1/* bnx2x_init_ops.h: Qlogic Everest network driver.
2 *               Static functions needed during the initialization.
3 *               This file is "included" in bnx2x_main.c.
4 *
5 * Copyright (c) 2007-2013 Broadcom Corporation
6 * Copyright (c) 2014 QLogic Corporation
7 All rights reserved
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation.
12 *
13 * Maintained by: Ariel Elior <ariel.elior@qlogic.com>
14 * Written by: Vladislav Zolotarov
15 */
16
17#ifndef BNX2X_INIT_OPS_H
18#define BNX2X_INIT_OPS_H
19
20
21#ifndef BP_ILT
22#define BP_ILT(bp)	NULL
23#endif
24
25#ifndef BP_FUNC
26#define BP_FUNC(bp)	0
27#endif
28
29#ifndef BP_PORT
30#define BP_PORT(bp)	0
31#endif
32
33#ifndef BNX2X_ILT_FREE
34#define BNX2X_ILT_FREE(x, y, sz)
35#endif
36
37#ifndef BNX2X_ILT_ZALLOC
38#define BNX2X_ILT_ZALLOC(x, y, sz)
39#endif
40
41#ifndef ILOG2
42#define ILOG2(x)	x
43#endif
44
45static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len);
46static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val);
47static void bnx2x_write_dmae_phys_len(struct bnx2x *bp,
48				      dma_addr_t phys_addr, u32 addr,
49				      u32 len);
50
51static void bnx2x_init_str_wr(struct bnx2x *bp, u32 addr,
52			      const u32 *data, u32 len)
53{
54	u32 i;
55
56	for (i = 0; i < len; i++)
57		REG_WR(bp, addr + i*4, data[i]);
58}
59
60static void bnx2x_init_ind_wr(struct bnx2x *bp, u32 addr,
61			      const u32 *data, u32 len)
62{
63	u32 i;
64
65	for (i = 0; i < len; i++)
66		bnx2x_reg_wr_ind(bp, addr + i*4, data[i]);
67}
68
69static void bnx2x_write_big_buf(struct bnx2x *bp, u32 addr, u32 len,
70				u8 wb)
71{
72	if (bp->dmae_ready)
73		bnx2x_write_dmae_phys_len(bp, GUNZIP_PHYS(bp), addr, len);
74
75	/* in E1 chips BIOS initiated ZLR may interrupt widebus writes */
76	else if (wb && CHIP_IS_E1(bp))
77		bnx2x_init_ind_wr(bp, addr, GUNZIP_BUF(bp), len);
78
79	/* in later chips PXP root complex handles BIOS ZLR w/o interrupting */
80	else
81		bnx2x_init_str_wr(bp, addr, GUNZIP_BUF(bp), len);
82}
83
84static void bnx2x_init_fill(struct bnx2x *bp, u32 addr, int fill,
85			    u32 len, u8 wb)
86{
87	u32 buf_len = (((len*4) > FW_BUF_SIZE) ? FW_BUF_SIZE : (len*4));
88	u32 buf_len32 = buf_len/4;
89	u32 i;
90
91	memset(GUNZIP_BUF(bp), (u8)fill, buf_len);
92
93	for (i = 0; i < len; i += buf_len32) {
94		u32 cur_len = min(buf_len32, len - i);
95
96		bnx2x_write_big_buf(bp, addr + i*4, cur_len, wb);
97	}
98}
99
100static void bnx2x_write_big_buf_wb(struct bnx2x *bp, u32 addr, u32 len)
101{
102	if (bp->dmae_ready)
103		bnx2x_write_dmae_phys_len(bp, GUNZIP_PHYS(bp), addr, len);
104
105	/* in E1 chips BIOS initiated ZLR may interrupt widebus writes */
106	else if (CHIP_IS_E1(bp))
107		bnx2x_init_ind_wr(bp, addr, GUNZIP_BUF(bp), len);
108
109	/* in later chips PXP root complex handles BIOS ZLR w/o interrupting */
110	else
111		bnx2x_init_str_wr(bp, addr, GUNZIP_BUF(bp), len);
112}
113
114static void bnx2x_init_wr_64(struct bnx2x *bp, u32 addr,
115			     const u32 *data, u32 len64)
116{
117	u32 buf_len32 = FW_BUF_SIZE/4;
118	u32 len = len64*2;
119	u64 data64 = 0;
120	u32 i;
121
122	/* 64 bit value is in a blob: first low DWORD, then high DWORD */
123	data64 = HILO_U64((*(data + 1)), (*data));
124
125	len64 = min((u32)(FW_BUF_SIZE/8), len64);
126	for (i = 0; i < len64; i++) {
127		u64 *pdata = ((u64 *)(GUNZIP_BUF(bp))) + i;
128
129		*pdata = data64;
130	}
131
132	for (i = 0; i < len; i += buf_len32) {
133		u32 cur_len = min(buf_len32, len - i);
134
135		bnx2x_write_big_buf_wb(bp, addr + i*4, cur_len);
136	}
137}
138
139/*********************************************************
140   There are different blobs for each PRAM section.
141   In addition, each blob write operation is divided into a few operations
142   in order to decrease the amount of phys. contiguous buffer needed.
143   Thus, when we select a blob the address may be with some offset
144   from the beginning of PRAM section.
