 16 on INT_MASK_0 */
7108		REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
7109	}
7110
7111	bnx2x_init_block(bp, BLOCK_PXP2, PHASE_COMMON);
7112	bnx2x_init_pxp(bp);
7113	bnx2x_set_endianity(bp);
7114	bnx2x_ilt_init_page_size(bp, INITOP_SET);
7115
7116	if (CHIP_REV_IS_FPGA(bp) && CHIP_IS_E1H(bp))
7117		REG_WR(bp, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
7118
7119	/* let the HW do it's magic ... */
7120	msleep(100);
7121	/* finish PXP init */
7122	val = REG_RD(bp, PXP2_REG_RQ_CFG_DONE);
7123	if (val != 1) {
7124		BNX2X_ERR("PXP2 CFG failed\n");
7125		return -EBUSY;
7126	}
7127	val = REG_RD(bp, PXP2_REG_RD_INIT_DONE);
7128	if (val != 1) {
7129		BNX2X_ERR("PXP2 RD_INIT failed\n");
7130		return -EBUSY;
7131	}
7132
7133	/* Timers bug workaround E2 only. We need to set the entire ILT to
7134	 * have entries with value "0" and valid bit on.
7135	 * This needs to be done by the first PF that is loaded in a path
7136	 * (i.e. common phase)
7137	 */
7138	if (!CHIP_IS_E1x(bp)) {
7139/* In E2 there is a bug in the timers block that can cause function 6 / 7
7140 * (i.e. vnic3) to start even if it is marked as "scan-off".
7141 * This occurs when a different function (func2,3) is being marked
7142 * as "scan-off". Real-life scenario for example: if a driver is being
7143 * load-unloaded while func6,7 are down. This will cause the timer to access
7144 * the ilt, translate to a logical address and send a request to read/write.
7145 * Since the ilt for the function that is down is not valid, this will cause
7146 * a translation error which is unrecoverable.
7147 * The Workaround is intended to make sure that when this happens nothing fatal
7148 * will occur. The workaround:
7149 *	1.  First PF driver which loads on a path will:
7150 *		a.  After taking the chip out of reset, by using pretend,
7151 *		    it will write "0" to the following registers of
7152 *		    the other vnics.
7153 *		    REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
7154 *		    REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
7155 *		    REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
7156 *		    And for itself it will write '1' to
7157 *		    PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
7158 *		    dmae-operations (writing to pram for example.)
7159 *		    note: can be done for only function 6,7 but cleaner this
7160 *			  way.
7161 *		b.  Write zero+valid to the entire ILT.
7162 *		c.  Init the first_timers_ilt_entry, last_timers_ilt_entry of
7163 *		    VNIC3 (of that port). The range allocated will be the
7164 *		    entire ILT. This is needed to prevent  ILT range error.
7165 *	2.  Any PF driver load flow:
7166 *		a.  ILT update with the physical addresses of the allocated
7167 *		    logical pages.
7168 *		b.  Wait 20msec. - note that this timeout is needed to make
7169 *		    sure there are no requests in one of the PXP internal
7170 *		    queues with "old" ILT addresses.
7171 *		c.  PF enable in the PGLC.
7172 *		d.  Clear the was_error of the PF in the PGLC. (could have
7173 *		    occurred while driver was down)
7174 *		e.  PF enable in the CFC (WEAK + STRONG)
7175 *		f.  Timers scan enable
7176 *	3.  PF driver unload flow:
7177 *		a.  Clear the Timers scan_en.
7178 *		b.  Polling for scan_on=0 for that PF.
7179 *		c.  Clear the PF enable bit in the PXP.
7180 *		d.  Clear the PF enable in the CFC (WEAK + STRONG)
7181 *		e.  Write zero+valid to all ILT entries (The valid bit must
7182 *		    stay set)
7183 *		f.  If this is VNIC 3 of a port then also init
7184 *		    first_timers_ilt_entry to zero and last_timers_ilt_entry
7185 *		    to the last entry in the ILT.
7186 *
7187 *	Notes:
7188 *	Currently the PF error in the PGLC is non recoverable.
7189 *	In the future the there will be a recovery routine for this error.
7190 *	Currently attention is masked.
7191 *	Having an MCP lock on the load/unload process does not guarantee that
7192 *	there is no Timer disable during Func6/7 enable. This is because the
7193 *	Timers scan is currently being cleared by the MCP on FLR.
7194 *	Step 2.d can be done only for PF6/7 and the driver can also check if
7195 *	there is error before clearing it. But the flow above is simpler and
7196 *	more general.
7197 *	All ILT entries are written by zero+valid and not just PF6/7
7198 *	ILT entries since in the future the ILT entries allocation for
7199 *	PF-s might be dynamic.
7200 */
7201		struct ilt_client_info ilt_cli;
7202		struct bnx2x_ilt ilt;
7203		memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
7204		memset(&ilt, 0, sizeof(struct bnx2x_ilt));
7205
7206		/* initialize dummy TM client */
7207		ilt_cli.start = 0;
7208		ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
7209		ilt_cli.client_num = ILT_CLIENT_TM;
7210
7211		/* Step 1: set zeroes to all ilt page entries with valid bit on
7212		 * Step 2: set the timers first/last ilt entry to point
7213		 * to the entire range to prevent ILT range error for 3rd/4th
7214		 * vnic	(this code assumes existence of the vnic)
7215		 *
7216		 * both steps performed by call to bnx2x_ilt_client_init_op()
7217		 * with dummy TM client
7218		 *
7219		 * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
7220		 * and his brother are split registers
7221		 */
7222		bnx2x_pretend_func(bp, (BP_PATH(bp) + 6));
7223		bnx2x_ilt_client_init_op_ilt(bp, &ilt, &ilt_cli, INITOP_CLEAR);
7224		bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
7225
7226		REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN, BNX2X_PXP_DRAM_ALIGN);
7227		REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_RD, BNX2X_PXP_DRAM_ALIGN);
7228		REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
7229	}
7230
7231	REG_WR(bp, PXP2_REG_RQ_DISABLE_INPUTS, 0);
7232	REG_WR(bp, PXP2_REG_RD_DISABLE_INPUTS, 0);
7233
7234	if (!CHIP_IS_E1x(bp)) {
7235		int factor = CHIP_REV_IS_EMUL(bp) ? 1000 :
7236				(CHIP_REV_IS_FPGA(bp) ? 400 : 0);
7237		bnx2x_init_block(bp, BLOCK_PGLUE_B, PHASE_COMMON);
7238
7239		bnx2x_init_block(bp, BLOCK_ATC, PHASE_COMMON);
7240
7241		/* let the HW do it's magic ... */
7242		do {
7243			msleep(200);
7244			val = REG_RD(bp, ATC_REG_ATC_INIT_DONE);
7245		} while (factor-- && (val != 1));
7246
7247		if (val != 1) {
7248			BNX2X_ERR("ATC_INIT failed\n");
7249			return -EBUSY;
7250		}
7251	}
7252
7253	bnx2x_init_block(bp, BLOCK_DMAE, PHASE_COMMON);
7254
7255	bnx2x_iov_init_dmae(bp);
7256
7257	/* clean the DMAE memory */
7258	bp->dmae_ready = 1;
7259	bnx2x_init_fill(bp, TSEM_REG_PRAM, 0, 8, 1);
7260
7261	bnx2x_init_block(bp, BLOCK_TCM, PHASE_COMMON);
7262
7263	bnx2x_init_block(bp, BLOCK_UCM, PHASE_COMMON);
7264
7265	bnx2x_init_block(bp, BLOCK_CCM, PHASE_COMMON);
7266
7267	bnx2x_init_block(bp, BLOCK_XCM, PHASE_COMMON);
7268
7269	bnx2x_read_dmae(bp, XSEM_REG_PASSIVE_BUFFER, 3);
7270	bnx2x_read_dmae(bp, CSEM_REG_PASSIVE_BUFFER, 3);
7271	bnx2x_read_dmae(bp, TSEM_REG_PASSIVE_BUFFER, 3);
7272	bnx2x_read_dmae(bp, USEM_REG_PASSIVE_BUFFER, 3);
7273
7274	bnx2x_init_block(bp, BLOCK_QM, PHASE_COMMON);
7275
7276	/* QM queues pointers table */
7277	bnx2x_qm_init_ptr_table(bp, bp->qm_cid_count, INITOP_SET);
7278
7279	/* soft reset pulse */
7280	REG_WR(bp, QM_REG_SOFT_RESET, 1);
7281	REG_WR(bp, QM_REG_SOFT_RESET, 0);
7282
7283	if (CNIC_SUPPORT(bp))
7284		bnx2x_init_block(bp, BLOCK_TM, PHASE_COMMON);
7285
7286	bnx2x_init_block(bp, BLOCK_DORQ, PHASE_COMMON);
7287
7288	if (!CHIP_REV_IS_SLOW(bp))
7289		/* enable hw interrupt from doorbell Q */
7290		REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
7291
7292	bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
7293
7294	bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
7295	REG_WR(bp, PRS_REG_A_PRSU_20, 0xf);
7296
7297	if (!CHIP_IS_E1(bp))
7298		REG_WR(bp, PRS_REG_E1HOV_MODE, bp->path_has_ovlan);
7299
7300	if (!CHIP_IS_E1x(bp) && !CHIP_IS_E3B0(bp)) {
7301		if (IS_MF_AFEX(bp)) {
7302			/* configure that VNTag and VLAN headers must be
7303			 * received in afex mode
7304			 */
7305			REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC, 0xE);
7306			REG_WR(bp, PRS_REG_MUST_HAVE_HDRS, 0xA);
7307			REG_WR(bp, PRS_REG_HDRS_AFTER_TAG_0, 0x6);
7308			REG_WR(bp, PRS_REG_TAG_ETHERTYPE_0, 0x8926);
7309			REG_WR(bp, PRS_REG_TAG_LEN_0, 0x4);
7310		} else {
7311			/* Bit-map indicating which L2 hdrs may appear
7312			 * after the basic Ethernet header
7313			 */
7314			REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC,
7315			       bp->path_has_ovlan ? 7 : 6);
7316		}
7317	}
7318
7319	bnx2x_init_block(bp, BLOCK_TSDM, PHASE_COMMON);
7320	bnx2x_init_block(bp, BLOCK_CSDM, PHASE_COMMON);
7321	bnx2x_init_block(bp, BLOCK_USDM, PHASE_COMMON);
7322	bnx2x_init_block(bp, BLOCK_XSDM, PHASE_COMMON);
7323
7324	if (!CHIP_IS_E1x(bp)) {
7325		/* reset VFC memories */
7326		REG_WR(bp, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
7327			   VFC_MEMORIES_RST_REG_CAM_RST |
7328			   VFC_MEMORIES_RST_REG_RAM_RST);
7329		REG_WR(bp, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
7330			   VFC_MEMORIES_RST_REG_CAM_RST |
7331			   VFC_MEMORIES_RST_REG_RAM_RST);
7332
7333		msleep(20);
7334	}
7335
7336	bnx2x_init_block(bp, BLOCK_TSEM, PHASE_COMMON);
7337	bnx2x_init_block(bp, BLOCK_USEM, PHASE_COMMON);
7338	bnx2x_init_block(bp, BLOCK_CSEM, PHASE_COMMON);
7339	bnx2x_init_block(bp, BLOCK_XSEM, PHASE_COMMON);
7340
7341	/* sync semi rtc */
7342	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
7343	       0x80000000);
7344	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
7345	       0x80000000);
7346
7347	bnx2x_init_block(bp, BLOCK_UPB, PHASE_COMMON);
7348	bnx2x_init_block(bp, BLOCK_XPB, PHASE_COMMON);
7349	bnx2x_init_block(bp, BLOCK_PBF, PHASE_COMMON);
7350
7351	if (!CHIP_IS_E1x(bp)) {
7352		if (IS_MF_AFEX(bp)) {
7353			/* configure that VNTag and VLAN headers must be
7354			 * sent in afex mode
7355			 */
7356			REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC, 0xE);
7357			REG_WR(bp, PBF_REG_MUST_HAVE_HDRS, 0xA);
7358			REG_WR(bp, PBF_REG_HDRS_AFTER_TAG_0, 0x6);
7359			REG_WR(bp, PBF_REG_TAG_ETHERTYPE_0, 0x8926);
7360			REG_WR(bp, PBF_REG_TAG_LEN_0, 0x4);
7361		} else {
7362			REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC,
7363			       bp->path_has_ovlan ? 7 : 6);
7364		}
7365	}
7366
7367	REG_WR(bp, SRC_REG_SOFT_RST, 1);
7368
7369	bnx2x_init_block(bp, BLOCK_SRC, PHASE_COMMON);
7370
7371	if (CNIC_SUPPORT(bp)) {
7372		REG_WR(bp, SRC_REG_KEYSEARCH_0, 0x63285672);
7373		REG_WR(bp, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
7374		REG_WR(bp, SRC_REG_KEYSEARCH_2, 0x223aef9b);
7375		REG_WR(bp, SRC_REG_KEYSEARCH_3, 0x26001e3a);
7376		REG_WR(bp, SRC_REG_KEYSEARCH_4, 0x7ae91116);
7377		REG_WR(bp, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
7378		REG_WR(bp, SRC_REG_KEYSEARCH_6, 0x298d8adf);
7379		REG_WR(bp, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
7380		REG_WR(bp, SRC_REG_KEYSEARCH_8, 0x1830f82f);
7381		REG_WR(bp, SRC_REG_KEYSEARCH_9, 0x01e46be7);
7382	}
7383	REG_WR(bp, SRC_REG_SOFT_RST, 0);
7384
7385	if (sizeof(union cdu_context) != 1024)
7386		/* we currently assume that a context is 1024 bytes */
7387		dev_alert(&bp->pdev->dev,
7388			  "please adjust the size of cdu_context(%ld)\n",
7389			  (long)sizeof(union cdu_context));
7390
7391	bnx2x_init_block(bp, BLOCK_CDU, PHASE_COMMON);
7392	val = (4 << 24) + (0 << 12) + 1024;
7393	REG_WR(bp, CDU_REG_CDU_GLOBAL_PARAMS, val);
7394
7395	bnx2x_init_block(bp, BLOCK_CFC, PHASE_COMMON);
7396	REG_WR(bp, CFC_REG_INIT_REG, 0x7FF);
7397	/* enable context validation interrupt from CFC */
7398	REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
7399
7400	/* set the thresholds to prevent CFC/CDU race */
7401	REG_WR(bp, CFC_REG_DEBUG0, 0x20020000);
7402
7403	bnx2x_init_block(bp, BLOCK_HC, PHASE_COMMON);
7404
7405	if (!CHIP_IS_E1x(bp) && BP_NOMCP(bp))
7406		REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x36);
7407
7408	bnx2x_init_block(bp, BLOCK_IGU, PHASE_COMMON);
7409	bnx2x_init_block(bp, BLOCK_MISC_AEU, PHASE_COMMON);
7410
7411	/* Reset PCIE errors for debug */
7412	REG_WR(bp, 0x2814, 0xffffffff);
7413	REG_WR(bp, 0x3820, 0xffffffff);
7414
7415	if (!CHIP_IS_E1x(bp)) {
7416		REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
7417			   (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
7418				PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
7419		REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
7420			   (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
7421				PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
7422				PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
7423		REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
7424			   (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
7425				PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
7426				PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
7427	}
7428
7429	bnx2x_init_block(bp, BLOCK_NIG, PHASE_COMMON);
7430	if (!CHIP_IS_E1(bp)) {
7431		/* in E3 this done in per-port section */
7432		if (!CHIP_IS_E3(bp))
7433			REG_WR(bp, NIG_REG_LLH_MF_MODE, IS_MF(bp));
7434	}
7435	if (CHIP_IS_E1H(bp))
7436		/* not applicable for E2 (and above ...) */
7437		REG_WR(bp, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(bp));
7438
7439	if (CHIP_REV_IS_SLOW(bp))
7440		msleep(200);
7441
7442	/* finish CFC init */
7443	val = reg_poll(bp, CFC_REG_LL_INIT_DONE, 1, 100, 10);
7444	if (val != 1) {
7445		BNX2X_ERR("CFC LL_INIT failed\n");
7446		return -EBUSY;
7447	}
7448	val = reg_poll(bp, CFC_REG_AC_INIT_DONE, 1, 100, 10);
7449	if (val != 1) {
7450		BNX2X_ERR("CFC AC_INIT failed\n");
7451		return -EBUSY;
7452	}
7453	val = reg_poll(bp, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
7454	if (val != 1) {
7455		BNX2X_ERR("CFC CAM_INIT failed\n");
7456		return -EBUSY;
7457	}
7458	REG_WR(bp, CFC_REG_DEBUG0, 0);
7459
7460	if (CHIP_IS_E1(bp)) {
7461		/* read NIG statistic
7462		   to see if this is our first up since powerup */
7463		bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
7464		val = *bnx2x_sp(bp, wb_data[0]);
7465
7466		/* do internal memory self test */
7467		if ((val == 0) && bnx2x_int_mem_test(bp)) {
7468			BNX2X_ERR("internal mem self test failed\n");
7469			return -EBUSY;
7470		}
7471	}
7472
7473	bnx2x_setup_fan_failure_detection(bp);
7474
7475	/* clear PXP2 attentions */
7476	REG_RD(bp, PXP2_REG_PXP2_INT_STS_CLR_0);
7477
7478	bnx2x_enable_blocks_attention(bp);
7479	bnx2x_enable_blocks_parity(bp);
7480
7481	if (!BP_NOMCP(bp)) {
7482		if (CHIP_IS_E1x(bp))
7483			bnx2x__common_init_phy(bp);
7484	} else
7485		BNX2X_ERR("Bootcode is missing - can not initialize link\n");
7486
7487	if (SHMEM2_HAS(bp, netproc_fw_ver))
7488		SHMEM2_WR(bp, netproc_fw_ver, REG_RD(bp, XSEM_REG_PRAM));
7489
7490	return 0;
7491}
7492
7493/**
7494 * bnx2x_init_hw_common_chip - init HW at the COMMON_CHIP phase.
7495 *
7496 * @bp:		driver handle
7497 */
7498static int bnx2x_init_hw_common_chip(struct bnx2x *bp)
7499{
7500	int rc = bnx2x_init_hw_common(bp);
7501
7502	if (rc)
7503		return rc;
7504
7505	/* In E2 2-PORT mode, same ext phy is used for the two paths */
7506	if (!BP_NOMCP(bp))
7507		bnx2x__common_init_phy(bp);
7508
7509	return 0;
7510}
7511
7512static int bnx2x_init_hw_port(struct bnx2x *bp)
7513{
7514	int port = BP_PORT(bp);
7515	int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
7516	u32 low, high;
7517	u32 val, reg;
7518
7519	DP(NETIF_MSG_HW, "starting port init  port %d\n", port);
7520
7521	REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
7522
7523	bnx2x_init_block(bp, BLOCK_MISC, init_phase);
7524	bnx2x_init_block(bp, BLOCK_PXP, init_phase);
7525	bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
7526
7527	/* Timers bug workaround: disables the pf_master bit in pglue at
7528	 * common phase, we need to enable it here before any dmae access are
7529	 * attempted. Therefore we manually added the enable-master to the
7530	 * port phase (it also happens in the function phase)
7531	 */
7532	if (!CHIP_IS_E1x(bp))
7533		REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
7534
7535	bnx2x_init_block(bp, BLOCK_ATC, init_phase);
7536	bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
7537	bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
7538	bnx2x_init_block(bp, BLOCK_QM, init_phase);
7539
7540	bnx2x_init_block(bp, BLOCK_TCM, init_phase);
7541	bnx2x_init_block(bp, BLOCK_UCM, init_phase);
7542	bnx2x_init_block(bp, BLOCK_CCM, init_phase);
7543	bnx2x_init_block(bp, BLOCK_XCM, init_phase);
7544
7545	/* QM cid (connection) count */
7546	bnx2x_qm_init_cid_count(bp, bp->qm_cid_count, INITOP_SET);
7547
7548	if (CNIC_SUPPORT(bp)) {
7549		bnx2x_init_block(bp, BLOCK_TM, init_phase);
7550		REG_WR(bp, TM_REG_LIN0_SCAN_TIME + port*4, 20);
7551		REG_WR(bp, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31);
7552	}
7553
7554	bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
7555
7556	bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
7557
7558	if (CHIP_IS_E1(bp) || CHIP_IS_E1H(bp)) {
7559
7560		if (IS_MF(bp))
7561			low = ((bp->flags & ONE_PORT_FLAG) ? 160 : 246);
7562		else if (bp->dev->mtu > 4096) {
7563			if (bp->flags & ONE_PORT_FLAG)
7564				low = 160;
7565			else {
7566				val = bp->dev->mtu;
7567				/* (24*1024 + val*4)/256 */
7568				low = 96 + (val/64) +
7569						((val % 64) ? 1 : 0);
7570			}
7571		} else
7572			low = ((bp->flags & ONE_PORT_FLAG) ? 80 : 160);
7573		high = low + 56;	/* 14*1024/256 */
7574		REG_WR(bp, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low);
7575		REG_WR(bp, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high);
7576	}
7577
7578	if (CHIP_MODE_IS_4_PORT(bp))
7579		REG_WR(bp, (BP_PORT(bp) ?
7580			    BRB1_REG_MAC_GUARANTIED_1 :
7581			    BRB1_REG_MAC_GUARANTIED_0), 40);
7582
7583	bnx2x_init_block(bp, BLOCK_PRS, init_phase);
7584	if (CHIP_IS_E3B0(bp)) {
7585		if (IS_MF_AFEX(bp)) {
7586			/* configure headers for AFEX mode */
7587			REG_WR(bp, BP_PORT(bp) ?
7588			       PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
7589			       PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE);
7590			REG_WR(bp, BP_PORT(bp) ?
7591			       PRS_REG_HDRS_AFTER_TAG_0_PORT_1 :
7592			       PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6);
7593			REG_WR(bp, BP_PORT(bp) ?
7594			       PRS_REG_MUST_HAVE_HDRS_PORT_1 :
7595			       PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA);
7596		} else {
7597			/* Ovlan exists only if we are in multi-function +
7598			 * switch-dependent mode, in switch-independent there
7599			 * is no ovlan headers
7600			 */
7601			REG_WR(bp, BP_PORT(bp) ?
7602			       PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
7603			       PRS_REG_HDRS_AFTER_BASIC_PORT_0,
7604			       (bp->path_has_ovlan ? 7 : 6));
7605		}
7606	}
7607
7608	bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
7609	bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
7610	bnx2x_init_block(bp, BLOCK_USDM, init_phase);
7611	bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
7612
7613	bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
7614	bnx2x_init_block(bp, BLOCK_USEM, init_phase);
7615	bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
7616	bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
7617
7618	bnx2x_init_block(bp, BLOCK_UPB, init_phase);
7619	bnx2x_init_block(bp, BLOCK_XPB, init_phase);
7620
7621	bnx2x_init_block(bp, BLOCK_PBF, init_phase);
7622
7623	if (CHIP_IS_E1x(bp)) {
7624		/* configure PBF to work without PAUSE mtu 9000 */
7625		REG_WR(bp, PBF_REG_P0_PAUSE_ENABLE + port*4, 0);
7626
7627		/* update threshold */
7628		REG_WR(bp, PBF_REG_P0_ARB_THRSH + port*4, (9040/16));
7629		/* update init credit */
7630		REG_WR(bp, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22);
7631
7632		/* probe changes */
7633		REG_WR(bp, PBF_REG_INIT_P0 + port*4, 1);
7634		udelay(50);
7635		REG_WR(bp, PBF_REG_INIT_P0 + port*4, 0);
7636	}
7637
7638	if (CNIC_SUPPORT(bp))
7639		bnx2x_init_block(bp, BLOCK_SRC, init_phase);
7640
7641	bnx2x_init_block(bp, BLOCK_CDU, init_phase);
7642	bnx2x_init_block(bp, BLOCK_CFC, init_phase);
7643
7644	if (CHIP_IS_E1(bp)) {
7645		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
7646		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
7647	}
7648	bnx2x_init_block(bp, BLOCK_HC, init_phase);
7649
7650	bnx2x_init_block(bp, BLOCK_IGU, init_phase);
7651
7652	bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
7653	/* init aeu_mask_attn_func_0/1:
7654	 *  - SF mode: bits 3-7 are masked. Only bits 0-2 are in use
7655	 *  - MF mode: bit 3 is masked. Bits 0-2 are in use as in SF
7656	 *             bits 4-7 are used for "per vn group attention" */
7657	val = IS_MF(bp) ? 0xF7 : 0x7;
7658	/* Enable DCBX attention for all but E1 */
7659	val |= CHIP_IS_E1(bp) ? 0 : 0x10;
7660	REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val);
7661
7662	/* SCPAD_PARITY should NOT trigger close the gates */
7663	reg = port ? MISC_REG_AEU_ENABLE4_NIG_1 : MISC_REG_AEU_ENABLE4_NIG_0;
7664	REG_WR(bp, reg,
7665	       REG_RD(bp, reg) &
7666	       ~AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY);
7667
7668	reg = port ? MISC_REG_AEU_ENABLE4_PXP_1 : MISC_REG_AEU_ENABLE4_PXP_0;
7669	REG_WR(bp, reg,
7670	       REG_RD(bp, reg) &
7671	       ~AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY);
7672
7673	bnx2x_init_block(bp, BLOCK_NIG, init_phase);
7674
7675	if (!CHIP_IS_E1x(bp)) {
7676		/* Bit-map indicating which L2 hdrs may appear after the
7677		 * basic Ethernet header
7678		 */
7679		if (IS_MF_AFEX(bp))
7680			REG_WR(bp, BP_PORT(bp) ?
7681			       NIG_REG_P1_HDRS_AFTER_BASIC :
7682			       NIG_REG_P0_HDRS_AFTER_BASIC, 0xE);
7683		else
7684			REG_WR(bp, BP_PORT(bp) ?
7685			       NIG_REG_P1_HDRS_AFTER_BASIC :
7686			       NIG_REG_P0_HDRS_AFTER_BASIC,
7687			       IS_MF_SD(bp) ? 7 : 6);
7688
7689		if (CHIP_IS_E3(bp))
7690			REG_WR(bp, BP_PORT(bp) ?
7691				   NIG_REG_LLH1_MF_MODE :
7692				   NIG_REG_LLH_MF_MODE, IS_MF(bp));
7693	}
7694	if (!CHIP_IS_E3(bp))
7695		REG_WR(bp, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1);
7696
7697	if (!CHIP_IS_E1(bp)) {
7698		/* 0x2 disable mf_ov, 0x1 enable */
7699		REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4,
7700		       (IS_MF_SD(bp) ? 0x1 : 0x2));
7701
7702		if (!CHIP_IS_E1x(bp)) {
7703			val = 0;
7704			switch (bp->mf_mode) {
7705			case MULTI_FUNCTION_SD:
7706				val = 1;
7707				break;
7708			case MULTI_FUNCTION_SI:
7709			case MULTI_FUNCTION_AFEX:
7710				val = 2;
7711				break;
7712			}
7713
7714			REG_WR(bp, (BP_PORT(bp) ? NIG_REG_LLH1_CLS_TYPE :
7715						  NIG_REG_LLH0_CLS_TYPE), val);
7716		}
7717		{
7718			REG_WR(bp, NIG_REG_LLFC_ENABLE_0 + port*4, 0);
7719			REG_WR(bp, NIG_REG_LLFC_OUT_EN_0 + port*4, 0);
7720			REG_WR(bp, NIG_REG_PAUSE_ENABLE_0 + port*4, 1);
7721		}
7722	}
7723
7724	/* If SPIO5 is set to generate interrupts, enable it for this port */
7725	val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
7726	if (val & MISC_SPIO_SPIO5) {
7727		u32 reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
7728				       MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
7729		val = REG_RD(bp, reg_addr);
7730		val |= AEU_INPUTS_ATTN_BITS_SPIO5;
7731		REG_WR(bp, reg_addr, val);
7732	}
7733
7734	if (CHIP_IS_E3B0(bp))
7735		bp->flags |= PTP_SUPPORTED;
7736
7737	return 0;
7738}
7739
7740static void bnx2x_ilt_wr(struct bnx2x *bp, u32 index, dma_addr_t addr)
7741{
7742	int reg;
7743	u32 wb_write[2];
7744
7745	if (CHIP_IS_E1(bp))
7746		reg = PXP2_REG_RQ_ONCHIP_AT + index*8;
7747	else
7748		reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8;
7749
7750	wb_write[0] = ONCHIP_ADDR1(addr);
7751	wb_write[1] = ONCHIP_ADDR2(addr);
7752	REG_WR_DMAE(bp, reg, wb_write, 2);
7753}
7754
7755void bnx2x_igu_clear_sb_gen(struct bnx2x *bp, u8 func, u8 idu_sb_id, bool is_pf)
7756{
7757	u32 data, ctl, cnt = 100;
7758	u32 igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
7759	u32 igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
7760	u32 igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4;
7761	u32 sb_bit =  1 << (idu_sb_id%32);
7762	u32 func_encode = func | (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT;
7763	u32 addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id;
7764
7765	/* Not supported in BC mode */
7766	if (CHIP_INT_MODE_IS_BC(bp))
7767		return;
7768
7769	data = (IGU_USE_REGISTER_cstorm_type_0_sb_cleanup
7770			<< IGU_REGULAR_CLEANUP_TYPE_SHIFT)	|
7771		IGU_REGULAR_CLEANUP_SET				|
7772		IGU_REGULAR_BCLEANUP;
7773
7774	ctl = addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT		|
7775	      func_encode << IGU_CTRL_REG_FID_SHIFT		|
7776	      IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT;
7777
7778	DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7779			 data, igu_addr_data);
7780	REG_WR(bp, igu_addr_data, data);
7781	barrier();
7782	DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7783			  ctl, igu_addr_ctl);
7784	REG_WR(bp, igu_addr_ctl, ctl);
7785	barrier();
7786
7787	/* wait for clean up to finish */
7788	while (!(REG_RD(bp, igu_addr_ack) & sb_bit) && --cnt)
7789		msleep(20);
7790
7791	if (!(REG_RD(bp, igu_addr_ack) & sb_bit)) {
7792		DP(NETIF_MSG_HW,
7793		   "Unable to finish IGU cleanup: idu_sb_id %d offset %d bit %d (cnt %d)\n",
7794			  idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt);
7795	}
7796}
7797
7798static void bnx2x_igu_clear_sb(struct bnx2x *bp, u8 idu_sb_id)
7799{
7800	bnx2x_igu_clear_sb_gen(bp, BP_FUNC(bp), idu_sb_id, true /*PF*/);
7801}
7802
7803static void bnx2x_clear_func_ilt(struct bnx2x *bp, u32 func)
7804{
7805	u32 i, base = FUNC_ILT_BASE(func);
7806	for (i = base; i < base + ILT_PER_FUNC; i++)
7807		bnx2x_ilt_wr(bp, i, 0);
7808}
7809
7810static void bnx2x_init_searcher(struct bnx2x *bp)
7811{
7812	int port = BP_PORT(bp);
7813	bnx2x_src_init_t2(bp, bp->t2, bp->t2_mapping, SRC_CONN_NUM);
7814	/* T1 hash bits value determines the T1 number of entries */
7815	REG_WR(bp, SRC_REG_NUMBER_HASH_BITS0 + port*4, SRC_HASH_BITS);
7816}
7817
7818static inline int bnx2x_func_switch_update(struct bnx2x *bp, int suspend)
7819{
7820	int rc;
7821	struct bnx2x_func_state_params func_params = {NULL};
7822	struct bnx2x_func_switch_update_params *switch_update_params =
7823		&func_params.params.switch_update;
7824
7825	/* Prepare parameters for function state transitions */
7826	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
7827	__set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
7828
7829	func_params.f_obj = &bp->func_obj;
7830	func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
7831
7832	/* Function parameters */
7833	__set_bit(BNX2X_F_UPDATE_TX_SWITCH_SUSPEND_CHNG,
7834		  &switch_update_params->changes);
7835	if (suspend)
7836		__set_bit(BNX2X_F_UPDATE_TX_SWITCH_SUSPEND,
7837			  &switch_update_params->changes);
7838
7839	rc = bnx2x_func_state_change(bp, &func_params);
7840
7841	return rc;
7842}
7843
7844static int bnx2x_reset_nic_mode(struct bnx2x *bp)
7845{
7846	int rc, i, port = BP_PORT(bp);
7847	int vlan_en = 0, mac_en[NUM_MACS];
7848
7849	/* Close input from network */
7850	if (bp->mf_mode == SINGLE_FUNCTION) {
7851		bnx2x_set_rx_filter(&bp->link_params, 0);
7852	} else {
7853		vlan_en = REG_RD(bp, port ? NIG_REG_LLH1_FUNC_EN :
7854				   NIG_REG_LLH0_FUNC_EN);
7855		REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
7856			  NIG_REG_LLH0_FUNC_EN, 0);
7857		for (i = 0; i < NUM_MACS; i++) {
7858			mac_en[i] = REG_RD(bp, port ?
7859					     (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7860					      4 * i) :
7861					     (NIG_REG_LLH0_FUNC_MEM_ENABLE +
7862					      4 * i));
7863			REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7864					      4 * i) :
7865				  (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i), 0);
7866		}
7867	}
7868
7869	/* Close BMC to host */
7870	REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
7871	       NIG_REG_P1_TX_MNG_HOST_ENABLE, 0);
7872
7873	/* Suspend Tx switching to the PF. Completion of this ramrod
7874	 * further guarantees that all the packets of that PF / child
7875	 * VFs in BRB were processed by the Parser, so it is safe to
7876	 * change the NIC_MODE register.
7877	 */
7878	rc = bnx2x_func_switch_update(bp, 1);
7879	if (rc) {
7880		BNX2X_ERR("Can't suspend tx-switching!\n");
7881		return rc;
7882	}
7883
7884	/* Change NIC_MODE register */
7885	REG_WR(bp, PRS_REG_NIC_MODE, 0);
7886
7887	/* Open input from network */
7888	if (bp->mf_mode == SINGLE_FUNCTION) {
7889		bnx2x_set_rx_filter(&bp->link_params, 1);
7890	} else {
7891		REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
7892			  NIG_REG_LLH0_FUNC_EN, vlan_en);
7893		for (i = 0; i < NUM_MACS; i++) {
7894			REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7895					      4 * i) :
7896				  (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i),
7897				  mac_en[i]);
7898		}
7899	}
7900
7901	/* Enable BMC to host */
7902	REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
7903	       NIG_REG_P1_TX_MNG_HOST_ENABLE, 1);
7904
7905	/* Resume Tx switching to the PF */
7906	rc = bnx2x_func_switch_update(bp, 0);
7907	if (rc) {
7908		BNX2X_ERR("Can't resume tx-switching!\n");
7909		return rc;
7910	}
7911
7912	DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
7913	return 0;
7914}
7915
7916int bnx2x_init_hw_func_cnic(struct bnx2x *bp)
7917{
7918	int rc;
7919
7920	bnx2x_ilt_init_op_cnic(bp, INITOP_SET);
7921
7922	if (CONFIGURE_NIC_MODE(bp)) {
7923		/* Configure searcher as part of function hw init */
7924		bnx2x_init_searcher(bp);
7925
7926		/* Reset NIC mode */
7927		rc = bnx2x_reset_nic_mode(bp);
7928		if (rc)
7929			BNX2X_ERR("Can't change NIC mode!\n");
7930		return rc;
7931	}
7932
7933	return 0;
7934}
7935
7936/* previous driver DMAE transaction may have occurred when pre-boot stage ended
7937 * and boot began, or when kdump kernel was loaded. Either case would invalidate
7938 * the addresses of the transaction, resulting in was-error bit set in the pci
7939 * causing all hw-to-host pcie transactions to timeout. If this happened we want
7940 * to clear the interrupt which detected this from the pglueb and the was done
7941 * bit
7942 */
7943static void bnx2x_clean_pglue_errors(struct bnx2x *bp)
7944{
7945	if (!CHIP_IS_E1x(bp))
7946		REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR,
7947		       1 << BP_ABS_FUNC(bp));
7948}
7949
7950static int bnx2x_init_hw_func(struct bnx2x *bp)
7951{
7952	int port = BP_PORT(bp);
7953	int func = BP_FUNC(bp);
7954	int init_phase = PHASE_PF0 + func;
7955	struct bnx2x_ilt *ilt = BP_ILT(bp);
7956	u16 cdu_ilt_start;
7957	u32 addr, val;
7958	u32 main_mem_base, main_mem_size, main_mem_prty_clr;
7959	int i, main_mem_width, rc;
7960
7961	DP(NETIF_MSG_HW, "starting func init  func %d\n", func);
7962
7963	/* FLR cleanup - hmmm */
7964	if (!CHIP_IS_E1x(bp)) {
7965		rc = bnx2x_pf_flr_clnup(bp);
7966		if (rc) {
7967			bnx2x_fw_dump(bp);
7968			return rc;
7969		}
7970	}
7971
7972	/* set MSI reconfigure capability */
7973	if (bp->common.int_block == INT_BLOCK_HC) {
7974		addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
7975		val = REG_RD(bp, addr);
7976		val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
7977		REG_WR(bp, addr, val);
7978	}
7979
7980	bnx2x_init_block(bp, BLOCK_PXP, init_phase);
7981	bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
7982
7983	ilt = BP_ILT(bp);
7984	cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
7985
7986	if (IS_SRIOV(bp))
7987		cdu_ilt_start += BNX2X_FIRST_VF_CID/ILT_PAGE_CIDS;
7988	cdu_ilt_start = bnx2x_iov_init_ilt(bp, cdu_ilt_start);
7989
7990	/* since BNX2X_FIRST_VF_CID > 0 the PF L2 cids precedes
7991	 * those of the VFs, so start line should be reset
7992	 */
7993	cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
7994	for (i = 0; i < L2_ILT_LINES(bp); i++) {
7995		ilt->lines[cdu_ilt_start + i].page = bp->context[i].vcxt;
7996		ilt->lines[cdu_ilt_start + i].page_mapping =
7997			bp->context[i].cxt_mapping;
7998		ilt->lines[cdu_ilt_start + i].size = bp->context[i].size;
7999	}
8000
8001	bnx2x_ilt_init_op(bp, INITOP_SET);
8002
8003	if (!CONFIGURE_NIC_MODE(bp)) {
8004		bnx2x_init_searcher(bp);
8005		REG_WR(bp, PRS_REG_NIC_MODE, 0);
8006		DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
8007	} else {
8008		/* Set NIC mode */
8009		REG_WR(bp, PRS_REG_NIC_MODE, 1);
8010		DP(NETIF_MSG_IFUP, "NIC MODE configured\n");
8011	}
8012
8013	if (!CHIP_IS_E1x(bp)) {
8014		u32 pf_conf = IGU_PF_CONF_FUNC_EN;
8015
8016		/* Turn on a single ISR mode in IGU if driver is going to use
8017		 * INT#x or MSI
8018		 */
8019		if (!(bp->flags & USING_MSIX_FLAG))
8020			pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
8021		/*
8022		 * Timers workaround bug: function init part.
8023		 * Need to wait 20msec after initializing ILT,
8024		 * needed to make sure there are no requests in
8025		 * one of the PXP internal queues with "old" ILT addresses
8026		 */
8027		msleep(20);
8028		/*
8029		 * Master enable - Due to WB DMAE writes performed before this
8030		 * register is re-initialized as part of the regular function
8031		 * init
8032		 */
8033		REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
8034		/* Enable the function in IGU */
8035		REG_WR(bp, IGU_REG_PF_CONFIGURATION, pf_conf);
8036	}
8037
8038	bp->dmae_ready = 1;
8039
8040	bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
8041
8042	bnx2x_clean_pglue_errors(bp);
8043
8044	bnx2x_init_block(bp, BLOCK_ATC, init_phase);
8045	bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
8046	bnx2x_init_block(bp, BLOCK_NIG, init_phase);
8047	bnx2x_init_block(bp, BLOCK_SRC, init_phase);
8048	bnx2x_init_block(bp, BLOCK_MISC, init_phase);
8049	bnx2x_init_block(bp, BLOCK_TCM, init_phase);
8050	bnx2x_init_block(bp, BLOCK_UCM, init_phase);
8051	bnx2x_init_block(bp, BLOCK_CCM, init_phase);
8052	bnx2x_init_block(bp, BLOCK_XCM, init_phase);
8053	bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
8054	bnx2x_init_block(bp, BLOCK_USEM, init_phase);
8055	bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
8056	bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
8057
8058	if (!CHIP_IS_E1x(bp))
8059		REG_WR(bp, QM_REG_PF_EN, 1);
8060
8061	if (!CHIP_IS_E1x(bp)) {
8062		REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
8063		REG_WR(bp, USEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
8064		REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
8065		REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
8066	}
8067	bnx2x_init_block(bp, BLOCK_QM, init_phase);
8068
8069	bnx2x_init_block(bp, BLOCK_TM, init_phase);
8070	bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
8071	REG_WR(bp, DORQ_REG_MODE_ACT, 1); /* no dpm */
8072
8073	bnx2x_iov_init_dq(bp);
8074
8075	bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
8076	bnx2x_init_block(bp, BLOCK_PRS, init_phase);
8077	bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
8078	bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
8079	bnx2x_init_block(bp, BLOCK_USDM, init_phase);
8080	bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
8081	bnx2x_init_block(bp, BLOCK_UPB, init_phase);
8082	bnx2x_init_block(bp, BLOCK_XPB, init_phase);
8083	bnx2x_init_block(bp, BLOCK_PBF, init_phase);
8084	if (!CHIP_IS_E1x(bp))
8085		REG_WR(bp, PBF_REG_DISABLE_PF, 0);
8086
8087	bnx2x_init_block(bp, BLOCK_CDU, init_phase);
8088
8089	bnx2x_init_block(bp, BLOCK_CFC, init_phase);
8090
8091	if (!CHIP_IS_E1x(bp))
8092		REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 1);
8093
8094	if (IS_MF(bp)) {
8095		if (!(IS_MF_UFP(bp) && BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp))) {
8096			REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port * 8, 1);
8097			REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + port * 8,
8098			       bp->mf_ov);
8099		}
8100	}
8101
8102	bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
8103
8104	/* HC init per function */
8105	if (bp->common.int_block == INT_BLOCK_HC) {
8106		if (CHIP_IS_E1H(bp)) {
8107			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
8108
8109			REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
8110			REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
8111		}
8112		bnx2x_init_block(bp, BLOCK_HC, init_phase);
8113
8114	} else {
8115		int num_segs, sb_idx, prod_offset;
8116
8117		REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
8118
8119		if (!CHIP_IS_E1x(bp)) {
8120			REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
8121			REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
8122		}
8123
8124		bnx2x_init_block(bp, BLOCK_IGU, init_phase);
8125
8126		if (!CHIP_IS_E1x(bp)) {
8127			int dsb_idx = 0;
8128			/**
8129			 * Producer memory:
8130			 * E2 mode: address 0-135 match to the mapping memory;
8131			 * 136 - PF0 default prod; 137 - PF1 default prod;
8132			 * 138 - PF2 default prod; 139 - PF3 default prod;
8133			 * 140 - PF0 attn prod;    141 - PF1 attn prod;
8134			 * 142 - PF2 attn prod;    143 - PF3 attn prod;
8135			 * 144-147 reserved.
