1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Copyright(c) 2007 Atheros Corporation. All rights reserved.
4 *
5 * Derived from Intel e1000 driver
6 * Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
7 */
8#include <linux/pci.h>
9#include <linux/delay.h>
10#include <linux/mii.h>
11#include <linux/crc32.h>
12
13#include "atl1e.h"
14
15/*
16 * check_eeprom_exist
17 * return 0 if eeprom exist
18 */
19int atl1e_check_eeprom_exist(struct atl1e_hw *hw)
20{
21	u32 value;
22
23	value = AT_READ_REG(hw, REG_SPI_FLASH_CTRL);
24	if (value & SPI_FLASH_CTRL_EN_VPD) {
25		value &= ~SPI_FLASH_CTRL_EN_VPD;
26		AT_WRITE_REG(hw, REG_SPI_FLASH_CTRL, value);
27	}
28	value = AT_READ_REGW(hw, REG_PCIE_CAP_LIST);
29	return ((value & 0xFF00) == 0x6C00) ? 0 : 1;
30}
31
32void atl1e_hw_set_mac_addr(struct atl1e_hw *hw)
33{
34	u32 value;
35	/*
36	 * 00-0B-6A-F6-00-DC
37	 * 0:  6AF600DC 1: 000B
38	 * low dword
39	 */
40	value = (((u32)hw->mac_addr[2]) << 24) |
41		(((u32)hw->mac_addr[3]) << 16) |
42		(((u32)hw->mac_addr[4]) << 8)  |
43		(((u32)hw->mac_addr[5])) ;
44	AT_WRITE_REG_ARRAY(hw, REG_MAC_STA_ADDR, 0, value);
45	/* hight dword */
46	value = (((u32)hw->mac_addr[0]) << 8) |
47		(((u32)hw->mac_addr[1])) ;
48	AT_WRITE_REG_ARRAY(hw, REG_MAC_STA_ADDR, 1, value);
49}
50
51/*
52 * atl1e_get_permanent_address
53 * return 0 if get valid mac address,
54 */
55static int atl1e_get_permanent_address(struct atl1e_hw *hw)
56{
57	u32 addr[2];
58	u32 i;
59	u32 twsi_ctrl_data;
60	u8  eth_addr[ETH_ALEN];
61
62	if (is_valid_ether_addr(hw->perm_mac_addr))
63		return 0;
64
65	/* init */
66	addr[0] = addr[1] = 0;
67
68	if (!atl1e_check_eeprom_exist(hw)) {
69		/* eeprom exist */
70		twsi_ctrl_data = AT_READ_REG(hw, REG_TWSI_CTRL);
71		twsi_ctrl_data |= TWSI_CTRL_SW_LDSTART;
72		AT_WRITE_REG(hw, REG_TWSI_CTRL, twsi_ctrl_data);
73		for (i = 0; i < AT_TWSI_EEPROM_TIMEOUT; i++) {
74			msleep(10);
75			twsi_ctrl_data = AT_READ_REG(hw, REG_TWSI_CTRL);
76			if ((twsi_ctrl_data & TWSI_CTRL_SW_LDSTART) == 0)
77				break;
78		}
79		if (i >= AT_TWSI_EEPROM_TIMEOUT)
80			return AT_ERR_TIMEOUT;
81	}
82
83	/* maybe MAC-address is from BIOS */
84	addr[0] = AT_READ_REG(hw, REG_MAC_STA_ADDR);
85	addr[1] = AT_READ_REG(hw, REG_MAC_STA_ADDR + 4);
86	*(u32 *) &eth_addr[2] = swab32(addr[0]);
87	*(u16 *) &eth_addr[0] = swab16(*(u16 *)&addr[1]);
88
89	if (is_valid_ether_addr(eth_addr)) {
90		memcpy(hw->perm_mac_addr, eth_addr, ETH_ALEN);
91		return 0;