145   The same holds for the INT_TABLE sections.
146**********************************************************/
147#define IF_IS_INT_TABLE_ADDR(base, addr) \
148			if (((base) <= (addr)) && ((base) + 0x400 >= (addr)))
149
150#define IF_IS_PRAM_ADDR(base, addr) \
151			if (((base) <= (addr)) && ((base) + 0x40000 >= (addr)))
152
153static const u8 *bnx2x_sel_blob(struct bnx2x *bp, u32 addr,
154				const u8 *data)
155{
156	IF_IS_INT_TABLE_ADDR(TSEM_REG_INT_TABLE, addr)
157		data = INIT_TSEM_INT_TABLE_DATA(bp);
158	else
159		IF_IS_INT_TABLE_ADDR(CSEM_REG_INT_TABLE, addr)
160			data = INIT_CSEM_INT_TABLE_DATA(bp);
161	else
162		IF_IS_INT_TABLE_ADDR(USEM_REG_INT_TABLE, addr)
163			data = INIT_USEM_INT_TABLE_DATA(bp);
164	else
165		IF_IS_INT_TABLE_ADDR(XSEM_REG_INT_TABLE, addr)
166			data = INIT_XSEM_INT_TABLE_DATA(bp);
167	else
168		IF_IS_PRAM_ADDR(TSEM_REG_PRAM, addr)
169			data = INIT_TSEM_PRAM_DATA(bp);
170	else
171		IF_IS_PRAM_ADDR(CSEM_REG_PRAM, addr)
172			data = INIT_CSEM_PRAM_DATA(bp);
173	else
174		IF_IS_PRAM_ADDR(USEM_REG_PRAM, addr)
175			data = INIT_USEM_PRAM_DATA(bp);
176	else
177		IF_IS_PRAM_ADDR(XSEM_REG_PRAM, addr)
178			data = INIT_XSEM_PRAM_DATA(bp);
179
180	return data;
181}
182
183static void bnx2x_init_wr_wb(struct bnx2x *bp, u32 addr,
184			     const u32 *data, u32 len)
185{
186	if (bp->dmae_ready)
187		VIRT_WR_DMAE_LEN(bp, data, addr, len, 0);
188
189	/* in E1 chips BIOS initiated ZLR may interrupt widebus writes */
190	else if (CHIP_IS_E1(bp))
191		bnx2x_init_ind_wr(bp, addr, data, len);
192
193	/* in later chips PXP root complex handles BIOS ZLR w/o interrupting */
194	else
195		bnx2x_init_str_wr(bp, addr, data, len);
196}
197
198static void bnx2x_wr_64(struct bnx2x *bp, u32 reg, u32 val_lo,
199			u32 val_hi)
200{
201	u32 wb_write[2];
202
203	wb_write[0] = val_lo;
204	wb_write[1] = val_hi;
205	REG_WR_DMAE_LEN(bp, reg, wb_write, 2);
206}
207static void bnx2x_init_wr_zp(struct bnx2x *bp, u32 addr, u32 len,
208			     u32 blob_off)
209{
210	const u8 *data = NULL;
211	int rc;
212	u32 i;
213
214	data = bnx2x_sel_blob(bp, addr, data) + blob_off*4;
215
216	rc = bnx2x_gunzip(bp, data, len);
217	if (rc)
218		return;
219
220	/* gunzip_outlen is in dwords */
221	len = GUNZIP_OUTLEN(bp);
222	for (i = 0; i < len; i++)
223		((u32 *)GUNZIP_BUF(bp))[i] = (__force u32)
224				cpu_to_le32(((u32 *)GUNZIP_BUF(bp))[i]);
225
226	bnx2x_write_big_buf_wb(bp, addr, len);
227}
228
229static void bnx2x_init_block(struct bnx2x *bp, u32 block, u32 stage)
230{
231	u16 op_start =
232		INIT_OPS_OFFSETS(bp)[BLOCK_OPS_IDX(block, stage,
233						     STAGE_START)];
234	u16 op_end =
235		INIT_OPS_OFFSETS(bp)[BLOCK_OPS_IDX(block, stage,
236						     STAGE_END)];
237	const union init_op *op;
238	u32 op_idx, op_type, addr, len;
239	const u32 *data, *data_base;
240
241	/* If empty block */
242	if (op_start == op_end)
243		return;
244
245	data_base = INIT_DATA(bp);
246
247	for (op_idx = op_start; op_idx < op_end; op_idx++) {
248
249		op = (const union init_op *)&(INIT_OPS(bp)[op_idx]);
250		/* Get generic data */
251		op_type = op->raw.op;
252		addr = op->raw.offset;
253		/* Get data that's used for OP_SW, OP_WB, OP_FW, OP_ZP and
254		 * OP_WR64 (we assume that op_arr_write and op_write have the
255		 * same structure).
256		 */
257		len = op->arr_wr.data_len;
258		data = data_base + op->arr_wr.data_off;
259
260		switch (op_type) {
261		case OP_RD:
262			REG_RD(bp, addr);
263			break;
264		case OP_WR:
265			REG_WR(bp, addr, op->write.val);
266			break;
267		case OP_SW:
268			bnx2x_init_str_wr(bp, addr, data, len);
269			break;
270		case OP_WB:
271			bnx2x_init_wr_wb(bp, addr, data, len);
272			break;
273		case OP_ZR:
274			bnx2x_init_fill(bp, addr, 0, op->zero.len, 0);
275			break;
276		case OP_WB_ZR:
277			bnx2x_init_fill(bp, addr, 0, op->zero.len, 1);
278			break;
279		case OP_ZP:
280			bnx2x_init_wr_zp(bp, addr, len,
281					 op->arr_wr.data_off);
282			break;
283		case OP_WR_64:
284			bnx2x_init_wr_64(bp, addr, data, len);
285			break;
286		case OP_IF_MODE_AND:
287			/* if any of the flags doesn't match, skip the
288			 * conditional block.