8136			 *
8137			 * E1.5 mode - In backward compatible mode;
8138			 * for non default SB; each even line in the memory
8139			 * holds the U producer and each odd line hold
8140			 * the C producer. The first 128 producers are for
8141			 * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
8142			 * producers are for the DSB for each PF.
8143			 * Each PF has five segments: (the order inside each
8144			 * segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
8145			 * 132-135 C prods; 136-139 X prods; 140-143 T prods;
8146			 * 144-147 attn prods;
8147			 */
8148			/* non-default-status-blocks */
8149			num_segs = CHIP_INT_MODE_IS_BC(bp) ?
8150				IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
8151			for (sb_idx = 0; sb_idx < bp->igu_sb_cnt; sb_idx++) {
8152				prod_offset = (bp->igu_base_sb + sb_idx) *
8153					num_segs;
8154
8155				for (i = 0; i < num_segs; i++) {
8156					addr = IGU_REG_PROD_CONS_MEMORY +
8157							(prod_offset + i) * 4;
8158					REG_WR(bp, addr, 0);
8159				}
8160				/* send consumer update with value 0 */
8161				bnx2x_ack_sb(bp, bp->igu_base_sb + sb_idx,
8162					     USTORM_ID, 0, IGU_INT_NOP, 1);
8163				bnx2x_igu_clear_sb(bp,
8164						   bp->igu_base_sb + sb_idx);
8165			}
8166
8167			/* default-status-blocks */
8168			num_segs = CHIP_INT_MODE_IS_BC(bp) ?
8169				IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
8170
8171			if (CHIP_MODE_IS_4_PORT(bp))
8172				dsb_idx = BP_FUNC(bp);
8173			else
8174				dsb_idx = BP_VN(bp);
8175
8176			prod_offset = (CHIP_INT_MODE_IS_BC(bp) ?
8177				       IGU_BC_BASE_DSB_PROD + dsb_idx :
8178				       IGU_NORM_BASE_DSB_PROD + dsb_idx);
8179
8180			/*
8181			 * igu prods come in chunks of E1HVN_MAX (4) -
8182			 * does not matters what is the current chip mode
8183			 */
8184			for (i = 0; i < (num_segs * E1HVN_MAX);
8185			     i += E1HVN_MAX) {
8186				addr = IGU_REG_PROD_CONS_MEMORY +
8187							(prod_offset + i)*4;
8188				REG_WR(bp, addr, 0);
8189			}
8190			/* send consumer update with 0 */
8191			if (CHIP_INT_MODE_IS_BC(bp)) {
8192				bnx2x_ack_sb(bp, bp->igu_dsb_id,
8193					     USTORM_ID, 0, IGU_INT_NOP, 1);
8194				bnx2x_ack_sb(bp, bp->igu_dsb_id,
8195					     CSTORM_ID, 0, IGU_INT_NOP, 1);
8196				bnx2x_ack_sb(bp, bp->igu_dsb_id,
8197					     XSTORM_ID, 0, IGU_INT_NOP, 1);
8198				bnx2x_ack_sb(bp, bp->igu_dsb_id,
8199					     TSTORM_ID, 0, IGU_INT_NOP, 1);
8200				bnx2x_ack_sb(bp, bp->igu_dsb_id,
8201					     ATTENTION_ID, 0, IGU_INT_NOP, 1);
8202			} else {
8203				bnx2x_ack_sb(bp, bp->igu_dsb_id,
8204					     USTORM_ID, 0, IGU_INT_NOP, 1);
8205				bnx2x_ack_sb(bp, bp->igu_dsb_id,
8206					     ATTENTION_ID, 0, IGU_INT_NOP, 1);
8207			}
8208			bnx2x_igu_clear_sb(bp, bp->igu_dsb_id);
8209
8210			/* !!! These should become driver const once
8211			   rf-tool supports split-68 const */
8212			REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
8213			REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
8214			REG_WR(bp, IGU_REG_SB_MASK_LSB, 0);
8215			REG_WR(bp, IGU_REG_SB_MASK_MSB, 0);
8216			REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0);
8217			REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0);
8218		}
8219	}
8220
8221	/* Reset PCIE errors for debug */
8222	REG_WR(bp, 0x2114, 0xffffffff);
8223	REG_WR(bp, 0x2120, 0xffffffff);
8224
8225	if (CHIP_IS_E1x(bp)) {
8226		main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/
8227		main_mem_base = HC_REG_MAIN_MEMORY +
8228				BP_PORT(bp) * (main_mem_size * 4);
8229		main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
8230		main_mem_width = 8;
8231
8232		val = REG_RD(bp, main_mem_prty_clr);
8233		if (val)
8234			DP(NETIF_MSG_HW,
8235			   "Hmmm... Parity errors in HC block during function init (0x%x)!\n",
8236			   val);
8237
8238		/* Clear "false" parity errors in MSI-X table */
8239		for (i = main_mem_base;
8240		     i < main_mem_base + main_mem_size * 4;
8241		     i += main_mem_width) {
8242			bnx2x_read_dmae(bp, i, main_mem_width / 4);
8243			bnx2x_write_dmae(bp, bnx2x_sp_mapping(bp, wb_data),
8244					 i, main_mem_width / 4);
8245		}
8246		/* Clear HC parity attention */
8247		REG_RD(bp, main_mem_prty_clr);
8248	}
8249
8250#ifdef BNX2X_STOP_ON_ERROR
8251	/* Enable STORMs SP logging */
8252	REG_WR8(bp, BAR_USTRORM_INTMEM +
8253	       USTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8254	REG_WR8(bp, BAR_TSTRORM_INTMEM +
8255	       TSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8256	REG_WR8(bp, BAR_CSTRORM_INTMEM +
8257	       CSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8258	REG_WR8(bp, BAR_XSTRORM_INTMEM +
8259	       XSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8260#endif
8261
8262	bnx2x_phy_probe(&bp->link_params);
8263
8264	return 0;
8265}
8266
8267void bnx2x_free_mem_cnic(struct bnx2x *bp)
8268{
8269	bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_FREE);
8270
8271	if (!CHIP_IS_E1x(bp))
8272		BNX2X_PCI_FREE(bp->cnic_sb.e2_sb, bp->cnic_sb_mapping,
8273			       sizeof(struct host_hc_status_block_e2));
8274	else
8275		BNX2X_PCI_FREE(bp->cnic_sb.e1x_sb, bp->cnic_sb_mapping,
8276			       sizeof(struct host_hc_status_block_e1x));
8277
8278	BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
8279}
8280
8281void bnx2x_free_mem(struct bnx2x *bp)
8282{
8283	int i;
8284
8285	BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
8286		       bp->fw_stats_data_sz + bp->fw_stats_req_sz);
8287
8288	if (IS_VF(bp))
8289		return;
8290
8291	BNX2X_PCI_FREE(bp->def_status_blk, bp->def_status_blk_mapping,
8292		       sizeof(struct host_sp_status_block));
8293
8294	BNX2X_PCI_FREE(bp->slowpath, bp->slowpath_mapping,
8295		       sizeof(struct bnx2x_slowpath));
8296
8297	for (i = 0; i < L2_ILT_LINES(bp); i++)
8298		BNX2X_PCI_FREE(bp->context[i].vcxt, bp->context[i].cxt_mapping,
8299			       bp->context[i].size);
8300	bnx2x_ilt_mem_op(bp, ILT_MEMOP_FREE);
8301
8302	BNX2X_FREE(bp->ilt->lines);
8303
8304	BNX2X_PCI_FREE(bp->spq, bp->spq_mapping, BCM_PAGE_SIZE);
8305
8306	BNX2X_PCI_FREE(bp->eq_ring, bp->eq_mapping,
8307		       BCM_PAGE_SIZE * NUM_EQ_PAGES);
8308
8309	BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
8310
8311	bnx2x_iov_free_mem(bp);
8312}
8313
8314int bnx2x_alloc_mem_cnic(struct bnx2x *bp)
8315{
8316	if (!CHIP_IS_E1x(bp)) {
8317		/* size = the status block + ramrod buffers */
8318		bp->cnic_sb.e2_sb = BNX2X_PCI_ALLOC(&bp->cnic_sb_mapping,
8319						    sizeof(struct host_hc_status_block_e2));
8320		if (!bp->cnic_sb.e2_sb)
8321			goto alloc_mem_err;
8322	} else {
8323		bp->cnic_sb.e1x_sb = BNX2X_PCI_ALLOC(&bp->cnic_sb_mapping,
8324						     sizeof(struct host_hc_status_block_e1x));
8325		if (!bp->cnic_sb.e1x_sb)
8326			goto alloc_mem_err;
8327	}
8328
8329	if (CONFIGURE_NIC_MODE(bp) && !bp->t2) {
8330		/* allocate searcher T2 table, as it wasn't allocated before */
8331		bp->t2 = BNX2X_PCI_ALLOC(&bp->t2_mapping, SRC_T2_SZ);
8332		if (!bp->t2)
8333			goto alloc_mem_err;
8334	}
8335
8336	/* write address to which L5 should insert its values */
8337	bp->cnic_eth_dev.addr_drv_info_to_mcp =
8338		&bp->slowpath->drv_info_to_mcp;
8339
8340	if (bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_ALLOC))
8341		goto alloc_mem_err;
8342
8343	return 0;
8344
8345alloc_mem_err:
8346	bnx2x_free_mem_cnic(bp);
8347	BNX2X_ERR("Can't allocate memory\n");
8348	return -ENOMEM;
8349}
8350
8351int bnx2x_alloc_mem(struct bnx2x *bp)
8352{
8353	int i, allocated, context_size;
8354
8355	if (!CONFIGURE_NIC_MODE(bp) && !bp->t2) {
8356		/* allocate searcher T2 table */
8357		bp->t2 = BNX2X_PCI_ALLOC(&bp->t2_mapping, SRC_T2_SZ);
8358		if (!bp->t2)
8359			goto alloc_mem_err;
8360	}
8361
8362	bp->def_status_blk = BNX2X_PCI_ALLOC(&bp->def_status_blk_mapping,
8363					     sizeof(struct host_sp_status_block));
8364	if (!bp->def_status_blk)
8365		goto alloc_mem_err;
8366
8367	bp->slowpath = BNX2X_PCI_ALLOC(&bp->slowpath_mapping,
8368				       sizeof(struct bnx2x_slowpath));
8369	if (!bp->slowpath)
8370		goto alloc_mem_err;
8371
8372	/* Allocate memory for CDU context:
8373	 * This memory is allocated separately and not in the generic ILT
8374	 * functions because CDU differs in few aspects:
8375	 * 1. There are multiple entities allocating memory for context -
8376	 * 'regular' driver, CNIC and SRIOV driver. Each separately controls
8377	 * its own ILT lines.
8378	 * 2. Since CDU page-size is not a single 4KB page (which is the case
8379	 * for the other ILT clients), to be efficient we want to support
8380	 * allocation of sub-page-size in the last entry.
8381	 * 3. Context pointers are used by the driver to pass to FW / update
8382	 * the context (for the other ILT clients the pointers are used just to
8383	 * free the memory during unload).
8384	 */
8385	context_size = sizeof(union cdu_context) * BNX2X_L2_CID_COUNT(bp);
8386
8387	for (i = 0, allocated = 0; allocated < context_size; i++) {
8388		bp->context[i].size = min(CDU_ILT_PAGE_SZ,
8389					  (context_size - allocated));
8390		bp->context[i].vcxt = BNX2X_PCI_ALLOC(&bp->context[i].cxt_mapping,
8391						      bp->context[i].size);
8392		if (!bp->context[i].vcxt)
8393			goto alloc_mem_err;
8394		allocated += bp->context[i].size;
8395	}
8396	bp->ilt->lines = kcalloc(ILT_MAX_LINES, sizeof(struct ilt_line),
8397				 GFP_KERNEL);
8398	if (!bp->ilt->lines)
8399		goto alloc_mem_err;
8400
8401	if (bnx2x_ilt_mem_op(bp, ILT_MEMOP_ALLOC))
8402		goto alloc_mem_err;
8403
8404	if (bnx2x_iov_alloc_mem(bp))
8405		goto alloc_mem_err;
8406
8407	/* Slow path ring */
8408	bp->spq = BNX2X_PCI_ALLOC(&bp->spq_mapping, BCM_PAGE_SIZE);
8409	if (!bp->spq)
8410		goto alloc_mem_err;
8411
8412	/* EQ */
8413	bp->eq_ring = BNX2X_PCI_ALLOC(&bp->eq_mapping,
8414				      BCM_PAGE_SIZE * NUM_EQ_PAGES);
8415	if (!bp->eq_ring)
8416		goto alloc_mem_err;
8417
8418	return 0;
8419
8420alloc_mem_err:
8421	bnx2x_free_mem(bp);
8422	BNX2X_ERR("Can't allocate memory\n");
8423	return -ENOMEM;
8424}
8425
8426/*
8427 * Init service functions
8428 */
8429
8430int bnx2x_set_mac_one(struct bnx2x *bp, const u8 *mac,
8431		      struct bnx2x_vlan_mac_obj *obj, bool set,
8432		      int mac_type, unsigned long *ramrod_flags)
8433{
8434	int rc;
8435	struct bnx2x_vlan_mac_ramrod_params ramrod_param;
8436
8437	memset(&ramrod_param, 0, sizeof(ramrod_param));
8438
8439	/* Fill general parameters */
8440	ramrod_param.vlan_mac_obj = obj;
8441	ramrod_param.ramrod_flags = *ramrod_flags;
8442
8443	/* Fill a user request section if needed */
8444	if (!test_bit(RAMROD_CONT, ramrod_flags)) {
8445		memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN);
8446
8447		__set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags);
8448
8449		/* Set the command: ADD or DEL */
8450		if (set)
8451			ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
8452		else
8453			ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL;
8454	}
8455
8456	rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
8457
8458	if (rc == -EEXIST) {
8459		DP(BNX2X_MSG_SP, "Failed to schedule ADD operations: %d\n", rc);
8460		/* do not treat adding same MAC as error */
8461		rc = 0;
8462	} else if (rc < 0)
8463		BNX2X_ERR("%s MAC failed\n", (set ? "Set" : "Del"));
8464
8465	return rc;
8466}
8467
8468int bnx2x_set_vlan_one(struct bnx2x *bp, u16 vlan,
8469		       struct bnx2x_vlan_mac_obj *obj, bool set,
8470		       unsigned long *ramrod_flags)
8471{
8472	int rc;
8473	struct bnx2x_vlan_mac_ramrod_params ramrod_param;
8474
8475	memset(&ramrod_param, 0, sizeof(ramrod_param));
8476
8477	/* Fill general parameters */
8478	ramrod_param.vlan_mac_obj = obj;
8479	ramrod_param.ramrod_flags = *ramrod_flags;
8480
8481	/* Fill a user request section if needed */
8482	if (!test_bit(RAMROD_CONT, ramrod_flags)) {
8483		ramrod_param.user_req.u.vlan.vlan = vlan;
8484		__set_bit(BNX2X_VLAN, &ramrod_param.user_req.vlan_mac_flags);
8485		/* Set the command: ADD or DEL */
8486		if (set)
8487			ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
8488		else
8489			ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL;
8490	}
8491
8492	rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
8493
8494	if (rc == -EEXIST) {
8495		/* Do not treat adding same vlan as error. */
8496		DP(BNX2X_MSG_SP, "Failed to schedule ADD operations: %d\n", rc);
8497		rc = 0;
8498	} else if (rc < 0) {
8499		BNX2X_ERR("%s VLAN failed\n", (set ? "Set" : "Del"));
8500	}
8501
8502	return rc;
8503}
8504
8505void bnx2x_clear_vlan_info(struct bnx2x *bp)
8506{
8507	struct bnx2x_vlan_entry *vlan;
8508
8509	/* Mark that hw forgot all entries */
8510	list_for_each_entry(vlan, &bp->vlan_reg, link)
8511		vlan->hw = false;
8512
8513	bp->vlan_cnt = 0;
8514}
8515
8516static int bnx2x_del_all_vlans(struct bnx2x *bp)
8517{
8518	struct bnx2x_vlan_mac_obj *vlan_obj = &bp->sp_objs[0].vlan_obj;
8519	unsigned long ramrod_flags = 0, vlan_flags = 0;
8520	int rc;
8521
8522	__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8523	__set_bit(BNX2X_VLAN, &vlan_flags);
8524	rc = vlan_obj->delete_all(bp, vlan_obj, &vlan_flags, &ramrod_flags);
8525	if (rc)
8526		return rc;
8527
8528	bnx2x_clear_vlan_info(bp);
8529
8530	return 0;
8531}
8532
8533int bnx2x_del_all_macs(struct bnx2x *bp,
8534		       struct bnx2x_vlan_mac_obj *mac_obj,
8535		       int mac_type, bool wait_for_comp)
8536{
8537	int rc;
8538	unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
8539
8540	/* Wait for completion of requested */
8541	if (wait_for_comp)
8542		__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8543
8544	/* Set the mac type of addresses we want to clear */
8545	__set_bit(mac_type, &vlan_mac_flags);
8546
8547	rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags, &ramrod_flags);
8548	if (rc < 0)
8549		BNX2X_ERR("Failed to delete MACs: %d\n", rc);
8550
8551	return rc;
8552}
8553
8554int bnx2x_set_eth_mac(struct bnx2x *bp, bool set)
8555{
8556	if (IS_PF(bp)) {
8557		unsigned long ramrod_flags = 0;
8558
8559		DP(NETIF_MSG_IFUP, "Adding Eth MAC\n");
8560		__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8561		return bnx2x_set_mac_one(bp, bp->dev->dev_addr,
8562					 &bp->sp_objs->mac_obj, set,
8563					 BNX2X_ETH_MAC, &ramrod_flags);
8564	} else { /* vf */
8565		return bnx2x_vfpf_config_mac(bp, bp->dev->dev_addr,
8566					     bp->fp->index, set);
8567	}
8568}
8569
8570int bnx2x_setup_leading(struct bnx2x *bp)
8571{
8572	if (IS_PF(bp))
8573		return bnx2x_setup_queue(bp, &bp->fp[0], true);
8574	else /* VF */
8575		return bnx2x_vfpf_setup_q(bp, &bp->fp[0], true);
8576}
8577
8578/**
8579 * bnx2x_set_int_mode - configure interrupt mode
8580 *
8581 * @bp:		driver handle
8582 *
8583 * In case of MSI-X it will also try to enable MSI-X.
8584 */
8585int bnx2x_set_int_mode(struct bnx2x *bp)
8586{
8587	int rc = 0;
8588
8589	if (IS_VF(bp) && int_mode != BNX2X_INT_MODE_MSIX) {
8590		BNX2X_ERR("VF not loaded since interrupt mode not msix\n");
8591		return -EINVAL;
8592	}
8593
8594	switch (int_mode) {
8595	case BNX2X_INT_MODE_MSIX:
8596		/* attempt to enable msix */
8597		rc = bnx2x_enable_msix(bp);
8598
8599		/* msix attained */
8600		if (!rc)
8601			return 0;
8602
8603		/* vfs use only msix */
8604		if (rc && IS_VF(bp))
8605			return rc;
8606
8607		/* failed to enable multiple MSI-X */
8608		BNX2X_DEV_INFO("Failed to enable multiple MSI-X (%d), set number of queues to %d\n",
8609			       bp->num_queues,
8610			       1 + bp->num_cnic_queues);
8611
8612		fallthrough;
8613	case BNX2X_INT_MODE_MSI:
8614		bnx2x_enable_msi(bp);
8615
8616		fallthrough;
8617	case BNX2X_INT_MODE_INTX:
8618		bp->num_ethernet_queues = 1;
8619		bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
8620		BNX2X_DEV_INFO("set number of queues to 1\n");
8621		break;
8622	default:
8623		BNX2X_DEV_INFO("unknown value in int_mode module parameter\n");
8624		return -EINVAL;
8625	}
8626	return 0;
8627}
8628
8629/* must be called prior to any HW initializations */
8630static inline u16 bnx2x_cid_ilt_lines(struct bnx2x *bp)
8631{
8632	if (IS_SRIOV(bp))
8633		return (BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)/ILT_PAGE_CIDS;
8634	return L2_ILT_LINES(bp);
8635}
8636
8637void bnx2x_ilt_set_info(struct bnx2x *bp)
8638{
8639	struct ilt_client_info *ilt_client;
8640	struct bnx2x_ilt *ilt = BP_ILT(bp);
8641	u16 line = 0;
8642
8643	ilt->start_line = FUNC_ILT_BASE(BP_FUNC(bp));
8644	DP(BNX2X_MSG_SP, "ilt starts at line %d\n", ilt->start_line);
8645
8646	/* CDU */
8647	ilt_client = &ilt->clients[ILT_CLIENT_CDU];
8648	ilt_client->client_num = ILT_CLIENT_CDU;
8649	ilt_client->page_size = CDU_ILT_PAGE_SZ;
8650	ilt_client->flags = ILT_CLIENT_SKIP_MEM;
8651	ilt_client->start = line;
8652	line += bnx2x_cid_ilt_lines(bp);
8653
8654	if (CNIC_SUPPORT(bp))
8655		line += CNIC_ILT_LINES;
8656	ilt_client->end = line - 1;
8657
8658	DP(NETIF_MSG_IFUP, "ilt client[CDU]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8659	   ilt_client->start,
8660	   ilt_client->end,
8661	   ilt_client->page_size,
8662	   ilt_client->flags,
8663	   ilog2(ilt_client->page_size >> 12));
8664
8665	/* QM */
8666	if (QM_INIT(bp->qm_cid_count)) {
8667		ilt_client = &ilt->clients[ILT_CLIENT_QM];
8668		ilt_client->client_num = ILT_CLIENT_QM;
8669		ilt_client->page_size = QM_ILT_PAGE_SZ;
8670		ilt_client->flags = 0;
8671		ilt_client->start = line;
8672
8673		/* 4 bytes for each cid */
8674		line += DIV_ROUND_UP(bp->qm_cid_count * QM_QUEUES_PER_FUNC * 4,
8675							 QM_ILT_PAGE_SZ);
8676
8677		ilt_client->end = line - 1;
8678
8679		DP(NETIF_MSG_IFUP,
8680		   "ilt client[QM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8681		   ilt_client->start,
8682		   ilt_client->end,
8683		   ilt_client->page_size,
8684		   ilt_client->flags,
8685		   ilog2(ilt_client->page_size >> 12));
8686	}
8687
8688	if (CNIC_SUPPORT(bp)) {
8689		/* SRC */
8690		ilt_client = &ilt->clients[ILT_CLIENT_SRC];
8691		ilt_client->client_num = ILT_CLIENT_SRC;
8692		ilt_client->page_size = SRC_ILT_PAGE_SZ;
8693		ilt_client->flags = 0;
8694		ilt_client->start = line;
8695		line += SRC_ILT_LINES;
8696		ilt_client->end = line - 1;
8697
8698		DP(NETIF_MSG_IFUP,
8699		   "ilt client[SRC]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8700		   ilt_client->start,
8701		   ilt_client->end,
8702		   ilt_client->page_size,
8703		   ilt_client->flags,
8704		   ilog2(ilt_client->page_size >> 12));
8705
8706		/* TM */
8707		ilt_client = &ilt->clients[ILT_CLIENT_TM];
8708		ilt_client->client_num = ILT_CLIENT_TM;
8709		ilt_client->page_size = TM_ILT_PAGE_SZ;
8710		ilt_client->flags = 0;
8711		ilt_client->start = line;
8712		line += TM_ILT_LINES;
8713		ilt_client->end = line - 1;
8714
8715		DP(NETIF_MSG_IFUP,
8716		   "ilt client[TM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8717		   ilt_client->start,
8718		   ilt_client->end,
8719		   ilt_client->page_size,
8720		   ilt_client->flags,
8721		   ilog2(ilt_client->page_size >> 12));
8722	}
8723
8724	BUG_ON(line > ILT_MAX_LINES);
8725}
8726
8727/**
8728 * bnx2x_pf_q_prep_init - prepare INIT transition parameters
8729 *
8730 * @bp:			driver handle
8731 * @fp:			pointer to fastpath
8732 * @init_params:	pointer to parameters structure
8733 *
8734 * parameters configured:
8735 *      - HC configuration
8736 *      - Queue's CDU context
8737 */
8738static void bnx2x_pf_q_prep_init(struct bnx2x *bp,
8739	struct bnx2x_fastpath *fp, struct bnx2x_queue_init_params *init_params)
8740{
8741	u8 cos;
8742	int cxt_index, cxt_offset;
8743
8744	/* FCoE Queue uses Default SB, thus has no HC capabilities */
8745	if (!IS_FCOE_FP(fp)) {
8746		__set_bit(BNX2X_Q_FLG_HC, &init_params->rx.flags);
8747		__set_bit(BNX2X_Q_FLG_HC, &init_params->tx.flags);
8748
8749		/* If HC is supported, enable host coalescing in the transition
8750		 * to INIT state.
8751		 */
8752		__set_bit(BNX2X_Q_FLG_HC_EN, &init_params->rx.flags);
8753		__set_bit(BNX2X_Q_FLG_HC_EN, &init_params->tx.flags);
8754
8755		/* HC rate */
8756		init_params->rx.hc_rate = bp->rx_ticks ?
8757			(1000000 / bp->rx_ticks) : 0;
8758		init_params->tx.hc_rate = bp->tx_ticks ?
8759			(1000000 / bp->tx_ticks) : 0;
8760
8761		/* FW SB ID */
8762		init_params->rx.fw_sb_id = init_params->tx.fw_sb_id =
8763			fp->fw_sb_id;
8764
8765		/*
8766		 * CQ index among the SB indices: FCoE clients uses the default
8767		 * SB, therefore it's different.
8768		 */
8769		init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
8770		init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS;
8771	}
8772
8773	/* set maximum number of COSs supported by this queue */
8774	init_params->max_cos = fp->max_cos;
8775
8776	DP(NETIF_MSG_IFUP, "fp: %d setting queue params max cos to: %d\n",
8777	    fp->index, init_params->max_cos);
8778
8779	/* set the context pointers queue object */
8780	for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) {
8781		cxt_index = fp->txdata_ptr[cos]->cid / ILT_PAGE_CIDS;
8782		cxt_offset = fp->txdata_ptr[cos]->cid - (cxt_index *
8783				ILT_PAGE_CIDS);
8784		init_params->cxts[cos] =
8785			&bp->context[cxt_index].vcxt[cxt_offset].eth;
8786	}
8787}
8788
8789static int bnx2x_setup_tx_only(struct bnx2x *bp, struct bnx2x_fastpath *fp,
8790			struct bnx2x_queue_state_params *q_params,
8791			struct bnx2x_queue_setup_tx_only_params *tx_only_params,
8792			int tx_index, bool leading)
8793{
8794	memset(tx_only_params, 0, sizeof(*tx_only_params));
8795
8796	/* Set the command */
8797	q_params->cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
8798
8799	/* Set tx-only QUEUE flags: don't zero statistics */
8800	tx_only_params->flags = bnx2x_get_common_flags(bp, fp, false);
8801
8802	/* choose the index of the cid to send the slow path on */
8803	tx_only_params->cid_index = tx_index;
8804
8805	/* Set general TX_ONLY_SETUP parameters */
8806	bnx2x_pf_q_prep_general(bp, fp, &tx_only_params->gen_params, tx_index);
8807
8808	/* Set Tx TX_ONLY_SETUP parameters */
8809	bnx2x_pf_tx_q_prep(bp, fp, &tx_only_params->txq_params, tx_index);
8810
8811	DP(NETIF_MSG_IFUP,
8812	   "preparing to send tx-only ramrod for connection: cos %d, primary cid %d, cid %d, client id %d, sp-client id %d, flags %lx\n",
8813	   tx_index, q_params->q_obj->cids[FIRST_TX_COS_INDEX],
8814	   q_params->q_obj->cids[tx_index], q_params->q_obj->cl_id,
8815	   tx_only_params->gen_params.spcl_id, tx_only_params->flags);
8816
8817	/* send the ramrod */
8818	return bnx2x_queue_state_change(bp, q_params);
8819}
8820
8821/**
8822 * bnx2x_setup_queue - setup queue
8823 *
8824 * @bp:		driver handle
8825 * @fp:		pointer to fastpath
8826 * @leading:	is leading
8827 *
8828 * This function performs 2 steps in a Queue state machine
8829 *      actually: 1) RESET->INIT 2) INIT->SETUP
8830 */
8831
8832int bnx2x_setup_queue(struct bnx2x *bp, struct bnx2x_fastpath *fp,
8833		       bool leading)
8834{
8835	struct bnx2x_queue_state_params q_params = {NULL};
8836	struct bnx2x_queue_setup_params *setup_params =
8837						&q_params.params.setup;
8838	struct bnx2x_queue_setup_tx_only_params *tx_only_params =
8839						&q_params.params.tx_only;
8840	int rc;
8841	u8 tx_index;
8842
8843	DP(NETIF_MSG_IFUP, "setting up queue %d\n", fp->index);
8844
8845	/* reset IGU state skip FCoE L2 queue */
8846	if (!IS_FCOE_FP(fp))
8847		bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0,
8848			     IGU_INT_ENABLE, 0);
8849
8850	q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
8851	/* We want to wait for completion in this context */
8852	__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
8853
8854	/* Prepare the INIT parameters */
8855	bnx2x_pf_q_prep_init(bp, fp, &q_params.params.init);
8856
8857	/* Set the command */
8858	q_params.cmd = BNX2X_Q_CMD_INIT;
8859
8860	/* Change the state to INIT */
8861	rc = bnx2x_queue_state_change(bp, &q_params);
8862	if (rc) {
8863		BNX2X_ERR("Queue(%d) INIT failed\n", fp->index);
8864		return rc;
8865	}
8866
8867	DP(NETIF_MSG_IFUP, "init complete\n");
8868
8869	/* Now move the Queue to the SETUP state... */
8870	memset(setup_params, 0, sizeof(*setup_params));
8871
8872	/* Set QUEUE flags */
8873	setup_params->flags = bnx2x_get_q_flags(bp, fp, leading);
8874
8875	/* Set general SETUP parameters */
8876	bnx2x_pf_q_prep_general(bp, fp, &setup_params->gen_params,
8877				FIRST_TX_COS_INDEX);
8878
8879	bnx2x_pf_rx_q_prep(bp, fp, &setup_params->pause_params,
8880			    &setup_params->rxq_params);
8881
8882	bnx2x_pf_tx_q_prep(bp, fp, &setup_params->txq_params,
8883			   FIRST_TX_COS_INDEX);
8884
8885	/* Set the command */
8886	q_params.cmd = BNX2X_Q_CMD_SETUP;
8887
8888	if (IS_FCOE_FP(fp))
8889		bp->fcoe_init = true;
8890
8891	/* Change the state to SETUP */
8892	rc = bnx2x_queue_state_change(bp, &q_params);
8893	if (rc) {
8894		BNX2X_ERR("Queue(%d) SETUP failed\n", fp->index);
8895		return rc;
8896	}
8897
8898	/* loop through the relevant tx-only indices */
8899	for (tx_index = FIRST_TX_ONLY_COS_INDEX;
8900	      tx_index < fp->max_cos;
8901	      tx_index++) {
8902
8903		/* prepare and send tx-only ramrod*/
8904		rc = bnx2x_setup_tx_only(bp, fp, &q_params,
8905					  tx_only_params, tx_index, leading);
8906		if (rc) {
8907			BNX2X_ERR("Queue(%d.%d) TX_ONLY_SETUP failed\n",
8908				  fp->index, tx_index);
8909			return rc;
8910		}
8911	}
8912
8913	return rc;
8914}
8915
8916static int bnx2x_stop_queue(struct bnx2x *bp, int index)
8917{
8918	struct bnx2x_fastpath *fp = &bp->fp[index];
8919	struct bnx2x_fp_txdata *txdata;
8920	struct bnx2x_queue_state_params q_params = {NULL};
8921	int rc, tx_index;
8922
8923	DP(NETIF_MSG_IFDOWN, "stopping queue %d cid %d\n", index, fp->cid);
8924
8925	q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
8926	/* We want to wait for completion in this context */
8927	__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
8928
8929	/* close tx-only connections */
8930	for (tx_index = FIRST_TX_ONLY_COS_INDEX;
8931	     tx_index < fp->max_cos;
8932	     tx_index++){
8933
8934		/* ascertain this is a normal queue*/
8935		txdata = fp->txdata_ptr[tx_index];
8936
8937		DP(NETIF_MSG_IFDOWN, "stopping tx-only queue %d\n",
8938							txdata->txq_index);
8939
8940		/* send halt terminate on tx-only connection */
8941		q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8942		memset(&q_params.params.terminate, 0,
8943		       sizeof(q_params.params.terminate));
8944		q_params.params.terminate.cid_index = tx_index;
8945
8946		rc = bnx2x_queue_state_change(bp, &q_params);
8947		if (rc)
8948			return rc;
8949
8950		/* send halt terminate on tx-only connection */
8951		q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8952		memset(&q_params.params.cfc_del, 0,
8953		       sizeof(q_params.params.cfc_del));
8954		q_params.params.cfc_del.cid_index = tx_index;
8955		rc = bnx2x_queue_state_change(bp, &q_params);
8956		if (rc)
8957			return rc;
8958	}
8959	/* Stop the primary connection: */
8960	/* ...halt the connection */
8961	q_params.cmd = BNX2X_Q_CMD_HALT;
8962	rc = bnx2x_queue_state_change(bp, &q_params);
8963	if (rc)
8964		return rc;
8965
8966	/* ...terminate the connection */
8967	q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8968	memset(&q_params.params.terminate, 0,
8969	       sizeof(q_params.params.terminate));
8970	q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX;
8971	rc = bnx2x_queue_state_change(bp, &q_params);
8972	if (rc)
8973		return rc;
8974	/* ...delete cfc entry */
8975	q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8976	memset(&q_params.params.cfc_del, 0,
8977	       sizeof(q_params.params.cfc_del));
8978	q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX;
8979	return bnx2x_queue_state_change(bp, &q_params);
8980}
8981
8982static void bnx2x_reset_func(struct bnx2x *bp)
8983{
8984	int port = BP_PORT(bp);
8985	int func = BP_FUNC(bp);
8986	int i;
8987
8988	/* Disable the function in the FW */
8989	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0);
8990	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0);
8991	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0);
8992	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0);
8993
8994	/* FP SBs */
8995	for_each_eth_queue(bp, i) {
8996		struct bnx2x_fastpath *fp = &bp->fp[i];
8997		REG_WR8(bp, BAR_CSTRORM_INTMEM +
8998			   CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id),
8999			   SB_DISABLED);
9000	}
9001
9002	if (CNIC_LOADED(bp))
9003		/* CNIC SB */
9004		REG_WR8(bp, BAR_CSTRORM_INTMEM +
9005			CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET
9006			(bnx2x_cnic_fw_sb_id(bp)), SB_DISABLED);
9007
9008	/* SP SB */
9009	REG_WR8(bp, BAR_CSTRORM_INTMEM +
9010		CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func),
9011		SB_DISABLED);
9012
9013	for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++)
9014		REG_WR(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func),
9015		       0);
9016
9017	/* Configure IGU */
9018	if (bp->common.int_block == INT_BLOCK_HC) {
9019		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
9020		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
9021	} else {
9022		REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
9023		REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
9024	}
9025
9026	if (CNIC_LOADED(bp)) {
9027		/* Disable Timer scan */
9028		REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
9029		/*
9030		 * Wait for at least 10ms and up to 2 second for the timers
9031		 * scan to complete
9032		 */
9033		for (i = 0; i < 200; i++) {
9034			usleep_range(10000, 20000);
9035			if (!REG_RD(bp, TM_REG_LIN0_SCAN_ON + port*4))
9036				break;
9037		}
9038	}
9039	/* Clear ILT */
9040	bnx2x_clear_func_ilt(bp, func);
9041
9042	/* Timers workaround bug for E2: if this is vnic-3,
9043	 * we need to set the entire ilt range for this timers.
9044	 */
9045	if (!CHIP_IS_E1x(bp) && BP_VN(bp) == 3) {
9046		struct ilt_client_info ilt_cli;
9047		/* use dummy TM client */
9048		memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
9049		ilt_cli.start = 0;
9050		ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
9051		ilt_cli.client_num = ILT_CLIENT_TM;
9052
9053		bnx2x_ilt_boundry_init_op(bp, &ilt_cli, 0, INITOP_CLEAR);
9054	}
9055
9056	/* this assumes that reset_port() called before reset_func()*/
9057	if (!CHIP_IS_E1x(bp))
9058		bnx2x_pf_disable(bp);
9059
9060	bp->dmae_ready = 0;
9061}
9062
9063static void bnx2x_reset_port(struct bnx2x *bp)
9064{
9065	int port = BP_PORT(bp);
9066	u32 val;
9067
9068	/* Reset physical Link */
9069	bnx2x__link_reset(bp);
9070
9071	REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
9072
9073	/* Do not rcv packets to BRB */
9074	REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0);
9075	/* Do not direct rcv packets that are not for MCP to the BRB */
9076	REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
9077			   NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
9078
9079	/* Configure AEU */
9080	REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0);
9081
9082	msleep(100);
9083	/* Check for BRB port occupancy */
9084	val = REG_RD(bp, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4);
9085	if (val)
9086		DP(NETIF_MSG_IFDOWN,
9087		   "BRB1 is not empty  %d blocks are occupied\n", val);
9088
9089	/* TODO: Close Doorbell port? */
9090}
9091
9092static int bnx2x_reset_hw(struct bnx2x *bp, u32 load_code)
9093{
9094	struct bnx2x_func_state_params func_params = {NULL};
9095
9096	/* Prepare parameters for function state transitions */
9097	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
9098
9099	func_params.f_obj = &bp->func_obj;
9100	func_params.cmd = BNX2X_F_CMD_HW_RESET;
9101
9102	func_params.params.hw_init.load_phase = load_code;
9103
9104	return bnx2x_func_state_change(bp, &func_params);
9105}
9106
9107static int bnx2x_func_stop(struct bnx2x *bp)
9108{
9109	struct bnx2x_func_state_params func_params = {NULL};
9110	int rc;
9111
9112	/* Prepare parameters for function state transitions */
9113	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
9114	func_params.f_obj = &bp->func_obj;
9115	func_params.cmd = BNX2X_F_CMD_STOP;
9116
9117	/*
9118	 * Try to stop the function the 'good way'. If fails (in case
9119	 * of a parity error during bnx2x_chip_cleanup()) and we are
9120	 * not in a debug mode, perform a state transaction in order to
9121	 * enable further HW_RESET transaction.
9122	 */
9123	rc = bnx2x_func_state_change(bp, &func_params);
9124	if (rc) {
9125#ifdef BNX2X_STOP_ON_ERROR
9126		return rc;
9127#else
9128		BNX2X_ERR("FUNC_STOP ramrod failed. Running a dry transaction\n");
9129		__set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
9130		return bnx2x_func_state_change(bp, &func_params);
9131#endif
9132	}
9133
9134	return 0;
9135}
9136
9137/**
9138 * bnx2x_send_unload_req - request unload mode from the MCP.
9139 *
9140 * @bp:			driver handle
9141 * @unload_mode:	requested function's unload mode
9142 *
9143 * Return unload mode returned by the MCP: COMMON, PORT or FUNC.