92	}
93
94	return AT_ERR_EEPROM;
95}
96
97bool atl1e_write_eeprom(struct atl1e_hw *hw, u32 offset, u32 value)
98{
99	return true;
100}
101
102bool atl1e_read_eeprom(struct atl1e_hw *hw, u32 offset, u32 *p_value)
103{
104	int i;
105	u32 control;
106
107	if (offset & 3)
108		return false; /* address do not align */
109
110	AT_WRITE_REG(hw, REG_VPD_DATA, 0);
111	control = (offset & VPD_CAP_VPD_ADDR_MASK) << VPD_CAP_VPD_ADDR_SHIFT;
112	AT_WRITE_REG(hw, REG_VPD_CAP, control);
113
114	for (i = 0; i < 10; i++) {
115		msleep(2);
116		control = AT_READ_REG(hw, REG_VPD_CAP);
117		if (control & VPD_CAP_VPD_FLAG)
118			break;
119	}
120	if (control & VPD_CAP_VPD_FLAG) {
121		*p_value = AT_READ_REG(hw, REG_VPD_DATA);
122		return true;
123	}
124	return false; /* timeout */
125}
126
127void atl1e_force_ps(struct atl1e_hw *hw)
128{
129	AT_WRITE_REGW(hw, REG_GPHY_CTRL,
130			GPHY_CTRL_PW_WOL_DIS | GPHY_CTRL_EXT_RESET);
131}
132
133/*
134 * Reads the adapter's MAC address from the EEPROM
135 *
136 * hw - Struct containing variables accessed by shared code
137 */
138int atl1e_read_mac_addr(struct atl1e_hw *hw)
139{
140	int err = 0;
141
142	err = atl1e_get_permanent_address(hw);
143	if (err)
144		return AT_ERR_EEPROM;
145	memcpy(hw->mac_addr, hw->perm_mac_addr, sizeof(hw->perm_mac_addr));
146	return 0;
147}
148
149/*
150 * atl1e_hash_mc_addr
151 *  purpose
152 *      set hash value for a multicast address
153 */
154u32 atl1e_hash_mc_addr(struct atl1e_hw *hw, u8 *mc_addr)
155{
156	u32 crc32;
157	u32 value = 0;
158	int i;
159
160	crc32 = ether_crc_le(6, mc_addr);
161	for (i = 0; i < 32; i++)
162		value |= (((crc32 >> i) & 1) << (31 - i));
163
164	return value;
165}
166
167/*
168 * Sets the bit in the multicast table corresponding to the hash value.
169 * hw - Struct containing variables accessed by shared code
170 * hash_value - Multicast address hash value
171 */
172void atl1e_hash_set(struct atl1e_hw *hw, u32 hash_value)
173{
174	u32 hash_bit, hash_reg;
175	u32 mta;
176
177	/*
178	 * The HASH Table  is a register array of 2 32-bit registers.
179	 * It is treated like an array of 64 bits.  We want to set
180	 * bit BitArray[hash_value]. So we figure out what register
181	 * the bit is in, read it, OR in the new bit, then write
182	 * back the new value.  The register is determined by the
183	 * upper 7 bits of the hash value and the bit within that
184	 * register are determined by the lower 5 bits of the value.