289			 */
290			if ((INIT_MODE_FLAGS(bp) &
291				op->if_mode.mode_bit_map) !=
292				op->if_mode.mode_bit_map)
293				op_idx += op->if_mode.cmd_offset;
294			break;
295		case OP_IF_MODE_OR:
296			/* if all the flags don't match, skip the conditional
297			 * block.
298			 */
299			if ((INIT_MODE_FLAGS(bp) &
300				op->if_mode.mode_bit_map) == 0)
301				op_idx += op->if_mode.cmd_offset;
302			break;
303		default:
304			/* Should never get here! */
305
306			break;
307		}
308	}
309}
310
311
312/****************************************************************************
313* PXP Arbiter
314****************************************************************************/
315/*
316 * This code configures the PCI read/write arbiter
317 * which implements a weighted round robin
318 * between the virtual queues in the chip.
319 *
320 * The values were derived for each PCI max payload and max request size.
321 * since max payload and max request size are only known at run time,
322 * this is done as a separate init stage.
323 */
324
325#define NUM_WR_Q			13
326#define NUM_RD_Q			29
327#define MAX_RD_ORD			3
328#define MAX_WR_ORD			2
329
330/* configuration for one arbiter queue */
331struct arb_line {
332	int l;
333	int add;
334	int ubound;
335};
336
337/* derived configuration for each read queue for each max request size */
338static const struct arb_line read_arb_data[NUM_RD_Q][MAX_RD_ORD + 1] = {
339/* 1 */	{ {8, 64, 25}, {16, 64, 25}, {32, 64, 25}, {64, 64, 41} },
340	{ {4, 8,  4},  {4,  8,  4},  {4,  8,  4},  {4,  8,  4}  },
341	{ {4, 3,  3},  {4,  3,  3},  {4,  3,  3},  {4,  3,  3}  },
342	{ {8, 3,  6},  {16, 3,  11}, {16, 3,  11}, {16, 3,  11} },
343	{ {8, 64, 25}, {16, 64, 25}, {32, 64, 25}, {64, 64, 41} },
344	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {64, 3,  41} },
345	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {64, 3,  41} },
346	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {64, 3,  41} },
347	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {64, 3,  41} },
348/* 10 */{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
349	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
350	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
351	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
352	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
353	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
354	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
355	{ {8, 64, 6},  {16, 64, 11}, {32, 64, 21}, {32, 64, 21} },
356	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
357	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
358/* 20 */{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
359	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
360	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
361	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
362	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
363	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
364	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
365	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
366	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
367	{ {8, 64, 25}, {16, 64, 41}, {32, 64, 81}, {64, 64, 120} }
368};
369
370/* derived configuration for each write queue for each max request size */
371static const struct arb_line write_arb_data[NUM_WR_Q][MAX_WR_ORD + 1] = {
372/* 1 */	{ {4, 6,  3},  {4,  6,  3},  {4,  6,  3} },
373	{ {4, 2,  3},  {4,  2,  3},  {4,  2,  3} },
374	{ {8, 2,  6},  {16, 2,  11}, {16, 2,  11} },
375	{ {8, 2,  6},  {16, 2,  11}, {32, 2,  21} },
376	{ {8, 2,  6},  {16, 2,  11}, {32, 2,  21} },
377	{ {8, 2,  6},  {16, 2,  11}, {32, 2,  21} },