9144 */
9145u32 bnx2x_send_unload_req(struct bnx2x *bp, int unload_mode)
9146{
9147	u32 reset_code = 0;
9148	int port = BP_PORT(bp);
9149
9150	/* Select the UNLOAD request mode */
9151	if (unload_mode == UNLOAD_NORMAL)
9152		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
9153
9154	else if (bp->flags & NO_WOL_FLAG)
9155		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP;
9156
9157	else if (bp->wol) {
9158		u32 emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0;
9159		const u8 *mac_addr = bp->dev->dev_addr;
9160		struct pci_dev *pdev = bp->pdev;
9161		u32 val;
9162		u16 pmc;
9163
9164		/* The mac address is written to entries 1-4 to
9165		 * preserve entry 0 which is used by the PMF
9166		 */
9167		u8 entry = (BP_VN(bp) + 1)*8;
9168
9169		val = (mac_addr[0] << 8) | mac_addr[1];
9170		EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry, val);
9171
9172		val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
9173		      (mac_addr[4] << 8) | mac_addr[5];
9174		EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry + 4, val);
9175
9176		/* Enable the PME and clear the status */
9177		pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &pmc);
9178		pmc |= PCI_PM_CTRL_PME_ENABLE | PCI_PM_CTRL_PME_STATUS;
9179		pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, pmc);
9180
9181		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_EN;
9182
9183	} else
9184		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
9185
9186	/* Send the request to the MCP */
9187	if (!BP_NOMCP(bp))
9188		reset_code = bnx2x_fw_command(bp, reset_code, 0);
9189	else {
9190		int path = BP_PATH(bp);
9191
9192		DP(NETIF_MSG_IFDOWN, "NO MCP - load counts[%d]      %d, %d, %d\n",
9193		   path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
9194		   bnx2x_load_count[path][2]);
9195		bnx2x_load_count[path][0]--;
9196		bnx2x_load_count[path][1 + port]--;
9197		DP(NETIF_MSG_IFDOWN, "NO MCP - new load counts[%d]  %d, %d, %d\n",
9198		   path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
9199		   bnx2x_load_count[path][2]);
9200		if (bnx2x_load_count[path][0] == 0)
9201			reset_code = FW_MSG_CODE_DRV_UNLOAD_COMMON;
9202		else if (bnx2x_load_count[path][1 + port] == 0)
9203			reset_code = FW_MSG_CODE_DRV_UNLOAD_PORT;
9204		else
9205			reset_code = FW_MSG_CODE_DRV_UNLOAD_FUNCTION;
9206	}
9207
9208	return reset_code;
9209}
9210
9211/**
9212 * bnx2x_send_unload_done - send UNLOAD_DONE command to the MCP.
9213 *
9214 * @bp:		driver handle
9215 * @keep_link:		true iff link should be kept up
9216 */
9217void bnx2x_send_unload_done(struct bnx2x *bp, bool keep_link)
9218{
9219	u32 reset_param = keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0;
9220
9221	/* Report UNLOAD_DONE to MCP */
9222	if (!BP_NOMCP(bp))
9223		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, reset_param);
9224}
9225
9226static int bnx2x_func_wait_started(struct bnx2x *bp)
9227{
9228	int tout = 50;
9229	int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
9230
9231	if (!bp->port.pmf)
9232		return 0;
9233
9234	/*
9235	 * (assumption: No Attention from MCP at this stage)
9236	 * PMF probably in the middle of TX disable/enable transaction
9237	 * 1. Sync IRS for default SB
9238	 * 2. Sync SP queue - this guarantees us that attention handling started
9239	 * 3. Wait, that TX disable/enable transaction completes
9240	 *
9241	 * 1+2 guarantee that if DCBx attention was scheduled it already changed
9242	 * pending bit of transaction from STARTED-->TX_STOPPED, if we already
9243	 * received completion for the transaction the state is TX_STOPPED.
9244	 * State will return to STARTED after completion of TX_STOPPED-->STARTED
9245	 * transaction.
9246	 */
9247
9248	/* make sure default SB ISR is done */
9249	if (msix)
9250		synchronize_irq(bp->msix_table[0].vector);
9251	else
9252		synchronize_irq(bp->pdev->irq);
9253
9254	flush_workqueue(bnx2x_wq);
9255	flush_workqueue(bnx2x_iov_wq);
9256
9257	while (bnx2x_func_get_state(bp, &bp->func_obj) !=
9258				BNX2X_F_STATE_STARTED && tout--)
9259		msleep(20);
9260
9261	if (bnx2x_func_get_state(bp, &bp->func_obj) !=
9262						BNX2X_F_STATE_STARTED) {
9263#ifdef BNX2X_STOP_ON_ERROR
9264		BNX2X_ERR("Wrong function state\n");
9265		return -EBUSY;
9266#else
9267		/*
9268		 * Failed to complete the transaction in a "good way"
9269		 * Force both transactions with CLR bit
9270		 */
9271		struct bnx2x_func_state_params func_params = {NULL};
9272
9273		DP(NETIF_MSG_IFDOWN,
9274		   "Hmmm... Unexpected function state! Forcing STARTED-->TX_STOPPED-->STARTED\n");
9275
9276		func_params.f_obj = &bp->func_obj;
9277		__set_bit(RAMROD_DRV_CLR_ONLY,
9278					&func_params.ramrod_flags);
9279
9280		/* STARTED-->TX_ST0PPED */
9281		func_params.cmd = BNX2X_F_CMD_TX_STOP;
9282		bnx2x_func_state_change(bp, &func_params);
9283
9284		/* TX_ST0PPED-->STARTED */
9285		func_params.cmd = BNX2X_F_CMD_TX_START;
9286		return bnx2x_func_state_change(bp, &func_params);
9287#endif
9288	}
9289
9290	return 0;
9291}
9292
9293static void bnx2x_disable_ptp(struct bnx2x *bp)
9294{
9295	int port = BP_PORT(bp);
9296
9297	/* Disable sending PTP packets to host */
9298	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST :
9299	       NIG_REG_P0_LLH_PTP_TO_HOST, 0x0);
9300
9301	/* Reset PTP event detection rules */
9302	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
9303	       NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7FF);
9304	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
9305	       NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FFF);
9306	REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK :
9307	       NIG_REG_P0_TLLH_PTP_PARAM_MASK, 0x7FF);
9308	REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_RULE_MASK :
9309	       NIG_REG_P0_TLLH_PTP_RULE_MASK, 0x3FFF);
9310
9311	/* Disable the PTP feature */
9312	REG_WR(bp, port ? NIG_REG_P1_PTP_EN :
9313	       NIG_REG_P0_PTP_EN, 0x0);
9314}
9315
9316/* Called during unload, to stop PTP-related stuff */
9317static void bnx2x_stop_ptp(struct bnx2x *bp)
9318{
9319	/* Cancel PTP work queue. Should be done after the Tx queues are
9320	 * drained to prevent additional scheduling.
9321	 */
9322	cancel_work_sync(&bp->ptp_task);
9323
9324	if (bp->ptp_tx_skb) {
9325		dev_kfree_skb_any(bp->ptp_tx_skb);
9326		bp->ptp_tx_skb = NULL;
9327	}
9328
9329	/* Disable PTP in HW */
9330	bnx2x_disable_ptp(bp);
9331
9332	DP(BNX2X_MSG_PTP, "PTP stop ended successfully\n");
9333}
9334
9335void bnx2x_chip_cleanup(struct bnx2x *bp, int unload_mode, bool keep_link)
9336{
9337	int port = BP_PORT(bp);
9338	int i, rc = 0;
9339	u8 cos;
9340	struct bnx2x_mcast_ramrod_params rparam = {NULL};
9341	u32 reset_code;
9342
9343	/* Wait until tx fastpath tasks complete */
9344	for_each_tx_queue(bp, i) {
9345		struct bnx2x_fastpath *fp = &bp->fp[i];
9346
9347		for_each_cos_in_tx_queue(fp, cos)
9348			rc = bnx2x_clean_tx_queue(bp, fp->txdata_ptr[cos]);
9349#ifdef BNX2X_STOP_ON_ERROR
9350		if (rc)
9351			return;
9352#endif
9353	}
9354
9355	/* Give HW time to discard old tx messages */
9356	usleep_range(1000, 2000);
9357
9358	/* Clean all ETH MACs */
9359	rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_ETH_MAC,
9360				false);
9361	if (rc < 0)
9362		BNX2X_ERR("Failed to delete all ETH macs: %d\n", rc);
9363
9364	/* Clean up UC list  */
9365	rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_UC_LIST_MAC,
9366				true);
9367	if (rc < 0)
9368		BNX2X_ERR("Failed to schedule DEL commands for UC MACs list: %d\n",
9369			  rc);
9370
9371	/* The whole *vlan_obj structure may be not initialized if VLAN
9372	 * filtering offload is not supported by hardware. Currently this is
9373	 * true for all hardware covered by CHIP_IS_E1x().
9374	 */
9375	if (!CHIP_IS_E1x(bp)) {
9376		/* Remove all currently configured VLANs */
9377		rc = bnx2x_del_all_vlans(bp);
9378		if (rc < 0)
9379			BNX2X_ERR("Failed to delete all VLANs\n");
9380	}
9381
9382	/* Disable LLH */
9383	if (!CHIP_IS_E1(bp))
9384		REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
9385
9386	/* Set "drop all" (stop Rx).
9387	 * We need to take a netif_addr_lock() here in order to prevent
9388	 * a race between the completion code and this code.
9389	 */
9390	netif_addr_lock_bh(bp->dev);
9391	/* Schedule the rx_mode command */
9392	if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
9393		set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
9394	else if (bp->slowpath)
9395		bnx2x_set_storm_rx_mode(bp);
9396
9397	/* Cleanup multicast configuration */
9398	rparam.mcast_obj = &bp->mcast_obj;
9399	rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
9400	if (rc < 0)
9401		BNX2X_ERR("Failed to send DEL multicast command: %d\n", rc);
9402
9403	netif_addr_unlock_bh(bp->dev);
9404
9405	bnx2x_iov_chip_cleanup(bp);
9406
9407	/*
9408	 * Send the UNLOAD_REQUEST to the MCP. This will return if
9409	 * this function should perform FUNC, PORT or COMMON HW
9410	 * reset.
9411	 */
9412	reset_code = bnx2x_send_unload_req(bp, unload_mode);
9413
9414	/*
9415	 * (assumption: No Attention from MCP at this stage)
9416	 * PMF probably in the middle of TX disable/enable transaction
9417	 */
9418	rc = bnx2x_func_wait_started(bp);
9419	if (rc) {
9420		BNX2X_ERR("bnx2x_func_wait_started failed\n");
9421#ifdef BNX2X_STOP_ON_ERROR
9422		return;
9423#endif
9424	}
9425
9426	/* Close multi and leading connections
9427	 * Completions for ramrods are collected in a synchronous way
9428	 */
9429	for_each_eth_queue(bp, i)
9430		if (bnx2x_stop_queue(bp, i))
9431#ifdef BNX2X_STOP_ON_ERROR
9432			return;
9433#else
9434			goto unload_error;
9435#endif
9436
9437	if (CNIC_LOADED(bp)) {
9438		for_each_cnic_queue(bp, i)
9439			if (bnx2x_stop_queue(bp, i))
9440#ifdef BNX2X_STOP_ON_ERROR
9441				return;
9442#else
9443				goto unload_error;
9444#endif
9445	}
9446
9447	/* If SP settings didn't get completed so far - something
9448	 * very wrong has happen.
9449	 */
9450	if (!bnx2x_wait_sp_comp(bp, ~0x0UL))
9451		BNX2X_ERR("Hmmm... Common slow path ramrods got stuck!\n");
9452
9453#ifndef BNX2X_STOP_ON_ERROR
9454unload_error:
9455#endif
9456	rc = bnx2x_func_stop(bp);
9457	if (rc) {
9458		BNX2X_ERR("Function stop failed!\n");
9459#ifdef BNX2X_STOP_ON_ERROR
9460		return;
9461#endif
9462	}
9463
9464	/* stop_ptp should be after the Tx queues are drained to prevent
9465	 * scheduling to the cancelled PTP work queue. It should also be after
9466	 * function stop ramrod is sent, since as part of this ramrod FW access
9467	 * PTP registers.
9468	 */
9469	if (bp->flags & PTP_SUPPORTED) {
9470		bnx2x_stop_ptp(bp);
9471		if (bp->ptp_clock) {
9472			ptp_clock_unregister(bp->ptp_clock);
9473			bp->ptp_clock = NULL;
9474		}
9475	}
9476
9477	if (!bp->nic_stopped) {
9478		/* Disable HW interrupts, NAPI */
9479		bnx2x_netif_stop(bp, 1);
9480		/* Delete all NAPI objects */
9481		bnx2x_del_all_napi(bp);
9482		if (CNIC_LOADED(bp))
9483			bnx2x_del_all_napi_cnic(bp);
9484
9485		/* Release IRQs */
9486		bnx2x_free_irq(bp);
9487		bp->nic_stopped = true;
9488	}
9489
9490	/* Reset the chip, unless PCI function is offline. If we reach this
9491	 * point following a PCI error handling, it means device is really
9492	 * in a bad state and we're about to remove it, so reset the chip
9493	 * is not a good idea.
9494	 */
9495	if (!pci_channel_offline(bp->pdev)) {
9496		rc = bnx2x_reset_hw(bp, reset_code);
9497		if (rc)
9498			BNX2X_ERR("HW_RESET failed\n");
9499	}
9500
9501	/* Report UNLOAD_DONE to MCP */
9502	bnx2x_send_unload_done(bp, keep_link);
9503}
9504
9505void bnx2x_disable_close_the_gate(struct bnx2x *bp)
9506{
9507	u32 val;
9508
9509	DP(NETIF_MSG_IFDOWN, "Disabling \"close the gates\"\n");
9510
9511	if (CHIP_IS_E1(bp)) {
9512		int port = BP_PORT(bp);
9513		u32 addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
9514			MISC_REG_AEU_MASK_ATTN_FUNC_0;
9515
9516		val = REG_RD(bp, addr);
9517		val &= ~(0x300);
9518		REG_WR(bp, addr, val);
9519	} else {
9520		val = REG_RD(bp, MISC_REG_AEU_GENERAL_MASK);
9521		val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
9522			 MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
9523		REG_WR(bp, MISC_REG_AEU_GENERAL_MASK, val);
9524	}
9525}
9526
9527/* Close gates #2, #3 and #4: */
9528static void bnx2x_set_234_gates(struct bnx2x *bp, bool close)
9529{
9530	u32 val;
9531
9532	/* Gates #2 and #4a are closed/opened for "not E1" only */
9533	if (!CHIP_IS_E1(bp)) {
9534		/* #4 */
9535		REG_WR(bp, PXP_REG_HST_DISCARD_DOORBELLS, !!close);
9536		/* #2 */
9537		REG_WR(bp, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close);
9538	}
9539
9540	/* #3 */
9541	if (CHIP_IS_E1x(bp)) {
9542		/* Prevent interrupts from HC on both ports */
9543		val = REG_RD(bp, HC_REG_CONFIG_1);
9544		REG_WR(bp, HC_REG_CONFIG_1,
9545		       (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) :
9546		       (val & ~(u32)HC_CONFIG_1_REG_BLOCK_DISABLE_1));
9547
9548		val = REG_RD(bp, HC_REG_CONFIG_0);
9549		REG_WR(bp, HC_REG_CONFIG_0,
9550		       (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) :
9551		       (val & ~(u32)HC_CONFIG_0_REG_BLOCK_DISABLE_0));
9552	} else {
9553		/* Prevent incoming interrupts in IGU */
9554		val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
9555
9556		REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION,
9557		       (!close) ?
9558		       (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) :
9559		       (val & ~(u32)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
9560	}
9561
9562	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "%s gates #2, #3 and #4\n",
9563		close ? "closing" : "opening");
9564}
9565
9566#define SHARED_MF_CLP_MAGIC  0x80000000 /* `magic' bit */
9567
9568static void bnx2x_clp_reset_prep(struct bnx2x *bp, u32 *magic_val)
9569{
9570	/* Do some magic... */
9571	u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
9572	*magic_val = val & SHARED_MF_CLP_MAGIC;
9573	MF_CFG_WR(bp, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
9574}
9575
9576/**
9577 * bnx2x_clp_reset_done - restore the value of the `magic' bit.
9578 *
9579 * @bp:		driver handle
9580 * @magic_val:	old value of the `magic' bit.
9581 */
9582static void bnx2x_clp_reset_done(struct bnx2x *bp, u32 magic_val)
9583{
9584	/* Restore the `magic' bit value... */
9585	u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
9586	MF_CFG_WR(bp, shared_mf_config.clp_mb,
9587		(val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
9588}
9589
9590/**
9591 * bnx2x_reset_mcp_prep - prepare for MCP reset.
9592 *
9593 * @bp:		driver handle
9594 * @magic_val:	old value of 'magic' bit.
9595 *
9596 * Takes care of CLP configurations.
9597 */
9598static void bnx2x_reset_mcp_prep(struct bnx2x *bp, u32 *magic_val)
9599{
9600	u32 shmem;
9601	u32 validity_offset;
9602
9603	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "Starting\n");
9604
9605	/* Set `magic' bit in order to save MF config */
9606	if (!CHIP_IS_E1(bp))
9607		bnx2x_clp_reset_prep(bp, magic_val);
9608
9609	/* Get shmem offset */
9610	shmem = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
9611	validity_offset =
9612		offsetof(struct shmem_region, validity_map[BP_PORT(bp)]);
9613
9614	/* Clear validity map flags */
9615	if (shmem > 0)
9616		REG_WR(bp, shmem + validity_offset, 0);
9617}
9618
9619#define MCP_TIMEOUT      5000   /* 5 seconds (in ms) */
9620#define MCP_ONE_TIMEOUT  100    /* 100 ms */
9621
9622/**
9623 * bnx2x_mcp_wait_one - wait for MCP_ONE_TIMEOUT
9624 *
9625 * @bp:	driver handle
9626 */
9627static void bnx2x_mcp_wait_one(struct bnx2x *bp)
9628{
9629	/* special handling for emulation and FPGA,
9630	   wait 10 times longer */
9631	if (CHIP_REV_IS_SLOW(bp))
9632		msleep(MCP_ONE_TIMEOUT*10);
9633	else
9634		msleep(MCP_ONE_TIMEOUT);
9635}
9636
9637/*
9638 * initializes bp->common.shmem_base and waits for validity signature to appear
9639 */
9640static int bnx2x_init_shmem(struct bnx2x *bp)
9641{
9642	int cnt = 0;
9643	u32 val = 0;
9644
9645	do {
9646		bp->common.shmem_base = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
9647
9648		/* If we read all 0xFFs, means we are in PCI error state and
9649		 * should bail out to avoid crashes on adapter's FW reads.
9650		 */
9651		if (bp->common.shmem_base == 0xFFFFFFFF) {
9652			bp->flags |= NO_MCP_FLAG;
9653			return -ENODEV;
9654		}
9655
9656		if (bp->common.shmem_base) {
9657			val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]);
9658			if (val & SHR_MEM_VALIDITY_MB)
9659				return 0;
9660		}
9661
9662		bnx2x_mcp_wait_one(bp);
9663
9664	} while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
9665
9666	BNX2X_ERR("BAD MCP validity signature\n");
9667
9668	return -ENODEV;
9669}
9670
9671static int bnx2x_reset_mcp_comp(struct bnx2x *bp, u32 magic_val)
9672{
9673	int rc = bnx2x_init_shmem(bp);
9674
9675	/* Restore the `magic' bit value */
9676	if (!CHIP_IS_E1(bp))
9677		bnx2x_clp_reset_done(bp, magic_val);
9678
9679	return rc;
9680}
9681
9682static void bnx2x_pxp_prep(struct bnx2x *bp)
9683{
9684	if (!CHIP_IS_E1(bp)) {
9685		REG_WR(bp, PXP2_REG_RD_START_INIT, 0);
9686		REG_WR(bp, PXP2_REG_RQ_RBC_DONE, 0);
9687	}
9688}
9689
9690/*
9691 * Reset the whole chip except for:
9692 *      - PCIE core
9693 *      - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by
9694 *              one reset bit)
9695 *      - IGU
9696 *      - MISC (including AEU)
9697 *      - GRC
9698 *      - RBCN, RBCP
9699 */
9700static void bnx2x_process_kill_chip_reset(struct bnx2x *bp, bool global)
9701{
9702	u32 not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
9703	u32 global_bits2, stay_reset2;
9704
9705	/*
9706	 * Bits that have to be set in reset_mask2 if we want to reset 'global'
9707	 * (per chip) blocks.
9708	 */
9709	global_bits2 =
9710		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU |
9711		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE;
9712
9713	/* Don't reset the following blocks.
9714	 * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be
9715	 *            reset, as in 4 port device they might still be owned
9716	 *            by the MCP (there is only one leader per path).
9717	 */
9718	not_reset_mask1 =
9719		MISC_REGISTERS_RESET_REG_1_RST_HC |
9720		MISC_REGISTERS_RESET_REG_1_RST_PXPV |
9721		MISC_REGISTERS_RESET_REG_1_RST_PXP;
9722
9723	not_reset_mask2 =
9724		MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO |
9725		MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
9726		MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
9727		MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
9728		MISC_REGISTERS_RESET_REG_2_RST_RBCN |
9729		MISC_REGISTERS_RESET_REG_2_RST_GRC  |
9730		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
9731		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B |
9732		MISC_REGISTERS_RESET_REG_2_RST_ATC |
9733		MISC_REGISTERS_RESET_REG_2_PGLC |
9734		MISC_REGISTERS_RESET_REG_2_RST_BMAC0 |
9735		MISC_REGISTERS_RESET_REG_2_RST_BMAC1 |
9736		MISC_REGISTERS_RESET_REG_2_RST_EMAC0 |
9737		MISC_REGISTERS_RESET_REG_2_RST_EMAC1 |
9738		MISC_REGISTERS_RESET_REG_2_UMAC0 |
9739		MISC_REGISTERS_RESET_REG_2_UMAC1;
9740
9741	/*
9742	 * Keep the following blocks in reset:
9743	 *  - all xxMACs are handled by the bnx2x_link code.
9744	 */
9745	stay_reset2 =
9746		MISC_REGISTERS_RESET_REG_2_XMAC |
9747		MISC_REGISTERS_RESET_REG_2_XMAC_SOFT;
9748
9749	/* Full reset masks according to the chip */
9750	reset_mask1 = 0xffffffff;
9751
9752	if (CHIP_IS_E1(bp))
9753		reset_mask2 = 0xffff;
9754	else if (CHIP_IS_E1H(bp))
9755		reset_mask2 = 0x1ffff;
9756	else if (CHIP_IS_E2(bp))
9757		reset_mask2 = 0xfffff;
9758	else /* CHIP_IS_E3 */
9759		reset_mask2 = 0x3ffffff;
9760
9761	/* Don't reset global blocks unless we need to */
9762	if (!global)
9763		reset_mask2 &= ~global_bits2;
9764
9765	/*
9766	 * In case of attention in the QM, we need to reset PXP
9767	 * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
9768	 * because otherwise QM reset would release 'close the gates' shortly
9769	 * before resetting the PXP, then the PSWRQ would send a write
9770	 * request to PGLUE. Then when PXP is reset, PGLUE would try to
9771	 * read the payload data from PSWWR, but PSWWR would not
9772	 * respond. The write queue in PGLUE would stuck, dmae commands
9773	 * would not return. Therefore it's important to reset the second
9774	 * reset register (containing the
9775	 * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
9776	 * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
9777	 * bit).
9778	 */
9779	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
9780	       reset_mask2 & (~not_reset_mask2));
9781
9782	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
9783	       reset_mask1 & (~not_reset_mask1));
9784
9785	barrier();
9786
9787	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
9788	       reset_mask2 & (~stay_reset2));
9789
9790	barrier();
9791
9792	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
9793}
9794
9795/**
9796 * bnx2x_er_poll_igu_vq - poll for pending writes bit.
9797 * It should get cleared in no more than 1s.
9798 *
9799 * @bp:	driver handle
9800 *
9801 * It should get cleared in no more than 1s. Returns 0 if
9802 * pending writes bit gets cleared.
9803 */
9804static int bnx2x_er_poll_igu_vq(struct bnx2x *bp)
9805{
9806	u32 cnt = 1000;
9807	u32 pend_bits = 0;
9808
9809	do {
9810		pend_bits  = REG_RD(bp, IGU_REG_PENDING_BITS_STATUS);
9811
9812		if (pend_bits == 0)
9813			break;
9814
9815		usleep_range(1000, 2000);
9816	} while (cnt-- > 0);
9817
9818	if (cnt <= 0) {
9819		BNX2X_ERR("Still pending IGU requests pend_bits=%x!\n",
9820			  pend_bits);
9821		return -EBUSY;
9822	}
9823
9824	return 0;
9825}
9826
9827static int bnx2x_process_kill(struct bnx2x *bp, bool global)
9828{
9829	int cnt = 1000;
9830	u32 val = 0;
9831	u32 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
9832	u32 tags_63_32 = 0;
9833
9834	/* Empty the Tetris buffer, wait for 1s */
9835	do {
9836		sr_cnt  = REG_RD(bp, PXP2_REG_RD_SR_CNT);
9837		blk_cnt = REG_RD(bp, PXP2_REG_RD_BLK_CNT);
9838		port_is_idle_0 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_0);
9839		port_is_idle_1 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_1);
9840		pgl_exp_rom2 = REG_RD(bp, PXP2_REG_PGL_EXP_ROM2);
9841		if (CHIP_IS_E3(bp))
9842			tags_63_32 = REG_RD(bp, PGLUE_B_REG_TAGS_63_32);
9843
9844		if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
9845		    ((port_is_idle_0 & 0x1) == 0x1) &&
9846		    ((port_is_idle_1 & 0x1) == 0x1) &&
9847		    (pgl_exp_rom2 == 0xffffffff) &&
9848		    (!CHIP_IS_E3(bp) || (tags_63_32 == 0xffffffff)))
9849			break;
9850		usleep_range(1000, 2000);
9851	} while (cnt-- > 0);
9852
9853	if (cnt <= 0) {
9854		BNX2X_ERR("Tetris buffer didn't get empty or there are still outstanding read requests after 1s!\n");
9855		BNX2X_ERR("sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n",
9856			  sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1,
9857			  pgl_exp_rom2);
9858		return -EAGAIN;
9859	}
9860
9861	barrier();
9862
9863	/* Close gates #2, #3 and #4 */
9864	bnx2x_set_234_gates(bp, true);
9865
9866	/* Poll for IGU VQs for 57712 and newer chips */
9867	if (!CHIP_IS_E1x(bp) && bnx2x_er_poll_igu_vq(bp))
9868		return -EAGAIN;
9869
9870	/* TBD: Indicate that "process kill" is in progress to MCP */
9871
9872	/* Clear "unprepared" bit */
9873	REG_WR(bp, MISC_REG_UNPREPARED, 0);
9874	barrier();
9875
9876	/* Wait for 1ms to empty GLUE and PCI-E core queues,
9877	 * PSWHST, GRC and PSWRD Tetris buffer.
9878	 */
9879	usleep_range(1000, 2000);
9880
9881	/* Prepare to chip reset: */
9882	/* MCP */
9883	if (global)
9884		bnx2x_reset_mcp_prep(bp, &val);
9885
9886	/* PXP */
9887	bnx2x_pxp_prep(bp);
9888	barrier();
9889
9890	/* reset the chip */
9891	bnx2x_process_kill_chip_reset(bp, global);
9892	barrier();
9893
9894	/* clear errors in PGB */
9895	if (!CHIP_IS_E1x(bp))
9896		REG_WR(bp, PGLUE_B_REG_LATCHED_ERRORS_CLR, 0x7f);
9897
9898	/* Recover after reset: */
9899	/* MCP */
9900	if (global && bnx2x_reset_mcp_comp(bp, val))
9901		return -EAGAIN;
9902
9903	/* TBD: Add resetting the NO_MCP mode DB here */
9904
9905	/* Open the gates #2, #3 and #4 */
9906	bnx2x_set_234_gates(bp, false);
9907
9908	/* TBD: IGU/AEU preparation bring back the AEU/IGU to a
9909	 * reset state, re-enable attentions. */
9910
9911	return 0;
9912}
9913
9914static int bnx2x_leader_reset(struct bnx2x *bp)
9915{
9916	int rc = 0;
9917	bool global = bnx2x_reset_is_global(bp);
9918	u32 load_code;
9919
9920	/* if not going to reset MCP - load "fake" driver to reset HW while
9921	 * driver is owner of the HW
9922	 */
9923	if (!global && !BP_NOMCP(bp)) {
9924		load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ,
9925					     DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
9926		if (!load_code) {
9927			BNX2X_ERR("MCP response failure, aborting\n");
9928			rc = -EAGAIN;
9929			goto exit_leader_reset;
9930		}
9931		if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
9932		    (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
9933			BNX2X_ERR("MCP unexpected resp, aborting\n");
9934			rc = -EAGAIN;
9935			goto exit_leader_reset2;
9936		}
9937		load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
9938		if (!load_code) {
9939			BNX2X_ERR("MCP response failure, aborting\n");
9940			rc = -EAGAIN;
9941			goto exit_leader_reset2;
9942		}
9943	}
9944
9945	/* Try to recover after the failure */
9946	if (bnx2x_process_kill(bp, global)) {
9947		BNX2X_ERR("Something bad had happen on engine %d! Aii!\n",
9948			  BP_PATH(bp));
9949		rc = -EAGAIN;
9950		goto exit_leader_reset2;
9951	}
9952
9953	/*
9954	 * Clear RESET_IN_PROGRES and RESET_GLOBAL bits and update the driver
9955	 * state.
9956	 */
9957	bnx2x_set_reset_done(bp);
9958	if (global)
9959		bnx2x_clear_reset_global(bp);
9960
9961exit_leader_reset2:
9962	/* unload "fake driver" if it was loaded */
9963	if (!global && !BP_NOMCP(bp)) {
9964		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
9965		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
9966	}
9967exit_leader_reset:
9968	bp->is_leader = 0;
9969	bnx2x_release_leader_lock(bp);
9970	smp_mb();
9971	return rc;
9972}
9973
9974static void bnx2x_recovery_failed(struct bnx2x *bp)
9975{
9976	netdev_err(bp->dev, "Recovery has failed. Power cycle is needed.\n");
9977
9978	/* Disconnect this device */
9979	netif_device_detach(bp->dev);
9980
9981	/*
9982	 * Block ifup for all function on this engine until "process kill"
9983	 * or power cycle.
9984	 */
9985	bnx2x_set_reset_in_progress(bp);
9986
9987	/* Shut down the power */
9988	bnx2x_set_power_state(bp, PCI_D3hot);
9989
9990	bp->recovery_state = BNX2X_RECOVERY_FAILED;
9991
9992	smp_mb();
9993}
9994
9995/*
9996 * Assumption: runs under rtnl lock. This together with the fact
9997 * that it's called only from bnx2x_sp_rtnl() ensure that it
9998 * will never be called when netif_running(bp->dev) is false.
9999 */
10000static void bnx2x_parity_recover(struct bnx2x *bp)
10001{
10002	u32 error_recovered, error_unrecovered;
10003	bool is_parity, global = false;
10004#ifdef CONFIG_BNX2X_SRIOV
10005	int vf_idx;
10006
10007	for (vf_idx = 0; vf_idx < bp->requested_nr_virtfn; vf_idx++) {
10008		struct bnx2x_virtf *vf = BP_VF(bp, vf_idx);
10009
10010		if (vf)
10011			vf->state = VF_LOST;
10012	}
10013#endif
10014	DP(NETIF_MSG_HW, "Handling parity\n");
10015	while (1) {
10016		switch (bp->recovery_state) {
10017		case BNX2X_RECOVERY_INIT:
10018			DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_INIT\n");
10019			is_parity = bnx2x_chk_parity_attn(bp, &global, false);
10020			WARN_ON(!is_parity);
10021
10022			/* Try to get a LEADER_LOCK HW lock */
10023			if (bnx2x_trylock_leader_lock(bp)) {
10024				bnx2x_set_reset_in_progress(bp);
10025				/*
10026				 * Check if there is a global attention and if
10027				 * there was a global attention, set the global
10028				 * reset bit.
10029				 */
10030
10031				if (global)
10032					bnx2x_set_reset_global(bp);
10033
10034				bp->is_leader = 1;
10035			}
10036
10037			/* Stop the driver */
10038			/* If interface has been removed - break */
10039			if (bnx2x_nic_unload(bp, UNLOAD_RECOVERY, false))
10040				return;
10041
10042			bp->recovery_state = BNX2X_RECOVERY_WAIT;
10043
10044			/* Ensure "is_leader", MCP command sequence and
10045			 * "recovery_state" update values are seen on other
10046			 * CPUs.
10047			 */
10048			smp_mb();
10049			break;
10050
10051		case BNX2X_RECOVERY_WAIT:
10052			DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_WAIT\n");
10053			if (bp->is_leader) {
10054				int other_engine = BP_PATH(bp) ? 0 : 1;
10055				bool other_load_status =
10056					bnx2x_get_load_status(bp, other_engine);
10057				bool load_status =
10058					bnx2x_get_load_status(bp, BP_PATH(bp));
10059				global = bnx2x_reset_is_global(bp);
10060
10061				/*
10062				 * In case of a parity in a global block, let
10063				 * the first leader that performs a
10064				 * leader_reset() reset the global blocks in
10065				 * order to clear global attentions. Otherwise
10066				 * the gates will remain closed for that
10067				 * engine.
10068				 */
10069				if (load_status ||
10070				    (global && other_load_status)) {
10071					/* Wait until all other functions get
10072					 * down.
10073					 */
10074					schedule_delayed_work(&bp->sp_rtnl_task,
10075								HZ/10);
10076					return;
10077				} else {
10078					/* If all other functions got down -
10079					 * try to bring the chip back to
10080					 * normal. In any case it's an exit
10081					 * point for a leader.
10082					 */
10083					if (bnx2x_leader_reset(bp)) {
10084						bnx2x_recovery_failed(bp);
10085						return;
10086					}
10087
10088					/* If we are here, means that the
10089					 * leader has succeeded and doesn't
10090					 * want to be a leader any more. Try
10091					 * to continue as a none-leader.
10092					 */
10093					break;
10094				}
10095			} else { /* non-leader */
10096				if (!bnx2x_reset_is_done(bp, BP_PATH(bp))) {
10097					/* Try to get a LEADER_LOCK HW lock as
10098					 * long as a former leader may have
10099					 * been unloaded by the user or
10100					 * released a leadership by another
10101					 * reason.
10102					 */
10103					if (bnx2x_trylock_leader_lock(bp)) {
10104						/* I'm a leader now! Restart a
10105						 * switch case.
10106						 */
10107						bp->is_leader = 1;
10108						break;
10109					}
10110
10111					schedule_delayed_work(&bp->sp_rtnl_task,
10112								HZ/10);
10113					return;
10114
10115				} else {
10116					/*
10117					 * If there was a global attention, wait
10118					 * for it to be cleared.
10119					 */
10120					if (bnx2x_reset_is_global(bp)) {
10121						schedule_delayed_work(
10122							&bp->sp_rtnl_task,
10123							HZ/10);
10124						return;
10125					}
10126
10127					error_recovered =
10128					  bp->eth_stats.recoverable_error;
10129					error_unrecovered =
10130					  bp->eth_stats.unrecoverable_error;
10131					bp->recovery_state =
10132						BNX2X_RECOVERY_NIC_LOADING;
10133					if (bnx2x_nic_load(bp, LOAD_NORMAL)) {
10134						error_unrecovered++;
10135						netdev_err(bp->dev,
10136							   "Recovery failed. Power cycle needed\n");
10137						/* Disconnect this device */
10138						netif_device_detach(bp->dev);
10139						/* Shut down the power */
10140						bnx2x_set_power_state(
10141							bp, PCI_D3hot);
10142						smp_mb();
10143					} else {
10144						bp->recovery_state =
10145							BNX2X_RECOVERY_DONE;
10146						error_recovered++;
10147						smp_mb();
10148					}
10149					bp->eth_stats.recoverable_error =
10150						error_recovered;
10151					bp->eth_stats.unrecoverable_error =
10152						error_unrecovered;
10153
10154					return;
10155				}
10156			}
10157		default:
10158			return;
10159		}
10160	}
10161}
10162
10163static int bnx2x_udp_port_update(struct bnx2x *bp)
10164{
10165	struct bnx2x_func_switch_update_params *switch_update_params;
10166	struct bnx2x_func_state_params func_params = {NULL};
10167	u16 vxlan_port = 0, geneve_port = 0;
10168	int rc;
10169
10170	switch_update_params = &func_params.params.switch_update;
10171
10172	/* Prepare parameters for function state transitions */
10173	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
10174	__set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
10175
10176	func_params.f_obj = &bp->func_obj;
10177	func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
10178
10179	/* Function parameters */
10180	__set_bit(BNX2X_F_UPDATE_TUNNEL_CFG_CHNG,
10181		  &switch_update_params->changes);
10182
10183	if (bp->udp_tunnel_ports[BNX2X_UDP_PORT_GENEVE]) {
10184		geneve_port = bp->udp_tunnel_ports[BNX2X_UDP_PORT_GENEVE];
10185		switch_update_params->geneve_dst_port = geneve_port;
10186	}
10187
10188	if (bp->udp_tunnel_ports[BNX2X_UDP_PORT_VXLAN]) {
10189		vxlan_port = bp->udp_tunnel_ports[BNX2X_UDP_PORT_VXLAN];
10190		switch_update_params->vxlan_dst_port = vxlan_port;
10191	}
10192
10193	/* Re-enable inner-rss for the offloaded UDP tunnels */
10194	__set_bit(BNX2X_F_UPDATE_TUNNEL_INNER_RSS,
10195		  &switch_update_params->changes);
10196
10197	rc = bnx2x_func_state_change(bp, &func_params);
10198	if (rc)
10199		BNX2X_ERR("failed to set UDP dst port to %04x %04x (rc = 0x%x)\n",
10200			  vxlan_port, geneve_port, rc);
10201	else
10202		DP(BNX2X_MSG_SP,
10203		   "Configured UDP ports: Vxlan [%04x] Geneve [%04x]\n",
10204		   vxlan_port, geneve_port);
10205
10206	return rc;
10207}
10208
10209static int bnx2x_udp_tunnel_sync(struct net_device *netdev, unsigned int table)
10210{
10211	struct bnx2x *bp = netdev_priv(netdev);
10212	struct udp_tunnel_info ti;
10213
10214	udp_tunnel_nic_get_port(netdev, table, 0, &ti);
10215	bp->udp_tunnel_ports[table] = be16_to_cpu(ti.port);
10216
10217	return bnx2x_udp_port_update(bp);
10218}
10219
10220static const struct udp_tunnel_nic_info bnx2x_udp_tunnels = {
10221	.sync_table	= bnx2x_udp_tunnel_sync,
10222	.flags		= UDP_TUNNEL_NIC_INFO_MAY_SLEEP |
10223			  UDP_TUNNEL_NIC_INFO_OPEN_ONLY,
10224	.tables		= {
10225		{ .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN,  },
10226		{ .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_GENEVE, },
10227	},
10228};
10229
10230static int bnx2x_close(struct net_device *dev);
10231
10232/* bnx2x_nic_unload() flushes the bnx2x_wq, thus reset task is
10233 * scheduled on a general queue in order to prevent a dead lock.
10234 */
10235static void bnx2x_sp_rtnl_task(struct work_struct *work)
10236{
10237	struct bnx2x *bp = container_of(work, struct bnx2x, sp_rtnl_task.work);
10238
10239	rtnl_lock();
10240
10241	if (!netif_running(bp->dev)) {
10242		rtnl_unlock();
10243		return;
10244	}
10245
10246	if (unlikely(bp->recovery_state != BNX2X_RECOVERY_DONE)) {
10247#ifdef BNX2X_STOP_ON_ERROR
10248		BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
10249			  "you will need to reboot when done\n");
10250		goto sp_rtnl_not_reset;
10251#endif
10252		/*
10253		 * Clear all pending SP commands as we are going to reset the
10254		 * function anyway.
10255		 */
10256		bp->sp_rtnl_state = 0;
10257		smp_mb();
10258
10259		bnx2x_parity_recover(bp);
10260
10261		rtnl_unlock();
10262		return;
10263	}
10264
10265	if (test_and_clear_bit(BNX2X_SP_RTNL_TX_TIMEOUT, &bp->sp_rtnl_state)) {
10266#ifdef BNX2X_STOP_ON_ERROR
10267		BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
10268			  "you will need to reboot when done\n");
10269		goto sp_rtnl_not_reset;
10270#endif
10271
10272		/*
10273		 * Clear all pending SP commands as we are going to reset the
10274		 * function anyway.
10275		 */
10276		bp->sp_rtnl_state = 0;
10277		smp_mb();
10278
10279		/* Immediately indicate link as down */
10280		bp->link_vars.link_up = 0;
10281		bp->force_link_down = true;
10282		netif_carrier_off(bp->dev);
10283		BNX2X_ERR("Indicating link is down due to Tx-timeout\n");
10284
10285		bnx2x_nic_unload(bp, UNLOAD_NORMAL, true);
10286		/* When ret value shows failure of allocation failure,
10287		 * the nic is rebooted again. If open still fails, a error
10288		 * message to notify the user.