185	 */
186	hash_reg = (hash_value >> 31) & 0x1;
187	hash_bit = (hash_value >> 26) & 0x1F;
188
189	mta = AT_READ_REG_ARRAY(hw, REG_RX_HASH_TABLE, hash_reg);
190
191	mta |= (1 << hash_bit);
192
193	AT_WRITE_REG_ARRAY(hw, REG_RX_HASH_TABLE, hash_reg, mta);
194}
195/*
196 * Reads the value from a PHY register
197 * hw - Struct containing variables accessed by shared code
198 * reg_addr - address of the PHY register to read
199 */
200int atl1e_read_phy_reg(struct atl1e_hw *hw, u16 reg_addr, u16 *phy_data)
201{
202	u32 val;
203	int i;
204
205	val = ((u32)(reg_addr & MDIO_REG_ADDR_MASK)) << MDIO_REG_ADDR_SHIFT |
206		MDIO_START | MDIO_SUP_PREAMBLE | MDIO_RW |
207		MDIO_CLK_25_4 << MDIO_CLK_SEL_SHIFT;
208
209	AT_WRITE_REG(hw, REG_MDIO_CTRL, val);
210
211	wmb();
212
213	for (i = 0; i < MDIO_WAIT_TIMES; i++) {
214		udelay(2);
215		val = AT_READ_REG(hw, REG_MDIO_CTRL);
216		if (!(val & (MDIO_START | MDIO_BUSY)))
217			break;
218		wmb();
219	}
220	if (!(val & (MDIO_START | MDIO_BUSY))) {
221		*phy_data = (u16)val;
222		return 0;
223	}
224
225	return AT_ERR_PHY;
226}
227
228/*
229 * Writes a value to a PHY register
230 * hw - Struct containing variables accessed by shared code
231 * reg_addr - address of the PHY register to write
232 * data - data to write to the PHY
233 */
234int atl1e_write_phy_reg(struct atl1e_hw *hw, u32 reg_addr, u16 phy_data)
235{
236	int i;
237	u32 val;
238
239	val = ((u32)(phy_data & MDIO_DATA_MASK)) << MDIO_DATA_SHIFT |
240	       (reg_addr&MDIO_REG_ADDR_MASK) << MDIO_REG_ADDR_SHIFT |
241	       MDIO_SUP_PREAMBLE |
242	       MDIO_START |
243	       MDIO_CLK_25_4 << MDIO_CLK_SEL_SHIFT;
244
245	AT_WRITE_REG(hw, REG_MDIO_CTRL, val);
246	wmb();
247
248	for (i = 0; i < MDIO_WAIT_TIMES; i++) {
249		udelay(2);
250		val = AT_READ_REG(hw, REG_MDIO_CTRL);
251		if (!(val & (MDIO_START | MDIO_BUSY)))
252			break;
253		wmb();
254	}
255
256	if (!(val & (MDIO_START | MDIO_BUSY)))
257		return 0;
258
259	return AT_ERR_PHY;
260}
261
262/*
263 * atl1e_init_pcie - init PCIE module
264 */
265static void atl1e_init_pcie(struct atl1e_hw *hw)
266{
267	u32 value;
268	/* comment 2lines below to save more power when sususpend
269	   value = LTSSM_TEST_MODE_DEF;
270	   AT_WRITE_REG(hw, REG_LTSSM_TEST_MODE, value);
271	 */
272
273	/* pcie flow control mode change */
274	value = AT_READ_REG(hw, 0x1008);
275	value |= 0x8000;
276	AT_WRITE_REG(hw, 0x1008, value);
277}
278/*
279 * Configures PHY autoneg and flow control advertisement settings
280 *
281 * hw - Struct containing variables accessed by shared code
282 */
283static int atl1e_phy_setup_autoneg_adv(struct atl1e_hw *hw)
284{
285	s32 ret_val;
286	u16 mii_autoneg_adv_reg;
287	u16 mii_1000t_ctrl_reg;
288
289	if (0 != hw->mii_autoneg_adv_reg)
290		return 0;
291	/* Read the MII Auto-Neg Advertisement Register (Address 4/9). */
292	mii_autoneg_adv_reg = MII_AR_DEFAULT_CAP_MASK;
293	mii_1000t_ctrl_reg  = MII_AT001_CR_1000T_DEFAULT_CAP_MASK;
294
295	/*
296	 * Need to parse autoneg_advertised  and set up
297	 * the appropriate PHY registers.  First we will parse for
298	 * autoneg_advertised software override.  Since we can advertise
299	 * a plethora of combinations, we need to check each bit
300	 * individually.
301	 */
302
303	/*
304	 * First we clear all the 10/100 mb speed bits in the Auto-Neg
305	 * Advertisement Register (Address 4) and the 1000 mb speed bits in
306	 * the  1000Base-T control Register (Address 9).
307	 */
308	mii_autoneg_adv_reg &= ~ADVERTISE_ALL;
309	mii_1000t_ctrl_reg  &= ~MII_AT001_CR_1000T_SPEED_MASK;
310
311	/*
312	 * Need to parse MediaType and setup the
313	 * appropriate PHY registers.