378	{ {8, 64, 25}, {16, 64, 25}, {32, 64, 25} },
379	{ {8, 2,  6},  {16, 2,  11}, {16, 2,  11} },
380	{ {8, 2,  6},  {16, 2,  11}, {16, 2,  11} },
381/* 10 */{ {8, 9,  6},  {16, 9,  11}, {32, 9,  21} },
382	{ {8, 47, 19}, {16, 47, 19}, {32, 47, 21} },
383	{ {8, 9,  6},  {16, 9,  11}, {16, 9,  11} },
384	{ {8, 64, 25}, {16, 64, 41}, {32, 64, 81} }
385};
386
387/* register addresses for read queues */
388static const struct arb_line read_arb_addr[NUM_RD_Q-1] = {
389/* 1 */	{PXP2_REG_RQ_BW_RD_L0, PXP2_REG_RQ_BW_RD_ADD0,
390		PXP2_REG_RQ_BW_RD_UBOUND0},
391	{PXP2_REG_PSWRQ_BW_L1, PXP2_REG_PSWRQ_BW_ADD1,
392		PXP2_REG_PSWRQ_BW_UB1},
393	{PXP2_REG_PSWRQ_BW_L2, PXP2_REG_PSWRQ_BW_ADD2,
394		PXP2_REG_PSWRQ_BW_UB2},
395	{PXP2_REG_PSWRQ_BW_L3, PXP2_REG_PSWRQ_BW_ADD3,
396		PXP2_REG_PSWRQ_BW_UB3},
397	{PXP2_REG_RQ_BW_RD_L4, PXP2_REG_RQ_BW_RD_ADD4,
398		PXP2_REG_RQ_BW_RD_UBOUND4},
399	{PXP2_REG_RQ_BW_RD_L5, PXP2_REG_RQ_BW_RD_ADD5,
400		PXP2_REG_RQ_BW_RD_UBOUND5},
401	{PXP2_REG_PSWRQ_BW_L6, PXP2_REG_PSWRQ_BW_ADD6,
402		PXP2_REG_PSWRQ_BW_UB6},
403	{PXP2_REG_PSWRQ_BW_L7, PXP2_REG_PSWRQ_BW_ADD7,
404		PXP2_REG_PSWRQ_BW_UB7},
405	{PXP2_REG_PSWRQ_BW_L8, PXP2_REG_PSWRQ_BW_ADD8,
406		PXP2_REG_PSWRQ_BW_UB8},
407/* 10 */{PXP2_REG_PSWRQ_BW_L9, PXP2_REG_PSWRQ_BW_ADD9,
408		PXP2_REG_PSWRQ_BW_UB9},
409	{PXP2_REG_PSWRQ_BW_L10, PXP2_REG_PSWRQ_BW_ADD10,
410		PXP2_REG_PSWRQ_BW_UB10},
411	{PXP2_REG_PSWRQ_BW_L11, PXP2_REG_PSWRQ_BW_ADD11,
412		PXP2_REG_PSWRQ_BW_UB11},
413	{PXP2_REG_RQ_BW_RD_L12, PXP2_REG_RQ_BW_RD_ADD12,
414		PXP2_REG_RQ_BW_RD_UBOUND12},
415	{PXP2_REG_RQ_BW_RD_L13, PXP2_REG_RQ_BW_RD_ADD13,
416		PXP2_REG_RQ_BW_RD_UBOUND13},
417	{PXP2_REG_RQ_BW_RD_L14, PXP2_REG_RQ_BW_RD_ADD14,
418		PXP2_REG_RQ_BW_RD_UBOUND14},
419	{PXP2_REG_RQ_BW_RD_L15, PXP2_REG_RQ_BW_RD_ADD15,
420		PXP2_REG_RQ_BW_RD_UBOUND15},
421	{PXP2_REG_RQ_BW_RD_L16, PXP2_REG_RQ_BW_RD_ADD16,
422		PXP2_REG_RQ_BW_RD_UBOUND16},
423	{PXP2_REG_RQ_BW_RD_L17, PXP2_REG_RQ_BW_RD_ADD17,
424		PXP2_REG_RQ_BW_RD_UBOUND17},
425	{PXP2_REG_RQ_BW_RD_L18, PXP2_REG_RQ_BW_RD_ADD18,
426		PXP2_REG_RQ_BW_RD_UBOUND18},
427/* 20 */{PXP2_REG_RQ_BW_RD_L19, PXP2_REG_RQ_BW_RD_ADD19,
428		PXP2_REG_RQ_BW_RD_UBOUND19},
429	{PXP2_REG_RQ_BW_RD_L20, PXP2_REG_RQ_BW_RD_ADD20,
430		PXP2_REG_RQ_BW_RD_UBOUND20},
431	{PXP2_REG_RQ_BW_RD_L22, PXP2_REG_RQ_BW_RD_ADD22,
432		PXP2_REG_RQ_BW_RD_UBOUND22},
433	{PXP2_REG_RQ_BW_RD_L23, PXP2_REG_RQ_BW_RD_ADD23,
434		PXP2_REG_RQ_BW_RD_UBOUND23},
435	{PXP2_REG_RQ_BW_RD_L24, PXP2_REG_RQ_BW_RD_ADD24,
436		PXP2_REG_RQ_BW_RD_UBOUND24},
437	{PXP2_REG_RQ_BW_RD_L25, PXP2_REG_RQ_BW_RD_ADD25,
438		PXP2_REG_RQ_BW_RD_UBOUND25},
439	{PXP2_REG_RQ_BW_RD_L26, PXP2_REG_RQ_BW_RD_ADD26,
440		PXP2_REG_RQ_BW_RD_UBOUND26},
441	{PXP2_REG_RQ_BW_RD_L27, PXP2_REG_RQ_BW_RD_ADD27,
442		PXP2_REG_RQ_BW_RD_UBOUND27},
443	{PXP2_REG_PSWRQ_BW_L28, PXP2_REG_PSWRQ_BW_ADD28,
444		PXP2_REG_PSWRQ_BW_UB28}
445};
446
447/* register addresses for write queues */
448static const struct arb_line write_arb_addr[NUM_WR_Q-1] = {
449/* 1 */	{PXP2_REG_PSWRQ_BW_L1, PXP2_REG_PSWRQ_BW_ADD1,
450		PXP2_REG_PSWRQ_BW_UB1},
451	{PXP2_REG_PSWRQ_BW_L2, PXP2_REG_PSWRQ_BW_ADD2,
452		PXP2_REG_PSWRQ_BW_UB2},
453	{PXP2_REG_PSWRQ_BW_L3, PXP2_REG_PSWRQ_BW_ADD3,
454		PXP2_REG_PSWRQ_BW_UB3},
455	{PXP2_REG_PSWRQ_BW_L6, PXP2_REG_PSWRQ_BW_ADD6,
456		PXP2_REG_PSWRQ_BW_UB6},
457	{PXP2_REG_PSWRQ_BW_L7, PXP2_REG_PSWRQ_BW_ADD7,
458		PXP2_REG_PSWRQ_BW_UB7},
459	{PXP2_REG_PSWRQ_BW_L8, PXP2_REG_PSWRQ_BW_ADD8,
460		PXP2_REG_PSWRQ_BW_UB8},
461	{PXP2_REG_PSWRQ_BW_L9, PXP2_REG_PSWRQ_BW_ADD9,
462		PXP2_REG_PSWRQ_BW_UB9},
463	{PXP2_REG_PSWRQ_BW_L10, PXP2_REG_PSWRQ_BW_ADD10,
464		PXP2_REG_PSWRQ_BW_UB10},
465	{PXP2_REG_PSWRQ_BW_L11, PXP2_REG_PSWRQ_BW_ADD11,