10289		 */
10290		if (bnx2x_nic_load(bp, LOAD_NORMAL) == -ENOMEM) {
10291			bnx2x_nic_unload(bp, UNLOAD_NORMAL, true);
10292			if (bnx2x_nic_load(bp, LOAD_NORMAL))
10293				BNX2X_ERR("Open the NIC fails again!\n");
10294		}
10295		rtnl_unlock();
10296		return;
10297	}
10298#ifdef BNX2X_STOP_ON_ERROR
10299sp_rtnl_not_reset:
10300#endif
10301	if (test_and_clear_bit(BNX2X_SP_RTNL_SETUP_TC, &bp->sp_rtnl_state))
10302		bnx2x_setup_tc(bp->dev, bp->dcbx_port_params.ets.num_of_cos);
10303	if (test_and_clear_bit(BNX2X_SP_RTNL_AFEX_F_UPDATE, &bp->sp_rtnl_state))
10304		bnx2x_after_function_update(bp);
10305	/*
10306	 * in case of fan failure we need to reset id if the "stop on error"
10307	 * debug flag is set, since we trying to prevent permanent overheating
10308	 * damage
10309	 */
10310	if (test_and_clear_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state)) {
10311		DP(NETIF_MSG_HW, "fan failure detected. Unloading driver\n");
10312		netif_device_detach(bp->dev);
10313		bnx2x_close(bp->dev);
10314		rtnl_unlock();
10315		return;
10316	}
10317
10318	if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_MCAST, &bp->sp_rtnl_state)) {
10319		DP(BNX2X_MSG_SP,
10320		   "sending set mcast vf pf channel message from rtnl sp-task\n");
10321		bnx2x_vfpf_set_mcast(bp->dev);
10322	}
10323	if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_CHANNEL_DOWN,
10324			       &bp->sp_rtnl_state)){
10325		if (netif_carrier_ok(bp->dev)) {
10326			bnx2x_tx_disable(bp);
10327			BNX2X_ERR("PF indicated channel is not servicable anymore. This means this VF device is no longer operational\n");
10328		}
10329	}
10330
10331	if (test_and_clear_bit(BNX2X_SP_RTNL_RX_MODE, &bp->sp_rtnl_state)) {
10332		DP(BNX2X_MSG_SP, "Handling Rx Mode setting\n");
10333		bnx2x_set_rx_mode_inner(bp);
10334	}
10335
10336	if (test_and_clear_bit(BNX2X_SP_RTNL_HYPERVISOR_VLAN,
10337			       &bp->sp_rtnl_state))
10338		bnx2x_pf_set_vfs_vlan(bp);
10339
10340	if (test_and_clear_bit(BNX2X_SP_RTNL_TX_STOP, &bp->sp_rtnl_state)) {
10341		bnx2x_dcbx_stop_hw_tx(bp);
10342		bnx2x_dcbx_resume_hw_tx(bp);
10343	}
10344
10345	if (test_and_clear_bit(BNX2X_SP_RTNL_GET_DRV_VERSION,
10346			       &bp->sp_rtnl_state))
10347		bnx2x_update_mng_version(bp);
10348
10349	if (test_and_clear_bit(BNX2X_SP_RTNL_UPDATE_SVID, &bp->sp_rtnl_state))
10350		bnx2x_handle_update_svid_cmd(bp);
10351
10352	/* work which needs rtnl lock not-taken (as it takes the lock itself and
10353	 * can be called from other contexts as well)
10354	 */
10355	rtnl_unlock();
10356
10357	/* enable SR-IOV if applicable */
10358	if (IS_SRIOV(bp) && test_and_clear_bit(BNX2X_SP_RTNL_ENABLE_SRIOV,
10359					       &bp->sp_rtnl_state)) {
10360		bnx2x_disable_sriov(bp);
10361		bnx2x_enable_sriov(bp);
10362	}
10363}
10364
10365static void bnx2x_period_task(struct work_struct *work)
10366{
10367	struct bnx2x *bp = container_of(work, struct bnx2x, period_task.work);
10368
10369	if (!netif_running(bp->dev))
10370		goto period_task_exit;
10371
10372	if (CHIP_REV_IS_SLOW(bp)) {
10373		BNX2X_ERR("period task called on emulation, ignoring\n");
10374		goto period_task_exit;
10375	}
10376
10377	bnx2x_acquire_phy_lock(bp);
10378	/*
10379	 * The barrier is needed to ensure the ordering between the writing to
10380	 * the bp->port.pmf in the bnx2x_nic_load() or bnx2x_pmf_update() and
10381	 * the reading here.
10382	 */
10383	smp_mb();
10384	if (bp->port.pmf) {
10385		bnx2x_period_func(&bp->link_params, &bp->link_vars);
10386
10387		/* Re-queue task in 1 sec */
10388		queue_delayed_work(bnx2x_wq, &bp->period_task, 1*HZ);
10389	}
10390
10391	bnx2x_release_phy_lock(bp);
10392period_task_exit:
10393	return;
10394}
10395
10396/*
10397 * Init service functions
10398 */
10399
10400static u32 bnx2x_get_pretend_reg(struct bnx2x *bp)
10401{
10402	u32 base = PXP2_REG_PGL_PRETEND_FUNC_F0;
10403	u32 stride = PXP2_REG_PGL_PRETEND_FUNC_F1 - base;
10404	return base + (BP_ABS_FUNC(bp)) * stride;
10405}
10406
10407static bool bnx2x_prev_unload_close_umac(struct bnx2x *bp,
10408					 u8 port, u32 reset_reg,
10409					 struct bnx2x_mac_vals *vals)
10410{
10411	u32 mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port;
10412	u32 base_addr;
10413
10414	if (!(mask & reset_reg))
10415		return false;
10416
10417	BNX2X_DEV_INFO("Disable umac Rx %02x\n", port);
10418	base_addr = port ? GRCBASE_UMAC1 : GRCBASE_UMAC0;
10419	vals->umac_addr[port] = base_addr + UMAC_REG_COMMAND_CONFIG;
10420	vals->umac_val[port] = REG_RD(bp, vals->umac_addr[port]);
10421	REG_WR(bp, vals->umac_addr[port], 0);
10422
10423	return true;
10424}
10425
10426static void bnx2x_prev_unload_close_mac(struct bnx2x *bp,
10427					struct bnx2x_mac_vals *vals)
10428{
10429	u32 val, base_addr, offset, mask, reset_reg;
10430	bool mac_stopped = false;
10431	u8 port = BP_PORT(bp);
10432
10433	/* reset addresses as they also mark which values were changed */
10434	memset(vals, 0, sizeof(*vals));
10435
10436	reset_reg = REG_RD(bp, MISC_REG_RESET_REG_2);
10437
10438	if (!CHIP_IS_E3(bp)) {
10439		val = REG_RD(bp, NIG_REG_BMAC0_REGS_OUT_EN + port * 4);
10440		mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port;
10441		if ((mask & reset_reg) && val) {
10442			u32 wb_data[2];
10443			BNX2X_DEV_INFO("Disable bmac Rx\n");
10444			base_addr = BP_PORT(bp) ? NIG_REG_INGRESS_BMAC1_MEM
10445						: NIG_REG_INGRESS_BMAC0_MEM;
10446			offset = CHIP_IS_E2(bp) ? BIGMAC2_REGISTER_BMAC_CONTROL
10447						: BIGMAC_REGISTER_BMAC_CONTROL;
10448
10449			/*
10450			 * use rd/wr since we cannot use dmae. This is safe
10451			 * since MCP won't access the bus due to the request
10452			 * to unload, and no function on the path can be
10453			 * loaded at this time.
10454			 */
10455			wb_data[0] = REG_RD(bp, base_addr + offset);
10456			wb_data[1] = REG_RD(bp, base_addr + offset + 0x4);
10457			vals->bmac_addr = base_addr + offset;
10458			vals->bmac_val[0] = wb_data[0];
10459			vals->bmac_val[1] = wb_data[1];
10460			wb_data[0] &= ~BMAC_CONTROL_RX_ENABLE;
10461			REG_WR(bp, vals->bmac_addr, wb_data[0]);
10462			REG_WR(bp, vals->bmac_addr + 0x4, wb_data[1]);
10463		}
10464		BNX2X_DEV_INFO("Disable emac Rx\n");
10465		vals->emac_addr = NIG_REG_NIG_EMAC0_EN + BP_PORT(bp)*4;
10466		vals->emac_val = REG_RD(bp, vals->emac_addr);
10467		REG_WR(bp, vals->emac_addr, 0);
10468		mac_stopped = true;
10469	} else {
10470		if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) {
10471			BNX2X_DEV_INFO("Disable xmac Rx\n");
10472			base_addr = BP_PORT(bp) ? GRCBASE_XMAC1 : GRCBASE_XMAC0;
10473			val = REG_RD(bp, base_addr + XMAC_REG_PFC_CTRL_HI);
10474			REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
10475			       val & ~(1 << 1));
10476			REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
10477			       val | (1 << 1));
10478			vals->xmac_addr = base_addr + XMAC_REG_CTRL;
10479			vals->xmac_val = REG_RD(bp, vals->xmac_addr);
10480			REG_WR(bp, vals->xmac_addr, 0);
10481			mac_stopped = true;
10482		}
10483
10484		mac_stopped |= bnx2x_prev_unload_close_umac(bp, 0,
10485							    reset_reg, vals);
10486		mac_stopped |= bnx2x_prev_unload_close_umac(bp, 1,
10487							    reset_reg, vals);
10488	}
10489
10490	if (mac_stopped)
10491		msleep(20);
10492}
10493
10494#define BNX2X_PREV_UNDI_PROD_ADDR(p) (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4))
10495#define BNX2X_PREV_UNDI_PROD_ADDR_H(f) (BAR_TSTRORM_INTMEM + \
10496					0x1848 + ((f) << 4))
10497#define BNX2X_PREV_UNDI_RCQ(val)	((val) & 0xffff)
10498#define BNX2X_PREV_UNDI_BD(val)		((val) >> 16 & 0xffff)
10499#define BNX2X_PREV_UNDI_PROD(rcq, bd)	((bd) << 16 | (rcq))
10500
10501#define BCM_5710_UNDI_FW_MF_MAJOR	(0x07)
10502#define BCM_5710_UNDI_FW_MF_MINOR	(0x08)
10503#define BCM_5710_UNDI_FW_MF_VERS	(0x05)
10504
10505static bool bnx2x_prev_is_after_undi(struct bnx2x *bp)
10506{
10507	/* UNDI marks its presence in DORQ -
10508	 * it initializes CID offset for normal bell to 0x7
10509	 */
10510	if (!(REG_RD(bp, MISC_REG_RESET_REG_1) &
10511	    MISC_REGISTERS_RESET_REG_1_RST_DORQ))
10512		return false;
10513
10514	if (REG_RD(bp, DORQ_REG_NORM_CID_OFST) == 0x7) {
10515		BNX2X_DEV_INFO("UNDI previously loaded\n");
10516		return true;
10517	}
10518
10519	return false;
10520}
10521
10522static void bnx2x_prev_unload_undi_inc(struct bnx2x *bp, u8 inc)
10523{
10524	u16 rcq, bd;
10525	u32 addr, tmp_reg;
10526
10527	if (BP_FUNC(bp) < 2)
10528		addr = BNX2X_PREV_UNDI_PROD_ADDR(BP_PORT(bp));
10529	else
10530		addr = BNX2X_PREV_UNDI_PROD_ADDR_H(BP_FUNC(bp) - 2);
10531
10532	tmp_reg = REG_RD(bp, addr);
10533	rcq = BNX2X_PREV_UNDI_RCQ(tmp_reg) + inc;
10534	bd = BNX2X_PREV_UNDI_BD(tmp_reg) + inc;
10535
10536	tmp_reg = BNX2X_PREV_UNDI_PROD(rcq, bd);
10537	REG_WR(bp, addr, tmp_reg);
10538
10539	BNX2X_DEV_INFO("UNDI producer [%d/%d][%08x] rings bd -> 0x%04x, rcq -> 0x%04x\n",
10540		       BP_PORT(bp), BP_FUNC(bp), addr, bd, rcq);
10541}
10542
10543static int bnx2x_prev_mcp_done(struct bnx2x *bp)
10544{
10545	u32 rc = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE,
10546				  DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET);
10547	if (!rc) {
10548		BNX2X_ERR("MCP response failure, aborting\n");
10549		return -EBUSY;
10550	}
10551
10552	return 0;
10553}
10554
10555static struct bnx2x_prev_path_list *
10556		bnx2x_prev_path_get_entry(struct bnx2x *bp)
10557{
10558	struct bnx2x_prev_path_list *tmp_list;
10559
10560	list_for_each_entry(tmp_list, &bnx2x_prev_list, list)
10561		if (PCI_SLOT(bp->pdev->devfn) == tmp_list->slot &&
10562		    bp->pdev->bus->number == tmp_list->bus &&
10563		    BP_PATH(bp) == tmp_list->path)
10564			return tmp_list;
10565
10566	return NULL;
10567}
10568
10569static int bnx2x_prev_path_mark_eeh(struct bnx2x *bp)
10570{
10571	struct bnx2x_prev_path_list *tmp_list;
10572	int rc;
10573
10574	rc = down_interruptible(&bnx2x_prev_sem);
10575	if (rc) {
10576		BNX2X_ERR("Received %d when tried to take lock\n", rc);
10577		return rc;
10578	}
10579
10580	tmp_list = bnx2x_prev_path_get_entry(bp);
10581	if (tmp_list) {
10582		tmp_list->aer = 1;
10583		rc = 0;
10584	} else {
10585		BNX2X_ERR("path %d: Entry does not exist for eeh; Flow occurs before initial insmod is over ?\n",
10586			  BP_PATH(bp));
10587	}
10588
10589	up(&bnx2x_prev_sem);
10590
10591	return rc;
10592}
10593
10594static bool bnx2x_prev_is_path_marked(struct bnx2x *bp)
10595{
10596	struct bnx2x_prev_path_list *tmp_list;
10597	bool rc = false;
10598
10599	if (down_trylock(&bnx2x_prev_sem))
10600		return false;
10601
10602	tmp_list = bnx2x_prev_path_get_entry(bp);
10603	if (tmp_list) {
10604		if (tmp_list->aer) {
10605			DP(NETIF_MSG_HW, "Path %d was marked by AER\n",
10606			   BP_PATH(bp));
10607		} else {
10608			rc = true;
10609			BNX2X_DEV_INFO("Path %d was already cleaned from previous drivers\n",
10610				       BP_PATH(bp));
10611		}
10612	}
10613
10614	up(&bnx2x_prev_sem);
10615
10616	return rc;
10617}
10618
10619bool bnx2x_port_after_undi(struct bnx2x *bp)
10620{
10621	struct bnx2x_prev_path_list *entry;
10622	bool val;
10623
10624	down(&bnx2x_prev_sem);
10625
10626	entry = bnx2x_prev_path_get_entry(bp);
10627	val = !!(entry && (entry->undi & (1 << BP_PORT(bp))));
10628
10629	up(&bnx2x_prev_sem);
10630
10631	return val;
10632}
10633
10634static int bnx2x_prev_mark_path(struct bnx2x *bp, bool after_undi)
10635{
10636	struct bnx2x_prev_path_list *tmp_list;
10637	int rc;
10638
10639	rc = down_interruptible(&bnx2x_prev_sem);
10640	if (rc) {
10641		BNX2X_ERR("Received %d when tried to take lock\n", rc);
10642		return rc;
10643	}
10644
10645	/* Check whether the entry for this path already exists */
10646	tmp_list = bnx2x_prev_path_get_entry(bp);
10647	if (tmp_list) {
10648		if (!tmp_list->aer) {
10649			BNX2X_ERR("Re-Marking the path.\n");
10650		} else {
10651			DP(NETIF_MSG_HW, "Removing AER indication from path %d\n",
10652			   BP_PATH(bp));
10653			tmp_list->aer = 0;
10654		}
10655		up(&bnx2x_prev_sem);
10656		return 0;
10657	}
10658	up(&bnx2x_prev_sem);
10659
10660	/* Create an entry for this path and add it */
10661	tmp_list = kmalloc(sizeof(struct bnx2x_prev_path_list), GFP_KERNEL);
10662	if (!tmp_list) {
10663		BNX2X_ERR("Failed to allocate 'bnx2x_prev_path_list'\n");
10664		return -ENOMEM;
10665	}
10666
10667	tmp_list->bus = bp->pdev->bus->number;
10668	tmp_list->slot = PCI_SLOT(bp->pdev->devfn);
10669	tmp_list->path = BP_PATH(bp);
10670	tmp_list->aer = 0;
10671	tmp_list->undi = after_undi ? (1 << BP_PORT(bp)) : 0;
10672
10673	rc = down_interruptible(&bnx2x_prev_sem);
10674	if (rc) {
10675		BNX2X_ERR("Received %d when tried to take lock\n", rc);
10676		kfree(tmp_list);
10677	} else {
10678		DP(NETIF_MSG_HW, "Marked path [%d] - finished previous unload\n",
10679		   BP_PATH(bp));
10680		list_add(&tmp_list->list, &bnx2x_prev_list);
10681		up(&bnx2x_prev_sem);
10682	}
10683
10684	return rc;
10685}
10686
10687static int bnx2x_do_flr(struct bnx2x *bp)
10688{
10689	struct pci_dev *dev = bp->pdev;
10690
10691	if (CHIP_IS_E1x(bp)) {
10692		BNX2X_DEV_INFO("FLR not supported in E1/E1H\n");
10693		return -EINVAL;
10694	}
10695
10696	/* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */
10697	if (bp->common.bc_ver < REQ_BC_VER_4_INITIATE_FLR) {
10698		BNX2X_ERR("FLR not supported by BC_VER: 0x%x\n",
10699			  bp->common.bc_ver);
10700		return -EINVAL;
10701	}
10702
10703	if (!pci_wait_for_pending_transaction(dev))
10704		dev_err(&dev->dev, "transaction is not cleared; proceeding with reset anyway\n");
10705
10706	BNX2X_DEV_INFO("Initiating FLR\n");
10707	bnx2x_fw_command(bp, DRV_MSG_CODE_INITIATE_FLR, 0);
10708
10709	return 0;
10710}
10711
10712static int bnx2x_prev_unload_uncommon(struct bnx2x *bp)
10713{
10714	int rc;
10715
10716	BNX2X_DEV_INFO("Uncommon unload Flow\n");
10717
10718	/* Test if previous unload process was already finished for this path */
10719	if (bnx2x_prev_is_path_marked(bp))
10720		return bnx2x_prev_mcp_done(bp);
10721
10722	BNX2X_DEV_INFO("Path is unmarked\n");
10723
10724	/* Cannot proceed with FLR if UNDI is loaded, since FW does not match */
10725	if (bnx2x_prev_is_after_undi(bp))
10726		goto out;
10727
10728	/* If function has FLR capabilities, and existing FW version matches
10729	 * the one required, then FLR will be sufficient to clean any residue
10730	 * left by previous driver
10731	 */
10732	rc = bnx2x_compare_fw_ver(bp, FW_MSG_CODE_DRV_LOAD_FUNCTION, false);
10733
10734	if (!rc) {
10735		/* fw version is good */
10736		BNX2X_DEV_INFO("FW version matches our own. Attempting FLR\n");
10737		rc = bnx2x_do_flr(bp);
10738	}
10739
10740	if (!rc) {
10741		/* FLR was performed */
10742		BNX2X_DEV_INFO("FLR successful\n");
10743		return 0;
10744	}
10745
10746	BNX2X_DEV_INFO("Could not FLR\n");
10747
10748out:
10749	/* Close the MCP request, return failure*/
10750	rc = bnx2x_prev_mcp_done(bp);
10751	if (!rc)
10752		rc = BNX2X_PREV_WAIT_NEEDED;
10753
10754	return rc;
10755}
10756
10757static int bnx2x_prev_unload_common(struct bnx2x *bp)
10758{
10759	u32 reset_reg, tmp_reg = 0, rc;
10760	bool prev_undi = false;
10761	struct bnx2x_mac_vals mac_vals;
10762
10763	/* It is possible a previous function received 'common' answer,
10764	 * but hasn't loaded yet, therefore creating a scenario of
10765	 * multiple functions receiving 'common' on the same path.
10766	 */
10767	BNX2X_DEV_INFO("Common unload Flow\n");
10768
10769	memset(&mac_vals, 0, sizeof(mac_vals));
10770
10771	if (bnx2x_prev_is_path_marked(bp))
10772		return bnx2x_prev_mcp_done(bp);
10773
10774	reset_reg = REG_RD(bp, MISC_REG_RESET_REG_1);
10775
10776	/* Reset should be performed after BRB is emptied */
10777	if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) {
10778		u32 timer_count = 1000;
10779
10780		/* Close the MAC Rx to prevent BRB from filling up */
10781		bnx2x_prev_unload_close_mac(bp, &mac_vals);
10782
10783		/* close LLH filters for both ports towards the BRB */
10784		bnx2x_set_rx_filter(&bp->link_params, 0);
10785		bp->link_params.port ^= 1;
10786		bnx2x_set_rx_filter(&bp->link_params, 0);
10787		bp->link_params.port ^= 1;
10788
10789		/* Check if the UNDI driver was previously loaded */
10790		if (bnx2x_prev_is_after_undi(bp)) {
10791			prev_undi = true;
10792			/* clear the UNDI indication */
10793			REG_WR(bp, DORQ_REG_NORM_CID_OFST, 0);
10794			/* clear possible idle check errors */
10795			REG_RD(bp, NIG_REG_NIG_INT_STS_CLR_0);
10796		}
10797		if (!CHIP_IS_E1x(bp))
10798			/* block FW from writing to host */
10799			REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
10800
10801		/* wait until BRB is empty */
10802		tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
10803		while (timer_count) {
10804			u32 prev_brb = tmp_reg;
10805
10806			tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
10807			if (!tmp_reg)
10808				break;
10809
10810			BNX2X_DEV_INFO("BRB still has 0x%08x\n", tmp_reg);
10811
10812			/* reset timer as long as BRB actually gets emptied */
10813			if (prev_brb > tmp_reg)
10814				timer_count = 1000;
10815			else
10816				timer_count--;
10817
10818			/* If UNDI resides in memory, manually increment it */
10819			if (prev_undi)
10820				bnx2x_prev_unload_undi_inc(bp, 1);
10821
10822			udelay(10);
10823		}
10824
10825		if (!timer_count)
10826			BNX2X_ERR("Failed to empty BRB, hope for the best\n");
10827	}
10828
10829	/* No packets are in the pipeline, path is ready for reset */
10830	bnx2x_reset_common(bp);
10831
10832	if (mac_vals.xmac_addr)
10833		REG_WR(bp, mac_vals.xmac_addr, mac_vals.xmac_val);
10834	if (mac_vals.umac_addr[0])
10835		REG_WR(bp, mac_vals.umac_addr[0], mac_vals.umac_val[0]);
10836	if (mac_vals.umac_addr[1])
10837		REG_WR(bp, mac_vals.umac_addr[1], mac_vals.umac_val[1]);
10838	if (mac_vals.emac_addr)
10839		REG_WR(bp, mac_vals.emac_addr, mac_vals.emac_val);
10840	if (mac_vals.bmac_addr) {
10841		REG_WR(bp, mac_vals.bmac_addr, mac_vals.bmac_val[0]);
10842		REG_WR(bp, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]);
10843	}
10844
10845	rc = bnx2x_prev_mark_path(bp, prev_undi);
10846	if (rc) {
10847		bnx2x_prev_mcp_done(bp);
10848		return rc;
10849	}
10850
10851	return bnx2x_prev_mcp_done(bp);
10852}
10853
10854static int bnx2x_prev_unload(struct bnx2x *bp)
10855{
10856	int time_counter = 10;
10857	u32 rc, fw, hw_lock_reg, hw_lock_val;
10858	BNX2X_DEV_INFO("Entering Previous Unload Flow\n");
10859
10860	/* clear hw from errors which may have resulted from an interrupted
10861	 * dmae transaction.
10862	 */
10863	bnx2x_clean_pglue_errors(bp);
10864
10865	/* Release previously held locks */
10866	hw_lock_reg = (BP_FUNC(bp) <= 5) ?
10867		      (MISC_REG_DRIVER_CONTROL_1 + BP_FUNC(bp) * 8) :
10868		      (MISC_REG_DRIVER_CONTROL_7 + (BP_FUNC(bp) - 6) * 8);
10869
10870	hw_lock_val = REG_RD(bp, hw_lock_reg);
10871	if (hw_lock_val) {
10872		if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) {
10873			BNX2X_DEV_INFO("Release Previously held NVRAM lock\n");
10874			REG_WR(bp, MCP_REG_MCPR_NVM_SW_ARB,
10875			       (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << BP_PORT(bp)));
10876		}
10877
10878		BNX2X_DEV_INFO("Release Previously held hw lock\n");
10879		REG_WR(bp, hw_lock_reg, 0xffffffff);
10880	} else
10881		BNX2X_DEV_INFO("No need to release hw/nvram locks\n");
10882
10883	if (MCPR_ACCESS_LOCK_LOCK & REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK)) {
10884		BNX2X_DEV_INFO("Release previously held alr\n");
10885		bnx2x_release_alr(bp);
10886	}
10887
10888	do {
10889		int aer = 0;
10890		/* Lock MCP using an unload request */
10891		fw = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0);
10892		if (!fw) {
10893			BNX2X_ERR("MCP response failure, aborting\n");
10894			rc = -EBUSY;
10895			break;
10896		}
10897
10898		rc = down_interruptible(&bnx2x_prev_sem);
10899		if (rc) {
10900			BNX2X_ERR("Cannot check for AER; Received %d when tried to take lock\n",
10901				  rc);
10902		} else {
10903			/* If Path is marked by EEH, ignore unload status */
10904			aer = !!(bnx2x_prev_path_get_entry(bp) &&
10905				 bnx2x_prev_path_get_entry(bp)->aer);
10906			up(&bnx2x_prev_sem);
10907		}
10908
10909		if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON || aer) {
10910			rc = bnx2x_prev_unload_common(bp);
10911			break;
10912		}
10913
10914		/* non-common reply from MCP might require looping */
10915		rc = bnx2x_prev_unload_uncommon(bp);
10916		if (rc != BNX2X_PREV_WAIT_NEEDED)
10917			break;
10918
10919		msleep(20);
10920	} while (--time_counter);
10921
10922	if (!time_counter || rc) {
10923		BNX2X_DEV_INFO("Unloading previous driver did not occur, Possibly due to MF UNDI\n");
10924		rc = -EPROBE_DEFER;
10925	}
10926
10927	/* Mark function if its port was used to boot from SAN */
10928	if (bnx2x_port_after_undi(bp))
10929		bp->link_params.feature_config_flags |=
10930			FEATURE_CONFIG_BOOT_FROM_SAN;
10931
10932	BNX2X_DEV_INFO("Finished Previous Unload Flow [%d]\n", rc);
10933
10934	return rc;
10935}
10936
10937static void bnx2x_get_common_hwinfo(struct bnx2x *bp)
10938{
10939	u32 val, val2, val3, val4, id, boot_mode;
10940	u16 pmc;
10941
10942	/* Get the chip revision id and number. */
10943	/* chip num:16-31, rev:12-15, metal:4-11, bond_id:0-3 */
10944	val = REG_RD(bp, MISC_REG_CHIP_NUM);
10945	id = ((val & 0xffff) << 16);
10946	val = REG_RD(bp, MISC_REG_CHIP_REV);
10947	id |= ((val & 0xf) << 12);
10948
10949	/* Metal is read from PCI regs, but we can't access >=0x400 from
10950	 * the configuration space (so we need to reg_rd)
10951	 */
10952	val = REG_RD(bp, PCICFG_OFFSET + PCI_ID_VAL3);
10953	id |= (((val >> 24) & 0xf) << 4);
10954	val = REG_RD(bp, MISC_REG_BOND_ID);
10955	id |= (val & 0xf);
10956	bp->common.chip_id = id;
10957
10958	/* force 57811 according to MISC register */
10959	if (REG_RD(bp, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) {
10960		if (CHIP_IS_57810(bp))
10961			bp->common.chip_id = (CHIP_NUM_57811 << 16) |
10962				(bp->common.chip_id & 0x0000FFFF);
10963		else if (CHIP_IS_57810_MF(bp))
10964			bp->common.chip_id = (CHIP_NUM_57811_MF << 16) |
10965				(bp->common.chip_id & 0x0000FFFF);
10966		bp->common.chip_id |= 0x1;
10967	}
10968
10969	/* Set doorbell size */
10970	bp->db_size = (1 << BNX2X_DB_SHIFT);
10971
10972	if (!CHIP_IS_E1x(bp)) {
10973		val = REG_RD(bp, MISC_REG_PORT4MODE_EN_OVWR);
10974		if ((val & 1) == 0)
10975			val = REG_RD(bp, MISC_REG_PORT4MODE_EN);
10976		else
10977			val = (val >> 1) & 1;
10978		BNX2X_DEV_INFO("chip is in %s\n", val ? "4_PORT_MODE" :
10979						       "2_PORT_MODE");
10980		bp->common.chip_port_mode = val ? CHIP_4_PORT_MODE :
10981						 CHIP_2_PORT_MODE;
10982
10983		if (CHIP_MODE_IS_4_PORT(bp))
10984			bp->pfid = (bp->pf_num >> 1);	/* 0..3 */
10985		else
10986			bp->pfid = (bp->pf_num & 0x6);	/* 0, 2, 4, 6 */
10987	} else {
10988		bp->common.chip_port_mode = CHIP_PORT_MODE_NONE; /* N/A */
10989		bp->pfid = bp->pf_num;			/* 0..7 */
10990	}
10991
10992	BNX2X_DEV_INFO("pf_id: %x", bp->pfid);
10993
10994	bp->link_params.chip_id = bp->common.chip_id;
10995	BNX2X_DEV_INFO("chip ID is 0x%x\n", id);
10996
10997	val = (REG_RD(bp, 0x2874) & 0x55);
10998	if ((bp->common.chip_id & 0x1) ||
10999	    (CHIP_IS_E1(bp) && val) || (CHIP_IS_E1H(bp) && (val == 0x55))) {
11000		bp->flags |= ONE_PORT_FLAG;
11001		BNX2X_DEV_INFO("single port device\n");
11002	}
11003
11004	val = REG_RD(bp, MCP_REG_MCPR_NVM_CFG4);
11005	bp->common.flash_size = (BNX2X_NVRAM_1MB_SIZE <<
11006				 (val & MCPR_NVM_CFG4_FLASH_SIZE));
11007	BNX2X_DEV_INFO("flash_size 0x%x (%d)\n",
11008		       bp->common.flash_size, bp->common.flash_size);
11009
11010	bnx2x_init_shmem(bp);
11011
11012	bp->common.shmem2_base = REG_RD(bp, (BP_PATH(bp) ?
11013					MISC_REG_GENERIC_CR_1 :
11014					MISC_REG_GENERIC_CR_0));
11015
11016	bp->link_params.shmem_base = bp->common.shmem_base;
11017	bp->link_params.shmem2_base = bp->common.shmem2_base;
11018	if (SHMEM2_RD(bp, size) >
11019	    (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
11020		bp->link_params.lfa_base =
11021		REG_RD(bp, bp->common.shmem2_base +
11022		       (u32)offsetof(struct shmem2_region,
11023				     lfa_host_addr[BP_PORT(bp)]));
11024	else
11025		bp->link_params.lfa_base = 0;
11026	BNX2X_DEV_INFO("shmem offset 0x%x  shmem2 offset 0x%x\n",
11027		       bp->common.shmem_base, bp->common.shmem2_base);
11028
11029	if (!bp->common.shmem_base) {
11030		BNX2X_DEV_INFO("MCP not active\n");
11031		bp->flags |= NO_MCP_FLAG;
11032		return;
11033	}
11034
11035	bp->common.hw_config = SHMEM_RD(bp, dev_info.shared_hw_config.config);
11036	BNX2X_DEV_INFO("hw_config 0x%08x\n", bp->common.hw_config);
11037
11038	bp->link_params.hw_led_mode = ((bp->common.hw_config &
11039					SHARED_HW_CFG_LED_MODE_MASK) >>
11040				       SHARED_HW_CFG_LED_MODE_SHIFT);
11041
11042	bp->link_params.feature_config_flags = 0;
11043	val = SHMEM_RD(bp, dev_info.shared_feature_config.config);
11044	if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED)
11045		bp->link_params.feature_config_flags |=
11046				FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
11047	else
11048		bp->link_params.feature_config_flags &=
11049				~FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
11050
11051	val = SHMEM_RD(bp, dev_info.bc_rev) >> 8;
11052	bp->common.bc_ver = val;
11053	BNX2X_DEV_INFO("bc_ver %X\n", val);
11054	if (val < BNX2X_BC_VER) {
11055		/* for now only warn
11056		 * later we might need to enforce this */
11057		BNX2X_ERR("This driver needs bc_ver %X but found %X, please upgrade BC\n",
11058			  BNX2X_BC_VER, val);
11059	}
11060	bp->link_params.feature_config_flags |=
11061				(val >= REQ_BC_VER_4_VRFY_FIRST_PHY_OPT_MDL) ?
11062				FEATURE_CONFIG_BC_SUPPORTS_OPT_MDL_VRFY : 0;
11063
11064	bp->link_params.feature_config_flags |=
11065		(val >= REQ_BC_VER_4_VRFY_SPECIFIC_PHY_OPT_MDL) ?
11066		FEATURE_CONFIG_BC_SUPPORTS_DUAL_PHY_OPT_MDL_VRFY : 0;
11067	bp->link_params.feature_config_flags |=
11068		(val >= REQ_BC_VER_4_VRFY_AFEX_SUPPORTED) ?
11069		FEATURE_CONFIG_BC_SUPPORTS_AFEX : 0;
11070	bp->link_params.feature_config_flags |=
11071		(val >= REQ_BC_VER_4_SFP_TX_DISABLE_SUPPORTED) ?
11072		FEATURE_CONFIG_BC_SUPPORTS_SFP_TX_DISABLED : 0;
11073
11074	bp->link_params.feature_config_flags |=
11075		(val >= REQ_BC_VER_4_MT_SUPPORTED) ?
11076		FEATURE_CONFIG_MT_SUPPORT : 0;
11077
11078	bp->flags |= (val >= REQ_BC_VER_4_PFC_STATS_SUPPORTED) ?
11079			BC_SUPPORTS_PFC_STATS : 0;
11080
11081	bp->flags |= (val >= REQ_BC_VER_4_FCOE_FEATURES) ?
11082			BC_SUPPORTS_FCOE_FEATURES : 0;
11083
11084	bp->flags |= (val >= REQ_BC_VER_4_DCBX_ADMIN_MSG_NON_PMF) ?
11085			BC_SUPPORTS_DCBX_MSG_NON_PMF : 0;
11086
11087	bp->flags |= (val >= REQ_BC_VER_4_RMMOD_CMD) ?
11088			BC_SUPPORTS_RMMOD_CMD : 0;
11089
11090	boot_mode = SHMEM_RD(bp,
11091			dev_info.port_feature_config[BP_PORT(bp)].mba_config) &
11092			PORT_FEATURE_MBA_BOOT_AGENT_TYPE_MASK;
11093	switch (boot_mode) {
11094	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_PXE:
11095		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_PXE;
11096		break;
11097	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_ISCSIB:
11098		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_ISCSI;
11099		break;
11100	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_FCOE_BOOT:
11101		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_FCOE;
11102		break;
11103	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_NONE:
11104		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_NONE;
11105		break;
11106	}
11107
11108	pci_read_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_PMC, &pmc);
11109	bp->flags |= (pmc & PCI_PM_CAP_PME_D3cold) ? 0 : NO_WOL_FLAG;
11110
11111	BNX2X_DEV_INFO("%sWoL capable\n",
11112		       (bp->flags & NO_WOL_FLAG) ? "not " : "");
11113
11114	val = SHMEM_RD(bp, dev_info.shared_hw_config.part_num);
11115	val2 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[4]);
11116	val3 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[8]);
11117	val4 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[12]);
11118
11119	dev_info(&bp->pdev->dev, "part number %X-%X-%X-%X\n",
11120		 val, val2, val3, val4);
11121}
11122
11123#define IGU_FID(val)	GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
11124#define IGU_VEC(val)	GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
11125
11126static int bnx2x_get_igu_cam_info(struct bnx2x *bp)
11127{
11128	int pfid = BP_FUNC(bp);
11129	int igu_sb_id;
11130	u32 val;
11131	u8 fid, igu_sb_cnt = 0;
11132
11133	bp->igu_base_sb = 0xff;
11134	if (CHIP_INT_MODE_IS_BC(bp)) {
11135		int vn = BP_VN(bp);
11136		igu_sb_cnt = bp->igu_sb_cnt;
11137		bp->igu_base_sb = (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn) *
11138			FP_SB_MAX_E1x;
11139
11140		bp->igu_dsb_id =  E1HVN_MAX * FP_SB_MAX_E1x +
11141			(CHIP_MODE_IS_4_PORT(bp) ? pfid : vn);
11142
11143		return 0;
11144	}
11145
11146	/* IGU in normal mode - read CAM */
11147	for (igu_sb_id = 0; igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE;
11148	     igu_sb_id++) {
11149		val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
11150		if (!(val & IGU_REG_MAPPING_MEMORY_VALID))
11151			continue;
11152		fid = IGU_FID(val);
11153		if ((fid & IGU_FID_ENCODE_IS_PF)) {
11154			if ((fid & IGU_FID_PF_NUM_MASK) != pfid)
11155				continue;
11156			if (IGU_VEC(val) == 0)
11157				/* default status block */
11158				bp->igu_dsb_id = igu_sb_id;
11159			else {
11160				if (bp->igu_base_sb == 0xff)
11161					bp->igu_base_sb = igu_sb_id;
11162				igu_sb_cnt++;
11163			}
11164		}
11165	}
11166
11167#ifdef CONFIG_PCI_MSI
11168	/* Due to new PF resource allocation by MFW T7.4 and above, it's
11169	 * optional that number of CAM entries will not be equal to the value
11170	 * advertised in PCI.