314	 */
315	switch (hw->media_type) {
316	case MEDIA_TYPE_AUTO_SENSOR:
317		mii_autoneg_adv_reg |= ADVERTISE_ALL;
318		hw->autoneg_advertised = ADVERTISE_ALL;
319		if (hw->nic_type == athr_l1e) {
320			mii_1000t_ctrl_reg |= ADVERTISE_1000FULL;
321			hw->autoneg_advertised |= ADVERTISE_1000_FULL;
322		}
323		break;
324
325	case MEDIA_TYPE_100M_FULL:
326		mii_autoneg_adv_reg   |= ADVERTISE_100FULL;
327		hw->autoneg_advertised = ADVERTISE_100_FULL;
328		break;
329
330	case MEDIA_TYPE_100M_HALF:
331		mii_autoneg_adv_reg   |= ADVERTISE_100_HALF;
332		hw->autoneg_advertised = ADVERTISE_100_HALF;
333		break;
334
335	case MEDIA_TYPE_10M_FULL:
336		mii_autoneg_adv_reg   |= ADVERTISE_10_FULL;
337		hw->autoneg_advertised = ADVERTISE_10_FULL;
338		break;
339
340	default:
341		mii_autoneg_adv_reg   |= ADVERTISE_10_HALF;
342		hw->autoneg_advertised = ADVERTISE_10_HALF;
343		break;
344	}
345
346	/* flow control fixed to enable all */
347	mii_autoneg_adv_reg |= (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP);
348
349	hw->mii_autoneg_adv_reg = mii_autoneg_adv_reg;
350	hw->mii_1000t_ctrl_reg  = mii_1000t_ctrl_reg;
351
352	ret_val = atl1e_write_phy_reg(hw, MII_ADVERTISE, mii_autoneg_adv_reg);
353	if (ret_val)
354		return ret_val;
355
356	if (hw->nic_type == athr_l1e || hw->nic_type == athr_l2e_revA) {
357		ret_val = atl1e_write_phy_reg(hw, MII_CTRL1000,
358					   mii_1000t_ctrl_reg);
359		if (ret_val)
360			return ret_val;
361	}
362
363	return 0;
364}
365
366
367/*
368 * Resets the PHY and make all config validate
369 *
370 * hw - Struct containing variables accessed by shared code
371 *
372 * Sets bit 15 and 12 of the MII control regiser (for F001 bug)
373 */
374int atl1e_phy_commit(struct atl1e_hw *hw)
375{
376	struct atl1e_adapter *adapter = hw->adapter;
377	int ret_val;
378	u16 phy_data;
379
380	phy_data = BMCR_RESET | BMCR_ANENABLE | BMCR_ANRESTART;
381
382	ret_val = atl1e_write_phy_reg(hw, MII_BMCR, phy_data);
383	if (ret_val) {
384		u32 val;
385		int i;
386		/**************************************
387		 * pcie serdes link may be down !
388		 **************************************/
389		for (i = 0; i < 25; i++) {
390			msleep(1);
391			val = AT_READ_REG(hw, REG_MDIO_CTRL);
392			if (!(val & (MDIO_START | MDIO_BUSY)))
393				break;
394		}
395
396		if (0 != (val & (MDIO_START | MDIO_BUSY))) {
397			netdev_err(adapter->netdev,
398				   "pcie linkdown at least for 25ms\n");
399			return ret_val;
400		}
401
402		netdev_err(adapter->netdev, "pcie linkup after %d ms\n", i);
403	}
404	return 0;
405}
406
407int atl1e_phy_init(struct atl1e_hw *hw)
408{
409	struct atl1e_adapter *adapter = hw->adapter;
410	s32 ret_val;
411	u16 phy_val;
412
413	if (hw->phy_configured) {
414		if (hw->re_autoneg) {
415			hw->re_autoneg = false;
416			return atl1e_restart_autoneg(hw);
417		}
418		return 0;
419	}
420
421	/* RESET GPHY Core */
422	AT_WRITE_REGW(hw, REG_GPHY_CTRL, GPHY_CTRL_DEFAULT);
423	msleep(2);
424	AT_WRITE_REGW(hw, REG_GPHY_CTRL, GPHY_CTRL_DEFAULT |
425		      GPHY_CTRL_EXT_RESET);
426	msleep(2);
427
428	/* patches */
429	/* p1. eable hibernation mode */