466		PXP2_REG_PSWRQ_BW_UB11},
467/* 10 */{PXP2_REG_PSWRQ_BW_L28, PXP2_REG_PSWRQ_BW_ADD28,
468		PXP2_REG_PSWRQ_BW_UB28},
469	{PXP2_REG_RQ_BW_WR_L29, PXP2_REG_RQ_BW_WR_ADD29,
470		PXP2_REG_RQ_BW_WR_UBOUND29},
471	{PXP2_REG_RQ_BW_WR_L30, PXP2_REG_RQ_BW_WR_ADD30,
472		PXP2_REG_RQ_BW_WR_UBOUND30}
473};
474
475static void bnx2x_init_pxp_arb(struct bnx2x *bp, int r_order,
476			       int w_order)
477{
478	u32 val, i;
479
480	if (r_order > MAX_RD_ORD) {
481		DP(NETIF_MSG_HW, "read order of %d  order adjusted to %d\n",
482		   r_order, MAX_RD_ORD);
483		r_order = MAX_RD_ORD;
484	}
485	if (w_order > MAX_WR_ORD) {
486		DP(NETIF_MSG_HW, "write order of %d  order adjusted to %d\n",
487		   w_order, MAX_WR_ORD);
488		w_order = MAX_WR_ORD;
489	}
490	if (CHIP_REV_IS_FPGA(bp)) {
491		DP(NETIF_MSG_HW, "write order adjusted to 1 for FPGA\n");
492		w_order = 0;
493	}
494	DP(NETIF_MSG_HW, "read order %d  write order %d\n", r_order, w_order);
495
496	for (i = 0; i < NUM_RD_Q-1; i++) {
497		REG_WR(bp, read_arb_addr[i].l, read_arb_data[i][r_order].l);
498		REG_WR(bp, read_arb_addr[i].add,
499		       read_arb_data[i][r_order].add);
500		REG_WR(bp, read_arb_addr[i].ubound,
501		       read_arb_data[i][r_order].ubound);
502	}
503
504	for (i = 0; i < NUM_WR_Q-1; i++) {
505		if ((write_arb_addr[i].l == PXP2_REG_RQ_BW_WR_L29) ||
506		    (write_arb_addr[i].l == PXP2_REG_RQ_BW_WR_L30)) {
507
508			REG_WR(bp, write_arb_addr[i].l,
509			       write_arb_data[i][w_order].l);
510
511			REG_WR(bp, write_arb_addr[i].add,
512			       write_arb_data[i][w_order].add);
513
514			REG_WR(bp, write_arb_addr[i].ubound,
515			       write_arb_data[i][w_order].ubound);
516		} else {
517
518			val = REG_RD(bp, write_arb_addr[i].l);
519			REG_WR(bp, write_arb_addr[i].l,
520			       val | (write_arb_data[i][w_order].l << 10));
521
522			val = REG_RD(bp, write_arb_addr[i].add);
523			REG_WR(bp, write_arb_addr[i].add,
524			       val | (write_arb_data[i][w_order].add << 10));
525
526			val = REG_RD(bp, write_arb_addr[i].ubound);
527			REG_WR(bp, write_arb_addr[i].ubound,
528			       val | (write_arb_data[i][w_order].ubound << 7));
529		}
530	}
531
532	val =  write_arb_data[NUM_WR_Q-1][w_order].add;
533	val += write_arb_data[NUM_WR_Q-1][w_order].ubound << 10;
534	val += write_arb_data[NUM_WR_Q-1][w_order].l << 17;
535	REG_WR(bp, PXP2_REG_PSWRQ_BW_RD, val);
536
537	val =  read_arb_data[NUM_RD_Q-1][r_order].add;
538	val += read_arb_data[NUM_RD_Q-1][r_order].ubound << 10;
539	val += read_arb_data[NUM_RD_Q-1][r_order].l << 17;
540	REG_WR(bp, PXP2_REG_PSWRQ_BW_WR, val);
541
542	REG_WR(bp, PXP2_REG_RQ_WR_MBS0, w_order);
543	REG_WR(bp, PXP2_REG_RQ_WR_MBS1, w_order);
544	REG_WR(bp, PXP2_REG_RQ_RD_MBS0, r_order);
545	REG_WR(bp, PXP2_REG_RQ_RD_MBS1, r_order);
546
547	if ((CHIP_IS_E1(bp) || CHIP_IS_E1H(bp)) && (r_order == MAX_RD_ORD))
548		REG_WR(bp, PXP2_REG_RQ_PDR_LIMIT, 0xe00);
549
550	if (CHIP_IS_E3(bp))
551		REG_WR(bp, PXP2_REG_WR_USDMDP_TH, (0x4 << w_order));
552	else if (CHIP_IS_E2(bp))
553		REG_WR(bp, PXP2_REG_WR_USDMDP_TH, (0x8 << w_order));
554	else
555		REG_WR(bp, PXP2_REG_WR_USDMDP_TH, (0x18 << w_order));
556
557	if (!CHIP_IS_E1(bp)) {
558		/*    MPS      w_order     optimal TH      presently TH
559		 *    128         0             0               2
560		 *    256         1             1               3
561		 *    >=512       2             2               3
562		 */
563		/* DMAE is special */
564		if (!CHIP_IS_E1H(bp)) {
565			/* E2 can use optimal TH */
566			val = w_order;
567			REG_WR(bp, PXP2_REG_WR_DMAE_MPS, val);
568		} else {
569			val = ((w_order == 0) ? 2 : 3);
570			REG_WR(bp, PXP2_REG_WR_DMAE_MPS, 2);