11171	 * Driver should use the minimal value of both as the actual status
11172	 * block count
11173	 */
11174	bp->igu_sb_cnt = min_t(int, bp->igu_sb_cnt, igu_sb_cnt);
11175#endif
11176
11177	if (igu_sb_cnt == 0) {
11178		BNX2X_ERR("CAM configuration error\n");
11179		return -EINVAL;
11180	}
11181
11182	return 0;
11183}
11184
11185static void bnx2x_link_settings_supported(struct bnx2x *bp, u32 switch_cfg)
11186{
11187	int cfg_size = 0, idx, port = BP_PORT(bp);
11188
11189	/* Aggregation of supported attributes of all external phys */
11190	bp->port.supported[0] = 0;
11191	bp->port.supported[1] = 0;
11192	switch (bp->link_params.num_phys) {
11193	case 1:
11194		bp->port.supported[0] = bp->link_params.phy[INT_PHY].supported;
11195		cfg_size = 1;
11196		break;
11197	case 2:
11198		bp->port.supported[0] = bp->link_params.phy[EXT_PHY1].supported;
11199		cfg_size = 1;
11200		break;
11201	case 3:
11202		if (bp->link_params.multi_phy_config &
11203		    PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
11204			bp->port.supported[1] =
11205				bp->link_params.phy[EXT_PHY1].supported;
11206			bp->port.supported[0] =
11207				bp->link_params.phy[EXT_PHY2].supported;
11208		} else {
11209			bp->port.supported[0] =
11210				bp->link_params.phy[EXT_PHY1].supported;
11211			bp->port.supported[1] =
11212				bp->link_params.phy[EXT_PHY2].supported;
11213		}
11214		cfg_size = 2;
11215		break;
11216	}
11217
11218	if (!(bp->port.supported[0] || bp->port.supported[1])) {
11219		BNX2X_ERR("NVRAM config error. BAD phy config. PHY1 config 0x%x, PHY2 config 0x%x\n",
11220			   SHMEM_RD(bp,
11221			   dev_info.port_hw_config[port].external_phy_config),
11222			   SHMEM_RD(bp,
11223			   dev_info.port_hw_config[port].external_phy_config2));
11224		return;
11225	}
11226
11227	if (CHIP_IS_E3(bp))
11228		bp->port.phy_addr = REG_RD(bp, MISC_REG_WC0_CTRL_PHY_ADDR);
11229	else {
11230		switch (switch_cfg) {
11231		case SWITCH_CFG_1G:
11232			bp->port.phy_addr = REG_RD(
11233				bp, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10);
11234			break;
11235		case SWITCH_CFG_10G:
11236			bp->port.phy_addr = REG_RD(
11237				bp, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18);
11238			break;
11239		default:
11240			BNX2X_ERR("BAD switch_cfg link_config 0x%x\n",
11241				  bp->port.link_config[0]);
11242			return;
11243		}
11244	}
11245	BNX2X_DEV_INFO("phy_addr 0x%x\n", bp->port.phy_addr);
11246	/* mask what we support according to speed_cap_mask per configuration */
11247	for (idx = 0; idx < cfg_size; idx++) {
11248		if (!(bp->link_params.speed_cap_mask[idx] &
11249				PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF))
11250			bp->port.supported[idx] &= ~SUPPORTED_10baseT_Half;
11251
11252		if (!(bp->link_params.speed_cap_mask[idx] &
11253				PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL))
11254			bp->port.supported[idx] &= ~SUPPORTED_10baseT_Full;
11255
11256		if (!(bp->link_params.speed_cap_mask[idx] &
11257				PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF))
11258			bp->port.supported[idx] &= ~SUPPORTED_100baseT_Half;
11259
11260		if (!(bp->link_params.speed_cap_mask[idx] &
11261				PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL))
11262			bp->port.supported[idx] &= ~SUPPORTED_100baseT_Full;
11263
11264		if (!(bp->link_params.speed_cap_mask[idx] &
11265					PORT_HW_CFG_SPEED_CAPABILITY_D0_1G))
11266			bp->port.supported[idx] &= ~(SUPPORTED_1000baseT_Half |
11267						     SUPPORTED_1000baseT_Full);
11268
11269		if (!(bp->link_params.speed_cap_mask[idx] &
11270					PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G))
11271			bp->port.supported[idx] &= ~SUPPORTED_2500baseX_Full;
11272
11273		if (!(bp->link_params.speed_cap_mask[idx] &
11274					PORT_HW_CFG_SPEED_CAPABILITY_D0_10G))
11275			bp->port.supported[idx] &= ~SUPPORTED_10000baseT_Full;
11276
11277		if (!(bp->link_params.speed_cap_mask[idx] &
11278					PORT_HW_CFG_SPEED_CAPABILITY_D0_20G))
11279			bp->port.supported[idx] &= ~SUPPORTED_20000baseKR2_Full;
11280	}
11281
11282	BNX2X_DEV_INFO("supported 0x%x 0x%x\n", bp->port.supported[0],
11283		       bp->port.supported[1]);
11284}
11285
11286static void bnx2x_link_settings_requested(struct bnx2x *bp)
11287{
11288	u32 link_config, idx, cfg_size = 0;
11289	bp->port.advertising[0] = 0;
11290	bp->port.advertising[1] = 0;
11291	switch (bp->link_params.num_phys) {
11292	case 1:
11293	case 2:
11294		cfg_size = 1;
11295		break;
11296	case 3:
11297		cfg_size = 2;
11298		break;
11299	}
11300	for (idx = 0; idx < cfg_size; idx++) {
11301		bp->link_params.req_duplex[idx] = DUPLEX_FULL;
11302		link_config = bp->port.link_config[idx];
11303		switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
11304		case PORT_FEATURE_LINK_SPEED_AUTO:
11305			if (bp->port.supported[idx] & SUPPORTED_Autoneg) {
11306				bp->link_params.req_line_speed[idx] =
11307					SPEED_AUTO_NEG;
11308				bp->port.advertising[idx] |=
11309					bp->port.supported[idx];
11310				if (bp->link_params.phy[EXT_PHY1].type ==
11311				    PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833)
11312					bp->port.advertising[idx] |=
11313					(SUPPORTED_100baseT_Half |
11314					 SUPPORTED_100baseT_Full);
11315			} else {
11316				/* force 10G, no AN */
11317				bp->link_params.req_line_speed[idx] =
11318					SPEED_10000;
11319				bp->port.advertising[idx] |=
11320					(ADVERTISED_10000baseT_Full |
11321					 ADVERTISED_FIBRE);
11322				continue;
11323			}
11324			break;
11325
11326		case PORT_FEATURE_LINK_SPEED_10M_FULL:
11327			if (bp->port.supported[idx] & SUPPORTED_10baseT_Full) {
11328				bp->link_params.req_line_speed[idx] =
11329					SPEED_10;
11330				bp->port.advertising[idx] |=
11331					(ADVERTISED_10baseT_Full |
11332					 ADVERTISED_TP);
11333			} else {
11334				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11335					    link_config,
11336				    bp->link_params.speed_cap_mask[idx]);
11337				return;
11338			}
11339			break;
11340
11341		case PORT_FEATURE_LINK_SPEED_10M_HALF:
11342			if (bp->port.supported[idx] & SUPPORTED_10baseT_Half) {
11343				bp->link_params.req_line_speed[idx] =
11344					SPEED_10;
11345				bp->link_params.req_duplex[idx] =
11346					DUPLEX_HALF;
11347				bp->port.advertising[idx] |=
11348					(ADVERTISED_10baseT_Half |
11349					 ADVERTISED_TP);
11350			} else {
11351				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11352					    link_config,
11353					  bp->link_params.speed_cap_mask[idx]);
11354				return;
11355			}
11356			break;
11357
11358		case PORT_FEATURE_LINK_SPEED_100M_FULL:
11359			if (bp->port.supported[idx] &
11360			    SUPPORTED_100baseT_Full) {
11361				bp->link_params.req_line_speed[idx] =
11362					SPEED_100;
11363				bp->port.advertising[idx] |=
11364					(ADVERTISED_100baseT_Full |
11365					 ADVERTISED_TP);
11366			} else {
11367				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11368					    link_config,
11369					  bp->link_params.speed_cap_mask[idx]);
11370				return;
11371			}
11372			break;
11373
11374		case PORT_FEATURE_LINK_SPEED_100M_HALF:
11375			if (bp->port.supported[idx] &
11376			    SUPPORTED_100baseT_Half) {
11377				bp->link_params.req_line_speed[idx] =
11378								SPEED_100;
11379				bp->link_params.req_duplex[idx] =
11380								DUPLEX_HALF;
11381				bp->port.advertising[idx] |=
11382					(ADVERTISED_100baseT_Half |
11383					 ADVERTISED_TP);
11384			} else {
11385				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11386				    link_config,
11387				    bp->link_params.speed_cap_mask[idx]);
11388				return;
11389			}
11390			break;
11391
11392		case PORT_FEATURE_LINK_SPEED_1G:
11393			if (bp->port.supported[idx] &
11394			    SUPPORTED_1000baseT_Full) {
11395				bp->link_params.req_line_speed[idx] =
11396					SPEED_1000;
11397				bp->port.advertising[idx] |=
11398					(ADVERTISED_1000baseT_Full |
11399					 ADVERTISED_TP);
11400			} else if (bp->port.supported[idx] &
11401				   SUPPORTED_1000baseKX_Full) {
11402				bp->link_params.req_line_speed[idx] =
11403					SPEED_1000;
11404				bp->port.advertising[idx] |=
11405					ADVERTISED_1000baseKX_Full;
11406			} else {
11407				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11408				    link_config,
11409				    bp->link_params.speed_cap_mask[idx]);
11410				return;
11411			}
11412			break;
11413
11414		case PORT_FEATURE_LINK_SPEED_2_5G:
11415			if (bp->port.supported[idx] &
11416			    SUPPORTED_2500baseX_Full) {
11417				bp->link_params.req_line_speed[idx] =
11418					SPEED_2500;
11419				bp->port.advertising[idx] |=
11420					(ADVERTISED_2500baseX_Full |
11421						ADVERTISED_TP);
11422			} else {
11423				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11424				    link_config,
11425				    bp->link_params.speed_cap_mask[idx]);
11426				return;
11427			}
11428			break;
11429
11430		case PORT_FEATURE_LINK_SPEED_10G_CX4:
11431			if (bp->port.supported[idx] &
11432			    SUPPORTED_10000baseT_Full) {
11433				bp->link_params.req_line_speed[idx] =
11434					SPEED_10000;
11435				bp->port.advertising[idx] |=
11436					(ADVERTISED_10000baseT_Full |
11437						ADVERTISED_FIBRE);
11438			} else if (bp->port.supported[idx] &
11439				   SUPPORTED_10000baseKR_Full) {
11440				bp->link_params.req_line_speed[idx] =
11441					SPEED_10000;
11442				bp->port.advertising[idx] |=
11443					(ADVERTISED_10000baseKR_Full |
11444						ADVERTISED_FIBRE);
11445			} else {
11446				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11447				    link_config,
11448				    bp->link_params.speed_cap_mask[idx]);
11449				return;
11450			}
11451			break;
11452		case PORT_FEATURE_LINK_SPEED_20G:
11453			bp->link_params.req_line_speed[idx] = SPEED_20000;
11454
11455			break;
11456		default:
11457			BNX2X_ERR("NVRAM config error. BAD link speed link_config 0x%x\n",
11458				  link_config);
11459				bp->link_params.req_line_speed[idx] =
11460							SPEED_AUTO_NEG;
11461				bp->port.advertising[idx] =
11462						bp->port.supported[idx];
11463			break;
11464		}
11465
11466		bp->link_params.req_flow_ctrl[idx] = (link_config &
11467					 PORT_FEATURE_FLOW_CONTROL_MASK);
11468		if (bp->link_params.req_flow_ctrl[idx] ==
11469		    BNX2X_FLOW_CTRL_AUTO) {
11470			if (!(bp->port.supported[idx] & SUPPORTED_Autoneg))
11471				bp->link_params.req_flow_ctrl[idx] =
11472							BNX2X_FLOW_CTRL_NONE;
11473			else
11474				bnx2x_set_requested_fc(bp);
11475		}
11476
11477		BNX2X_DEV_INFO("req_line_speed %d  req_duplex %d req_flow_ctrl 0x%x advertising 0x%x\n",
11478			       bp->link_params.req_line_speed[idx],
11479			       bp->link_params.req_duplex[idx],
11480			       bp->link_params.req_flow_ctrl[idx],
11481			       bp->port.advertising[idx]);
11482	}
11483}
11484
11485static void bnx2x_set_mac_buf(u8 *mac_buf, u32 mac_lo, u16 mac_hi)
11486{
11487	__be16 mac_hi_be = cpu_to_be16(mac_hi);
11488	__be32 mac_lo_be = cpu_to_be32(mac_lo);
11489	memcpy(mac_buf, &mac_hi_be, sizeof(mac_hi_be));
11490	memcpy(mac_buf + sizeof(mac_hi_be), &mac_lo_be, sizeof(mac_lo_be));
11491}
11492
11493static void bnx2x_get_port_hwinfo(struct bnx2x *bp)
11494{
11495	int port = BP_PORT(bp);
11496	u32 config;
11497	u32 ext_phy_type, ext_phy_config, eee_mode;
11498
11499	bp->link_params.bp = bp;
11500	bp->link_params.port = port;
11501
11502	bp->link_params.lane_config =
11503		SHMEM_RD(bp, dev_info.port_hw_config[port].lane_config);
11504
11505	bp->link_params.speed_cap_mask[0] =
11506		SHMEM_RD(bp,
11507			 dev_info.port_hw_config[port].speed_capability_mask) &
11508		PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
11509	bp->link_params.speed_cap_mask[1] =
11510		SHMEM_RD(bp,
11511			 dev_info.port_hw_config[port].speed_capability_mask2) &
11512		PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
11513	bp->port.link_config[0] =
11514		SHMEM_RD(bp, dev_info.port_feature_config[port].link_config);
11515
11516	bp->port.link_config[1] =
11517		SHMEM_RD(bp, dev_info.port_feature_config[port].link_config2);
11518
11519	bp->link_params.multi_phy_config =
11520		SHMEM_RD(bp, dev_info.port_hw_config[port].multi_phy_config);
11521	/* If the device is capable of WoL, set the default state according
11522	 * to the HW
11523	 */
11524	config = SHMEM_RD(bp, dev_info.port_feature_config[port].config);
11525	bp->wol = (!(bp->flags & NO_WOL_FLAG) &&
11526		   (config & PORT_FEATURE_WOL_ENABLED));
11527
11528	if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
11529	    PORT_FEAT_CFG_STORAGE_PERSONALITY_FCOE && !IS_MF(bp))
11530		bp->flags |= NO_ISCSI_FLAG;
11531	if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
11532	    PORT_FEAT_CFG_STORAGE_PERSONALITY_ISCSI && !(IS_MF(bp)))
11533		bp->flags |= NO_FCOE_FLAG;
11534
11535	BNX2X_DEV_INFO("lane_config 0x%08x  speed_cap_mask0 0x%08x  link_config0 0x%08x\n",
11536		       bp->link_params.lane_config,
11537		       bp->link_params.speed_cap_mask[0],
11538		       bp->port.link_config[0]);
11539
11540	bp->link_params.switch_cfg = (bp->port.link_config[0] &
11541				      PORT_FEATURE_CONNECTED_SWITCH_MASK);
11542	bnx2x_phy_probe(&bp->link_params);
11543	bnx2x_link_settings_supported(bp, bp->link_params.switch_cfg);
11544
11545	bnx2x_link_settings_requested(bp);
11546
11547	/*
11548	 * If connected directly, work with the internal PHY, otherwise, work
11549	 * with the external PHY
11550	 */
11551	ext_phy_config =
11552		SHMEM_RD(bp,
11553			 dev_info.port_hw_config[port].external_phy_config);
11554	ext_phy_type = XGXS_EXT_PHY_TYPE(ext_phy_config);
11555	if (ext_phy_type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT)
11556		bp->mdio.prtad = bp->port.phy_addr;
11557
11558	else if ((ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE) &&
11559		 (ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN))
11560		bp->mdio.prtad =
11561			XGXS_EXT_PHY_ADDR(ext_phy_config);
11562
11563	/* Configure link feature according to nvram value */
11564	eee_mode = (((SHMEM_RD(bp, dev_info.
11565		      port_feature_config[port].eee_power_mode)) &
11566		     PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >>
11567		    PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT);
11568	if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) {
11569		bp->link_params.eee_mode = EEE_MODE_ADV_LPI |
11570					   EEE_MODE_ENABLE_LPI |
11571					   EEE_MODE_OUTPUT_TIME;
11572	} else {
11573		bp->link_params.eee_mode = 0;
11574	}
11575}
11576
11577void bnx2x_get_iscsi_info(struct bnx2x *bp)
11578{
11579	u32 no_flags = NO_ISCSI_FLAG;
11580	int port = BP_PORT(bp);
11581	u32 max_iscsi_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
11582				drv_lic_key[port].max_iscsi_conn);
11583
11584	if (!CNIC_SUPPORT(bp)) {
11585		bp->flags |= no_flags;
11586		return;
11587	}
11588
11589	/* Get the number of maximum allowed iSCSI connections */
11590	bp->cnic_eth_dev.max_iscsi_conn =
11591		(max_iscsi_conn & BNX2X_MAX_ISCSI_INIT_CONN_MASK) >>
11592		BNX2X_MAX_ISCSI_INIT_CONN_SHIFT;
11593
11594	BNX2X_DEV_INFO("max_iscsi_conn 0x%x\n",
11595		       bp->cnic_eth_dev.max_iscsi_conn);
11596
11597	/*
11598	 * If maximum allowed number of connections is zero -
11599	 * disable the feature.
11600	 */
11601	if (!bp->cnic_eth_dev.max_iscsi_conn)
11602		bp->flags |= no_flags;
11603}
11604
11605static void bnx2x_get_ext_wwn_info(struct bnx2x *bp, int func)
11606{
11607	/* Port info */
11608	bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
11609		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_upper);
11610	bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
11611		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_lower);
11612
11613	/* Node info */
11614	bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
11615		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_upper);
11616	bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
11617		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_lower);
11618}
11619
11620static int bnx2x_shared_fcoe_funcs(struct bnx2x *bp)
11621{
11622	u8 count = 0;
11623
11624	if (IS_MF(bp)) {
11625		u8 fid;
11626
11627		/* iterate over absolute function ids for this path: */
11628		for (fid = BP_PATH(bp); fid < E2_FUNC_MAX * 2; fid += 2) {
11629			if (IS_MF_SD(bp)) {
11630				u32 cfg = MF_CFG_RD(bp,
11631						    func_mf_config[fid].config);
11632
11633				if (!(cfg & FUNC_MF_CFG_FUNC_HIDE) &&
11634				    ((cfg & FUNC_MF_CFG_PROTOCOL_MASK) ==
11635					    FUNC_MF_CFG_PROTOCOL_FCOE))
11636					count++;
11637			} else {
11638				u32 cfg = MF_CFG_RD(bp,
11639						    func_ext_config[fid].
11640								      func_cfg);
11641
11642				if ((cfg & MACP_FUNC_CFG_FLAGS_ENABLED) &&
11643				    (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD))
11644					count++;
11645			}
11646		}
11647	} else { /* SF */
11648		int port, port_cnt = CHIP_MODE_IS_4_PORT(bp) ? 2 : 1;
11649
11650		for (port = 0; port < port_cnt; port++) {
11651			u32 lic = SHMEM_RD(bp,
11652					   drv_lic_key[port].max_fcoe_conn) ^
11653				  FW_ENCODE_32BIT_PATTERN;
11654			if (lic)
11655				count++;
11656		}
11657	}
11658
11659	return count;
11660}
11661
11662static void bnx2x_get_fcoe_info(struct bnx2x *bp)
11663{
11664	int port = BP_PORT(bp);
11665	int func = BP_ABS_FUNC(bp);
11666	u32 max_fcoe_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
11667				drv_lic_key[port].max_fcoe_conn);
11668	u8 num_fcoe_func = bnx2x_shared_fcoe_funcs(bp);
11669
11670	if (!CNIC_SUPPORT(bp)) {
11671		bp->flags |= NO_FCOE_FLAG;
11672		return;
11673	}
11674
11675	/* Get the number of maximum allowed FCoE connections */
11676	bp->cnic_eth_dev.max_fcoe_conn =
11677		(max_fcoe_conn & BNX2X_MAX_FCOE_INIT_CONN_MASK) >>
11678		BNX2X_MAX_FCOE_INIT_CONN_SHIFT;
11679
11680	/* Calculate the number of maximum allowed FCoE tasks */
11681	bp->cnic_eth_dev.max_fcoe_exchanges = MAX_NUM_FCOE_TASKS_PER_ENGINE;
11682
11683	/* check if FCoE resources must be shared between different functions */
11684	if (num_fcoe_func)
11685		bp->cnic_eth_dev.max_fcoe_exchanges /= num_fcoe_func;
11686
11687	/* Read the WWN: */
11688	if (!IS_MF(bp)) {
11689		/* Port info */
11690		bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
11691			SHMEM_RD(bp,
11692				 dev_info.port_hw_config[port].
11693				 fcoe_wwn_port_name_upper);
11694		bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
11695			SHMEM_RD(bp,
11696				 dev_info.port_hw_config[port].
11697				 fcoe_wwn_port_name_lower);
11698
11699		/* Node info */
11700		bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
11701			SHMEM_RD(bp,
11702				 dev_info.port_hw_config[port].
11703				 fcoe_wwn_node_name_upper);
11704		bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
11705			SHMEM_RD(bp,
11706				 dev_info.port_hw_config[port].
11707				 fcoe_wwn_node_name_lower);
11708	} else if (!IS_MF_SD(bp)) {
11709		/* Read the WWN info only if the FCoE feature is enabled for
11710		 * this function.
11711		 */
11712		if (BNX2X_HAS_MF_EXT_PROTOCOL_FCOE(bp))
11713			bnx2x_get_ext_wwn_info(bp, func);
11714	} else {
11715		if (BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp) && !CHIP_IS_E1x(bp))
11716			bnx2x_get_ext_wwn_info(bp, func);
11717	}
11718
11719	BNX2X_DEV_INFO("max_fcoe_conn 0x%x\n", bp->cnic_eth_dev.max_fcoe_conn);
11720
11721	/*
11722	 * If maximum allowed number of connections is zero -
11723	 * disable the feature.
11724	 */
11725	if (!bp->cnic_eth_dev.max_fcoe_conn) {
11726		bp->flags |= NO_FCOE_FLAG;
11727		eth_zero_addr(bp->fip_mac);
11728	}
11729}
11730
11731static void bnx2x_get_cnic_info(struct bnx2x *bp)
11732{
11733	/*
11734	 * iSCSI may be dynamically disabled but reading
11735	 * info here we will decrease memory usage by driver
11736	 * if the feature is disabled for good
11737	 */
11738	bnx2x_get_iscsi_info(bp);
11739	bnx2x_get_fcoe_info(bp);
11740}
11741
11742static void bnx2x_get_cnic_mac_hwinfo(struct bnx2x *bp)
11743{
11744	u32 val, val2;
11745	int func = BP_ABS_FUNC(bp);
11746	int port = BP_PORT(bp);
11747	u8 *iscsi_mac = bp->cnic_eth_dev.iscsi_mac;
11748	u8 *fip_mac = bp->fip_mac;
11749
11750	if (IS_MF(bp)) {
11751		/* iSCSI and FCoE NPAR MACs: if there is no either iSCSI or
11752		 * FCoE MAC then the appropriate feature should be disabled.
11753		 * In non SD mode features configuration comes from struct
11754		 * func_ext_config.
11755		 */
11756		if (!IS_MF_SD(bp)) {
11757			u32 cfg = MF_CFG_RD(bp, func_ext_config[func].func_cfg);
11758			if (cfg & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) {
11759				val2 = MF_CFG_RD(bp, func_ext_config[func].
11760						 iscsi_mac_addr_upper);
11761				val = MF_CFG_RD(bp, func_ext_config[func].
11762						iscsi_mac_addr_lower);
11763				bnx2x_set_mac_buf(iscsi_mac, val, val2);
11764				BNX2X_DEV_INFO
11765					("Read iSCSI MAC: %pM\n", iscsi_mac);
11766			} else {
11767				bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
11768			}
11769
11770			if (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
11771				val2 = MF_CFG_RD(bp, func_ext_config[func].
11772						 fcoe_mac_addr_upper);
11773				val = MF_CFG_RD(bp, func_ext_config[func].
11774						fcoe_mac_addr_lower);
11775				bnx2x_set_mac_buf(fip_mac, val, val2);
11776				BNX2X_DEV_INFO
11777					("Read FCoE L2 MAC: %pM\n", fip_mac);
11778			} else {
11779				bp->flags |= NO_FCOE_FLAG;
11780			}
11781
11782			bp->mf_ext_config = cfg;
11783
11784		} else { /* SD MODE */
11785			if (BNX2X_IS_MF_SD_PROTOCOL_ISCSI(bp)) {
11786				/* use primary mac as iscsi mac */
11787				memcpy(iscsi_mac, bp->dev->dev_addr, ETH_ALEN);
11788
11789				BNX2X_DEV_INFO("SD ISCSI MODE\n");
11790				BNX2X_DEV_INFO
11791					("Read iSCSI MAC: %pM\n", iscsi_mac);
11792			} else if (BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)) {
11793				/* use primary mac as fip mac */
11794				memcpy(fip_mac, bp->dev->dev_addr, ETH_ALEN);
11795				BNX2X_DEV_INFO("SD FCoE MODE\n");
11796				BNX2X_DEV_INFO
11797					("Read FIP MAC: %pM\n", fip_mac);
11798			}
11799		}
11800
11801		/* If this is a storage-only interface, use SAN mac as
11802		 * primary MAC. Notice that for SD this is already the case,
11803		 * as the SAN mac was copied from the primary MAC.
11804		 */
11805		if (IS_MF_FCOE_AFEX(bp))
11806			eth_hw_addr_set(bp->dev, fip_mac);
11807	} else {
11808		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
11809				iscsi_mac_upper);
11810		val = SHMEM_RD(bp, dev_info.port_hw_config[port].
11811			       iscsi_mac_lower);
11812		bnx2x_set_mac_buf(iscsi_mac, val, val2);
11813
11814		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
11815				fcoe_fip_mac_upper);
11816		val = SHMEM_RD(bp, dev_info.port_hw_config[port].
11817			       fcoe_fip_mac_lower);
11818		bnx2x_set_mac_buf(fip_mac, val, val2);
11819	}
11820
11821	/* Disable iSCSI OOO if MAC configuration is invalid. */
11822	if (!is_valid_ether_addr(iscsi_mac)) {
11823		bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
11824		eth_zero_addr(iscsi_mac);
11825	}
11826
11827	/* Disable FCoE if MAC configuration is invalid. */
11828	if (!is_valid_ether_addr(fip_mac)) {
11829		bp->flags |= NO_FCOE_FLAG;
11830		eth_zero_addr(bp->fip_mac);
11831	}
11832}
11833
11834static void bnx2x_get_mac_hwinfo(struct bnx2x *bp)
11835{
11836	u32 val, val2;
11837	int func = BP_ABS_FUNC(bp);
11838	int port = BP_PORT(bp);
11839	u8 addr[ETH_ALEN] = {};
11840
11841	/* Zero primary MAC configuration */
11842	eth_hw_addr_set(bp->dev, addr);
11843
11844	if (BP_NOMCP(bp)) {
11845		BNX2X_ERROR("warning: random MAC workaround active\n");
11846		eth_hw_addr_random(bp->dev);
11847	} else if (IS_MF(bp)) {
11848		val2 = MF_CFG_RD(bp, func_mf_config[func].mac_upper);
11849		val = MF_CFG_RD(bp, func_mf_config[func].mac_lower);
11850		if ((val2 != FUNC_MF_CFG_UPPERMAC_DEFAULT) &&
11851		    (val != FUNC_MF_CFG_LOWERMAC_DEFAULT)) {
11852			bnx2x_set_mac_buf(addr, val, val2);
11853			eth_hw_addr_set(bp->dev, addr);
11854		}
11855
11856		if (CNIC_SUPPORT(bp))
11857			bnx2x_get_cnic_mac_hwinfo(bp);
11858	} else {
11859		/* in SF read MACs from port configuration */
11860		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
11861		val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
11862		bnx2x_set_mac_buf(addr, val, val2);
11863		eth_hw_addr_set(bp->dev, addr);
11864
11865		if (CNIC_SUPPORT(bp))
11866			bnx2x_get_cnic_mac_hwinfo(bp);
11867	}
11868
11869	if (!BP_NOMCP(bp)) {
11870		/* Read physical port identifier from shmem */
11871		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
11872		val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
11873		bnx2x_set_mac_buf(bp->phys_port_id, val, val2);
11874		bp->flags |= HAS_PHYS_PORT_ID;
11875	}
11876
11877	memcpy(bp->link_params.mac_addr, bp->dev->dev_addr, ETH_ALEN);
11878
11879	if (!is_valid_ether_addr(bp->dev->dev_addr))
11880		dev_err(&bp->pdev->dev,
11881			"bad Ethernet MAC address configuration: %pM\n"
11882			"change it manually before bringing up the appropriate network interface\n",
11883			bp->dev->dev_addr);
11884}
11885
11886static bool bnx2x_get_dropless_info(struct bnx2x *bp)
11887{
11888	int tmp;
11889	u32 cfg;
11890
11891	if (IS_VF(bp))
11892		return false;
11893
11894	if (IS_MF(bp) && !CHIP_IS_E1x(bp)) {
11895		/* Take function: tmp = func */
11896		tmp = BP_ABS_FUNC(bp);
11897		cfg = MF_CFG_RD(bp, func_ext_config[tmp].func_cfg);
11898		cfg = !!(cfg & MACP_FUNC_CFG_PAUSE_ON_HOST_RING);
11899	} else {
11900		/* Take port: tmp = port */
11901		tmp = BP_PORT(bp);
11902		cfg = SHMEM_RD(bp,
11903			       dev_info.port_hw_config[tmp].generic_features);
11904		cfg = !!(cfg & PORT_HW_CFG_PAUSE_ON_HOST_RING_ENABLED);
11905	}
11906	return cfg;
11907}
11908
11909static void validate_set_si_mode(struct bnx2x *bp)
11910{
11911	u8 func = BP_ABS_FUNC(bp);
11912	u32 val;
11913
11914	val = MF_CFG_RD(bp, func_mf_config[func].mac_upper);
11915
11916	/* check for legal mac (upper bytes) */
11917	if (val != 0xffff) {
11918		bp->mf_mode = MULTI_FUNCTION_SI;
11919		bp->mf_config[BP_VN(bp)] =
11920			MF_CFG_RD(bp, func_mf_config[func].config);
11921	} else
11922		BNX2X_DEV_INFO("illegal MAC address for SI\n");
11923}
11924
11925static int bnx2x_get_hwinfo(struct bnx2x *bp)
11926{
11927	int /*abs*/func = BP_ABS_FUNC(bp);
11928	int vn;
11929	u32 val = 0, val2 = 0;
11930	int rc = 0;
11931
11932	/* Validate that chip access is feasible */
11933	if (REG_RD(bp, MISC_REG_CHIP_NUM) == 0xffffffff) {
11934		dev_err(&bp->pdev->dev,
11935			"Chip read returns all Fs. Preventing probe from continuing\n");
11936		return -EINVAL;
11937	}
11938
11939	bnx2x_get_common_hwinfo(bp);
11940
11941	/*
11942	 * initialize IGU parameters
11943	 */
11944	if (CHIP_IS_E1x(bp)) {
11945		bp->common.int_block = INT_BLOCK_HC;
11946
11947		bp->igu_dsb_id = DEF_SB_IGU_ID;
11948		bp->igu_base_sb = 0;
11949	} else {
11950		bp->common.int_block = INT_BLOCK_IGU;
11951
11952		/* do not allow device reset during IGU info processing */
11953		bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
11954
11955		val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
11956
11957		if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
11958			int tout = 5000;
11959
11960			BNX2X_DEV_INFO("FORCING Normal Mode\n");
11961
11962			val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN);
11963			REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION, val);
11964			REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x7f);
11965
11966			while (tout && REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
11967				tout--;
11968				usleep_range(1000, 2000);
11969			}
11970
11971			if (REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
11972				dev_err(&bp->pdev->dev,
11973					"FORCING Normal Mode failed!!!\n");
11974				bnx2x_release_hw_lock(bp,
11975						      HW_LOCK_RESOURCE_RESET);
11976				return -EPERM;
11977			}
11978		}
11979
11980		if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
11981			BNX2X_DEV_INFO("IGU Backward Compatible Mode\n");
11982			bp->common.int_block |= INT_BLOCK_MODE_BW_COMP;
11983		} else
11984			BNX2X_DEV_INFO("IGU Normal Mode\n");
11985
11986		rc = bnx2x_get_igu_cam_info(bp);
11987		bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
11988		if (rc)
11989			return rc;
11990	}
11991
11992	/*
11993	 * set base FW non-default (fast path) status block id, this value is
11994	 * used to initialize the fw_sb_id saved on the fp/queue structure to
11995	 * determine the id used by the FW.
11996	 */
11997	if (CHIP_IS_E1x(bp))
11998		bp->base_fw_ndsb = BP_PORT(bp) * FP_SB_MAX_E1x + BP_L_ID(bp);
11999	else /*
12000	      * 57712 - we currently use one FW SB per IGU SB (Rx and Tx of
12001	      * the same queue are indicated on the same IGU SB). So we prefer
12002	      * FW and IGU SBs to be the same value.
12003	      */
12004		bp->base_fw_ndsb = bp->igu_base_sb;
12005
12006	BNX2X_DEV_INFO("igu_dsb_id %d  igu_base_sb %d  igu_sb_cnt %d\n"
12007		       "base_fw_ndsb %d\n", bp->igu_dsb_id, bp->igu_base_sb,
12008		       bp->igu_sb_cnt, bp->base_fw_ndsb);
12009
12010	/*
12011	 * Initialize MF configuration
12012	 */
12013	bp->mf_ov = 0;
12014	bp->mf_mode = 0;
12015	bp->mf_sub_mode = 0;
12016	vn = BP_VN(bp);
12017
12018	if (!CHIP_IS_E1(bp) && !BP_NOMCP(bp)) {
12019		BNX2X_DEV_INFO("shmem2base 0x%x, size %d, mfcfg offset %d\n",
12020			       bp->common.shmem2_base, SHMEM2_RD(bp, size),
12021			      (u32)offsetof(struct shmem2_region, mf_cfg_addr));
12022
12023		if (SHMEM2_HAS(bp, mf_cfg_addr))
12024			bp->common.mf_cfg_base = SHMEM2_RD(bp, mf_cfg_addr);
12025		else
12026			bp->common.mf_cfg_base = bp->common.shmem_base +
12027				offsetof(struct shmem_region, func_mb) +
12028				E1H_FUNC_MAX * sizeof(struct drv_func_mb);
12029		/*
12030		 * get mf configuration:
12031		 * 1. Existence of MF configuration
12032		 * 2. MAC address must be legal (check only upper bytes)
12033		 *    for  Switch-Independent mode;
12034		 *    OVLAN must be legal for Switch-Dependent mode
12035		 * 3. SF_MODE configures specific MF mode
12036		 */
12037		if (bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
12038			/* get mf configuration */
12039			val = SHMEM_RD(bp,
12040				       dev_info.shared_feature_config.config);
12041			val &= SHARED_FEAT_CFG_FORCE_SF_MODE_MASK;
12042
12043			switch (val) {
12044			case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT:
12045				validate_set_si_mode(bp);
12046				break;
12047			case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE:
12048				if ((!CHIP_IS_E1x(bp)) &&
12049				    (MF_CFG_RD(bp, func_mf_config[func].
12050					       mac_upper) != 0xffff) &&
12051				    (SHMEM2_HAS(bp,
12052						afex_driver_support))) {
12053					bp->mf_mode = MULTI_FUNCTION_AFEX;
12054					bp->mf_config[vn] = MF_CFG_RD(bp,
12055						func_mf_config[func].config);
12056				} else {
12057					BNX2X_DEV_INFO("can not configure afex mode\n");
12058				}
12059				break;
12060			case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED:
12061				/* get OV configuration */
12062				val = MF_CFG_RD(bp,
12063					func_mf_config[FUNC_0].e1hov_tag);
12064				val &= FUNC_MF_CFG_E1HOV_TAG_MASK;
12065
12066				if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
12067					bp->mf_mode = MULTI_FUNCTION_SD;
12068					bp->mf_config[vn] = MF_CFG_RD(bp,
12069						func_mf_config[func].config);
12070				} else
12071					BNX2X_DEV_INFO("illegal OV for SD\n");
12072				break;
12073			case SHARED_FEAT_CFG_FORCE_SF_MODE_BD_MODE:
12074				bp->mf_mode = MULTI_FUNCTION_SD;
12075				bp->mf_sub_mode = SUB_MF_MODE_BD;
12076				bp->mf_config[vn] =
12077					MF_CFG_RD(bp,
12078						  func_mf_config[func].config);
12079
12080				if (SHMEM2_HAS(bp, mtu_size)) {
12081					int mtu_idx = BP_FW_MB_IDX(bp);
12082					u16 mtu_size;
12083					u32 mtu;
12084
12085					mtu = SHMEM2_RD(bp, mtu_size[mtu_idx]);
12086					mtu_size = (u16)mtu;
12087					DP(NETIF_MSG_IFUP, "Read MTU size %04x [%08x]\n",
12088					   mtu_size, mtu);
12089
12090					/* if valid: update device mtu */
12091					if ((mtu_size >= ETH_MIN_PACKET_SIZE) &&
12092					    (mtu_size <=
12093					     ETH_MAX_JUMBO_PACKET_SIZE))
12094						bp->dev->mtu = mtu_size;
12095				}
12096				break;
12097			case SHARED_FEAT_CFG_FORCE_SF_MODE_UFP_MODE:
12098				bp->mf_mode = MULTI_FUNCTION_SD;
12099				bp->mf_sub_mode = SUB_MF_MODE_UFP;
12100				bp->mf_config[vn] =
12101					MF_CFG_RD(bp,
12102						  func_mf_config[func].config);
12103				break;
12104			case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF:
12105				bp->mf_config[vn] = 0;
12106				break;
12107			case SHARED_FEAT_CFG_FORCE_SF_MODE_EXTENDED_MODE:
12108				val2 = SHMEM_RD(bp,
12109					dev_info.shared_hw_config.config_3);
12110				val2 &= SHARED_HW_CFG_EXTENDED_MF_MODE_MASK;
12111				switch (val2) {
12112				case SHARED_HW_CFG_EXTENDED_MF_MODE_NPAR1_DOT_5:
12113					validate_set_si_mode(bp);
12114					bp->mf_sub_mode =
12115							SUB_MF_MODE_NPAR1_DOT_5;
12116					break;
12117				default:
12118					/* Unknown configuration */
12119					bp->mf_config[vn] = 0;
12120					BNX2X_DEV_INFO("unknown extended MF mode 0x%x\n",
12121						       val);
12122				}
12123				break;
12124			default:
12125				/* Unknown configuration: reset mf_config */
12126				bp->mf_config[vn] = 0;
12127				BNX2X_DEV_INFO("unknown MF mode 0x%x\n", val);
12128			}
12129		}
12130
12131		BNX2X_DEV_INFO("%s function mode\n",
12132			       IS_MF(bp) ? "multi" : "single");
12133
12134		switch (bp->mf_mode) {
12135		case MULTI_FUNCTION_SD:
12136			val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
12137			      FUNC_MF_CFG_E1HOV_TAG_MASK;
12138			if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
12139				bp->mf_ov = val;
12140				bp->path_has_ovlan = true;
12141
12142				BNX2X_DEV_INFO("MF OV for func %d is %d (0x%04x)\n",
12143					       func, bp->mf_ov, bp->mf_ov);
12144			} else if ((bp->mf_sub_mode == SUB_MF_MODE_UFP) ||
12145				   (bp->mf_sub_mode == SUB_MF_MODE_BD)) {
12146				dev_err(&bp->pdev->dev,
12147					"Unexpected - no valid MF OV for func %d in UFP/BD mode\n",
12148					func);
12149				bp->path_has_ovlan = true;
12150			} else {
12151				dev_err(&bp->pdev->dev,
12152					"No valid MF OV for func %d, aborting\n",
12153					func);
12154				return -EPERM;
12155			}
12156			break;
12157		case MULTI_FUNCTION_AFEX:
12158			BNX2X_DEV_INFO("func %d is in MF afex mode\n", func);
12159			break;
12160		case MULTI_FUNCTION_SI:
12161			BNX2X_DEV_INFO("func %d is in MF switch-independent mode\n",
12162				       func);
12163			break;
12164		default:
12165			if (vn) {
12166				dev_err(&bp->pdev->dev,
12167					"VN %d is in a single function mode, aborting\n",
12168					vn);
12169				return -EPERM;
12170			}
12171			break;
12172		}
12173
12174		/* check if other port on the path needs ovlan:
12175		 * Since MF configuration is shared between ports
12176		 * Possible mixed modes are only
12177		 * {SF, SI} {SF, SD} {SD, SF} {SI, SF}
12178		 */
12179		if (CHIP_MODE_IS_4_PORT(bp) &&
12180		    !bp->path_has_ovlan &&
12181		    !IS_MF(bp) &&
12182		    bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
12183			u8 other_port = !BP_PORT(bp);
12184			u8 other_func = BP_PATH(bp) + 2*other_port;
12185			val = MF_CFG_RD(bp,
12186					func_mf_config[other_func].e1hov_tag);
12187			if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT)
12188				bp->path_has_ovlan = true;
12189		}
12190	}
12191
12192	/* adjust igu_sb_cnt to MF for E1H */
12193	if (CHIP_IS_E1H(bp) && IS_MF(bp))
12194		bp->igu_sb_cnt = min_t(u8, bp->igu_sb_cnt, E1H_MAX_MF_SB_COUNT);
12195
12196	/* port info */
12197	bnx2x_get_port_hwinfo(bp);
12198
12199	/* Get MAC addresses */
12200	bnx2x_get_mac_hwinfo(bp);
12201
12202	bnx2x_get_cnic_info(bp);
12203
12204	return rc;
12205}
12206
12207static void bnx2x_read_fwinfo(struct bnx2x *bp)
12208{
12209	char str_id[VENDOR_ID_LEN + 1];
12210	unsigned int vpd_len, kw_len;
12211	u8 *vpd_data;
12212	int rodi;
12213
12214	memset(bp->fw_ver, 0, sizeof(bp->fw_ver));
12215
12216	vpd_data = pci_vpd_alloc(bp->pdev, &vpd_len);
12217	if (IS_ERR(vpd_data))
12218		return;
12219
12220	rodi = pci_vpd_find_ro_info_keyword(vpd_data, vpd_len,
12221					    PCI_VPD_RO_KEYWORD_MFR_ID, &kw_len);
12222	if (rodi < 0 || kw_len != VENDOR_ID_LEN)
12223		goto out_not_found;
12224
12225	/* vendor specific info */
12226	snprintf(str_id, VENDOR_ID_LEN + 1, "%04x", PCI_VENDOR_ID_DELL);
12227	if (!strncasecmp(str_id, &vpd_data[rodi], VENDOR_ID_LEN)) {
12228		rodi = pci_vpd_find_ro_info_keyword(vpd_data, vpd_len,
12229						    PCI_VPD_RO_KEYWORD_VENDOR0,
12230						    &kw_len);
12231		if (rodi >= 0 && kw_len < sizeof(bp->fw_ver)) {
12232			memcpy(bp->fw_ver, &vpd_data[rodi], kw_len);
12233			bp->fw_ver[kw_len] = ' ';
12234		}
12235	}
12236out_not_found:
12237	kfree(vpd_data);
12238}
12239
12240static void bnx2x_set_modes_bitmap(struct bnx2x *bp)
12241{
12242	u32 flags = 0;
12243
12244	if (CHIP_REV_IS_FPGA(bp))
12245		SET_FLAGS(flags, MODE_FPGA);
12246	else if (CHIP_REV_IS_EMUL(bp))
12247		SET_FLAGS(flags, MODE_EMUL);
12248	else
12249		SET_FLAGS(flags, MODE_ASIC);
12250
12251	if (CHIP_MODE_IS_4_PORT(bp))
12252		SET_FLAGS(flags, MODE_PORT4);
12253	else
12254		SET_FLAGS(flags, MODE_PORT2);
12255
12256	if (CHIP_IS_E2(bp))
12257		SET_FLAGS(flags, MODE_E2);
12258	else if (CHIP_IS_E3(bp)) {
12259		SET_FLAGS(flags, MODE_E3);
12260		if (CHIP_REV(bp) == CHIP_REV_Ax)
12261			SET_FLAGS(flags, MODE_E3_A0);
12262		else /*if (CHIP_REV(bp) == CHIP_REV_Bx)*/
12263			SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3);
12264	}
12265
12266	if (IS_MF(bp)) {
12267		SET_FLAGS(flags, MODE_MF);
12268		switch (bp->mf_mode) {
12269		case MULTI_FUNCTION_SD:
12270			SET_FLAGS(flags, MODE_MF_SD);
12271			break;
12272		case MULTI_FUNCTION_SI:
12273			SET_FLAGS(flags, MODE_MF_SI);
12274			break;
12275		case MULTI_FUNCTION_AFEX:
12276			SET_FLAGS(flags, MODE_MF_AFEX);
12277			break;
12278		}
12279	} else
12280		SET_FLAGS(flags, MODE_SF);
12281
12282#if defined(__LITTLE_ENDIAN)
12283	SET_FLAGS(flags, MODE_LITTLE_ENDIAN);
12284#else /*(__BIG_ENDIAN)*/
12285	SET_FLAGS(flags, MODE_BIG_ENDIAN);
12286#endif
12287	INIT_MODE_FLAGS(bp) = flags;
12288}
12289
12290static int bnx2x_init_bp(struct bnx2x *bp)
12291{
12292	int func;
12293	int rc;
12294
12295	mutex_init(&bp->port.phy_mutex);
12296	mutex_init(&bp->fw_mb_mutex);
12297	mutex_init(&bp->drv_info_mutex);
12298	sema_init(&bp->stats_lock, 1);
12299	bp->drv_info_mng_owner = false;
12300	INIT_LIST_HEAD(&bp->vlan_reg);
12301
12302	INIT_DELAYED_WORK(&bp->sp_task, bnx2x_sp_task);
12303	INIT_DELAYED_WORK(&bp->sp_rtnl_task, bnx2x_sp_rtnl_task);
12304	INIT_DELAYED_WORK(&bp->period_task, bnx2x_period_task);
12305	INIT_DELAYED_WORK(&bp->iov_task, bnx2x_iov_task);
12306	if (IS_PF(bp)) {
12307		rc = bnx2x_get_hwinfo(bp);
12308		if (rc)
12309			return rc;
12310	} else {
12311		static const u8 zero_addr[ETH_ALEN] = {};
12312
12313		eth_hw_addr_set(bp->dev, zero_addr);
12314	}
12315
12316	bnx2x_set_modes_bitmap(bp);
12317
12318	rc = bnx2x_alloc_mem_bp(bp);
12319	if (rc)
12320		return rc;
12321
12322	bnx2x_read_fwinfo(bp);
12323
12324	func = BP_FUNC(bp);
12325
12326	/* need to reset chip if undi was active */
12327	if (IS_PF(bp) && !BP_NOMCP(bp)) {
12328		/* init fw_seq */
12329		bp->fw_seq =
12330			SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
12331							DRV_MSG_SEQ_NUMBER_MASK;
12332		BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq);
12333
12334		rc = bnx2x_prev_unload(bp);
12335		if (rc) {
12336			bnx2x_free_mem_bp(bp);
12337			return rc;
12338		}
12339	}
12340
12341	if (CHIP_REV_IS_FPGA(bp))
12342		dev_err(&bp->pdev->dev, "FPGA detected\n");
12343
12344	if (BP_NOMCP(bp) && (func == 0))
12345		dev_err(&bp->pdev->dev, "MCP disabled, must load devices in order!\n");
12346
12347	bp->disable_tpa = disable_tpa;
12348	bp->disable_tpa |= !!IS_MF_STORAGE_ONLY(bp);
12349	/* Reduce memory usage in kdump environment by disabling TPA */
12350	bp->disable_tpa |= is_kdump_kernel();
12351
12352	/* Set TPA flags */
12353	if (bp->disable_tpa) {
12354		bp->dev->hw_features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
12355		bp->dev->features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
12356	}
12357
12358	if (CHIP_IS_E1(bp))
12359		bp->dropless_fc = false;
12360	else
12361		bp->dropless_fc = dropless_fc | bnx2x_get_dropless_info(bp);
12362
12363	bp->mrrs = mrrs;
12364
12365	bp->tx_ring_size = IS_MF_STORAGE_ONLY(bp) ? 0 : MAX_TX_AVAIL;
12366	if (IS_VF(bp))
12367		bp->rx_ring_size = MAX_RX_AVAIL;
12368
12369	/* make sure that the numbers are in the right granularity */
12370	bp->tx_ticks = (50 / BNX2X_BTR) * BNX2X_BTR;
12371	bp->rx_ticks = (25 / BNX2X_BTR) * BNX2X_BTR;
12372
12373	bp->current_interval = CHIP_REV_IS_SLOW(bp) ? 5*HZ : HZ;
12374
12375	timer_setup(&bp->timer, bnx2x_timer, 0);
12376	bp->timer.expires = jiffies + bp->current_interval;
12377
12378	if (SHMEM2_HAS(bp, dcbx_lldp_params_offset) &&
12379	    SHMEM2_HAS(bp, dcbx_lldp_dcbx_stat_offset) &&
12380	    SHMEM2_HAS(bp, dcbx_en) &&
12381	    SHMEM2_RD(bp, dcbx_lldp_params_offset) &&
12382	    SHMEM2_RD(bp, dcbx_lldp_dcbx_stat_offset) &&
12383	    SHMEM2_RD(bp, dcbx_en[BP_PORT(bp)])) {
12384		bnx2x_dcbx_set_state(bp, true, BNX2X_DCBX_ENABLED_ON_NEG_ON);
12385		bnx2x_dcbx_init_params(bp);
12386	} else {
12387		bnx2x_dcbx_set_state(bp, false, BNX2X_DCBX_ENABLED_OFF);
12388	}
12389
12390	if (CHIP_IS_E1x(bp))
12391		bp->cnic_base_cl_id = FP_SB_MAX_E1x;
12392	else
12393		bp->cnic_base_cl_id = FP_SB_MAX_E2;
12394
12395	/* multiple tx priority */
12396	if (IS_VF(bp))
12397		bp->max_cos = 1;
12398	else if (CHIP_IS_E1x(bp))
12399		bp->max_cos = BNX2X_MULTI_TX_COS_E1X;
12400	else if (CHIP_IS_E2(bp) || CHIP_IS_E3A0(bp))
12401		bp->max_cos = BNX2X_MULTI_TX_COS_E2_E3A0;
12402	else if (CHIP_IS_E3B0(bp))
12403		bp->max_cos = BNX2X_MULTI_TX_COS_E3B0;
12404	else
12405		BNX2X_ERR("unknown chip %x revision %x\n",
12406			  CHIP_NUM(bp), CHIP_REV(bp));
12407	BNX2X_DEV_INFO("set bp->max_cos to %d\n", bp->max_cos);
12408
12409	/* We need at least one default status block for slow-path events,
12410	 * second status block for the L2 queue, and a third status block for
12411	 * CNIC if supported.