430	ret_val = atl1e_write_phy_reg(hw, MII_DBG_ADDR, 0xB);
431	if (ret_val)
432		return ret_val;
433	ret_val = atl1e_write_phy_reg(hw, MII_DBG_DATA, 0xBC00);
434	if (ret_val)
435		return ret_val;
436	/* p2. set Class A/B for all modes */
437	ret_val = atl1e_write_phy_reg(hw, MII_DBG_ADDR, 0);
438	if (ret_val)
439		return ret_val;
440	phy_val = 0x02ef;
441	/* remove Class AB */
442	/* phy_val = hw->emi_ca ? 0x02ef : 0x02df; */
443	ret_val = atl1e_write_phy_reg(hw, MII_DBG_DATA, phy_val);
444	if (ret_val)
445		return ret_val;
446	/* p3. 10B ??? */
447	ret_val = atl1e_write_phy_reg(hw, MII_DBG_ADDR, 0x12);
448	if (ret_val)
449		return ret_val;
450	ret_val = atl1e_write_phy_reg(hw, MII_DBG_DATA, 0x4C04);
451	if (ret_val)
452		return ret_val;
453	/* p4. 1000T power */
454	ret_val = atl1e_write_phy_reg(hw, MII_DBG_ADDR, 0x4);
455	if (ret_val)
456		return ret_val;
457	ret_val = atl1e_write_phy_reg(hw, MII_DBG_DATA, 0x8BBB);
458	if (ret_val)
459		return ret_val;
460
461	ret_val = atl1e_write_phy_reg(hw, MII_DBG_ADDR, 0x5);
462	if (ret_val)
463		return ret_val;
464	ret_val = atl1e_write_phy_reg(hw, MII_DBG_DATA, 0x2C46);
465	if (ret_val)
466		return ret_val;
467
468	msleep(1);
469
470	/*Enable PHY LinkChange Interrupt */
471	ret_val = atl1e_write_phy_reg(hw, MII_INT_CTRL, 0xC00);
472	if (ret_val) {
473		netdev_err(adapter->netdev,
474			   "Error enable PHY linkChange Interrupt\n");
475		return ret_val;
476	}
477	/* setup AutoNeg parameters */
478	ret_val = atl1e_phy_setup_autoneg_adv(hw);
479	if (ret_val) {
480		netdev_err(adapter->netdev,
481			   "Error Setting up Auto-Negotiation\n");
482		return ret_val;
483	}
484	/* SW.Reset & En-Auto-Neg to restart Auto-Neg*/
485	netdev_dbg(adapter->netdev, "Restarting Auto-Negotiation\n");
486	ret_val = atl1e_phy_commit(hw);
487	if (ret_val) {
488		netdev_err(adapter->netdev, "Error resetting the phy\n");
489		return ret_val;
490	}
491
492	hw->phy_configured = true;
493
494	return 0;
495}
496
497/*
498 * Reset the transmit and receive units; mask and clear all interrupts.
499 * hw - Struct containing variables accessed by shared code
500 * return : 0  or  idle status (if error)
501 */
502int atl1e_reset_hw(struct atl1e_hw *hw)
503{
504	struct atl1e_adapter *adapter = hw->adapter;
505	struct pci_dev *pdev = adapter->pdev;
506
507	u32 idle_status_data = 0;
508	u16 pci_cfg_cmd_word = 0;
509	int timeout = 0;
510
511	/* Workaround for PCI problem when BIOS sets MMRBC incorrectly. */
512	pci_read_config_word(pdev, PCI_REG_COMMAND, &pci_cfg_cmd_word);
513	if ((pci_cfg_cmd_word & (CMD_IO_SPACE |
514				CMD_MEMORY_SPACE | CMD_BUS_MASTER))
515			!= (CMD_IO_SPACE | CMD_MEMORY_SPACE | CMD_BUS_MASTER)) {
516		pci_cfg_cmd_word |= (CMD_IO_SPACE |
517				     CMD_MEMORY_SPACE | CMD_BUS_MASTER);
518		pci_write_config_word(pdev, PCI_REG_COMMAND, pci_cfg_cmd_word);
519	}
520
521	/*
522	 * Issue Soft Reset to the MAC.  This will reset the chip's
523	 * transmit, receive, DMA.  It will not effect
524	 * the current PCI configuration.  The global reset bit is self-
525	 * clearing, and should clear within a microsecond.