571		}
572
573		REG_WR(bp, PXP2_REG_WR_HC_MPS, val);
574		REG_WR(bp, PXP2_REG_WR_USDM_MPS, val);
575		REG_WR(bp, PXP2_REG_WR_CSDM_MPS, val);
576		REG_WR(bp, PXP2_REG_WR_TSDM_MPS, val);
577		REG_WR(bp, PXP2_REG_WR_XSDM_MPS, val);
578		REG_WR(bp, PXP2_REG_WR_QM_MPS, val);
579		REG_WR(bp, PXP2_REG_WR_TM_MPS, val);
580		REG_WR(bp, PXP2_REG_WR_SRC_MPS, val);
581		REG_WR(bp, PXP2_REG_WR_DBG_MPS, val);
582		REG_WR(bp, PXP2_REG_WR_CDU_MPS, val);
583	}
584
585	/* Validate number of tags suppoted by device */
586#define PCIE_REG_PCIER_TL_HDR_FC_ST		0x2980
587	val = REG_RD(bp, PCIE_REG_PCIER_TL_HDR_FC_ST);
588	val &= 0xFF;
589	if (val <= 0x20)
590		REG_WR(bp, PXP2_REG_PGL_TAGS_LIMIT, 0x20);
591}
592
593/****************************************************************************
594* ILT management
595****************************************************************************/
596/*
597 * This codes hides the low level HW interaction for ILT management and
598 * configuration. The API consists of a shadow ILT table which is set by the
599 * driver and a set of routines to use it to configure the HW.
600 *
601 */
602
603/* ILT HW init operations */
604
605/* ILT memory management operations */
606#define ILT_MEMOP_ALLOC		0
607#define ILT_MEMOP_FREE		1
608
609/* the phys address is shifted right 12 bits and has an added
610 * 1=valid bit added to the 53rd bit
611 * then since this is a wide register(TM)
612 * we split it into two 32 bit writes
613 */
614#define ILT_ADDR1(x)		((u32)(((u64)x >> 12) & 0xFFFFFFFF))
615#define ILT_ADDR2(x)		((u32)((1 << 20) | ((u64)x >> 44)))
616#define ILT_RANGE(f, l)		(((l) << 10) | f)
617
618static int bnx2x_ilt_line_mem_op(struct bnx2x *bp,
619				 struct ilt_line *line, u32 size, u8 memop)
620{
621	if (memop == ILT_MEMOP_FREE) {
622		BNX2X_ILT_FREE(line->page, line->page_mapping, line->size);
623		return 0;
624	}
625	BNX2X_ILT_ZALLOC(line->page, &line->page_mapping, size);
626	if (!line->page)
627		return -1;
628	line->size = size;
629	return 0;
630}
631
632
633static int bnx2x_ilt_client_mem_op(struct bnx2x *bp, int cli_num,
634				   u8 memop)
635{
636	int i, rc;
637	struct bnx2x_ilt *ilt = BP_ILT(bp);
638	struct ilt_client_info *ilt_cli;
639
640	if (!ilt || !ilt->lines)
641		return -1;
642
643	ilt_cli = &ilt->clients[cli_num];
644
645	if (ilt_cli->flags & (ILT_CLIENT_SKIP_INIT | ILT_CLIENT_SKIP_MEM))
646		return 0;
647
648	for (rc = 0, i = ilt_cli->start; i <= ilt_cli->end && !rc; i++) {
649		rc = bnx2x_ilt_line_mem_op(bp, &ilt->lines[i],
650					   ilt_cli->page_size, memop);
651	}
652	return rc;
653}
654
655static int bnx2x_ilt_mem_op_cnic(struct bnx2x *bp, u8 memop)
656{
657	int rc = 0;
658
659	if (CONFIGURE_NIC_MODE(bp))
660		rc = bnx2x_ilt_client_mem_op(bp, ILT_CLIENT_SRC, memop);
661	if (!rc)
662		rc = bnx2x_ilt_client_mem_op(bp, ILT_CLIENT_TM, memop);
663
664	return rc;
665}
666
667static int bnx2x_ilt_mem_op(struct bnx2x *bp, u8 memop)
668{
669	int rc = bnx2x_ilt_client_mem_op(bp, ILT_CLIENT_CDU, memop);
670	if (!rc)
671		rc = bnx2x_ilt_client_mem_op(bp, ILT_CLIENT_QM, memop);
672	if (!rc && CNIC_SUPPORT(bp) && !CONFIGURE_NIC_MODE(bp))
673		rc = bnx2x_ilt_client_mem_op(bp, ILT_CLIENT_SRC, memop);
674
675	return rc;
676}
677
678static void bnx2x_ilt_line_wr(struct bnx2x *bp, int abs_idx,
679			      dma_addr_t page_mapping)
680{
681	u32 reg;
682
683	if (CHIP_IS_E1(bp))
684		reg = PXP2_REG_RQ_ONCHIP_AT + abs_idx*8;
685	else
686		reg = PXP2_REG_RQ_ONCHIP_AT_B0 + abs_idx*8;
687
688	bnx2x_wr_64(bp, reg, ILT_ADDR1(page_mapping), ILT_ADDR2(page_mapping));
689}
690
691static void bnx2x_ilt_line_init_op(struct bnx2x *bp,
692				   struct bnx2x_ilt *ilt, int idx, u8 initop)