12412	 */
12413	if (IS_VF(bp))
12414		bp->min_msix_vec_cnt = 1;
12415	else if (CNIC_SUPPORT(bp))
12416		bp->min_msix_vec_cnt = 3;
12417	else /* PF w/o cnic */
12418		bp->min_msix_vec_cnt = 2;
12419	BNX2X_DEV_INFO("bp->min_msix_vec_cnt %d", bp->min_msix_vec_cnt);
12420
12421	bp->dump_preset_idx = 1;
12422
12423	return rc;
12424}
12425
12426/****************************************************************************
12427* General service functions
12428****************************************************************************/
12429
12430/*
12431 * net_device service functions
12432 */
12433
12434/* called with rtnl_lock */
12435static int bnx2x_open(struct net_device *dev)
12436{
12437	struct bnx2x *bp = netdev_priv(dev);
12438	int rc;
12439
12440	bp->stats_init = true;
12441
12442	netif_carrier_off(dev);
12443
12444	bnx2x_set_power_state(bp, PCI_D0);
12445
12446	/* If parity had happen during the unload, then attentions
12447	 * and/or RECOVERY_IN_PROGRES may still be set. In this case we
12448	 * want the first function loaded on the current engine to
12449	 * complete the recovery.
12450	 * Parity recovery is only relevant for PF driver.
12451	 */
12452	if (IS_PF(bp)) {
12453		int other_engine = BP_PATH(bp) ? 0 : 1;
12454		bool other_load_status, load_status;
12455		bool global = false;
12456
12457		other_load_status = bnx2x_get_load_status(bp, other_engine);
12458		load_status = bnx2x_get_load_status(bp, BP_PATH(bp));
12459		if (!bnx2x_reset_is_done(bp, BP_PATH(bp)) ||
12460		    bnx2x_chk_parity_attn(bp, &global, true)) {
12461			do {
12462				/* If there are attentions and they are in a
12463				 * global blocks, set the GLOBAL_RESET bit
12464				 * regardless whether it will be this function
12465				 * that will complete the recovery or not.
12466				 */
12467				if (global)
12468					bnx2x_set_reset_global(bp);
12469
12470				/* Only the first function on the current
12471				 * engine should try to recover in open. In case
12472				 * of attentions in global blocks only the first
12473				 * in the chip should try to recover.
12474				 */
12475				if ((!load_status &&
12476				     (!global || !other_load_status)) &&
12477				      bnx2x_trylock_leader_lock(bp) &&
12478				      !bnx2x_leader_reset(bp)) {
12479					netdev_info(bp->dev,
12480						    "Recovered in open\n");
12481					break;
12482				}
12483
12484				/* recovery has failed... */
12485				bnx2x_set_power_state(bp, PCI_D3hot);
12486				bp->recovery_state = BNX2X_RECOVERY_FAILED;
12487
12488				BNX2X_ERR("Recovery flow hasn't been properly completed yet. Try again later.\n"
12489					  "If you still see this message after a few retries then power cycle is required.\n");
12490
12491				return -EAGAIN;
12492			} while (0);
12493		}
12494	}
12495
12496	bp->recovery_state = BNX2X_RECOVERY_DONE;
12497	rc = bnx2x_nic_load(bp, LOAD_OPEN);
12498	if (rc)
12499		return rc;
12500
12501	return 0;
12502}
12503
12504/* called with rtnl_lock */
12505static int bnx2x_close(struct net_device *dev)
12506{
12507	struct bnx2x *bp = netdev_priv(dev);
12508
12509	/* Unload the driver, release IRQs */
12510	bnx2x_nic_unload(bp, UNLOAD_CLOSE, false);
12511
12512	return 0;
12513}
12514
12515struct bnx2x_mcast_list_elem_group
12516{
12517	struct list_head mcast_group_link;
12518	struct bnx2x_mcast_list_elem mcast_elems[];
12519};
12520
12521#define MCAST_ELEMS_PER_PG \
12522	((PAGE_SIZE - sizeof(struct bnx2x_mcast_list_elem_group)) / \
12523	sizeof(struct bnx2x_mcast_list_elem))
12524
12525static void bnx2x_free_mcast_macs_list(struct list_head *mcast_group_list)
12526{
12527	struct bnx2x_mcast_list_elem_group *current_mcast_group;
12528
12529	while (!list_empty(mcast_group_list)) {
12530		current_mcast_group = list_first_entry(mcast_group_list,
12531				      struct bnx2x_mcast_list_elem_group,
12532				      mcast_group_link);
12533		list_del(&current_mcast_group->mcast_group_link);
12534		free_page((unsigned long)current_mcast_group);
12535	}
12536}
12537
12538static int bnx2x_init_mcast_macs_list(struct bnx2x *bp,
12539				      struct bnx2x_mcast_ramrod_params *p,
12540				      struct list_head *mcast_group_list)
12541{
12542	struct bnx2x_mcast_list_elem *mc_mac;
12543	struct netdev_hw_addr *ha;
12544	struct bnx2x_mcast_list_elem_group *current_mcast_group = NULL;
12545	int mc_count = netdev_mc_count(bp->dev);
12546	int offset = 0;
12547
12548	INIT_LIST_HEAD(&p->mcast_list);
12549	netdev_for_each_mc_addr(ha, bp->dev) {
12550		if (!offset) {
12551			current_mcast_group =
12552				(struct bnx2x_mcast_list_elem_group *)
12553				__get_free_page(GFP_ATOMIC);
12554			if (!current_mcast_group) {
12555				bnx2x_free_mcast_macs_list(mcast_group_list);
12556				BNX2X_ERR("Failed to allocate mc MAC list\n");
12557				return -ENOMEM;
12558			}
12559			list_add(&current_mcast_group->mcast_group_link,
12560				 mcast_group_list);
12561		}
12562		mc_mac = &current_mcast_group->mcast_elems[offset];
12563		mc_mac->mac = bnx2x_mc_addr(ha);
12564		list_add_tail(&mc_mac->link, &p->mcast_list);
12565		offset++;
12566		if (offset == MCAST_ELEMS_PER_PG)
12567			offset = 0;
12568	}
12569	p->mcast_list_len = mc_count;
12570	return 0;
12571}
12572
12573/**
12574 * bnx2x_set_uc_list - configure a new unicast MACs list.
12575 *
12576 * @bp: driver handle
12577 *
12578 * We will use zero (0) as a MAC type for these MACs.
12579 */
12580static int bnx2x_set_uc_list(struct bnx2x *bp)
12581{
12582	int rc;
12583	struct net_device *dev = bp->dev;
12584	struct netdev_hw_addr *ha;
12585	struct bnx2x_vlan_mac_obj *mac_obj = &bp->sp_objs->mac_obj;
12586	unsigned long ramrod_flags = 0;
12587
12588	/* First schedule a cleanup up of old configuration */
12589	rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, false);
12590	if (rc < 0) {
12591		BNX2X_ERR("Failed to schedule DELETE operations: %d\n", rc);
12592		return rc;
12593	}
12594
12595	netdev_for_each_uc_addr(ha, dev) {
12596		rc = bnx2x_set_mac_one(bp, bnx2x_uc_addr(ha), mac_obj, true,
12597				       BNX2X_UC_LIST_MAC, &ramrod_flags);
12598		if (rc == -EEXIST) {
12599			DP(BNX2X_MSG_SP,
12600			   "Failed to schedule ADD operations: %d\n", rc);
12601			/* do not treat adding same MAC as error */
12602			rc = 0;
12603
12604		} else if (rc < 0) {
12605
12606			BNX2X_ERR("Failed to schedule ADD operations: %d\n",
12607				  rc);
12608			return rc;
12609		}
12610	}
12611
12612	/* Execute the pending commands */
12613	__set_bit(RAMROD_CONT, &ramrod_flags);
12614	return bnx2x_set_mac_one(bp, NULL, mac_obj, false /* don't care */,
12615				 BNX2X_UC_LIST_MAC, &ramrod_flags);
12616}
12617
12618static int bnx2x_set_mc_list_e1x(struct bnx2x *bp)
12619{
12620	LIST_HEAD(mcast_group_list);
12621	struct net_device *dev = bp->dev;
12622	struct bnx2x_mcast_ramrod_params rparam = {NULL};
12623	int rc = 0;
12624
12625	rparam.mcast_obj = &bp->mcast_obj;
12626
12627	/* first, clear all configured multicast MACs */
12628	rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
12629	if (rc < 0) {
12630		BNX2X_ERR("Failed to clear multicast configuration: %d\n", rc);
12631		return rc;
12632	}
12633
12634	/* then, configure a new MACs list */
12635	if (netdev_mc_count(dev)) {
12636		rc = bnx2x_init_mcast_macs_list(bp, &rparam, &mcast_group_list);
12637		if (rc)
12638			return rc;
12639
12640		/* Now add the new MACs */
12641		rc = bnx2x_config_mcast(bp, &rparam,
12642					BNX2X_MCAST_CMD_ADD);
12643		if (rc < 0)
12644			BNX2X_ERR("Failed to set a new multicast configuration: %d\n",
12645				  rc);
12646
12647		bnx2x_free_mcast_macs_list(&mcast_group_list);
12648	}
12649
12650	return rc;
12651}
12652
12653static int bnx2x_set_mc_list(struct bnx2x *bp)
12654{
12655	LIST_HEAD(mcast_group_list);
12656	struct bnx2x_mcast_ramrod_params rparam = {NULL};
12657	struct net_device *dev = bp->dev;
12658	int rc = 0;
12659
12660	/* On older adapters, we need to flush and re-add filters */
12661	if (CHIP_IS_E1x(bp))
12662		return bnx2x_set_mc_list_e1x(bp);
12663
12664	rparam.mcast_obj = &bp->mcast_obj;
12665
12666	if (netdev_mc_count(dev)) {
12667		rc = bnx2x_init_mcast_macs_list(bp, &rparam, &mcast_group_list);
12668		if (rc)
12669			return rc;
12670
12671		/* Override the curently configured set of mc filters */
12672		rc = bnx2x_config_mcast(bp, &rparam,
12673					BNX2X_MCAST_CMD_SET);
12674		if (rc < 0)
12675			BNX2X_ERR("Failed to set a new multicast configuration: %d\n",
12676				  rc);
12677
12678		bnx2x_free_mcast_macs_list(&mcast_group_list);
12679	} else {
12680		/* If no mc addresses are required, flush the configuration */
12681		rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
12682		if (rc < 0)
12683			BNX2X_ERR("Failed to clear multicast configuration %d\n",
12684				  rc);
12685	}
12686
12687	return rc;
12688}
12689
12690/* If bp->state is OPEN, should be called with netif_addr_lock_bh() */
12691static void bnx2x_set_rx_mode(struct net_device *dev)
12692{
12693	struct bnx2x *bp = netdev_priv(dev);
12694
12695	if (bp->state != BNX2X_STATE_OPEN) {
12696		DP(NETIF_MSG_IFUP, "state is %x, returning\n", bp->state);
12697		return;
12698	} else {
12699		/* Schedule an SP task to handle rest of change */
12700		bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_RX_MODE,
12701				       NETIF_MSG_IFUP);
12702	}
12703}
12704
12705void bnx2x_set_rx_mode_inner(struct bnx2x *bp)
12706{
12707	u32 rx_mode = BNX2X_RX_MODE_NORMAL;
12708
12709	DP(NETIF_MSG_IFUP, "dev->flags = %x\n", bp->dev->flags);
12710
12711	netif_addr_lock_bh(bp->dev);
12712
12713	if (bp->dev->flags & IFF_PROMISC) {
12714		rx_mode = BNX2X_RX_MODE_PROMISC;
12715	} else if ((bp->dev->flags & IFF_ALLMULTI) ||
12716		   ((netdev_mc_count(bp->dev) > BNX2X_MAX_MULTICAST) &&
12717		    CHIP_IS_E1(bp))) {
12718		rx_mode = BNX2X_RX_MODE_ALLMULTI;
12719	} else {
12720		if (IS_PF(bp)) {
12721			/* some multicasts */
12722			if (bnx2x_set_mc_list(bp) < 0)
12723				rx_mode = BNX2X_RX_MODE_ALLMULTI;
12724
12725			/* release bh lock, as bnx2x_set_uc_list might sleep */
12726			netif_addr_unlock_bh(bp->dev);
12727			if (bnx2x_set_uc_list(bp) < 0)
12728				rx_mode = BNX2X_RX_MODE_PROMISC;
12729			netif_addr_lock_bh(bp->dev);
12730		} else {
12731			/* configuring mcast to a vf involves sleeping (when we
12732			 * wait for the pf's response).
12733			 */
12734			bnx2x_schedule_sp_rtnl(bp,
12735					       BNX2X_SP_RTNL_VFPF_MCAST, 0);
12736		}
12737	}
12738
12739	bp->rx_mode = rx_mode;
12740	/* handle ISCSI SD mode */
12741	if (IS_MF_ISCSI_ONLY(bp))
12742		bp->rx_mode = BNX2X_RX_MODE_NONE;
12743
12744	/* Schedule the rx_mode command */
12745	if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state)) {
12746		set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
12747		netif_addr_unlock_bh(bp->dev);
12748		return;
12749	}
12750
12751	if (IS_PF(bp)) {
12752		bnx2x_set_storm_rx_mode(bp);
12753		netif_addr_unlock_bh(bp->dev);
12754	} else {
12755		/* VF will need to request the PF to make this change, and so
12756		 * the VF needs to release the bottom-half lock prior to the
12757		 * request (as it will likely require sleep on the VF side)
12758		 */
12759		netif_addr_unlock_bh(bp->dev);
12760		bnx2x_vfpf_storm_rx_mode(bp);
12761	}
12762}
12763
12764/* called with rtnl_lock */
12765static int bnx2x_mdio_read(struct net_device *netdev, int prtad,
12766			   int devad, u16 addr)
12767{
12768	struct bnx2x *bp = netdev_priv(netdev);
12769	u16 value;
12770	int rc;
12771
12772	DP(NETIF_MSG_LINK, "mdio_read: prtad 0x%x, devad 0x%x, addr 0x%x\n",
12773	   prtad, devad, addr);
12774
12775	/* The HW expects different devad if CL22 is used */
12776	devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
12777
12778	bnx2x_acquire_phy_lock(bp);
12779	rc = bnx2x_phy_read(&bp->link_params, prtad, devad, addr, &value);
12780	bnx2x_release_phy_lock(bp);
12781	DP(NETIF_MSG_LINK, "mdio_read_val 0x%x rc = 0x%x\n", value, rc);
12782
12783	if (!rc)
12784		rc = value;
12785	return rc;
12786}
12787
12788/* called with rtnl_lock */
12789static int bnx2x_mdio_write(struct net_device *netdev, int prtad, int devad,
12790			    u16 addr, u16 value)
12791{
12792	struct bnx2x *bp = netdev_priv(netdev);
12793	int rc;
12794
12795	DP(NETIF_MSG_LINK,
12796	   "mdio_write: prtad 0x%x, devad 0x%x, addr 0x%x, value 0x%x\n",
12797	   prtad, devad, addr, value);
12798
12799	/* The HW expects different devad if CL22 is used */
12800	devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
12801
12802	bnx2x_acquire_phy_lock(bp);
12803	rc = bnx2x_phy_write(&bp->link_params, prtad, devad, addr, value);
12804	bnx2x_release_phy_lock(bp);
12805	return rc;
12806}
12807
12808/* called with rtnl_lock */
12809static int bnx2x_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
12810{
12811	struct bnx2x *bp = netdev_priv(dev);
12812	struct mii_ioctl_data *mdio = if_mii(ifr);
12813
12814	if (!netif_running(dev))
12815		return -EAGAIN;
12816
12817	switch (cmd) {
12818	case SIOCSHWTSTAMP:
12819		return bnx2x_hwtstamp_ioctl(bp, ifr);
12820	default:
12821		DP(NETIF_MSG_LINK, "ioctl: phy id 0x%x, reg 0x%x, val_in 0x%x\n",
12822		   mdio->phy_id, mdio->reg_num, mdio->val_in);
12823		return mdio_mii_ioctl(&bp->mdio, mdio, cmd);
12824	}
12825}
12826
12827static int bnx2x_validate_addr(struct net_device *dev)
12828{
12829	struct bnx2x *bp = netdev_priv(dev);
12830
12831	/* query the bulletin board for mac address configured by the PF */
12832	if (IS_VF(bp))
12833		bnx2x_sample_bulletin(bp);
12834
12835	if (!is_valid_ether_addr(dev->dev_addr)) {
12836		BNX2X_ERR("Non-valid Ethernet address\n");
12837		return -EADDRNOTAVAIL;
12838	}
12839	return 0;
12840}
12841
12842static int bnx2x_get_phys_port_id(struct net_device *netdev,
12843				  struct netdev_phys_item_id *ppid)
12844{
12845	struct bnx2x *bp = netdev_priv(netdev);
12846
12847	if (!(bp->flags & HAS_PHYS_PORT_ID))
12848		return -EOPNOTSUPP;
12849
12850	ppid->id_len = sizeof(bp->phys_port_id);
12851	memcpy(ppid->id, bp->phys_port_id, ppid->id_len);
12852
12853	return 0;
12854}
12855
12856static netdev_features_t bnx2x_features_check(struct sk_buff *skb,
12857					      struct net_device *dev,
12858					      netdev_features_t features)
12859{
12860	/*
12861	 * A skb with gso_size + header length > 9700 will cause a
12862	 * firmware panic. Drop GSO support.
12863	 *
12864	 * Eventually the upper layer should not pass these packets down.
12865	 *
12866	 * For speed, if the gso_size is <= 9000, assume there will
12867	 * not be 700 bytes of headers and pass it through. Only do a
12868	 * full (slow) validation if the gso_size is > 9000.
12869	 *
12870	 * (Due to the way SKB_BY_FRAGS works this will also do a full
12871	 * validation in that case.)
12872	 */
12873	if (unlikely(skb_is_gso(skb) &&
12874		     (skb_shinfo(skb)->gso_size > 9000) &&
12875		     !skb_gso_validate_mac_len(skb, 9700)))
12876		features &= ~NETIF_F_GSO_MASK;
12877
12878	features = vlan_features_check(skb, features);
12879	return vxlan_features_check(skb, features);
12880}
12881
12882static int __bnx2x_vlan_configure_vid(struct bnx2x *bp, u16 vid, bool add)
12883{
12884	int rc;
12885
12886	if (IS_PF(bp)) {
12887		unsigned long ramrod_flags = 0;
12888
12889		__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
12890		rc = bnx2x_set_vlan_one(bp, vid, &bp->sp_objs->vlan_obj,
12891					add, &ramrod_flags);
12892	} else {
12893		rc = bnx2x_vfpf_update_vlan(bp, vid, bp->fp->index, add);
12894	}
12895
12896	return rc;
12897}
12898
12899static int bnx2x_vlan_configure_vid_list(struct bnx2x *bp)
12900{
12901	struct bnx2x_vlan_entry *vlan;
12902	int rc = 0;
12903
12904	/* Configure all non-configured entries */
12905	list_for_each_entry(vlan, &bp->vlan_reg, link) {
12906		if (vlan->hw)
12907			continue;
12908
12909		if (bp->vlan_cnt >= bp->vlan_credit)
12910			return -ENOBUFS;
12911
12912		rc = __bnx2x_vlan_configure_vid(bp, vlan->vid, true);
12913		if (rc) {
12914			BNX2X_ERR("Unable to config VLAN %d\n", vlan->vid);
12915			return rc;
12916		}
12917
12918		DP(NETIF_MSG_IFUP, "HW configured for VLAN %d\n", vlan->vid);
12919		vlan->hw = true;
12920		bp->vlan_cnt++;
12921	}
12922
12923	return 0;
12924}
12925
12926static void bnx2x_vlan_configure(struct bnx2x *bp, bool set_rx_mode)
12927{
12928	bool need_accept_any_vlan;
12929
12930	need_accept_any_vlan = !!bnx2x_vlan_configure_vid_list(bp);
12931
12932	if (bp->accept_any_vlan != need_accept_any_vlan) {
12933		bp->accept_any_vlan = need_accept_any_vlan;
12934		DP(NETIF_MSG_IFUP, "Accept all VLAN %s\n",
12935		   bp->accept_any_vlan ? "raised" : "cleared");
12936		if (set_rx_mode) {
12937			if (IS_PF(bp))
12938				bnx2x_set_rx_mode_inner(bp);
12939			else
12940				bnx2x_vfpf_storm_rx_mode(bp);
12941		}
12942	}
12943}
12944
12945int bnx2x_vlan_reconfigure_vid(struct bnx2x *bp)
12946{
12947	/* Don't set rx mode here. Our caller will do it. */
12948	bnx2x_vlan_configure(bp, false);
12949
12950	return 0;
12951}
12952
12953static int bnx2x_vlan_rx_add_vid(struct net_device *dev, __be16 proto, u16 vid)
12954{
12955	struct bnx2x *bp = netdev_priv(dev);
12956	struct bnx2x_vlan_entry *vlan;
12957
12958	DP(NETIF_MSG_IFUP, "Adding VLAN %d\n", vid);
12959
12960	vlan = kmalloc(sizeof(*vlan), GFP_KERNEL);
12961	if (!vlan)
12962		return -ENOMEM;
12963
12964	vlan->vid = vid;
12965	vlan->hw = false;
12966	list_add_tail(&vlan->link, &bp->vlan_reg);
12967
12968	if (netif_running(dev))
12969		bnx2x_vlan_configure(bp, true);
12970
12971	return 0;
12972}
12973
12974static int bnx2x_vlan_rx_kill_vid(struct net_device *dev, __be16 proto, u16 vid)
12975{
12976	struct bnx2x *bp = netdev_priv(dev);
12977	struct bnx2x_vlan_entry *vlan;
12978	bool found = false;
12979	int rc = 0;
12980
12981	DP(NETIF_MSG_IFUP, "Removing VLAN %d\n", vid);
12982
12983	list_for_each_entry(vlan, &bp->vlan_reg, link)
12984		if (vlan->vid == vid) {
12985			found = true;
12986			break;
12987		}
12988
12989	if (!found) {
12990		BNX2X_ERR("Unable to kill VLAN %d - not found\n", vid);
12991		return -EINVAL;
12992	}
12993
12994	if (netif_running(dev) && vlan->hw) {
12995		rc = __bnx2x_vlan_configure_vid(bp, vid, false);
12996		DP(NETIF_MSG_IFUP, "HW deconfigured for VLAN %d\n", vid);
12997		bp->vlan_cnt--;
12998	}
12999
13000	list_del(&vlan->link);
13001	kfree(vlan);
13002
13003	if (netif_running(dev))
13004		bnx2x_vlan_configure(bp, true);
13005
13006	DP(NETIF_MSG_IFUP, "Removing VLAN result %d\n", rc);
13007
13008	return rc;
13009}
13010
13011static const struct net_device_ops bnx2x_netdev_ops = {
13012	.ndo_open		= bnx2x_open,
13013	.ndo_stop		= bnx2x_close,
13014	.ndo_start_xmit		= bnx2x_start_xmit,
13015	.ndo_select_queue	= bnx2x_select_queue,
13016	.ndo_set_rx_mode	= bnx2x_set_rx_mode,
13017	.ndo_set_mac_address	= bnx2x_change_mac_addr,
13018	.ndo_validate_addr	= bnx2x_validate_addr,
13019	.ndo_eth_ioctl		= bnx2x_ioctl,
13020	.ndo_change_mtu		= bnx2x_change_mtu,
13021	.ndo_fix_features	= bnx2x_fix_features,
13022	.ndo_set_features	= bnx2x_set_features,
13023	.ndo_tx_timeout		= bnx2x_tx_timeout,
13024	.ndo_vlan_rx_add_vid	= bnx2x_vlan_rx_add_vid,
13025	.ndo_vlan_rx_kill_vid	= bnx2x_vlan_rx_kill_vid,
13026	.ndo_setup_tc		= __bnx2x_setup_tc,
13027#ifdef CONFIG_BNX2X_SRIOV
13028	.ndo_set_vf_mac		= bnx2x_set_vf_mac,
13029	.ndo_set_vf_vlan	= bnx2x_set_vf_vlan,
13030	.ndo_get_vf_config	= bnx2x_get_vf_config,
13031	.ndo_set_vf_spoofchk	= bnx2x_set_vf_spoofchk,
13032#endif
13033#ifdef NETDEV_FCOE_WWNN
13034	.ndo_fcoe_get_wwn	= bnx2x_fcoe_get_wwn,
13035#endif
13036
13037	.ndo_get_phys_port_id	= bnx2x_get_phys_port_id,
13038	.ndo_set_vf_link_state	= bnx2x_set_vf_link_state,
13039	.ndo_features_check	= bnx2x_features_check,
13040};
13041
13042static int bnx2x_init_dev(struct bnx2x *bp, struct pci_dev *pdev,
13043			  struct net_device *dev, unsigned long board_type)
13044{
13045	int rc;
13046	u32 pci_cfg_dword;
13047	bool chip_is_e1x = (board_type == BCM57710 ||
13048			    board_type == BCM57711 ||
13049			    board_type == BCM57711E);
13050
13051	SET_NETDEV_DEV(dev, &pdev->dev);
13052
13053	bp->dev = dev;
13054	bp->pdev = pdev;
13055
13056	rc = pci_enable_device(pdev);
13057	if (rc) {
13058		dev_err(&bp->pdev->dev,
13059			"Cannot enable PCI device, aborting\n");
13060		goto err_out;
13061	}
13062
13063	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
13064		dev_err(&bp->pdev->dev,
13065			"Cannot find PCI device base address, aborting\n");
13066		rc = -ENODEV;
13067		goto err_out_disable;
13068	}
13069
13070	if (IS_PF(bp) && !(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) {
13071		dev_err(&bp->pdev->dev, "Cannot find second PCI device base address, aborting\n");
13072		rc = -ENODEV;
13073		goto err_out_disable;
13074	}
13075
13076	pci_read_config_dword(pdev, PCICFG_REVISION_ID_OFFSET, &pci_cfg_dword);
13077	if ((pci_cfg_dword & PCICFG_REVESION_ID_MASK) ==
13078	    PCICFG_REVESION_ID_ERROR_VAL) {
13079		pr_err("PCI device error, probably due to fan failure, aborting\n");
13080		rc = -ENODEV;
13081		goto err_out_disable;
13082	}
13083
13084	if (atomic_read(&pdev->enable_cnt) == 1) {
13085		rc = pci_request_regions(pdev, DRV_MODULE_NAME);
13086		if (rc) {
13087			dev_err(&bp->pdev->dev,
13088				"Cannot obtain PCI resources, aborting\n");
13089			goto err_out_disable;
13090		}
13091
13092		pci_set_master(pdev);
13093		pci_save_state(pdev);
13094	}
13095
13096	if (IS_PF(bp)) {
13097		if (!pdev->pm_cap) {
13098			dev_err(&bp->pdev->dev,
13099				"Cannot find power management capability, aborting\n");
13100			rc = -EIO;
13101			goto err_out_release;
13102		}
13103	}
13104
13105	if (!pci_is_pcie(pdev)) {
13106		dev_err(&bp->pdev->dev, "Not PCI Express, aborting\n");
13107		rc = -EIO;
13108		goto err_out_release;
13109	}
13110
13111	rc = dma_set_mask_and_coherent(&bp->pdev->dev, DMA_BIT_MASK(64));
13112	if (rc) {
13113		dev_err(&bp->pdev->dev, "System does not support DMA, aborting\n");
13114		goto err_out_release;
13115	}
13116
13117	dev->mem_start = pci_resource_start(pdev, 0);
13118	dev->base_addr = dev->mem_start;
13119	dev->mem_end = pci_resource_end(pdev, 0);
13120
13121	dev->irq = pdev->irq;
13122
13123	bp->regview = pci_ioremap_bar(pdev, 0);
13124	if (!bp->regview) {
13125		dev_err(&bp->pdev->dev,
13126			"Cannot map register space, aborting\n");
13127		rc = -ENOMEM;
13128		goto err_out_release;
13129	}
13130
13131	/* In E1/E1H use pci device function given by kernel.
13132	 * In E2/E3 read physical function from ME register since these chips
13133	 * support Physical Device Assignment where kernel BDF maybe arbitrary
13134	 * (depending on hypervisor).
13135	 */
13136	if (chip_is_e1x) {
13137		bp->pf_num = PCI_FUNC(pdev->devfn);
13138	} else {
13139		/* chip is E2/3*/
13140		pci_read_config_dword(bp->pdev,
13141				      PCICFG_ME_REGISTER, &pci_cfg_dword);
13142		bp->pf_num = (u8)((pci_cfg_dword & ME_REG_ABS_PF_NUM) >>
13143				  ME_REG_ABS_PF_NUM_SHIFT);
13144	}
13145	BNX2X_DEV_INFO("me reg PF num: %d\n", bp->pf_num);
13146
13147	/* clean indirect addresses */
13148	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
13149			       PCICFG_VENDOR_ID_OFFSET);
13150
13151	/* Set PCIe reset type to fundamental for EEH recovery */
13152	pdev->needs_freset = 1;
13153
13154	/*
13155	 * Clean the following indirect addresses for all functions since it
13156	 * is not used by the driver.
13157	 */
13158	if (IS_PF(bp)) {
13159		REG_WR(bp, PXP2_REG_PGL_ADDR_88_F0, 0);
13160		REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F0, 0);
13161		REG_WR(bp, PXP2_REG_PGL_ADDR_90_F0, 0);
13162		REG_WR(bp, PXP2_REG_PGL_ADDR_94_F0, 0);
13163
13164		if (chip_is_e1x) {
13165			REG_WR(bp, PXP2_REG_PGL_ADDR_88_F1, 0);
13166			REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F1, 0);
13167			REG_WR(bp, PXP2_REG_PGL_ADDR_90_F1, 0);
13168			REG_WR(bp, PXP2_REG_PGL_ADDR_94_F1, 0);
13169		}
13170
13171		/* Enable internal target-read (in case we are probed after PF
13172		 * FLR). Must be done prior to any BAR read access. Only for
13173		 * 57712 and up
13174		 */
13175		if (!chip_is_e1x)
13176			REG_WR(bp,
13177			       PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
13178	}
13179
13180	dev->watchdog_timeo = TX_TIMEOUT;
13181
13182	dev->netdev_ops = &bnx2x_netdev_ops;
13183	bnx2x_set_ethtool_ops(bp, dev);
13184
13185	dev->priv_flags |= IFF_UNICAST_FLT;
13186
13187	dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
13188		NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
13189		NETIF_F_RXCSUM | NETIF_F_LRO | NETIF_F_GRO | NETIF_F_GRO_HW |
13190		NETIF_F_RXHASH | NETIF_F_HW_VLAN_CTAG_TX;
13191	if (!chip_is_e1x) {
13192		dev->hw_features |= NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM |
13193				    NETIF_F_GSO_IPXIP4 |
13194				    NETIF_F_GSO_UDP_TUNNEL |
13195				    NETIF_F_GSO_UDP_TUNNEL_CSUM |
13196				    NETIF_F_GSO_PARTIAL;
13197
13198		dev->hw_enc_features =
13199			NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
13200			NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
13201			NETIF_F_GSO_IPXIP4 |
13202			NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM |
13203			NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_UDP_TUNNEL_CSUM |
13204			NETIF_F_GSO_PARTIAL;
13205
13206		dev->gso_partial_features = NETIF_F_GSO_GRE_CSUM |
13207					    NETIF_F_GSO_UDP_TUNNEL_CSUM;
13208
13209		if (IS_PF(bp))
13210			dev->udp_tunnel_nic_info = &bnx2x_udp_tunnels;
13211	}
13212
13213	dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
13214		NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | NETIF_F_HIGHDMA;
13215
13216	if (IS_PF(bp)) {
13217		if (chip_is_e1x)
13218			bp->accept_any_vlan = true;
13219		else
13220			dev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER;
13221	}
13222	/* For VF we'll know whether to enable VLAN filtering after
13223	 * getting a response to CHANNEL_TLV_ACQUIRE from PF.