526	 */
527	AT_WRITE_REG(hw, REG_MASTER_CTRL,
528			MASTER_CTRL_LED_MODE | MASTER_CTRL_SOFT_RST);
529	wmb();
530	msleep(1);
531
532	/* Wait at least 10ms for All module to be Idle */
533	for (timeout = 0; timeout < AT_HW_MAX_IDLE_DELAY; timeout++) {
534		idle_status_data = AT_READ_REG(hw, REG_IDLE_STATUS);
535		if (idle_status_data == 0)
536			break;
537		msleep(1);
538		cpu_relax();
539	}
540
541	if (timeout >= AT_HW_MAX_IDLE_DELAY) {
542		netdev_err(adapter->netdev,
543			   "MAC state machine can't be idle since disabled for 10ms second\n");
544		return AT_ERR_TIMEOUT;
545	}
546
547	return 0;
548}
549
550
551/*
552 * Performs basic configuration of the adapter.
553 *
554 * hw - Struct containing variables accessed by shared code
555 * Assumes that the controller has previously been reset and is in a
556 * post-reset uninitialized state. Initializes multicast table,
557 * and  Calls routines to setup link
558 * Leaves the transmit and receive units disabled and uninitialized.
559 */
560int atl1e_init_hw(struct atl1e_hw *hw)
561{
562	s32 ret_val = 0;
563
564	atl1e_init_pcie(hw);
565
566	/* Zero out the Multicast HASH table */
567	/* clear the old settings from the multicast hash table */
568	AT_WRITE_REG(hw, REG_RX_HASH_TABLE, 0);
569	AT_WRITE_REG_ARRAY(hw, REG_RX_HASH_TABLE, 1, 0);
570
571	ret_val = atl1e_phy_init(hw);
572
573	return ret_val;
574}
575
576/*
577 * Detects the current speed and duplex settings of the hardware.
578 *
579 * hw - Struct containing variables accessed by shared code
580 * speed - Speed of the connection
581 * duplex - Duplex setting of the connection
582 */
583int atl1e_get_speed_and_duplex(struct atl1e_hw *hw, u16 *speed, u16 *duplex)
584{
585	int err;
586	u16 phy_data;
587
588	/* Read   PHY Specific Status Register (17) */
589	err = atl1e_read_phy_reg(hw, MII_AT001_PSSR, &phy_data);
590	if (err)
591		return err;
592
593	if (!(phy_data & MII_AT001_PSSR_SPD_DPLX_RESOLVED))
594		return AT_ERR_PHY_RES;
595
596	switch (phy_data & MII_AT001_PSSR_SPEED) {
597	case MII_AT001_PSSR_1000MBS:
598		*speed = SPEED_1000;
599		break;
600	case MII_AT001_PSSR_100MBS:
601		*speed = SPEED_100;
602		break;
603	case MII_AT001_PSSR_10MBS:
604		*speed = SPEED_10;
605		break;
606	default:
607		return AT_ERR_PHY_SPEED;
608	}
609
610	if (phy_data & MII_AT001_PSSR_DPLX)
611		*duplex = FULL_DUPLEX;
612	else
613		*duplex = HALF_DUPLEX;
614
615	return 0;
616}
617
618int atl1e_restart_autoneg(struct atl1e_hw *hw)
619{
620	int err = 0;
621
622	err = atl1e_write_phy_reg(hw, MII_ADVERTISE, hw->mii_autoneg_adv_reg);
623	if (err)
624		return err;
625
626	if (hw->nic_type == athr_l1e || hw->nic_type == athr_l2e_revA) {
627		err = atl1e_write_phy_reg(hw, MII_CTRL1000,
628				       hw->mii_1000t_ctrl_reg);
629		if (err)
630			return err;
631	}
632
633	err = atl1e_write_phy_reg(hw, MII_BMCR,
634			BMCR_RESET | BMCR_ANENABLE | BMCR_ANRESTART);
635	return err;
636}
637
638