693{
694	dma_addr_t	null_mapping;
695	int abs_idx = ilt->start_line + idx;
696
697
698	switch (initop) {
699	case INITOP_INIT:
700		/* set in the init-value array */
701	case INITOP_SET:
702		bnx2x_ilt_line_wr(bp, abs_idx, ilt->lines[idx].page_mapping);
703		break;
704	case INITOP_CLEAR:
705		null_mapping = 0;
706		bnx2x_ilt_line_wr(bp, abs_idx, null_mapping);
707		break;
708	}
709}
710
711static void bnx2x_ilt_boundry_init_op(struct bnx2x *bp,
712				      struct ilt_client_info *ilt_cli,
713				      u32 ilt_start, u8 initop)
714{
715	u32 start_reg = 0;
716	u32 end_reg = 0;
717
718	/* The boundary is either SET or INIT,
719	   CLEAR => SET and for now SET ~~ INIT */
720
721	/* find the appropriate regs */
722	if (CHIP_IS_E1(bp)) {
723		switch (ilt_cli->client_num) {
724		case ILT_CLIENT_CDU:
725			start_reg = PXP2_REG_PSWRQ_CDU0_L2P;
726			break;
727		case ILT_CLIENT_QM:
728			start_reg = PXP2_REG_PSWRQ_QM0_L2P;
729			break;
730		case ILT_CLIENT_SRC:
731			start_reg = PXP2_REG_PSWRQ_SRC0_L2P;
732			break;
733		case ILT_CLIENT_TM:
734			start_reg = PXP2_REG_PSWRQ_TM0_L2P;
735			break;
736		}
737		REG_WR(bp, start_reg + BP_FUNC(bp)*4,
738		       ILT_RANGE((ilt_start + ilt_cli->start),
739				 (ilt_start + ilt_cli->end)));
740	} else {
741		switch (ilt_cli->client_num) {
742		case ILT_CLIENT_CDU:
743			start_reg = PXP2_REG_RQ_CDU_FIRST_ILT;
744			end_reg = PXP2_REG_RQ_CDU_LAST_ILT;
745			break;
746		case ILT_CLIENT_QM:
747			start_reg = PXP2_REG_RQ_QM_FIRST_ILT;
748			end_reg = PXP2_REG_RQ_QM_LAST_ILT;
749			break;
750		case ILT_CLIENT_SRC:
751			start_reg = PXP2_REG_RQ_SRC_FIRST_ILT;
752			end_reg = PXP2_REG_RQ_SRC_LAST_ILT;
753			break;
754		case ILT_CLIENT_TM:
755			start_reg = PXP2_REG_RQ_TM_FIRST_ILT;
756			end_reg = PXP2_REG_RQ_TM_LAST_ILT;
757			break;
758		}
759		REG_WR(bp, start_reg, (ilt_start + ilt_cli->start));
760		REG_WR(bp, end_reg, (ilt_start + ilt_cli->end));
761	}
762}
763
764static void bnx2x_ilt_client_init_op_ilt(struct bnx2x *bp,
765					 struct bnx2x_ilt *ilt,
766					 struct ilt_client_info *ilt_cli,
767					 u8 initop)
768{
769	int i;
770
771	if (ilt_cli->flags & ILT_CLIENT_SKIP_INIT)
772		return;
773
774	for (i = ilt_cli->start; i <= ilt_cli->end; i++)
775		bnx2x_ilt_line_init_op(bp, ilt, i, initop);
776
777	/* init/clear the ILT boundries */
778	bnx2x_ilt_boundry_init_op(bp, ilt_cli, ilt->start_line, initop);
779}
780
781static void bnx2x_ilt_client_init_op(struct bnx2x *bp,
782				     struct ilt_client_info *ilt_cli, u8 initop)
783{
784	struct bnx2x_ilt *ilt = BP_ILT(bp);
785
786	bnx2x_ilt_client_init_op_ilt(bp, ilt, ilt_cli, initop);
787}
788
789static void bnx2x_ilt_client_id_init_op(struct bnx2x *bp,
790					int cli_num, u8 initop)
791{
792	struct bnx2x_ilt *ilt = BP_ILT(bp);
793	struct ilt_client_info *ilt_cli = &ilt->clients[cli_num];
794
795	bnx2x_ilt_client_init_op(bp, ilt_cli, initop);
796}
797
798static void bnx2x_ilt_init_op_cnic(struct bnx2x *bp, u8 initop)
799{
800	if (CONFIGURE_NIC_MODE(bp))
801		bnx2x_ilt_client_id_init_op(bp, ILT_CLIENT_SRC, initop);
802	bnx2x_ilt_client_id_init_op(bp, ILT_CLIENT_TM, initop);
803}
804
805static void bnx2x_ilt_init_op(struct bnx2x *bp, u8 initop)
806{
807	bnx2x_ilt_client_id_init_op(bp, ILT_CLIENT_CDU, initop);
808	bnx2x_ilt_client_id_init_op(bp, ILT_CLIENT_QM, initop);
809	if (CNIC_SUPPORT(bp) && !CONFIGURE_NIC_MODE(bp))
810		bnx2x_ilt_client_id_init_op(bp, ILT_CLIENT_SRC, initop);
811}
812
813static void bnx2x_ilt_init_client_psz(struct bnx2x *bp, int cli_num,
814				      u32 psz_reg, u8 initop)
815{
816	struct bnx2x_ilt *ilt = BP_ILT(bp);
817	struct ilt_client_info *ilt_cli = &ilt->clients[cli_num];
818