13224	 */
13225
13226	dev->features |= dev->hw_features | NETIF_F_HW_VLAN_CTAG_RX;
13227	dev->features |= NETIF_F_HIGHDMA;
13228	if (dev->features & NETIF_F_LRO)
13229		dev->features &= ~NETIF_F_GRO_HW;
13230
13231	/* Add Loopback capability to the device */
13232	dev->hw_features |= NETIF_F_LOOPBACK;
13233
13234#ifdef BCM_DCBNL
13235	dev->dcbnl_ops = &bnx2x_dcbnl_ops;
13236#endif
13237
13238	/* MTU range, 46 - 9600 */
13239	dev->min_mtu = ETH_MIN_PACKET_SIZE;
13240	dev->max_mtu = ETH_MAX_JUMBO_PACKET_SIZE;
13241
13242	/* get_port_hwinfo() will set prtad and mmds properly */
13243	bp->mdio.prtad = MDIO_PRTAD_NONE;
13244	bp->mdio.mmds = 0;
13245	bp->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22;
13246	bp->mdio.dev = dev;
13247	bp->mdio.mdio_read = bnx2x_mdio_read;
13248	bp->mdio.mdio_write = bnx2x_mdio_write;
13249
13250	return 0;
13251
13252err_out_release:
13253	if (atomic_read(&pdev->enable_cnt) == 1)
13254		pci_release_regions(pdev);
13255
13256err_out_disable:
13257	pci_disable_device(pdev);
13258
13259err_out:
13260	return rc;
13261}
13262
13263static int bnx2x_check_firmware(struct bnx2x *bp)
13264{
13265	const struct firmware *firmware = bp->firmware;
13266	struct bnx2x_fw_file_hdr *fw_hdr;
13267	struct bnx2x_fw_file_section *sections;
13268	u32 offset, len, num_ops;
13269	__be16 *ops_offsets;
13270	int i;
13271	const u8 *fw_ver;
13272
13273	if (firmware->size < sizeof(struct bnx2x_fw_file_hdr)) {
13274		BNX2X_ERR("Wrong FW size\n");
13275		return -EINVAL;
13276	}
13277
13278	fw_hdr = (struct bnx2x_fw_file_hdr *)firmware->data;
13279	sections = (struct bnx2x_fw_file_section *)fw_hdr;
13280
13281	/* Make sure none of the offsets and sizes make us read beyond
13282	 * the end of the firmware data */
13283	for (i = 0; i < sizeof(*fw_hdr) / sizeof(*sections); i++) {
13284		offset = be32_to_cpu(sections[i].offset);
13285		len = be32_to_cpu(sections[i].len);
13286		if (offset + len > firmware->size) {
13287			BNX2X_ERR("Section %d length is out of bounds\n", i);
13288			return -EINVAL;
13289		}
13290	}
13291
13292	/* Likewise for the init_ops offsets */
13293	offset = be32_to_cpu(fw_hdr->init_ops_offsets.offset);
13294	ops_offsets = (__force __be16 *)(firmware->data + offset);
13295	num_ops = be32_to_cpu(fw_hdr->init_ops.len) / sizeof(struct raw_op);
13296
13297	for (i = 0; i < be32_to_cpu(fw_hdr->init_ops_offsets.len) / 2; i++) {
13298		if (be16_to_cpu(ops_offsets[i]) > num_ops) {
13299			BNX2X_ERR("Section offset %d is out of bounds\n", i);
13300			return -EINVAL;
13301		}
13302	}
13303
13304	/* Check FW version */
13305	offset = be32_to_cpu(fw_hdr->fw_version.offset);
13306	fw_ver = firmware->data + offset;
13307	if (fw_ver[0] != bp->fw_major || fw_ver[1] != bp->fw_minor ||
13308	    fw_ver[2] != bp->fw_rev || fw_ver[3] != bp->fw_eng) {
13309		BNX2X_ERR("Bad FW version:%d.%d.%d.%d. Should be %d.%d.%d.%d\n",
13310			  fw_ver[0], fw_ver[1], fw_ver[2], fw_ver[3],
13311			  bp->fw_major, bp->fw_minor, bp->fw_rev, bp->fw_eng);
13312		return -EINVAL;
13313	}
13314
13315	return 0;
13316}
13317
13318static void be32_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
13319{
13320	const __be32 *source = (const __be32 *)_source;
13321	u32 *target = (u32 *)_target;
13322	u32 i;
13323
13324	for (i = 0; i < n/4; i++)
13325		target[i] = be32_to_cpu(source[i]);
13326}
13327
13328/*
13329   Ops array is stored in the following format:
13330   {op(8bit), offset(24bit, big endian), data(32bit, big endian)}
13331 */
13332static void bnx2x_prep_ops(const u8 *_source, u8 *_target, u32 n)
13333{
13334	const __be32 *source = (const __be32 *)_source;
13335	struct raw_op *target = (struct raw_op *)_target;
13336	u32 i, j, tmp;
13337
13338	for (i = 0, j = 0; i < n/8; i++, j += 2) {
13339		tmp = be32_to_cpu(source[j]);
13340		target[i].op = (tmp >> 24) & 0xff;
13341		target[i].offset = tmp & 0xffffff;
13342		target[i].raw_data = be32_to_cpu(source[j + 1]);
13343	}
13344}
13345
13346/* IRO array is stored in the following format:
13347 * {base(24bit), m1(16bit), m2(16bit), m3(16bit), size(16bit) }
13348 */
13349static void bnx2x_prep_iro(const u8 *_source, u8 *_target, u32 n)
13350{
13351	const __be32 *source = (const __be32 *)_source;
13352	struct iro *target = (struct iro *)_target;
13353	u32 i, j, tmp;
13354
13355	for (i = 0, j = 0; i < n/sizeof(struct iro); i++) {
13356		target[i].base = be32_to_cpu(source[j]);
13357		j++;
13358		tmp = be32_to_cpu(source[j]);
13359		target[i].m1 = (tmp >> 16) & 0xffff;
13360		target[i].m2 = tmp & 0xffff;
13361		j++;
13362		tmp = be32_to_cpu(source[j]);
13363		target[i].m3 = (tmp >> 16) & 0xffff;
13364		target[i].size = tmp & 0xffff;
13365		j++;
13366	}
13367}
13368
13369static void be16_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
13370{
13371	const __be16 *source = (const __be16 *)_source;
13372	u16 *target = (u16 *)_target;
13373	u32 i;
13374
13375	for (i = 0; i < n/2; i++)
13376		target[i] = be16_to_cpu(source[i]);
13377}
13378
13379#define BNX2X_ALLOC_AND_SET(arr, lbl, func)				\
13380do {									\
13381	u32 len = be32_to_cpu(fw_hdr->arr.len);				\
13382	bp->arr = kmalloc(len, GFP_KERNEL);				\
13383	if (!bp->arr)							\
13384		goto lbl;						\
13385	func(bp->firmware->data + be32_to_cpu(fw_hdr->arr.offset),	\
13386	     (u8 *)bp->arr, len);					\
13387} while (0)
13388
13389static int bnx2x_init_firmware(struct bnx2x *bp)
13390{
13391	const char *fw_file_name, *fw_file_name_v15;
13392	struct bnx2x_fw_file_hdr *fw_hdr;
13393	int rc;
13394
13395	if (bp->firmware)
13396		return 0;
13397
13398	if (CHIP_IS_E1(bp)) {
13399		fw_file_name = FW_FILE_NAME_E1;
13400		fw_file_name_v15 = FW_FILE_NAME_E1_V15;
13401	} else if (CHIP_IS_E1H(bp)) {
13402		fw_file_name = FW_FILE_NAME_E1H;
13403		fw_file_name_v15 = FW_FILE_NAME_E1H_V15;
13404	} else if (!CHIP_IS_E1x(bp)) {
13405		fw_file_name = FW_FILE_NAME_E2;
13406		fw_file_name_v15 = FW_FILE_NAME_E2_V15;
13407	} else {
13408		BNX2X_ERR("Unsupported chip revision\n");
13409		return -EINVAL;
13410	}
13411
13412	BNX2X_DEV_INFO("Loading %s\n", fw_file_name);
13413
13414	rc = request_firmware(&bp->firmware, fw_file_name, &bp->pdev->dev);
13415	if (rc) {
13416		BNX2X_DEV_INFO("Trying to load older fw %s\n", fw_file_name_v15);
13417
13418		/* try to load prev version */
13419		rc = request_firmware(&bp->firmware, fw_file_name_v15, &bp->pdev->dev);
13420
13421		if (rc)
13422			goto request_firmware_exit;
13423
13424		bp->fw_rev = BCM_5710_FW_REVISION_VERSION_V15;
13425	} else {
13426		bp->fw_cap |= FW_CAP_INVALIDATE_VF_FP_HSI;
13427		bp->fw_rev = BCM_5710_FW_REVISION_VERSION;
13428	}
13429
13430	bp->fw_major = BCM_5710_FW_MAJOR_VERSION;
13431	bp->fw_minor = BCM_5710_FW_MINOR_VERSION;
13432	bp->fw_eng = BCM_5710_FW_ENGINEERING_VERSION;
13433
13434	rc = bnx2x_check_firmware(bp);
13435	if (rc) {
13436		BNX2X_ERR("Corrupt firmware file %s\n", fw_file_name);
13437		goto request_firmware_exit;
13438	}
13439
13440	fw_hdr = (struct bnx2x_fw_file_hdr *)bp->firmware->data;
13441
13442	/* Initialize the pointers to the init arrays */
13443	/* Blob */
13444	rc = -ENOMEM;
13445	BNX2X_ALLOC_AND_SET(init_data, request_firmware_exit, be32_to_cpu_n);
13446
13447	/* Opcodes */
13448	BNX2X_ALLOC_AND_SET(init_ops, init_ops_alloc_err, bnx2x_prep_ops);
13449
13450	/* Offsets */
13451	BNX2X_ALLOC_AND_SET(init_ops_offsets, init_offsets_alloc_err,
13452			    be16_to_cpu_n);
13453
13454	/* STORMs firmware */
13455	INIT_TSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13456			be32_to_cpu(fw_hdr->tsem_int_table_data.offset);
13457	INIT_TSEM_PRAM_DATA(bp)      = bp->firmware->data +
13458			be32_to_cpu(fw_hdr->tsem_pram_data.offset);
13459	INIT_USEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13460			be32_to_cpu(fw_hdr->usem_int_table_data.offset);
13461	INIT_USEM_PRAM_DATA(bp)      = bp->firmware->data +
13462			be32_to_cpu(fw_hdr->usem_pram_data.offset);
13463	INIT_XSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13464			be32_to_cpu(fw_hdr->xsem_int_table_data.offset);
13465	INIT_XSEM_PRAM_DATA(bp)      = bp->firmware->data +
13466			be32_to_cpu(fw_hdr->xsem_pram_data.offset);
13467	INIT_CSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13468			be32_to_cpu(fw_hdr->csem_int_table_data.offset);
13469	INIT_CSEM_PRAM_DATA(bp)      = bp->firmware->data +
13470			be32_to_cpu(fw_hdr->csem_pram_data.offset);
13471	/* IRO */
13472	BNX2X_ALLOC_AND_SET(iro_arr, iro_alloc_err, bnx2x_prep_iro);
13473
13474	return 0;
13475
13476iro_alloc_err:
13477	kfree(bp->init_ops_offsets);
13478init_offsets_alloc_err:
13479	kfree(bp->init_ops);
13480init_ops_alloc_err:
13481	kfree(bp->init_data);
13482request_firmware_exit:
13483	release_firmware(bp->firmware);
13484	bp->firmware = NULL;
13485
13486	return rc;
13487}
13488
13489static void bnx2x_release_firmware(struct bnx2x *bp)
13490{
13491	kfree(bp->init_ops_offsets);
13492	kfree(bp->init_ops);
13493	kfree(bp->init_data);
13494	release_firmware(bp->firmware);
13495	bp->firmware = NULL;
13496}
13497
13498static struct bnx2x_func_sp_drv_ops bnx2x_func_sp_drv = {
13499	.init_hw_cmn_chip = bnx2x_init_hw_common_chip,
13500	.init_hw_cmn      = bnx2x_init_hw_common,
13501	.init_hw_port     = bnx2x_init_hw_port,
13502	.init_hw_func     = bnx2x_init_hw_func,
13503
13504	.reset_hw_cmn     = bnx2x_reset_common,
13505	.reset_hw_port    = bnx2x_reset_port,
13506	.reset_hw_func    = bnx2x_reset_func,
13507
13508	.gunzip_init      = bnx2x_gunzip_init,
13509	.gunzip_end       = bnx2x_gunzip_end,
13510
13511	.init_fw          = bnx2x_init_firmware,
13512	.release_fw       = bnx2x_release_firmware,
13513};
13514
13515void bnx2x__init_func_obj(struct bnx2x *bp)
13516{
13517	/* Prepare DMAE related driver resources */
13518	bnx2x_setup_dmae(bp);
13519
13520	bnx2x_init_func_obj(bp, &bp->func_obj,
13521			    bnx2x_sp(bp, func_rdata),
13522			    bnx2x_sp_mapping(bp, func_rdata),
13523			    bnx2x_sp(bp, func_afex_rdata),
13524			    bnx2x_sp_mapping(bp, func_afex_rdata),
13525			    &bnx2x_func_sp_drv);
13526}
13527
13528/* must be called after sriov-enable */
13529static int bnx2x_set_qm_cid_count(struct bnx2x *bp)
13530{
13531	int cid_count = BNX2X_L2_MAX_CID(bp);
13532
13533	if (IS_SRIOV(bp))
13534		cid_count += BNX2X_VF_CIDS;
13535
13536	if (CNIC_SUPPORT(bp))
13537		cid_count += CNIC_CID_MAX;
13538
13539	return roundup(cid_count, QM_CID_ROUND);
13540}
13541
13542/**
13543 * bnx2x_get_num_non_def_sbs - return the number of none default SBs
13544 * @pdev: pci device
13545 * @cnic_cnt: count
13546 *
13547 */
13548static int bnx2x_get_num_non_def_sbs(struct pci_dev *pdev, int cnic_cnt)
13549{
13550	int index;
13551	u16 control = 0;
13552
13553	/*
13554	 * If MSI-X is not supported - return number of SBs needed to support
13555	 * one fast path queue: one FP queue + SB for CNIC
13556	 */
13557	if (!pdev->msix_cap) {
13558		dev_info(&pdev->dev, "no msix capability found\n");
13559		return 1 + cnic_cnt;
13560	}
13561	dev_info(&pdev->dev, "msix capability found\n");
13562
13563	/*
13564	 * The value in the PCI configuration space is the index of the last
13565	 * entry, namely one less than the actual size of the table, which is
13566	 * exactly what we want to return from this function: number of all SBs
13567	 * without the default SB.
13568	 * For VFs there is no default SB, then we return (index+1).
13569	 */
13570	pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &control);
13571
13572	index = control & PCI_MSIX_FLAGS_QSIZE;
13573
13574	return index;
13575}
13576
13577static int set_max_cos_est(int chip_id)
13578{
13579	switch (chip_id) {
13580	case BCM57710:
13581	case BCM57711:
13582	case BCM57711E:
13583		return BNX2X_MULTI_TX_COS_E1X;
13584	case BCM57712:
13585	case BCM57712_MF:
13586		return BNX2X_MULTI_TX_COS_E2_E3A0;
13587	case BCM57800:
13588	case BCM57800_MF:
13589	case BCM57810:
13590	case BCM57810_MF:
13591	case BCM57840_4_10:
13592	case BCM57840_2_20:
13593	case BCM57840_O:
13594	case BCM57840_MFO:
13595	case BCM57840_MF:
13596	case BCM57811:
13597	case BCM57811_MF:
13598		return BNX2X_MULTI_TX_COS_E3B0;
13599	case BCM57712_VF:
13600	case BCM57800_VF:
13601	case BCM57810_VF:
13602	case BCM57840_VF:
13603	case BCM57811_VF:
13604		return 1;
13605	default:
13606		pr_err("Unknown board_type (%d), aborting\n", chip_id);
13607		return -ENODEV;
13608	}
13609}
13610
13611static int set_is_vf(int chip_id)
13612{
13613	switch (chip_id) {
13614	case BCM57712_VF:
13615	case BCM57800_VF:
13616	case BCM57810_VF:
13617	case BCM57840_VF:
13618	case BCM57811_VF:
13619		return true;
13620	default:
13621		return false;
13622	}
13623}
13624
13625/* nig_tsgen registers relative address */
13626#define tsgen_ctrl 0x0
13627#define tsgen_freecount 0x10
13628#define tsgen_synctime_t0 0x20
13629#define tsgen_offset_t0 0x28
13630#define tsgen_drift_t0 0x30
13631#define tsgen_synctime_t1 0x58
13632#define tsgen_offset_t1 0x60
13633#define tsgen_drift_t1 0x68
13634
13635/* FW workaround for setting drift */
13636static int bnx2x_send_update_drift_ramrod(struct bnx2x *bp, int drift_dir,
13637					  int best_val, int best_period)
13638{
13639	struct bnx2x_func_state_params func_params = {NULL};
13640	struct bnx2x_func_set_timesync_params *set_timesync_params =
13641		&func_params.params.set_timesync;
13642
13643	/* Prepare parameters for function state transitions */
13644	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
13645	__set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
13646
13647	func_params.f_obj = &bp->func_obj;
13648	func_params.cmd = BNX2X_F_CMD_SET_TIMESYNC;
13649
13650	/* Function parameters */
13651	set_timesync_params->drift_adjust_cmd = TS_DRIFT_ADJUST_SET;
13652	set_timesync_params->offset_cmd = TS_OFFSET_KEEP;
13653	set_timesync_params->add_sub_drift_adjust_value =
13654		drift_dir ? TS_ADD_VALUE : TS_SUB_VALUE;
13655	set_timesync_params->drift_adjust_value = best_val;
13656	set_timesync_params->drift_adjust_period = best_period;
13657
13658	return bnx2x_func_state_change(bp, &func_params);
13659}
13660
13661static int bnx2x_ptp_adjfine(struct ptp_clock_info *ptp, long scaled_ppm)
13662{
13663	struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13664	int rc;
13665	int drift_dir = 1;
13666	int val, period, period1, period2, dif, dif1, dif2;
13667	int best_dif = BNX2X_MAX_PHC_DRIFT, best_period = 0, best_val = 0;
13668	s32 ppb = scaled_ppm_to_ppb(scaled_ppm);
13669
13670	DP(BNX2X_MSG_PTP, "PTP adjfine called, ppb = %d\n", ppb);
13671
13672	if (!netif_running(bp->dev)) {
13673		DP(BNX2X_MSG_PTP,
13674		   "PTP adjfine called while the interface is down\n");
13675		return -ENETDOWN;
13676	}
13677
13678	if (ppb < 0) {
13679		ppb = -ppb;
13680		drift_dir = 0;
13681	}
13682
13683	if (ppb == 0) {
13684		best_val = 1;
13685		best_period = 0x1FFFFFF;
13686	} else if (ppb >= BNX2X_MAX_PHC_DRIFT) {
13687		best_val = 31;
13688		best_period = 1;
13689	} else {
13690		/* Changed not to allow val = 8, 16, 24 as these values
13691		 * are not supported in workaround.
13692		 */
13693		for (val = 0; val <= 31; val++) {
13694			if ((val & 0x7) == 0)
13695				continue;
13696			period1 = val * 1000000 / ppb;
13697			period2 = period1 + 1;
13698			if (period1 != 0)
13699				dif1 = ppb - (val * 1000000 / period1);
13700			else
13701				dif1 = BNX2X_MAX_PHC_DRIFT;
13702			if (dif1 < 0)
13703				dif1 = -dif1;
13704			dif2 = ppb - (val * 1000000 / period2);
13705			if (dif2 < 0)
13706				dif2 = -dif2;
13707			dif = (dif1 < dif2) ? dif1 : dif2;
13708			period = (dif1 < dif2) ? period1 : period2;
13709			if (dif < best_dif) {
13710				best_dif = dif;
13711				best_val = val;
13712				best_period = period;
13713			}
13714		}
13715	}
13716
13717	rc = bnx2x_send_update_drift_ramrod(bp, drift_dir, best_val,
13718					    best_period);
13719	if (rc) {
13720		BNX2X_ERR("Failed to set drift\n");
13721		return -EFAULT;
13722	}
13723
13724	DP(BNX2X_MSG_PTP, "Configured val = %d, period = %d\n", best_val,
13725	   best_period);
13726
13727	return 0;
13728}
13729
13730static int bnx2x_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
13731{
13732	struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13733
13734	if (!netif_running(bp->dev)) {
13735		DP(BNX2X_MSG_PTP,
13736		   "PTP adjtime called while the interface is down\n");
13737		return -ENETDOWN;
13738	}
13739
13740	DP(BNX2X_MSG_PTP, "PTP adjtime called, delta = %llx\n", delta);
13741
13742	timecounter_adjtime(&bp->timecounter, delta);
13743
13744	return 0;
13745}
13746
13747static int bnx2x_ptp_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts)
13748{
13749	struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13750	u64 ns;
13751
13752	if (!netif_running(bp->dev)) {
13753		DP(BNX2X_MSG_PTP,
13754		   "PTP gettime called while the interface is down\n");
13755		return -ENETDOWN;
13756	}
13757
13758	ns = timecounter_read(&bp->timecounter);
13759
13760	DP(BNX2X_MSG_PTP, "PTP gettime called, ns = %llu\n", ns);
13761
13762	*ts = ns_to_timespec64(ns);
13763
13764	return 0;
13765}
13766
13767static int bnx2x_ptp_settime(struct ptp_clock_info *ptp,
13768			     const struct timespec64 *ts)
13769{
13770	struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13771	u64 ns;
13772
13773	if (!netif_running(bp->dev)) {
13774		DP(BNX2X_MSG_PTP,
13775		   "PTP settime called while the interface is down\n");
13776		return -ENETDOWN;
13777	}
13778
13779	ns = timespec64_to_ns(ts);
13780
13781	DP(BNX2X_MSG_PTP, "PTP settime called, ns = %llu\n", ns);
13782
13783	/* Re-init the timecounter */
13784	timecounter_init(&bp->timecounter, &bp->cyclecounter, ns);
13785
13786	return 0;
13787}
13788
13789/* Enable (or disable) ancillary features of the phc subsystem */
13790static int bnx2x_ptp_enable(struct ptp_clock_info *ptp,
13791			    struct ptp_clock_request *rq, int on)
13792{
13793	struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13794
13795	BNX2X_ERR("PHC ancillary features are not supported\n");
13796	return -ENOTSUPP;
13797}
13798
13799void bnx2x_register_phc(struct bnx2x *bp)
13800{
13801	/* Fill the ptp_clock_info struct and register PTP clock*/
13802	bp->ptp_clock_info.owner = THIS_MODULE;
13803	snprintf(bp->ptp_clock_info.name, 16, "%s", bp->dev->name);
13804	bp->ptp_clock_info.max_adj = BNX2X_MAX_PHC_DRIFT; /* In PPB */
13805	bp->ptp_clock_info.n_alarm = 0;
13806	bp->ptp_clock_info.n_ext_ts = 0;
13807	bp->ptp_clock_info.n_per_out = 0;
13808	bp->ptp_clock_info.pps = 0;
13809	bp->ptp_clock_info.adjfine = bnx2x_ptp_adjfine;
13810	bp->ptp_clock_info.adjtime = bnx2x_ptp_adjtime;
13811	bp->ptp_clock_info.gettime64 = bnx2x_ptp_gettime;
13812	bp->ptp_clock_info.settime64 = bnx2x_ptp_settime;
13813	bp->ptp_clock_info.enable = bnx2x_ptp_enable;
13814
13815	bp->ptp_clock = ptp_clock_register(&bp->ptp_clock_info, &bp->pdev->dev);
13816	if (IS_ERR(bp->ptp_clock)) {
13817		bp->ptp_clock = NULL;
13818		BNX2X_ERR("PTP clock registration failed\n");
13819	}
13820}
13821
13822static int bnx2x_init_one(struct pci_dev *pdev,
13823				    const struct pci_device_id *ent)
13824{
13825	struct net_device *dev = NULL;
13826	struct bnx2x *bp;
13827	int rc, max_non_def_sbs;
13828	int rx_count, tx_count, rss_count, doorbell_size;
13829	int max_cos_est;
13830	bool is_vf;
13831	int cnic_cnt;
13832
13833	/* Management FW 'remembers' living interfaces. Allow it some time
13834	 * to forget previously living interfaces, allowing a proper re-load.
13835	 */
13836	if (is_kdump_kernel()) {
13837		ktime_t now = ktime_get_boottime();
13838		ktime_t fw_ready_time = ktime_set(5, 0);
13839
13840		if (ktime_before(now, fw_ready_time))
13841			msleep(ktime_ms_delta(fw_ready_time, now));
13842	}
13843
13844	/* An estimated maximum supported CoS number according to the chip
13845	 * version.
13846	 * We will try to roughly estimate the maximum number of CoSes this chip
13847	 * may support in order to minimize the memory allocated for Tx
13848	 * netdev_queue's. This number will be accurately calculated during the
13849	 * initialization of bp->max_cos based on the chip versions AND chip
13850	 * revision in the bnx2x_init_bp().
13851	 */
13852	max_cos_est = set_max_cos_est(ent->driver_data);
13853	if (max_cos_est < 0)
13854		return max_cos_est;
13855	is_vf = set_is_vf(ent->driver_data);
13856	cnic_cnt = is_vf ? 0 : 1;
13857
13858	max_non_def_sbs = bnx2x_get_num_non_def_sbs(pdev, cnic_cnt);
13859
13860	/* add another SB for VF as it has no default SB */
13861	max_non_def_sbs += is_vf ? 1 : 0;
13862
13863	/* Maximum number of RSS queues: one IGU SB goes to CNIC */
13864	rss_count = max_non_def_sbs - cnic_cnt;
13865
13866	if (rss_count < 1)
13867		return -EINVAL;
13868
13869	/* Maximum number of netdev Rx queues: RSS + FCoE L2 */
13870	rx_count = rss_count + cnic_cnt;
13871
13872	/* Maximum number of netdev Tx queues:
13873	 * Maximum TSS queues * Maximum supported number of CoS  + FCoE L2
13874	 */
13875	tx_count = rss_count * max_cos_est + cnic_cnt;
13876
13877	/* dev zeroed in init_etherdev */
13878	dev = alloc_etherdev_mqs(sizeof(*bp), tx_count, rx_count);
13879	if (!dev)
13880		return -ENOMEM;
13881
13882	bp = netdev_priv(dev);
13883
13884	bp->flags = 0;
13885	if (is_vf)
13886		bp->flags |= IS_VF_FLAG;
13887
13888	bp->igu_sb_cnt = max_non_def_sbs;
13889	bp->igu_base_addr = IS_VF(bp) ? PXP_VF_ADDR_IGU_START : BAR_IGU_INTMEM;
13890	bp->msg_enable = debug;
13891	bp->cnic_support = cnic_cnt;
13892	bp->cnic_probe = bnx2x_cnic_probe;
13893
13894	pci_set_drvdata(pdev, dev);
13895
13896	rc = bnx2x_init_dev(bp, pdev, dev, ent->driver_data);
13897	if (rc < 0) {
13898		free_netdev(dev);
13899		return rc;
13900	}
13901
13902	BNX2X_DEV_INFO("This is a %s function\n",
13903		       IS_PF(bp) ? "physical" : "virtual");
13904	BNX2X_DEV_INFO("Cnic support is %s\n", CNIC_SUPPORT(bp) ? "on" : "off");
13905	BNX2X_DEV_INFO("Max num of status blocks %d\n", max_non_def_sbs);
13906	BNX2X_DEV_INFO("Allocated netdev with %d tx and %d rx queues\n",
13907		       tx_count, rx_count);
13908
13909	rc = bnx2x_init_bp(bp);
13910	if (rc)
13911		goto init_one_exit;
13912
13913	/* Map doorbells here as we need the real value of bp->max_cos which
13914	 * is initialized in bnx2x_init_bp() to determine the number of
13915	 * l2 connections.
13916	 */
13917	if (IS_VF(bp)) {
13918		bp->doorbells = bnx2x_vf_doorbells(bp);
13919		rc = bnx2x_vf_pci_alloc(bp);
13920		if (rc)
13921			goto init_one_freemem;
13922	} else {
13923		doorbell_size = BNX2X_L2_MAX_CID(bp) * (1 << BNX2X_DB_SHIFT);
13924		if (doorbell_size > pci_resource_len(pdev, 2)) {
13925			dev_err(&bp->pdev->dev,
13926				"Cannot map doorbells, bar size too small, aborting\n");
13927			rc = -ENOMEM;
13928			goto init_one_freemem;
13929		}
13930		bp->doorbells = ioremap(pci_resource_start(pdev, 2),
13931						doorbell_size);
13932	}
13933	if (!bp->doorbells) {
13934		dev_err(&bp->pdev->dev,
13935			"Cannot map doorbell space, aborting\n");
13936		rc = -ENOMEM;
13937		goto init_one_freemem;
13938	}
13939
13940	if (IS_VF(bp)) {
13941		rc = bnx2x_vfpf_acquire(bp, tx_count, rx_count);
13942		if (rc)
13943			goto init_one_freemem;
13944
13945#ifdef CONFIG_BNX2X_SRIOV
13946		/* VF with OLD Hypervisor or old PF do not support filtering */
13947		if (bp->acquire_resp.pfdev_info.pf_cap & PFVF_CAP_VLAN_FILTER) {
13948			dev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER;
13949			dev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
13950		}
13951#endif
13952	}
13953
13954	/* Enable SRIOV if capability found in configuration space */
13955	rc = bnx2x_iov_init_one(bp, int_mode, BNX2X_MAX_NUM_OF_VFS);
13956	if (rc)
13957		goto init_one_freemem;
13958
13959	/* calc qm_cid_count */
13960	bp->qm_cid_count = bnx2x_set_qm_cid_count(bp);
13961	BNX2X_DEV_INFO("qm_cid_count %d\n", bp->qm_cid_count);
13962
13963	/* disable FCOE L2 queue for E1x*/
13964	if (CHIP_IS_E1x(bp))
13965		bp->flags |= NO_FCOE_FLAG;
13966
13967	/* Set bp->num_queues for MSI-X mode*/
13968	bnx2x_set_num_queues(bp);
13969
13970	/* Configure interrupt mode: try to enable MSI-X/MSI if
13971	 * needed.
13972	 */
13973	rc = bnx2x_set_int_mode(bp);
13974	if (rc) {
13975		dev_err(&pdev->dev, "Cannot set interrupts\n");
13976		goto init_one_freemem;
13977	}
13978	BNX2X_DEV_INFO("set interrupts successfully\n");
13979
13980	/* register the net device */
13981	rc = register_netdev(dev);
13982	if (rc) {
13983		dev_err(&pdev->dev, "Cannot register net device\n");
13984		goto init_one_freemem;
13985	}
13986	BNX2X_DEV_INFO("device name after netdev register %s\n", dev->name);
13987
13988	if (!NO_FCOE(bp)) {
13989		/* Add storage MAC address */
13990		rtnl_lock();
13991		dev_addr_add(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
13992		rtnl_unlock();
13993	}
13994	BNX2X_DEV_INFO(
13995	       "%s (%c%d) PCI-E found at mem %lx, IRQ %d, node addr %pM\n",
13996	       board_info[ent->driver_data].name,
13997	       (CHIP_REV(bp) >> 12) + 'A', (CHIP_METAL(bp) >> 4),
13998	       dev->base_addr, bp->pdev->irq, dev->dev_addr);
13999	pcie_print_link_status(bp->pdev);
14000
14001	if (!IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp))
14002		bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_DISABLED);
14003
14004	return 0;
14005
14006init_one_freemem:
14007	bnx2x_free_mem_bp(bp);
14008
14009init_one_exit:
14010	if (bp->regview)
14011		iounmap(bp->regview);
14012
14013	if (IS_PF(bp) && bp->doorbells)
14014		iounmap(bp->doorbells);
14015
14016	free_netdev(dev);
14017
14018	if (atomic_read(&pdev->enable_cnt) == 1)
14019		pci_release_regions(pdev);
14020
14021	pci_disable_device(pdev);
14022
14023	return rc;
14024}
14025
14026static void __bnx2x_remove(struct pci_dev *pdev,
14027			   struct net_device *dev,
14028			   struct bnx2x *bp,
14029			   bool remove_netdev)
14030{
14031	/* Delete storage MAC address */
14032	if (!NO_FCOE(bp)) {
14033		rtnl_lock();
14034		dev_addr_del(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
14035		rtnl_unlock();
14036	}
14037
14038#ifdef BCM_DCBNL
14039	/* Delete app tlvs from dcbnl */
14040	bnx2x_dcbnl_update_applist(bp, true);
14041#endif
14042
14043	if (IS_PF(bp) &&
14044	    !BP_NOMCP(bp) &&
14045	    (bp->flags & BC_SUPPORTS_RMMOD_CMD))
14046		bnx2x_fw_command(bp, DRV_MSG_CODE_RMMOD, 0);
14047
14048	/* Close the interface - either directly or implicitly */
14049	if (remove_netdev) {
14050		unregister_netdev(dev);
14051	} else {
14052		rtnl_lock();
14053		dev_close(dev);
14054		rtnl_unlock();
14055	}
14056
14057	bnx2x_iov_remove_one(bp);
14058
14059	/* Power on: we can't let PCI layer write to us while we are in D3 */
14060	if (IS_PF(bp)) {
14061		bnx2x_set_power_state(bp, PCI_D0);
14062		bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_NOT_LOADED);
14063
14064		/* Set endianity registers to reset values in case next driver
14065		 * boots in different endianty environment.
14066		 */
14067		bnx2x_reset_endianity(bp);
14068	}
14069
14070	/* Disable MSI/MSI-X */
14071	bnx2x_disable_msi(bp);
14072
14073	/* Power off */
14074	if (IS_PF(bp))
14075		bnx2x_set_power_state(bp, PCI_D3hot);
14076
14077	/* Make sure RESET task is not scheduled before continuing */
14078	cancel_delayed_work_sync(&bp->sp_rtnl_task);
14079
14080	/* send message via vfpf channel to release the resources of this vf */
14081	if (IS_VF(bp))
14082		bnx2x_vfpf_release(bp);
14083
14084	/* Assumes no further PCIe PM changes will occur */
14085	if (system_state == SYSTEM_POWER_OFF) {
14086		pci_wake_from_d3(pdev, bp->wol);
14087		pci_set_power_state(pdev, PCI_D3hot);
14088	}
14089
14090	if (remove_netdev) {
14091		if (bp->regview)
14092			iounmap(bp->regview);
14093
14094		/* For vfs, doorbells are part of the regview and were unmapped
14095		 * along with it. FW is only loaded by PF.
14096		 */
14097		if (IS_PF(bp)) {
14098			if (bp->doorbells)
14099				iounmap(bp->doorbells);
14100
14101			bnx2x_release_firmware(bp);
14102		} else {
14103			bnx2x_vf_pci_dealloc(bp);
14104		}
14105		bnx2x_free_mem_bp(bp);
14106
14107		free_netdev(dev);
14108
14109		if (atomic_read(&pdev->enable_cnt) == 1)
14110			pci_release_regions(pdev);
14111
14112		pci_disable_device(pdev);
14113	}
14114}
14115
14116static void bnx2x_remove_one(struct pci_dev *pdev)
14117{
14118	struct net_device *dev = pci_get_drvdata(pdev);
14119	struct bnx2x *bp;
14120
14121	if (!dev) {
14122		dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
14123		return;
14124	}
14125	bp = netdev_priv(dev);
14126
14127	__bnx2x_remove(pdev, dev, bp, true);
14128}
14129
14130static int bnx2x_eeh_nic_unload(struct bnx2x *bp)
14131{
14132	bp->state = BNX2X_STATE_CLOSING_WAIT4_HALT;
14133
14134	bp->rx_mode = BNX2X_RX_MODE_NONE;
14135
14136	if (CNIC_LOADED(bp))
14137		bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD);
14138
14139	/* Stop Tx */
14140	bnx2x_tx_disable(bp);
14141	netdev_reset_tc(bp->dev);
14142
14143	del_timer_sync(&bp->timer);
14144	cancel_delayed_work_sync(&bp->sp_task);
14145	cancel_delayed_work_sync(&bp->period_task);
14146
14147	if (!down_timeout(&bp->stats_lock, HZ / 10)) {
14148		bp->stats_state = STATS_STATE_DISABLED;
14149		up(&bp->stats_lock);
14150	}
14151
14152	bnx2x_save_statistics(bp);
14153
14154	netif_carrier_off(bp->dev);
14155
14156	return 0;
14157}
14158
14159/**
14160 * bnx2x_io_error_detected - called when PCI error is detected
14161 * @pdev: Pointer to PCI device
14162 * @state: The current pci connection state
14163 *
14164 * This function is called after a PCI bus error affecting
14165 * this device has been detected.
14166 */
14167static pci_ers_result_t bnx2x_io_error_detected(struct pci_dev *pdev,
14168						pci_channel_state_t state)
14169{
14170	struct net_device *dev = pci_get_drvdata(pdev);
14171	struct bnx2x *bp = netdev_priv(dev);
14172
14173	rtnl_lock();
14174
14175	BNX2X_ERR("IO error detected\n");
14176
14177	netif_device_detach(dev);
14178
14179	if (state == pci_channel_io_perm_failure) {
14180		rtnl_unlock();
14181		return PCI_ERS_RESULT_DISCONNECT;
14182	}
14183
14184	if (netif_running(dev))
14185		bnx2x_eeh_nic_unload(bp);
14186
14187	bnx2x_prev_path_mark_eeh(bp);
14188
14189	pci_disable_device(pdev);
14190
14191	rtnl_unlock();
14192
14193	/* Request a slot reset */
14194	return PCI_ERS_RESULT_NEED_RESET;
14195}
14196
14197/**
14198 * bnx2x_io_slot_reset - called after the PCI bus has been reset
14199 * @pdev: Pointer to PCI device
14200 *
14201 * Restart the card from scratch, as if from a cold-boot.
14202 */
14203static pci_ers_result_t bnx2x_io_slot_reset(struct pci_dev *pdev)
14204{
14205	struct net_device *dev = pci_get_drvdata(pdev);
14206	struct bnx2x *bp = netdev_priv(dev);
14207	int i;
14208
14209	rtnl_lock();
14210	BNX2X_ERR("IO slot reset initializing...\n");
14211	if (pci_enable_device(pdev)) {
14212		dev_err(&pdev->dev,
14213			"Cannot re-enable PCI device after reset\n");
14214		rtnl_unlock();
14215		return PCI_ERS_RESULT_DISCONNECT;
14216	}
14217
14218	pci_set_master(pdev);
14219	pci_restore_state(pdev);
14220	pci_save_state(pdev);
14221
14222	if (netif_running(dev))
14223		bnx2x_set_power_state(bp, PCI_D0);
14224
14225	if (netif_running(dev)) {
14226		BNX2X_ERR("IO slot reset --> driver unload\n");
14227
14228		/* MCP should have been reset; Need to wait for validity */
14229		if (bnx2x_init_shmem(bp)) {
14230			rtnl_unlock();
14231			return PCI_ERS_RESULT_DISCONNECT;
14232		}
14233
14234		if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) {
14235			u32 v;
14236
14237			v = SHMEM2_RD(bp,
14238				      drv_capabilities_flag[BP_FW_MB_IDX(bp)]);
14239			SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)],
14240				  v & ~DRV_FLAGS_CAPABILITIES_LOADED_L2);
14241		}
14242		bnx2x_drain_tx_queues(bp);
14243		bnx2x_send_unload_req(bp, UNLOAD_RECOVERY);
14244		if (!bp->nic_stopped) {
14245			bnx2x_netif_stop(bp, 1);
14246			bnx2x_del_all_napi(bp);
14247
14248			if (CNIC_LOADED(bp))
14249				bnx2x_del_all_napi_cnic(bp);
14250
14251			bnx2x_free_irq(bp);
14252			bp->nic_stopped = true;
14253		}
14254
14255		/* Report UNLOAD_DONE to MCP */
14256		bnx2x_send_unload_done(bp, true);
14257
14258		bp->sp_state = 0;
14259		bp->port.pmf = 0;
14260
14261		bnx2x_prev_unload(bp);
14262
14263		/* We should have reseted the engine, so It's fair to
14264		 * assume the FW will no longer write to the bnx2x driver.
14265		 */
14266		bnx2x_squeeze_objects(bp);
14267		bnx2x_free_skbs(bp);
14268		for_each_rx_queue(bp, i)
14269			bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
14270		bnx2x_free_fp_mem(bp);
14271		bnx2x_free_mem(bp);
14272
14273		bp->state = BNX2X_STATE_CLOSED;
14274	}
14275
14276	rtnl_unlock();
14277
14278	return PCI_ERS_RESULT_RECOVERED;
14279}
14280
14281/**
14282 * bnx2x_io_resume - called when traffic can start flowing again
14283 * @pdev: Pointer to PCI device
14284 *
14285 * This callback is called when the error recovery driver tells us that
14286 * its OK to resume normal operation.
14287 */
14288static void bnx2x_io_resume(struct pci_dev *pdev)
14289{
14290	struct net_device *dev = pci_get_drvdata(pdev);
14291	struct bnx2x *bp = netdev_priv(dev);
14292
14293	if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
14294		netdev_err(bp->dev, "Handling parity error recovery. Try again later\n");
14295		return;
14296	}
14297
14298	rtnl_lock();
14299
14300	bp->fw_seq = SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
14301							DRV_MSG_SEQ_NUMBER_MASK;
14302
14303	if (netif_running(dev)) {
14304		if (bnx2x_nic_load(bp, LOAD_NORMAL)) {
14305			netdev_err(bp->dev, "Error during driver initialization, try unloading/reloading the driver\n");
14306			goto done;
14307		}
14308	}
14309
14310	netif_device_attach(dev);
14311
14312done:
14313	rtnl_unlock();
14314}
14315
14316static const struct pci_error_handlers bnx2x_err_handler = {
14317	.error_detected = bnx2x_io_error_detected,
14318	.slot_reset     = bnx2x_io_slot_reset,
14319	.resume         = bnx2x_io_resume,
14320};
14321
14322static void bnx2x_shutdown(struct pci_dev *pdev)
14323{
14324	struct net_device *dev = pci_get_drvdata(pdev);
14325	struct bnx2x *bp;
14326
14327	if (!dev)
14328		return;
14329
14330	bp = netdev_priv(dev);
14331	if (!bp)
14332		return;
14333
14334	rtnl_lock();
14335	netif_device_detach(dev);
14336	rtnl_unlock();
14337
14338	/* Don't remove the netdevice, as there are scenarios which will cause
14339	 * the kernel to hang, e.g., when trying to remove bnx2i while the
14340	 * rootfs is mounted from SAN.
14341	 */
14342	__bnx2x_remove(pdev, dev, bp, false);
14343}
14344
14345static struct pci_driver bnx2x_pci_driver = {
14346	.name        = DRV_MODULE_NAME,
14347	.id_table    = bnx2x_pci_tbl,
14348	.probe       = bnx2x_init_one,
14349	.remove      = bnx2x_remove_one,
14350	.driver.pm   = &bnx2x_pm_ops,
14351	.err_handler = &bnx2x_err_handler,
14352#ifdef CONFIG_BNX2X_SRIOV
14353	.sriov_configure = bnx2x_sriov_configure,
14354#endif
14355	.shutdown    = bnx2x_shutdown,
14356};
14357
14358static int __init bnx2x_init(void)
14359{
14360	int ret;
14361
14362	bnx2x_wq = create_singlethread_workqueue("bnx2x");
14363	if (bnx2x_wq == NULL) {
14364		pr_err("Cannot create workqueue\n");
14365		return -ENOMEM;
14366	}
14367	bnx2x_iov_wq = create_singlethread_workqueue("bnx2x_iov");
14368	if (!bnx2x_iov_wq) {
14369		pr_err("Cannot create iov workqueue\n");
14370		destroy_workqueue(bnx2x_wq);
14371		return -ENOMEM;
14372	}
14373
14374	ret = pci_register_driver(&bnx2x_pci_driver);
14375	if (ret) {
14376		pr_err("Cannot register driver\n");
14377		destroy_workqueue(bnx2x_wq);
14378		destroy_workqueue(bnx2x_iov_wq);
14379	}
14380	return ret;
14381}
14382
14383static void __exit bnx2x_cleanup(void)
14384{
14385	struct list_head *pos, *q;
14386
14387	pci_unregister_driver(&bnx2x_pci_driver);
14388
14389	destroy_workqueue(bnx2x_wq);
14390	destroy_workqueue(bnx2x_iov_wq);
14391
14392	/* Free globally allocated resources */
14393	list_for_each_safe(pos, q, &bnx2x_prev_list) {
14394		struct bnx2x_prev_path_list *tmp =
14395			list_entry(pos, struct bnx2x_prev_path_list, list);
14396		list_del(pos);
14397		kfree(tmp);
14398	}
14399}
14400
14401void bnx2x_notify_link_changed(struct bnx2x *bp)
14402{
14403	REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + BP_FUNC(bp)*sizeof(u32), 1);
14404}
14405
14406module_init(bnx2x_init);
14407module_exit(bnx2x_cleanup);
14408
14409/**
14410 * bnx2x_set_iscsi_eth_mac_addr - set iSCSI MAC(s).
14411 * @bp:		driver handle
14412 *
14413 * This function will wait until the ramrod completion returns.
14414 * Return 0 if success, -ENODEV if ramrod doesn't return.