819	if (ilt_cli->flags & ILT_CLIENT_SKIP_INIT)
820		return;
821
822	switch (initop) {
823	case INITOP_INIT:
824		/* set in the init-value array */
825	case INITOP_SET:
826		REG_WR(bp, psz_reg, ILOG2(ilt_cli->page_size >> 12));
827		break;
828	case INITOP_CLEAR:
829		break;
830	}
831}
832
833/*
834 * called during init common stage, ilt clients should be initialized
835 * prioir to calling this function
836 */
837static void bnx2x_ilt_init_page_size(struct bnx2x *bp, u8 initop)
838{
839	bnx2x_ilt_init_client_psz(bp, ILT_CLIENT_CDU,
840				  PXP2_REG_RQ_CDU_P_SIZE, initop);
841	bnx2x_ilt_init_client_psz(bp, ILT_CLIENT_QM,
842				  PXP2_REG_RQ_QM_P_SIZE, initop);
843	bnx2x_ilt_init_client_psz(bp, ILT_CLIENT_SRC,
844				  PXP2_REG_RQ_SRC_P_SIZE, initop);
845	bnx2x_ilt_init_client_psz(bp, ILT_CLIENT_TM,
846				  PXP2_REG_RQ_TM_P_SIZE, initop);
847}
848
849/****************************************************************************
850* QM initializations
851****************************************************************************/
852#define QM_QUEUES_PER_FUNC	16 /* E1 has 32, but only 16 are used */
853#define QM_INIT_MIN_CID_COUNT	31
854#define QM_INIT(cid_cnt)	(cid_cnt > QM_INIT_MIN_CID_COUNT)
855
856/* called during init port stage */
857static void bnx2x_qm_init_cid_count(struct bnx2x *bp, int qm_cid_count,
858				    u8 initop)
859{
860	int port = BP_PORT(bp);
861
862	if (QM_INIT(qm_cid_count)) {
863		switch (initop) {
864		case INITOP_INIT:
865			/* set in the init-value array */
866		case INITOP_SET:
867			REG_WR(bp, QM_REG_CONNNUM_0 + port*4,
868			       qm_cid_count/16 - 1);
869			break;
870		case INITOP_CLEAR:
871			break;
872		}
873	}
874}
875
876static void bnx2x_qm_set_ptr_table(struct bnx2x *bp, int qm_cid_count,
877				   u32 base_reg, u32 reg)
878{
879	int i;
880	u32 wb_data[2] = {0, 0};
881	for (i = 0; i < 4 * QM_QUEUES_PER_FUNC; i++) {
882		REG_WR(bp, base_reg + i*4,
883		       qm_cid_count * 4 * (i % QM_QUEUES_PER_FUNC));
884		bnx2x_init_wr_wb(bp, reg + i*8,	 wb_data, 2);
885	}
886}
887
888/* called during init common stage */
889static void bnx2x_qm_init_ptr_table(struct bnx2x *bp, int qm_cid_count,
890				    u8 initop)
891{
892	if (!QM_INIT(qm_cid_count))
893		return;
894
895	switch (initop) {
896	case INITOP_INIT:
897		/* set in the init-value array */
898	case INITOP_SET:
899		bnx2x_qm_set_ptr_table(bp, qm_cid_count,
900				       QM_REG_BASEADDR, QM_REG_PTRTBL);
901		if (CHIP_IS_E1H(bp))
902			bnx2x_qm_set_ptr_table(bp, qm_cid_count,
903					       QM_REG_BASEADDR_EXT_A,
904					       QM_REG_PTRTBL_EXT_A);
905		break;
906	case INITOP_CLEAR:
907		break;
908	}
909}
910
911/****************************************************************************
912* SRC initializations
913****************************************************************************/
914/* called during init func stage */
915static void bnx2x_src_init_t2(struct bnx2x *bp, struct src_ent *t2,
916			      dma_addr_t t2_mapping, int src_cid_count)
917{
918	int i;
919	int port = BP_PORT(bp);
920
921	/* Initialize T2 */
922	for (i = 0; i < src_cid_count-1; i++)
923		t2[i].next = (u64)(t2_mapping +
924			     (i+1)*sizeof(struct src_ent));
925
926	/* tell the searcher where the T2 table is */
927	REG_WR(bp, SRC_REG_COUNTFREE0 + port*4, src_cid_count);
928
929	bnx2x_wr_64(bp, SRC_REG_FIRSTFREE0 + port*16,
930		    U64_LO(t2_mapping), U64_HI(t2_mapping));
931
932	bnx2x_wr_64(bp, SRC_REG_LASTFREE0 + port*16,
933		    U64_LO((u64)t2_mapping +
934			   (src_cid_count-1) * sizeof(struct src_ent)),
935		    U64_HI((u64)t2_mapping +
936			   (src_cid_count-1) * sizeof(struct src_ent)));
937}
938#endif /* BNX2X_INIT_OPS_H */
939