14415 */
14416static int bnx2x_set_iscsi_eth_mac_addr(struct bnx2x *bp)
14417{
14418	unsigned long ramrod_flags = 0;
14419
14420	__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
14421	return bnx2x_set_mac_one(bp, bp->cnic_eth_dev.iscsi_mac,
14422				 &bp->iscsi_l2_mac_obj, true,
14423				 BNX2X_ISCSI_ETH_MAC, &ramrod_flags);
14424}
14425
14426/* count denotes the number of new completions we have seen */
14427static void bnx2x_cnic_sp_post(struct bnx2x *bp, int count)
14428{
14429	struct eth_spe *spe;
14430	int cxt_index, cxt_offset;
14431
14432#ifdef BNX2X_STOP_ON_ERROR
14433	if (unlikely(bp->panic))
14434		return;
14435#endif
14436
14437	spin_lock_bh(&bp->spq_lock);
14438	BUG_ON(bp->cnic_spq_pending < count);
14439	bp->cnic_spq_pending -= count;
14440
14441	for (; bp->cnic_kwq_pending; bp->cnic_kwq_pending--) {
14442		u16 type =  (le16_to_cpu(bp->cnic_kwq_cons->hdr.type)
14443				& SPE_HDR_CONN_TYPE) >>
14444				SPE_HDR_CONN_TYPE_SHIFT;
14445		u8 cmd = (le32_to_cpu(bp->cnic_kwq_cons->hdr.conn_and_cmd_data)
14446				>> SPE_HDR_CMD_ID_SHIFT) & 0xff;
14447
14448		/* Set validation for iSCSI L2 client before sending SETUP
14449		 *  ramrod
14450		 */
14451		if (type == ETH_CONNECTION_TYPE) {
14452			if (cmd == RAMROD_CMD_ID_ETH_CLIENT_SETUP) {
14453				cxt_index = BNX2X_ISCSI_ETH_CID(bp) /
14454					ILT_PAGE_CIDS;
14455				cxt_offset = BNX2X_ISCSI_ETH_CID(bp) -
14456					(cxt_index * ILT_PAGE_CIDS);
14457				bnx2x_set_ctx_validation(bp,
14458					&bp->context[cxt_index].
14459							 vcxt[cxt_offset].eth,
14460					BNX2X_ISCSI_ETH_CID(bp));
14461			}
14462		}
14463
14464		/*
14465		 * There may be not more than 8 L2, not more than 8 L5 SPEs
14466		 * and in the air. We also check that number of outstanding
14467		 * COMMON ramrods is not more than the EQ and SPQ can
14468		 * accommodate.
14469		 */
14470		if (type == ETH_CONNECTION_TYPE) {
14471			if (!atomic_read(&bp->cq_spq_left))
14472				break;
14473			else
14474				atomic_dec(&bp->cq_spq_left);
14475		} else if (type == NONE_CONNECTION_TYPE) {
14476			if (!atomic_read(&bp->eq_spq_left))
14477				break;
14478			else
14479				atomic_dec(&bp->eq_spq_left);
14480		} else if ((type == ISCSI_CONNECTION_TYPE) ||
14481			   (type == FCOE_CONNECTION_TYPE)) {
14482			if (bp->cnic_spq_pending >=
14483			    bp->cnic_eth_dev.max_kwqe_pending)
14484				break;
14485			else
14486				bp->cnic_spq_pending++;
14487		} else {
14488			BNX2X_ERR("Unknown SPE type: %d\n", type);
14489			bnx2x_panic();
14490			break;
14491		}
14492
14493		spe = bnx2x_sp_get_next(bp);
14494		*spe = *bp->cnic_kwq_cons;
14495
14496		DP(BNX2X_MSG_SP, "pending on SPQ %d, on KWQ %d count %d\n",
14497		   bp->cnic_spq_pending, bp->cnic_kwq_pending, count);
14498
14499		if (bp->cnic_kwq_cons == bp->cnic_kwq_last)
14500			bp->cnic_kwq_cons = bp->cnic_kwq;
14501		else
14502			bp->cnic_kwq_cons++;
14503	}
14504	bnx2x_sp_prod_update(bp);
14505	spin_unlock_bh(&bp->spq_lock);
14506}
14507
14508static int bnx2x_cnic_sp_queue(struct net_device *dev,
14509			       struct kwqe_16 *kwqes[], u32 count)
14510{
14511	struct bnx2x *bp = netdev_priv(dev);
14512	int i;
14513
14514#ifdef BNX2X_STOP_ON_ERROR
14515	if (unlikely(bp->panic)) {
14516		BNX2X_ERR("Can't post to SP queue while panic\n");
14517		return -EIO;
14518	}
14519#endif
14520
14521	if ((bp->recovery_state != BNX2X_RECOVERY_DONE) &&
14522	    (bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
14523		BNX2X_ERR("Handling parity error recovery. Try again later\n");
14524		return -EAGAIN;
14525	}
14526
14527	spin_lock_bh(&bp->spq_lock);
14528
14529	for (i = 0; i < count; i++) {
14530		struct eth_spe *spe = (struct eth_spe *)kwqes[i];
14531
14532		if (bp->cnic_kwq_pending == MAX_SP_DESC_CNT)
14533			break;
14534
14535		*bp->cnic_kwq_prod = *spe;
14536
14537		bp->cnic_kwq_pending++;
14538
14539		DP(BNX2X_MSG_SP, "L5 SPQE %x %x %x:%x pos %d\n",
14540		   spe->hdr.conn_and_cmd_data, spe->hdr.type,
14541		   spe->data.update_data_addr.hi,
14542		   spe->data.update_data_addr.lo,
14543		   bp->cnic_kwq_pending);
14544
14545		if (bp->cnic_kwq_prod == bp->cnic_kwq_last)
14546			bp->cnic_kwq_prod = bp->cnic_kwq;
14547		else
14548			bp->cnic_kwq_prod++;
14549	}
14550
14551	spin_unlock_bh(&bp->spq_lock);
14552
14553	if (bp->cnic_spq_pending < bp->cnic_eth_dev.max_kwqe_pending)
14554		bnx2x_cnic_sp_post(bp, 0);
14555
14556	return i;
14557}
14558
14559static int bnx2x_cnic_ctl_send(struct bnx2x *bp, struct cnic_ctl_info *ctl)
14560{
14561	struct cnic_ops *c_ops;
14562	int rc = 0;
14563
14564	mutex_lock(&bp->cnic_mutex);
14565	c_ops = rcu_dereference_protected(bp->cnic_ops,
14566					  lockdep_is_held(&bp->cnic_mutex));
14567	if (c_ops)
14568		rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
14569	mutex_unlock(&bp->cnic_mutex);
14570
14571	return rc;
14572}
14573
14574static int bnx2x_cnic_ctl_send_bh(struct bnx2x *bp, struct cnic_ctl_info *ctl)
14575{
14576	struct cnic_ops *c_ops;
14577	int rc = 0;
14578
14579	rcu_read_lock();
14580	c_ops = rcu_dereference(bp->cnic_ops);
14581	if (c_ops)
14582		rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
14583	rcu_read_unlock();
14584
14585	return rc;
14586}
14587
14588/*
14589 * for commands that have no data
14590 */
14591int bnx2x_cnic_notify(struct bnx2x *bp, int cmd)
14592{
14593	struct cnic_ctl_info ctl = {0};
14594
14595	ctl.cmd = cmd;
14596
14597	return bnx2x_cnic_ctl_send(bp, &ctl);
14598}
14599
14600static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err)
14601{
14602	struct cnic_ctl_info ctl = {0};
14603
14604	/* first we tell CNIC and only then we count this as a completion */
14605	ctl.cmd = CNIC_CTL_COMPLETION_CMD;
14606	ctl.data.comp.cid = cid;
14607	ctl.data.comp.error = err;
14608
14609	bnx2x_cnic_ctl_send_bh(bp, &ctl);
14610	bnx2x_cnic_sp_post(bp, 0);
14611}
14612
14613/* Called with netif_addr_lock_bh() taken.
14614 * Sets an rx_mode config for an iSCSI ETH client.
14615 * Doesn't block.
14616 * Completion should be checked outside.
14617 */
14618static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start)
14619{
14620	unsigned long accept_flags = 0, ramrod_flags = 0;
14621	u8 cl_id = bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
14622	int sched_state = BNX2X_FILTER_ISCSI_ETH_STOP_SCHED;
14623
14624	if (start) {
14625		/* Start accepting on iSCSI L2 ring. Accept all multicasts
14626		 * because it's the only way for UIO Queue to accept
14627		 * multicasts (in non-promiscuous mode only one Queue per
14628		 * function will receive multicast packets (leading in our
14629		 * case).
14630		 */
14631		__set_bit(BNX2X_ACCEPT_UNICAST, &accept_flags);
14632		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &accept_flags);
14633		__set_bit(BNX2X_ACCEPT_BROADCAST, &accept_flags);
14634		__set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
14635
14636		/* Clear STOP_PENDING bit if START is requested */
14637		clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &bp->sp_state);
14638
14639		sched_state = BNX2X_FILTER_ISCSI_ETH_START_SCHED;
14640	} else
14641		/* Clear START_PENDING bit if STOP is requested */
14642		clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &bp->sp_state);
14643
14644	if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
14645		set_bit(sched_state, &bp->sp_state);
14646	else {
14647		__set_bit(RAMROD_RX, &ramrod_flags);
14648		bnx2x_set_q_rx_mode(bp, cl_id, 0, accept_flags, 0,
14649				    ramrod_flags);
14650	}
14651}
14652
14653static int bnx2x_drv_ctl(struct net_device *dev, struct drv_ctl_info *ctl)
14654{
14655	struct bnx2x *bp = netdev_priv(dev);
14656	int rc = 0;
14657
14658	switch (ctl->cmd) {
14659	case DRV_CTL_CTXTBL_WR_CMD: {
14660		u32 index = ctl->data.io.offset;
14661		dma_addr_t addr = ctl->data.io.dma_addr;
14662
14663		bnx2x_ilt_wr(bp, index, addr);
14664		break;
14665	}
14666
14667	case DRV_CTL_RET_L5_SPQ_CREDIT_CMD: {
14668		int count = ctl->data.credit.credit_count;
14669
14670		bnx2x_cnic_sp_post(bp, count);
14671		break;
14672	}
14673
14674	/* rtnl_lock is held.  */
14675	case DRV_CTL_START_L2_CMD: {
14676		struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14677		unsigned long sp_bits = 0;
14678
14679		/* Configure the iSCSI classification object */
14680		bnx2x_init_mac_obj(bp, &bp->iscsi_l2_mac_obj,
14681				   cp->iscsi_l2_client_id,
14682				   cp->iscsi_l2_cid, BP_FUNC(bp),
14683				   bnx2x_sp(bp, mac_rdata),
14684				   bnx2x_sp_mapping(bp, mac_rdata),
14685				   BNX2X_FILTER_MAC_PENDING,
14686				   &bp->sp_state, BNX2X_OBJ_TYPE_RX,
14687				   &bp->macs_pool);
14688
14689		/* Set iSCSI MAC address */
14690		rc = bnx2x_set_iscsi_eth_mac_addr(bp);
14691		if (rc)
14692			break;
14693
14694		barrier();
14695
14696		/* Start accepting on iSCSI L2 ring */
14697
14698		netif_addr_lock_bh(dev);
14699		bnx2x_set_iscsi_eth_rx_mode(bp, true);
14700		netif_addr_unlock_bh(dev);
14701
14702		/* bits to wait on */
14703		__set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
14704		__set_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &sp_bits);
14705
14706		if (!bnx2x_wait_sp_comp(bp, sp_bits))
14707			BNX2X_ERR("rx_mode completion timed out!\n");
14708
14709		break;
14710	}
14711
14712	/* rtnl_lock is held.  */
14713	case DRV_CTL_STOP_L2_CMD: {
14714		unsigned long sp_bits = 0;
14715
14716		/* Stop accepting on iSCSI L2 ring */
14717		netif_addr_lock_bh(dev);
14718		bnx2x_set_iscsi_eth_rx_mode(bp, false);
14719		netif_addr_unlock_bh(dev);
14720
14721		/* bits to wait on */
14722		__set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
14723		__set_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &sp_bits);
14724
14725		if (!bnx2x_wait_sp_comp(bp, sp_bits))
14726			BNX2X_ERR("rx_mode completion timed out!\n");
14727
14728		barrier();
14729
14730		/* Unset iSCSI L2 MAC */
14731		rc = bnx2x_del_all_macs(bp, &bp->iscsi_l2_mac_obj,
14732					BNX2X_ISCSI_ETH_MAC, true);
14733		break;
14734	}
14735	case DRV_CTL_RET_L2_SPQ_CREDIT_CMD: {
14736		int count = ctl->data.credit.credit_count;
14737
14738		smp_mb__before_atomic();
14739		atomic_add(count, &bp->cq_spq_left);
14740		smp_mb__after_atomic();
14741		break;
14742	}
14743	case DRV_CTL_ULP_REGISTER_CMD: {
14744		int ulp_type = ctl->data.register_data.ulp_type;
14745
14746		if (CHIP_IS_E3(bp)) {
14747			int idx = BP_FW_MB_IDX(bp);
14748			u32 cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
14749			int path = BP_PATH(bp);
14750			int port = BP_PORT(bp);
14751			int i;
14752			u32 scratch_offset;
14753			u32 *host_addr;
14754
14755			/* first write capability to shmem2 */
14756			if (ulp_type == CNIC_ULP_ISCSI)
14757				cap |= DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
14758			else if (ulp_type == CNIC_ULP_FCOE)
14759				cap |= DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
14760			SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
14761
14762			if ((ulp_type != CNIC_ULP_FCOE) ||
14763			    (!SHMEM2_HAS(bp, ncsi_oem_data_addr)) ||
14764			    (!(bp->flags &  BC_SUPPORTS_FCOE_FEATURES)))
14765				break;
14766
14767			/* if reached here - should write fcoe capabilities */
14768			scratch_offset = SHMEM2_RD(bp, ncsi_oem_data_addr);
14769			if (!scratch_offset)
14770				break;
14771			scratch_offset += offsetof(struct glob_ncsi_oem_data,
14772						   fcoe_features[path][port]);
14773			host_addr = (u32 *) &(ctl->data.register_data.
14774					      fcoe_features);
14775			for (i = 0; i < sizeof(struct fcoe_capabilities);
14776			     i += 4)
14777				REG_WR(bp, scratch_offset + i,
14778				       *(host_addr + i/4));
14779		}
14780		bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
14781		break;
14782	}
14783
14784	case DRV_CTL_ULP_UNREGISTER_CMD: {
14785		int ulp_type = ctl->data.ulp_type;
14786
14787		if (CHIP_IS_E3(bp)) {
14788			int idx = BP_FW_MB_IDX(bp);
14789			u32 cap;
14790
14791			cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
14792			if (ulp_type == CNIC_ULP_ISCSI)
14793				cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
14794			else if (ulp_type == CNIC_ULP_FCOE)
14795				cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
14796			SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
14797		}
14798		bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
14799		break;
14800	}
14801
14802	default:
14803		BNX2X_ERR("unknown command %x\n", ctl->cmd);
14804		rc = -EINVAL;
14805	}
14806
14807	/* For storage-only interfaces, change driver state */
14808	if (IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp)) {
14809		switch (ctl->drv_state) {
14810		case DRV_NOP:
14811			break;
14812		case DRV_ACTIVE:
14813			bnx2x_set_os_driver_state(bp,
14814						  OS_DRIVER_STATE_ACTIVE);
14815			break;
14816		case DRV_INACTIVE:
14817			bnx2x_set_os_driver_state(bp,
14818						  OS_DRIVER_STATE_DISABLED);
14819			break;
14820		case DRV_UNLOADED:
14821			bnx2x_set_os_driver_state(bp,
14822						  OS_DRIVER_STATE_NOT_LOADED);
14823			break;
14824		default:
14825		BNX2X_ERR("Unknown cnic driver state: %d\n", ctl->drv_state);
14826		}
14827	}
14828
14829	return rc;
14830}
14831
14832static int bnx2x_get_fc_npiv(struct net_device *dev,
14833			     struct cnic_fc_npiv_tbl *cnic_tbl)
14834{
14835	struct bnx2x *bp = netdev_priv(dev);
14836	struct bdn_fc_npiv_tbl *tbl = NULL;
14837	u32 offset, entries;
14838	int rc = -EINVAL;
14839	int i;
14840
14841	if (!SHMEM2_HAS(bp, fc_npiv_nvram_tbl_addr[0]))
14842		goto out;
14843
14844	DP(BNX2X_MSG_MCP, "About to read the FC-NPIV table\n");
14845
14846	tbl = kmalloc(sizeof(*tbl), GFP_KERNEL);
14847	if (!tbl) {
14848		BNX2X_ERR("Failed to allocate fc_npiv table\n");
14849		goto out;
14850	}
14851
14852	offset = SHMEM2_RD(bp, fc_npiv_nvram_tbl_addr[BP_PORT(bp)]);
14853	if (!offset) {
14854		DP(BNX2X_MSG_MCP, "No FC-NPIV in NVRAM\n");
14855		goto out;
14856	}
14857	DP(BNX2X_MSG_MCP, "Offset of FC-NPIV in NVRAM: %08x\n", offset);
14858
14859	/* Read the table contents from nvram */
14860	if (bnx2x_nvram_read(bp, offset, (u8 *)tbl, sizeof(*tbl))) {
14861		BNX2X_ERR("Failed to read FC-NPIV table\n");
14862		goto out;
14863	}
14864
14865	/* Since bnx2x_nvram_read() returns data in be32, we need to convert
14866	 * the number of entries back to cpu endianness.
14867	 */
14868	entries = tbl->fc_npiv_cfg.num_of_npiv;
14869	entries = (__force u32)be32_to_cpu((__force __be32)entries);
14870	tbl->fc_npiv_cfg.num_of_npiv = entries;
14871
14872	if (!tbl->fc_npiv_cfg.num_of_npiv) {
14873		DP(BNX2X_MSG_MCP,
14874		   "No FC-NPIV table [valid, simply not present]\n");
14875		goto out;
14876	} else if (tbl->fc_npiv_cfg.num_of_npiv > MAX_NUMBER_NPIV) {
14877		BNX2X_ERR("FC-NPIV table with bad length 0x%08x\n",
14878			  tbl->fc_npiv_cfg.num_of_npiv);
14879		goto out;
14880	} else {
14881		DP(BNX2X_MSG_MCP, "Read 0x%08x entries from NVRAM\n",
14882		   tbl->fc_npiv_cfg.num_of_npiv);
14883	}
14884
14885	/* Copy the data into cnic-provided struct */
14886	cnic_tbl->count = tbl->fc_npiv_cfg.num_of_npiv;
14887	for (i = 0; i < cnic_tbl->count; i++) {
14888		memcpy(cnic_tbl->wwpn[i], tbl->settings[i].npiv_wwpn, 8);
14889		memcpy(cnic_tbl->wwnn[i], tbl->settings[i].npiv_wwnn, 8);
14890	}
14891
14892	rc = 0;
14893out:
14894	kfree(tbl);
14895	return rc;
14896}
14897
14898void bnx2x_setup_cnic_irq_info(struct bnx2x *bp)
14899{
14900	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14901
14902	if (bp->flags & USING_MSIX_FLAG) {
14903		cp->drv_state |= CNIC_DRV_STATE_USING_MSIX;
14904		cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX;
14905		cp->irq_arr[0].vector = bp->msix_table[1].vector;
14906	} else {
14907		cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX;
14908		cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX;
14909	}
14910	if (!CHIP_IS_E1x(bp))
14911		cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e2_sb;
14912	else
14913		cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e1x_sb;
14914
14915	cp->irq_arr[0].status_blk_map = bp->cnic_sb_mapping;
14916	cp->irq_arr[0].status_blk_num =  bnx2x_cnic_fw_sb_id(bp);
14917	cp->irq_arr[0].status_blk_num2 = bnx2x_cnic_igu_sb_id(bp);
14918	cp->irq_arr[1].status_blk = bp->def_status_blk;
14919	cp->irq_arr[1].status_blk_map = bp->def_status_blk_mapping;
14920	cp->irq_arr[1].status_blk_num = DEF_SB_ID;
14921	cp->irq_arr[1].status_blk_num2 = DEF_SB_IGU_ID;
14922
14923	cp->num_irq = 2;
14924}
14925
14926void bnx2x_setup_cnic_info(struct bnx2x *bp)
14927{
14928	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14929
14930	cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
14931			     bnx2x_cid_ilt_lines(bp);
14932	cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
14933	cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
14934	cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
14935
14936	DP(NETIF_MSG_IFUP, "BNX2X_1st_NON_L2_ETH_CID(bp) %x, cp->starting_cid %x, cp->fcoe_init_cid %x, cp->iscsi_l2_cid %x\n",
14937	   BNX2X_1st_NON_L2_ETH_CID(bp), cp->starting_cid, cp->fcoe_init_cid,
14938	   cp->iscsi_l2_cid);
14939
14940	if (NO_ISCSI_OOO(bp))
14941		cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
14942}
14943
14944static int bnx2x_register_cnic(struct net_device *dev, struct cnic_ops *ops,
14945			       void *data)
14946{
14947	struct bnx2x *bp = netdev_priv(dev);
14948	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14949	int rc;
14950
14951	DP(NETIF_MSG_IFUP, "Register_cnic called\n");
14952
14953	if (ops == NULL) {
14954		BNX2X_ERR("NULL ops received\n");
14955		return -EINVAL;
14956	}
14957
14958	if (!CNIC_SUPPORT(bp)) {
14959		BNX2X_ERR("Can't register CNIC when not supported\n");
14960		return -EOPNOTSUPP;
14961	}
14962
14963	if (!CNIC_LOADED(bp)) {
14964		rc = bnx2x_load_cnic(bp);
14965		if (rc) {
14966			BNX2X_ERR("CNIC-related load failed\n");
14967			return rc;
14968		}
14969	}
14970
14971	bp->cnic_enabled = true;
14972
14973	bp->cnic_kwq = kzalloc(PAGE_SIZE, GFP_KERNEL);
14974	if (!bp->cnic_kwq)
14975		return -ENOMEM;
14976
14977	bp->cnic_kwq_cons = bp->cnic_kwq;
14978	bp->cnic_kwq_prod = bp->cnic_kwq;
14979	bp->cnic_kwq_last = bp->cnic_kwq + MAX_SP_DESC_CNT;
14980
14981	bp->cnic_spq_pending = 0;
14982	bp->cnic_kwq_pending = 0;
14983
14984	bp->cnic_data = data;
14985
14986	cp->num_irq = 0;
14987	cp->drv_state |= CNIC_DRV_STATE_REGD;
14988	cp->iro_arr = bp->iro_arr;
14989
14990	bnx2x_setup_cnic_irq_info(bp);
14991
14992	rcu_assign_pointer(bp->cnic_ops, ops);
14993
14994	/* Schedule driver to read CNIC driver versions */
14995	bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
14996
14997	return 0;
14998}
14999
15000static int bnx2x_unregister_cnic(struct net_device *dev)
15001{
15002	struct bnx2x *bp = netdev_priv(dev);
15003	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
15004
15005	mutex_lock(&bp->cnic_mutex);
15006	cp->drv_state = 0;
15007	RCU_INIT_POINTER(bp->cnic_ops, NULL);
15008	mutex_unlock(&bp->cnic_mutex);
15009	synchronize_rcu();
15010	bp->cnic_enabled = false;
15011	kfree(bp->cnic_kwq);
15012	bp->cnic_kwq = NULL;
15013
15014	return 0;
15015}
15016
15017static struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev)
15018{
15019	struct bnx2x *bp = netdev_priv(dev);
15020	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
15021
15022	/* If both iSCSI and FCoE are disabled - return NULL in
15023	 * order to indicate CNIC that it should not try to work
15024	 * with this device.
15025	 */
15026	if (NO_ISCSI(bp) && NO_FCOE(bp))
15027		return NULL;
15028
15029	cp->drv_owner = THIS_MODULE;
15030	cp->chip_id = CHIP_ID(bp);
15031	cp->pdev = bp->pdev;
15032	cp->io_base = bp->regview;
15033	cp->io_base2 = bp->doorbells;
15034	cp->max_kwqe_pending = 8;
15035	cp->ctx_blk_size = CDU_ILT_PAGE_SZ;
15036	cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
15037			     bnx2x_cid_ilt_lines(bp);
15038	cp->ctx_tbl_len = CNIC_ILT_LINES;
15039	cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
15040	cp->drv_submit_kwqes_16 = bnx2x_cnic_sp_queue;
15041	cp->drv_ctl = bnx2x_drv_ctl;
15042	cp->drv_get_fc_npiv_tbl = bnx2x_get_fc_npiv;
15043	cp->drv_register_cnic = bnx2x_register_cnic;
15044	cp->drv_unregister_cnic = bnx2x_unregister_cnic;
15045	cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
15046	cp->iscsi_l2_client_id =
15047		bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
15048	cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
15049
15050	if (NO_ISCSI_OOO(bp))
15051		cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
15052
15053	if (NO_ISCSI(bp))
15054		cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI;
15055
15056	if (NO_FCOE(bp))
15057		cp->drv_state |= CNIC_DRV_STATE_NO_FCOE;
15058
15059	BNX2X_DEV_INFO(
15060		"page_size %d, tbl_offset %d, tbl_lines %d, starting cid %d\n",
15061	   cp->ctx_blk_size,
15062	   cp->ctx_tbl_offset,
15063	   cp->ctx_tbl_len,
15064	   cp->starting_cid);
15065	return cp;
15066}
15067
15068static u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp)
15069{
15070	struct bnx2x *bp = fp->bp;
15071	u32 offset = BAR_USTRORM_INTMEM;
15072
15073	if (IS_VF(bp))
15074		return bnx2x_vf_ustorm_prods_offset(bp, fp);
15075	else if (!CHIP_IS_E1x(bp))
15076		offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id);
15077	else
15078		offset += USTORM_RX_PRODS_E1X_OFFSET(BP_PORT(bp), fp->cl_id);
15079
15080	return offset;
15081}
15082
15083/* called only on E1H or E2.
15084 * When pretending to be PF, the pretend value is the function number 0...7
15085 * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID
15086 * combination
15087 */
15088int bnx2x_pretend_func(struct bnx2x *bp, u16 pretend_func_val)
15089{
15090	u32 pretend_reg;
15091
15092	if (CHIP_IS_E1H(bp) && pretend_func_val >= E1H_FUNC_MAX)
15093		return -1;
15094
15095	/* get my own pretend register */
15096	pretend_reg = bnx2x_get_pretend_reg(bp);
15097	REG_WR(bp, pretend_reg, pretend_func_val);
15098	REG_RD(bp, pretend_reg);
15099	return 0;
15100}
15101
15102static void bnx2x_ptp_task(struct work_struct *work)
15103{
15104	struct bnx2x *bp = container_of(work, struct bnx2x, ptp_task);
15105	int port = BP_PORT(bp);
15106	u32 val_seq;
15107	u64 timestamp, ns;
15108	struct skb_shared_hwtstamps shhwtstamps;
15109	bool bail = true;
15110	int i;
15111
15112	/* FW may take a while to complete timestamping; try a bit and if it's
15113	 * still not complete, may indicate an error state - bail out then.
15114	 */
15115	for (i = 0; i < 10; i++) {
15116		/* Read Tx timestamp registers */
15117		val_seq = REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID :
15118				 NIG_REG_P0_TLLH_PTP_BUF_SEQID);
15119		if (val_seq & 0x10000) {
15120			bail = false;
15121			break;
15122		}
15123		msleep(1 << i);
15124	}
15125
15126	if (!bail) {
15127		/* There is a valid timestamp value */
15128		timestamp = REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_TS_MSB :
15129				   NIG_REG_P0_TLLH_PTP_BUF_TS_MSB);
15130		timestamp <<= 32;
15131		timestamp |= REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_TS_LSB :
15132				    NIG_REG_P0_TLLH_PTP_BUF_TS_LSB);
15133		/* Reset timestamp register to allow new timestamp */
15134		REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID :
15135		       NIG_REG_P0_TLLH_PTP_BUF_SEQID, 0x10000);
15136		ns = timecounter_cyc2time(&bp->timecounter, timestamp);
15137
15138		memset(&shhwtstamps, 0, sizeof(shhwtstamps));
15139		shhwtstamps.hwtstamp = ns_to_ktime(ns);
15140		skb_tstamp_tx(bp->ptp_tx_skb, &shhwtstamps);
15141
15142		DP(BNX2X_MSG_PTP, "Tx timestamp, timestamp cycles = %llu, ns = %llu\n",
15143		   timestamp, ns);
15144	} else {
15145		DP(BNX2X_MSG_PTP,
15146		   "Tx timestamp is not recorded (register read=%u)\n",
15147		   val_seq);
15148		bp->eth_stats.ptp_skip_tx_ts++;
15149	}
15150
15151	dev_kfree_skb_any(bp->ptp_tx_skb);
15152	bp->ptp_tx_skb = NULL;
15153}
15154
15155void bnx2x_set_rx_ts(struct bnx2x *bp, struct sk_buff *skb)
15156{
15157	int port = BP_PORT(bp);
15158	u64 timestamp, ns;
15159
15160	timestamp = REG_RD(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_TS_MSB :
15161			    NIG_REG_P0_LLH_PTP_HOST_BUF_TS_MSB);
15162	timestamp <<= 32;
15163	timestamp |= REG_RD(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_TS_LSB :
15164			    NIG_REG_P0_LLH_PTP_HOST_BUF_TS_LSB);
15165
15166	/* Reset timestamp register to allow new timestamp */
15167	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_SEQID :
15168	       NIG_REG_P0_LLH_PTP_HOST_BUF_SEQID, 0x10000);
15169
15170	ns = timecounter_cyc2time(&bp->timecounter, timestamp);
15171
15172	skb_hwtstamps(skb)->hwtstamp = ns_to_ktime(ns);
15173
15174	DP(BNX2X_MSG_PTP, "Rx timestamp, timestamp cycles = %llu, ns = %llu\n",
15175	   timestamp, ns);
15176}
15177
15178/* Read the PHC */
15179static u64 bnx2x_cyclecounter_read(const struct cyclecounter *cc)
15180{
15181	struct bnx2x *bp = container_of(cc, struct bnx2x, cyclecounter);
15182	int port = BP_PORT(bp);
15183	u32 wb_data[2];
15184	u64 phc_cycles;
15185
15186	REG_RD_DMAE(bp, port ? NIG_REG_TIMESYNC_GEN_REG + tsgen_synctime_t1 :
15187		    NIG_REG_TIMESYNC_GEN_REG + tsgen_synctime_t0, wb_data, 2);
15188	phc_cycles = wb_data[1];
15189	phc_cycles = (phc_cycles << 32) + wb_data[0];
15190
15191	DP(BNX2X_MSG_PTP, "PHC read cycles = %llu\n", phc_cycles);
15192
15193	return phc_cycles;
15194}
15195
15196static void bnx2x_init_cyclecounter(struct bnx2x *bp)
15197{
15198	memset(&bp->cyclecounter, 0, sizeof(bp->cyclecounter));
15199	bp->cyclecounter.read = bnx2x_cyclecounter_read;
15200	bp->cyclecounter.mask = CYCLECOUNTER_MASK(64);
15201	bp->cyclecounter.shift = 0;
15202	bp->cyclecounter.mult = 1;
15203}
15204
15205static int bnx2x_send_reset_timesync_ramrod(struct bnx2x *bp)
15206{
15207	struct bnx2x_func_state_params func_params = {NULL};
15208	struct bnx2x_func_set_timesync_params *set_timesync_params =
15209		&func_params.params.set_timesync;
15210
15211	/* Prepare parameters for function state transitions */
15212	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
15213	__set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
15214
15215	func_params.f_obj = &bp->func_obj;
15216	func_params.cmd = BNX2X_F_CMD_SET_TIMESYNC;
15217
15218	/* Function parameters */
15219	set_timesync_params->drift_adjust_cmd = TS_DRIFT_ADJUST_RESET;
15220	set_timesync_params->offset_cmd = TS_OFFSET_KEEP;
15221
15222	return bnx2x_func_state_change(bp, &func_params);
15223}
15224
15225static int bnx2x_enable_ptp_packets(struct bnx2x *bp)
15226{
15227	struct bnx2x_queue_state_params q_params;
15228	int rc, i;
15229
15230	/* send queue update ramrod to enable PTP packets */
15231	memset(&q_params, 0, sizeof(q_params));
15232	__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
15233	q_params.cmd = BNX2X_Q_CMD_UPDATE;
15234	__set_bit(BNX2X_Q_UPDATE_PTP_PKTS_CHNG,
15235		  &q_params.params.update.update_flags);
15236	__set_bit(BNX2X_Q_UPDATE_PTP_PKTS,
15237		  &q_params.params.update.update_flags);
15238
15239	/* send the ramrod on all the queues of the PF */
15240	for_each_eth_queue(bp, i) {
15241		struct bnx2x_fastpath *fp = &bp->fp[i];
15242
15243		/* Set the appropriate Queue object */
15244		q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
15245
15246		/* Update the Queue state */
15247		rc = bnx2x_queue_state_change(bp, &q_params);
15248		if (rc) {
15249			BNX2X_ERR("Failed to enable PTP packets\n");
15250			return rc;
15251		}
15252	}
15253
15254	return 0;
15255}
15256
15257#define BNX2X_P2P_DETECT_PARAM_MASK 0x5F5
15258#define BNX2X_P2P_DETECT_RULE_MASK 0x3DBB
15259#define BNX2X_PTP_TX_ON_PARAM_MASK (BNX2X_P2P_DETECT_PARAM_MASK & 0x6AA)
15260#define BNX2X_PTP_TX_ON_RULE_MASK (BNX2X_P2P_DETECT_RULE_MASK & 0x3EEE)
15261#define BNX2X_PTP_V1_L4_PARAM_MASK (BNX2X_P2P_DETECT_PARAM_MASK & 0x7EE)
15262#define BNX2X_PTP_V1_L4_RULE_MASK (BNX2X_P2P_DETECT_RULE_MASK & 0x3FFE)
15263#define BNX2X_PTP_V2_L4_PARAM_MASK (BNX2X_P2P_DETECT_PARAM_MASK & 0x7EA)
15264#define BNX2X_PTP_V2_L4_RULE_MASK (BNX2X_P2P_DETECT_RULE_MASK & 0x3FEE)
15265#define BNX2X_PTP_V2_L2_PARAM_MASK (BNX2X_P2P_DETECT_PARAM_MASK & 0x6BF)
15266#define BNX2X_PTP_V2_L2_RULE_MASK (BNX2X_P2P_DETECT_RULE_MASK & 0x3EFF)
15267#define BNX2X_PTP_V2_PARAM_MASK (BNX2X_P2P_DETECT_PARAM_MASK & 0x6AA)
15268#define BNX2X_PTP_V2_RULE_MASK (BNX2X_P2P_DETECT_RULE_MASK & 0x3EEE)
15269
15270int bnx2x_configure_ptp_filters(struct bnx2x *bp)
15271{
15272	int port = BP_PORT(bp);
15273	u32 param, rule;
15274	int rc;
15275
15276	if (!bp->hwtstamp_ioctl_called)
15277		return 0;
15278
15279	param = port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK :
15280		NIG_REG_P0_TLLH_PTP_PARAM_MASK;
15281	rule = port ? NIG_REG_P1_TLLH_PTP_RULE_MASK :
15282		NIG_REG_P0_TLLH_PTP_RULE_MASK;
15283	switch (bp->tx_type) {
15284	case HWTSTAMP_TX_ON:
15285		bp->flags |= TX_TIMESTAMPING_EN;
15286		REG_WR(bp, param, BNX2X_PTP_TX_ON_PARAM_MASK);
15287		REG_WR(bp, rule, BNX2X_PTP_TX_ON_RULE_MASK);
15288		break;
15289	case HWTSTAMP_TX_ONESTEP_SYNC:
15290	case HWTSTAMP_TX_ONESTEP_P2P:
15291		BNX2X_ERR("One-step timestamping is not supported\n");
15292		return -ERANGE;
15293	}
15294
15295	param = port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
15296		NIG_REG_P0_LLH_PTP_PARAM_MASK;
15297	rule = port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
15298		NIG_REG_P0_LLH_PTP_RULE_MASK;
15299	switch (bp->rx_filter) {
15300	case HWTSTAMP_FILTER_NONE:
15301		break;
15302	case HWTSTAMP_FILTER_ALL:
15303	case HWTSTAMP_FILTER_SOME:
15304	case HWTSTAMP_FILTER_NTP_ALL:
15305		bp->rx_filter = HWTSTAMP_FILTER_NONE;
15306		break;
15307	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
15308	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
15309	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
15310		bp->rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
15311		/* Initialize PTP detection for UDP/IPv4 events */
15312		REG_WR(bp, param, BNX2X_PTP_V1_L4_PARAM_MASK);
15313		REG_WR(bp, rule, BNX2X_PTP_V1_L4_RULE_MASK);
15314		break;
15315	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
15316	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
15317	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
15318		bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
15319		/* Initialize PTP detection for UDP/IPv4 or UDP/IPv6 events */
15320		REG_WR(bp, param, BNX2X_PTP_V2_L4_PARAM_MASK);
15321		REG_WR(bp, rule, BNX2X_PTP_V2_L4_RULE_MASK);
15322		break;
15323	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
15324	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
15325	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
15326		bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT;
15327		/* Initialize PTP detection L2 events */
15328		REG_WR(bp, param, BNX2X_PTP_V2_L2_PARAM_MASK);
15329		REG_WR(bp, rule, BNX2X_PTP_V2_L2_RULE_MASK);
15330
15331		break;
15332	case HWTSTAMP_FILTER_PTP_V2_EVENT:
15333	case HWTSTAMP_FILTER_PTP_V2_SYNC:
15334	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
15335		bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
15336		/* Initialize PTP detection L2, UDP/IPv4 or UDP/IPv6 events */
15337		REG_WR(bp, param, BNX2X_PTP_V2_PARAM_MASK);
15338		REG_WR(bp, rule, BNX2X_PTP_V2_RULE_MASK);
15339		break;
15340	}
15341
15342	/* Indicate to FW that this PF expects recorded PTP packets */
15343	rc = bnx2x_enable_ptp_packets(bp);
15344	if (rc)
15345		return rc;
15346
15347	/* Enable sending PTP packets to host */
15348	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST :
15349	       NIG_REG_P0_LLH_PTP_TO_HOST, 0x1);
15350
15351	return 0;
15352}
15353
15354static int bnx2x_hwtstamp_ioctl(struct bnx2x *bp, struct ifreq *ifr)
15355{
15356	struct hwtstamp_config config;
15357	int rc;
15358
15359	DP(BNX2X_MSG_PTP, "HWTSTAMP IOCTL called\n");
15360
15361	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
15362		return -EFAULT;
15363
15364	DP(BNX2X_MSG_PTP, "Requested tx_type: %d, requested rx_filters = %d\n",
15365	   config.tx_type, config.rx_filter);
15366
15367	bp->hwtstamp_ioctl_called = true;
15368	bp->tx_type = config.tx_type;
15369	bp->rx_filter = config.rx_filter;
15370
15371	rc = bnx2x_configure_ptp_filters(bp);
15372	if (rc)
15373		return rc;
15374
15375	config.rx_filter = bp->rx_filter;
15376
15377	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
15378		-EFAULT : 0;
15379}
15380
15381/* Configures HW for PTP */
15382static int bnx2x_configure_ptp(struct bnx2x *bp)
15383{
15384	int rc, port = BP_PORT(bp);
15385	u32 wb_data[2];
15386
15387	/* Reset PTP event detection rules - will be configured in the IOCTL */
15388	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
15389	       NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7FF);
15390	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
15391	       NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FFF);
15392	REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK :
15393	       NIG_REG_P0_TLLH_PTP_PARAM_MASK, 0x7FF);
15394	REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_RULE_MASK :
15395	       NIG_REG_P0_TLLH_PTP_RULE_MASK, 0x3FFF);
15396
15397	/* Disable PTP packets to host - will be configured in the IOCTL*/
15398	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST :
15399	       NIG_REG_P0_LLH_PTP_TO_HOST, 0x0);
15400
15401	/* Enable the PTP feature */
15402	REG_WR(bp, port ? NIG_REG_P1_PTP_EN :
15403	       NIG_REG_P0_PTP_EN, 0x3F);
15404
15405	/* Enable the free-running counter */
15406	wb_data[0] = 0;
15407	wb_data[1] = 0;
15408	REG_WR_DMAE(bp, NIG_REG_TIMESYNC_GEN_REG + tsgen_ctrl, wb_data, 2);
15409
15410	/* Reset drift register (offset register is not reset) */
15411	rc = bnx2x_send_reset_timesync_ramrod(bp);
15412	if (rc) {
15413		BNX2X_ERR("Failed to reset PHC drift register\n");
15414		return -EFAULT;
15415	}
15416
15417	/* Reset possibly old timestamps */
15418	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_SEQID :
15419	       NIG_REG_P0_LLH_PTP_HOST_BUF_SEQID, 0x10000);
15420	REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID :
15421	       NIG_REG_P0_TLLH_PTP_BUF_SEQID, 0x10000);
15422
15423	return 0;
15424}
15425
15426/* Called during load, to initialize PTP-related stuff */
15427void bnx2x_init_ptp(struct bnx2x *bp)
15428{
15429	int rc;
15430
15431	/* Configure PTP in HW */
15432	rc = bnx2x_configure_ptp(bp);
15433	if (rc) {
15434		BNX2X_ERR("Stopping PTP initialization\n");
15435		return;
15436	}
15437
15438	/* Init work queue for Tx timestamping */
15439	INIT_WORK(&bp->ptp_task, bnx2x_ptp_task);
15440
15441	/* Init cyclecounter and timecounter. This is done only in the first
15442	 * load. If done in every load, PTP application will fail when doing
15443	 * unload / load (e.g. MTU change) while it is running.
15444	 */
15445	if (!bp->timecounter_init_done) {
15446		bnx2x_init_cyclecounter(bp);
15447		timecounter_init(&bp->timecounter, &bp->cyclecounter,
15448				 ktime_to_ns(ktime_get_real()));
15449		bp->timecounter_init_done = true;
15450	}
15451
15452	DP(BNX2X_MSG_PTP, "PTP initialization ended successfully\n");
15453}
15454